
UML Xtra-Light: How to Specify Your Hardware
Requirements

by Milan Kratochvil and Barry
McGibbon

ISBN:0521892422

Cambridge University Press © 2003 (106 pages)

Written to help business managers communicate with the
technical members of their staff, this brief guide offers
advice on using UML notation to describe business objectives
to software developers.

Table of Contents Back Cover Comments

Table of Contents

UML Xtra-Light—How to Specify Your Software Requirements

Foreword

Preface

Chapter 1 - Introduction

Chapter 2 - Aligning to the Business

Chapter 3 - Adding Rigor to the Requirements

Chapter 4 - Sketching the Inside Structure

Chapter 5 - Sketching the Inside Dynamics

Chapter 6 - Moving Toward Components

Chapter 7 - Mapping from Classes to Data Models

Chapter 8 - Concluding Remarks

Some Suggested Readings

Index

List of Figures

List of Sidebars

UML Xtra-Light-How to Specify Your
Software Requirements
Milan Kratochvíl
Barry McGibbon

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF
CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://80-www.cambridge.org.ezproxy.library.drexel.edu

© Milan Kratochvíl and Barry McGibbon 2002

This book is in copyright. Subject to statutory exception and to the provisions
of relevant collective licensing agreements, no reproduction of any part may
take place without
the written permission of Cambridge University Press.

Any product mentioned in this book may be a trademark of its company.

UMLTM is a registered trademark of the Object Management Group.

UML logo used with permission from the Object Management Group.

First published 2002

Printed in the United States of America

Typefaces Stone Serif 10.5/13 pt., Stone Sans, and Informal System
QuarkXPress® [GH]

A catalogue record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Kratochvíl, Milan.

UML xtra-light : how to specify your software requirements / Milan Kratochvíl,
Barry McGibbon.
p. cm.

Includes bibliographical references and index. ISBN 0-521-89242-2
1. Application software - Development. 2. UML (Computer science) I.
McGibbon, Barry, 1947- II. Title.
QA76.76.A65 K72 2002
005.1 - dc21
200219253 ISBN 0 521 89242 2 paperback

To my father, Jiří, and to generations of composers before him who realized
that architectural standards, components, and reuse all boost creativity and
invention.
Milan Kratochvíl

To my wife, Vicky, for her lifetime of love and support
Barry McGibbon

Foreword
Yet another book about UML! Since its initial version, the Unified Modeling
Language has gone an impressive way in the IT community. Over the past
couple of years, we have been loading our bookcase with quite a few UML
books. Many of them deal with applying or extending UML for a specific
domain: UML for project management, UML for business modeling, UML for
Java, real-time UML, UML for components, UML for web applications, and
so forth.

This book takes a somewhat different and, in our opinion, long-awaited
approach. It goes back to the basics of UML: improving the communication
among different stakeholders of a (software) project. As the authors of the
book write: 'a UML made easy for people who specify, buy, or manage
complex software systems.' Many of these stakeholders are non-IT
professionals in much need of an easy-to-digest introduction to UML.

Looking back on the IBM San Francisco project - one of the real success
projects in the field of object-oriented business applications - where we, at
IBS, played a central role as initiators and principal development partner to
IBM, a key success factor was the alignment among domain experts,
sponsors, and object experts - through a minimum set of concepts and
techniques.

In addition, this book focuses on the new paradigm in software development:
fast delivery of applications based on components sourced from various
suppliers. Even though UML initially placed considerable focus on creating
applications from scratch, successful software projects today are all about
creating, buying, and integrating software components. This leaves us (who
intend to stay competitive and successful!) extremely dependent on a
standard notation for any software-related communication, specification, and
knowledge sharing. The IBM San Francisco/Web Sphere Business
components provide an extreme case for this. By using a standard notation
language for the component specs, any potential application builder will be
able to understand, integrate, and extend the components. Furthermore, tool
vendors have been easily able to integrate the components in their tool sets
for modeling and code generation.

Enjoy!

Staffan Ahlberg
CEO
IBS AB
www.ibs.se

Tomas Bräne
VP Research & Development
IBS AB
tomas.brane@ibs.se

Preface
The excellent idea of writing a lightweight book on the Unified Modeling
Language (UML) wasn't ours, we admit. This idea originated from Milan's
customers. Having taught more than a hundred courses and seminars on
component approaches to software development and on UML over the past
few years, he was repeatedly asked for 'UML made easy' for people who
specify, buy, or manage complex software systems, yet don't program them.
This demand seems logical given the way UML is being used in projects and
read of in the success stories[1] - as well as the increasing specification work
load in any knowledge industry (see Introduction). However, as we moved
on into this book project, both of us became increasingly enthusiastic about
the idea, as did Cambridge University Press (CUP). Luckily, a majority of our
readers are quite familiar with CUP from their own (variety of) fields; so this
book is likely to be seen as accessible in most senses of the word.

Any system specification can state requirements on functionality, usability,
reliability, performance, and supportability, as well as legal and technical
constraints where relevant. In UML projects, we start from a view of the
business - its processes and activities - and move into functionality,
incrementing all the remaining, nonfunctional, bullet lists as we go. These
are then resolved later, during construction, rather than during specification.
As stressed in the chapter on components as well as implied throughout the
book, wherever we're on the scale between 'buy' and 'build,' the specification
work and business analysis just don't simply disappear. Even with an off-the-
shelf system, we still specify our requirements, and we still need to
understand the essence of all those UML diagrams.

To keep this book lightweight, we stay reasonably lightweight on the art of
balancing the content of internal/technical UML views. This kind of balance is
key down the road, that is, later on in a software development project.

It requires modeling the right aspects in the appropriate diagram view at a
right level of detail in the initial stage of a project. However, we chose to
appeal to the reader's common sense by pointing out the natural boundaries
between the process view, the use-case view, and the structural (or
conceptual) view, with the strengths and limitations of each view. Neither a
blueprint of a building nor one of a software system can show everything at
once. Some drawings depict the walls and the roof, others electricity, and yet
others heating, air conditioning, water, and drainage; that is, we separate the
concerns. What is noteworthy is that people proposing buildings learn
quickly to keep away (hide) electricity aspects from the exterior view and
vice versa.

Standards and components are a serious boost to productivity in software. In
our experience, however, these are more likely to be practiced when
introduced in a step-by-step, nonacademic, and not too reserved manner, as
outlined in this book. As an enterprise sets its mind on component reuse, all
professionals from junior programmers to top management become involved
and, consequently, need to be offered a brief guidebook within their frame of
reference. So, for software specialists struggling to shift from a detailed
code-based approach to the conceptual models of the software design and
architecture, we recommend exploring UML beyond this lightweight version.

Acknowledgments
As mentioned in the Preface, many people have gradually made us realize
the need for a lightweight book like this, thus indirectly pushing it through.
Thanks to many people at the Object Management Group, Aonix-Select UK,
Linsoft, Cell Network, Rational Scandinavia, IBS. Thanks to Marie-Louise

Westerberg and Esa Falkenroth (Swedish Meteorological and Hydrological
Institute), Leif-Åke Andersson (Swedish Customs/IT), Eva Backe
(IntegraEnterprise Systems), Anna Hermansson (Ericsson Telecom), Bjørn-
Erik Willoch (Institute of Process Innovation, now CAP Management Consult
ing), Stanislav Mlynář CEO, LBMS Prague), Esa Rantanen (Sema Group),
Annika Hansen-Eriksson (Royal Institute of Technology, now at
SemaGroup), and many others. For hints on knowledge enterprises, thanks
to Peter Stevrin (associate professor, IT Management, Blekinge Institute of
Technology) and Leif Edvinsson (Manager Intellectual Capital, at Skandia).

For my blueprint thinking as well as the life-cycle aspect introduced in the
earliest decades of systems development, thanks to my earlier employer,
Michael A. Jackson. Thanks to Johan Wretö (Wreto.com) and Dennis Parrot
(Select Software Tools, now at iPlanet) for interesting hints on teaching UML
to others. Special thanks to Richard M. Soley (Chair and CEO, Object
Management Group) for his enthusiasm and encouragement at an early
stage, after the OMG day in Stockholm.

Finally, our publisher, Lothlórien Homet at Cambridge University Press,
certainly deserves considerable thanks for keeping her humor throughout the
process and for balancing the text skillfully between 'practically nothing' and
'impractically heavyweight' (also, Lothlórien more or less banned most of my
favorite, extremely compact but neither tidy nor especially comprehensible
stock phrases, so thanks on behalf of the readers, too).Milan Kratochvíl

To all my friends and colleagues over the years, especially Steve Latchem,
Dave Piper, Baz Maybank, Chris Simons, Adam Partridge, Dave West; to
Lothlórien Homet, my brilliant publisher; and to all my super clients, with out
whom this book would not have been written.Barry McGibbon

[1]The Object Management Group (OMG) owns and upgrades the UML
standard; visit www.omg.org.

About the Authors
Milan Kratochvíl

A degree in Business & Administration and Data processing, Stockholm
University. Born in Prague, living in the dynamic silicon area around
Stockholm-Kista (ranked by Wired as a global number 2).

Working since 1977 as an IT consultant, instructor, and writer in
methodology; independent since 1989, focusing on areas where IT and
knowledge-intensive business meet. Taught far more than a hundred
courses and seminars on a commercial basis for developers, managers, or
buyers of complex systems. Published several articles, reports, congress
papers on methodology and knowledge management. An initiator/catalyst
and project leader of three experience-exchange pools with The Swedish
Computer Society in Stockholm a few years ago.

Lessons learned: there are two things in this world you should reuse
everyday - jokes and components.

Barry McGibbon

Worked in the IT industry since 1966, gaining a wide variety of experience,
ranging from programming through to holding senior management positions
with leading computing services and product providers.

A consultant since 1985, with involvement in numerous major initiatives for
significant enterprises in the United States, Europe, and the United Kingdom.

Provides advice and counsel on managing software development,
methodologies, improvement strategies, capability evaluations, and quality
management systems.

Lectures widely in the United States, the United Kingdom, and Europe.
Author of Managing Your Move to Object Technology: Guidelines &
Strategies for a Smooth Transition, published by SIGS Books Inc., and a
contributor on Component Based Software Engineering, published by
Addison-Wesley. Technical chairman for Europe's largest component and
object technology conference and a series editor for Cambridge University
Press.

How to Customize This Book
Most readers of this book suffer from a lack of time, so here's a guide on
how you can focus on the key chapters relevant to your role.

Process owners, reengineers, and similar roles usually consider the
topics of Chapters 1 and 2 as the essence of a project, so you're advised to
read those chapters thoroughly and browse through the rest.

End-user representatives or other roles involved in man-machine
interaction (MMI), manuals, user training, user interfaces (UI), or interfaces
to other systems are advised to focus on Chapter 3.

Domain experts are advised to concentrate on Chapter 4 and to browse
through Chapters 3 and 5.

Managers, project-plan coordinators, venture capitalists, headhunters,
or PA people could read Chapters 1, 2, and 3 quickly and focus on Chapter
6.

Others reading the book simply out of curiosity might want to browse
through the art first, and then choose topics that interest them for a second
iteration.

In general, those not interested in specific details can skip the footnotes and
boxes.

Chapter 1: Introduction

Software - Yet Another Knowledge Industry
Knowledge industries such as electronics, space, pharmaceuticals, or
software are special. On the surface, they're the hotly-argued-upon
backbone of the new economy, a concept that's no longer new. In our
opinion, it's the approach to business that makes the difference, rather than
a company's niche or age. Some old-economy veterans, such as global-
automation vendor ABB, have rapidly expanded their R&D initiatives and
resources, employing many more IT specialists than many so-called new
high-profile IT firms. IT provides a foundation to a variety of current business
ideas, including customer-driven manufacturing where a web customer
configures the product or even the software guiding an industrial robot in
manufacturing the chosen customized product.

Obviously, knowledge industries are more special under the shell than at this
slightly superficial mass-media/thematic level. On one hand, they have
business processes similar to other industries but, on the other hand,
production/operations is a small part of any business dominated by R&D and
by marketing the know-how of that organization.

Figure 1-1: A possible knowledge industry value
chain.

Awareness of knowledge-industry specifics is a project-time saver, both
within the software industry itself and with the rapidly increasing number of
its customers in the other knowledge industries. Knowledge industries are
often interleaved with traditional industry sectors - today, you find computer
chips and software in all the flagships of industrialism, from heavy trucks to
railways. But, in a high-tech region, the complete knowledge-business value
chain can sometimes grow remarkably long without any tangible ('hard')
products whatsoever (Figure 1-1). For example, your customer might be a
training company, whose customer is someone selling tools and
methodology to a software house, some of whose customers provide Inter-
net banking to e-traders, others providing sales configurators for customized
insurance packages, and on it goes; sometimes, all the tangible hardware
might seem to be produced on some other planet. Nevertheless, whichever
the surrounding corporate culture or age of the enterprise, its IT parts must
be considered a knowledge industry.

Classifying the Knowledge Industry
Figure 1-2 shows a kind of classification, pioneered 15 years ago by Karl-
Erik Sveiby's team,[1] which makes us aware of the climate in our firm or
project by starting from the extremes:

A traditional office: a lack of real organization, of explicit common
objectives, of know-how. Professor Parkinson's Laws apply. For
example, an office of more than 150 employees doesn't need any
external input because of generating its workload itself!

A traditional factory: traditionally a hierarchy. Even in a modern factory,
there's more focus on processes, work instructions/procedure steps
than on creativity. In the past, the personnel were roughly supposed to
take their hands with them in the morning - leaving their heads at home.

Figure 1-2: Where is your corporate culture?

An agency: creativity in an organizational chaos. Everyone is working
hard and loves it - forgetting about surroundings, lunches, and
colleagues. Anyone who becomes a burnout is considered an admirable
role model.

A knowledge enterprise: expertise combined with a common vision,
structure, and cooperation. A knowledge enterprise solves complex
problems of customers, while a service enterprise solves simple
problems with appropriate repeatable procedures.

As you can see, no organization fits into any of the previous cartoons. The
engine of the global economy is a gray zone that we prefer calling the
knowledge industry: firms or projects that package their know-how into well-
defined products and procedures, yet stay knowledge-intensive. Here,
component-based approaches boosted by standards are the engine in most
improvement efforts.

[1]Visit this Swedish-Australian writer and pioneer of knowledge management
at www.sveiby.com.au. Books include Managing Knowhow, by Sveiby and
Lloyd (Bloomsbury, London, 1997) and The New Organizational Wealth, by
Sveiby (Berrett-Koehler, San Francisco, 1997).

Consequences of the Knowledge Industry
Know-how intensity has some important practical consequences.

The production process becomes a packaging machine for the realization of
the know-how, for example, the pharmaceutical factory for the know-how of
R&D specialists. It must not fail, so all bottlenecks are banned, but these
production costs are pennies compared to the acquisition and development
of this know-how.

The silicon chip, the medical pill, the software CD, or the download-site is a
wrapper for the know-how. We don't buy pills by weight. We pay for the
expected improvement instead, no matter how it's packaged. Similarly,
buying software by kilo-lines, (kLocs) of code doesn't make much sense. We
pay for the expected business improvement, no matter the amount of new
code or reused components. As the Object Management Group (OMG)
points out, modern software projects avoid writing all the code for the
programs. In other words, they reuse more infrastructure parts, off-the-shelf
software components/business-oriented components than traditional projects
do. In knowledge industries know-how is the real thing, whereas the wrapper
is hardly relevant.

Unlike traditional mass production, the competitive edge isn't in the
workflows of production/operations/administration, but in the mechanisms of
sharing and processing know-how across the firm. Therefore, a traditional
mechanical Business Process Reengineering (BPR) approach tends to solve
the wrong problem when applied in a knowledge industry because it's
focusing on the basic activities, without considering the complexity of the
business logic in that activity.

The Asset Paradox
When the main asset of the firm is knowledge, then the trick is to stay fairly
independent of individuals by turning a knowledge enterprise into a
knowledge industry. This requires storing more knowledge in a format
accessible to as many co-workers as possible, most often using computers.
The labor market is simply a market. Therefore, even in a rather holistic
bookkeeping approach, the (fancy) knowledge-asset figures must be
adjusted by a factor reflecting their infrastructure, structuring,
standardization, methodology, component-sharing, and so forth.

Acquiring and keeping unique knowledge is key in a clear-cut knowledge
enterprise, whereas in a knowledge industry, the structure of the know-how -
and the infrastructure used in keeping it current and in feeding it through - is
as important as the know-how itself, a fact deserving attention from both
knowledge managers and financial analysts.[2] Typically, a knowledge
enterprise sells knowledge, whereas a knowledge industry sells its capability
to apply and deploy its knowledge packaged as, for example, software.

[2]Estimating/forecasting high-tech shares has been hotly argued since the
1980s. Focusing on knowledge structure and infrastructure is less fuzzy than
trying to quantify pure knowledge. We hope to see less roller-coaster rides
on NASDAQ in the future, as tech shares become less volatile when all such
factors are thoroughly worked through and taken into account by analysts,
ahead of IPOs or mergers. As we show in Chapter 6, configurable
components can boost sales activities as well, by enabling a closer and
cheaper match between bids and specific customer needs in a variety of
niches

Sharing the Knowledge
Given all these specifics, the efficiency of specification and development
activities is extremely important in any knowledge industry. The toolkit of
improvement is all about knowledge sharing by:

Standardizing the terms and the notation

Practicing a common approach

Sharing pretested components

UML has standardized the terms and the notation by providing a set of
diagrams with a defined syntax. Unlike other knowledge industries, software
can't be expressed by drawings or photographs of some spatial/physical,
musical, biological, or chemical properties. Even under a fancy microscope,
software stays invisible and intangible. A software-blueprint isn't as intuitive
as a land map showing ice in white and water in blue. Rather, it presupposes
a general industry-wide agreement in the first place, on the agreed meaning
of every single symbol or relationship.

This makes us extremely dependent on a standard notation for any software-
related communication and specification, all the way from a project
developing a system from scratch to one selecting an off-the-shelf package.
As development projects become increasingly global, UML also helps those
of us communicating in our second or third language. For example, IBM
development labs are located in dozens of countries, each with its own
native language or languages, or the new Airbus Superjumbo involves
industries from most of Europe. Atop of that, all natural languages include
some natural ambiguity.[3] All things considered, word processors aren't
enough as a tool of specifying requirements.

Practicing a common approach or method framework across projects,
supported by a regularly upgraded knowledge aid, such as online mentors,
built-in hyperbooks, or intelligent checks in a PC-based tool (a UML case
tool), is knowledge sharing in a narrow sense. With cheap tools, we simply
access the expert knowledge of others (typically, using standard search
engines and hyperlinks) whereas, with automation tools, we can even run it
on a computer, and then simply access the results of the run (or let the
computer use them), be it calculations or a more qualitative business logic.

We share pretested components across the firm and across the software
industry. This kind of 'canned know-how' from colleagues is a superior stage
of knowledge sharing - we can activate the result right away, without ever
acquiring the know-how that created it. This component that encapsulates
the expert's knowledge and experience is kept up-to-date by the expert,
leaving all the other developers free to concentrate on the business solution.
This is an effective technique and a rather down-to-earth one when
contrasted to preaching knowledge management at a thematic level. As we
point out in the Chapter 6, this degree of automation can be increased
further by smart configurator tools in the near future.

By and large, we encourage IT teams to exchange and adopt best practices
from other sectors of industry. That said, we recommend knowledge
industries as sources of ideas: many Business Process Reengineering
cases and books described processes with a low-to-medium knowledge
content, hardly applicable in the context of software specification and
development. Although the bottom line might look deceptively similar, the
devices and the activities generating that bottom line do differ, and those
differences may be significant.

[3]A fact easily 'rediscovered' while we're writing this book and asking others

to read our first-draft text.

Sharing the Responsibility for Getting It Right
Even the buyer, the reengineer, or the process owner is involved in
specifying and improving requirements throughout the project. In any
knowledge industry, the customer and the vendor share this responsibility.
Here, 'the customer is always right' translates into 'the customer always has
the right to get the right solution to the right problem.' If you go to your car
dealer and order a thirsty six-wheel-drive monster for driving from home to a
job just around the corner, your dealer might laugh, as Figure 1-3 shows, but
he offers and sells the monster to you anyway. On the other hand, if you try
something similar in a knowledge industry, a serious vendor will raise strong
objections on the mismatch between the business and your requirements
because of this shared responsibility.

Figure 1-3. Some simple old approaches to customer requirements
don't count in a knowledge industry because a shared responsibility
exists for the specification and its fit-for- purpose.

Sharing responsibility across the negotiation table involves communication at
a pretechnical high level, as does sharing know-how within a team. Having
combined rigor with easy-to-learn diagrams, UML has proven to be an
excellent common IT language. UML is an unrivaled smorgasbord[4] of
diagram ingredients matching a variety of needs. In business modeling, the
stakeholder or the buyer works closely with the project team, gradually
transferring work to the IT staff members as we move on (iterate) through
the full system-development cycle.

A standard notation (or modeling language) greatly reduces ambiguity
throughout the project.[5] This is important because ambiguity is a major
source of confusion. You say the same thing, which is understood/reacted to
in different ways by the listeners. For example, the clear statement 'secure
the building' will cause the Marines to form a taskforce and storm the
building, a legal department to negotiate a long lease on the property, and
the security experts to install and manage an access control system.

A good analogy exists on being multilingual. Milan speaks Swedish in
Stockholm or Czech in Prague, just as you're fluent in your business
language, be it in reinsurance, meteorology, switching, billing, or train
control. Methodology experts or developers of a UML-tool understand UML
at this level of detail, that is, all the diagrams' types, syntax, and rules. Milan
can also speak a 'standard language' - English - in frequent areas such as
software, but not in areas like bug species (except software bugs of course).

Most software developers understand UML at this standard level.[6] UML
resembles a grammatical language, such as Spanish or German, because of
its predefined syntax and semantics. Nevertheless, we approach it in quite
an idiomatic, example-based manner as common with today's English. With
this language metaphor in mind, we found several good Webster's
dictionaries are around for UML (addressing the 'native'), as well as an
extensive English course book or three (addressing the ambitious 'guest
scientist from abroad').

The missing link so far was a tour book on the language, accessible to many
'frequent visitors' in the landscape of software projects. This tour book needs

to fit in a lightweight cabin bag and be reasonably comprehensible, even
during jet lags. From our customers, the pressure was on as well - so we
wrote one.

Overconsumption of languages is excellent for brains, overconsumption of
standard notations is far from excellent for a project approaching delivery
deadline. With the smorgasbord principle in mind, let's pick up what we want
and skip the cookies. If you're a software specialist, you'll soon read deeper
books anyway.

[4]Usually translated as 'Swedish table,' a large table of ready-made dishes
located in the middle of a restaurant, where the guests choose and pick their
preferred combinations and quantities themselves, and then eat at their
restaurant-tables.

[5]Language and reasoning are closely interrelated. As UML pioneer Dr. Ivar
Jacobson points out, IT people used to think as humans until attending
computer science classes at the university level, where they learn to think as
computers (i.e., sequential Von Neumann machines splitting the world into
data values and procedural instructions, which are poorly, or hardly,
interrelated). UML provides the language necessary for reinventing the
natural, human way of reasoning in the context of software systems. You
can view it as a set of well-defined, preshrunk, standard mind maps that are
useful to both the project team members and the software development tools
to be used in the project.

[6]Typically, they also provide UML guidance to others throughout a project.
The IIIE's list of software requirement qualities implies a cooperation here,
stating that requirements shall be unambiguous, complete, correct,
consistent, traceable, modifiable, understandable, verifiable, and ranked for
importance and stability.

Methods and Processes
UML standardizes the system documentation independent of how you
produce it. Methodologies, on the other hand, are paths to take you from the
problem to the solution and, during that journey, deliver the relevant UML
diagrams.

UML provides diagram notations for most kinds of applications, so it works
with all up-to-date methodologies, that is, with a component-based
approach. Nevertheless, various practical methodologies are based on
various ambitions and priorities. Some organize the overall problem-solving
activities within a project - the cookbook approach - whereas others provide
more how-to and the ingredients for the problem solver - the toolkit
approach. Likely, this scale looks familiar to most readers who are
specialists in non-IT areas. Of course, you can combine both ends of the
scale in the same project: the UML notation works fine. Let's briefly compare
three approaches in the following:

The Rational Unified Process™ (RUP)[7] makes the development process in
a software project visible, from inception to deployment. Stressing, step by
step, roles (30 kinds of 'workers') and responsibilities for 60+ predefined
kinds of artifacts, RUP is a process framework suited for large projects,
roughly of 70 members or more, with a large number of components to be
constructed. RUP also outlines splitting the project into use-case-based (see
Chapter 3) miniprojects, some running in sequence and some in parallel, in
several iterations. Because RUP is distinctly use-case driven, some
strengths and limitations of use cases affect the process itself. For example,
a data ware- house/data mining or knowledge-based system implies hard
work inside the system, despite rather simple external interaction, whereas
use cases are easy to apply to telecom switching or to order handling, where
a much larger proportion of external interaction (often with end users) takes
place.

Basic Standardization and Creativity Boost Each Other!

The recent standardization effort put into UML resembles trends from
knowledge industries of the past. For centuries, classical music has
been pushing its ubiquitous mix of science and creativity on a global
market. We also find standard constructs in the American tradition, from
a 12-bar blues to a jazz standard tune. Interestingly, when scaling-up
sheer creativity into a knowledge industry, people always try to
standardize the basics, to enable a shift of focus from low-level work to
the big picture, that is, to what we do with the basics.

Unsophisticated music is as old as humanity itself. However, the 'Big Art'
music of the Western world emerged from extensive standardization only
a couple of centuries ago. Before J. S. Bach, most churches used their
own proprietary scales, some of which were impossible to play on
instruments. Also, a tone could be pitched differently in different scales;
thus, the same tone was played on different keys of the same keyboard.
In cooperation with keyboard vendors, Bach pioneered standard
tempered scales (major and minor, with standard tone intervals),
enabling a leap in composer work and in interplay of instruments. A
century later (W. A. Mozart and the classical period in music), common
architectural templates already existed, such as a concerto in three
movements (the slow one in the middle) or a symphony in four
movements (the two slow ones in the middle, the latter of them a minuet.
[*]) Similar architectural rules also governed the structure within each
movement. A de-facto standard guided staging appropriate numbers of
appropriate instruments in an orchestra, which gave the composer the
necessary hints upfront in 'design time,' while composing the music -

regarding the hardware to deploy the music later, onstage. As musicians
were always borrowing-extending-reusing jerks and themes invented by
someone else, even what we now call a component approach became
frequent in the beginning of the classical period. For example, in large
divertimentos, an evening or event was configured from a small 'library'
of ready-made components (movements). This greatly simplified and
streamlined the requirement specification, yet matched the preferences
of that particular evening's sponsor.

The long-term focus on Mozart in most creative professions[**] creates a
major obstacle for a minority of programmers still trying to claim 'no
standards and no components, please - this is creativity.' Long-term
experience from other knowledge industries indicates exactly the
opposite: extremely creative individuals benefit from architectural
standards and components.

To a potential user of the process, we strongly recommend acquiring a
thorough knowledge of UML to ensure the right aspects are dealt with in the
right documents (artifacts). Providing guidelines from the requirement
specification all the way to test, the process has become rather heavyweight,
which implies some extensive process customization to start with to make
the process fit the purpose. This customization needs to be done in two
steps: first, for the enterprise, and second, for the project. In some 4,000+
web pages, this process framework defines roles, artifacts, work
flows/activities, and project management.

IBM's WebSphere® Business Components,[8] an application framework
previously known as the SF (for San Francisco or Shared Frameworks) is,
on the other hand, a wholly component-driven approach. IBM supplies off-
the- shelf, pretested components, books, best practices, and instruction to
solution suppliers who target customers requiring e-business, CRM, and
ERP packages. Thus, SF is a component framework for application projects
- large or small ones - typically employing more reused pretested
components than new ones. SF motivates the doers rather directly: here we
have a box of software Lego bricks and the directions for use, so let's go
ahead.

SF's strengths and limitations are typical of a specialist's method. Such
methods are precustomized for certain systems - in SF's case, the closer to
ERP/CRM/e-business, the more useful it is. We hope similar complete
frameworks will also emerge in some other niches. By shrinking
development timescales, SF guides projects into smooth construction work:
more assembly, less programming. As senior developers at Swedish ERP-
vendor IBS[9] as well as their R&D Manager and Vice President Tomas
Bräne points out, having found a couple of appropriate SF components, a
day might sometimes be enough to develop a sophisticated 'new' one.

Aonix's Select Perspective™[10] is a balanced component-based approach in
the middle of the previous scale. It fits medium and large projects using a
medium-to-large proportion of pretested, internally developed (and owned)
components. Along with that, Aonix suggests employing IBM's SF
components off-the-shelf, whenever appropriate. Guidance is delivered by
books, instruction, and an interactive manual (Process Mentor) integrated in
Perspective's UML-toolkit, the Select Component Factory. An object
repository is used to keep track of, cross-reference, and manage both
project documents and common enterprise ones (cross-project), large or
small. For example, if phone-no is used in 20 components and we have to
add three digits to it for country codes, we alter only once. A practical
interplay of component management and application development is

stressed throughout. Select Perspective's range is wider than SF's and
narrower than RUP's: enterprise systems in finance, government,
administration, airlines. Select Perspective shrinks the development process,
aligns requirements to business processes, and enables more assembly
from components with less programming and with improved delivery times.

As you can see, people use UML in a variety of approaches. An enterprise
can easily put together a customized approach, based on one or more
common process-frameworks. The OMG is currently coordinating the
development of a Software Process Engineering standard (SPE) with the
longer-term objective of providing interoperability across tools and formats
(repositories) in the software process-engineering field.[11]

Whichever your firm's variant, make sure both systematic component
management and continuous component development processes are alive
and well. They deserve the same priority as in other sectors of industry
because future reduction in costs and lead time, with improved quality and
flexibility, justifies this initial investment. Therefore, we stress the component
approach throughout this book and focus on components in the final
chapters.

[7]from The Rational Corporation; visit www.rational.com.

[*]To be exact, Mozart's Prague Symphony is the widely known exception to
this rule because it omits the minuet movement (according to the BBC's
'Best on Record,' some 80+ recordings of the symphony exist worldwide).

[**]Many readers might remember Milos Forman's film Amadeus or Ingmar
Bergman's Magic Flute, or several BBC documentary films on Mozart's
music (among others). The creativity dimension was recently explored by
Don Campbell in his book The Mozart Effect (Avon Books, 1997) and his
CD-production, Music for Creativity and Imagination (Spring Hill Music,
1997). In arguing that history repeats itself, we've also checked facts with Jiří
Kratochvíl (Milan's father), a woodwind history expert at the Prague
Academy of Music (see Pamela Weston: Clarinet Virtuosi of Today, Egon
Publishers Ltd, 1989).

[8]from the IBM Corporation; visit www.ibm.com/software.

[9]At the end of 2001, IBS is ranked third in the world by AMR Research, and
Frost & Sullivan in the field of supply chain management (visit www.ibs.se).

[10]from Select Business Solutions of Aonix www.aonix.com.

[11]Visit
www.omg.org/techprocess/meetings/schedule/SPE_Management_RFP.html.

Summary
Knowledge industry, including software, is special in many ways. The
responsibility for a good specification is shared across the negotiation table,
thus creating a need for high-level, pretechnical communication. Because
software is intangible, we rely on well-known diagrams with a standardized
notation. Standards and components are a great boost to any knowledge
industry, from extremely old and up to dotcom. Even a basic knowledge of
how to communicate in UML can prevent considerable ambiguity and
misunderstanding in a project.

The original influences on the UML standard were rather diverse, resulting in
a kind of smorgasbord of ingredients that the enterprise can customize quite
easily to fit its needs. At the moment, the field of software development
processes isn't as standardized as the UML notation. Process
standardization efforts are underway within the OMG. This work will take
time, however, but the big leap toward a standard notation has already been
taken and the UML works fine with any up-to-date development process.

Chapter 2: Aligning to the Business

Overview
Before modeling the design of the system, a project team typically models
the business processes to identify the scope of the planned system and to
ensure that any chosen system aligns to the demands of both this business
model and business vision.

A variety of possible diagram techniques exist for delivering this business
model, as well as possible levels of ambition. With business redesign, a risk
occurs of having eyes for nothing else but the modeling and ignoring some
real dangers. The hard work isn't about creating a best-of-breed business
model; it's about enforcing corporate change within the organization. To
remind the reader of these risks, we've made separate box diagrams of the
more fancy UML features. Here, lengthy modeling exercises might become a
convenient excuse for avoiding challenge and confrontation with the
permafrost layers found in many organizations. This challenge and lack of
confrontation is a common pitfall in implementing new business practices.
Therefore, process innovation methodologies spend little time analyzing the
current (as is) processes - often, a quick diagnosis is enough. Instead, we
focus on the new business models: the business to be.

Ownership of the business models must remain with the stakeholders and
process owners. This avoids the danger of the new processes being seen as
the work of the IT department, which can lead to rejection of the models by
the process owners. It must be made clear that the IT specialists act only as
agents in producing the business models.

Most business modeling methodologies try to structure activities, that is, the
everyday dynamics of a business. Others recommend using both dynamics
and structure in early business modeling. All things considered, we always
stress the view matching the nature of our business in a project, trying out
both dynamic and structural paths in a low-ceremony (quick) approach, and
then pushing forward through the most promising one.

In a knowledge-intensive process where a lot of knowledge is dispersed in
an unstructured form and held in many persons' heads, forgetting about
traditional industries and starting from structure and know-how is worthwhile.
These are represented in class diagrams, knowledge assets, business rules,
and so forth. We can eliminate most work flows early by aiming at an
automated one-stop shop solution. As the UML provides a smorgasbord
originating from several sources, its notation works fine with a variety of
approaches and priority objectives, as shown in Figure 2-1.

Figure 2-1. UML's smorgasbord - ingredients originating from several
fields and appealing to a couple of fields each.

For example, when modeling a help desk for complex products, a traditional
process model might show that each help-desk issue takes a carousel ride
through the enterprise, visiting the desktops of various specialists until the
issue is resolved. A structural approach, on the other hand, would stress call
avoidance instead, using computers to execute frequently used knowhow to
resolve issues automatically, passing only exceptions to the human- in-the-
loop. In hi-tech industries, e-help desks are a good example of this
knowledge-oriented approach.[1] Case bases being its simplest kind,
adaptive technology combines with the Web into an extremely powerful tool
of business automation. Where feedback of know-how from new real-world
cases is provided by thousands of web users, the system's capability to
resolve new kinds of daily business problems will follow a steep learning
curve, most often keeping the whole support process a simple man-machine
dialogue in a semi-natural language.

With the process approach, two kinds[2] of business process models can be
provided in the UML:

Activity diagrams

Business use cases, an extension to UML

[1]For an example of a case-based automated help desk, see Ask Iris
Online.™ Ask a question, in plain English, and Iris will try to answer it using
a Toshiba knowledge base. www.csd.toshiba.com

[2]You might want to investigate other alternatives further:

Other process-flow notations (Catalyst, FirstSTEP, and so forth). The
Workflow Management Coalition also has a cross-tool standard Process
Definition Language. PC-tools are around, some of them supporting
process simulation, what-if questions, and various resource-
utilization/product/efficiency analyses.

T. Winograd's Action-Workflow approach, top-down cycle-style.

M. A. Jackson's structure-influenced approach.

Using UML Activity Diagrams
Like other process-flow approaches, UML activity diagrams show the
complete chain of activities for a single process. When there are many
processes, we recommend that the activity diagrams be complemented by
some kind of a graphical index of processes, for example, a simple, top-
down process hierarchy chart or a simple business use-case diagram.

Strengths
This process-flow modeling technique fits long/complex back-office process
chains, where other systems might be involved in addition to our system-to-
be and sometimes also interleaved with manual activities. If that sounds like
your project, then modeling the business process flows is what we
recommend. Existing organization and software is often put in question and
reshaped as a result of this process analysis.

Limitations
Activity diagrams are usually less suited for knowledge-intensive activities,
however, where flows are a perfect solution for the wrong problem. They are
also less suited for front-office (e-) activities where the customer clicks/jumps
more freely across processes, thereby turning our business process
redesign into event-driven dialogue design, whether we like it or not.

Because a picture is worth a thousand words, we have shown several
examples of business process models using UML-activity diagrams:

1. Drinking in Florida

2. Drinking in Prague

3. Drinking in Stockholm

4. Drinking in 2080

Drinking in Florida
Figure 2-2 shows the basic thirst-slaking process for any business intending
to stay in the sun, for example, Florida.

With the variety of paths offered under a variety of circumstances
[conditions], the benefits of diagramming the flow become visible. The icons
in an activity diagram are simply activities performed by people, machines,
or both. Most often, we focus on activities and postpone (or skip) issues like
who will be doing what (see the box on p. 18).

As you can see in Figure 2-2, an activity can even have multiple exits,
labeled by [conditions] (see Ask for a Soft Drink). It can have multiple
entries, interpreted in an OR manner: the activity is simply triggered, no
matter which way it has been currently entered, as is the case with Pay.
Conditional paths might even be shown explicitly by decision nodes (see the
box on p. 20).

The horizontal bars, called synchronization bars, start and end parallel
activities, which is a major point in any process redesign. For example, to
improve lead time, we either remove an activity or choose to perform it in
parallel with other activities.

From this point of view, most old procedures were excessively sequential,
which can be diagnosed from a bar shortage in the activity diagram. Where
drawn at all, the as-is diagram version often grows to a rather unstructured,

wallpaper-sized sketch, so we usually skip it.

Figure 2-2. Drinking in Florida

Drinking in Prague
Figure 2-3 shows a thirst-slaking business process in Prague where 'one XL
size fits all.'

In Prague, for the last thousand years or so, native pub customers have
always expected only beer.[3] This has resulted in a remarkably simple work-
flow. In some pubs for locals, taking a seat makes an appropriate number of
pints (half-liters) emerge automatically on the guests' table, without an
explicit order - a true management-by-exception style. You drink the beers
placed before you, and then, in time refuse any more beers. No explicit order
occurs because entering the pub (a business event[4]) translates into an
implicit one.

Figure 2-3 shows that where an activity is entered once and repeated many
times, it is modeled as one icon with an asterisk symbol (as is the case with
Drink), and then terminated by an arrow with a condition saying something
like [Refuse another one] or [No more left].

Swim Lanes

Where 'who does what' is important, some projects prefer a layout
consisting of several parallel swim-lane partitions within each activity
diagram (see Figure B2-1). Lines show the lane boundaries - with one
department, person/role, or software component responsible for each
lane. This adds the dimension of responsibility and exposes 'hand overs'
between different groups, which often causes process problems.[*] Most
UML tools support lanes.

In our experience, this is a later step because ahead of responsibility
issues, the initial activity diagrams must capture the 'what' and 'what
order' of the proposed business process. If we try to start from
responsibility instead, we often get stuck in old vertical organization
models and their functional, non-process ways of thinking. In addition to
this mental trap, many organizational units or automated software
components responsible for the proposed activities still remain to be

specified and designed down the road. Processes are horizontal and
cross-department, so process redesign typically postpones the issue of
responsibility. The typical course of steps here is customer
value/process objective - order of activities - responsibility. Also, all
these steps show how important it is for the business experts and the
process owners to become closely involved at this stage.

Figure B2-1. Swim lanes. With thirsty children or teenagers, a cola-
order process can be partitioned into three swim lanes, showing
each responsibility partition.

Here, the management-by-exception style leads to a greatly simplified
business process. This process simplification is common in full-scale
projects as well. Flow models, such as activity diagrams, tend to evolve into
rather simple ones as a result of process redesign - as some activities
become superfluous, some are merged, and some are automated. This
example also illustrates another common problem, however, as extreme
process-optimization introduces the risk of tunnel vision, translating into
long-term costs somewhere else. In this example, the long-term costs are
certainly transferred to the health care sector.

As you can tell from the [Beer sold out] condition, modeling rare error
handling isn't relevant because those can be taken care of manually, along-
side/outside this process. For the first version of an activity diagram - and of
any dynamic model - make sure to target only mainstream scenarios, that is,
the basic course, the happy path, the golden case, and so forth. Where
necessary at all, extra detail is introduced in the next version. Here, we
made such an addition, marking it as a dotted line. In our experience, such
additions emerge from security and control issues, rather than from the
primary objective of the process.

Figure 2-3 shows the basic drinking process in this streamlined kind of a
Prague pub. This order and consumption process can be complemented by
the matching supply process: a waiter waiting for the customer, opening the
next barrel, pouring the beers, serving tables until an order is refused,
collecting payment, tidying the table. This might introduce the concepts of
waits (see the Dangerous Waits box on p. 22), as it is important to show
other waiter activities when they're waiting for customers.

Figure 2-3. Drinking in Prague.

Diamonds Might Not Be Your Best Friend!

UML even allows diagrams showing decisions as explicit nodes (empty
diamond icons) (see Figure B2-2). But, in practice these lead to lengthy
discussions on gray-zone decision activities. For example, a decision
step that includes work, like searching for and fetching the things to be
decided on, such as beverages, is an activity and needs to be described
as such. Therefore, if a project is pedantic on decision nodes, the size of
the diagram tends to double. Remember, the meaning of the model is
exactly the same even without the explicit decision nodes, that is, with
arrows drawn directly from the preceding activity icon.

Clutter (rather than glitter) in the diagram is the smaller problem. The
bigger problem is the time spent discussing those gray-zone steps that
some team members view as an activity and others see as a decision.
That's why we skip the diamonds in Figure B2-3.

Figure B2-2. Decision nodes separated. All that glitters is not
diamonds.

Figure B2-3. Decision nodes implied due to guard conditions. The
meaning of both diagrams in this box is the same.

Drinking in Stockholm
Figure 2-4 shows a future thirst-slaking process demanded in the past by
some humoristic students in Stockholm.[5] Suppose the customers are being
connected directly to the brewery, then the complex flow of process steps is
replaced by the rather literal flow of liquid to the customer.

Figure 2-4. Drinking in Stockholm. The flow of process steps has been
replaced by a literal flow of liquid to the customer.

This is an innovative process redesign, illustrating at the same time the

limitation of activity diagrams and flow models. With a high degree of
automation and self service, lengthy work flows collapse into only an activity
or three. So, as the activity-diagram exercise nears completion, the diagram
itself tends to disappear.[6] Ideally, the process modeling might deliver an
almost-empty diagram of the process-to-be, replacing a wallpaper-sized
process-as-is, and resulting in some jokes about what management
consultants are paid for. However, this is a logical consequence of the
objective to accomplish more by less ('less is more').

The Dangerous Waits

In a flow model, like an activity diagram, it's practical to indicate waits
because challenging them is the point of the whole exercise. If an
insurance policy, for example, takes four weeks to complete, while total
active time, with our insurance people working on it, is only four minutes,
then we obviously need a new, more straightforward business process. If
we're in luck, we get rid of the wait in the final process version. If we're
unlucky - as the cause of the wait might be beyond our control - we mark
it visually, to target it in the future.

Furthermore, by examining these wait points and asking 'what happens
if the expected event doesn't happen?' usually uncovers new
functionality and requirements for the planned solution. In our insurance
example, an obvious question is 'what happens if the policy isn't
completed in time?' Are there penalties? is it no longer legal? can we
sue someone? are customer claims valid? and so forth.

Business automation also results in increased complexity within the system.
This is prevalent when attempting to model processes involving customers'
use of the Web. Web-based knowledge processing offers a shift from zigzag
work flows to a one-stop shop that makes the process model look rather
brief. This is caused by complex business logic - recently performed by
people - moving from the outside to the inside of the system and, thus,
turning business complexity into system complexity which needs to be
modeled in other kinds of UML diagrams. Remember, the complexity is still
there, except for some redundant activities being eliminated, but now, it's
encapsulated within the future system.

Drinking in 2080
Imagine a new company called Wet-Liquids.com that delivers drinks to
subscribers in smart houses in the year 2080 - a future thirst-slaking
business. E-beer/e-cola can be downloaded on request to registered
drinkers with payment made against drinks consumed. If this sounds too
futuristic, then think of download-on-demand books or music instead, where
this distribution channel is already being used. Otherwise, just suppose our
firm of 2080 has several e-brewing patents pending that connect the Net to
water pipes, applying a kind of telecom package-switching technology to
liquids.[7]

Old, semi-manual work flows have disappeared because of extensive
automation. Business process logic has become system logic, which
simplifies our business model and makes activity diagrams less useful. We
need another way to express the business view. This is when Jacobson's
business use-case diagrams are more appropriate for specifying
requirements for such highly automated systems.

[3]Proving that reducing customer uncertainty by offering standardized

products was practiced centuries ahead of the current global trademarks and
brand marketing!

[4]You'll discuss events often when producing activity diagrams. They are the
key triggers to all main processes.

[*]With parallel workflows, the communication between the threads is more
restricted in the UML than what is common elsewhere in 'flow' style
diagrams.

[5]A practical joke by a couple of students at The Royal Institute of
Technology in Stockholm, Sweden, was the purchase of only one stock
share in Stockholm's largest brewery. Since then, they've attended every
annual meeting of shareholders, proposing repeatedly a large pipeline
across the city to connect the brewery directly to the school (a 'major
customer to-be').

[6]This is a simple order-process example, but a high degree of automation
has also been tested with knowledge technologies in other processes. For
example, the brewing process in North America, by Beck's Brewery
(www.becks.de).

[7]According to some European newspapers, The Coca-Cola Company is
about to test a prototype cola distribution through the water supply system in
New York. Test households then literally add the company's essence to
carbonated water. However, according to The Coca-Cola Company, that
prototype - doesn't exist. If this is a practical joke by a news agency, we think
it's a good one and let it reappear in 2080 because, although appetizing in
flow models (as shown), beverages are far from a hi-tech commodity yet. On
the other hand, it's a commonly known one. Unlike hi-tech products, this
commodity also permits book examples to stay futuristic, yet lightweight
(roughly, the opposite of regular frequenters).

Using Business Use-Case Diagrams
Business use-case diagrams emphasize value added and roles, called
business actors and business workers, thus sharing some strengths and
limitations with use cases (see Chapter 3). Generally speaking, a use case
can be explained in detail in a description of the sequence of activities. For
example: customer selects type of drink, system checks if valid request
(depends on subscription and type of drink), system either dispenses drink
or refuses request. If the sequence is too complicated and involves waits,
and so forth, then an activity diagram offers more expressive power than a
business use case.

Strengths
Business use cases typically fit front office (e-) activities with external inter-
actions where external business actors, such as customers or suppliers,
tend to skip across processes as they want. Where this is the case, we might
need to structure the dependencies between processes, sometimes
borrowing even standard use-case relationships from the next chapter.

When published several years ago, business use cases met much less
enthusiasm than Ivar Jacobson's use cases did in general. Customers were
modeled as end users of a business, but this user relationship becomes
rather literal as businesses make web sites their front offices. A new niche
for the technique is thus emerging from a gray zone between traditional
business modeling and standard use cases.

Limitations
This technique alone doesn't visualize long back-office style process chains.
If these seem important to our project, we stress business process flows and
we use activity diagrams.

Also, in a knowledge-intensive business, this technique is a starting point -
not the point. Under such circumstances, we have to express business rules
and constraints early or derive them by information-mining techniques, such
as rule induction, or capture real cases in a case base. In businesses with
high knowledge content, standard mainstream modeling tends to solve
peripheral problems and avoid facing the challenge of describing the
knowledge itself.

Figure 2-5 shows the four business use cases for Wet-Liquids.com. Each
use case corresponds to a business process that might develop into a larger
system use-case structure. This can even work without an activity diagram -
as all activities are moved into our e-business system. This is an example of
the gray zone between business-process modeling and standard use cases.
Here, the technique is accepted as natural by most people.

In Figure 2-5, a business actor called 'Customer' (stick person icon)
participates directly in one business use case at a time, maybe using a
graphical menu.[8] Use-case icons with a slanting line denote the business
use cases, whereas system use cases don't have the slash. No matter what
the notation, we recommend you model use cases in two levels of detail to
avoid a split of focus: the business level and the system level.

Figure 2-5. Drinking in 2080.

With this kind of dialogue structures and interdependencies, use-case
modeling (the next step is covered in Chapter 3) is a practical technique in
the dialogue with analysts or system designers.

[8]Even in the past, however, with customers typically serviced by
middlemen's hands (i.e., by front- office personnel), the diagram would look
the same. The customer is viewed as the end user of the business process.

But What About the Data?
We have several reasons to keep data modeling short in this lightweight
book. As we explain in Chapter 7, data modeling is a technique suitable later
on in the development process and, in addition, it has been covered
thoroughly for decades.[9] Also, in UML, we typically model both information
and what the system will be doing with it. This is shown in the structural view
(see Chapter 4).

[9]However, at this stage (the process model), some people list the assets
needed by the process: personnel, machinery, raw materials/hardware
components, knowledge/business rules, and even information, including the
inputs and outputs to the process (typically, by simply referring to existing
ones - at this stage, we're concerned with the main items, such as personal
details). Using a repository (a database of UML definitions) this can be done
by cross-referencing the relevant parts of the process-model view and their
corresponding parts in the structural view.

Summary
Unsurprisingly, when aligning to business, we start with a business model,
consisting of up to three views:

The process-flow view. UML activity diagrams mirror the course of
activities in a flow, stressing the structure of a particular process. As the
process innovation or automation exercise nears completion, they might
collapse to near zero.

The e-view. Business use-case diagrams mirror a set of (sometimes
automated) procedures, some of which can be shown in detail in activity
diagrams. As the focus is on several processes, they can be useful
where e-customers use the business in an ad-hoc manner, frequently
crossing process boundaries. In most methodologies, we continue from
business use cases into standard (system) use cases (see Chapter 3).

The knowledge view. A third, structural view becomes necessary where
the domain is complex or knowledge intensive or the processes are too
simple. The structural view is provided by class diagrams (see Chapter
4). We often need to add rules or case bases to this view.

Chapter 3: Adding Rigor to the
Requirements
Business modeling concerns process owners, reengineers, or business
analysts with IT specialists in an advisory role. Later, in class modeling and
especially in object interaction modeling, IT people become the driving force.
Here, in adding rigor to the requirements through use-case modeling, there's
a shared effort. Business experts provide the essence of the requirements,
while IT specialists provide the structure. Having modeled the business, we
now start aligning the system specification - most of it being the functional
requirements - to the requirements of our business processes.

A diagram technique for this is very widespread: UML standard use cases
that were pioneered some 20 years ago by Ivar Jacobson. Use cases are
simply the ways in which the actors use the system. A similar step is natural
in any knowledge industry because exact requirements minimize lead time
and misunderstandings.

Use Cases
Human-computer interaction (HCI) is a vast field, to which use cases
contribute with a practical, down-to-earth technique for the doers. To end
users of the planned solution, the user interface often seems to be the entire
system. Use cases extend this simplified view by modeling what's going to
happen at the user interface, as well as interfaces to other systems. Use
cases, interface layout examples, and prototypes complement each other, so
they fully define the functional requirements of the system. Any remaining
UML diagrams specify the inside/kernel of the system hidden behind that
inter- face. The expectations to be met are similar in all three of the use
cases, layouts, and prototypes:

Users need to rely on/feel comfortable with the system.

The HCI feels easy, yet not boring, and it matches both common
standards and the user's view of the business activity.

Sometimes, one use case can involve multiple forms of user interface. For
example, in a management game, all these kinds of views might be available
in parallel, as separate windows or as several partitions of the same window
in a use case like 'Your next move.' For example, the views may include a
world map, 3-D movie shots, diagrams of results, and a control panel with
sliders for allocating/increasing/decreasing investment to various areas.
Also, a web-dialogue use case, such as e-purchase, can span four or five
form pages in only one use case, which isn't completed until the last page
has been successfully submitted into the system.

Functional requirements are expressed in this UML use-case model,
whereas the nonfunctional requirements are recorded in supplementary text,
such as separate e-documents,[1] or as footnotes to UML documents.

Requirement elicitation takes considerable cooperation in brainstorming,
workshops, interviews, storyboarding, and prototype evaluation. Use cases
work fine as long as you use them to specify functionality as external
interactions in the right place: the system boundary. This takes some
experience and common sense, so we provide 'warnings' toward the end of
this chapter.

Strengths
More than any other technique, use cases make external interaction

requirements clear, including their interdependencies. This provides an
answer to the challenge of many, complex, or important external
interactions. For example, those for mobile phones, switching, booking, or
incoming orders. Use cases simplify some additional activities, such as
project management, mentioned in the section 'Use-Case Example.'

Limitations
Sophisticated systems hide a complex interior behind a surprisingly simple
exterior. For example, on icy roads, drivers don't expect a complex user
dialogue from antiskid systems and stabilizers, but they do expect stability
and survival to be delivered automatically. With knowledge systems, data
warehouse, or data mining, standard use cases can only provide a sketchy
starting point, rather than the expected hints about our system-to-be.
Sometimes these starting points are as simple as Start, Stop, Repeat.
Furthermore, in complex agent/batch processing, systems often behave like
(human) actors: rather than being driven by external interactions, they can
be self-driven by internally generated events. In all similar cases, you need
to specify the structure of your system-to-be early on in the project to get a
realistic picture.

Why do we have rather general expressions like 'actors' and 'use cases'?
One reason is the practical convenience of a brief, well-defined term. An
actor covers both 'a person like a user or system administrator' and 'an
external system interacting with our system-to-be.' Similarly, a use case - 'a
behaviorally related sequence of interactions, performed by an actor with the
system' - covers a variety of external interactions, from a user dialogue to a
stepwise handshake between two software systems without humans in the
loop.

Before we start to identify the use cases, we list all actors supposed to be in
touch with the system boundary. The list makes it easier to determine the
use cases required by these actors. Jacobson's original Swedish term (aktör,
with a double-dot above the o) corresponds to 'actor' in a market-like
context, rather than on stage. Typically, an actor has a well-defined role
within a business and some of the actor's business activities become use
cases in our system-to-be. For example, in a system specification for a
theater, UML actors are payroll clerks, producers, marketing personnel,
external travel agency systems, and so forth.[2] Any actor can be involved in
a single use case, or several use cases, with or without other actors, as we
can see in Figure 3-1.

[1]We use the term 'e-documents' throughout to indicate those documents
produced by the varieties of word processors and in various formats,
including HTML.

[2]They take part in system dialogues, rather than Shakespearean dialogues.

Use-Case Example
In the business example for Drinking in 2080 in Chapter 2 (Figure 2-5), we
saw business use cases for downloading drinks and providing some online
support. As we look into the business use case called Request Support, the
resulting use cases for the system (called system use cases) turn out to be
web-customer dialogues, as shown in Figure 3-2. The core is a mainstream
system use case, which is often outlined quite explicitly by the process-
owner or reengineer.

Figure 3-1. A system use case can be related to several actors, as is the
case in Pay Drink Account. An actor can be related to several use cases,
as is the case with Web Customer.

From this mainstream system use case, others appear in the structure linked
by use-case relationships (the dashed arrows in the diagram). These related
use cases - let's call them mini-use cases - represent complementary
activities that are either less usual or common interactions reappearing in
other use cases. These mini-use cases and their relationships are usually
modeled by the IT staff, so for other stakeholders in the project, the ability to
read and understand the arrows will do.

In use-case relationships, the dashed arrows show the dependency and a
«stereotype» denotes a variant (this time, a variant of that dependency).
Thus, the «include» arrow between the use cases makes the mainstream
use case always include the mini-use case, that is, it's dependent on that
use case. To get online support on our Web site, customers must confirm
product details. This mini-use case can now be shared by several
mainstream use cases, not only in support, but also in marketing or delivery
planning. If this mini-use case were made part of the mainstream, then the
result would be doubled maintenance in the future because changes to the
product-confirmation mini-dialogue would be repeated in all those
mainstream use cases.

Figure 3-2: System use cases for online support.

Generic Actors

UML also supports abstract (generic) actors,* such as 'someone doing
the bookings' or 'customer contact personnel.' Although not widespread,
this simplifies both vendor specifications for off-the-shelf software
packages and enterprise systems that must be adjusted to many local
branches. For example, if you intend to sell a booking and scheduling
package to anyone from dentists to lawyers (as in Figure B3-1), the
specification can't rely on actor definitions from a single sector of
industry. Therefore, we prefer a few abstract actors to start with for the
use cases, rather than an ever-growing list of 'real' actors.

You can even let a single ('abstract') stick figure generalize several roles
in the same business as long as it's involved in the same dialogues.

Figure B3-1. An abstract actor represents several kinds of actors -
often from several business units - all of these using the system in
the same way and playing the same role in, for example, the
booking dialogue. This technique comes in handy where
appropriate, although it is seldom used.

The «extend» arrow between use cases makes the mainstream use case
pointed to sometimes extended by the one pointing to it. A condition will be
stated later on, referring to an extension point stated under the horizontal
line in the mainstream use case - for example, the extension point called
complexity. Another example:

If a possible repair is found, the customer can browse the information
and also view any relevant videos (another «extend»).

If no repair is found, then the advanced helper is used to assist in
defining the problem.

Everyone needs some guidelines on reading the arrows here: unsurprisingly,
we always read in an arrow's direction. Read the diagram once again if you
want.[3] Thus, the «extend» arrows point the opposite way (to the
mainstream icon) because we parse them in their direction. Here. for
example, we want the (rare) Launch Advanced Helper mini-use case to
extend the mainstream one.

Because business experts or process owners prioritize the mainstream use
cases before the detail is added, most of these included and extending use
cases are discovered and defined by IT people as use-case analysis
proceeds. However, if we just list only the apparent ones among these mini-
use cases early for resolution later - simple footnotes in the mainstream

description will do - we'll save time down the road. Again, the process owner
provides the essence here, the IT staff provides the structure, and a mutual
dialogue adds detail.

The result is a focused, structured, semi-formalized requirement
specification, beyond the expressive power of plain text. Some technology
zealots get bored by this unsophisticated work but, in any knowledge
industry, a well-thought-through specification saves considerable time. So, a
project manager must carry on with use cases and let such individuals
program a sketchy prototype instead. This prototype gives a facade that
'fakes' the events for some use cases, without having the real system in
place. This confirms our interpretation of the specification.

Static layout prototypes like screens, windows, and web pages are a perfect
supplement to use cases as use cases focus on the traffic (of transactions,
signals, and so forth) passing through the layout into our future system and
out from it. A layout visualizes only the look of the system boundary,
whereas a use case describes a course of events expected there.

Use cases help define the distinct system boundary early on in the project,
which is shown as the large rectangle enclosing the use cases.[4] This early
identification of the system boundary speeds the decisions on what's
provided by users, by other systems (external and, therefore, modeled as
actor icons), and by use cases of our system-to-be.[5]

Uml Use-Case Generalization

A third kind of relationship applies when a use case provides a new
'special' variant of the mainstream one. A few steps can be added (that
resembles «extend») and some other steps are changed (this makes a
difference because we alter rather than simply complement a predefined
course of events). Suppose you provide a special support dialogue on
our web site where customers get free support regarding our
competitors' products. This dialogue is only partly similar to the general
mainstream one (same as. . . , except . . .), as we can see in Figure B3-
2. For example, this dialogue can be decorated with tempting ad
banners (promoting our products instead) and some spiteful comments
by a sharp and humorous cartoonist. So, although the customer
objective is the same in both dialogues, some steps leading there still
differ. As we can see in this dialogue, the definition of intent (or business
value) tends to double where we're going to deal with direct e-
customers. For example, where a customer intent (bug-fixing) might be
different from an enterprise intent (additional sales in the future to beat a
competitor) - both of them in the same use case.

Figure B3-2. Use-case generalization. Here, we've joined them to
beat them.

For Project Managers, use cases become useful in project planning and
monitoring. Stakeholders of the project - business managers, process
owners, and so forth - prioritize the use cases based on their importance or
value to the business. In the example in Figure 3-2, the top priority is for
Request Support (the mainstream), Confirm Product, and Browse Repair
Descriptions. The next priority would be View Videos and, finally, Launch
Advanced Helper, which would be handled by people following the early
deliveries of the solution. IT developers can then focus their efforts on what's
important for the business and not what they think is the most interesting
work to do, for example, the advanced helper. Use cases provide well-
defined sets of external functionality that aid IT developers in estimating the
effort required. Any use-case-based delivery schedule is more realistic than
the traditional approach of monolithic plans that imply 'we'll be finished in two
and a half years from now, at 3:30 on a Tuesday morning. . . .'

[3]Abstract actors have their names put in italics.

[4]By the way, many first-cut use-case models tend to have an arrow or three
pointing the wrong way. This would make maintenance difficult because
we're unlikely to know the details several months, or years, later.

[5]In a complex solution where a number of systems might be communicating
with each other, sometimes it's useful to show a rectangle for each system
(often called a 'domain') and the dependencies between use cases in
different domains (for example, an activity diagram, a business use-case
diagram, or a high-level sequence diagram, mentioned in Chapter 4).

Meeting the Devil
By and large, a use-case structure is easily understood: the 'devil is in the
detail.' Each ellipse in the diagram must have a description that outlines the
course of events within the use case.

This might be complemented by more interesting details such as
preconditions and postconditions.[6] If we apply a methodology or a process
to our project, then a predefined document template might already be
supplied. If we don't, an enterprise template is easily developed from books.
In a compact approach, things that might be found in separate e-documents
can be made footnotes of a use-case description instead - say, some
nonfunctional requirements.

Here's a generic template as a starter for your projects:

Use Case: Request Support

Objective/business value: Minimize customer downtime by
online support using semi-natural language queries for all
customers

Delivery priority: High

Precondition: Customer identified and not on the hot list

Postcondition: Journal details of customer and case recorded

Steps

Actor: Enters license number

System: USE Confirm Product to match and confirm product
type, and then display Fault Report form

A: Enters fault description

S: Performs case-based search and displays list of possible
conditions

A: Selects closest match or requests the Advanced Helper

S: USE Browse Repair Descriptions and View Videos for
chosen match

A: Ends request

S: Record journal entry in case base (with customer and case
details)

Footnotes

Advanced Helper is an agent-driven intelligent search (a
separate future use case)

Nonfunctional requirements and constraints

As per system availability, that is, 365 x 24 hour, downtime < 1
hour per year

Case-based results on web server: 80 percent hit ratio (from
case bases of 200,000 accumulated cases and onward).

A simple use case and yet quite a list, isn't it? Now suppose we didn't

structure this as a diagram of several use cases. This initial list would double
at least, overloading the mainstream by additional detail about rare courses
of events.

The previous Actor-System-template is an effective reminder about the
system boundary, preventing us from rushing too far from it (see the
following warnings) as each A: simply 'sets the agenda' here by referring to
the key actor (A-Actor) in the corresponding use-case diagram.[7] This
template also copes well with changing requirements, as well as with sharing
use cases across projects.

The footnotes and nonfunctional requirements also provide a memory boost
later. This example list indicates already that the interactions described by
the use cases capture the starting point, rather than the full size of the
project. Getting the case base and the search mechanisms in place will take
effort. In other words, hard work is ahead, despite quite a simple use-case
dialogue. This is often perceived as an iceberg effect when an enterprise
connects to the web - meaning, of course, real sales, not simply a traditional
shop window or e-brochure with a few hyperlinks. As we move the logic into
the new system, many user interactions disappear, while the inside of the
system gets surprisingly complex.

If something like a semi-manual support procedure existed before, the old
system could be simple because logic looks deceptively simple, when
unstructured and/or inconsistent - in human brains and Post-it notes.
However, business logic in heads of clerks would, for instance, hardly
provide a 365 ´ 24 service to 500 parallel users in several languages.

[6]This saves doubled effort across projects.

[7]Preconditions must be satisfied before the use case starts. Postconditions
must be satisfied when the use case has completed

Use-Case Analysis at Two Levels, At Least
In both the Unified Process and Select Perspective, a clear distinction exists
between a standard use case (called system use case) and a business use
case. In any process or methodology (including lightweight ones), two
separate steps are advisable, keeping these two levels of detail apart. To
prevent endless discussions on clicks and technology issues, you can simply
let the initial stage capture business events only (events like request
support) and add the complete bullet list (see the previous template) in the
next stage where system use cases mirror detailed user interaction, such as
fill in, display, or confirm.[8]

In the beginning of a use case, the key step of defining its business value (or
objective) hopefully implies an amount ending with many zeroes. Why bother
about that? Well, adding some measurable value is the purpose of any use
case. If you rush directly into detailed dialogue lists, you might miss smarter
ways to the goal, such as automation instead of interaction, in the current
version or in a later one. The tradeoff between user interaction 'as usual' and
automation is a key point we stress throughout this book. In practice, this
translates into a tradeoff between use cases on the one hand, and business
process and structure on the other.

An everyday-life example is paying your household bills. The objective is
simply staying creditworthy/sound and free from debts. Many people find an
Internet-bank dialogue state of the art. In many banks, however, there's also
the automatic bill-payment option. Just pre-register all the accounts to be
paid to regularly and keep receiving the household bills as usual, except for
an important footnote on them, which says, provided no objection from the
household (as to amount, and so forth) the money will be transferred
automatically on date due without a human in the loop, management by
exception style. All you need do is file the bills and check the quarterly
reports from the account as usual. Computers simply do the daily work and
humans do the auditing. The goal remains the same. The way to get there
has been straightened, changing most of the complexity from external to
internal (thus, no longer visible in the system use case Pay household bills).

Figure 3-3a. Interaction, MS Windows style.

A similar example is an engine driver on a high-velocity train. The goal is
clear because the business value of the Depart use case is the quick, safe,
environmentally sound transport of customers to their destination. In this
case, you can either rush into dialogues and a flood of windows regarding
weather, tunnel data, train priority, and so forth (as in Figure 3-3a), or you
can have the driver push a Notify ATC system button and depart (as in
Figure 3-3b). The dialogue is close to zero, yet, the value is added anyway.

Figure 3-3b. Automation, twenty-first-century style. Click and let the
system do the rest.

Guiding the train to its destination, today's Automatic Train Control (ATC)
systems then communicate directly with the onboard software of the engine
and with other engines and systems as well. Again, the goal and the value
remain the same. The way to get there has been straightened, changing
most of the complexity from external to internal (thus, no longer visible in the
system use case Depart).

Recently, user interactions were considered by many as the essence of
computing. The automation approach usually puts that view in question. The
difference between the (a) and the (b) version is even bigger than the
diagrams indicate. In fact, the rather interactive, use case-based version (a)
of the Depart use case still omits the usual flood of technical, non-business
interactions, such as restarting Windows, running Scandisk, or starting an
antivirus scan - all of those too familiar to PC end users. In addition to this,
the rather automated version (b) of the Depart use case also contains an
extremely shrunken bullet list in its use-case description, along the lines of:

Steps

Actor: Pushes ATC button.

System: Performs the rest of the trip.

Nonfunctional requirements and constraints

System availability: i.e., 365 x 24 hour, downtime < 1 hour per
year

System safety strategy: whenever the kernel of the system and
the safety-checker subsystem arrive at different results, the
system must turn the red light on and activate all brakes of the
train immediately.

In fact, this rather minimal version captures the rationale behind modern
ATC systems. Unsurprisingly, we've no use of the use cases from 1995 in
the new, automated version as these two versions are totally different.
Interestingly, however, the objective/business value of the Depart use case
is exactly the same in both versions. So, although questioned by some
people, the business value statement is the only part of the use-case
definition likely to survive automation.

Some readers might remember a CEO of British Airways claiming that
tomorrow's airplanes will be flown by a human and a dog: the human to feed
the dog, the dog to bite the human in case he/she tries to touch something.
Apparently, such future systems will face the delicate problem of switching

the red light on and activating the brakes at the altitude of Mt. Everest or
higher. A safety mechanism useful in vital air traffic software is based on
triple subsystems: whenever any difference occurs in the results, two 'votes'
override one 'vote' when the system decides on appropriate actions to be
taken.

[8]Sometimes, other actors are in the use case, in which case you might
choose to enlarge this A stick figure to show the A-actor is the one who
triggers the use case. A similar technique is showing this is an open-headed
arrow pointing from the stick figure. Although this arrow is common, some
people still find it confusing because, in most A-actor cases, the flow of
information is bidirectional here: both to and from the actor.

How to Avoid Messing Up Use Cases
People who are confident with use cases enjoy them, saving a lot of time
and misunderstandings. Some might have difficulty getting started with this
semi-formalized exercise, however, so we provide a list of traps below.
Some common blind alleys constitute a risk during the early days of the
project, where effort is spent on activities that have no part of the use-case
approach. Converts from older methodologies often insist on trying these
'misuse cases' out in a project, but we always argue that staying away from
them is cheaper because a compact and effective UML documentation is an
act of balance among several views ('drawings') within a model.

The Apollo 13 Syndrome
This is all about masquerading some high-level software components as use
cases, despite external interaction being equal to zero. Roughly, this is an
extreme form of functional decomposition, using a hierarchy of ellipses
instead of 1970-style rectangles[9] (see Figure 3-4). This is an outdated idea
because functions are volatile - a typical change to a system is about altering
its functionality - whereas objects and classes (see Chapter 4) provide a
more stable foundation. This is why a use-case model of detailed system
internals is likely to make maintenance costs skyrocket. Let classes and
components provide the desired several levels of detail instead, working
outside in (not the opposite). Maintainable use cases stay on the system
boundary, and IT staff will later model the inside in a more formal way (for
example, search scenarios) in other UML views.

The Tying-It-Here Trap
A common symptom of this is a lengthy precondition/post condition list in
each use case. Preconditions are great, if they don't cross-connect separate
use cases (in other words, avoid sequencing conditions here). The more
self- contained the use cases are, the easier to change or reconfigure the
business process in the future or to share a use-case model across projects
in an enterprise. This is a major point because of process redesign
repeatedly altering the process flows during a lifetime of a system.

Figure 3-4. Masquerading 1970-style functional decomposition as use

cases. This (outdated) path of reasoning most often results in
skyrocketing maintenance later, no matter what the shapes. It resembles
speaking the words of a new language while insisting on grammar and
phrases from one's 'old' language.

Such sequencing conditions - not to mention manual business activities -
tend to press the entire business process into the use-case text template,
instead of a workflow providing literally the big picture, shown as an activity
diagram, across several use cases, interleaved with manual activities, if any.

Furthermore, only roles directly involved with our system-to-be become
actors, whereas those involved indirectly, say, a customer talking, faxing, or
mailing a customer agent (the real actor), are visible in the workflow or the
business use case only. The use-case model stays on the system boundary
and we work outside in, not from outside further outward, as in Figure 3-5.

Figure 3-5. Masquerading workflow as use cases. This (wrong) path of
reasoning makes the system too sensitive to business process redesign.
It interleaves the dialogue issues into the current business process,
which is likely to change in the future.

The Two-Models-in-One Trap
Many people do only a trivial use-case model, and then draw separate
activity diagrams for each use case. With a tricky dialogue flow, consisting of
loops and conditional steps, this might become necessary, but there's some
risk of structure moving away from one use-case diagram structure into
many activity diagrams. Generally speaking, use-case diagrams are
powerful in mirroring interaction structure and in keeping the interactions
easy to reconfigure as the business changes, while activity diagrams are
powerful in showing the big picture across several use cases in a business
process flow, or the workflow view. In a well-balanced UML model, changes
in a business process affect the activity diagram and not the rest.

The Value-Is-Self-Evident Trap
Rushing past use-case objective and business value right into interactions is
a 1990s PC-style approach. We find modern automation approaches more
often in IBM's system management tools or in EHP Telecom's[10] telecom
network management tools than in enterprise systems. On the other side of
the PC coin, some under-automation occurred because of a preoccupation
with simple office software packages and the person in the loop. This leaves
end users with an information overload (too much to see), and powerful
servers lying increasingly idle. Often, e-business provided the lesson here,
triggering a renewed focus on automation of the business processes, for

example, try visiting web sites for home insurance[11] quotes and see how
automated these processes have become.

As mentioned, an explicit business value statement in a use case even
provides valuable hints on shortcuts and on how to eliminate the entire use
case in a future version of our system - by automation, by simplified
business processes, or by both.

The Smart Response Trap
This is when use cases tell too little about the system with an advanced
kernel hidden behind trivial interactions (Actor: Enters Query. Expert system:
displays advice . . .). Other UML diagrams are used to capture important
aspects of a knowledge base or of complex batch and agent systems. Often,
we also need two rather simple use cases because of a time gap, splitting
two business events apart. For instance, number 1 'Order a batch report'
done by a human actor during office hours and number 2 'Run all the batch
jobs,' which is triggered at night by a separate actor, such as a Scheduler
system.

Similarly, a Data warehouse or MIS might process aggregated data in 20
dimensions and display the results on the Web, GPRS/3G, Windows (all ten
versions of them) as tables, waves, bars, cheeses, and so forth. This might
make the layouts differ, but as long as the course of events in the user inter-
action is the same, we're well off with only one use case covering all those
alternatives (see the box on the opposite page).

The Use-Class Trap
Many classes in an enterprise system correspond to business entities,
typically persisting a series of use cases, with long idle periods between the
use cases. For example, a customer order goes through various stages in
the business process that alter the order's state, say, from confirmed, to
picked, to en route, to delivered, to paid, along the lines of Figure 3-6. Some
people tend to merge several use cases regarding the same entity, but this
is wrong. The boundaries between use cases are provided by timing, not by
components or classes affected inside the system. Later, a state diagram
showing the entity life cycle tells the desired 'dynamic' story per class, for
example, for the Customer-order class in our example.

Thus, use cases triggered on the same occasion are usually related,
whereas use cases affecting the same entity at different points in time aren't
related. Keeping the use-case view apart from the internal views (see the
following chapters) makes things easier, preventing a split of focus.[12] Also,
if you build application software, rather than an access control utility, actors
from the use-case view needn't correspond to classes in the structural view
either.

Parameterized Use Cases

At the moment, neither UML nor the tools support parameterized use
cases. By adding such a compact construct, you can visualize the same
dialogue being performed with different input values resulting in different
output layouts (or sorting, and so forth), yet leaving the course of events
unchanged. This saves dozens of trivial (and wrong) extends or
generalizations between use cases, especially in MIS, Data
Warehousing, or knowledge applications. Until having future standards
and tools at hand, an enterprise can create some temporary enterprise-
wide agreement, for example, using color or some proprietary UML-
stereotype on the use-case icon («parameterized») or, tools permitting, a

UML dashed square listing the parameters on top of the use-case icon,[*]
as shown in Figure B3-3.

For example, imagine a weekly report per country and city, sorted
alphabetically from A to Z and showing market-share data as yellow
'cheeses' on a map. This certainly differs in form and content from a
quarterly report per product family and product, sorted in descending
order by launch-date and showing net margin as amber-colored top
portions of black bars of turnover. Some people tend to view this
variance (in layouts) as several use cases, arriving at wallpaper-sized
use-case models. To prevent a conflict within the project between this
wallpaper view and the compact view, we simply use parameters to
indicate differences will exist (between the kinds of 'candy' being output),
yet sticking to only one use case (Figure B3-3), as long as the course of
events in the dialogue is the same.

Figure B3-3. Parameterizing a use case for varying outputs - an
example of enterprise customization of a standard UML construct.
Very different candy is going to come out of the machinery, yet
through the same course of events (dialogue steps) - in other words,
through the same use case.

Notably, in both these examples, even the look of the user interface can be
made the same for both print requests: the actor selects kinds of amounts to
be printed, output colors, sort keys, and so forth by clicking on sliders and list
boxes on the same screen, no matter what the exact combination of output
being requested.[**]An individual user might save a completely filled-in
'favorite screen' or three for frequent print requests (to reuse the filled-in
values repeatedly, by simply clicking a Print button). But to the system, all
these are only one kind of layout with different input values. Thus, both the
dynamics of the dialogues (the use case) and the static look of the user
inter- faces remain the same. The mapping from different input values to
their corresponding output variants can be performed[†] by components in
the kernel of the system.

The Useless User Trap
On one hand, end users of our system-to-be are a useful speaking partner in
human-computer interaction issues (dialogues, layouts, and so forth). On the
other hand, they're often useless in big picture issues like business process

redesign, simplified work flow, business use cases, or an enterprise
business rule. They can, however, provide valuable hints on current
practices breaking that business rule. Many projects run into a
communication nightmare, which is easily avoided by simply having the right
roles decide on the right issues.

Figure 3-6. Masquerading an entity life cycle as use case extends (a
menu-design- zealot view). This path of reasoning makes business
events difficult to track in the model. Use cases can be interrelated if
they happen at the same time, whereas, in this example, they are
triggered by separate business events on separate occasions.
Therefore, all three of them must be separate use cases related directly
to the actor. How each of them affects the order can be shown in a state
diagram (see Chapter 5).

The Traditional Waterfall Project Trap
If you think the use-case model is 100 percent finished, then something is
wrong. It might be good - meaning easily modified, modular, well structured,
self-contained - rather than finished forever. Requirement specifications and
use cases in particular, do change at the same pace as business and the
forecasted rate of change is bad news for the traditional 'waterfall' approach
to software projects. However, shared effort applies also to changes in
requirements. Changes within the use-case model have to be clarified,
estimated, priced, and planned by business and IT in cooperation.

Whatever the step, remember, all modern methodologies are explicitly
iterative. Therefore, use-case analysis reaches its peak early in the project,
but it doesn't block parallel work on other UML diagrams. The particular mix
of issues and diagrams on our agenda depends on the nature of our
particular proposed system (see Chapter 4 for the structural view).

[9]The initial stage includes only events corresponding to the last confirm (or
submit-click) of each dialogue or, more precisely, the instant when a
business event proceeds from the interface into the kernel of the system.
Thus, the second stage adds the remaining 'preparatory' fill-ins and clicks
preceding this final confirm.

[10]In those good ol' days, the top rectangle of a hierarchy could say 'Fly to
the moon' and a leaf rectangle 20 levels below could say something like 'Add
one to count.'

[11]Originally founded by Ericsson and Hewlett-Packard.

[12]Examples are www.theAA.com, www.insurancecenter.com.

[*]The example reflects the fact that this compact approach typically fits
systems or components that provide information to decision-makers, atop
the 'operations information' provided to doers in everyday business.

[**] Stereotypes are UML's amending mechanism to be used in creating your
own variants of a standard UML construct, which is what we're doing with
UML use cases here. The dashed square is a standard way of depicting
parameterization in UML class diagrams (the structural view explained in
Chapter 4).

[†]Like parameterization in general, this technique not only makes the
documentation compact, it also greatly simplifies upgrades of the system.
For example, producing a new combination of output on a report in the future
affects neither the course of the dialogue nor the layout of the user inter-
face. On these two reasons, a similar parameterized approach comes in
handy even later, at the technical design level, for example, in making only
one user interface of only one system fit many countries, languages, amount
formats, date formats, and so forth.

Summary
Now that we've defined the requirements with use cases, we're ready to
specify the internals of the system in the next chapters - with classes,
components, and their interactions with each other to deliver the functionality
shown in use cases.

Use cases define the system boundary, which is where we keep the
use-case modeling effort, too. We avoid a skid into internal detail, as
well as a skid into the surrounding business, away from the proposed
system.

Use cases define system activities in terms of external functionality
based on business events.

Use cases are powerful with systems that are going to interact
extensively with end users or other systems, whereas with many MIS,
Data Warehouse, or knowledge systems, we're happy with few (possibly
parameterized) use cases.

Use cases involve actors that might be people or other systems. Actors
are the source where use cases come from and, thus, are a good
starting point.

Use-case diagrams provide the structure of the interactions between the
actors and the system. Also, each use case must be complemented by
a structured bullet list.

Use cases aid most stakeholders from analysis and design to project
planning and management.

Chapter 4: Sketching the Inside
Structure

Overview
Now that we've specified the external requirements, we begin map- ping
our system-to-be by sketching out its internal structure, gradually involving
more IT personnel. Involvement of the stakeholders depends on the nature
of the system. If the system is to be highly interactive, then much of the hard
work has already been done during specifying and defining the use cases. If
the system-to-be is more complex than interactive, such as a knowledge
base, then you might have to do much more work at this stage, for example,
detailing the rules that affect each part of the solution.

We're also dependent on the skills of our IT personnel. Throughout the
project, experienced people familiar with both object methodology and
conceptual thinking will ask many of the important questions early in the
specification stage, whereas new converts will appreciate more input from
other stakeholders, including help with first-cut key diagrams.

Because structure issues are key with most enterprise systems, we provide
boxes on some advanced constructs, as well as extensive footnotes on
details and semi-technical issues. We point out why some peripheral, or
seemingly peripheral, questions often emerge during modeling.

Some methodologies encourage a two-step process on defining classes:
first, model the business classes (the first cut), and then develop a complete
class model. In a lightweight approach, we can view these as two levels of
detail, which then gives an indication of the involvement of relevant business
expertise. The purpose of first-cut business class diagrams is to boost
communication between stakeholders and IT personnel on issues uncovered
during any development project. We use these class diagrams as a map of
the domain, showing the key elements (the kernel) of the system, as well as
validating and verifying our use cases and process flow. This feedback loop
is a crucial part of the development process. By using the small set of UML
diagrams, we can be sure, at each stage, the previous work still holds true. If
not, then we can change it early, thus avoiding later problems at the coding
and testing stages.

Class diagrams are crucial throughout the whole development cycle. As we
move forward, IT people add considerable technical detail to the kernel,
including the technical components. Many of those, like user interface
components of forms and buttons, are easily read 'between the lines' of a
use case and its layout examples, while some require more experience.[1]
Along with this, IT people are also responsible for making the structure
maintainable and making its components reusable. Getting it simple and
general is vital, but this takes skills and time, as with most hi-tech products.

[1]All the detail is because of later automation: UML tools provide ('generate')
the structure-dependent parts of the code, in our particular programming
language, instead of spending weeks writing those parts manually.

Class Diagrams
The structural foundation of our system-to-be is modeled in standard UML
class diagrams. As mentioned in the previous chapter, use cases capture
functional and, thus, volatile requirements, changing in future versions of our
system. Class diagrams, on the other hand, provide a static model in the
positive sense of the word. First, class diagrams model structure, which is a
static view, while other UML views provide the dynamic aspects. Second, in
the business logic layer (the kernel of our system-to-be), class diagrams
mirror real-world business artifacts, which undergo notably less change than
the functional requirements or the workflows. For example, from our initial
system for a few medieval-style pubs and all the way to our Wet-
Liquids.com net version (year 2080 style, extended functionality), the kernel
of the system would consist of rather timeless classes like Customer,
Serving (or Portion), Drink (or Beverage), Invoice, and so forth. Thus, class
diagrams set the stage, resilient to changing scenarios. This is sometimes
called isomorphism: the real-world objects from the real-world business are
mirrored in their original form, directly in the system.

Strengths
Class diagrams are powerful on structural aspects. Much of their power is
because of modularity: although quite self-contained, many classes simply
complement each other. In practice, 80 percent of our classes might be the
'same as except . . . ,' that is, the same as some existing class except for a
few additional details - as is the case with Beverage and SoftDrink, as shown
in Figure 4-1. UML provides a construct called generalization, that enables
you to build layers of hierarchy from the generic down to the specific. For
example, we all have different kinds of bank accounts: checking account,
savings account, credit card account, loan account, stock account, and so
forth which have common features-account number, account holder, date
opened, various operations such as doWithdrawal or doDeposit, and so forth
- that can now be defined once in a class called Bank Account. If you didn't
do this generalization, then you would be facing the burden of altering, on
every upgrade, these common features in every kind of bank account again
and again.

Figure 4-1. The timeless aspect. An example class diagram for Wet-
Liquids.com.

Limitations

Life cycles, messages such as transaction steps or signals passed between
objects within the system (see Chapter 5) and external functionality/use
cases (see Chapter 3), all belong to other UML diagrams.

The Class Diagram
Each class in the diagram starts as a simple box icon with a name to which
features (attributes and operations) are added. Later, the final class
definition will include a complete list of all its features. In a first-cut class
diagram, we might prefer to show a key operation (or three) that handles key
business events. For example, in Figure 4-1, there is no class called
'Payment,' which implies a payment-processing operation is probably a part
of Invoice.[2] As we discover first-cut business classes, we track the purpose
of each class.[3] For the example of Invoice, we can say it has to record sold
items, to calculate monies due, to record payments, and to issue receipts.
We can then leave the precise class definition to the IT personnel.

Getting There
There are two families of class-discovery strategies:

Business semantics-driven, which focuses on attributes (data).

Business service-driven, which focuses on business events to be
processed (behavior), as understood from use cases and the dynamic
UML views.

In practice, we recommend a mix. If your project colleagues are experienced
in data modeling, then stress business events to start. If the majority of your
colleagues are experienced programmers, though, then stress (initially)
business semantics (data) instead. This initial push is to ensure a long- term
balance in the mix of strategies, roughly fifty-fifty.

In our thirst-slaking business of Wet-Liquids.com, we begin by discovering
the key business concepts (usually identified as the nouns in documents,
including our use-case descriptions), as well as the key business events.
Skilled IT people can provide other stakeholders with a checklist as a
starting point and with a process framework or a book chapter as a
guideline. Initially, we might arrive at a few dozen classes, whereas in a final,
detailed version for a full-scale object ERP package, IT staff might arrive at
several hundred (or even a few thousand) classes later. Some of these
classes are essential and will be encountered early. We then work through
the structure middle out - from business to technical, from key to peripheral,
from typical up to more general or down to more special.[4]

OCL and Knowledge Tools Try To Rule Out Rule Troubles

With complex business rules, the UML's Object Constraint Language
(OCL) is powerful, but still rarely understood by many software
specialists unfamiliar with combining declarative business rules with a
class structure. At the same time, lawyers and controllers of today are
unfamiliar with classes and how class relationships can keep the
business rules where they're applicable - instead of causing a flood of
exceptions to general rules, which, in turn, complicate enterprise
systems even further.

Knowledge tools, on the other hand, do provide support for complex
business rules (for example, in telecom management or in finance). This
kind of support enables seniors or process owners to enter the rules into
the system directly without traditional programming, IT specialists then
advise on tests, structure, maintainability, reuse, and so forth. At the
moment, full UML and OCL are often only a 'future feature' in a
knowledge tool. Wherever the tool offers some industry-specific
graphical 'language' that models the business logic, however, this is the
easiest way to go (for example, in telecom network management or

financial analyses).

Although denoted by a noun in the singular, a class always defines all
objects of the same kind.[5] For example, Customer would define all
individual customers, that is, the common features of all of them. Serving
defines all individual servings, and so on.

Classes and Objects

A clear distinction exists between a class and an individual instance of
that class. This instance is called an object. We discover, design, and
write/generate code for the classes; these are static in nature. Objects
run (inside the computer) as instances of a class; these are dynamic in
nature. For any class, many objects might be running (inside the
computer) at any one time and each can be referenced by a unique
identifier value, for example, 'portfolio_number_77'. Throughout the
project, a class diagram documents the proposed structure of the
system, whereas an object diagram can illustrate some individual
example objects in the system if requested by some stakeholder.

A significant and twofold difference occurs between a class diagram and the
more traditional data models you might have seen before. First, you use
several kinds of standard relationships (see the following). Second, each
class icon has three main parts: its name, its attributes, and its operations
that work on the attributes. For example, class Invoice not only has
attributes, such as dateDue, it also has operations. The most important
operation is probably calculatePayment.[6]

[2]We read such important operations almost as a part of the structure. This
operation tells indirectly why the Payment class wasn't considered
necessary.

[3]In some cases, the enterprise might predefine its own, rather extended, set
of class stereotypes. Where this isn't the case, we can use other means of
expressing the purpose of a class, for example, by listing high-level,
business-event-related operations of that class.

[4]You might even face an initial explosion of candidate classes in the first
iterations if you tend to document every key concept as a class. However,
this will get better soon! Techniques are down the road (parameterization,
extensive use of associations, and many others) to make the structure
simpler and easier to maintain. Classes have to be grouped into high-level
components (packages) simplifying reuse and maintenance. IT staff assist
other stakeholders in keeping the model robust and tidy.

[5]The italicized (or abstract) classes like Beverage don't supply any objects
themselves. Instead, they simply come in handy as superclasses of other
classes, which, in turn, supply the individual objects. For example, Pepsi
supplies Pepsi objects. Again, this becomes important later, rather than at
this initial conceptual stage, so simply accept some italicized UML-class
names as something the IT people will need soon.

[6]To challenge the old axioms given by many developers with a data
modeling background, we chose this operation in Invoice, instead of having
a Payment class. This would be considered rare in a data model because

operations aren't visible there. However, in the opposite case, if this book
were intended to make programmers switch to conceptual thinking, we
would probably challenge their old axioms by stressing the attributes instead.

Understanding Class Relationships
Four types of relationships occur between classes:

Association: a very loose relationship, which might even be rather
short term and changing. Similar to one between a company and the
rental cars currently hired by that company.

Aggregation: whole-part, a 'medium,' typically long-term relationship.
By and large, similar to a long-term cooperation of your firm with your A
customers (frame agreement, minority ownership, and so forth).

Composition: whole-part, a strictly defined lifetime relationship. Similar
to one between your office building and its floors.

Generalization: general-specific, a structural relationship. Similar to the
kinship between savings account and account in general (of all kinds).

These all can be combined on any class diagram, so it's important you
understand their characteristics. The distinctions between them are quite
important as they're interpreted the same way throughout: by stakeholders,
by designers/software developers, as well as by software tools.[7]

Associations
The most common relationship is an association, which is shown as a
straight line linking classes in the diagram (this is similar to the 'traditional'
data modeling association). During the modeling exercise, the following
keywords indicate an association:

connected

associated to

related

So we're not too specific about the relationship.[8]

We're interested in the minimum and maximum number (of instances) being
related between the classes. This is called cardinality or multiplicity, meaning
the possible range of numbers on each side of the association. This has
been extremely non-standardized in the past. Fortunately, UML defines the
symbols to be used at each end of the associations. Examples are * (the
same as the more explicit 0..*), which means zero, one, or more; 0..1, which
means an optional one; and 1..*, which means one or more. These are 'read'
from the opposite side of the association, for example, one customer per
invoice and multiple invoices per customer. One liquid per serving means we
don't mix different liquid sales on one serving - which would result in a rather
long setup time on our liquid-package switching hardware, version2080. If
we did intermix in that way, we'd have to show this as a many-to- many
association instead between Liquid and Invoice (* at both ends).

The association between Liquid and Invoice relates it to any kind of liquid,
whether a detergent or any beverage, that is, invoices don't care whether
liquids rinse throats or baths.[9]

Aggregation
A whole-part relationship is called an aggregation (shown as a diamond and
a line between two classes in Figure 4-2). Classes in an aggregation aren't
only connected, they constitute a 'whole' from a business perspective. For
example, a household site consists of one or more customers; an e-trader

customer might consist of one or more portfolios.

Example keywords indicating an aggregation:

has a . . .

consists of, are parts of (respectively)

whole and part/s

So we're rather specific about the kind of the relationship.

The normal number at the diamond side, that is, at the 'whole' of an
aggregation, is exactly 1 and, therefore, it can be implied where it isn't
explicitly stated, as is the case in the diagram. In an association, it would be
read as undefined, instead of implied because there's no concept of a part or
a whole in an association. The whole is what makes it possible to imply the 1
in aggregations (Figure 4-2). In your first UML project or three, however,
being overly explicit is a good idea, always showing the 1 (even in
aggregations[10]). Remember, the point of UML is reducing ambiguity. Here,
we have to figure out what exactly our project colleagues call unambiguous.

The zero in 0..* is useful down the road because a common cause of error is
wrong program code in a program loop processing a 'collection' of objects
that happens to be empty (zero objects) in the particular case. By showing
the zero explicitly, we remind the system developer upfront of this risk. This
very simple example shows that unambiguous 'blueprints' of the system
improve quality, lead time, and cost levels.

Figure 4-2. Implied 1 in aggregation and composition.

Composition
UML also provides a stronger, restricted degree of aggregation called
composition and marked by a solid, filled-in diamond on the whole side (see
Figure 4-2). Composition would tell we're sure every part belongs throughout
its lifetime to exactly one whole and removing a whole always has the effect
of removing all the parts as well.[11]

The key question to ask of any aggregation is 'are the lifetimes the same?' If
they are, then it's a composition and, otherwise, it's a simple aggregation.

In Figure 4-1, the relationship between the Invoice and the Serving is a
composition because when the Invoice is deleted, we're no longer interested
in the Servings. Also, we don't move individual servings across invoices. In
contrast, we have a simple aggregation between the Household and
Customer because they might have different lifespans as our online
customers grow up from their teens, starting new household sites, but still
keeping their original customer number, gold customer status, and so forth.
So, changes on either side of the aggregation relationship are neither very
frequent nor banned.

You can view the empty diamonded aggregation as a gray zone kind of

relationship between association and composition. Selecting from these
three when drawing a particular first-cut class diagram brings about some
modeling difficulty to people unfamiliar with UML (later on during design,
however, this distinction isn't a big technical issue). Therefore, we develop a
common example a bit further here, as shown in Figure 4-3.

Trains are a frequently used example of aggregation. They consist of an
engine and one or more railroad cars, but the degree or strength of the
relationship varies, depending on the proposed system's view of the domain.
In a train project, we would probably start from the empty aggregation
diamond, and then raise additional questions as we move on. For most
trains, the aggregation relationship holds true: a whole exists, the
relationship is not extremely short term and, yet, it isn't a lifetime one.

For some other train company, composition might provide the correct
picture. Suppose the owner of the future system is an operator of high-
velocity trains, with a strict safety policy of always checking the entire train,
even if only a minor failure occurs on one of the cars. In such a case, we ask
the questions about lifetimes early. Suppose the company has a policy of
always buying only a complete train at a time, as well as scraping (or
disposing of, in some way) only a complete train all at once. This makes the
lifetime of the cars equal to the lifetime of the train. For such trains (where
we're certain of this), the composition relationship holds true: a whole does
exist and the relationship is a lifetime one.

For yet another train company system, association might provide the correct
picture. Suppose we're specifying a freight-car ledger system intended to be
used by many train operators from several countries, pooling their cars
across an entire continent. Here, we probably ask several additional
questions early to take a closer look at the whole. The business specialists
might tell us about cars being switched frequently from one train to another.
Maybe they tell us real-life stories about cars spending months just standing
on private sidings and dead ends 'somewhere far south,' and then being
thoroughly serviced directly on return to their owner company. In addition to
disconnecting the lifetimes, this makes the concept of a train extremely
fuzzy. In fact, while standing forgotten in a dead end, a car doesn't belong to
any train at all. For such trains, the association relationship holds true: no
clear whole exists and the relationship to a train is usually short term.

Figure 4-3. Medium, close, and loose relationships. The coupling
between trains and railroad cars varies, depending on the proposed
system's view of the domain.

Generalizations In Advanced Modeling

In the UML, we can even tackle less-frequent cases, where the
generalization structure is more than only one straightforward hierarchy.
Such cases bring about technical difficulty, rather than modeling
difficulty.[*] In fact, the first-cut class diagrams are made quite compact

by these techniques, saying each detail only once. In practice, these
cases are encountered less often, so both modeling techniques shown
here are advanced/powerful, rather than commonplace.

In some systems with a sophisticated logic, typically where the system-
to-be is able to use several views or paths of reasoning, several
generalization fork arrows can point to the same superclass. For
example, along with the classification in our previous class diagram,
liquids can be classified as domestic, NAFTA, or overseas, in which
case, all we've said about Liquid applies to all its subclasses in both
generalization structures under Liquid. This is called multiple
classification. We label each of the generalizations by a discriminator, for
example, Region of Origin, as shown in Figure B4-1.

In some systems with an extensive reuse of classes, several
generalization arrows can point from the same subclass. For example,
some people might argue that they classify Cola as both beverage and
detergent because of its effect on stain spots. If this is so, then all we've
said about Beverage and Detergent also applies to Cola, as in Figure
B4-2. This is called multiple inheritance.

Figure B4-1. Multiple classification from Liquid can combine
customer value and custom value in Wet-Liquid.com's
logistics.

Figure B4-2. Multiple inheritance to Cola indirectly explains some
extremely mysterious answers in Wet-Liquid.com's customer
polls.

Generalization
A general-specific relationship is called a generalization - shown as an arrow
and a line between classes in the diagram. Example keywords indicating a
generalization:

is, is a, is always a . . .

is the same as . . . except . . .

is (at the same time) even a . . .

Again, we're rather specific about the kind of the relationship.

The generalization class structure is usually called a class hierarchy (or tree)
linking superclasses and their subclasses. For example in Figure 4-1, Pepsi
is a subclass of SoftDrink, which is, in turn, the superclass of Pepsi.

This is a rather close, clear-box style relationship. All we say about Soft-
Drink applies automatically to Pepsi. When used in a unified, organized
manner, this saves much time and makes things easier in upgrades and new
versions of our system.[12]

[7]Such as code generators, object database engines, or (likely) future
database technology standards, such as ANSI SQL3.

[8]Association names, as well as association-role names, simply illustrate the
purpose of the association - the relationship still staying as loose as an
unlabeled one. When more than one association is between the same two,
we name each of the association links or the roles on either side. For
example, a Customer might be associated to several telephone lines (with
role names such as home, mobile, home office, and so forth). Then, a billing
system can easily specify those phone lines as three entries on a bill (called
home, mobile, and home office), in addition to a bottom line stating 'your total
bill this month.'

[9]The relationship between these two is rather loose. Invoices assume
liquids to rinse in whatever way and to do whatever else is the purpose of
the Liquid class - invoices just minding their own 'money business.'

[10]Unlike in a composition relationship, a part of an aggregation can (rarely,
but still) belong to several 'wholes' at the same time. For example, a parking
lot belonging to two office buildings or a driveway belonging to two houses.
Both examples are long-term relationships, but to two wholes. So, while
composition parts always belong to 'mandatory one' whole, aggregation
parts belong to typically one whole. Therefore, implying the 1 makes sense,
even in an aggregation where no number was explicitly stated.

[11]When deleting an object , that object first tells the object on the other side
of the relationship 'I'm disappearing,' that is, any link between them will no
longer work. In a composition relationship, deleting the whole then cascades
to deleting all the parts as well. In a multitier architecture, such consistency
issues can be automated by a separate handler class, monitoring each
relationship and even synchronizing the tiers of the system. This technology
keeps technical operations apart from business classes.

[*]The limitations of commonplace programming languages can be
circumnavigated by standard solutions, such as a design pattern.

[12]For example, the attribute called percentSugar, in the SoftDrink class can
be computed on by operations in any of its subclasses, without explicitly
copying that attribute from SoftDrink. Therefore, the programmer of Pepsi,
for example, needs to know all the detailed features of SoftDrink and its
superclasses.

Summary
Class diagrams show the structure of the parts of the system and how
they're interrelated. These diagrams are key in enterprise systems.

Class diagrams are two level: business and detailed IT/technical.

Among all the UML views in a requirement specification, business- level
class diagram is the least changing (and exceptions to this rule of thumb
aren't frequent[13]).

When completed, each class definition icon contains class name,
operations, and attributes.

A class diagram combines four kinds of relationship: association,
aggregation, composition, and generalization.

[13]For example, in a knowledge base reflecting a research-intensive domain
where 'truths' are frequently changed or on some (rare) mergers when trying
to harmonize systems from different sectors of industry.

Chapter 5: Sketching the Inside
Dynamics
Having set the stage with class diagrams, we'll now look more closely at
what is likely to happen on that stage. We examine life cycles and (with the
assistance of IT staff) interactions between all the small parts within the
system.

State Diagrams
Some business entities have interesting life cycles because of real-world
regularities and constraints, such as business rules, legislation, laws of
nature, and so forth governing their 'lives.' Because these business entities
are represented by a class, we model this dynamic aspect in a state diagram
per class.[1]

In most enterprises, some key business entities have an interesting life
cycle, which makes a state diagram necessary. These examples show the
key states (life-cycle phases) for certain key entities in different industries:

Banking: Account (in_credit - overdrawn - blocked - overdrawn and
blocked - closed)

Travel: Reservation (registered - on waiting list - reserved - paid)

Brokerage, shares, bonds: Order (placed - activated at desired price -
deal-confirmed - closed)

Insurance: Retirement plan (employed - payment-aged - retired -
deactivated)

We find such key entities in practically any business. The latter example
simply mirrors the life cycle from a retirement plan point of view.

Strengths
A state diagram is a compact, yet quite intuitive, notation. These diagrams
are versatile because they can mirror the lifetime dynamics of a rather long
'life' in the kernel of an enterprise system, as well as a rather short 'life' in a
user dialogue or in a real-time system.[2] A process owner/stakeholder is
primarily involved in the long life cycles because of their business nature.
Basically, we're diagramming one category of business rules, although not
all categories: the rules dependent on states and state changes. Therefore,
the states of key business entities can be modeled in parallel with early class
diagrams, which means stakeholder involvement is needed with both class
and state diagrams. That will prevent force-fitting the life-cycle aspects into
use cases; in order to stay easy to reconfigure, a use case usually mirrors a
single business event in a much longer life cycle of an entity.

Limitations
A UML state diagram models one class and all events relevant to that class,
which is confusing for some people with a technical/real-time background,
where only one traditional wallpaper-sized state diagram tended to depict the
entire system.[3] Sequence diagrams (see the following) show the
complementary dynamic view, per business event and across all classes
affected.

We need state diagrams for relevant classes only (for irrelevant classes, see
the boxes).

Mainstream Before Detail
Again, dynamic models start from the mainstream, that is, the trouble-free,
golden case, happy path scenarios. The mainstream version of a state
diagram is worth being maintained on its own because it will easily guide us
back into the basic business logic during future upgrades of our system.

If the life cycle fits all kinds of beverages (that is, not liquids in general
because there's no need to proof taste detergents!), we then can create a
state model for Beverage, as shown in Figure 5-1. This means these states
apply to all its subclasses as well because, for example, a Cola is a
beverage.

Figure 5-1. State diagram of the Beverage class.

The boxes with rounded corners (Figure 5-1) are states, which take some
time.[4] We can, therefore, use state names in continuous present (-ing, in
English). The arrows denote business events that are instantaneous in the
system, rather than continuous, so we avoid the '-ing' in event names. For
example, the state of a Beverage Being test-marketed can be changed by
two kinds of business event: either a full-scale launch or a flop.[5]

Uninteresting Life Cycles

Boring Life Cycles

We draw state diagrams for relevant classes only. Therefore, we skip
boring life cycles,* that is, states of trivial classes with an overrestricted
set of possible business events. For example, things in the universe get
born, changed, and die, repeating the same procedure forever, so
there's no point in hundreds of extremely trivial state diagrams for that in
an enterprise system. Typical examples of boring life cycles are the 'life'
of a list of income tax percentages per household size or of a list of town
names per ZIP code. These are only created, changed, and removed - a
universal story, which we've heard many times before (Figure B5-1).

Unstructured Life Cycles

Unstructured life cycles,[**] that is, those of totally unrestricted, solely

event-driven classes aren't very interesting either. Even if such a class
might have something like states, they're of little importance in the model
because they don't restrict the set of possible events in each state. Its
behavior is virtually 'stateless,' permitting any business event to occur at
any time. With such classes, the resulting state depends only on the
event, no matter the original, preceding state. If connected to a user
interface, all user options are always enabled and valid (in any state
being displayed in the window). For example, none of the click buttons in
that interface is ever shadowed. For this kind of class, we're happy with
a simple list, instead of a state diagram:

Figure B5-1. State diagram of a boring life cycle having 'nothing
interesting to say' in UML. This adds much clutter to the state
model, thus, discouraging many people from reading it. This is
unnecessary because the basic rule of nature diagrammed here is
generally known and applies to any object. Avoid
it.

Note: all events can occur in all states, except the 'created' event (which
can only create a new, recently 'nonexistent' object).

As we can see, the list is more compact and comprehensive than a
diagram (Figure B5-2) in this particular kind of cases, which are
extremely rare with key business entities. This is because it corresponds
to, for example, deposits and withdrawals being allowed at any time,
even on overdrawn or closed accounts. As shown in the list of example
key business entities in this chapter, their life cycles are much more
predefined and regulated in practice by a set of business rules (making
state diagrams worthwhile[†]).

Name of Event Name of Resulting State
created State A
a State A
b State B
c State C
gone (Nonexistent)

Figure B5-2. Stateless states. A state diagram of an unstructured
life cycle, 'saying too much and without structure' in UML. No matter
if it's standard syntax (upper part) or compact syntax (lower part,
'shorthand'), no interesting sequences or cycles exist to care about
because any of the events can occur in any of the
states.

In our experience, the real danger with both boring and unstructured life
cycles is in not seeing the regularities in 'real' life cycles as they might
seem to be one of these sorts to a less-skilled analyst at first glance (or
maybe both of these sorts at the same time - to an extremely unskilled
analyst). Both give us a false sensation of 'modeling,' without helping us
at all to visualize some relevant business logic.

Error Handling
State diagrams also greatly improve error handling. So, IT staff will most
often also maintain a more complex version covering important unusual
scenarios. For example, a few customers happy with Cola as a detergent
might make strange cycles (of business events) happen in a consumer poll
system. Or, some odd, outdated Web browser might (wrongly) permit a
withdrawal request to reach a closed account in an e-bank, thus, requiring
some appropriate error message from the system.

Even those scenarios are most often a worthwhile investment because,
without life cycle models, error handling grows inconsistent and excessively
complex as it gets ‘improved' by generations of programmers. At the same
time, because no one is keeping track of the normal life cycle and the big
picture, the mainstream is polluted from a large number of muddy, zigzag
'side streams.'[6]

Figure 5-2. Sequence diagram for the Pay use case.

[1]Many analysts might perceive UML state diagrams as an upgrade and
standardization, not too far from their early experience in entity life-cycle
modeling using, for example, some old variant of state diagrams or M. A.
Jackson's JSD or Bo Sundgren's models of business entity careers.

[2]The path of reasoning is rather similar in both models, except for the clock
ticking daysto-decades in the long, persistent case, but ticking nanoseconds-
to-seconds in the short, transient case. In addition, state diagrams can even
show parallel behavior where necessary, using bars, as shown with business
process flows in activity diagrams (see Chapter 2).

[3]Such diagrams are trying to represent the complexity of a 'state-machine.'

[4]Again, whether 'time' is measured in milliseconds or decades depends on
the nature of the class. Key business entities typically have rather long lives
and slow clocks (ticking from days up to years).

[5]Along the lines of simplified TV-sofa psychology, some people call them
neurotic life cycles, as the objects of such a class 'don't dare' to engage in
other business events, except these rather self- evident ones. In the early
days of system development, Michael A. Jackson pioneered the term boring
structures for this kind of non-diagrams. We find both terms quite humorous,
but 'boring' sounds more self-explanatory.** To stay consistent with
simplified TV-sofa psychology, this would translate to psychotic life cycles
because the objects of such a class exhibit any kind of behavior at any time,
no matter what their current state or the rules and logic governing
commonsense behavior. Again, of these quite humorous terms, Jackson's
sounds more self-explanatory (he pioneered unstructured structures) for this
kind of pointless diagram.

[**]In some code generators, however, state diagrams for classes with boring
or unstructured life cycles might be used to make the code generator do
what you want. Nevertheless, such tricks are for design and implementation,
that is, neither requirement specification nor analysis activities.

[†]Events coming into the system via an external interface, for example, by a
button click, a bar code scan, or a signal from an external system. With a
business entity, each event typically corresponds to the last Submit-Click in
each use-case dialogue.

[6]Technical, 'non-business' error handling is worth standardizing throughout
the enterprise. In such cases, we diagram its principles only once, omitting

them in the rest of our state diagrams. Later, during design, many errors can
be blocked on input (by filter classes, apart from our business class) or
prevented by techniques such as blocking all invalid click button options
ahead of each dialogue step. Otherwise, error handling tends to multiply
complexity, which is good to know in advance when estimating construction
time.

Tying It All Together
The remaining dynamic UML view is provided by sequence diagrams. Some
projects use UML collaboration diagrams instead, however, visualizing the
same aspects in a class-diagram style layout. Whatever the syntax, we
recommend that other stakeholders keep their involvement at a reasonably
low level here.[7] With enterprise systems, this is an IT staff exercise; but it
results in some questions that call for cooperation with other stakeholders.

In sequence diagrams, we're projecting a 'bullet' step from our use-case
description on to our class structure and checking how the structure is
affected by that particular step of that particular use case. Most people do
show the use-case actor as the source triggering the whole sequence here
too, in order to increase legibility, as shown in Figure 5-2.[8] Thus, we model
internal interactions between the cooperating objects.[9] This is crucial
because an object architecture results in many reusable components (at
several levels of granularity - from large/high-level to small - that is, object
level) and we need to see how these interact, without having to read
program code. With enterprise systems, we simply remember that sequence
diagrams provide a view that ties the other views together, thus enabling us
to postpone internal interactions in all the other views until now. Otherwise, a
split of focus might hit both quality and lead time during use-case and class
modeling. Again, projects save effort by keeping the right issues in the right
UML view (remember keeping the electricity away from the exterior picture of
the building).

Strengths
A sequence diagram is easy to understand and to maintain. It specifies how
parts of the system cooperate in delivering the functionality stated in a use
case. It makes the time dimension visible.

Limitations
A sequence diagram is much easier to draw in a tool than on a whiteboard.
As you can guess from its name, it's easiest to maintain if you partition the
model into several clear-cut sequences, without 'branches' of conditional
arrows. Again, a consistent mainstream-before-detail approach saves time
here. If you lean toward only one big diagram instead, it tends to grow into a
'bush,' rather than a sequence, thus becoming difficult to understand and
maintain.

Sequence diagrams provide the view per event and across all objects
involved (objects of several classes), whereas state diagrams show all
events per class. A simple way of explaining the interrelationship between
these two dynamic views is a detailed use-case dialogue-description (bullet
list) from a requirement specification of some future animator tool; at the
moment, animators have just begun to emerge on the market.[10] Let's call
the tool DA-2005 or Double Animator, version 2005. Double indicates the
tool shall animate - in parallel - the sequence diagram and the corresponding
state transitions in each corresponding state diagram affected by that
particular sequence. So, instead of specifying the tool for only a static,
abstract matrix of sequence arrows and state-transition arrows, we specify it
to 'run' the same matrix logic dynamically and visually, directly in the
diagrams.

Use Case: Animate dynamic behavior, stepwise.

Objective/business value: ensure understanding and quality
of application being developed by animating its proposed
behavior, step by step, in both sequence diagrams and state

diagrams.

Delivery priority: Medium

Steps

Actor: Clicks or presses ENTER

System: Highlights next message arrow in the sequence

A: Clicks arrowhead of highlighted arrow in the sequence

S: Displays a small pop-up window on top of arrowhead,
showing the state diagram of the receiving object's class.
Highlights the state- transition arrow corresponding to the
message to this object (that is, to the event conveyed by the
arrow highlighted in the sequence).

Here, hyperlinks in the 'bullets' of use-case descriptions can become the
menu. When these kinds of tools are available - we hope in a matter of
months, rather than years - the team specifying the system will gain total
control of the proposed dynamic behavior and the possibility to 'desktop test'
it before any program code is written.[11]

Suppose you have a Pay use case, stating the external interactions
conveying a card payment into the system for customer payment for an
invoice containing different servings of a liquid. If these four are affected,[12]
the internal interactions look like the sequence diagram in Figure 5-2. An
actor trig- gers the payment sequence (via some user interface[13]), which
then asks the invoice to calculate payment due. Invoice, in turn, retrieves
price amount from the particular beer and quantity from each serving (within
this particular invoice).

There's More In Sequence Diagrams

A complete sequence diagram can show both timing detail and technical
detail. For example, messages can be sent directly (synchronously) or
posted (asynchronously) without blocking the 'sender' by waiting for a
direct response. Even some nonfunctional performance requirements
might be attached to the arrows and bars of the diagram, such as
response time.

As shown with getQuantity in Figure 5-2, an asterisk is used to mark
repeated requests.

We can also choose to draw sequence diagrams at several levels of
granularity. If, let's say, a CIO asks for a high-level sketch of the basic
transaction flow between several subsystems (diagrammed as UML
'packages'), then a sequence diagram of packages can help in showing
those basics while hiding the detail.

Starting from the mainstream golden case/happy path as usual, the
sequence is fairly intuitive as we just read down in the diagram, each arrow
mirroring a message, such as a signal, a transaction, a return, and so forth
passed between two objects. The vertical lines under the objects are their
lifelines. Because time goes from top to bottom in the diagram, each line is
as long as the object (shown as its header) is present in the system, that is,
from creation to deletion. The thick portion of the lifeline indicates the object
is activated (performing an operation or waiting for a return from some other
object). The sequence path in the diagram follows the associations,

aggregations, and compositions in the class diagram structure.

[7]On maintenance reasons, we prefer sequence diagrams, even for sketchy,
high-level interactions explaining the basics to managers. In addition to
those, we recommend collaboration diagrams in user-interface discussions
across several use cases, for example, documenting Web-based navigation.

[8]Whether you show the return arrow (the dotted lines between objects) is a
matter of style because they can add significant clutter to large diagrams. If
you use them at all, we recommend showing the return only if it's conveying
some relevant information. For example, 'amountDue,' whereas a return
code that simply means 'everything went fine here' can be implied instead,
as an 'enterprise standard' after each solid arrow. Showing a return that
directly affects the course of the sequence is often worthwhile. For example,
if a particular return value triggers an 'extending' mini-sequence beside the
mainstream.

[9]As previously mentioned, objects are dynamic. Sequence diagrams show
the dynamic aspect per event, across many objects. Some UML tools are
already capable to animate the diagram, thus, making the dynamic aspects
more visible.

[10]At the moment, Aonix's Object-Animator in Select Enterprise can illustrate
dynamically each interaction step between the objects in the sequence
diagram (or collaboration diagram). Also, several real-time tools animate
state diagrams. With large diagrams and many arrows, this boosts the
team's understanding of the dynamic aspects before we move on to
implementation. This benefit is similar to one of more advanced process
simulators in business process modeling tools.

[11]The idea of animating dynamic behavior 'dynamically' is powerful, natural,
and certainly reused. Already in the 1960s, Dutch software-structure pioneer
Dijkstra pointed out the limitations of 'static' sheets of paper (and lines of
code) in describing a process that is dynamic in nature. In the 1980s, one of
us took part in a project developing some of the first PC animators for lines
of program-code and for diagrams of entity-life structures (so the previous
idea of animating several views in parallel is a reused one, too).

[12]In your real-life project, there will be many more of them, yet in the same
kind of structure. Also, several different objects of the same class might be
involved in the same sequence, such as an invoice requesting the serving
details from each of its servings (the asterisk-marked arrow in this
sequence). During some future discount calculation, this particular invoice
might even be asking another, previous invoice, for example, how timely it
was paid by this Customer.

[13]This is a card reader in a credit-card terminal or a click button in a Web
form. These will be designed in detail later, during user interface design with
all the (extra) user interface objects added to the sequence diagram.

UML Collaboration Diagrams
Collaboration diagrams tell the same story in a slightly different UML syntax,
as shown in Figure 5-3. They make the coupling between objects visible.
The class-diagram style of layout is useful in brainstorming with Post-it notes
on the whiteboard, whereas sequence diagrams usually win the race in
maintenance.

Figure 5-3. Collaboration diagram for the Pay use
case.

Other UML Diagrams
You might come across some other UML diagrams. These are mainly
created by IT staff, so you have only a very general idea of what they're
trying to show.

Later, during design and deployment, physical code components can be
modeled in UML component diagrams.

Where the system-to-be is a mix of both software and hardware, both can be
modeled in a UML deployment diagram (showing hardware as cubes, with
software components on the front of each cube). This is interesting where
some specific hardware is an important part of the proposed system, as is
often the case in telecom, automatic train control, naval systems, automotive
electronics, and so forth. Deployment diagrams were rare for enterprise
systems, which exploited common 'standard' environments or standardized
middleware. But with the explosion of Web-enabled front ends to most
enterprise systems, deployment diagrams have become a more frequent
technical design document.[14] Generally speaking, adding another couple of
diagram types to a project skidding out of control would make it skid totally
out of control.

[14]Deployment diagrams can show the location of components on different
hardware configurations necessary for Web-based systems. By 2080, Wet-
Liquids.com can show the hardware and software components together in a
deployment diagram, including our Digital Beverage-Subscriber Line (DBSL)
devices (patent applied for).

Summary
State diagrams model the dynamic aspects per class, showing its life
cycle as states and events affecting this class. There are two parallel
versions - mainstream and detailed (including less-usual courses of
events).

Sequence diagrams model the dynamic aspects per event (typically, a
use-case step), showing the interaction among all the affected objects.
These again are at two levels: mainstream and detail (adding 'less-
usual' courses of events on top of the mainstream, in a manner similar
to extend/include between use cases, as discussed in Chapter 3).

In practice, all dynamic models start from the mainstream, that is, the
'golden' happy path (which calls for considerable stakeholder
involvement), adding less-usual scenarios in the next iteration, which,
typically, is an IT-staff exercise.[15]

[15]At the moment, standardization work is going on within the Object
Management Group, affecting the exact interrelationship of mainstream and
detail diagrams. This, in turn, will affect the style of work likely to be
practiced here in the future.

Chapter 6: Moving Toward
Components

Overview
In recent years, an evolutionary change has occurred in the way modern
systems are developed or, perhaps, we should now say 'assembled.' Instead
of building systems from the ground up - designing, constructing, and testing
every part, thereby incurring time delays and huge costs - modern systems
are being assembled from a combination of components to meet the needs
of the business. These components or services might have been rented or
bought from third-party suppliers, reused from previous systems, or built to
provide a special set of services for the solution. The aim is to avoid building
most of the solution.

This component-based development strategy can be summed up as 'Reuse
before you Buy before you Build.' It's the new approach to meet the needs of
tomorrow. Interestingly, the UML, as well as 99 percent of this book, works
fine with any of these alternatives, including a combination of alternatives.
This chapter explains the background of many seemingly odd questions
raised by IT people, which might seem to be too early in the project. As we
show, components can early on play a key role in the bid/proposal stage of a
project.

Figure 6-1. Yesterday - today - tomorrow effort matrix.

Yesterday's development approach was for large amounts of time and effort
spent in developing basic parts of the system architecture,[1] for example,
visual controls, communications interfacing, and so forth with a smaller
amount of time and effort spent in project-related activities, that is, delivering
solutions, as shown in Figure 6-1. Today's development approach reuses
many components that were once built and maintained by your IT
organization and the effort has moved to working mainly on projects to
deliver solutions. But little cross-project or cross-product sharing of
components occurs. Too often, every project is an 'island.' And, still, despite
their best intentions, it takes too long for software developers to build the
systems. They can't write code any faster with the present set of concepts
and resources, and they've reached the limits of many development tools.

Tomorrow's development approach[2] - and today's forerunners' approach -
using components reduces our project workload because most of the work is
component-related, cross-project/cross-product activities. We try to develop
components once to a high quality, thus minimizing the effort of writing the
same functionality many times for future solutions. This, then, meets our
need to improve productivity - otherwise, the lost earnings through late
delivery of products dramatically affect the bottom line of all organizations.

One way to consider the differences between the approaches is with the
analogy of restaurants and cafeterias.

In a restaurant, diners choose from a menu prepared by expert chefs. This
menu reflects their requirements: what is in season, which combinations are
popular, what can be offered in different ways to reduce waste, and so forth.
Diners can only choose from these set combinations; things not on the menu
are unavailable. This is a form of supply-side control, similar to the old style
of software development where the IT department controlled all activities.

In contrast, the cafeteria (or the smorgasbord) offers a selection of foods
prepared by experts that are laid out and replenished regularly. Diners now
choose any combination to suit their own requirements, that is, they create
their own meals. They might need expert help, say, in carving some of the
ingredients but, if competent, they can undertake the task themselves. This
is demand-side control, which reflects the new style of development found in
most knowledge industries.

Not everyone likes to eat in a cafeteria, however, as the choice might still be
limited and the offerings of poor quality. Whereas, when ordering through a
waiter, special instructions can be given to the cooks, and then sometimes
fulfilled on delivery or sometimes misunderstood and not fulfilled. Cafeterias
require an attentive customer and a joint effort in configuring the meal.

The same is true for component reuse. Attentive management and attentive
stakeholders are needed to ensure that components don't become stale and
that a best-match configuration is selected. Of course, the smorgasbord is
an excellent principle of quickly meeting heterogeneous requirements of
customers from a variety of niches (allergy, special diet, vegetarian, children,
curious tourist, and so forth). Many e-enterprises call this principle 'Configure
and Buy.'[3] Having the right components ready upfront enables them to do in
minutes what used to take weeks or months with traditional restaurant
approaches.

This is only the beginning of the story, however. In the knowledge industry,
change is added on top of all this. On top of differences among
customers/stakeholders already in the first version, the requirements are
frequently changed as the 'meal' is being configured and consumed. Again,
meeting variance over time is more straightforward and cost-effective with
configurable components. Configured systems tend to keep a rather
constant reconfiguration cost, whereas maintenance costs of proprietary
solutions tend to accelerate in an uncontrollable manner after a few
upgraded versions. This is a major point, which is quite different from many
other sectors of industry: whereas adding a fifth engine to a Jumbo jet is
considered a non-option, software functionality is frequently (sometimes also
fundamentally) altered and upgraded after delivery and regular use. In our
opinion, this point was paid too little attention during the pre-UML era.

What is a Component?

Several competing definitions exist for a component, but they share
common characteristics. Such characteristics include components as
units of runable, deployable software that offer services (high-level
'operations') via interfaces, using standard fittings (a standard
communications technology), and are assembled with other components
to realize a business solution.

Several UML diagrams deal with components. The most general
construct is a UML package, shown in Figure B6-1. Packages can be
used for several purposes. Often, packages are used for grouping low-
level constructs into high-level components.[*] The most common

relationship between packages is a dependency (see the dotted arrow in
Figure B6-1). The most commonly used stereotype of this dependency is
«communicate», that is, requests sent to the other components to obtain
help from them in completing the tasks of the component sending the
request.**

Figure B6-1. UML packages (components).

Thus, having the right components ready makes both version 1 projects and
upgrade projects lean, as shown in Figure 6-1.

[1]One of the authors remembers having to write drum storage access
software before he could use a new computer. This was in the early 1970s.
The other one of us remembers writing many parts of an online transaction
monitor before he could make the system receive data from end -users,
which occurred in the late 1970s.

[2]The idea of 'yesterday vs. today' is a reused component. It originates from
Objectory (Lars Wiktorin, currently at IT-Plan). We added the vision of a
configure-and-deploy 'tomorrow' to it.

[3]Witness the recent explosion of interest in Web services.

[*]Packages can even be nested - in packages on the next 'level,' and next,
up to subsystems or systems. As you can guess from the name, package is
primarily a packaging technique in design, rather than an analysis tool. As
mentioned in Chapter 4, the path of reasoning in analysis is middle-out
rather than top-down.** Other stereotypes of dependencies can be more
'technical,' for example, compilation dependencies when the computer
requires all the interdependent components as input at the same time, i.e.,
'all of it or none of it' (for compiling or linkage). In 'design to configure,' we
can also choose to diagram inclusion/exclusion dependencies between
components on various levels. Later on, these can become rules to be
applied automatically by a configurator package while 'assembling' our
system.

Components Communicate with Everyone
From the requirement specification point of view, components offer a more
powerful and predefined way of communication. Instead of the drawn-out
process of specifying each and every detail of the requirements we can just
identify a known component or specify the services that we want. In many
sectors of industry, this has resulted in an improved efficiency within the
sales process of the forerunners of component-based product architectures.
Thus, the component approach itself is a key strategy in extending your
market share by covering more segments and niches. This important
mechanism deserves more attention on the component agenda - which in
high- tech enterprises generally tends to focus on product and production.

The communicative power of a component is similar to a technical term in
natural language: if a financial analyst mentions something like 'a black
Monday scenario' to a colleague, they probably save pages of detailed text
because the scenario has previously been analyzed, described, and labeled.
So, if you talk about the Accounts Department (as a high-level software
component in, say, a Web shop), you can easily mention the services you
expect for your solution, for example, take a credit-card payment, check the
'hot list' for defrauders, and alert when accounts are overdue.

Where solutions are assembled from bought-in parts (and where they are
wholly constructed from the ground up by the development teams), the
specification work and business analysis don't simply walk away. It's critical
for the stakeholders to specify the (business) services required in the new
solution and to discuss the resulting component models to ensure these
services will be delivered.

Specifying Components for Wet-Liquids.com
If we return to our 2080 example for Wet-Liquids.com, we can identify a
number of components that represent the obvious business elements: sales
department, product, distribution, Accounts Department, and customer.
These components are at a 'near-top' level.[4] Large component libraries,
such as IBM's San Francisco (SF), are typically at several levels of
granularity. Both in SF and in OMG's view of components, our 'product' and
'customer' (see Figure 6-2) are standard examples of so-called business
objects. They're far above the technical level, but still frequent in most kinds
of systems.

Distribution (in Figure 6-2) is an example of SF's top level, originally called
application frameworks or San Francisco Towers, that is, 'Lego-brick towers,'
assembled of business objects (other examples at this level are financials,
HRM, or manufacturing). Figure 6-2 shows these components, as well as
another one added within the Accounts Department to deal with the online
credit-card banking service. This is an example of wrapping components up
in other components (or nesting). The dotted line shows the dependencies
between the components,[5] that is, sales needs to know about all the other
components, but all the other components don't need to know about each
other. If we reconfigure the system to run some new process in addition to
the current order process, then we probably just add some more
dependencies here.

Figure 6-2. Example components for Wet-
Liquids.com.

Once these components are identified, we now outline the responsibilities
allocated to each one:

Sales Department: responsible for processing each customer's drink
request (listing products, validating choices, submitting orders to
distribution), managing customer subscriptions, and issuing sales
orders.

Customer: responsible for recording personal and subscription details,
knowing their own account balance and payment status, and holding a
history of sales.

Product: responsible for knowing details of the product including
restrictions (for example, age/alcohol), providing pricing and discounts,
recording stock levels, and monitoring the shelf-life status.

Distribution: responsible for managing the product inventory and
distribution channels [sic], accepting new products from suppliers,
dispensing the product to customers, and reporting the status of the
distribution channels.

Accounts Department: responsible for issuing customer statements,
collecting payments, updating customer payment records, and reporting
defaulters.

CC Banker: responsible for validating credit cards and charging
payments to customer credit-card accounts; an online authorization
service.

These are high-level components. Some of them can be bought as
components, some can be rented as Web services, some can be bought as
parts of a package, some can be reused from previous projects, and some
can be developed now.

From this 'Lego kit,' we can, in principle, configure a process chain, for
example, the order cycle. Now, suppose we have a merger a few years later,
resulting in a new marketing policy. Because of this, before adding a
customer address to the mailing list of the sales department component, the
current credit rating of the customer must be checked automatically to invest
Wet-Liquids.com's sales efforts in customers with proper liquid assets. The
dependency between the sales department and accounts is already in place.
We simply adjust our sequence diagram (activating the credit-rating check in

the Accounts Department component) and reconfigure the system. The
credit-rating checker component can be nested within the Accounts
Department from the beginning or easily purchased otherwise, for example,
from Dun & Bradstreet or from a component broker.

In fact, this modest change can evolve into a rather extreme example of
Reuse before Buy before Build. The traditional build and deploy approach
('supply-side' control) could easily spend weeks specifying and designing
this upgrade. A new proprietary rating component could take years to
develop and another year to fine-tune, especially with business-to-business
customers. If you're serious about making computers interpret and analyze
complex financial information (producing credible, realistic credit ratings),
you need a lot[6]of financial data, smart information-mining tools, a couple of
sophisticated knowledge bases, a panel of credit-rating experts to keep the
knowledge current, plus a skilled team of IT people. In our humble opinion,
reusing a component of proven quality developed by someone else is more
realistic.

[4]Some other people might choose to make each activity of a process a
component (to increase configurability), which isn't at 'top,' yet is at quite a
high level.

[5]These dependencies are of the «communicate» stereotype, to be exact:
technically, the sales-department component will be sending requests to the
other components whenever necessary.

[6]Although the results, i.e., the ratings per company, might fit on a CD-ROM
or three, the raw material necessary for producing them can be hundreds of
gigabytes of financial databases.

Impact of the Component-Based Approach
'Reuse before you Buy before you Build' means components might already
exist as part of existing solutions and can be reused in the planned system.

Figure 6-3. Different aspects on the scale between buying and building
solutions.

Or, it can be bought to fit your requirements, configured, if necessary.
Building them is the last resort if no components are available that fit the
solution. Figure 6-3 shows we can have a scale between the buying and
building, which shows the different nature of the development processes;
whichever is used, specification is still critical on all of them.

Buying Components
Buying components is attractive to most organizations, but both advantages
and disadvantages exist with bought components. The advantages include:

Cost savings, especially for maintenance because this is transferred to
the component supplier.

Engineered to meet the requirements of the reuser.

Earlier payback because only the cost of the components is to be
recovered. This usually makes projects leaner and (therefore) their start
procedure is much shorter.

Manpower savings because they can be deployed onto other projects.

Greater range of capabilities, for example, new service offerings, such
as our previous credit-rating example.

Technology leverage giving the capability to enter new domains, for
example, mobile 3G/GPRS interfacing.

Reliability - provided previous use on other projects.

Documentation[7] that encourages reuse. You know up front what you're
going to get.

But difficulties exist with bought components:

Little use in the application for (reusing) the components; for example,
they might offer great screen controls that you don't need.

Delays might occur in the procurement of the component. It's the
supplier's schedule, not yours. Control lies with the supplier and not with
your organization. If the supplier drops the component, problems in
upgrades and maintenance must be dealt with by your own staff.

In-house expertise is needed to reuse the components.

In-house improvements might also be required, giving a potential
maintenance hazard.

New role of component buyer feels inconvenient both to the traditional
buyer - skilled in buying coffee, furniture, and pencils - and to the

software-people - skilled in developing components, rather than in
buying them.

When to Buy or Build
In deciding when to buy or build, the focus needs to be on the benefits to the
user of the component.

What is it worth (value) to the user?

Is the user willing to pay to have the best version of this component or to
have one that's minimally sufficient?

What is the impact if the component is not provided?

How big, stable, service-minded, and reliable is the component vendor?

As a general example, let's take the colored housing for the rear light on a
car. This is obviously needed, so we can't drop the requirement, but does it
need to be the best available? The car buyer wouldn't be willing to pay a
premium for a rear light, so the choice is for one that's minimally sufficient.
Car designers then look at the available housings and design the vehicle's
rear end accordingly. If the case was for a new high-performance fuel-cell
engine for which the car buyer was willing to pay a premium, then the car
design would be driven by both the engine and the engine space.

[7]You would expect or demand such documentation to be in the UML format!

Reusing Components
When considering reuse, it's necessary to be aware of the differences
among pluggable, customizable, and configurable components.

Pluggable components support the 'black-box' concept: you know what the
component does, but not how it does it. The component has hard edges
specified as well-defined software interfaces. It can be likened to Lego bricks
for children. Each brick has a well-defined interface or connecting part that
will fit any other brick with the same style of connection. Lego firmly
deemphasizes how to do things in favor of what to do. Lego bricks are very
easy to use, but very hard to design and build[8] to ensure they fit together
well. Users of components (and Lego bricks) expect a useful set of artifacts
to undertake some task and look to the expert component maker to provide
this useful set. For this expert, the components must be designed and
constructed to meet both the requirements of their reusers and to an
extremely high quality. Lego connections (fittings) show clearly why
interfaces are key in modern software architectures.[9]

Customizable components are the form of adaptive reuse, that is, what to do
and how to do it. The components have soft edges and soft contents, which
allows the reusers to adjust the components to fit their exact requirements.
Such components are easier to design and construct because they only
need to provide a generic set of features and let the reusers modify
accordingly. Such components, however, are difficult and expensive to
maintain because any updates must be examined for the impact on the
customized component and any new works retested. This can occur any
number of times throughout the lifespan of a system, making a continual
coordination of system versions and component versions necessary.

Configurable components are pluggable components that can have their
behavior or data changed through well-defined mechanisms. These still
remain a 'black box' because the configurator doesn't know how the internals
of the component have been changed.

The 'boundary' between component-based development and 'packages' has
been growing quite fuzzy recently - a trend of which IBS is an example. As
former packages evolve into 'UML-packages' of configurable components,
the enterprise buying the package can either use it right away as a large,
single, off-the-shelf package (just as before) or intermix components from
several sources, including its own legacy components. Again, wherever we
are on this new scale between 'buy' and 'build' (Figure 6-3), the specification
work and business analysis doesn't simply disappear. Even in the traditional
off-the-shelf case, despite all the design outside the buyer's enterprise
shrinking the whole project, we still need a requirement specification and we
still need to understand the essence of all those UML diagrams.

[8]In fact, the molds for the bricks are cut on expensive machines that are
accurate to a micron by using spark-erosion technology.

[9]Consequently, in addition to UML, which is a 'specification and design-
time' standard, most OMG 'deployment-time' standards for multiplatform
systems are published in terms of standard interface definitions. These tell
the software industry which services shall be provided to other systems (or
other components) through each interface - without the detail of
implementing those services behind that interface. This focus on interfaces
makes the system architecture reconfigurable and resilient to change, by
'insulating' most changes inside each component from the rest.

Building a Component Library
Considering every component that exists for reuse is neither possible nor
practical. The first step is a decision on which reusable components you
want to manage as reusable assets. This means considering the structure of
the business, the needs of the existing or planned projects, your computer
architecture, and the opinions of potential reusers.

Components that support the business are the most useful. These can be
found in the structure of your business. Organizational boundaries show
independent business units that have responsibility for creating, delivering,
and supporting its own products. While each unit will have its own
requirements, these can be met by local reusable components or supplied
from components that are organization-wide - that is, sharable across many
units. Another approach is to look for different levels of generality. There will
be components of interest to any business, those of interest to any company
within the industry, and, finally, those specific to a company. For example,
screen widgets are useful to all businesses, tax rules are useful to many
companies, and a polymer paint-mixing recipe is useful to a specific
company.

When considering the need of existing or planned projects a number of
strategies can be used. One strategy, called domain analysis, attempts to
understand the fundamental abstractions in a given area, whether business-
or technology-related. If a general domain model can be produced, then this
will be useful to multiple projects. The outcome of a domain analysis is the
identification of reuse opportunities across applications in a domain, for
example, personnel, inventory, accounts receivable, and so forth. Another
approach is on-the-fly identification. Faced with short-term deadlines and an
aggressive attitude to exploit new technology, a number of projects are
started simultaneously, hampering any attempts at domain analysis. In this
environment, reuse is handled with a just-in-time attitude, projects helping
each other through assigning team members to cross-project teams.

Can I Trust This Component?
If you're going to rely on this component in your new system, you'll want
some guarantee from the supplier. Certification ensures that the reusable
components meet some level of quality. This engenders trust in the
component when you can be confident that an independent evaluation of the
component has been done. But what happens if that process is slow or
components are needed promptly? Most successful certification schemes
issue levels of certification with the reusable component, ranging from 0: just
arrived, so use with care, to 5: used successfully in at least four other
systems.

Sharing Components in Your Organization
Components do not come out of thin air. As in many other industries, the
following scale (in addition to Figure 6-2) illustrates clearly how top
management becomes increasingly involved in the adoption process of
software components and standards. Middle-sized software houses became
the fore- runners, mainly because of the sustained attention paid to
components by their top management. Reusability starts from object
technology and the UML, whereas reuse in real life, that is, component
sharing, starts from well- informed, dedicated, and pushy top management.

Our rather informal scale of component-sharing maturity provides a hint on
the state of affairs in practice within our project and our enterprise:

0. Sharing within a team: a dedicated person or three with
hazy roles and management.

1. Sharing within a family of products or projects.

2. Sharing across families of products or projects, of
components developed within the firm. Staying profitable for
almost seven decades in a tough market, truck maker Scania
is a forerunner of this level of sharing. For example, some 80
percent of a bus platform's components are reused truck
designs.

3. Sharing across a group of companies. On several
continents, carmakers within the VW Group are among the
forerunners having used a common component management
system for many years.

4. Sharing with a competitor. Some firms seem to succeed
here; others try the next stage. For example, several car
makers have achieved this higher level of sharing and seem
happy with that. On the other hand, although collaborating for
several years, ERP and CRM-vendors IBS and Mapics
proceeded to the next stage anyway.

5. Sharing within a sector of industry. The twenty-first
century 'top performance': enterprises sharing standard
components with all firms interested. Typically, as the
component activity grows, it becomes a business and profit
stream in its own right. In software, there are component
libraries and frameworks, complete object versions of ERPs,
open-source software, and so forth. In the mid nineties,
Swedish ERP- vendor IBS provided some key ideas and
experts to IBM, triggering a large-scale Shared Framework
project (SF, SanFrancisco). Later, having provided several
thousands of components at several levels of granularity, SF
spun off into an IBM company on its own with 500+ customers
using the framework on a royalty basis. Currently, SF is the
Business Components[10] part of IBM's Websphere product
suite.

Thus, even when developing one-of-a-kind systems, a one-of-a-kind cost
level isn't necessary.[11] The ROI of component sharing is good, to say the
least,[12] but a threshold exists because of the investment and the focus
necessary on entry. Firms relying on a few technical enthusiasts are stuck at
level 0, R&D managers cope at levels 1, 2, and 3, whereas levels 4 and 5
imply CEO commitment.[13]

[10]The new WebSphere® Business Components version of SF conforms to
a software component standard (Enterprise Java Beans™) coordinated by
Sun. See http://java.sun.com/products/ejb/training.html .

[11]Similar sharing initiatives seem to be under way elsewhere. The trick here
is simply to avoid writing/making the program code, by reusing shared
components instead, industry- wide and world-wide.

[12]WebSphere Business Components cut development time by more than
half.

[13]The comparison of generalist and specialist methodologies in the
introduction provides only a hint on a method's overall ambition regarding
high-level components. This scale, on the other hand, is much more focused
on the current state of an enterprise.

Avoiding the Traps
Again, there are some common pitfalls here and, again, staying away from
them seems much cheaper. This time, the list of traps is rather generic.

Just-a-New-Diagram
The UML provides several semi-technical diagrams. Package diagrams,
component diagrams, and deployment diagrams mirror what we need to
know at a technical/architectural level. These also prevent people from force-
fitting high-level components (such as searchers, reporters, and so forth)
somewhere else, typically into use cases (as mentioned earlier, a use case
usually spans across several components, so use cases aren't the right
place). They also enable us to show an overall system structure quickly,
including some technical components at a high, zoomed-out level.

However, the UML techniques alone aren't enough to take us to the top of
the previous scale.

Brainware Is a Beautiful Trap
At the moment, among the 'would-be-nice-ifs' of software tools the
fundamental missing feature is intelligent configurators. Whereas Scania's
truck- order process has been supported by smart sales configurators for
several decades, the software industry itself is still mostly low-tech on this
point. That's not logical because configurators are the harvesting machinery,
in a sense, for all the benefits of object technology and of any component-
based architecture.

However, now that the OMG has a format standard for UML-model inter-
change across tools,[14] even configurator vendors can join the UML race.[15]

Configurators will also make it much easier to reconfigure an enterprise
system immediately after a major business change, so such tools certainly
deserve to be closely watched and thoroughly tested during the next few
years. With other configurable products in, for example, complex
manufacturing, there has been quite a long takeoff run. Configurators didn't
pay off until a culture of 'design to configure' became rooted in the R&D
department and spread throughout the enterprise. Unsurprisingly, previous
product architectures, not designed to be configured by computer programs,
turned out to be hardly configurable at all. This stepwise start procedure
indicates it's high time for the software industry to enter, starting the first
iteration right away.

Remember, configuration management tools are not sales configurators.
These tools basically keep track of existing configurations, most often
already made by people 'by hand.'

Beware of Lawyers!
A major trap is the protection of your legal interests when you buy and sell
reusable components. Software legislation doesn't consist of a unique set of
dedicated laws, but is an adaptation from different, old, well-established
fields of law, for example, copyright law. One of the major complexities when
considering the legal aspects is the source of the various components that
make up a system. Components might have been bought from third parties,
extended to increase the functionality, and then further extended and paid
for as part of a client contract. Three levels of component are here: bought

with licensed use, developed to include trade secret, and passed by
copyright to a client.

When approaching components for protection, three legal categories can be
identified.

strategic knowledge confined to organization

non-strategic knowledge with commercial value

non-strategic knowledge of little value

This gives a clue to what level of protection you might seek. Care is also
needed if your organization delivers reusable components. Binary code and
user documentation would require a different level of protection than when
the component comprised the specification, source code, and so forth. At the
same time, your organization also has to take competitors into account in
some niches, including components like freeware, shareware, and open
source software.

[14]The XML Metadata Interchange (XMI) is a standard that makes it possible
for teams using different UML tools with different internal data formats to
cooperate and exchange their UML diagrams.

[15]As in other knowledge industries, a quick-'n-dirty configurator prototype is
a non-option in the long run. Rather than simple things in Visual Basic, we
need smart software tools to process component lists of potentially
thousands of components at several levels of granularity viable in millions of
possible combinations - yet capturing and correctly interpreting all their
interdependencies, constraints, inclusion/exclusion rules, and so forth. When
these tools are finally connected to the Web (or otherwise customer-
enabled), they become extremely interesting to the sales manager.

Automating the Bid Process
CIOs (and sales managers of software firms) need to be rather open-minded
on configurators and component-based architectures. In the knowledge
industry, hitting dates in tenders and contests is essential. Surprisingly,
considering the levels of automation in today's production and the short
supply of skilled sales engineers, it's amazing how rarely automated the
early steps of the high-tech order cycle are.

As mentioned in this book's introduction, workflow-oriented, standard BPR
cases typically provide a perfect solution to the wrong problem. Rather, by
using knowledge as supplied in design-to-configure components and with
intelligent software tools, long-term efficiency can be attained.

A few years ago, British (Benchmark UK) and American (Gartner US)
industry surveys presented - fairly similar - interesting findings on the bid-
ding process. In complex software and telecom, a UK industry average was
1,000+ working hours per bid. With a hit rate slightly above 35 percent, this
meant some 3,000 hours per real order.[16]

Thus, from the various points of view of development, production,
deployment, and sales, in particular, all the effort put into components and
configurability is definitely worthwhile. This effort pays off in both foreseen
and unforeseen ways. During times when a shortage exists of skilled
personnel, successful bids can still be created using the captured knowledge
in the components. And, in times of cost-consciousness and severe price
competition, improvements in development productivity and exploitation of
existing proven components ensures your bids meet these constraints, and
the cost estimates underlying the bid are realistic.

Consequently, any enterprise strategy (and practice) must cover component
issues, including software components. In a knowledge industry, our
enterprise might build its entire business idea on components, growing into a
component vendor, a component buyer/assembler (that is, component-
based package vendor), a tool vendor, an adviser, a component broker, and
so on. Most often, components are key to any knowledge-intensive business
idea.

[16]When these figures are shown to representatives from large European
defense and electronics industries, they report that the figures might even be
an underestimate.

Summary
Components, component-based development methods, and techniques is
the way forward for the future. Software development is essentially a
knowledge industry and not a craft industry. Software development has to
think in terms of the successes of using and reusing components in an
enterprise. With system development departments in several countries, you
can have a 'cooperative race' in component sharing similar to the one among
the car makers within the VW group, where a car design employing, say, 60
percent of shared components can be regarded as a 'winner.'[17]

The point is, unsurprisingly, to design and build each component only once,
making it really good instead.

[17]Although there's not extremely tough competition among the brands of the
whole VW group in the marketplace. In a sense, this is a race within the
same team (and a profitable race, for all parties).

Chapter 7: Mapping from Classes to
Data Models

Overview
Data modeling has been covered thoroughly for decades. Like class
diagrams, it provides a structural view. Unlike class diagrams, data modeling
omits business-level operations that the proposed system will perform. Most
often, it also omits some key relationships, such as generalization, despite
the fact that various data-model notations for generalization have been
around for almost two decades. Because most data models are on a design
level, they already take into account some restrictions posed by the
underlying implementation technology (data tables).

Strengths
Data models cope well with the data to be stored in the bottom layer of a
system. Therefore, data modeling is a technique suitable later on, during
design. The mapping to data models enables modern object-oriented
systems to use ordinary relational database engines, which are standard in
enterprise systems. In practice, brief previews with Database Administrators
are a good idea to coordinate legacy and other systems with our models to
come. By the time data modeling becomes really interesting in our project,
we already have a more technical focus.

Limitations
Data models omit most of the behavior and business logic. Also, what data
modelers call constraints or rules typically turns out to mean special data-
related ones (such as rules of referential integrity across data tables),
whereas UML includes a more versatile and powerful standard for declaring
complex business logic, the UML Object Constraint Language (OCL). At the
specification stage, a data focus is likely to trigger a rush into design
solutions, resulting in the full-plate syndrome - in other words, overloading
everyone with decisions on the technical detail of the system.

Use Appropriate Diagrams and Standards
We strongly recommend a layered system architecture or at least a layered
way of thinking here. This makes understanding where UML fits in (the
business logic layer) and where data models fit in (the bottom layer) much
easier. Data models in the form of entity relationship (ER) diagrams have
frequently been used instead of UML class diagrams, rather than as a
complementary view: the data-centric view. Such approaches are likely to
result in a system much less resilient to change and in databases too
specific to a single system because of a hazy (or nonexistent) business-logic
tier, making the database contain some of that logic instead. Unsurprisingly,
data models will do on data, but not on the rest: the system behavior, the
business logic, the program logic, and so forth.

The OMG has recently adopted a vendor-independent standard for data
modeling and database creation[1] to make life easier for an enterprise with
several database platforms.

People are also using variants of the UML class icon, 'stereotyped' for data
modeling as «Table» or «T». Among the abundance of notations and
techniques here, however, Erwin[®2] tools for ER models have been near de
facto standard, so many UML tools offer an Erwin bridge for ER-diagram
generation from UML class diagrams.[3] This facility greatly simplifies design,
implementation, and upgrade by an automatic linkage to data. Taking
advantage of this facility, however, takes a good knowledge of both UML and
data models, as well as of the mapping techniques between object and
relational technology.[4] The three following alternatives show the main
options we have at the conceptual level. The issue of database mapping is
wider and deeper than outlined here, though, especially as we move on into
design of tables and keys.

[1]The Common Warehouse Metamodel (CWM)
(www.omg.org/technology/cwm/index.htm).

[®2]By Computer Associates, www.cai.com.

[3]Modern UML tools provide an automated mapping from the business logic
layer to the data layer by generating the data model in, for instance, Erwin,
as well as by generating the database schema in SQL's Data Definition
Language from standard UML class diagrams. The bulk of the work is done
by the tool. The modelers make only the high-level decisions on the structure
of the data model.

[4]The technical knowledge necessary to make the right decisions here
includes bidirectional association, many-to-many associations, referential
integrity (with one to one, one to many, and aggregation), design of primary
keys and foreign keys (especially with UML- class generalization
relationships), logical access facilities provided by the database engine, such
as indices (especially for many-to-many and bidirectional one-to-many
associations).

Mapping Relationships
Whereas computer program structures are generated from UML in a
straightforward manner, data models and database schemas require several
decisions to be made up front. The easier part is mapping the attributes from
classes on to columns of tables, although some complex attributes, such as
a world map or a video shot to be used on the Web, usually also require
further decomposition or additional work. The trickier part is the structure of
the model because a necessary conceptual transform takes place from UML
class diagrams to data models whose structures also match the low end:
table lines and references between table lines (to be stored as so-called
foreign keys). Generalization relationships (see Chapter 4) deserve special
attention during the transform. Conceptually, we choose from three
alternatives when mapping UML generalizations to a data model (some
UML-map- ping tools[5] ask us to select one alternative up-front):

1. 1.Make one to one. Generate one data-model entity or one database
table, per UML class. Each UML generalization becomes a one-to-
one association between tables, connecting each table line to its
corresponding line in the table of its superclass. This alternative is
quite straightforward and resilient to upgrades of the class diagram.[6]

2. 2.Roll down. In principle, generate one bigger entity, or one table, per
'leaf ' at the bottom level of the UML tree (the class hierarchy)[7] and
include even the data from all superclasses of that leaf into the same
table. This makes one table of each UML-generalization path,
including data from each class level on that path. Each individual
object corresponds to exactly one row in exactly one table. This
alternative might be fine as long as searches rarely regard a
superclass, while answering requests, such as 'count all liquids,'
becomes much more technically complicated. This alternative also
generates redundant, repeated, superfluous, more-of-the-same,
column definitions in the table headers. For example, in Figure 7-1
the definitions of 'price' and all future attributes of the UML class
called Liquid (the 'root' level of the UML tree) must now be defined
and maintained in all five tables of its leaf subclasses (Detergents,
Beers, Juices, Colas, Pepsis). This is at the definition level only (or
the 'table header level,' the schema), however. No redundancy occurs
in the rows of data being actually stored in those tables because each
individual object is of exactly one UML subclass (or leaf), thus
belonging to exactly one table. For example, we don't store price
values of various beer-objects in various tables - we simply store all
those in rows of the Beers table (and nowhere else).

Figure 7-1. The UML class diagram of Wet-Liquids.com. This is
the structure view.

Figure 7-2. Data model of Wet-Liquids.com. Alternative 1: Make
one to one, which means one data-model entity, or table, per
UML class. Straightforward from most points of view, except data
updates from complete objects (implying data from several tables
at a time).

3. 3.Roll up. In principle, generate one big pseudo-entity, or one table,
per UML class tree and include data from all classes in that tree. This
alternative might be fine, as long as searches rarely regard a
subclass (requests like 'count colas' take long searches in an
extremely large table). In addition, advanced UML structures
combining all three kinds of UML relationships will look like
relationships within the same data table, although they span several
UML classes. In each row - depending on the class of the particular
object whose data are stored in the row - null values will be in the
columns that aren't applicable to that class. So, here, unlike in the
previous alternative two, we'll be facing redundant null values[8] in
each of the stored rows of this long table, resulting in some waste of
storage. This alternative is technically possible, therefore, but hardly
comprehensible, especially in upgrade time. Database administrators
generally agree this alternative is the 'last resort,' and rather

questionable both in the object community and in the data-modeling
community.

Figure 7-3. Data model of Wet-Liquids.com. Alternative 2: Roll
down, which means one bigger entity, or table, per 'leaf ' in the
UML class tree, including the data from its superclasses into the
same table. This might be fine as long as searches rarely regard
a superclass. As we can see here, for example, no such table as
Liquids exists, so a query regarding Liquids triggers searches in
five tables (Detergents, Juices, Pepsis, Colas, and
Beers).

Figure 7-4. Data model of Wet-Liquids.com. Alternative 3: Roll
up, which means one huge table per UML class tree, including
the data from all its classes into the same table - thus, Liquids
contains attributes from the UML class Liquid, plus from its
subclasses (Detergent, Beverage, Beer, Soft drink, Juice, Pepsi,
and Cola) - altogether, data from eight classes in one table. Use
very sparingly. This is impractical in requests regarding any class
except Liquid and quite hopeless in
maintenance.

In Figures 7-2 through 7-4, we mapped our class diagram (Figure 7-1) of
Wet-Liquids.com on a data model. The ER notation here is slightly different
from UML:

UML 0..1 corresponds to a ring symbol.

UML * corresponds to a fork symbol.

UML 1 corresponds to a straight line.

The path of reasoning here is also different. Also, remember we're modeling
only the data and not the behavior.

[5]This is likely to be simplified in the near future when SQL 3 becomes an

ANSI standard for databases.

[6]With some database engines, however, this complicates the update of
data in an individual object stored as lines in several tables. This is because,
at the moment, many database engines can't update several tables
automatically from temporary data (i.e., from a view or from a cursor).

[7]To be more exact, for each class having real objects, i.e., isn't abstract.

[8]On practical reasons, there will also be an extra column containing a 'type
flag' or 'class flag,' telling the class of the object stored in a particular row.

Summary
Data models provide the data view at the bottom tier of a layered-
system architecture, in a slightly different notation.

The mapping from UML to data models requires several decisions to be
made up front. A conceptual transform occurs from UML class diagrams
to a semi-technical view, which is closer to the underlying storage.

Among all the architectural and technical decisions to be made here, the
major one is the choice among Make one to one, Roll down, and Roll
up.

Chapter 8: Concluding Remarks

Think Big, Start Small, and Sustain the Effort
Most people agree that analysis occurs only when the domain expert is in
the room.[1] In our experience, in addition to being present, experts are also
supposed to understand the language 'spoken' in the room. The language
problem has often turned out to be even bigger than that of business-travel
logistics. The UML, however, provides many powerful tools to make yourself
understood in the room, which come in handy for the frequent visitor. By
writing this book, we simply seized the opportunity and packaged much of
the substance in a lightweight manner for this purpose.

Implementing UML models (and tools) to specify requirements doesn't take
much time. Employing them in a practical approach preshrunk to fit your type
of systems takes more training days and practical experience. Finally,
adopting a component approach throughout the enterprise can take years of
sustained effort, but it's definitely worthwhile.[2]

[1]This concise wording originates from Brad Kain.

[2]Scania has fine-tuned its modular truck architecture for 50 years. Industry
leaders simply don't emerge overnight.

UML Under Time Constraints
We believe the lightweight style of this book makes it possible for experts
from many other areas to approach practical, basic UML. A frequent guest to
the landscape of software can view this as a phrase book for the journey,
keeping grammar detail at a minimum because many good grammar books
already exist for this modeling language.

At the same time, we've provided some hints on cooperation with the hosts
and on what parts of the language a guest typically becomes involved with in
practice. The basic guideline is this: focus on your part of the job. Provide
clear input and answers to others' questions, so they can focus on their jobs.

Good communication in a common language based on a world standard
saves time, avoids misunderstanding, and reduces effort. As the boundaries
of systems and components are made visible, the same thing happens to
boundaries between roles in a project. Intercommunication becomes more
standardized and targeted, both in the project and in the product. The
viewpoint throughout this book is more one of every day modeling work than
one of planning or managing a development project, which is yet another
area that's well covered by other books.

Figure 8-1 shows the degree of involvement of nonprogrammers who specify
the system and the programmers who develop the system. Over the past
decade, the boundary line in the figure has been moving slowly from left to
right. Business experts are becoming more involved in the modeling stages.
Standardization, in general, and UML, in particular, facilitate this trend.

Figure 8-1: Degree of involvement.

Business model: business use cases, activity diagrams, or similar.
Word documents (e-documents).

External functionality: use cases (focusing around mainstream
scenarios).

Domain model: class diagrams - first-cut, middle-out from key business
entities.

Complex business rules: OCL (not diagrammatic) or a domain-
specific knowledge-based tool.

Life cycles: state diagrams for entities (focusing around relevant
mainstream scenarios).

Internal interactions: either sequence or collaboration diagrams (for
your information).

Technical/architecture: package, component, deployment diagrams
(for your information).

These aren't complicated. Like any language, it's hard to start, but once you
learn the few basics, you'll begin to understand and communicate your
requirements to the IT staff.

Try it. It's easier than you think!

Some Suggested Readings
Allen, Paul, and Stuart Frost. Component-Based Development for Enterprise
Systems: Applying the Select Perspective. Cambridge University Press,
1998. ISBN 0-521-64999-4.

Bremdal, Bernt, Hjelmervik, Ove R., and Wang, Kesheng. Introduction to
Knowledge Management, Principles and Practice. Tapir Academic Press,
2001. ISBN 82-519-1660-7.

Fowler, Martin, and Kendall Scott. UML Distilled: Applying the Standard
Object Modeling Language, 2nd Edition. Addison-Wesley, 1999. ISBN 0-
201-65783-X.

Heineman, George T., and William T. Councill. Component-Based Software
Engineering: Putting the Pieces Together. Addison-Wesley, 2001. ISBN 0-
201-70485-4.

Jaaski, Ari (ed). Tried & True Object Development: Practical Approaches
with UML. Cambridge University Press, 1999. ISBN 0-521-64530-1.

Jacobson, Ivar, et al. The Object Advantage: Business Process
Reengineering with Object Technology. Addison-Wesley, 1995. ISBN 0-201-
42289-1.

McGibbon, Barry. Managing Your Move to Object Technology: Guidelines
and Strategies for a Smooth Transition. SIGS Books, 1995. ISBN 0-132420-
09-0.

Penker, Mangus, and Hans-Eric Eriksson. Business Modeling with UML:
Business Patterns at Work. John Wiley & Sons, 2000. ISBN 0-471-29551-5.

Svejby, Karl Erik. Managing Know-how. Out of print.

Taylor, David A. Business Engineering with Object Technology: A Manager's
Guide. John Wiley & Sons, 1995. ISBN 0-471-04521-7.

. . . plus many more.

You can also visit our profound business case at www.Wet-Liquids.com
(however, your hardware of today is most probably not compatible yet for
beverage downloads of the future).

Index

A
abstract actors, 31
activity diagrams, 15-23

abstract actors in, 31
diamonds in, 20-21
process-flow view in, 26
swim lanes in, 18
waits, 22

actors, 29, 35, 46
generic, 31

agencies, 3
aggregations, 52, 54-55
animators (tools), 68
Aonix, 11n, 68n
Apollo 13 syndrome, 39
application frameworks, 77
asset paradox, 4-5
associations, 52-54
automation

business, 21-22
examples of, 36-39
tradeoffs in, 36

Index

B
Bach, J.S., 9
batch processing, 29
Bergman, Ingmar, 9n
boring life cycles, 64
Bräne, Tomas, 10
building components, 81
business modeling, 13, 27
business objects, 77
Business Process Reengineering (BPR), 4
business semantics-driven strategies, 50
business service-driven strategies, 50
business use cases, 23-25

e-views in, 26
standard use cases distinguished from, 36

buying components, 80-81

Index

C
Campbell, Don, 9n
cardinality (multiplicity), 53
certification of components, 83-84
class diagrams, 48-52

data modeling compared with, 89
class-discovery strategies, 50
classes

mapping relationships among, 91-95
objects distinguished from, 52
relationships among, 52-53
state diagrams of, 61-63

class hierarchies, 59
class modeling, 27
collaboration diagrams, 67, 70
Common Warehouse Metamodel (CWM), 90n
communications

among components, 76-79
in sharing responsibilities, 7

component diagrams, 71
component-driven approaches, 10
components, 76

bidding process for, 87-88
building, 81
buying, 80-81
certification of, 83-84
communications among, 76-79
development strategy for, 73-74
impact of, 79-81
libraries of, 83-84
responsibilities of, 78-79
reusing, 81-83
sharing, 84-85
traps in, 85-87

used in music, 9
compositions, 52, 55-58
configurable components, 82
configuration management tools, 86
copyright law, 86
customizable components, 82

Index

D
database schemas, 91
data modeling, 25, 89-90

diagrams and standards for, 90-91
mapping relationships in, 91-95

demand-side control, 75
deployment diagrams, 71
diamonds, in activity diagrams, 20-21
Dijkstra, Edsger W., 69n
documentation, 8
domain analysis, 83
domain models, 99
domains, 32n, 48

Index

E
Enterprise Java Beans, 85n
entity relationship (ER) diagrams, 90
error handling

in activity diagrams, 19
in state diagrams, 66

Erwin (tool), 90
e-views, 26

Index

F
factories, 2-3
Forman, Milos, 9n

Index

G
generalizations

in advanced modeling, 57-58
in class diagrams, 49-50
among classes, 52-53, 58-59

Index

H
human-computer interaction (HCI), 27-28

Index

I
IBM (International Business Machines Corp.), 10n, 85
IBS (firm), 10, 82, 85
intelligent configurators, 86
interaction modeling, 27
interfaces

for components, 82
user interfaces, 28

isomorphism, 48-49

Index

J
Jackson, Michael A., 61n, 64n
Jacobson, Ivar, 23, 27, 29

Index

K
Kain, Brad, 97n
key business entities, 61-62
knowledge

as asset, 4-5
sharing, 5-6

knowledge enterprises, 3-5
knowledge industries, 1-2

know-how in, 3-5
types of, 2-3

knowledge tools, 51
knowledge views, 26
Kratochvíl, Jir í, 9n

Index

L
legal issues in components, 86-87
libraries of components, 83-84
life cycles, 50, 61, 99

boring, 64
state diagrams of, 61-62
unstructured, 64-66

Index

M
management-by-exception style, 17, 19
mapping relationships, in data models, 91-95
methodologies, 8, 36, 48
Mozart, W.A., 9
multiplicity (cardinality), 53
music, 9

Index

O
Object-Animator, 68n
Object Constraint Language (OCL), 51, 90
object interaction modeling, 27
Object Management Group (OMG), 4, 72n, 86

on data modeling and database creation, 90
Software Process Engineering standard by, 11

objects distinguished from classes, 52
offices, 2
on-the-fly identification, 83

Index

P
packages, 76

components and, 82
parameterized use cases, 43-44
pluggable components, 81-82
process-flow view, 26
project management, 28, 33-34
prototypes, 28, 32

Index

R
Rational Unified Process (RUP), 8-10
responsibilities, of components, 78-79
reusing components, 81-83

Index

S
Select Business Solutions, 11n
Select Component Factory, 11
Select Perspective, 11, 36
sequence diagrams, 62, 67-70, 72
SF, see WebSphere Business Components
sharing components, 84-85
smart response trap, 42
software

bidding process for, 87-88
know-how in production of, 4
legal issues involving, 86-87
see also components

Software Process Engineering (SPE) standard, 11
SQL (structured query language), 53n
standard use cases, 36
state diagrams, 61-66, 71-72
state-machines, 62n
states, 63
stereotypes, 44n, 90
Sundgren, Bo, 61n
Sveiby, Karl-Erik, 2
swim lanes (in activity diagrams), 18
synchronization bars, 16
system boundaries, 46
system documentation, 8
system use cases (standard use cases), 36

Index

T
traditional waterfall project trap, 45
tying-it-here trap, 39-40

Index

U
UML (Unified Modeling Language)

methodologies used with, 8
Object Constraint Language of, 51
other diagrams in, 70-71
smorgasbord, 14-15
standardization of, 5, 8

unstructured life cycles, 64-66
use-case analysis, 36-39
use cases, 27-29

business, 23-25
example of, 29-34
generalization of, 33
parameterized, 43-44
prioritization of, 32-34
standard versus business, 36
template for, 34-35
traps in, 39-45

use-class trap, 42-44
useless user trap, 44-45
user interfaces, 28

Index

V
value-is-self-evident trap, 41

Index

W
WebSphere Business Components (SF; IBM), 10, 85

Index

X
XML Metadata Interchange (XMI), 86n

List of Figures

Chapter 1: Introduction
Figure 1-1: A possible knowledge industry value chain.

Figure 1-2: Where is your corporate culture?

Figure 1-3. Some simple old approaches to customer requirements don't
count in a knowledge industry because a shared responsibility exists for
the specification and its fit-for- purpose.

Chapter 2: Aligning to the Business
Figure 2-1. UML's smorgasbord - ingredients originating from several
fields and appealing to a couple of fields each.

Figure 2-2. Drinking in Florida

Figure B2-1. Swim lanes. With thirsty children or teenagers, a cola-order
process can be partitioned into three swim lanes, showing each
responsibility partition.

Figure 2-3. Drinking in Prague.

Figure B2-2. Decision nodes separated. All that glitters is not diamonds.

Figure B2-3. Decision nodes implied due to guard conditions. The
meaning of both diagrams in this box is the same.

Figure 2-4. Drinking in Stockholm. The flow of process steps has been
replaced by a literal flow of liquid to the customer.

Figure 2-5. Drinking in 2080.

Chapter 3: Adding Rigor to the Requirements
Figure 3-1. A system use case can be related to several actors, as is the
case in Pay Drink Account. An actor can be related to several use cases,
as is the case with Web Customer.

Figure 3-2: System use cases for online support.

Figure B3-1. An abstract actor represents several kinds of actors - often
from several business units - all of these using the system in the same
way and playing the same role in, for example, the booking dialogue.
This technique comes in handy where appropriate, although it is seldom
used.

Figure B3-2. Use-case generalization. Here, we've joined them to beat
them.

Figure 3-3a. Interaction, MS Windows style.

Figure 3-3b. Automation, twenty-first-century style. Click and let the
system do the rest.

Figure 3-4. Masquerading 1970-style functional decomposition as use
cases. This (outdated) path of reasoning most often results in
skyrocketing maintenance later, no matter what the shapes. It resembles
speaking the words of a new language while insisting on grammar and

phrases from one's 'old' language.

Figure 3-5. Masquerading workflow as use cases. This (wrong) path of
reasoning makes the system too sensitive to business process redesign.
It interleaves the dialogue issues into the current business process,
which is likely to change in the future.

Figure B3-3. Parameterizing a use case for varying outputs - an example
of enterprise customization of a standard UML construct. Very different
candy is going to come out of the machinery, yet through the same
course of events (dialogue steps) - in other words, through the same use
case.

Figure 3-6. Masquerading an entity life cycle as use case extends (a
menu-design- zealot view). This path of reasoning makes business
events difficult to track in the model. Use cases can be interrelated if
they happen at the same time, whereas, in this example, they are
triggered by separate business events on separate occasions.
Therefore, all three of them must be separate use cases related directly
to the actor. How each of them affects the order can be shown in a state
diagram (see Chapter 5).

Chapter 4: Sketching the Inside Structure
Figure 4-1. The timeless aspect. An example class diagram for Wet-
Liquids.com.

Figure 4-2. Implied 1 in aggregation and composition.

Figure 4-3. Medium, close, and loose relationships. The coupling
between trains and railroad cars varies, depending on the proposed
system's view of the domain.

Figure B4-1. Multiple classification from Liquid can combine customer
value and custom value in Wet-Liquid.com's logistics.

Figure B4-2. Multiple inheritance to Cola indirectly explains some
extremely mysterious answers in Wet-Liquid.com's customer polls.

Chapter 5: Sketching the Inside Dynamics
Figure 5-1. State diagram of the Beverage class.

Figure B5-1. State diagram of a boring life cycle having 'nothing
interesting to say' in UML. This adds much clutter to the state model,
thus, discouraging many people from reading it. This is unnecessary
because the basic rule of nature diagrammed here is generally known
and applies to any object. Avoid it.

Figure B5-2. Stateless states. A state diagram of an unstructured life
cycle, 'saying too much and without structure' in UML. No matter if it's
standard syntax (upper part) or compact syntax (lower part, 'shorthand'),
no interesting sequences or cycles exist to care about because any of
the events can occur in any of the states.

Figure 5-2. Sequence diagram for the Pay use case.

Figure 5-3. Collaboration diagram for the Pay use case.

Chapter 6: Moving Toward Components

Figure 6-1. Yesterday - today - tomorrow effort matrix.

Figure B6-1. UML packages (components).

Figure 6-2. Example components for Wet-Liquids.com.

Figure 6-3. Different aspects on the scale between buying and building
solutions.

Chapter 7: Mapping from Classes to Data Models
Figure 7-1. The UML class diagram of Wet-Liquids.com. This is the
structure view.

Figure 7-2. Data model of Wet-Liquids.com. Alternative 1: Make one to
one, which means one data-model entity, or table, per UML class.
Straightforward from most points of view, except data updates from
complete objects (implying data from several tables at a time).

Figure 7-3. Data model of Wet-Liquids.com. Alternative 2: Roll down,
which means one bigger entity, or table, per 'leaf ' in the UML class tree,
including the data from its superclasses into the same table. This might
be fine as long as searches rarely regard a superclass. As we can see
here, for example, no such table as Liquids exists, so a query regarding
Liquids triggers searches in five tables (Detergents, Juices, Pepsis,
Colas, and Beers).

Figure 7-4. Data model of Wet-Liquids.com. Alternative 3: Roll up, which
means one huge table per UML class tree, including the data from all its
classes into the same table - thus, Liquids contains attributes from the
UML class Liquid, plus from its subclasses (Detergent, Beverage, Beer,
Soft drink, Juice, Pepsi, and Cola) - altogether, data from eight classes
in one table. Use very sparingly. This is impractical in requests regarding
any class except Liquid and quite hopeless in maintenance.

Chapter 8: Concluding Remarks
Figure 8-1: Degree of involvement.

List of Sidebars

Chapter 1: Introduction
Basic Standardization and Creativity Boost Each Other!

Chapter 2: Aligning to the Business
Swim Lanes

Diamonds Might Not Be Your Best Friend!

The Dangerous Waits

Chapter 3: Adding Rigor to the Requirements
Generic Actors

Uml Use-Case Generalization

Parameterized Use Cases

Chapter 4: Sketching the Inside Structure
OCL and Knowledge Tools Try To Rule Out Rule Troubles

Classes and Objects

Generalizations In Advanced Modeling

Chapter 5: Sketching the Inside Dynamics
Uninteresting Life Cycles

There's More In Sequence Diagrams

Chapter 6: Moving Toward Components
What is a Component?

Back Cover

If you are a manager with a stake in the success of a software project, this book is
for you!

Business managers often find it difficult to describe business objectives and their
software requirements to technical members of staff. This beginner’s guide teaches
nontechnical readers to communicate with software developers in a more focused,
effective way through the widely used UML notation for software specification. It
describes the basic diagrams of UML through a simplified ebusiness case study and
shows how these can be used to specify requirements in an unambiguous way. By
using UML on a project, managers can avoid the risk of failure due to unclear
requirements.

About the Authors

Milan Kratochvil has 25 years of experience as an IT consultant, focusing on areas
where IT and knowledge-intensive business meet. He has taught more than a
hundred courses for developers, managers, and buyers of complex systems.

Barry McGibbon is a principal consultant at Princeton Softech UK, Ltd., and has
worked in the IT industry for 35 years. His experience ranges from programming to
senior management with leading computer service providers, and he has
spearheaded initiatives in the UK, Europe, and the United States. In addition to
contributing frequently to major journals, he is the author of Managing Your Move
to Object Technology (1995), published by Cambridge University Press.

