

Grid Computing Security

123

Anirban Chakrabarti

Grid

With 87 Figures and 12 Tables

Computing
Security

Library of Congress Control Number: 2007922355

ACM Computing Classification (1998): C.2, D.4.6, K.6.5

ISBN 978-3-540-44492-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the author

Printed on acid-free paper 5 4 3 2 1 0

Anirban Chakrabarti

Infosys Technologies Limited
Electronic City
Hosur Road
560100 Bangalore
India
Anirban_Chakrabarti@infosys.com

Integra

Production: Integra Software Services Pvt. Ltd., India
Cover design: KünkelLopka Werbeagentur, Heidelberg

 42/

Preface

Grid computing is widely regarded as a technology of immense potential
in both industry and academia. The evolution pattern of grid technologies
is very similar to the growth and evolution of Internet technologies that
was witnessed in the early 1990s. Similar to the Internet, the initial grid
computing technologies were also developed mostly in the universities and
research labs to solve unique research problems and to collaborate between
different researchers across the globe. Recently, the high computing indus-
tries like finance, life sciences, energy, automobiles, rendering, etc. are
showing a great amount of interest in the potential of connecting stand-
alone and silo based clusters into a department and sometimes enterprise-
wide grid system. Grid computing is currently in the midst of evolving
standards, inheriting and customizing from those developed in the high
performance, distributed, and recently from the Web services community.
Due to the lack of consistent and widely used standards, several enterprises
are concerned about the implementation of an enterprise-level grid system,
though the potential of such a system is well understood. Even when the
enterprises have considered grid as a solution, several issues have made
them reconsider their decisions. Issues related to application engineering,
manageability, data management, licensing, security, etc. have prevented
them from implementing an enterprise-wide grid solution. As a technol-
ogy, grid computing has potential beyond the high performance computing
industries due to it's inherent collaboration, autonomic, and utility based
service behavior. To make this evolution possible all the above-mentioned
issues need to be solved. Some of the issues are technical and some of
them have business and economic overtones like the issue related to licens-
ing. Each of the issues mentioned above is important and deserves a close
look and understanding. In this book we will solely concentrate on the is-
sue related to grid computing security.

As an issue, security is perhaps the most important and needs close

understanding as grid computing offers unique security challenges. In this
book we look at different security issues pertaining to the grid system;
some of them are of immediate concern and some are long term issues. We
will also look at security issues in other areas of computer science like

vi Preface

networks and operating systems which may affect the design of future
grids. We have categorized the issues pertaining to grid computing security
into three main buckets viz. architecture related issues, infrastructure re-
lated issues, and management related issues. Architecture related issues are
concerned about the overall architecture of the grid system like the con-
cerns pertaining to information security, concerns about user and resource
authorization, and issues pertaining to the overall service offered by the
grid system. The infrastructure related issues are concerned about the un-
derlying infrastructure which includes the hosts or the machines, and the
network infrastructure. In addition, several management systems need to
be in place for an all pervasive enterprise level and secure grid system.
There are three main types of management systems which are important
from the grid perspective, namely the credential management systems, the
trust management systems, and the monitoring systems. All the three issues
mentioned above are dealt with in this book, along with existing solutions
and potential concerns.

Organization

In this book we have made no assumption about the prerequisites for the
readers. We have provided a short background on grid computing, security
technologies, and Web service standards for readers who are new to this
field. It is to be noted that the background is not extensive and enough ref-
erences are provided for readers to have a fair understanding about the dif-
ferent background technologies. The book is organized into 13 chapters
and an appendix. Chapter 1 looks at the background, benefits, and con-
cerns pertaining to grid systems. Chapter 2 talks about the different secu-
rity technologies that are available and useful to build a secure grid system.
The different security technologies that are covered in this chapter are dif-
ferent authentication/encryption systems, identity protocols and popular
technologies like Kerberos, HMAC, SSL/TLS, IPSec, among others. It is
to be noted that Web services security standards, which form the backbone
of grid security, are not dealt with in this chapter. They are separately
listed in the appendix. Chapter 3 provides a taxonomy of the different grid
security issues and solutions. We feel that the chapter is important because
readers will get a snapshot of different issues, solutions, and concerns in
one place and can refer to the detailed discussions in the subsequent chap-
ters, if interested. After the brief overview and background about the dif-
ferent technologies, landscape, and taxonomy we discuss the different is-
sues in detail in Chap. 4 to 11. In Chap. 4, we look at the information

Acknowledgments vii

security aspects of the grid system. Here we look at the grid standards like
GSI, and security implementations of popular grid standard Globus. In
Chap. 5, we look at the authorization systems namely the Community Au-
thorization Service (CAS), Virtual Organization Membership Service
(VOMS), Akenti, PERMIS, among others. In Chap. 6, we look at the is-
sues pertaining to the grid service viz. Denial-of-Service (DoS) attacks and
Quality of Service (QoS) violation attacks. Different solutions and con-
cerns are also discussed in this chapter. It is to be noted that since grid sys-
tems have relatively limited deployments, most of these attacks and solu-
tions described in the chapter have been borrowed from the domain of the
Internet. Many of these solutions would be useful in designing the future
secure grid. Chapter 7 looks at the security issues pertaining to the hosts or
the machines comprising the grid system. Different solutions like sandbox-
ing, flexible kernels, virtualization, etc. have been discussed in detail in this
chapter. Chapter 8 looks at another important infrastructure component
namely the network. The immediate issues like integrating firewalls,
VPNs, etc. are looked at in this chapter. In addition some long term issues
like secure grid multicasting sensor grids, and others are also discussed in
this chapter. Chapters 9 - 11 deal with the different management systems.
Chapter 9 discusses about credential management systems like MyProxy,
Smartcards, etc. and issues pertaining to them. Chapter 10 talks about trust
management systems and issues like trust creation, negotiation among oth-
ers. These issues are important in dynamic systems and have enormous re-
search potential. Chapter 11 talks about the monitoring systems that are
currently present. Two grid security case studies are provided in Chap. 12.
These case studies should help readers in getting a holistic view of the dif-
ferent concepts, principles, protocols, and technologies mentioned in the
book. Finally Chap. 13 concludes the book by looking at a few future
technologies and mapping the issues and solutions into immediate, me-
dium term and long term categories.

Acknowledgments

I would like to thank all those people who have contributed to the book. I
would like to thank my colleagues, Dr Shubhashis Sengupta, Mr Deepen-
dra Moitra, Mr Srikanth Sundarrajan, and Mr Hariprasad Nellitheertha for
helping me sort out the administrative issues, and providing me with useful
comments and reviews. I would also like to thank Mr Anish Damodaran
for providing me with useful inputs whenever needed. Moreover, I would
take the opportunity to thank Mr Ralf Gestner and Ms Ulrike Stricker of

Springer for providing me the opportunity and extending support in writing
this book. I am also extremely grateful to all the reviewers for their insight-
ful comments. Moreover, I would like to extend my gratitude to the
Springer production and copyediting team for their tireless efforts. Finally,
special thanks go to my wife Lopamudra and also to my mother for their
constant support and encouragement.

viii Preface

Contents

Preface .. v
Organization .. vi
Acknowledgments ..vii

1 Introduction...1
1.1 Background..1
1.2 Grid Computing Overview ..3

1.2.1 Evolution of Grid Computing ..4
1.2.2 Benefits of Grid Computing...6
1.2.3 Grid Computing Issues and Concerns....................................8

1.3 About the Book..11
1.3.1 Target Audience...12
1.3.2 Organization of the Book...12

2 Overview of Security ..15
2.1 Introduction ...15

2.1.1 Characteristics of Secure System...15
2.1.2 Security Threats ..16

2.2 Different Encryption Schemes...17
2.3 Different Authentication Schemes...20

2.3.1 Shared Secret Based Authentication20
2.3.2 Public Key Based Authentication ..21
2.3.3 Third Party Authentication Schemes21

2.4 Different Integrity Schemes...22
2.4.1 Message Authentication Code (MAC).................................22
2.4.2 Keyed MAC ...23

2.5 Standard Protocols ...24
2.5.1 Public Key Infrastructure ...24
2.5.2 Secure Socket Layer (SSL) ..27
2.5.3 Kerberos ...27
2.5.4 IP Security (IPSec)...29

2.6 Chapter Summary ..31

..
..

3 Taxonomy of Grid Security Issues ..33
3.1 Introduction ...33

3.1.1 Grid Security Taxonomy..35
3.2 Architecture Related Issues ...36

3.2.1 Information Security ..36
3.2.2 Authorization ...37
3.2.3 Service Security ...38

3.3 Infrastructure Related Issues..40
3.3.1 Host Security Issues ...40
3.3.2 Network Security Issues...41

3.4 Management Related Issues ..42
3.4.1 Credential Management ...43
3.4.2 Trust Management ...44
3.4.3 Monitoring ...45

3.5 Chapter Summary ..46

4 Grid Information Security Architecture ..49
4.1 Introduction ...49
4.2 Grid Security Infrastructure (GSI)...50

4.2.1 Grid Security Model...52
4.3 Authentication in GSI..54

4.3.1 Certificate based Authentication..54
4.3.2 Password based Authentication ...57
4.3.3 Integration with Kerberos ..59

4.4 Delegation in GSI ..59
4.5 An Example: Security in Globus Toolkit 4.0 (GT4)61

4.5.1 Message Protection in GT4..61
4.5.2 Delegation in GT4..64

4.6 Chapter Summary ..65

5 Grid Authorization Systems ..67
5.1 Introduction ...67

5.1.1 Different Access Control Models...69
5.1.2 Push vs. Pull Authorizations ..72

5.2 Characteristics of Grid Authorization Systems74
5.2.1 Scalability Issues..75
5.2.2 Security Issues ...76
5.2.3 Revocation Issues...77
5.2.4 Inter-operability Issues...79
5.2.5 Grid Authorization Systems...79

x Contents

Contents xi

5.3 VO Level Authorization Systems..80
5.3.1 Community Authorization Service (CAS)80
5.3.2 Virtual Organization Membership Service (VOMS)87
5.3.3 Enterprise Authorization and Licensing Service (EALS)88

5.4 Resource Level Authorization Systems...................................90
5.4.1 Akenti...90
5.4.2 Privilege and Role Management Infrastructure Standards
Validation (PERMIS) Project ...94
5.4.3 Authorization Using GridMap ...100

5.5 Comparing the Different Authorization Systems100
5.5.1 Comparison ..100
5.5.2 Roadmap to Grid Authorization Systems103

5.6 Chapter Summary ..103

6 Service Level Security in Grid Systems ..105
6.1 Introduction ...105

6.1.1 Components of Service ..106
6.1.2 Service Vulnerabilities ...106

6.2 DoS Attacks and Countermeasures108
6.2.1 Effect of DoS attacks ...108
6.2.2 Distributed Denial-of-Service Attacks111
6.2.3 Existing DoS Countermeasures..118
6.2.4 Preventive DoS Counter-measures119
6.2.5 Reactive DoS Countermeasures...123
6.2.6 Comparison between DoS Countermeasures126

6.3 QoS Violation Attacks and Countermeasures127
6.3.1 Different Types of QoS Violation Attacks.........................128
6.3.2 Existing Solutions ..129

6.4 Chapter Summary ..131

7 Host Level Security...133
7.1 Introduction ...133
7.2 Data Protection Issue ...135

7.2.1 Application Level Sandboxing...136
7.2.2 Virtualization ...138
7.2.3 Flexible Kernel Systems ..145
7.2.4 Sandboxing...149

7.3 Job Starvation Issue ...154
7.3.1 Advanced Reservation Techniques155
7.3.2 Priority Reduction Techniques...156

7.4 Chapter Summary ..157

8 Grid Network Security ...159
8.1 Introduction ...159

8.1.1 Grid Network Security Issues ..159
8.2 Firewalls ..161

8.2.1 Different Types of Firewalls ..163
8.2.2 Firewalls and Grid – Issues ..165
8.2.3 Firewalls and Web Services...167

8.3 Virtual Private Networks (VPN) ...168
8.3.1 VPNs and Grid – Types of VPNs169
8.3.2 VPNs and Grid – Issues ...170
8.3.3 VPNs and Grid – Some Solutions......................................171

8.4 Secure Routing ..173
8.4.1 Impacts of Routing Table “Poisoning”173
8.4.2 Different Routing Protocols ...175
8.4.3 Routing Attacks and Countermeasures175

8.5 Multicasting ...178
8.5.1 Secure Multicasting..178

8.6 Sensor Grids ..182
8.6.1 Security in Sensor Networks – Issues183
8.6.2 Existing Solutions ..186

8.7 High Performance Interconnects ...188
8.7.1 10-Gigabit Ethernet..188
8.7.2 Infiniband Architecture (IBA) ...188
8.7.3 Some High Performance Security Solutions......................189

8.8 Chapter Summary ..190

9 Grid Credential Management Systems...193
9.1 Introduction ...193

9.1.1 Types of Credentials ..194
9.1.2 Characteristics of Credential Management Systems..........195
9.1.3 Different Credential Management System197
9.1.4 Centralized Vs. Federated Credential Management...........198

9.2 Credential Repositories..200
9.2.1 Smart Cards..200
9.2.2 Virtual Smart Cards ...201
9.2.3 MyProxy Online Credential Repository.............................202

9.3 Federated Credential Management Systems..........................205
9.3.1 Virtualized Credential Manager (VCMan)206
9.3.2 KX.509...208
9.3.3 Liberty Alliance for Federated Identity..............................209
9.3.4 Shibboleth Identity Federation...210

9.4 Chapter Summary ..212

xii Contents

s

Contents xiii

10 Managing Trust in the Grid...215
10.1 Introduction ...215

10.1.1 Definition of Trust..215
10.1.2 Reputation and Trust ..217
10.1.3 Categories of Trust Functions ..218

10.2 Trust Management Systems...221
10.2.1 Life Cycle of Trust Management Systems223
10.2.2 Characteristics of Trust Management Systems225

10.3 Reputation-Based Trust Management Systems228
10.3.1 PeerTrust – A P2P Trust Management System228
10.3.2 XenoTrust Trust Management System...........................231
10.3.3 NICE Trust Management System...................................233
10.3.4 Secure Grid Outsourcing (SeGO) System......................236

10.4 Policy-Based Trust Management Systems238
10.4.1 PeerTrust Trust Negotiation ...238
10.4.2 TrustBuilder..240
10.4.3 Trust Negotiation for the Grid..242

10.5 Comparing the Trust Management Systems..........................243
10.5.1 Generic Understanding of Trust Management Systems .243
10.5.2 Applicability of the Trust Management Systems245

10.6 Chapter Summary ..246

11 Grid Monitoring..247
11.1 Introduction ...247

11.1.1 Stages of Monitoring ..248
11.1.2 Requirements of Distributed Monitoring System...........250

11.2 Grid Monitoring Architecture (GMA)...................................251
11.3 Different Monitoring Tools/Frameworks253

11.3.1 Simple Network Management Protocol (SNMP)...........254
11.3.2 Different System Monitoring Tools255
11.3.3 Ganglia ...256
11.3.4 Hawkeye Monitoring System...258
11.3.5 Relational GMA (RGMA)..259
11.3.6 Globus Monitoring and Discovery System (MDS)261
11.3.7 Management of Adaptive Grid Infrastructure (MAGI) ..263
11.3.8 GlueDomains..265

11.4 Discussions on the Different Monitoring Systems266
11.4.1 Comparison ..266
11.4.2 Applicability...268

11.5 Chapter Summary ..269

12.1 Security in the European Data Grid (EDG)...........................271
12.1.1 Authentication and Delegation.......................................271
12.1.2 Credential Management..272
12.1.3 Job Execution ...272

12.2 An Enterprise Case Study..274
12.2.1 Overview of the Security Architecture...........................275

12.3 Chapter Summary ..278

13 Conclusion ...281
13.1 Looking at the Future ..281

13.1.1 Identity Based Encryption (IBE)281
13.1.2 Application Oriented Networking (AON)......................282

13.2 Summarizing the Security Issues in Grid283
13.2.1 Immediate Issues ..284
13.2.2 Medium-term Issues ...285
13.2.3 Long-term Issues ..287

13.3 Summarizing the Security Solutions in the Grid289
13.3.1 Solutions to Immediate Issues ..289
13.3.2 Solutions to Medium Term Issues..................................290
13.3.3 Solutions to Long Term Issues291

Appendix...293
A.1 Web Services ...293

A.1.1 Components of Web Services ..294
A.2 Web Services Security...296

A.2.1 WS-Security ...299
A.2.2 WS-Policy* ..301
A.2.3 WS-SecureConversation...302
A.2.4 Security Assertions Markup Language (SAML)............304
A.2.5 eXtensible Access Control Markup Language306

A.3 Open Grid Services Architecture (OGSA)307
A.3.1 Open Grid Services Infrastructure (OGSI).....................308
A.3.2 Web Services Critique of OGSI309
A.3.2 Web Services Resource Framework (WSRF)310

Bibliography...313

Index..329

12 Putting it All Together..271

xiv Contents

1 Introduction

1.1 Background

When we watch the recent spectacular science fiction and fantasy thrillers,
we remain totally under the spell of the amazing scenes and the underlying
special effects that are being displayed. We watch the movies, applaud the
actions, and come home totally enchanted and wanting for more. Most of
the time we forget about the enormous amount of effort that is required to
produce such a spectacle. Even if we acknowledge that, we tend to ignore
the proverbial “work horses” or computers that generate such remarkable
special effects. We have got used to the special effects so much that we
take the computing power required to provide such visual spectacles for
granted. It takes billions and trillions of CPU cycles to create special ef-
fects like those in Spiderman [1], Shrek [2], and other such visual treats.
To satisfy the ever increasing hunger for better special effects among
movie-goers, more and more complex animations are being developed
which are continuously raising the bar for computing power required.

Requirements of huge amounts of computing power are not only lim-

ited to the field of rendering and animation. Scientists are analyzing tera-
bytes and petabytes of data to provide better weather forecasting [3], de-
velop more efficient models for detecting natural disasters, high energy
physics [4], and so on. By virtue of the hugely popular SETI@Home [5]
project, most of us are aware of the enormous computing power required
for searching extraterrestrial intelligence. The project allowed people to
download the SETI@Home software in their own machines and run the
program in the screen saver mode. Apart from fundamental research, com-
puting power is also required in huge quantities in the life sciences indus-
try for drug discovery [6]. Financial industries require huge amounts of
processing power to do risk calculations, credit analysis, and so on [7].
Manufacturing industries are not very far behind. Simulations of automo-
biles based on complicated mathematical models [8] require enormous

2 1 Introduction

computing power. Similarly, EDA and Oil & Gas explorations also require
computing power to do more computations in a shorter time to satisfy the
ever increasing demands of the market.

Therefore huge computing power is required in several industries.

Now if we look at the computing resources available, we will find that the
laptops of today are perhaps as powerful as servers a decade ago. Moore’s
law, which states that computing power doubles every eighteen months, is
valid even today and will probably be true for the next five to six years.
With the advancements in the field of multi-core technologies, this growth
can be extended further [9]. Therefore computing power is increasing and
so is the demand. In this rat race, researchers have found an able ally in the
form of networking. Between 2001 and 2010, while processing power is
supposed to increase 60 times, networking capabilities is supposed to in-
crease by 4000 times. This means that at the same cost 4000 times the
same bandwidth will be available in 2010 as compared to 2001 [10].
Therefore the computing architectures developed a decade back would
probably require a rethink based on the technological progress in the fields
of computers and networks. Last decade saw the development of a field
called cluster computing [11] where the different computing resources are
connected together using a very high speed network like the Gigabit
Ethernet or more recently Infiniband [12].

In addition to the technological progress and the huge requirement of

computing power, enterprises have also undergone a radical shift in Infor-
mation Technology (IT) operations in the last few years. Enterprises are
now witnessing increasing collaboration and data sharing among the dif-
ferent participating entities, resulting in the need and use of distributed re-
sources and computing. Another important element that has increased the
complexity of IT operations is the need for integration of different applica-
tions, middleware developed in different platforms and by different ven-
dors. We are also seeing a spurt of mergers and acquisitions which require
integration of technologies across enterprises. Moreover, the enterprises
are outsourcing the nonessential elements of the IT infrastructure. The dual
pull of requiring more computing power and the integration of heterogene-
ous components into the IT infrastructure has led to the development of
grid technologies. The technology is seeing a classical evolution pattern.
Initiated and started from the academic and the research community to ful-
fill their needs, it is slowly being adopted by the enterprises, especially
those who have high computing needs like the life sciences, finance, and
manufacturing industries. However, the promise of grid computing goes
beyond that and the next few years should see a gradual adoption of the

1.2 Grid Computing Overview 3

grid as a natural choice among the other enterprises. However, the wide-
spread adoption of grid computing as an automatic choice in enterprises
depends upon the ability of the researchers and practitioners in reducing
the pitfalls that lie on the way. One such pitfall is security which is the fo-
cus of the book as a whole. In this chapter we will briefly look at the evo-
lution of grid computing, its benefits, and concerns.

1.2 Grid Computing Overview

One of the earliest proponents of grid technology is Ian Foster of the Ar-
gonne National Laboratory and professor at the University of Chicago. In
1998, in a book called The Grid: Blueprint for a New Computing Infra-
structure co-authored with Carl Kesselman, Foster defined the grid as “A
computational grid is a hardware and software infrastructure that pro-
vides dependable, consistent, pervasive, and inexpensive access to high-
end computational capabilities” [13]. Over the years even Foster's defini-
tion of a computational grid has evolved, by his own admission. In a sub-
sequent article, The Anatomy of the Grid, co-authored with Steve Tuecke
in 2000, he changed the definition to include some element of social and
policy issues, stating that grid computing is concerned with, “coordinated
resource sharing and problem solving in dynamic, multi-institutional vir-
tual organizations” [14].

The major applications and systems vendors who have a grid strategy
also have their own definitions. Oracle® described its vision of the grid as
an adaptive software infrastructure which is able to balance resources effi-
ciently through the usage of low cost servers and storage [15]. Sun® Mi-
crosystems, meanwhile, breaks the grid down into three levels: cluster
grids, enterprise grids, and global grids. While cluster grids are the sim-
plest form of grid where the resources within a local area network are
shared, the enterprise grid takes a broader picture, where the resources
within an enterprise are shared. Global grids, on the other hand, talk about
a grid across enterprises sharing resources [16]. HP® tends to talk more
about utility computing – its own take on the grid concept – while IBM®
talks about grid technology in the same breath as its vision for what it calls
autonomic computing [17]. According to IBM's® definition of grid, they
are a collection of resources which create dynamic virtual organization
[18]. While the academics’ and vendors' definitions of grid vary some-
what, there are some consistent themes: at a basic level they are talking
about some sort of network of computing resources – not necessarily in-

4 1 Introduction

side an organization's own walls – that can be given jobs to do, and that
with only a limited amount of user intervention, will get them done
quickly, reliably, and cheaply.

In a more generic sense, a grid is a hardware and software infrastruc-
ture that allows service oriented, flexible, and seamless sharing of hetero-
geneous network of resources for compute and data intensive tasks and
provides faster throughput and scalability at lower costs.

1.2.1 Evolution of Grid Computing

Though grid computing has become the buzzword in both industry and
academic communities, it is not a technology which has been developed
from scratch. Rather, it is a conglomeration of different existing technolo-
gies like cluster computing, peer-to-peer (P2P), and Web services technolo-
gies.

During the last decade different technology elements like cluster

computing and peer-to-peer computing (P2P) have evolved from the dis-
tributed and high performance computing communities respectively. In
cluster computing, different computing resources like machines, servers,
etc. are connected together by high-speed inter-connects like Infiniband,
Gigabit Ethernet, etc. to provide high performance. Computing paradigms
like Message Passing Interface (MPI) [19] and Parallel Virtual Machines
(PVM) [20] allow programmers to write parallel programs for clusters.
Peer-to-Peer system, on the other hand, allows peers or computers to share
resources. They are suitable for storing files or information either in an un-
structured or a structured P2P mode. Gnutella [21] is a classic example of
unstructured P2P where users store the files and a particular request is
processed in a heartbeat manner. Structured P2P, on the other hand, uses
structures like mesh or ring, more generically called the Distributed Hash
Table (DHT), so that the search time for information retrieval is bounded.
CHORD [22] and CAN [23] are examples of structured peer to peer sys-
tems which are based on the principles of the distributed hash table.

1.2 Grid Computing Overview 5

Fig. 1.1. Evolution of grid computing

It would be unfair to say that the high performance community solely
contributed to the development of clusters and distributed community re-
sulted in the development and later flourishing of the P2P systems. There
was a fair amount of technical interaction between these two different
communities resulting in the final evolution of P2P and clusters. Similarly,
these two different technologies contributed a lot to the eventual accep-
tance of grid computing as a promising IT virtualization technology. In
terms of concepts, grid computing combines the unique points of both P2P
and clusters. Recently a new Web technology, mainly driven by the indus-
try leaders like Microsoft®, IBM ® etc., called Web services is making
waves in the application inter-operability area. Figure 1.1 shows an ab-
stract evolution of the grid computing technology from the P2P and clus-
ters and the possible marriage of the grid with the Web services technolo-
gies. Since understanding the basics of Web services is important in the
grid context, we have provided a brief summary of the Web services tech-
nologies and relevant Web services standards in the appendix.

6 1 Introduction

1.2.2 Benefits of Grid Computing

In recent years, the IT infrastructure of most enterprises is facing a huge
amount of stress due to the significant increase in transaction volumes. In
addition, there are requirements in terms of collaboration and virtualization
of resources and policies. All these business requirements drive the need
and deployment of the grid in enterprises. There are mainly four distinct
benefits of using grids viz. performance and scalability, resource utiliza-
tion, management and reliability, and virtualization.

Performance and Scalability

Many pharmaceutical and financial enterprises are on a constant lookout
for solutions which can reduce their time to market. In some cases, even a
5 - 10% improvement results in huge cost savings. Grid computing solu-
tions of having a shared infrastructure provide more computational capa-
bilities and increase scalability of the IT infrastructure. Most of the enter-
prises are therefore currently looking at the grid as a more flexible and
scalable versions of their cluster infrastructure. As a result, most of the ap-
plications running on the grid infrastructure are compute intensive or
batch-type applications.

Resource Utilization

Another pertinent grid imperative is the need to utilize the IT resources
more efficiently. It has been found that most of the IT resources in medium
to large scale enterprises are grossly underutilized. The fact is quite evident
from IBM’s ® case study in [24] which talks about average utilization as
low as 5 - 10% for PCs and around 30 - 35% for servers. Though the study
had been carried out in 2000, the observations are true even today. Grid
computing offers a mechanism to utilize the resources more efficiently
through the process of resource sharing. A typical grid advantage of re-
source sharing is shown in Fig. 1.2. Let there be three clusters in an or-
ganization in three different departments as illustrated in the figure. In the
absence of the grid middleware, clusters would have to be provisioned ac-
cording to peak utilization. However, the loads across the clusters are not
uniform and hence resource utilization can be very low. Grid middleware,
on the other hand, allows the clusters to be shared and hence higher utiliza-
tion can be achieved. What makes the grid really attractive for the enter-
prise is its ability to share resources across geography. Organizations hav-
ing departments in India, Europe, and United States, can share resources as
the loads across the clusters vary. A grid can harness the idle processing

1.2 Grid Computing Overview 7

cycles that are available in desktop PCs located in various locations across
multiple time zones. For example, PCs that would typically remain idle
overnight at a company’s Mumbai manufacturing plant could be utilized
during the day by its North American operations.

Fig. 1.2. Sharing of resources using the grid

Management and Reliability

As the IT infrastructure grows, the systems become more and more com-
plex and heterogeneous. Therefore, the issue of management becomes ex-
tremely critical. Grid computing provides a single interface for managing
the heterogeneous resources. The complexity of managing the heterogene-
ous resources separately is greatly reduced in such an integrated manage-
ment environment. Another benefit of grid computing is that it can create a
more robust and resilient IT infrastructure through the use of decentraliza-
tion, fail-over and fault tolerance to make the infrastructure better suited to
respond to minor or major disasters.

8 1 Introduction

Virtualization

With the growth of mergers and acquisitions in the enterprise world, het-
erogeneity is inevitable. Heterogeneity exists in the type of hardware, stor-
age, operating systems, and policies within the enterprises. The grid pro-
vides virtualization of heterogeneous resources resulting in better
management of the resources. It is to be noted that the problem is not en-
tirely solved. As one will find out in the subsequent chapters of the book,
managing heterogeneous security policy is still a challenge and requires re-
search attention.

Fig. 1.3. Grid computing concern areas

1.2.3 Grid Computing Issues and Concerns

As can be inferred from the previous subsection, grid computing is a tech-
nology of enormous promise. There are a large number of technology pro-
viders, users, and academicians who are working at different levels of the
grid computing stack to make the technology usable and ubiquitous. If we
look back and take the position of an observer we will find that there is
quite a lot of similarity between the evolution of grid technology and

1.2 Grid Computing Overview 9

and grid computing were first researched on by the academic community,
later handed over to the research labs and finally industry has taken over in
the use and adoption of the technology. Will grid computing become as
ubiquitous and widely adopted as the Internet technologies? The answer to
the question lies in answering a few concerns that clog the mind of the us-
ers of grid technologies. As shown in Fig. 1.3, the concerns are: applica-
tion and data engineering, security, manageability, and licensing issues.
The adoption of grid computing in a big way depends on how the re-
searchers and practitioners answer these critical concerns.

Application and Data Engineering

Though grid computing is more than just a technology to abet high per-
formance computing, most of the early adopters of the grid are users in the
areas where there are huge amounts of data and computation involved like
life sciences, finance, automotive and aerospace, energy etc. Most of the
users have been using applications in high performance clusters or in some
cases SMPs and find grid computing an excellent opportunity to move
their applications to a cluster of clusters or a combination of cluster and
desktops or PCs available in the organization to get the performance bene-
fits without putting in too much investment. The questions that immedi-
ately come to their mind are: “Will my Cobol application run on the grid?”
“Will I get performance benefits?” “What is my return on investments?”
There is a significant dearth of tools, frameworks, platforms, analyses
which can immediately answer these questions or in other words there are
no tools, frameworks, or platforms to help users gridize their applications.
Gridization has two aspects: (i) Data can be manipulated, striped across the
grid for enhanced performance. There are applications in life sciences like
BLAST [25] and in other domains where this type of technique will be useful.
We call this data engineering. (ii) Another aspect involves manipulating
the applications themselves so that they are able to extract maximum bene-
fit out of the grid computing infrastructure. We call this application engi-
neering.

In the data engineering space, where application data is split across
the grid for enhanced performance, there are tools and technologies [26,27]
which partially achieve this. However most of these solutions work on flat
data files where there is no/minimal interaction between the different data
components. The application engineering space, on the other hand, is rela-
tively bare. Some of the well-known work includes Parallax [28],
PYRROS [29], P-Grade [30], CASCH [31], etc. These tools do provide

another widely used distributed technology called the Internet. Both Internet

10 1 Introduction

some mechanisms for writing parallel applications or analysis of applica-
tions. However, most of these tools and techniques are insufficient for en-
terprise needs. Typically, enterprise applications are complex and have
several business level, application level, and temporal dependencies, which
these tools do not handle very well. Therefore, significant research and de-
velopment efforts need to be undertaken in this direction to develop tools
for enterprise applications. Even tools which would be able to analyze and
provide hints whether the application(s) are gridizable would be greatly
appreciated by the enterprise grid community. Some efforts are undertaken
in this direction by ASPEED® and Cornell Theory Center (CTC) [32,33].

Grid Manageability

From its inception, IT systems were besotted with problems like schedul-
ing, management, security, and other challenges. To solve these problems,
substantial work has been carried out at different levels, for example in the
form of infrastructure management systems, job schedulers, mechanisms
for implementing security, etc. One class of such systems is being used in
industry and it consists primarily of proprietary solutions which combine
technological elements like Web services, J2EE, distributed computing,
and others to solve specific business problems. Another class is that of ini-
tiatives in the academic community – mainly through joint efforts of uni-
versities around the world which take elements of freely available grid
middleware and build upon them to fulfill their specific needs. All this has
happened in the midst of evolving standards for grid computing, for exam-
ple the development of OGSA and the ongoing evolution of the WS set of
standards, including WS-RF and WS-Agreement.

It is becoming clear that one key concern which this evolutionary

growth of the technology has resulted in is complexity, and the ensuing
problem of manageability. Manageability is often cited as one of the key
issues in any real world grid implementation [34]. The problem of man-
ageability is closely related to that of integration. Since grids bring to-
gether software components, frameworks, middleware and hardware ele-
ments, integrating them together often entails gluing together systems
which may not be designed and developed with that in mind.

Grid Licensing

Large scale information technology systems are undergoing transforma-
tional changes in the wake of technological developments and their adop-
tion in scientific and business applications. Software-intensive systems are

1.3 About the Book 11

increasingly being developed using service orientation and virtualization of
resources, as evident in the growth and adoption of Web services and grid
computing technologies. While software architectures and products are
evolving rapidly to realize these visions, the very way in which software is
priced and licensed is not aligned with this new reality. The grid allows the
sharing of resources across different systems. For custom defined applica-
tions this vision holds good. However, for vendor applications the gain in
sharing of resources is offset by the licensing needs of the applications
sharing the resources.

The intriguing part about the whole pricing and licensing equation in
the grid is the technology and business nature of it. The technology chal-
lenge is there to develop suitable pricing and licensing infrastructure. Ex-
tensive research is being carried out to develop such systems. However,
the challenge also lies in the business nature of the problems and hence
application providers like Microsoft®, Oracle®, Sun®, IBM®, and others
have to develop models so that the grid vision can be realized more effec-
tively. Slowly but surely, we are seeing the adoption of a more flexible
model for the grid system. Sun® Microsystems have come forward with
their vision of charging the users 1$ for using the grid resources. With the
growth of Grid systems, we would probably see the emergence of a flexi-
ble licensing and pricing model in the line of transport business.

Grid Security

Lastly, we come to the issue of security. In addition to the typical security
challenges like authentication, confidentiality, and integrity, the grid offers
several other unique security challenges. Policy integration, authorization,
credential management related issues are unique mainly due to the typical
heterogeneous nature of the grid systems. Additionally, the integration is-
sues and the evolving standards make the problem challenging for re-
searchers. Keeping in mind the importance of the security issues in the
grid, the whole book is dedicated to provide insights into grid security is-
sues, challenges, and solutions.

1.3 About the Book

This book aims at generating awareness regarding the different issues of
security among the researchers and practitioners of grid computing. The
book does not assume that the reader is an expert in security or grid com-
puting technologies. However, some prior knowledge about general security

12 1 Introduction

principles and/or grid computing technologies will be required to un-
derstand the chapters covering advanced security issues in grid computing.
The book has a brief and concise background on grid computing security
which would be used in explaining the specific issues of grid computing
security in later chapters. A small primer on Web services security and
grid computing standards like OGSA is also provided in the appendix for
readers who are new to this field.

1.3.1 Target Audience

The book aims at covering most of the important issues, challenges, re-
search and deployed solutions, and research roadmaps that are needed for
taking the grid to the enterprises. The book is aimed at providing benefits
to researchers as well as professionals working on different aspects of grid
computing through the insights about the solutions and the issues. Through
this book professionals working on grid computing would be made aware
of the security requirements. It would also enlighten them about the secu-
rity features about some existing open source as well as some proprietary
products. The book therefore would be able to provide them with informa-
tion which would be useful for making important business decisions.
Graduate students working on grid computing security would be able to
get all the information about the different aspects in a single place. The
book will also provide pointers for further research directions which will
benefit students who are looking for potential research areas. Experienced
researchers in the field of grid computing will be able to get a comprehen-
sive overview of different security issues in grid computing. The book
aims at providing insights into the different solutions and issues which
would help experienced researchers take important research decisions.

1.3.2 Organization of the Book

The book is organized as follows: Chap. 2 provides an overview of generic
security technologies which are useful in the area of grid computing also.
Chapter 3 provides a taxonomy of all the issues and a solution sketch. The
chapter gives readers a high-level view of the grid security area and the
scope therein. Chapters 4 to 11 talk about issues and solutions pertaining to
the different components of grid computing security. Grid computing secu-
rity issues can be broadly categorized into three main types: architecture
related issues, infrastructure related issues, and management related issues.
Information security, authorization, and service security are discussed in
Chap. 4, 5, and 6, respectively. The different components of the infrastruc-

1.3 About the Book 13

ture issues are host and network related issues which are dealt with in
Chap. 7 and 8 respectively. Credential management, trust management,
and monitoring issues form the general security management issues, which
are discussed in Chap. 9, 10, and 11, respectively. Chapter 12 provides a
couple of case studies related to grid security, and Chap. 13 summarizes
the book with a brief description about future technologies.

2 Overview of Security

2.1 Introduction

In the previous chapter we have provided an overview of grid computing.
In this chapter we will provide an overview of the computer security tech-
nologies, protocols, and principles. Since computer security particularly
cryptography is a discipline by itself, in this chapter we will only concen-
trate on protocols, principles, and technologies which are applicable to the
grid computing area. The motivation of this chapter is to provide readers
with a “one stop shop” on security which would be referred to later during
the description of grid computing security. For more inquisitive readers
substantial references will be provided.

2.1.1 Characteristics of Secure System

Let us assume that Alice is in the Human Resources (HR) department of an
organization and Bob is an employee of the same organization. Alice is
writing an official letter informing Bob about his promotion. What are the
aspects Alice would be concerned about? She would be concerned that
some unauthorized adversary would be able to access the contents of the
letter. We describe this as confidentiality of the secure system. Alice
achieves confidentiality by putting the letter in Bob’s mailbox. Since only
Bob has the key to the mailbox, nobody has access to the letter. As a re-
ceiver of the letter, Bob is concerned about three aspects. Firstly, the letter
has actually been written by Alice. Bob assures himself by checking Al-
ice’s signature. We call this the authentication characteristic of the secure
system. Secondly, if Alice had delegated somebody to put the letter in
Bob’s mailbox, then Bob is concerned that the other person may have tam-
pered with the letter. To make Bob feel assured, Alice puts a seal on the
letter. If anybody opens the letter the seal would be broken and Bob would
immediately come to know that somebody had tampered with the letter.
This is called message integrity. Thirdly, Bob can be concerned that Alice

16 2 Overview of Security

may later say that she had not given him that letter. However, since the let-
ter has been signed, Alice cannot deny writing such a letter. This is called
the nonrepudiation requirement of a secure system. Nonrepudiation works
at different levels. Let us assume Alice delegates the responsibility of
dropping the letter to Charlie. However, Charlie loses the letter. If Charlie
had signed in a register mentioning that he picked up the letter then he
cannot later say that he was not assigned the responsibility. This simple
example illustrates that every day we have confidentiality, authentication,
integrity, and nonrepudiation embedded into our systems. To make a com-
puter system secure, all the above characteristics need to be followed. The
characteristics are achieved in the same way as described in the above ex-
ample, only the mechanisms are different.

2.1.2 Security Threats

Now let us discuss some common security threats that any system should
be concerned about. Let us revert back to the above example where Alice
writes a letter of promotion to Bob. Let us also assume that Bob has an ad-
versary Derrick who wants to tamper with the process of Bob getting the
promotion letter. What can Derrick do? He can prevent the letter from
reaching Bob’s mailbox by stealing the letter from Charlie. In this case, he
resorts to interruption. Though different mechanisms can be employed, in-
terruption is the most difficult threat to prevent both in computer and non-
computer systems. Another malicious activity that Derrick can resort to is
to read the contents of the letter. If he is able to do that then he has resorted
to interception. Interception does not always imply interruption. Derrick
may actually read the contents, reseal the letter, and then put the letter in
Bob’s mailbox. He may be able to do this without raising any alarms. The
third type of threat that any system would try to protect itself from is fabri-
cation. In this case, Derrick writes a fabricated letter and puts the letter in
Bob’s mailbox. Derrick may not fabricate a new letter but may modify the
contents of the old letter. Another type of threat which some systems may
be concerned about is called replication. In this type of threat, the attacker
does not modify or fabricate any message but replays or replicates the old
message. If the above example, if the letter contains one line “Bob, you
have been promoted,” signed by Alice without any date, then Derrick can
store the previous year’s letter and put it in Bob’s mailbox this year. One
may find this type of letter unreal and the threat impractical. However, this
type of threat is really dangerous in many computing system where some
amount of synchronization is required based on the received message. One

2.2 Different Encryption Schemes 17

such example is routing updates and creation of routing tables in the Inter-
net scenario.

Table 2.1. Threat characteristics mapping

Security threat Characteristics violated
Interruption Availability
Interception Confidentiality
Modification Integrity, confidentiality, availability
Fabrication Availability, authentication
Replication Authentication, availability

In Table 2.1, mapping between different threats and characteristics is
provided. When an adversary interrupts a message then the receiver is not
able to receive the message resulting in loss of availability for the receiver.
In case of interception, the characteristic violated is confidentiality as the
adversary is able to read the contents of the message which may be confi-
dential in nature. When an adversary modifies the contents of a message
then the characteristics violated are integrity, confidentiality, and availabil-
ity. Since the adversary modifies the content of the message integrity of
the message is violated, and if the adversary is able to read the contents of
the message confidentiality is violated, while availability is violated be-
cause the receiver receives the wrong message. Fabrication violates avail-
ability similar to modification and authentication as the sender of the mes-
sage is an adversary who poses as somebody else. Similarly, replication
violates authentication and availability.

2.2 Different Encryption Schemes

As mentioned earlier, encryption involves hiding the actual information so
that any unintended receiver would not be able to decipher the contents of
the information. Traditionally this has been carried out by performing a
mathematical operation on the part of the information using a key which is
a set of characters known only to the sender and the intended receiver. One
of the earliest forms of such encryption was developed by the famous Ro-
man emperor Julius Caesar where each character of the information was
transformed to another character based on addition operation with a spe-
cific key. This simple encryption technique is popularly called the Caesar
Cipher [35]. Many variations of this simple technique have been devel-
oped over the years. Another such technique is called the one time pad
where the key length is very large and is equal to the size of the message to

18 2 Overview of Security

be encrypted. This can be implemented by having the characters of any
particular book as a key. This technique was employed on a wide scale in
World War II. Other than this transformation technique, transposition
techniques are also used where the order of the characters are changed to
deceive the unintended receivers. One implementation of such a technique
would be to arrange the characters in equal sized rows and then inter-
change the rows with the columns. It can be shown that while transforma-
tion techniques aim at creating confusion, transposition techniques aim at
creating diffusion, which means that in transposition techniques two
changes in the same message will result in changes in different positions of
the message. More recent techniques like the Data Encryption Standard
(DES) [36], Advanced Encryption Standard (AES) [37], etc. combine the
above mentioned two techniques to generate both confusion and diffusion.

Encryption schemes may be broadly categorized into two main types:
symmetric key encryption and asymmetric key encryption. In the former
there is only one key which is shared between the sender and the receiver.
In this type of scheme, the sender encrypts using the shared key and the re-
ceiver decrypts using the same key. Examples of such encryption schemes
are DES and AES where a combination of transformation and transposition
using the shared key is applied.

In the second type of encryption scheme or asymmetric key encryp-
tion, there is a pair of keys called the public key and the private key. The
public and the private keys are generated through a mathematical function
having the property such that when information is encrypted by the public
key it can only be decrypted by the corresponding private key. Knowing
the public key it would be computationally very expensive to generate the
private key. So each person or a system using such an encryption scheme
has its own set of public and private keys where the private key is stored
secretly and the public key is disclosed to the whole world. Let us assume
that Alice wants to send information to Bob. Alice should know the public
key of Bob and only Bob knows his own private key. Alice encrypts the
information with Bob’s public key and Bob decrypts it with his private
key. Examples of such schemes are RSA [38], El Gamal [39], etc. RSA is
most popular among all the different techniques. It uses the principle that,
if any one knows the product of two very large primes it would be compu-
tationally very expensive to determine any of the prime if the other prime
is known. El Gamal, on the other hand, is based on the principle that the
discrete logarithm is computationally very difficult. A high level view of
the public key encryption is illustrated in Fig. 2.1.

2.2 Different Encryption Schemes 19

Fig. 2.1. Overview of public key encryption

Now readers may have questions in mind that why do we require
two different types of encryption and what are the scenarios where each of
them can be applied. Symmetric encryption schemes like the DES are

always vulnerable to adversaries knowing the secret keys as several crypt-
analysis techniques like differential and linear cryptanalysis [40] are avail-
able which can help someone to ascertain the key based on a sufficient
amount of data. To reduce this vulnerability, the shared key needs to be
changed periodically to have a secure conversation. In practical settings a
combination of symmetric and asymmetric encryption mechanisms are
used. Let us again take an example of Alice who wants a secure conversa-
tion with Bob. Alice creates a session key (shared key) and sends it to Bob
encrypted with Bob’s public key. After this phase, all conversations taking
place between Alice and Bob are encrypted by the session key. This is an
example where asymmetric key encryption is used to send the session key
and symmetric key is used to encrypt the regular conversation using the
session key. A lot of variation of the above mentioned simple technique is
generally used in practice. One variation would be to generate the session

computationally less intensive than the public key schemes like the RSA.
However asymmetric schemes are more secure as the key need not be shared
between the sender and the receiver. Therefore symmetric key schemes are

20 2 Overview of Security

key using the Diffie-Hellman [41] technique where information from both
the parties is used to generate the session key. Another variation would be
to use the Key Distribution Center (KDC) which is responsible for generat-
ing the session key.

2.3 Different Authentication Schemes

Let us now concentrate on the problem of authenticating a system or a
user. This problem is generally handled using three different mechanisms:
based on shared secret, based on public key, and based on third party.

2.3.1 Shared Secret Based Authentication

The first mechanism is through sharing a secret. For example, when I call
my bank to get the details of my account they ask for a secret PIN number
which is supposed to be known only to me. Most of the digital systems
also work by the principle of shared secret. One way to implement such a
system would be to share a password between the authenticator and the
user. In this type of system, the authenticator asks the user for a password
which when disclosed will allow the user to enter the system. This type of
system is perhaps the most prevalent mechanism of authentication that is
used. These systems are simple to implement and are computationally in-
expensive because the password supplied by the user is checked with a
hash of the password which is stored in some database. The checking
process is simple and does not require any extra computation. However
this type of system is vulnerable in two ways. Firstly the password is sent
unencrypted over the wire which can be easily tapped by a malicious ad-
versary. Therefore the password has to be encrypted by different mecha-
nisms as mentioned earlier. Secondly, choosing the password itself is a dif-
ficult problem as automated tools are available which can guess a
password with relative ease and accuracy [42]. Therefore a password based
system cannot be used where strong authentication is the need of the hour.
Another way to implement the shared secret would be through a challenge
mechanism. Here the authenticator would challenge the user to encrypt a
bit of known information by using the shared key. So the user responds by
encrypting the required information and is allowed to access the system
once the encrypted information has been validated by the authenticator. In
this type of system the shared secret needs to be changed periodically so
that the adversary cannot guess the secret. These systems are slightly more
expensive than the password based system. Another vulnerability which

2.3 Different Authentication Schemes 21

dogs the challenge based systems is the man-in-the-middle attack. Let us
assume that Alice is the user and Bob is the authenticator and Charlie is a
malicious adversary. When Bob challenges Alice, Charlie grabs the mes-
sage and sends the same message to Alice. Alice sends the answer to the
challenge; Charlie taps those and sends it to Bob. Now Bob will think that
it has authenticated Alice and would allow Alice to access the system. In
realty it is Charlie who is accessing the systems as he is acting as the man
in the middle between Alice and Bob. This vulnerability prevents the chal-
lenge based systems to be the sole mechanism of authentication and is
generally used in conjunction with the other mechanisms which will be
discussed subsequently.

2.3.2 Public Key Based Authentication

Going back to the example of the HR manager sending the letter of promo-
tion to the employee, how does the employee believe the contents of the
letter? When the employee looks at the letter he finds that the letter is
signed by the HR manager. Since he can always verify the signature of the
HR manager he can always determine the authenticity of the letter. Public
key based authentication uses the principle described above. In this type of
scheme the user has a public and private key pair and the authenticator
knows the public key of the user. The user encrypts standard information
with his/hers private key. The authenticator can verify the authenticity by
decrypting the same information with the user’s public key. This type of
mechanism is very secure and is generally tamper proof. The biggest prob-
lem in adopting the system in wide scale is the scalability of the system.
Take a scenario where there are millions of users using a particular com-
puting infrastructure and there is the need for authentication of each and
every user. This happens in case of a Website where not only there are mil-
lions of users but also the nature of the users is transient. Many of the users
may be home users who do not possess a public-private key pair. It is also
difficult for the authenticator to maintain the public information of so
many users. So in reality a variation of this scheme is used which is called
the certificate based system or third party authentication schemes.

2.3.3 Third Party Authentication Schemes

When a person tries to enter a new country, the immigration department of
the country mandates that the person possesses valid passport and visa to
enter the country. In this case, the immigration department does not know
the person entering the country. However the department believes some

22 2 Overview of Security

third party like the person’s own country issuing the passport and the con-
sulate issuing the visa. This is a classic case of third party authentication
where the authenticator does not know the user, however uses a third party
credential (in this case passport/visa) for authentication purposes. In digital
systems also this type of authentication is very popular. Here the user gets
a digital certificate from a Certificate Authority (CA) which is a known
third party. Certificates are nothing but information about the user hashed
and then signed by the CA’s private key. Since the public key of the CA is
widely known therefore the authenticator has no problem in validating the
certificate and hence authenticating the user to access the system based on
the certificate. However this type of system mandates that each user has a
public key which can be validated by the Certificate Authority. This means
that there is a need for Public Key Infrastructure (PKI) to make the above
scheme work. This may not be feasible always, especially in the Internet
scenario. Another mechanism of third party based authentication used in
the Kerberos system is to have a key distribution center (KDC) which au-
thenticates the user using a standard mechanism like using a password. The
KDC generates a session key for the user to access the system encrypted
with the systems public key. More details about the Kerberos system will
be provided subsequently.

2.4 Different Integrity Schemes

Let us now look at the problem of message integrity where the contents of
the message may be changed by a malicious adversary. It is like sending an
open and signed letter which is being tampered by an adversary in the
middle where the signature is kept intact. This type of attack would work
even if the message is encrypted because in most of the cases the purpose
of the attacker is to mislead and confuse the receiver. Therefore changing
the contents of the message may confuse the receiver though the attacker
may not be able to understand the contents of the message. This problem
of message integrity is generally solved using two mechanisms: Message
Authentication Code (MAC) and Keyed MAC.

2.4.1 Message Authentication Code (MAC)

MAC is based on the principle of hash functions. Hash functions are one
way functions which when applied to messages will result in a shorter
message or hash. Since it is a one way function there is no way in which
the main message can be recreated from the hash. When the hash function

2.4 Different Integrity Schemes 23

applied to two messages results in a same hash it is called a collision.
Good hash functions should be able to minimize collision as much as pos-
sible. This hash or MAC (sometimes referred to as Message Digest) is ap-
pended to the message and sent to the receiver. Therefore if anyone tam-
pers with the message the hash sent with the message will not match with
the hash of the tampered message. On receiving the message, the receiver
would be able to ascertain that the message has been tampered with. Hence
the receiver can drop the message or can ask the sender to re-send the mes-
sage. This scheme is constrained by the fact that anyone can generate the
MAC by knowing the message. Therefore the scheme can only be em-
ployed if both the message and the hash are encrypted. MD5 [43] and
SHA-1 [44] are examples of such a scheme.

Fig. 2.2. Overview of the HMAC scheme

2.4.2 Keyed MAC

To prevent the problem of the generic MAC, a keyed MAC is generally
used. In this case, two stages are employed to compute the final MAC
which is not only dependent on the message but also on a key which is
known only to the sender and the receiver. The key is first converted to a

24 2 Overview of Security

fixed length string using some simple functions like XOR and the message
is hashed using a common hash function. Now the hashed message and the
string are combined and hashed again using the hash function. The final
hash is the MAC which is dependent on both the message and the key. Dif-
ferent algorithms will use variations of the above scheme and they may
also run the steps multiple times to make the final MAC very secure.
HMAC [45] (see Fig. 2.2) is an example of Keyed MAC.

2.5 Standard Protocols

In this section we will concentrate on some of the standard protocols and
mechanisms used in grid computing systems. We will discuss public key
infrastructure, Secure Socket Layer (SSL), Kerberos, and IP security as
part of this section.

2.5.1 Public Key Infrastructure

An infrastructure which supports the public key based authentication and
encryption is called the Public Key Infrastructure (PKI). As the name sug-
gests, each entity user in the PKI environment possesses a public and a
corresponding private key. At the heart of the PKI lies the concept of cer-
tificates, which are used to validate the user and the public key associated
with the user, and Certification Authority (CA), who issue these certifi-
cates. A certificate validation process is illustrated in Fig. 2.3.

Certificates

Certificates are credentials of a specific user containing the user details
which is signed by the CA. Different types of certificates are available.
The most popular and commonly used certificate format is called X.509
format [46]. A typical X.509 certificate consists of the following informa-
tion:

• The version of X.509 that has been used.
• The information about the user or the issuing CA.
• The algorithms used to compute the signature of the certificate.
• The subject whose public key is being certified.
• The validity of the certificate which indicates the time for which

the certificate is valid.
• The public key information.

2.5 Standard Protocols 25

• The signature field which is actually a hash of the above informa-
tion signed by the CA’s private key.

• In addition there are some optional fields and extensions so that
some customization of the X.509 certificate is possible.

If we take a closer look at the above certificate format, we find that it bears
a close resemblance to a driving license or a passport issued to people in
the physical world. Since the purpose of both digital and physical certifi-
cates is the same therefore this resemblance is not at all surprising.

Fig. 2.3. Certificate overview

Certification Authority (CA)

Certification Authorities (CA) [47] are entities which are trusted by differ-
ent systems. The CAs are responsible for certifying the public keys of dif-
ferent users who subscribe to the CA. There are different models of trust
that are available in the PKI system namely the monopoly model, the mo-
nopoly plus RA model, and the delegated CA model.

26 2 Overview of Security

• Monopoly Model: In this model, there is only one CA which is
trusted by all other entities who get the certificate from the trusted
CA. This is a very simple model; however it has scalability prob-
lem, especially for large systems.

• Monopoly plus RA: This model is similar to the monopoly
model,, except that the single CA chooses other organizations
(known as Registration Authorities or the RAs) to securely verify
the public keys. The RAs communicate this information to the CA.

• Delegated CA: In this type of model, the trusted CA (called the
trust anchor CA) can issue certificates for other CAs called the
delegated CA. The users can then obtain certificates from the
delegated CAs rather than from the trust anchor CA. This type of
delegation is used in the open source Globus implementation.

• Oligarchy: This type of model is commonly used in browsers.
Here, the different products come with a single key, configured
with many CAs, and the certificate issued by any one of them is
accepted.

• Others: There are other trust models like Anarchy, used in PGP,
which is a distributed model where each user is responsible for
configuring trust anchors or public keys of some other set of users.
There are also concepts like the Name Constraints where the
trustworthiness of CA is not a binary value, completely trusted or
untrusted for everything. Rather, CA should only be trusted for
certifying a set of users.

At this point the readers may ask, what happens if the private key of a

user is stolen or compromised? To solve this, the CAs issue certificates
with specific validity period. However, due to practical reasons the validity
periods are typically in months, which is a large time for adversary to use
the key for malicious activities. The problem is similar to that faced by the
credit card companies. The credit cards also contain an expiration date
which is in years. If the card is stolen, the credit card companies publish a
list of credit cards which have been compromised so that the merchants
can verify that list before accepting any card. This is also the mechanism
that is followed in case of certificates. Each CA periodically publishes a
list of revoked certificates in the form of a Certificate Revocation List
(CRL) which is signed by the CA. Each CRL consists of a list of all unex-
pired revoked certificates, which is consulted by the authenticating system
before accepting the user as a valid user.

2.5 Standard Protocols 27

2.5.2 Secure Socket Layer (SSL)

One of the most popular protocols to secure the transport layer is called the
Secure Socket Layer (SSL), whose newer versions are called Transport
Layer Security (TLS) [48]. SSL/TLS works on top of Transport Layer Pro-
tocol (TCP), and provides security in managing sessions over the transport
channel. The SSL version 2 was deployed with Netscape Navigator 1.1 by
Netscape® [49] in 1995. Netscape® came out with version 3 a few years
later. The Internet Engineering Task Force (IETF) [50] extended the con-
cept to develop a standard called Transport Layer Security (TLS).

The protocol works as follows:
• The client contacts the server to initiate a SSL/TLS session. In this

step the client does not identify itself, however it mentions the set
of cryptographic algorithms the client can support. In addition, the
client also sends a random number RC, which will be used to create
the session key.

• The server replies by sending its certificate to the client. It also
sends a random number RS which will contribute towards the crea-
tion of session key.

• The client then verifies the certificate, extracts the public key of
the server, and then selects a random number S. In addition, the
client also computes K, which is the master secret computed as a
function of RC, RS, and S.

• The client sends S and the hash of K encrypted with the server’s
public key.

• Subsequently, all the data sent over the SSL/TLS channel is en-
crypted with the session key K.

It is to be noted that the SSL/TLS protocol defined above helped the

client to authenticate the server. However, the server cannot authenticate
the client. As a protocol, SSL/TLS allows the option for mutual authentica-
tion, where the server can authenticate the client if the client possesses the
required certificate. However, in most cases, if such an authentication is
required the client generally sends its user name and password encrypted
with the server’s public key.

2.5.3 Kerberos

Kerberos [51] is a secret key based mechanism for providing authentica-
tion in the network. It was originally designed at MIT, based on the work

28 2 Overview of Security

of Needham and Schroeder [52]. It is one of the examples of a third party
authentication scheme described earlier.

Fig. 2.4. Overview of the Kerberos system

Kerberos consists of a Key Distribution Center (KDC) which runs on
a secure node, in the network. The KDC is composed of basically two
components: the Ticket Granting Server (TGS) and the Authenticating
Server (AS). Kerberos was designed to provide authentication between two
entities who are trying to communicate on an insecure network. Kerberos
is based on three clear design goals:

• Minimum Exposure: Kerberos ensures that the client passwords
do not flow as a cleartext on the network. It also allows the mini-
mum exposure of client key on workstations.

• Containment: This indicates that if there is a compromise, only
one client or server is affected. This is also ensured through lim-
ited authentication lifetime (which is typically 8 hours to 24
hours).

• Transparency: Kerberos ensures that the old applications can
transparently work in the new setup. Applications need to provide
login facilities, which is the only change required.

2.5 Standard Protocols 29

Figure 2.4 shows the overview of the operation of the Kerberos system.
The following steps are performed:

1. The client logs in to the Authentication Server (AS) mentioning
that it wants to access the Ticket Granting Server (TGS).

2. The AS replies by providing the TGS ticket encrypted with the
TGS’s public key and the session key for the client to access the
TGS. The whole information is encrypted by the client’s public
key, which can be the client’s password.

3. The client sends the ticket information and the authentication in-
formation (which is typically time, client information, etc.). The
client encrypts the information by the TGS’s public key.

4. TGS replies with the ticket to access the server.

2.5.4 IP Security (IPSec)

The IPSec [53,54] is a method proposed to solve the attacks mentioned

IPSec that enables it to support a variety of application scenarios is that it
can encrypt or authenticate all traffic at the IP level. Thus, all distributed
applications, including remote login, client/server, e-mail, file transfer,
Web access, and so on, can be secured. Figure 2.5 shows a typical scenario
of IPSec usage. An organization maintains local area networks at dispersed
locations. Traffic on each LAN does not need any special protection, but
the devices on the LAN can be protected from the untrusted network with
firewalls. Since we live in a distributed and mobile world, the people who
need to access the services on each of the LANs may be at sites across the
Internet. These people can use IPSec protocols to protect their access.
These protocols can operate in networking devices, such as a router or
firewall that connects each LAN to the outside world, or they may operate
directly on the workstation or server. In the diagram, the user workstation
can establish an IPSec tunnel with the network devices to protect all the
subsequent sessions. After this tunnel is established, the workstation can
have many different sessions with the devices behind these IPSec gate-
ways. The packets going across the Internet will be protected by IPSec but
will be delivered onto each LAN as a normal IP packet.

IPSec is composed of the following main components:

• Two security mechanisms: an authentication-only function, re-
ferred to as the Authentication Header (AH) [55], and a combined

before through interaction with the network layer. The principal feature of

30 2 Overview of Security

authentication and encryption function, called the Encapsulating
Security Payload (ESP) [56], that provide the basic security
mechanisms within IP.

• Security associations (SA) that represent an agreement between
two peers on a set of security services to be applied to the IP traffic
stream between these nodes.

• Key management infrastructure that sets up SA between two
communicating peers.

Fig. 2.5. Overview of IPSec

Both AH and ESP security mechanisms involve adding a new header
to the IP packet, and the header is added between the original IP header
and the layer-4 (Network Layer) header. In this way, only the two IPSec
peers will have to deal with the additional headers, thus legacy routers will
be able to handle IPSec packets just like normal IP packets. This feature
lets far fewer IPSec-compliant devices on the Internet, thus making its de-
ployment easier. IP AH and IP ESP may be applied alone or in combina-
tion. Each function can operate in one of two modes: transport mode or

2.6 Chapter Summary 31

tunnel mode. With transport mode, AH or ESP is applied only to the
packet payload, while the original IP packet header remains untouched.
The AH or ESP header is inserted between IP header and layer 4 header, if
any. In tunnel mode, AH or ESP is applied to the entire original IP packet,
which is then encapsulated into a new IP packet with a different header.

For Virtual Private Networks (VPN), both authentication and encryp-
tion are generally desired, because it is important both to (1) assure that
unauthorized users do not penetrate the virtual private network and (2) as-
sure that eavesdroppers on the Internet cannot read messages sent over the
virtual private network. Because both features are generally desirable,
most implementations are likely to use ESP rather than AH. However, by
providing both AH and ESP, IPSec provides implementers with flexibility
in terms of performance and security. This flexibility is also extended to
the key exchange function where both manual and automated key ex-
change schemes are supported.

2.6 Chapter Summary

In this chapter, we have looked at the different concepts and technologies
that are useful in the grid computing context. Most secure systems look at
providing confidentiality, authentication, integrity, and non-repudiation to
the end users. Confidentiality is generally provided by encrypting the mes-
sages using symmetric or asymmetric encryption mechanisms. The former
uses public/private keys for encryption purposes and the latter uses sym-
metric shared key between the sender and the receiver. Different types of
authentication schemes include shared secret based authentication, public
key based authentication, and third party based authentication mecha-
nisms. The first scheme is perhaps the most prevalent one, where a shared
secret or a password is used for authentication purposes. The second
scheme is robust, however it may not be scalable in all purposes. The third
scheme, which uses a Certification Authority (CA), or similar third parties
for authenticating a user is one of the most popular authentication mecha-
nisms used. Integrity schemes are implemented using Message Authentica-
tion Codes (MAC) and keyed MAC schemes. Both the schemes rely on
hash functions for integrity checks. The latter (HMAC is an example of
such a scheme) uses a key to prevent malicious users from generating the
MAC. Several standard protocols like Kerberos, SSL/TLS, and IPSec have
also been discussed in this chapter. In the next chapter we will provide a
high level taxonomy of the grid systems to set the grid security landscape.

3 Taxonomy of Grid Security Issues

3.1 Introduction

When I started to write this book, one long time memory came rushing
back. This was the period of my life which I really cherish. It was the pe-
riod during my college days. During those days we used to travel long-
distances by pooling together the vehicles we had. We had lots of wonder-
ful experiences during that time which can itself be a topic of a book. Pool-
ing helped us in optimizing the resources for every trip based on the num-
ber of people traveling and the distance to be traveled. However, it was a
source of anxiety for us also. Whenever I gave my car to the pool I was
worried about the car because it may not always be handled with care. In
addition, we always used to have a few people for the trip who were com-
plete strangers to me. Therefore, trust was a real issue. On the other hand,
when I traveled in somebody else’s car I felt anxious about my safety as
most of our vehicles were at least a few decades old. My anxiety did not
end here. After every trip, I used to lose a few of my favorite cassettes,
CDs, books, or some of my other “valuable” possessions. Though, I am
mentioning some of the anxieties of the trips, I loved them and looked
forward to them. We did have our share of weird incidents. Like the one
where we ran out of gas and were stranded in the middle of a desert. We
also once got stranded after our keys got stolen in a hotel room. After a
few of those incidents, we learnt to cope with them. We regularly used to
monitor the gas usage of the cars, hand over the keys only to authorized
valets, used some sort of “trust” mechanisms before inducting strangers
into the group, a store for valuables with key with one of us, a check up of
the vehicles to be used for the trips, and several other such mechanisms.
Once these mechanisms were implemented the journey and the trip became
more enjoyable as we spent time enjoying the trip rather than worrying
about mundane affairs.

34 3 Taxonomy of Grid Security Issues

Once I started writing this book, I noticed an uncanny similarity be-
tween our college carpooling mechanisms and the grid system. Similar to
the car pooling system, a grid system also is a mechanism to pool re-
sources on-demand to improve the overall utilization of the system. Simi-
larities do not end here also. The issues and concerns that we had for per-
sonal safety, trust, authorization, etc. are important issues for grid
computing systems as well. For example, similar to the car pooling system
where we were concerned about cassettes and CDs, in grid systems also
one is concerned about the data processed. Moreover, the concerns of a
user donating his/her host to the grid system are very similar to the con-
cerns I had about my car. Similar to the car pooling system, the grid sys-
tem also requires a monitoring system in place to monitor the resource us-
age, trust management system to create, negotiate, and manage trust
between other systems or “strangers,” and an authorization system to au-
thorize the users to a access certain set of resources. In this chapter we will
briefly talk about the different security issues and solutions in the grid sys-
tem. However, this chapter is not meant to be comprehensive as all the
components will be elaborated upon in the course of the book. This chapter
would provide an overall landscape so that readers can choose the issues
they are interested in.

Fig. 3.1. Taxonomy of grid security issues

3.1 Introduction 35

3.1.1 Grid Security Taxonomy

Figure 3.1 shows the categorization of the different security issues in a
grid. The grid security issues can be categorized into three main categories:
architecture related issues, infrastructure related issues, and management
related issues.

Architecture Related Issues

These issues address concerns pertaining to the architecture of the grid.
Similar to car pooling, where we were concerned about our cassettes and
CDs, users of the grid are concerned about the data processed by the grid
and hence there is a requirement to protect the data confidentiality and in-
tegrity, as well as user authentication. We categorize these requirements
under information security. Similarly, resource level authorization is a
critical requirement for grid systems. Finally, there are issues where users
of the grid system may be denied the service of the grid or the Quality-of-
Service (QoS) is violated. These fall under the purview of service level se-
curity issues.

Infrastructure Related Issues

These issues relate to the network and host components which constitute
the grid infrastructure. Host level security issues are those issues that
make a host apprehensive about affiliating itself to the grid system. The
main subissues here are: data protection, job starvation, and host availabil-
ity. A grid involves running alien code in the host system. Therefore, the
host can be apprehensive about the part of the system which contains im-
portant data. Similarly, a host can also be concerned about the jobs that it
is running locally. The external jobs should not reduce the priority of the
local jobs, and hence lead to job starvation. Similarly, if the host is a
server, it can be concerned about its own availability. There should be
mechanisms to prevent the system from going down resulting in denial-
of-service to the clients attached to the host.

Management Related Issues

The third set of issues pertains to the management of the grid. Managing
credentials is absolutely important in grid systems because of the hetero-
geneous nature of the grid infrastructure and applications. Like any dis-
tributed system, managing trust is also critical and falls under the purview
of management related issues. Similar to the car pooling case where moni-
toring of gas was mandated, grid systems also require some amount of re-

36 3 Taxonomy of Grid Security Issues

source monitoring for auditing purposes. Much of the information obtained
from the monitoring systems is fed back to higher level systems like intru-
sion detection and scheduling systems.

3.2 Architecture Related Issues

Architecture level issues address the concern of the grid system as a whole.
Issues like Information security, authorization, and service level security
generally destabilize the whole system and hence an architecture level so-
lution is needed to prevent those. In this section we will briefly touch upon
the issues and some solutions.

3.2.1 Information Security

We define information security as the security related to the information
exchanged between different hosts or between hosts and users. The con-
cerns at the information security level of the grid can be broadly described
as issues pertaining to secure communication, authentication, and issues
concerning single sign on and delegation. Secure communication issues
include those security concerns that arise during the communication be-
tween two entities. These include confidentiality and integrity issues. Con-
fidentiality indicates that all data sent by users should be accessible to only
“legitimate” receivers, and integrity indicates that all data received should
only be sent/modified by “legitimate” senders. There are also issues related
to authentication, where the identities of entities involved in the overall
process can be accurately asserted. These are critical issues in all areas of
computing and communication and become exceedingly critical in grid
computing because of the heterogeneous and distributed nature of the enti-
ties involved there. In addition to the secure communication features users
are also concerned about single sign on capability provided by the grid
computing infrastructure. In single sign on the authentication is done once.

The information security issues exist in all fields of computing and

communications and have been studied for quite some time. In the grid
computing area, the researchers and practitioners have come together to
create the Global Grid Forum (GGF) (now called OGF). They have re-
leased an open standard called Open Grid Standards Architecture (OGSA).
There is a Grid Security Infrastructure (GSI) layer of OGSA which ad-
dresses most of the information security challenges mentioned above. The

3.2 Architecture Related Issues 37

Globus toolkit is an open source implementation of OGSA. Details about

Solutions to Information Security Issues

The Grid Security Infrastructure (GSI), developed independently and later

• Secure Communication: The GSI uses public key cryptography,

as the basis for creating secure grids and SSL/TLS for data encryp-
tion. In public key cryptography, the entities generate pub-
lic/private key pairs based on some cryptographically secure
mathematical function. A message when encrypted by the public
key can only be decrypted by the private key corresponding to the
public key. The public keys are known to everyone.

• Authentication: A central concept in GSI authentication is the
certificate. Every user and service on the grid is identified via a
certificate, which contains information vital to identifying and au-
thenticating the user or service.

• Single Sign on and Delegation: The GSI provides a single sign
on and delegation capability, which reduces the number of times
the user must enter his/her pass phrase when multiple resources are
used, which is common in a grid scenario. This is done by creating
a proxy. A proxy consists of a new certificate (with a new public
key in it) and a new private key. The new certificate contains the
owner's identity, modified slightly to indicate that it is a proxy.
The new certificate is signed by the owner, rather than a Certifica-
tion Authority (CA). The certificate also includes a time notation
after which the proxy should no longer be accepted by others.

3.2.2 Authorization

Another important security issue is that of authorization. Like any resource
sharing system, grid systems also require resource specific and system
specific authorizations. It is particularly important for systems where the
resources are shared between multiple departments or organizations, and

grid information security are provided in Chap. 4.

integrated as part of the OGSA standards, addresses all the stated architectural
concerns. GSI is based on proven standards such as public key encryption,
X.509 certificates, and the Secure Sockets Layer (SSL) and enables secure
authentication and communication over computer networks. The latest ver-
sion of the GSI based on Globus Toolkit 4.0 also allows Web services based
security. Please see details provided in Chap. 4.

38 3 Taxonomy of Grid Security Issues

department wide resource usage patterns are pre-defined. Each department
can internally have user specific resource authorization also. The authori-
zation systems can be mainly divided into two categories: VO Level Sys-
tems and Resource Level Systems. Virtual Organization or VO level sys-
tems have a centralized authorization system which provides credentials
for the users to access the resources. Resource level authorization systems,
on the other hand, allow the users to access the resources based on the cre-
dentials presented by the users.

Grid Authorization Solutions

Several authorization systems can be applied to the grid context.

• VO Level Systems: VO level grid authorization systems are cen-
tralized authorization for an entire Virtual Organization (VO).
These types of systems are necessitated by the presence of a VO
which has a set of users, and several Resource Providers (RP) who
own the resources to be used by the users of the VO. Whenever a
user wants to access certain resources owned by a RP, he/she ob-
tains a credential from the authorization system which allows cer-
tain rights to the users. The user presents the credentials to the re-
source to gain access to the resource. In this type of systems, the
resources hold the final right in allowing or denying the access to
the users. Examples of VO level grid authorization systems are
Community Authorization Service (CAS) Virtual Organization
Membership Service (VOMS), and Enterprise Authorization and
Licensing System (EALS).

• Resource Level Systems: Unlike the VO level authorization sys-
tems, which provide a consolidated authorization service for the
virtual organization, the resource level authorization systems im-
plement the decision to authorize the access to a set of resources.
Therefore, VO level and resource level authorization systems look
at two different aspects of the grid authorization. In Chapter 5, we
have provided details of different resource level authorization Sys-
tems like Akenti, Privilege and Role Management Infrastructure
Standards Validation (PERMIS), and the GridMap system.

3.2.3 Service Security

One of the most important security threats existing in any infrastructure is
the malicious service disruption created by adversaries. Many such exam-

3.2 Architecture Related Issues 39

ples exist in the Internet space where servers and networks are brought
down by a huge amount of network traffic and users are denied the access
to a certain Internet based service. Since grid computing deployment has
not reached the “critical mass” yet, the service level attacks are also cur-
rently nonexistent. However, with the grid computing poised for a huge
growth in the next few years, this area should be looked upon with utmost
concern by the grid security experts. The grid service level security issues
can be further subdivided into two main types: QoS Violation Issues and
Denial-of-Service (DoS) related issues. The first issue is about the forced
QoS violation by the adversary through congestion, delaying or dropping
packets, or through resource hacking. The second one is more dangerous
where the access to a certain service is denied. More details about the at-
tacks and solutions are provided in Chap. 6.

Solutions to Service Attacks

It is to be noted that the DoS attacks and QoS violation attacks are research
topics for researchers in the areas of networks, services, and operating sys-
tems. In Chap. 6, we provide an overview of different research efforts that
are being undertaken and the solutions that have been proposed.

• DoS Solutions: The solutions proposed for Denial-of-Service

(DoS) attacks can be categorized into mainly two types: preventive
solutions and reactive solutions. Preventive solutions try to prevent
the attack from taking place by taking precautionary measures. Re-
active solutions, on the other hand, react to a DoS attack and are
generally used to trace the source of the attack. Some examples of
preventive solutions are filtering, throttling, location hiding, and
intrusion detection. Examples reactive solutions include logging,
packet marking, Link testing, and others.

• QoS Violation: This is an active area of research and several ar-
chitecture and solutions have been proposed. Most of these solu-
tions rely on some amount of monitoring and metering systems
which try to detect the QoS levels of the systems and then make
decisions to raise the alarms. The WATCHERS project is an ex-
ample of such a system. More details of this project and a grid ac-
counting system are provided in Chap. 6.

40 3 Taxonomy of Grid Security Issues

3.3 Infrastructure Related Issues

A grid infrastructure consists of grid nodes and the communication net-
work. The security issues related to the grid infrastructure are also of
paramount importance.

3.3.1 Host Security Issues

Host level security issues are those issues that make a host apprehensive
about affiliating itself into the grid system. The main subissues here are:
data protection and job starvation. Whenever a host is affiliated to the grid,
one of the chief concerns is regarding the protection of the already existing
data in the host. The concern stems from the fact that the host submitting
the job may be untrusted or unknown to the host running the job. To the
host running the job, the job may well be a virus or a worm which can de-
stroy the system. This is called the Data protection issue. Job starvation
refers to a scenario where jobs originating locally are deprived of resources
by alien jobs scheduled on the host as part of the grid system.

Solutions to the Host Security Issues

Several solutions have been proposed for data protection and job starvation

• Data Protection: Solutions in this space use isolation to restrict

the data to the grid or external applications. In Chap. 7 we dis-
cuss several isolation techniques viz. application level sandbox-
ing, virtualization, and sandboxing. The first type of solution is
through the use of proof carrying code (PCC) where the code
generators generate proofs of application safeness and embed
those in the compiled code. The second solutions looks at creat-
ing Virtual Machines (VM) on the physical machine resulting is
strong isolation properties. The third type of solution, or the
sandboxing solutions, traps system calls and sandboxes the ap-
plications to prevent them from accessing data and memory
based on certain policies.

• Job Starvation: Different solutions which look at the problem
of job starvation can be categorized as advanced reservations
and priority reduction techniques. Under advanced reservation
system, a user requests a set of resources (can be CPU, memory,
disk space, etc.) for a specified amount of time for the set of

issues.

3.3 Infrastructure Related Issues 41

jobs to be run. The resources are booked based on the availabil-
ity, security, QoS and other metrics. Once the resources are
booked, the resource providers honor the contract and have
every right to terminate the job once the contract expires. These
techniques require schedulers to work hand-in-hand with the re-
sources/hosts providing service to the end users. Priority reduc-
tion techniques, on the other hand, reduce the priorities of the
long running jobs to reduce the possibility of starvation. Most of
the solutions in this space are ad hoc in nature and look at spe-
cific solutions

3.3.2 Network Security Issues

In the context of grid computing, network security issues assume signifi-
cant importance mainly due to the heterogeneity and high speed require-
ments of many grid applications. Moreover the grid inherits some of the
generic network issues also. Access control and isolation are important re-
quirements for traffic flowing through the grid networks. In this area, inte-
gration of grid technologies with VPN and firewall technologies assume
significance. Routing of packets in networks based on routing tables is a
specific network issue. Attacks in routing include link and router attacks
which may cause significant destruction. Many of the issues still require
research attention. Multicasting is an efficient means of information dis-
semination and may assume importance for grid networks in the future.
Member authentication, key management, and source authentication are
specific security issues in multicasting. Another topic of interest in grid
networks is the integration of sensor networks with grid technologies. Sev-
eral sensor network attacks like sybil attacks, wormhole, and sinkhole at-
tacks, node hijacking, need to be tackled before the sensor grid vision can
get realized. Finally, there are security issues in high performance inter-
connects.

Solutions to the Grid Network Issues

Many of the grid network issues are active areas of research where solu-
tions are mostly developed in labs and not yet commercialized. In Chap. 8,
we have included the research activities in many of these areas.

• Access Control & Isolation: Many of the grid and Web ser-

vices solutions cannot work effectively with firewalls and vir-
tual private networks (VPN) which have become ubiquitous in

42 3 Taxonomy of Grid Security Issues

today’s enterprises. The area requires significant research ef-
forts. Some of the research efforts like Adaptive Grid Firewalls
(AGF) and Hose have been included in Chap. 8.

• Secure Routing: This area of research is inherited from the tra-
ditional networking area. Most routing protocols use digital sig-
natures and passwords for message exchange which do not
solve the advanced attacks like source misbehavior. More re-
search is needed in this area. Some topics like inconsistency de-
tection are briefly touched upon in our discussion in Chap. 8.

• Secure Multicasting: This has been an active area of research
for the last few years. Most of the solutions presented in this
area are research outputs and rarely implemented in a large
scale. However solutions like centralized and hierarchical mem-
ber authentication systems, tree-based, and core based key man-
agement systems, and stream signing, and chaining type solu-
tions are important and require mention. Details of the different
techniques are provided in Chap. 8.

• Sensor Grids: Security in sensor networks is a very important
issue due to the computational constraints imposed by the de-
vices and network and bandwidth constraints. This is also an ac-
tive area of research and several solutions have been proposed
like SPINS and TinySec.

• High Speed Networks: One of the most important issues in the
adoption of security solutions is performance. A security solu-
tion which requires firewall/intrusion detection, encryp-
tion/decryption, message authentication, distributed denial of
service (DDoS) attack protection, etc. results in a significant
overhead which significantly reduces the performance. We have
discussed some hardware based solutions like CYSEP and pro-
tocol level solution like Infiniband Security in Chap. 8.

3.4 Management Related Issues

If we go back to the car pool example, we find that management was nec-
essary there. Similarly, the grid management is important as the grid is
heterogeneous in nature and may consist of multiple entities, components,
users, domains, policies, and stake holders. The different management is-
sues that grid administrators are worried about are credential management,
trust management, and monitoring related issues.

3.4 Management Related Issues 43

3.4.1 Credential Management

Management of credentials becomes very important in a grid context as
there are multiple different systems which require varied credentials to ac-
cess them. Credential management systems store and manage the creden-
tials for a variety of systems and users can access them according to their
needs. This mandates for specific requirements from the credential man-
agement systems. For typical grid credential management systems mecha-
nisms should be provided to obtain the initial credentials. This is called the
initiation requirement. Similarly, secure and safe storage of credentials is
equally important. In addition, the credential management systems should
be able to access and renew the credentials based on the demand of the us-
ers. A few other requirements which are important for grid systems are
translation, delegation, and control of the credentials. Based on the above
requirements, credential management systems are mainly of two types:
credential repositories or credential storage systems, and credential fed-
eration systems or credential share systems. The first set of systems are re-
sponsible for storing credentials while the second set of systems are re-
sponsible for sharing credentials across multiple systems or domains.

Different Credential Management Systems

Different types of credential repositories and credential federation systems
have been developed. In Chap. 9, we provide a detailed account of some of
the important systems which are useful from the grid context. The two sys-
tems are not competitive, rather complementary in nature.

• Credential Repositories: The basic purpose of credential reposi-
tories is to move the responsibilities of credential storage from the
user to these systems. Some of the examples of credential reposito-
ries are smart cards, virtual smart cards, and MyProxy Online Cre-
dential Repositories. Smart cards are credit card sized tokens
which contain the secret keys of the users. These are extremely se-
cure, however they are expensive. Virtual smart cards embed the
features of smart cards in the software where the keys never leave
the user’s system. MyProxy is a popular implementation of cre-
dential repositories specifically for grid systems.

• Credential Federation Systems: These systems, protocols, and
standards are used for managing credentials across multiple sys-
tems, domains, and realms. A few of the examples in this space in-
clude VCMan, which is a specific solution for grid and Commu-
nity Authorization Service (CAS) for inter-operability across

44 3 Taxonomy of Grid Security Issues

multiple domains. KX.509 is a protocol which provides inter-
operability between X.509 and Kerberos systems. A standard
called the Liberty Framework has been developed by a consortium
of 150 companies for creating and managing federated identities.
Another popular open source solution in this space is Shibboleth.

3.4.2 Trust Management

Another important management issue which needs to be addressed is the
issue of managing trust. Managing trust is not unique to digital or comput-
ing systems; it is used everyday and in every sphere of life. Trust is a
multi-dimensional factor which depends on a host of different components
like reputation of an entity, policies, and opinions about the entity. Manag-
ing trust is crucial in a dynamic grid scenario where grid nodes and users
join and leave the system. Therefore, there must be mechanism to under-
stand and manage the trust levels of systems and new nodes joining the
grid. The trust life cycle is composed of mainly three different phases:
trust creation phase, trust negotiation phase, and trust management phase.
The trust creation phase generally is done before any trusted group is
formed, and it includes mechanisms to develop trust functions and trust
policies. Trust negotiation, on the other hand, is activated when a new un-
trusted system joins the current distributed system or group. The third
phase, or the trust management phase, is responsible for recalculating the
trust values based on the transaction information, distribution or exchange
of trust related information, updating and storing the trust information in a
centralized or in a distributed manner.

Trust Management Solutions

Trust management is an active area of research and several trust manage-
ment systems have been proposed and implemented in a limited manner in
the labs of different universities. The main characteristics of trust man-
agement systems are scalability, reliability, and security. In other words,
the trust management systems should scale in terms of message overheads,
storage, and computational overheads, should be reliable in face of fail-
ures, and should be secure against masquerade attacks, collusion, and sybil
attacks. The different trust management systems can be broadly catego-
rized into reputation based and policy-based trust management systems.

• Reputation Based: These types of systems are based on trust met-
rics derived from local and global reputation of a system or an en-

3.4 Management Related Issues 45

tity. As part of the discussion in Chap. 10 we discuss the different
reputation-based systems including PeerTrust, XenoTrust, NICE,
Secure Grid Outsourcing (SeGO) systems.

• Policy Based: In policy based systems, the different entities or
components constituting the system, exchange and manage creden-
tials to establish the trust relationships based on certain policies.
The primary goal of such systems is to enable access control by
verifying credentials and restricting access to credentials based
predefined policies. These types of system create a policy based
trust language. Examples of such systems are PeerTrust Trust Ne-
gotiation and TrustBuilder.

3.4.3 Monitoring

Monitoring is the third and one of the most crucial management issues that
needs to be tackled in a grid scenario. Monitoring of resources is essential
in grid scenarios primarily for two reasons. Firstly, different organizations
or departments can be charged based on their usage. Secondly, resource re-
lated information can be logged for auditing or compliance purposes. The
different stages of monitoring are: data collection, data processing, data
transmission, data storage, and data presentation. The data collection
stage involves collecting data through different sensors located at different
collection points. The gathered data can be static in nature like network to-
pology, machine configuration, or dynamic like CPU and memory utiliza-
tion, system load, etc. The Data processing stage processes and filters the
data based on different policies and criteria from the data collected from
the sensors. The Data transmission stage involves the transmission of col-
lected and processed data to the different entities interested. Transmission
involves sending the data in a format understood by other parties over a
transmission medium, for example the network. There may be a need for
storage of gathered or processed data for future references which is carried
out in the data storage stage. Finally, the data presentation stage presents
the data in a format understood by the different interested entities.

Different Monitoring Systems

Different monitoring systems available can be broadly categorized into
system based, cluster based, and grid based monitoring systems. In Chap.
11, we provide details of different monitoring systems.

46 3 Taxonomy of Grid Security Issues

• System Level: The system level monitors collect and communi-
cate information about standalone systems or networks. For net-
work monitoring Simple Network Management Protocol (SNMP)
is an example for managing and monitoring network devices. Ex-
amples of open source and popular system monitoring tools in-
clude Orca, Mon, Aide, Tripwire, etc.

• Cluster Level: The cluster level monitoring systems generally are
homogeneous in nature and require deployment across cluster or a
set of clusters for monitoring purposes. Popular examples of clus-
ter level monitoring systems include Ganglia from University of
Berkeley and Hawkeye from University of Wisconsin Madison.

• Grid Level: Grid level monitoring systems are much more flexi-
ble than other monitoring systems and can be deployed on top of
different other monitoring systems. Many of the grid level moni-
toring systems provide standards and interfaces for interfacing,
querying, and displaying information in standard formats. Exam-
ples of such monitoring systems include R-GMA, Globus Moni-
toring and Discovery Systems (MDS), Management of Adaptive
Grid Infrastructure (MAGI), and GlueDomains. R-GMA combines
the grid monitoring and information services with relational mod-
els. MDS is a Globus component for monitoring and discovering
resources while MAGI is a grid management and monitoring sys-
tem. GlueDomains is used mainly for network monitoring. Details
of the different systems are available in Chap. 11.

3.5 Chapter Summary

Grid computing is an interesting and a high potential solution for most en-
terprises. However, security is one of the major impediments in wide-
spread grid adoption. In this chapter we have provided a high level taxon-
omy of the grid systems. We have categorized the issues pertaining to grid
computing security into three main buckets viz., architecture related issues,
infrastructure related issues, and management related issues. Architecture
related issues are concerned with the overall architecture of the grid system
like the concerns pertaining to the information security, concerns about
user and resource authorization, and issues pertaining to the overall service
offered by the grid system. The infrastructure related issues are concerned
with the underlying infrastructure which include the hosts or the machines,
and the network infrastructure. In addition, several management systems
need to be in place for an all pervasive enterprise level and secure grid sys-

3.5 Chapter Summary 47

tems. There are three main types of management systems which are impor-
tant from the grid perspective namely the credential management systems,
the trust management systems, and the monitoring systems. All the three
issues mentioned above are dealt with in this book along with existing so-
lutions and potential concerns. In the next chapter, we will look at the Grid
Information security architecture mainly from the perspective of the Grid
Security Infrastructure (GSI) and its open source and popular implementa-
tion, the Globus toolkit.

4 Grid Information Security Architecture

4.1 Introduction

There are many possible definitions of information security. One such
definition can be found in the paper by McDaniel et al., which states
that it is “The concepts, techniques, technical measures, and administra-
tive measures used to protect the information assets from deliberate or in-
advertent unauthorized acquisition, damage, disclosure, manipulation,
modification, loss, or use.”[57]. In other words, any information security
system should define mechanisms to protect the information within the
system. Different types of information that need to be secured depend on
the type of system. For example, information in case of storage systems
like databases, file systems, etc. are the data stored within those systems.
On the other hand, information in network systems are the messages or
packets flowing through the system. Information security in each system
defines mechanisms to protect information typical of that system. Com-
puter science researchers have developed algorithms, protocols, and
mechanisms, which are used across different systems, some of which had
been discussed in Chap. 2. In this chapter we will see how these concepts
can be used in the context of grid computing systems.

The standardization effort of grid security has led to the design of

security standards in grid which is defined under Grid Security Infrastruc-
ture (GSI). The driving force behind the generic standardization efforts in
grid computing is the Global Grid Forum (GGF) [58]1. GGF is a forum of
researchers and practitioners for exchanging information and defining
standards for grid computing. The open standard as has been put forward
by the GGF community is called Open Grid Standards Architecture
(OGSA). It is based on the seminal work by Ian Foster and group in 1998
[59,60]. OGSA defines mechanisms based on Web services for different

1 Recently GGF and Enterprise Grid Alliance (EGA) have merged to create the

Open Grid Forum (OGF).

50 4 Grid Information Security Architecture

systems to communicate and share the heterogeneous grid resources.
Please refer to the appendix for details about OGSA, OGSI [61], and Web
Services Resource Framework (WSRF) [62-64]. The chapter is organized
as follows: first we will briefly discuss the security standards which are de-
fined as Grid Services Infrastructure (GSI). We will go through the grid in-
formation security requirements and then discuss GSI in relative detail by
talking about its implementation in the open source Globus toolkit.

Fig. 4.1. Typical grid scenario

4.2 Grid Security Infrastructure (GSI)

Before discussing the grid security infrastructure, we need to understand
the security requirements that drove the standards body to adopt such an
infrastructure. As mentioned earlier, a grid defines a concept called the
Virtual Organization (VO). In a VO, different individuals, enterprises, or-
ganizations come together to share resources and services under a set of
rules or policies guiding and governing the extent and conditions of shar-
ing. VO can be formed across different universities, across different enter-
prises, as well as within an enterprise also. The level of heterogeneity de-

4.2 Grid Security Infrastructure (GSI) 51

fines the type of solutions. Therefore, the main aspect that separates grid
systems from all the different systems are the heterogeneity involved and
policy complications. We will talk about those in subsequent chapters.
Here we will concentrate on the information security aspects and how they
can be tackled.

Figure 4.1 shows a typical grid scenario consisting of sites which

constitute a VO. A user submits a job to the grid which arrives at the entry
point or the gatekeeper of the grid system. There should be mechanisms to
authenticate the user at that point. When the job gets submitted to the grid
then there is a need to provide confidentiality and integrity so that no one
is able to see the contents of the information carried and is able to modify
the contents. Finally, there should be mechanisms for single sign on and
delegation. Discussions about the different information security require-
ments are provided below:

• Authentication: Grid security requirements should contain authen-

tication mechanisms at the entry points. Different authentication
mechanisms should be supported. It is possible to have different
authentication mechanisms for different sites within a grid. There-
fore, the security protocol should be flexible and scalable to handle
all the different requirements and provide a seamless interface to
the user. Furthermore, there is a need for management of context
and sharing of context.

• Confidentiality: Grid security mechanisms should protect the con-
fidentiality of the messages and the documents that flow over the
grid infrastructure. The confidentiality requirements should include
point-to-point transport as well as store and forward mechanisms.
Similar to the authentication mechanisms, there may be a need to
define, store, and share security contexts across different entities.

• Integrity: Grid security mechanisms should include message in-
tegrity which means that any change made to the messages or the
documents can be identified by the receiver.

• Single Sign on: In a grid environment, there may be instances
where requests may have to travel through multiple security do-
mains. Therefore, there is need for single sign-on facility in the
grid infrastructure.

• Delegation: There may be a need for services to perform actions
on the user’s behalf. A computational job may require accessing
database many times. In that case there is a need to delegate the au-
thority to some service which will perform the action on the user’s

52 4 Grid Information Security Architecture

behalf. When dealing with delegation of authority from an entity to
another, care should be taken so that the authority transferred
through delegation is scoped only to the task(s) intended to be per-
formed and within a limited lifetime to minimize the misuse of
delegated authority.

4.2.1 Grid Security Model

Grid computing provides a virtualized view of the underlying grid re-
sources. Such a virtualization also encompasses the security requirements.
Therefore, there is a need for virtualization of security semantics to use
standardized ways of segmenting security components like authentication,
access control, confidentiality, etc. and to provide a standardized way to
enable the federation of multiple security mechanisms. Therefore, this re-
quires a loosely-coupled platform independent model of securing applica-
tions within and across organizations. Now the question arises about the
paradigm involved in implementing such a loosely coupled, platform inde-
pendent architecture.

Fig. 4.2. Components of the grid security model

4.2 Grid Security Infrastructure (GSI) 53

The last few years have seen the gradual adoption of Web services as
an emerging architecture which has the ability to deliver integrated, inter-
operable services. Since Web services are gradually becoming a default
and an industry standard, the OGSA grid computing model uses Web ser-
vices as a model reference. Since confidentiality, integrity, policy man-
agement, trust management are also integral to Web services, the grid se-
curity infrastructure integrates the Web services standards like WS-
Security, WS-Policy, WS-Trust, etc. in the specification. However, the
Grid Security Infrastructure does not exclude transport layer security like
Secure Socket Layer (SSL) on top of HTTP or HTTPs. Users are free to
use HTTPs which provides confidentiality, integrity, and authentication.
However, if there is a need to traverse multiple intermediaries, WS-
Security can be used in conjunction with XML encryption, XML signa-
tures and so on.

Fig. 4.3. High level view of GSI

Figure 4.2 shows the different components of the grid security model
as described in [65]. As part of the chapter we would be looking at authen-
tication, confidentiality, and single sign on/delegation aspects. As shown in
Fig. 4.3, in GSI three types of authentication is generally discussed – using
X.509 certificates, using passwords, and using Kerberos. For confidentiality

54 4 Grid Information Security Architecture

mainly key based encryption algorithms are used. Sometimes, the need
arises for having a session key and therefore, session management. For
single sign on/delegation proxy certificates are generally used. Provisions
for both transport layer security mechanisms like SSL and message layer
mechanisms like WS-Security are provided.

4.3 Authentication in GSI

The most prevalent mechanisms of authentication in a GSI based grid is
the certificate based authentication mechanism where a public key infra-
structure (PKI) is assumed to exist which allows the trusted authority to
sign information to be used for authentication purposes. In addition to cer-
tificate based mechanism, Kerberos and password based mechanisms have
also been implemented.

4.3.1 Certificate based Authentication

Certificate based authentication mechanism has been implemented in all
versions of Globus [66]. It assumes that each user within the grid system
possesses a public private key pair, and there exists a trusted third party or
Certificate Authority (CA) to sign and certify the users. The GSI certificate
includes following information:

• A subject name, which identifies the person or object that the cer-

tificate represents.
• The public key belonging to the subject.
• The identity of a Certificate Authority (CA) that has signed the

certificate to certify that the public key and the identity both be-
long to the subject.

• The digital signature of the named CA.

Logging into the Grid System

Figure 4.4 shows the four steps involved in allowing a user to access a grid
system using the certificate based authentication in GSI. The different
steps are:

1. The first step is to know the public key of the CA. This informa-
tion is used to verify the validity of the certificate obtained from
CA. The certificate is stored in the local host.

4.3 Authentication in GSI 55

2. The second step is to create the public private key pair using any
common protocol. The private key thus obtained is also stored in
a secure place in the local host. A different credential service like
MyProxy can also be used for this purpose. Please refer to Chap.
9 for details about MyProxy. In this step, the user also generates
the certificate request, which is its public key signed with the
user’s private key. This is done so that the CA can verify the au-
thenticity of the information.

3. In the third step, the CA first verifies the information obtained
from the user and then signs the request with its public key. The
certificate is then sent to the user.

4. The last step is to store the certificate which would be used for all
subsequent authentication purposes. The following information is
stored at the local host: (i) the public key of the CA, (ii) the user’s
public key, and (iii) the signed certificate.

Fig. 4.4. Steps for logging into the grid

56 4 Grid Information Security Architecture

Mutual Authentication

Mutual authentication is an important aspect that needs to be considered
where two hosts mutually authenticate each other if both of them trust the
third party or the CA.

Fig. 4.5. Example of mutual authentication

Let us assume (see Fig. 4.5) Alice and Bob are authenticating each other.

1. First Alice sets up a connection with Bob.
2. Alice then sends her certificate over to Bob for authentication.

The certificate is a standard certificate and holds the information
about the identity of Alice, her public key, and the information
about the CA.

3. After receiving the information from Alice, Bob first validates the
received certificate to make sure that the certificate has actually
been signed by CA and the authenticity of the public key. Bob
then creates a random number or a message and sends it to Alice.

4. When Alice receives the random message, she encrypts it with
her private key and sends the encrypted message back to Bob.

5. Bob then decrypts the message received from Alice and checks
that the decrypted message is really the one that it sent before.

4.3 Authentication in GSI 57

The main purpose of this step is to validate that Alice actually
possesses the private key corresponding to the public key she has
communicated to Bob.

6. At this point Bob trusts the identity of Alice. If mutual authenti-
cation is needed, Alice would also like to validate Bob’s identity.
In that case, steps 2 - 5 are repeated with Bob sending Alice his
certificate and Alice sending the random message to Bob.

4.3.2 Password based Authentication

Though certificate based authentication systems are more secure, it intro-
duces overheads in terms of public key infrastructure. In reality, password
based systems are still used quite widely in enterprises. Therefore, to cater
to a wide range of enterprises, the GSI design team felt the need for allow-
ing passwords as means of authentication in Globus based grid systems.
The Globus Toolkit 4.0 (GT4) [67,68] has the provision of allowing users
to authenticate through username and password. The GT4 security allows
SOAP messages to be secured using Transport Layer Security (TLS) or us-
ing WS-Security standards. The former is referred to as Transport Layer
Security, while the latter as Message Layer Security. In the case of trans-
port layer security, authentication is either carried out using X.509 creden-
tials or in an unauthenticated mode (“anonymous” mode). In this mode,
authentication can be done using username and password in the SOAP
message. However, true multi-credentials are supported in case of message
level security. Since it uses Web services standards like WS-Security and
WS-SecureConversation (refer to the appendix for more details), it is neu-
tral to the specific types of credentials used to implement this security.
Web services standards allow GSI in GT4, to use usernames and pass-
words in addition to digital certificates. However, it is to be noted that
more advanced security features like confidentiality, integrity, delegation
are not present in password authentication based systems.

Based on our discussions in the previous section, it is quite clear that
there are a lot of inadequacies in integrating GSI with a password based
system. Firstly, due to the lack of confidentiality, there is a possibility of
adversaries tapping into the system. Secondly, due to the constant change
of policies and lack of trust on the host system, users do not store long
term credentials in the host. To have a more secure system, researchers
have come forward to integrate One Time Password (OTP) technologies
with Globus.

58 4 Grid Information Security Architecture

One Time Passwords (OTP)

This is a step in the forward direction to remove some of the inadequacies
of the password based systems. In this type of technology the passwords
change over time, like the RSA® SecureID. The OTP technologies protects
compromised user’s password and allows the grid systems or data centers
to securely transfer a short lived credential to the user. There is also a need
for a secure exchange of credentials. The researchers from Lawrence
Berkeley National Laboratory (LBNL) have developed a protocol that in-
tegrates the OTP technology with secure key exchange called OPKeyX
[69]. The algorithm works as follows:

• A one time password is derived, which is a function of the key
and a random number which can be the current time.

• A Diffie-Hellman key exchange algorithm is used to decide on a
session key. The one time password derived in the previous step
is used to encrypt the key exchange mechanism.

The OpKeyX protocol has been integrated with both transport level as

well as Message Level security of GSI. In the case of the former, OpKeyX
is used as the key exchange protocol in TLS. In the case of the latter, Op-
KeyX is used as the key exchange protocol in WS-SecureConversation.

Fig. 4.6. GSI Kerberos integration

4.4 Delegation in GSI 59

4.3.3 Integration with Kerberos

Kerberos is one of the most popular authentication systems used in enter-
prises. Please refer to Chap. 2 for details about Kerberos. GSI, in its cur-
rent form, does not support Kerberos based interaction. In other words,
Globus security does not accept Kerberos credentials as an authentication
mechanism. To make this integration possible, there is a need for gateways
or translators which accept GSI credentials and convert it to Kerberos cre-
dentials and vice versa. KX.509/KCA [70] can act as a GSI to a Kerberos
gateway while SSLK5/PKINIT can be used as a Kerberos to GSI gateway.

Figure 4.6 shows, at a high level, how this integration can be
achieved. The KCA is able to convert the Kerberos tickets into a valid
X.509 certificate which can be accepted by the grid system based on GSI
credentials. If there is a need to access a resource within a Kerberos do-
main, then there is a need to convert GSI credentials to Kerberos creden-
tials, which can be done using the SSLK5 module. This mechanism can
work in simple cases; however it cannot provide more complex security
mechanisms like delegation across Kerberos and GSI domain and so on.

4.4 Delegation in GSI

Another very important requirement for a grid based security system is
delegation where another entity gets the right to perform some action on
user’s behalf. This is especially important in case of grid because of the
possibility of multiple resources involved in grid based transactions. It may
be unnecessary or very expensive to authenticate each and every time a re-
source is accessed. On the other hand, if the user issues a certificate allow-
ing the resource to act on its behalf then the process will become a lot sim-
pler. This type of certificate issued by the user to be used by some other
entity is called a proxy certificate. A proxy is made up of a new certificate
containing two parts, a new public and a new private key. The proxy cer-
tificate has the owner's identity, with a slight change to show that it is a
proxy certificate. The certificate owner, not a CA, will sign the proxy cer-
tificate. As part of the proxy certificate there is an entry with a timestamp,
which indicates at what time the proxy certificate expires; by default it has
a short term validity period of say a few hours.

Let us take an example to understand the delegation process. Let us
assume a host A wants to delegate the responsibility of submitting a job in
a host C to another host B. A owns a certificate signed by the CA. It then

60 4 Grid Information Security Architecture

creates a proxy certificate and sends it to B. B then uses the proxy certifi-
cate to submit jobs on A’s behalf. Figure 4.7 shows the different steps in-
volved in the delegation process.

Fig. 4.7. Overview of the delegation activity in GSI

Different steps involved in the delegation process are as follows:
1. A secure communication is set up between the communicating

parties, in this case, A and B. This can be done using SSL or
some Web services security standards based protocol.

2. When a delegation is required, a delegation request is sent to B.
3. B creates a proxy certificate request which contains the informa-

tion about a proxy public key and other identification informa-
tion. It is to be noted that this step is similar to the certificate re-
quest sent to a CA. B stores the proxy private key securely.

4. Once receiving the request, A signs the certificate request with
its private key to create the proxy certificate.

5. A then ships the certificates to B so that it can start the delega-
tion process.

6. During delegation, B sends A’s certificate, as well as the proxy
certificate to C.

4.5 An Example: Security in Globus Toolkit 4.0 (GT4) 61

7. On receiving the certificates, C first obtains A’s public key by
decrypting the certificate with CA’s public key. Once A’s pub-
lic key has been obtained and validated, it decrypts the proxy
certificate with A’s public key to obtain and validate the proxy
public key.

8. During the actual transmission of information between B and C,
B uses the proxy private key to encrypt the information.

9. C uses the proxy public key to decrypt the information.

4.5 An Example: Security in Globus Toolkit 4.0 (GT4)

Let us now take a look at the security implementation of the Globus Tool-
kit 4.0 [67,68].

4.5.1 Message Protection in GT4

GT4 uses two mechanisms to protect the SOAP messages being transferred
between the different components, viz. transport-level security and mes-
sage level security. Transport-level security protects the data transferred at
the transport layer using standards like Transport Layer Security (TLS).
Message level security, on the other hand, works at a higher layer and uses
Web services based standards like WS-Security, WS-SecureConversation,
etc. by protecting the SOAP messages that are being transferred over the
transport channel.

Transport-Level Security

Transport level security, in GT4, is implemented using the Transport Layer
Security (TLS) standards (refer to Chap. 2). GT4 uses the SSL/TLS proto-
col over HTTP for securing the communication between the client and the
server. For providing secure communication, X.509 credentials are gener-
ally used for authentication. However, GT4 security does not limit itself to
X.509 standards, it also supports unauthenticated communications, often
referred to as “anonymous transport-level security.” In this mode of opera-
tion, authentication may be done on a different level, e.g. via username and
password in a SOAP message. GT4 implements the transport security us-
ing a secure socket implementation which is able to provide the security
properties. The transport level security in GT4 is the default security
mechanism used in GT4. The main reason for that is the performance
overhead introduced by message level security mechanisms.

62 4 Grid Information Security Architecture

Message-Level Security

GT4 also uses Message-level Security (MLS) as an alternative to transport-
level security, where encryption, authentication, and integrity mechanisms
are employed at the message layer, rather than at the transport layer using
Web services standards like WS-Security and WS-SecureConversation
(see the appendix). WS-Security standards provide mechanisms to provide
confidentiality, authentication, and integrity to the SOAP messages. GT4
security uses these mechanisms to provide security on a per-message basis.
However, it is to be noted that this does not establish security context simi-
lar to SSL/TLS. To create the security context, WS-SecureConversation is
used. WS-SecureConversation is a proposed standard that allows for an
initial exchange of message to establish a security context which can then
be used to protect subsequent messages in a manner that requires less
computational overhead.

Fig. 4.8. Overview of the GT4 message handling

GT4 MLS provides two mechanisms, GSI Secure Conversation and
GSI Secure Message security, for authentication and secure
communication.

4.5 An Example: Security in Globus Toolkit 4.0 (GT4) 63

• GSI Secure Conversation: In the GSI secure conversation
approach, the client establishes a context with the server before
sending any data. This context is very similar to the context
established during a SSL/TLS session. The context establishment
phase helps the client and the server to create and store a shared
secret used for future conversations. Once the context
establishment is complete, the client can securely invoke an
operation on the service by signing or encrypting outgoing
messages using the shared secret created in the context. This
mechanism is faster as once the context is established, a symmetric
key is used for encryption and signing purposes.

• GSI Secure Message: The GSI secure message approach differs

client simply uses existing keying material, such as an X509
certificates, to secure messages and authenticate itself to the
service. This is a slower mechanism that the previous one.

Figure 4.8 shows the architecture of GT4 security in case of any

message arrival. When a message arrives from the client several security
handlers are invoked.

• WS Security Handler: This handler extracts any keying
material that is present in the message. Validation through
checking the signatures are also carried out in this step.

• Security Policy Handler: This handler checks for any service
specific policies that may be present. The policies can be
specified during service deployment.

• Authorization Handler: This handler specifies the amount of
authorization present in invoking a service.

• Secure Conversation Message Handler: This handler is one of
the two outbound message handlers. This deals with encrypting
and signing messages using a previously established security
context.

• Secure Message Handler: This is another outgoing message
handler. This deals with messages by signing or encrypting the
messages using X509 certificates.

Comparison between the Approaches

Comparing between the two mechanisms, message-level and transport-
level security, two main points need to be considered: end-to-end security
and performance.

such that no context is established before invoking an operation. The

64 4 Grid Information Security Architecture

• End-to-End Security: The transport-level security works as a
point-to-point security mechanism and does not work across
multi-hop connection. This is one of the benefits of message-
level security. It works across hops and is a comprehensive end-
to-end solution.

• Performance: However, when we are looking at the perform-
ance overhead associated with Web services based security
mechanisms, it is quite significant. Based on study by Shirasuna
et al. [71], the GSI with Web services security performs a few
times slower than GSI with SSL. Another interesting aspect of
the study is that most of the time taken for Web services secu-
rity comes from XML manipulations. The authors have sug-
gested stream based pipelining at each step so improve the per-
formance. Till a more efficient mechanism of XML
manipulations happen, the Web services based security stan-
dards will remain significantly slower than the SSL based sys-
tems.

4.5.2 Delegation in GT4

GT4 supports delegation through the use of X.509 based proxy certificates.
Proxy certificates allow bearers of X.509 certificates to delegate their
privileges temporarily to another entity. GT4 supports the delegation proc-
ess through two components: A Delegation Factory Service (DFS) and a
Delegation Service (DS). The DFS is responsible for creating the WS-
Resource while DS is responsible for managing the delegated credentials.
The delegation process is as follows:

• The DFS publishes its certificate chain, including the service's
certificate, as a resource property.

• The DS client extracts the public key from the DFS certificate,
after obtaining and validating the certificate chain.

• The client then creates the proxy certificate it is going to delegate
by binding, i.e. signing, the service's public key to the proxy
certificate information using its private key.

• Finally, the client passes the certificate chain that starts with the
proxy certificate to the delegation factory service, which upon
receipt replies with the address to the WS-Resource of the
delegated credential.

4.6 Chapter Summary 65

Delegation process is secured using the transport level security
described before. Mutual authentication, authorization, and integrity
protection is provided. The interface to the delegation process is based on
WS-Trust specification.

4.6 Chapter Summary

One of the main concerns for secure grid systems is to have a robust archi-
tecture to secure the information flowing through the system. Grid Security
Infrastructure (GSI) is an effort to standardize the security requirements
and its manifestations in the context of Virtual Organization (VO) based
grid systems. Different security requirements handled by GSI are: authen-
tication, confidentiality, integrity, single-sign-on, and delegation. GSI tra-
ditionally supports certificate based (X.509) authentication mechanisms.
Recent versions of GSI (implemented in Globus Toolkit 4.0) supports
password based authentication, and research efforts are underway to in-
tegrate One Time Password (OTP) and Kerberos authentication with GSI.
Confidentiality is supported through transport level security using
SSL/TLS protocols, and message level security using Web services stan-
dards. GT4 is one of the few implementations where message level secu-
rity is used for grid confidentiality purposes. In a grid system delegation
assumes enormous importance since jobs can run on multiple sites and re-
quirement of multiple authentications is a huge overhead. In such cases,
proxy certificates are used to delegate authority to some other entity or sys-
tem. The chapter provides a detailed discussion on the different security
requirements and their implementations. In the next chapter, another im-
portant grid security architecture issue or grid authorization will be dis-
cussed.

5 Grid Authorization Systems

5.1 Introduction

Until now, we have looked at issues pertaining to the user – issues that
make a user comfortable with the grid system, namely authentication, con-
fidentiality, integrity, and single sign on/delegation. Now, we will look at
issues pertaining to the resource which constitute the heart of the grid sys-
tem. In this chapter, we will particularly look at the issues related to the au-
thorization and access control of resources within a grid system.

Many readers have access to some kind of library like a public li-

brary, office library, etc. I also have access to my company’s library be-
cause I am an employee of the company. For that reason, the authorities
have issued me a library card so that I can access the resources of the li-
brary namely the books and the CDs at my convenience. To issue the li-
brary card, someone must have checked my credentials and found that I
was worthy of accessing the resources of the library. Therefore, there ex-
ists a system which authorizes the users to access the library resources by
issuing the library card. Similar to the above example, people need such
authorizations daily to access a variety of resources in their day to day
lives. Take an example of database resources: there are database adminis-
trators who have access to the tables, where they can modify, delete, or add
tables. There are also users who can only access the data of the table.

Sometimes, the term authorization is mistaken with access control.

Therefore, before going further into the discussions, let us try to clarify the
differences. Subsequently, whenever the terms are referred to in this book,
they will conform to the explanations provided below. Authorization can
be loosely defined as the act of providing and checking the authority of the
user or a job on a specific set of resources. Therefore, in the library exam-
ple, the act of issuing me the library card, and the act of allowing me to ac-
cess to the library resources fall under the purview of the authorization

68 5 Grid Authorization Systems

more general way of controlling the access to the set of resources, includ-
ing the time of the day, IP addresses, and other parameters. Therefore, in
the library example, the library closes at 9pm everyday can be an access
control mechanism. Though I have the library card, I would not be able to
access the library resources when the library is closed. Therefore, authori-
zation mechanisms can be thought of as a subset of access control mecha-
nisms. Generally a good authorization system limits the access of system
resources to outsiders, and a fine grained access control mechanism, in ad-
dition, provides resource control for the authenticated/authorized users.

Fig. 5.1. Interaction of authorization and access control in a grid system

Figure 5.1 shows the possible interaction of authorization and access
control systems in a grid computing environment. Let us assume that only
two out of the three users are authorized to access the grid resources. How-
ever, the local access control mechanism, based on some criterion, pre-
vents all the users from accessing the resources. This example shows how
the authorization and access control mechanisms can be combined to pro-
vide fine grained resource access control.

system. On the other hand, access control, by definition is broader. It is a

5.1 Introduction 69

5.1.1 Different Access Control Models

Let me try to describe the different access control models based on my di-
lemma to read a book called The God of Small Things, by Arundhati Roy. I
knew that my friend Bob owned it; however I was not sure whether he will
allow me to borrow the book, as the access to the book was at his discre-
tion. Similarly, I also knew that my aunt had borrowed the book from the
local library. However, neither my aunt nor I knew the library policies re-
garding lending a borrowed book to someone else. Moreover, I knew that
the local library had another copy. However, they had a graded book ac-
cess policy, based on the donation one gives to the library. I was unsure
about my role there too. This simple dilemma does bring out the different
levels of access that the access provider has on the resource it controls.
There are three main types of access control, namely Mandatory Access
Control (MAC) [72,73], Discretionary Access Control (DAC) [74], and
Role Based Access Control (RBAC) [75].

Mandatory Access Control (MAC)

One of the access control models is Mandatory Access Control (MAC)
which is also known as the Lattice Based Access Control (LBAC). In such
an access control mechanism, the access to certain objects or resources is
expressed in terms of security labels attached to subjects and objects. A la-
bel on an object is called a security classification, and a label on a user is
called a security clearance. A system following the MAC access control
mechanism is similar to the library example where my aunt borrowed a
book from the library. The book is the object or the resource, and my aunt
and I are the subjects. The library may enforce a policy that library card
holders (like my aunt) have higher clearance than nonholders (like me).
Moreover, the books may have different classifications. For example, a
manuscript may have higher classification than a fiction book. Based on
the subject clearance and object classification, the library can enforce
stringent policies. Similar policies are generally enforced in a MAC sys-
tem. Things become a little more complicated than above as there can be
write policies, read policies, and so on. Generally a lattice of security la-
bels is formed which determine the unidirectional information flow. There-
fore, these types of access control mechanisms are also called Lattice
Based Access Control (LBAC) [76, 77]. Depending on the nature of the
lattice, the one-directional information flow enforced by MAC can be ap-
plied for confidentiality, integrity, or a combination of them. There is also
variation of MAC schemes where the unidirectional information flow is
partly relaxed to achieve selective downgrading of information or for

70 5 Grid Authorization Systems

environments where security clearances and classification becomes very
important for accessing objects or resources.

Discretionary Access Control (DAC)

In Discretionary Access Control (DAC) mechanisms [73], the owner or the
creator of the object has the discretionary authority over who else can ac-
cess the object. In the book dilemma that I had, Bob held the discretionary
right to allow or disallow me from borrowing his book. In real life, such
access controls exist everywhere, from files in operating systems to invit-
ing people to marriage parties. Since the earliest formulation of DAC sev-
eral variations of the DAC policies had been developed, which are particu-
larly concerned about how the owner’s discretionary power can be
delegated to other users, and how access can be revoked. Based on the
research, several types of DAC mechanisms are possible:

• Strict DAC, where the owner is the only one who has discre-
tionary authority to grant access to an object or resource and the
ownership cannot be transferred. For example, in a strict DAC
scenario, Bob is the only person to grant me the access to his
book and in no way can he delegate the responsibility to any-
one.

• In a Liberal DAC scenario, the owner can delegate responsibil-
ity for granting access to an object to other users. There can be
different levels of delegation. For example, there can only be
one level of delegation where Bob delegates the responsibility
for granting access to his book to Alice. However, Alice does
not have the authority to further delegate. However, there can be
multi-level delegation. As mentioned in Chap. 4, delegation as-
sumes significant importance in a grid scenario.

• DAC with a change of ownership allows a user to transfer
ownership of an object to another user. This is similar to Bob
selling his book to me. After that it is my responsibility to grant
rights and delegate authority to other users.

Role Based Access Control (RBAC)

Role Based Access Control (RBAC) [75] after its definition and initiation
received enormous attention from the security community. In RBAC, per-
missions are associated with roles (see Fig. 5.2), and users are made mem-
bers of appropriate roles thereby acquiring the roles’ permissions. This

integrity applications [72]. MAC schemes are generally used in high security

5.1 Introduction 71

greatly simplifies the management of permissions. Roles can be created for
the various job functions in an organization and users are then assigned
roles based on their responsibilities and qualifications. Users can be easily
reassigned from one role to another. Roles can be granted based on new
permissions as new applications and systems are incorporated, and permis-
sions can be revoked from roles when needed. In the book dilemma that I
had, the library may have different roles based on the level of donation
own pays, and there may be different permissions assigned to each role.

Fig. 5.2. Role based access control

An important characteristic of RBAC is that by itself it is policy neu-
tral. RBAC is a mechanism of articulating policies rather than embodying
a particular security policy (such as unidirectional information flow in a
lattice). RBAC is a scalable and flexible mechanism for articulating access
control policies. It is scalable, as the number of associations compared to a
typical user to permissions mapping is less, and it is flexible as Sandhu et al.

system. They have shown that by tuning the different components RBAC
can be converted to different forms of DAC and MAC access mechanisms.

[78] has shown that DAC and MAC are different manifestations of the RBAC

72 5 Grid Authorization Systems

Fig. 5.3. General certificate based push model

5.1.2 Push vs. Pull Authorizations

In the last subsection we discussed the different types of access control
models. There are also different ways of authorizing a user to a resource.
Let us look at the different type of authorizations based on my attempt to
access the books of my company library. Based on my credentials, which
are my employee identification, my years of experience, my qualifications,
and my expertise I have been issued a library card. The library card speci-
fies my name, my access to the certain library room (there are many), and
the validity period of the library card. The information is then signed by
me and then sealed by the manager authorizing my entry to a particular li-
brary room. Once I have the card, I can access the library room without
anyone authorizing my identity again. Once I need to access the resources
of that room of the library, I swipe my card and access the resources.
These types of authorization systems where authorization credentials are
“pushed” are called push based authorization systems. Push based authori-
zation systems are pretty common in practice. All certification based sys-

5.1 Introduction 73

tems employ this mechanism. A general certificate based push model is
shown in Fig. 5.3. In such a mechanism, there exists a certificate generator
who checks the user’s credentials and generates a certificate so that the
user can access the resource. The access controller allows access to the re-
source based on the certificate validity.

Instead of generating the library card, if the library authorities had al-
lowed me to access the library resources through my employee card, then
it would have been a classic case of “pull” model. In the pull model, the
users provide the minimum credentials to the access controller and it is the
responsibility of the controller to check the validity of the user based on
the policies of the system. The pull model is also quite widely used in dif-
ferent authorization systems. The file systems in different operating sys-
tems employ pull mechanisms, where the user provides their minimum
credentials, and the access policies corresponding to the user are “pulled”
by the operating system. Based on the policies, the operating system either
allows or disallows the user to access the resources. Figure 5.4 illustrates
the pull model, where the user supplies the minimum credentials like the
username, password, and the controller makes the access decision based on
the user policies pulled from the database.

Fig. 5.4. A simple pull based authorization system

74 5 Grid Authorization Systems

As has been mentioned, both these mechanisms are very popular.
However, which authorization system should be used at what time? To an-
swer this question, a comparison based on the following parameters is pro-
vided: scalability, flexibility, usability, and revocation.

• Scalability: Generally, push based mechanisms are considered to
be more scalable than the pull based mechanism. This is because in
the former there is a decoupling between the certificate generator
and the access controller. Therefore, the two operations can take
place at two different times. On the other hand, in a pull based
mechanism the access controller itself checks the database and
grants access to the user based on the user policies. This may limit
the scalability of the system in many cases.

• Usability: Another parameter that is generally considered in case
of authorization systems is how user friendly the system is. Here
the pull based mechanisms are better as the users do not have to
obtain certificates from the certificate generator and it is the access
controller’s responsibility to grant access to the user.

• Multiple Stakeholders: In many cases, there may be multiple
stakeholders involved for the resources. It may then be scalable to
ask the users to get the certificates from the stakeholders before
granting access to the resources. However, this is done at the price
of loss of usability of the system. As we will see in our subsequent
discussions, though both Akenti and VOMS involve multiple
stakeholders, Akenti uses a pull based mechanism while VOMS
uses a push based mechanism.

• Revocation: Another concern for the push based mechanism is the
revocation policies. Generally, this is obtained through expiration
time provided in the certificate, after which the certificate is con-
sidered to be invalid. However, there is a time for which a com-
promised user may still be able to access the resources. This is
generally a very big concern for extremely secure systems.

5.2 Characteristics of Grid Authorization Systems

After having discussed the different generic access control and authoriza-
tion mechanisms, let us now try to understand the authorization require-
ments of a grid computing system. To understand the scope of the prob-
lem, let us look at the library example a little differently. The library not
only contains books of different languages and areas, but also CDs, DVDs,

5.2 Characteristics of Grid Authorization Systems 75

Playstations, and others. The library cards are issued to library users, based
on the subscription they pay, which may vary depending on their usage
and interests. Therefore, a user interested in reading French romantic lit-
erature may be charged differently from a user who is interested only in
Playstations. Moreover, the different parts of the library may be owned by
different people, even multiple people, i.e., there may be multiple stake-
holders for the resources of the library. If we were to design an authoriza-
tion system for such a library, the first thing we need to consider is that the
system does not have too much overhead. In other words, there is a need to
authorize users; however there should not be a long queue in front of the
library. Therefore, scalability is one of the primary concerns for designing
such a system. Secondly, one has to keep in mind the effect in case the sys-
tem is tampered. In that case, a user may be given more or less authoriza-
tion than what the user deserves. Therefore, security is surely a very im-
portant concern. Moreover, it is possible that after a user has been
authorized and allowed to enter, the authorities get the information that the
user is a thief. Therefore, there should be a mechanism to deny him/her ac-
cess to the resources, once such information is available. In other words,
there should be means for revocation of the user authorization. Lastly, if
different stakeholders in the library employ different authorization sys-
tems, is the current system interoperable with them? Therefore, there is a
need for inter-operability of the authorization mechanisms.

As most readers would have guessed by now, there is an uncanny
similarity between the library example provided above and a grid system.
In a grid system, there is a set of heterogeneous resources, having one or
more stakeholders. Similar to the above example, there also may be differ-
ent policies, systems across the multiple resources and any authorization
system should be able to operate seamlessly. Based on the above argument
let us look at the different characteristics we feel are needed in a grid au-
thorization system, viz. scalability, security, revocation, and inter-
operability.

5.2.1 Scalability Issues

Scalability is one of the most important and desirable characteristics of a
grid authorization system. A system is supposed to be scalable if there is
no perceived difference when the system is scaled up in terms of entities
accessing the system. There are two aspects to grid scalability, one is based
on the number of users, and the other is based on the amount of grid dy-
namism. The first one is straightforward – the grid authorization system

76 5 Grid Authorization Systems

should perform well when the number of users increases. In addition, grid
systems have an inherent dynamism embedded into them. In a grid system,
users may join or leave the grid system quite frequently. Furthermore, re-
sources may be added to or removed from the grid infrastructure in an on
demand basis. These aspects of dynamisms have a significant effect on the
design of the grid authorization system. Based on the two different types of
scalability parameters, there are two different types of scalability: perform-
ance scalability and administrative scalability.

• Performance Scalability: Number of users is the primary measure
for this type of scalability. The authorization system should not be
a bottleneck in the grid infrastructure and should scale even if the
number of users increase significantly. This aspect has a profound
influence on choosing either the push based or pull based model
for authorization.

• Administrative Scalability: If the system is highly dynamic, then
administrative scalability assumes enormous importance. A rule
based authorization which maps the user to the resources may be
simple to implement, however it does not provide administrative
scalability, as there is a need to change the tables every time a user
is added or deleted from the system. Centralized authorization
mechanisms are generally used to tackle administrative scalability
issues.

5.2.2 Security Issues

Like any other system, one has to analyze the security vulnerabilities exist-
ing in grid authorization systems. If an adversary hacks into the grid au-
thorization system, one has to understand the effect of such a malicious ac-
tivity. Two types of compromises are possible in a grid authorization
system: user level and system level. In the former case, a user is compro-
mised allowing the adversary to use the grid as the user would. The second
type of compromise is where the authorization system is taken over by the
adversary.

• User Level: In this type of compromise, an adversary poses as a

user to the grid system. Once having gained access into the grid
system, the malicious user can create havoc by even generating
denial-of-service attacks. More details about this are provided in
Chap. 6. The adversary could have gained access into the sys-
tem by tampering into the user credentials. Therefore, the au-

5.2 Characteristics of Grid Authorization Systems 77

thorization systems should provide secure credentials using the
available standards and the communication to the user should be
done through secure mechanisms like the SSL. To prevent rep-
lication attacks, where the adversary sends an old credential,
time stamp should be added to the communications between the
authorization system and the users.

• System Level: In case of centralized authorization systems, it is
sometimes easy to compromise the authorization system rather
than individual users. The adversary can employ two types of
techniques to compromise an authorization server. Firstly,
he/she can try to gain access to the server faking an administra-
tive account. After getting access, the adversary can do all the
things with the authorization system that an administrator is au-
thorized to do. Secondly, the adversary can employ Denial-of-
Service (DoS) attacks on the authorization system. Different
DoS techniques are discussed in Chap. 6. If authorization is
mandatory to access the grid system, a DoS attack on a central-
ized grid authorization system will lead to a DoS attack on the
grid system as a whole.

5.2.3 Revocation Issues

Another important issue that needs to be considered before designing a
grid authorization system is the issue of revocation of authorization. Con-
sider the following scenario: A user logs into the grid system and is author-
ized to access the resources of the system. After some time, it is learnt that
the user has been compromised. In this case, the user should be denied ac-
cess to the resources. Two mechanisms are generally designed to tackle
this problem.

• In the first type or active mechanism, there is a communication be-

tween the user and the receiver access control mechanism based on
which the user is denied further access to the resource. This type of
mechanism can operate very quickly and the revocation can happen
as soon as the compromise is detected. Generally this is done
through the use of Certificate Revocation Lists (CRL) issued by the
authority, and the verifying authority or the access controller needs
to check whether a CRL exists for the credentials send by the user.
There are two types of overheads associated with such systems.
There is an overhead of generating and sending the CRLs to the
access controller. However, the more significant overhead is

78 5 Grid Authorization Systems

a CRL associated with each user credential. This may lead to a loss
of scalability, especially is there are a huge number of users in the
grid system.

• The other type of revocation mechanism is more passive and is
done through expiration times provided in most certificates. During
the generation of certificates, an expiration time is provided after
which the certificate is deemed invalid. In terms of scalability,
these types of passive revocation mechanisms are better than their
active counterparts. However, the scalability comes at a cost. Let
us assume that the certificate is generated at time T and the expira-
tion time is (T+t). Now the user is compromised just after time T.
Then for a period of t, the adversary is capable of compromising
the system further. If the time t is small, then the system is more
secure. However, smaller t also indicates that there are more num-
ber of authorizations required, reducing the scalability of the sys-
tem. Therefore, there is a trade-off between the scalability and se-
curity, which is tuned by the choice of the time t. The above
problem is illustrated in Fig. 5.5.

Fig. 5.5. Illustration of the expiration time problem

because each time the access controller needs to see whether there is

5.2 Characteristics of Grid Authorization Systems 79

5.2.4 Inter-operability Issues

A grid system is characterized by heterogeneity not only at the resource
level but also at the policy level. Therefore, the authorization systems
should be inter-operable across multiple systems having heterogeneous
policies. There may be issues of multiple authorization systems, as well as
multiple communications protocols, and algorithms. One of the ways that
most systems try to tackle inter-operability issues is through standardiza-
tion. Standards are evolving for the grid systems, so as we discuss the dif-
ferent authorization systems we will talk about standards that have been
employed. We will also make recommendations about the possible stan-
dards that may play a part in making the inter-operability work in grid au-
thorization systems.

Fig. 5.6. Different types of Grid authorization systems

5.2.5 Grid Authorization Systems

We have discussed the characteristics of the grid authorization systems. In
this section, we will discuss some authorization systems that have been

80 5 Grid Authorization Systems

used in popular grid implementations and other distributed systems. As il-
lustrated in Fig. 5.6, the grid authorization systems can be mainly divided
into two categories: VO level systems and resource level systems. Virtual
organization or VO level systems have a centralized authorization system
which provides credentials for the users to access the resources. Resource
level authorization systems, on the other hand, allow the users to access the
resources based on the credentials presented by the users.

Examples of VO level grid authorization systems are Community Au-
thorization Service (CAS) [79], Virtual Organization Membership Service
(VOMS) [80], and Enterprise Authorization and Licensing System (EALS)
[81]. Examples of resource level grid authorization systems are Gridmap,
Akenti [82], and Privilege and Role Management Infrastructure Standards
(PERMIS) [83]. In the next few sections we will discuss in detail these dif-
ferent systems.

5.3 VO Level Authorization Systems

VO level grid authorization systems are centralized authorization for an
entire Virtual Organization (VO). These types of systems are necessitated
by the presence of a VO which has a set of users, and several Resource
Providers (RP) who own the resources to be used by the users of the VO.
Whenever a user wants to access certain resources owned by a RP, he/she
obtains a credential from the authorization system which allows certain
rights to the users. The user presents the credentials to the resource to gain
access to the resource. In this type of system, the resources hold the final
right in allowing or denying the access to the users.

5.3.1 Community Authorization Service (CAS)

Community Authorization Service (CAS) has been developed as part of
the Globus toolkit. CAS looks at the problem of scalable representation
and enforcement of access policies within distributed virtual communities.
Such communities may comprise of many communities, each participating
as a resource provider and/or resource consumer. The problem of authori-
zation is handled using a trusted third party called the Community Au-
thorization Service (CAS) server which is responsible for managing the
policies and governing access to the community’s resources.

5.3 VO Level Authorization Systems 81

The Community authorization service can be viewed as a service which
has been given the authority by the community to authorize users on its
behalf. The CAS makes the implicit assumption that the users of the com-
munity and the resources agree to have the CAS as the authorization ser-
vice. The CAS server, acting on the community’s behalf, provides capa-
bilities to users based on the policies maintained at the CAS policy
database. The users use the capabilities provided to them by CAS and
show them to the resource server to grant them access to the resources
based on their capabilities. The resources may have their own local access
control policy. Let us assume that the authority granted by the resource
provider to the community is C. Let the capability provided to the user by
the CAS server be U, and the resource allows R restrictions. Then the ef-
fective capability of the user on the resource is RUC ∩∩ . The process
is described in Fig. 5.7.

Fig. 5.7. Effective capability in case of CAS

The different steps involved to authorize a user in CAS are as fol-
lows:

1. Resource – Community Interaction: In this step the resource pro-
vider provides certain capabilities to the community to its resources.

82 5 Grid Authorization Systems

For example, the resource provider allows “read” actions to 30% of
its resources to the community. These policies are then put into the
CAS policy database.

2. Community — User Interaction: In this step, the user is granted
certain capabilities by the community. However, it is to be noted here
that the community cannot grant more capabilities to the user than
what is provided to it by the resource providers. In the previous ex-
ample, the community can only grant “read” access to the set of the
resources of the resource provider, nothing else.

 The first step is implemented by allowing an individual within the
community to acquire an administrative role. Once the role is acquired, the
administrator can then enroll users, resources, and identify policies which
connect users and the resources based on the capabilities provided to the
community by the resource providers.

Fig. 5.8. Overview of CAS

The community - user interaction is achieved by the interaction be-
tween the CAS server and the policies stored in the policy database based
on the policies granted to the community by the resource providers. The
different components involved in achieving this step are:

5.3 VO Level Authorization Systems 83

• CAS Database: The policy database contains entries about the dif-
ferent users contained in different user groups, resources contained
within resource groups, and actions contained within action groups,
and a set of user access policies. The policy statements define
which users can access which resource or resource groups, and
what are the permissions granted to the user. The permissions are
denoted by a set of actions or action group and a service type. The
action denotes a type of action like “read,” “write,” “execute,” etc.,
which the user can perform on a resource or a resource group. Ser-
vice type defines a namespace in which the action is defined.

• CAS Server: CAS server’s responsibility is to get the user request,
check the validity of the user credentials, and generate the user ca-
pabilities based on the policies stored in the policy database. The
policies are granted based on restriction policies defined through
the extensions of X.509 certificates.

 Figure 5.8 illustrates a typical use of CAS for authorization. A user

may want to access certain resource in the grid owned by the community.
The user sends a request to the CAS server for a capability to access
the resource, and presents a set of credentials to the CAS server to identify
himself/herself. The CAS server delegates an appropriate capability to the
user based on the policies stored in the policy database. The user then re-
quests the resource with the capabilities given to it by the CAS. The

based on the local policies of the resource for the user. For example, a user
may have the capability to access a particular resource, however the re-
source may decide to temporarily ban the user from accessing based on
certain condition. Then the user will not be able to access the resource
though he/she possesses the capabilities from the CAS. Therefore, in a
CAS authorization system the resource is the ultimate authority to decide
which user can access its resources, and CAS is a facilitator in the process.

Based on the discussions made above, let us try to discuss applicabil-
ity, and several other characteristics of CAS.

Applicability of CAS

From the inherent design of CAS, it is clear that CAS makes an assump-
tion that there is a user community, a set of resource providers, and a set

words, it is a virtual organization type of setup, where the resources
affiliate their systems to the greater community of users who use the

resource server then allows or disallows the user to access the resource

of users, and there are interactions among them based on Fig. 5.8. In other

84 5 Grid Authorization Systems

community and others will greatly benefit from the CAS authorization sys-
tem. There are case studies like the Earth System Grid (ESG) [84], which
is a distributed network of storage systems containing environmental
data. However, to make CAS viable for the enterprise, several con-
siderations need to be made:

• Policies: Enterprises not only have compute intensive, batch jobs

but a plethora of other applications and complicated policy mecha-
nisms. Policies may not be dependent on simple actions and re-
sources, but a host of other parameters like time, events (possibly
through message queues), authentication mechanisms, licenses, etc.
Therefore, more sophisticated policies need to be developed to ca-
ter to the enterprise community.

• Integration: Many enterprises already have different authorization
and access control mechanisms in place. Enterprises use Citrix®,
IBM®, or Microsoft® products for access control purposes. Follow-
ing popular standards like XACML (see the appendix for details)
and integrating with the different enterprise products will help
them bridge the gap.

• Push Based model: This requires the applications to interact with
the authorization system, in this case CAS, and get the capabilities
to access the resources. Application wrappers need to be written to
make this process transparent to the users.

Scalability

As mentioned in Sect. 5.2.1, there are two types of scalability: perform-
ance scalability and administrative scalability. Since CAS has been de-
signed for the scientific community, where the number of users is both
large and dynamic, the scalability issues have primary importance in the
design of the CAS system. In both counts of scalability, CAS scores pretty
high. In case of performance scalability, since CAS uses a push model, it
is inherently scalable, because the resources do not need to check the users
individually which had to be done in case of a pull-based models. In

is only a single place that the administrators need to update in case of
user joining the community, or leaving the community. However, there
is a problem of single point of failure, as the whole grid system will
become invalid if the CAS fails. Some type of replication can be carried
out to make the system robust. Another solution that can be employed is a

case of administrative scalability also, CAS performs well because there

resources for compute intensive jobs. Such communities like the e-sciences

5.3 VO Level Authorization Systems 85

hierarchical CAS system, so that even if one system fails the effect is lim-
ited to a particular level in the hierarchy.

Security

Let us now consider the cases when a malicious adversary tries to attack
the CAS system. The adversary can do this in two ways: It can masquerade
as a valid user/administrator and get into the system or it can launch a de-
nial-of-service attack on the CAS system.

• Masquerade Attack: In this type of attack the adversary masquer-

ades as a valid user/administrator and compromises the system. A
GSI credential based authentication mechanism is used to prevent
such an attack. Therefore, it is difficult for an adversary to launch a
masquerade attack. If an adversary can break into a CAS system as
an administrator, then it can provide more access to certain users,
and less access to certain other users based on adversary’s discre-
tion. The first problem is not significant if some resource level
checks exist, as the resource will not allow the user to get more re-
sources than the CAS is allowed to authorize. However, the second
problem is more significant, as the CAS can deny access to the
user causing an effect similar to denial-of-service.

• Denial-of-Service (DoS): A DoS attack on the CAS is possible by
sending a lot of authorization requests to the CAS. Each request
may flow over a SSL channel which authenticates the user. How-
ever, that does not stop a malicious user from sending thousands of
connection requests per second which can easily bring the CAS
server down. Once the CAS server is down, the grid system is
paralyzed. Therefore, techniques such as ingress filtering and oth-
ers need to be employed to prevent such an attack from becoming a
reality. More details about DoS attacks and solutions are provided
in Chap. 6.

Revocation Mechanism

CAS does not provide explicit revocation mechanisms. If a user credential
is compromised then the user can be removed from the CAS database and
can be denied credential once the current set of credential expires. How-
ever, any credentials previously delegated to the user will be honored,
Therefore, if an adversary is able to gain an assertion from the CAS sys-
tem, then it is free to use it as long as the credentials are valid. The only
way to prevent such an adversary from creating havoc in the system is to

86 5 Grid Authorization Systems

have local access control mechanisms in the local resources. The issued
credentials have a limited lifetime and generally expire rapidly enough for
most applications.

Inter-operability Issues

As IT systems have become cluttered with many products, services, proc-
esses, mostly from different vendors, therefore inter-operability is a major
issue if any system is used within an enterprise. Consider a scenario where
there are multiple authorization systems. Will CAS be applicable there?
Currently, CAS is tied strongly to the Globus toolkit and uses GSI creden-
tials for authentication purposes. Many of the enterprise systems use non-
GSI credentials. Moreover, standards like BPEL [85], Web services stan-
dards are liberally used in enterprises. Therefore, one way to make CAS
acceptable across enterprises would be standardization. Recent efforts sug-
gest that researchers and developers of CAS are looking at this issue. One
significant step has been to integrate CAS with SAML. Efforts have also
been undertaken to make CAS SAML 2.0 compliant. Furthermore, there
are thoughts to use XACML as a means for expressing policies. Details of
different Web services security standards can be found in the appendix.

Fig. 5.9. High level view of VOMS

5.3 VO Level Authorization Systems 87

5.3.2 Virtual Organization Membership Service (VOMS)

VOMS is the authorization system developed for the European Data Grid
(EDG) as part of the DataGrid and DataTag projects. VOMS and CAS are
similar in many respects especially the community they cater to. Both
VOMS and CAS cater to the scientific community where a Virtual Organi-
zation (VO) is defined as a community of users, institutions, and resources
(if any) in the same administrative domain. Moreover, there are Resource

In a VOMS system, a user may be a member of as many VOs as pos-

sible, and each VO can be a complex structure with groups and subgroups
in order to clearly divide its users according to their tasks. A user, both at
VO and group level, may be characterized by any number of roles and ca-
pabilities; moreover roles and capabilities can be granted to the user in-
definitely or on a scheduled time basis. As mentioned in Fig. 5.9, a user
gets user certificate from the Certificate Authority, which is submitted to
the VOMS systems. As shown in the figure, a user may get credentials
from multiple VOMS systems, and present those credentials to the re-
sources to gain access to the resources.

Since there are a lot of similarities between CAS and VOMS, there-
fore most of features including characteristics, applicability, security vul-
nerabilities, and inter-operability are similar. We will not repeat those in
this discussion. Readers are advised to go through the CAS discussion for
the same. However, we will mention some unique characteristics of
VOMS, which make the system different from the CAS system. Following
are some of the unique features:

• Attribute Certificates: VOMS uses a short lived credential which

includes user information, server information, and the validity pe-
riod. Later versions of VOMS would include the Attribute Certifi-
cate (AC), which is actually an Internet standard. VOMS puts the
AC in the noncritical extension of the certificate that the user gen-
erates, so that it is compatible with “non-VOMS” system. The use
of ACs makes VOMS quite compatible with other authorization
systems like Akenti.

• Multiple Roles: VOMS allows a role based mechanism, where a
user can take up multiple roles in multiple VOs.

Providers (RP) who offer resources like CPU, network, storage, etc. to
different VOs based on certain understandings. Similar to CAS, VOMS has
a policy database where the authorization policies are stored.

88 5 Grid Authorization Systems

5.3.3 Enterprise Authorization and Licensing Service (EALS)

Enterprise Authorization and Licensing Service (EALS) has been devel-
oped in Software Engineering Technology Labs (SETLabs) of Infosys ®
Technologies in Bangalore (India). The EALS system has been built with
the focus on enterprises and authorization required to cater to the users
there. The design of EALS is based on three principles which makes it dif-
ferent from CAS and VOMS system:

• Pull Based: Unlike CAS or VOMS, EALS is based on the pull
based model where the credentials are pulled from the EALS sys-
tem. Since EALS has been designed to work with a wide range of
middle and grid job submission systems, a system developed on a
pull based model fits nicely to the single sign on model that most
enterprises adopt. Moreover, pull based models require less overhead
from the applications, as the system uses redirection mechanisms
to call the appropriate services.

• Integration with Standards: One of the design decisions of
EALS was to use as much standards as possible so that it can cater
to a wide range of systems, as long as the systems follow the stan-
dards. Therefore, consciously SAML had been used for transfer-
ring authorization credentials.

• Licensing: Unlike e-sciences applications, applications used in en-
terprises have strict licensing requirements. Therefore, the user
policies need to be integrated with licensing policies of the applica-
tions.

• Role Based: EALS allows access to certain resource based on the
role a user has, and the permission the role has for the set of re-
sources.

• Password Based: Though PKI based systems provide very good
security, most of the enterprises still either use password based sys-
tems or Kerberos for authentication purposes. The EALS system
does not assume a PKI infrastructure and can work with password
based system equally effectively. EALS also includes an authenti-
cation subsystem, however systems may decide to not use it, and
continue to use the enterprises’ authentication mechanism.

Figure 5.10 shows the high level view of the EALS authentication

and authorization system. The authentication and authorization systems are
de-coupled, so that any other system can be used instead of the EALS au-
thenticator. The user submits the job to the Access System (AS). The AS is
a generalized term for all the systems including a browser based job sub-

5.3 VO Level Authorization Systems 89

mission engine or a customized thick client. The request gets redirected to
the EALS authenticator which checks the credentials appropriate for the
system. The authenticator generates a SAML authentication assertion gen-
erating a token mentioning that the user has been authenticated. The ad-
vantage of using SAML is that any system which can generate SAML au-
thentication assertions can be integrated with this system. The job with the
token then reaches the Policy Enforcement Point (PEP) which checks with
the EALS authorizer for the policy pertaining to the user. EALS authorizer
checks with the policy database, which includes the licensing as well as
user policies. Say a user X wants to run an application A. The user X can
access resources R1, R2, and R3. The application A is installed in resource
R1, R2, R4 (fixed machine license). The authorizer will respond that the
user (who is already authenticated) can access resource R1 and R2 through
application A. The PEP passes the information to the middleware which
can be PBS, CONDOR, or any other open source grid middleware. The in-
formation can either be passed as a SAML, if the middleware is capable of
understanding, or a restricted view can be given to the middleware on
which it can make scheduling decisions.

Fig. 5.10. EALS authorization and authentication system

The EALS system is geared towards achieving integration with enter-
prise level software and middleware. However, there may be a question of
performance and scalability of the EALS system compared to the CAS and
VOMS systems. Since there are multiple levels of redirections, there is an

90 5 Grid Authorization Systems

initial latency involved. Moreover, the pull based model reduces the scala-

within one enterprise and for a select set of users. Therefore, inter-
operability with the enterprise middleware is of primary importance.

5.4 Resource Level Authorization Systems

Unlike the VO level authorization systems, which provide a consolidated
authorization service for the virtual organization, the resource level au-
thorization systems implement the decision to authorize the access to a set
of resources. Therefore, VO level and resource level authorization systems
look at two different aspects of the grid authorization. As will be shown
later in this chapter, the two authorization systems complement each other,
and can be implemented together to provide a holistic authorization solu-
tion. The different systems that will be discussed as part of the resource
level authorization systems are Akenti, Privilege and Role Management In-
frastructure Standards Validation (PERMIS), and GridMap system.

5.4.1 Akenti

Akenti, developed by Lawrence Berkeley National Laboratory (LBNL), is
an example of resource level authorization. Though developed with Web
resources in mind, the concept was later extended to include resources in a
grid computing VO setup. The Akenti model consists of resources, which
may include Web resources, distributed grid resources that are being ac-
cessed via a resource gateway (or a Policy Enforcement Point or PEP) by a
set of users who are the part of the virtual organization. The model also as-
sumes that each resource may have multiple stakeholders having a set of
access constraints on the set of resources. The Akenti system allows the
users to access the resource(s) based on the identity of the users and the
access policy set on the resources by the resource stakeholders. The stake-
holders express their access constraints through a set of self-signed certifi-
cates which are known to be stored in a secure remote server. The certifi-
cates express the attributes a user must have to access the resources. At the
time of resource access, the resource gatekeeper or the PEP asks the
Akenti server what access the user has to the resource. The Akenti server
finds all the relevant certificates, verifies the certificates, and the returns
the decision to grant the access to the user.

bility of the system if the policies are complicated and take some time to
parse and understand. However, most of the enterprise grid requirements are

5.4 Resource Level Authorization Systems 91

Fig. 5.11. A high level view of the Akenti authorization system

Figure 5.11 shows a high level view of the Akenti authorization sys-
tem. To access a certain resource, a user sends a request to the resource
gateway or the Policy Enforcement Point (PEP) with the user credentials
or the user identity certificates. The PEP asks the Akenti server about the
decision to grant access to the user. The Akenti searches for the different
certificates of the stakeholders which include the policy certificates and the
use condition certificates, which may be in remote locations. Once the cer-
tificates are obtained, the Akenti server verifies them and grants the user
the access to the resource which is enforced by the PEP or the resource
gatekeeper.

Akenti assumes that all the certificates follow the X.509 specification,
and SSL/TLS channels, are used to authenticate a user who wants to access
the resource. Policy certificates are created by unrelated stakeholders from
multiple domains, and the access to a certain resources is determined by
the combined policy on the resource by the different stakeholders. As is
clear from the discussion, Akenti uses a classical pull model. The user pre-
sents the credentials to Akenti, and it “pulls” the different certificates from
remote locations and makes the access decision.

92 5 Grid Authorization Systems

Akenti policies are expressed in XML and stored in three types of
signed certificates: policy certificates, which specify the sources of author-
ity for the resources; use condition certificates, which specify the con-
straints that control the access to a resource; and attribute certificates
which specify the attributes to the users that are needed to satisfy the use
conditions. The connection between the different certificates is provided in
Fig. 5.12.

Let us look at the different certificates in detail:

• Policy Certificates: Policy certificates are signed certificates,

generally located with the resources. It contains information re-
garding the stakeholders and the location of the use-condition
certificates of the stakeholders for the resource. These certifi-
cates are signed by CAs which are used for validation by the
Akenti policy engine. A policy certificate may also contain a
list of URLs where to search for the attribute certificates. Dif-
ferent resource groups controlled by Akenti authorization sys-
tem have a single policy certificate, which is generally stored in
a known and secure place.

• Use Condition Certificates: The second type of certificate
used by the Akenti authorization system is the use-condition
certificate. Each stakeholder group for a resource creates one or
multiple use-condition certificates for the resources. A use-
condition certificate consists of a set of constraints that deter-
mine the rights a user must have to access a set of resources.
Akenti use-condition certificates allow the use of a X.509 dis-
tinguished name as an attribute. It also allows resource or real-
time attributes to be specified.

• Attribute Certificates: Attribute certificates contain an attrib-
ute-value pair and the principle to which the attribute applies.
The attribute certificates are signed by the attribute authorities
that have been specified in the use-condition certificate. They
generally apply to a single resource, or a group of resource or
resource realm.

To determine whether a user can be granted access to the resource,

the Akenti policy engine finds all the use-conditions by searching in the
URLs specified in the policy certificates and verifying the issuer and sig-
nature on each certificate. If the use-condition certificate cannot be found
for each stakeholder, access to the resource is denied. Attribute certificates

5.4 Resource Level Authorization Systems 93

are searched by following the URLs specified in either the policy certifi-
cate or the use-condition certificate. Akenti caches all the certificates so
that the search latency is reduced. The lifetime of the cached certificates is
set in the policy certificate for the resource.

Let us now focus on the different characteristics and applicability of
the Akenti system.

Fig. 5.12. Relationship between the different certificates

Comments on Akenti

Akenti was initially designed to control Web resources, where there are
multiple stakeholders for the resources and there are lots of users trying to
access the resources. With the advent of grid and collaborative computing,
Akenti has been seen as an important alternative to different centralized
VO based systems like CAS, VOMS, etc. Akenti does provide flexibility
as the use condition certificates can be changed over time. Let us look at
the different characteristics and applicability of the Akenti system.

94 5 Grid Authorization Systems

• Applicability: Akenti has been designed for providing access to
the Web sites and Web resources. In a VO sense, a centralized pol-
icy database with a CAS and VOMS system does suffice most of
the times. If there are resource specific policies, then that can be
implemented at the local resource level. Akenti, on the other hand,
can be applied in cases where there is an enterprise level grid hav-
ing multiple enterprises or stakeholders managing the grid. Then,
an Akenti type of system will have a lot of relevance. An integra-
tion of VO level systems and Akenti can also be thought of. How-
ever, in its current form Akenti cannot be directly used in an enter-
prise scenario because of lack of support for upcoming standards
like SAML, and lack of support for more sophisticated enterprise
policies in terms of different types of licenses and so on.

• Scalability: Akenti uses a pull model, therefore there is a loss of
scalability when the number of users is large, as the Akenti system
checks the policies and makes an access decision every time. How-
ever, from the administrators’ point of view the solution Akenti is
scalable as attribute certificates, policy certificates, and use condi-
tion certificates are decoupled and can be changed without affect-
ing the main system.

• Security and Revocation: Akenti security characteristics are simi-
lar to any other authorization system, and do not introduce any ex-
tra security vulnerability. However, the certificates need to be se-
curely stored. Compared to CAS and VOMS, since Akenti applies
a pull based mechanism, revocation is faster as changes made to
the use-conditions are effected immediately.

5.4.2 Privilege and Role Management Infrastructure
Standards Validation (PERMIS) Project

The Privilege and Role Management Infrastructure Standards Validation
(PERMIS) Project is a European Commission funded project which has
members from Barcelona (Spain), Bologna (Italy), and Salford (UK). For
the pilot phase, three different business problems in the above mentioned
three cities motivated the need for the PERMIS system. The problem in
Bologna was to allow the architects to download road-maps of the city,
and update them. In Barcelona, the problem was to allow the car hire com-
panies to have online access to the parking ticket database, and to see
whether a ticket has been issued, and send the information of the driver to
the city so that a fine can be levied in case of violation. In Salford, the
problem was to have an online tender application, where only authorized

5.4 Resource Level Authorization Systems 95

users can submit tenders. As is clear from the above problems, there is a
common thread of authorization flowing through each of them, and the
PERMIS project resulted in the creation of a role based X.509 privilege
management infrastructure that caters to these different applications.

Figure 5.13 shows the high level view of the PERMIS Privilege Man-
agement Infrastructure (PMI). A user asks for a certain application or re-
source and makes a request to the resource gateway or the application
gateway. The PERMIS system does not make any assumption regarding
the authentication to be employed and leaves it to the domains to deploy
the authentication mechanisms. PERMIS assumes a Role Based Access
Control (RBAC) model, where each user is mapped to a role and the poli-
cies are assigned to the roles. The PERMIS PMI allows access to certain
resource based on the policies. PERMIS consists of PERMIS Authoriza-
tion Enforcement Point (AEF) and the Authorization Decision Point
(ADF). ADF contacts the LDAP to obtain the policies and make the au-
thorization decisions which it supplies to the AEF to enforce the decisions.

Fig. 5.13. Overview of the PERMIS PMI

The different components of the PERMIS PMI system are the au-
thorization policy and privilege allocator.

96 5 Grid Authorization Systems

• Authorization Policy: The authorization policy specifies who has
access to which resources under what conditions. The policy based
authorization allows the domain administrator to apply authoriza-
tion policy for the whole domain in a role based manner. As a pol-
icy language, PERMIS uses XML for policy specification. The
policy language specifies a set of subjects who are allowed to ac-
cess resources through the SubjectPolicy. The relationships be-
tween the different roles are specified in RoleHierarchyPolicy,
while SOAPolicy specifies which sources of authority (SOA) are al-
lowed to allocate the roles, and RoleAssignmentPolicy specifies the
policy for role assignment. ActionPolicy specifies the different ac-
tions the roles are allowed to perform on the resources like “open”
a file and so on. TargetPolicy and the TargetAccessPolicy connect
the roles, the target domains, and the actions they are allowed to
perform.

• Privilege Allocator (PA): The privilege allocator is a tool to allo-
cate privileges to users. Since PERMIS uses RBAC, PA allocates
roles to users in the form of Attribute Certificates (AC). To design
a PERMIS system, the first step would be to decide on the number
of the type of roles, and assign the users to the roles. The role as-
signment AC is signed by the Attribute Authority (AA) and hence
tamper resistant. The ACs are then stored in a LDAP server and
can be accessed publicly. Besides creating the attribute certificates
for the role assignment, authorization policy is also created. It is a
X.509 certificate consisting of the holder and issuer name as that of
the source of authority (SOA) and is signed by the SOA, and stored
also in the LDAP.

• PERMIS AEF and ADF: The PERMIS authorization enforce-
ment function and authorization decision function provide authori-
zation capabilities. AEF authenticates a user and requests the ADF
to make an authorization decision. The ADF accesses the LDAP
servers, gets the policies and the attribute certificates, and then
makes an authorization decisions based on the obtained informa-
tion. The interaction between AEF and ADF can happen through
four function calls, namely, initialize, getcreds, decision, and shut-
down. During the initialization call the AEF passes the name of the
trusted SOA and the list of URIs from where the ADF can get the
policy and role ACs. Decision calls are made to ask the ADF for
authorization decision based on all the policy and role ACs. Get-
creds are used to manage a session, where the AEF can specify the

5.4 Resource Level Authorization Systems 97

duration of the open session after which the credentials can be re-
freshed.

Both PERMIS and Akenti look at the same problem of providing au-

thorization in a distributed scenario. Architecturally, both are similar and
do seem to be identical in lot of respects. However, there are certain differ-
ences which we would like to point out here.

• Based on Policies: The use of attribute, policy, and use condition
certificates helps the Akenti system to work on hierarchical and dis-

cates. PERMIS on the other hand, has policy attribute certificate
which is stored in an LDAP server.

• Support for RBAC: PERMIS supports a classical RBAC model,
where users are mapped to roles and roles are mapped to permis-
sions. Akenti can support both DAC and RBAC models, where
principals can be given permissions or group memberships, and the
group attributes can be given permissions.

• Policy Decisions: In a PERMIS system, the ADF replies with a
“yes”/“no” Boolean decision. However, the AEF can ask the ADF
many times for multiple resources and actions. Akenti returns with
a capability certificate which mentions what the user is allowed to
do. PERMIS does not have the capability for such a capability cer-
tificate.

• Push vs. Pull: While Akenti works strictly in a pull model,
PERMIS can be configured to use either a pull or a push model.

The community authorization service has been used as an authoriza-

tion system for Globus. However, use of Security Assertions Markup Lan-
guage (SAML) allowed the integration of the Globus toolkit with PERMIS
authorization system. This case study not only demonstrates the integration
of Globus with PERMIS, but it also demonstrates the usefulness of stan-
dardization as a powerful tool for integration. In this case an important
standard like SAML had been used for this purpose.

Figure 5.14 shows how SAML can be used in case of authorization
purposes. Since SAML credentials can be used for both authentication and
authorization purposes, the SAML message can flow from the authentica-
tion system to the Policy Decision Point (PDP) before passing to the Policy

tributed policies. The assumptions of multiple stake holders for reso-
urces motivated the designers for the use of the three kinds of certifi-

98 5 Grid Authorization Systems

Enforcement Point (PEP). The PEP can then enforce the policy of whether
the user is allowed to access the set of resources or not.

PERMIS and Globus – A Case Study

Figure 5.15 shows the high level working of the PERMIS authorization
system on top of the Globus toolkit described in [86]. SAML is used for
transferring the access request from the container or the application gate-
way to the PERMIS PMI. The response is also packaged in the form of
SAML response to the application gateway which uses it to allow the users
from accessing the resources. It is to be noted that the PERMIS authoriza-
tion system uses the PKI based Globus authentication mechanism.

Fig. 5.14. Use of SAML in authorization

To make PERMIS system work with Globus, some extensions had to
be added to the SAML to make the system more efficient. Moreover,
PERMIS was modified to interact with Globus over SAML.

• Extensions to SAML: A set of extensions to SAML had been
proposed and used as part of the integration exercise. A standard

5.4 Resource Level Authorization Systems 99

SAML response contains the list of actions a particular user is al-
lowed. This is useful in case of delegation and authorization trans-
fer as in case of EALS. However, in case of a more direct sort of
interaction where a PEP is only interested in an access/denied sort
of answer, this may lead to a lot of overhead and hence ineffi-
ciency. A more concise version of SAML request/response had
been used to improve efficiency.

• Extensions to PERMIS: While the extensions to SAML were
mainly mandated by the need for efficiency, the extensions to
PERMIS were mandated by necessity. ADF was modified to pose
as a grid service so that the integration with the Globus toolkit be-
comes possible. Initially, PERMIS supported only LDAP distin-
guished names. However, to make the system more amenable to in-
tegration with different types of naming policies Uniform Resource
Identifier (URI) were used to target names, and policies were ex-
tended to support URI target identifiers.

Fig. 5.15. Grid resource access over SAML using PERMIS

100 5 Grid Authorization Systems

5.4.3 Authorization Using GridMap

This is the earliest authorization system used in Globus. Though more so-
phisticated systems like Community Authorization Service (CAS) and
other authorization systems discussed in this chapters have been devel-
oped, GridMap is still one of the most widely used authorization system is
Globus mainly due to its simplicity. In a GridMap system, the static poli-
cies of which user can access the resource and how is placed in each local
resource. The decision to grant access to a resource is based on the infor-
mation present in the GridMap file. As mentioned earlier, this authoriza-
tion system is simple to implement and does not require too much over-
head. However, lack of scalability really hampers the use of GridMap
system in a wide scale.

• Scalability: The main reason for the development of the CAS sys-
tem is the lack of scalability of the GripMap authorization model.
It scales very poorly in terms of administrative scalability. In a dy-
namic grid environment, where Globus is mostly deployed, Grid-
Map file needs to be changed continuously which hampers the per-
formance of the system tremendously.

• Security: Unlike CAS and VOMS systems, the denial-of-service
effect is pretty limited to the resource the GridMap file pertains to.
However, the GripMap file is stored without encryption in the host
system. Revocation also can be done fast, as only one file needs to
be changed to effect the changes.

5.5 Comparing the Different Authorization Systems

In this section we will summarize the different authorization systems de-
scribed in this chapter. First we will compare the systems with respect to
the different characteristics mentioned before. Later, we will provide a
roadmap of the possible adoption of the systems in the enterprise scenario.

5.5.1 Comparison

Let us now compare the different authorization systems described in this
chapter with respect to the scalability, security, revocation, and inter-
operability characteristics.

5.5 Comparing the Different Authorization Systems 101

Scalability

Push based systems are generally more scalable than their pull-based coun-
terparts. Furthermore, for administrators it is more scalable to have the
policies in a centralized system rather than in each and every node of the
grid system. In both these counts, both CAS and VOMS score highly.
Since both of them use a push-based architecture and has a centralized da-
tabase. EALS, on the other hand, uses a pull-based model and a centralized
policy database. Therefore, it is restricted in terms of number of users sup-
ported. The resource based models Akenti and PERMIS are both scalable,
with PERMIS supporting both Push and Pull based models. The worst in
this category is the Gridmap system as administrators need to update each
and every system for addition and deletion of nodes, users, or policies.

Security

Most of the systems mentioned in this chapter are immune to masquerade
attack as they support authentication of some type. Certificates are most
prevalent means of authentication while EALS supports passwords, certifi-
cates, or other types of credentials like biometrics. However, most on the
push based systems are prone to DoS attacks as most of them depend on a
centralized database for storing policies. Since VOMS supports multiple
stakeholders, even if one of the databases storing a particular stakeholder’s
certificates/credentials is under DoS attack, the other resources would be
unaffected. Pull-based systems like Akenti and EALS can distribute the
requests to multiple servers in case a DoS attack is detected. Gridmap is
mostly unaffected as the attacker needs to attack a significant number of
resources to have a big impact.

Revocation

CAS and VOMS do not have explicit revocation mechanisms. Therefore,
once an adversary gains access to the system then it can access all the re-
sources based on the obtained credentials. EALS and Akenti, being pull-
based systems, have inherent revocation mechanisms as these can be added
to the policies and the effect will be immediate. The same argument can be
extended to the Gridmap system also; however the administrator needs to
change the policy in each and every resource in the grid system.

Inter-operability

Another characteristic which is important to the grid authorization systems
is how inter-operable the systems are. CAS and PERMIS have been made

102 5 Grid Authorization Systems

to inter-operate using SAML standards. However, if they are to be used ex-
tensively in the enterprises, policies need to be exposed as XACML stan-
dards and exchanged using SAML. Also, there is a need to integrate with
different identity management systems like LDAP, Windows ® Active Di-
rectory, and so on. One step in that direction would be to integrate with the
Liberty framework for federated identity management. EALS is the most
advanced in this regard as it has adapters for most industry products and
adheres to most of the common industry standards and practices. Table 5.1
compares the different systems mentioned in this chapter.

Table 5.1. Comparisons between the different authorization systems

VO Based Resource Based
Params CAS VOMS EALS Akenti PERMIS Grid-

Map
Push/
Pull

Push Push Pull Pull Push or
Pull

Pull

Users
Sup-
ported

High High Medium Medium High Me-
dium

Admin-
istrative
Over-
head

Low Low Low Low Low High

Authen-
tication

Using
GSI

Using
GSI

Pass-
words/Certifi
cates

Certifi-
cates

Certifi-
cates

Using
GSI

Revoca-
tion

No No Fast Fast Can be
fast

Have to
be up-
dated

Inter-
oper-
ability

Uses
SAML

Can use
SAML

Through
SAML,
XACML

May be
complex
in some
cases

Through
SAML

Mini-
mal

Deci-
sion
Making

Re-
quires
sepa-
rately

Re-
quires
sepa-
rately

Integrated in
Scheduler
and License
manager

Single
step;
through
Capability
certs

Two
steps;
“yes/no
answer”

Based
on
policies

Multiple
stake-
holders

No Yes Yes Yes No No

5.6 Chapter Summary 103

5.5.2 Roadmap to Grid Authorization Systems

Authorization is perhaps one of the most important needs for an enterprise
today. Though grids are mostly concentrated to high computing jobs or en-
terprise batch jobs, the grids are shared across the enterprises, sometimes
across geography. Therefore, authorization is needed mainly for account-
ing purposes. For example, there are three departments A, B, and C in an
enterprise. The enterprise wants to enforce a host of different policies
based on the usage of the grid. The policies can be really complex, as li-
censing information, transient system level information, and user level in-
formation needs to be incorporated. Following are some of the recommen-
dations:

• Beyond Schedulers: Most of the authorization decisions are cur-
rently implemented at the scheduler level. The enterprise grid ven-
dors like Altair® PBS [87], Platform® LSF Multicluster [88] re-
quires administrators to manage policies so that the scheduler is
able to schedule based on the implemented policies. This is not a
scalable model and complex policies based on all the different en-
terprise requirements cannot be easily handled. Two ways can be
used to apply authorization. First would be to provide adapters so
that the authorization systems can interact with the underlying
schedulers, and second would be through standardization.

• Beyond Batch Jobs: Currently, most of the grid systems are used
as batch job systems in enterprises. However, to take grid forward
it needs to cater to enterprise needs of subsecond jobs, messaging
systems, workflows (and possible integration with BPEL), and so
on.

• Towards Federation: Many enterprises are now looking at feder-
ated identity management solutions. Grid authorization systems
should be able to interact with the Liberty frameworks and Web
services standards to make this possible.

5.6 Chapter Summary

Grid authorization systems are extremely important in the grid context
mainly due to the distributed nature of the grid systems. The different
characteristics of grid authorization systems are security, scalability, revo-
cation, and inter-operability. Like any other systems, security is important
where the adversary can pose as a valid user or compromise the authoriza-
tion system as a whole. Grid systems may have thousands or potential

104 5 Grid Authorization Systems

is determined by whether the system uses pull-based or push-based au-
thorization. Finally, grid systems may also involve multiple stakeholders
and encompass multiple authorization domains and systems. Hence, inter-
operability is extremely critical. To organize the discussion of the grid
based authorization systems, we have categorized the systems into two
main types: Virtual Organization (VO) based systems, and resource based
systems. Virtual organization level systems have a centralized authoriza-
tion system which provides credentials for the users to access the re-
sources. Resource level authorization systems, on the other hand, allow the
users to access the resources based on the credentials presented by the us-
ers. Examples of VO level grid authorization systems are Community Au-
thorization Service (CAS), Virtual Organization Membership Service
(VOMS), and Enterprise Authorization and Licensing System (EALS).
Examples of resource level grid authorization systems are Gridmap,
Akenti, and Privilege and Role Management Infrastructure Standards
(PERMIS). These different systems have been discussed in this chapter. In
the next chapter, we will look at the third component of the architecture is-
sues, viz. grid service security.

users, hence scalability assumes enormous importance. Revocation criterion

6 Service Level Security in Grid Systems

6.1 Introduction

Last week, when I visited my bank, I found that there was a huge queue in
front of the transaction counter. It took me half an hour to reach the
counter and carry out my transaction. The queue, on that day, was created
because of huge demand for bank transaction, as it was the last day before
a series of holidays. Therefore, a huge surge of demand affected the Qual-
ity-of-Service (QoS) that I generally receive and expect from my bank. On
that day, there was a legitimate reason for the delay. However, the same ef-
fect can be simulated to create delays in the banking transactions. Let us
imagine that there is an adversary, who wants to delay the services offered
by the bank. He can employ a few people who can unnecessarily waste
bank’s time and thus reducing the overall service offered by the bank to
the legitimate customers. It may be because of personal enmity or competi-
tion, or even just for fun. Such a malicious action is theoretically feasible.
However, it is hard to imagine someone employing such a delaying tactics
to reduce the quality of service in the banks. The reason is that the amount
of effort involved may be more than the effect that the adversary achieves.
In the digital world, however, it is an entirely different issue. In the digital
world, unlike in the case of real worlds, it is possible to assume multiple
identities and create attacks on the systems, servers, and infrastructure pro-
viding some valuable services. There have been instances, especially in the
Internet scenario, where malicious adversaries created attacks to reduce the
service to the customers. The extreme impact of such a type of attacks is
called Denial-of-Service (DoS) attacks, where the services are denied to
the legitimate end-users using a variety of techniques. In this chapter, we
will try to analyze the different types of attacks and solutions which can be
effective in a grid based environment.

106 6 Service Level Security in Grid Systems

6.1.1 Components of Service

The word service or services is finding wide usage is day-to-day business
transactions. According to Merriam Webster, one definition of service is
“the occupation or function of serving,” or “the work performed by one
that serves.” As one can observe, the definition of service is intrinsically
linked with the service provider or one who serves. Therefore, a service
should always contain four basic components:

• A Service Provider or one who is providing the service to the us-
ers.

• A set of Service Consumers who accesses the service provided by
the Service Provider.

• A Service Infrastructure on which the service is provided.
• A set of Service Publishers which publish the type and nature of

service provided.

We can extend the definition of service and its components to real-
life examples. Let us take the example of a banking service. Here the ser-
vice provider is the bank with the customer service executives being the
front-end to whom the customers of the bank are exposed to. The service
consumers are the customers of the bank, and the service infrastructure in-
cludes the host of database and other servers, communication networks,
and the buildings and different other infrastructure that support the bank.
Finally, the service publisher may be a Web site which describes the ser-
vices provided by the bank, which may help the service consumers in mak-
ing a service decision. Generally, service is published in multiple channels.
For example, there may be Web sites indicating the number of banking
service providers in a district, and banks may have call-centers to provide
more details about the service they are providing.

6.1.2 Service Vulnerabilities

Let us now step into the shoes of the adversaries who are hell-bent in dis-
rupting the service offered by a service provider. Generally, the adversaries
go by the principle of maximum effect. Among the four components men-
tioned in the previous subsection, the service infrastructure and the service
publisher, if compromised, will have the greatest effect. The reason is that,
if infrastructure is compromised the service to a large number of customers
is disrupted. Similarly, if the service publisher publishes wrongly or mali-
ciously, the effect will be devastating. Furthermore, the effects can be
minimized if the infrastructure is protected, or if the publisher publishes

6.1 Introduction 107

through multiple channels. However, all these come under the purview of
service disruption prevention mechanisms. If we take a look at different
service providers, we find that enormous efforts are being put in to make
the infrastructure secure. There are also laws and regulations to keep the
adversaries from manipulating the published information. This is true in
case of physical world. Therefore, in digital world also, there are needs for
techniques and methods to counter such threats. Before looking at the dif-
ferent methods, techniques, and research outputs available in the domain of
service level security, let us look at the different vulnerabilities and threats
present there.

The different categories of threats present in services are Quality of

Service (QoS) violation, unauthorized service access, and Denial-of-
Service (DoS).

QoS Violation

Let us assume that there is a pizza delivery company whose unique selling
point is to deliver pizza within 30 minutes to the customer call. If the com-
pany is not able to deliver within the stipulated time, the customer gets a
free pizza. If a malicious “pizza-eater” tries to stop the company from de-
livering on time, the “pizza-eater” gets a free pizza and the company loses
a lot of goodwill. Now, translate the same problem to the digital world. A
company may have end up losing a lot of money if Service Level Agree-
ments (SLA) are not met.

Unauthorized Service Access

In this type of threat, illegitimate or unauthorized users get access to the
service. This problem is similar to the traditional problems of authentica-
tion and authorization. Standard authentication and authorization tech-
niques discussed in this book can be used to solve this problem.

Denial-of-Service (DoS)

Perhaps the most deadly of the service level threats is the threat of denying
the service to the service consumers. This type of attack is popularly
known as Denial-of-Service (DoS) attack. In this type of attack, the service
infrastructure is crippled by a huge amount of artificial load resulting in
denial of service to the legitimate users or service consumers. The impor-
tance of securing DoS attacks especially for applications over the Internet
has grown rapidly due to a series of attacks that shut down some of the

108 6 Service Level Security in Grid Systems

world’s most high profile Web sites, including Amazon and Yahoo. Sev-
eral such attacks have also been reported in CERT advisories [89]. DoS at-
tack detection and prevention is perhaps the most active area of research in
security. Research as well as implementation ideas will be discussed sub-
sequently in this chapter.

6.2 DoS Attacks and Countermeasures

Denial-of-Service (DoS) attacks have a simple objective, to deny the ser-
vice to the service consumers. This is generally achieved by overwhelming
the service infrastructure with huge amount of data packets. In DoS at-
tacks, the packets are routed correctly but the destination and the network
becomes the target of the attackers. DoS attacks are very easy to generate
and are very difficult to detect, and hence are attractive weapons for the
hackers. In a typical DoS attack, the attacker node spoofs its IP address
and uses multiple intermediate nodes to overwhelm other nodes with traf-
fic. DoS attacks are typically used to take important servers out of action
for a few hours, resulting in service denial for all the users served by the
server. It can also be used to disrupt the services of the intermediate
routers. Generally, DoS attacks can be categorized into two main types: (a)
ordinary and (b) distributed. In an ordinary network based denial of service
attack, an attacker uses a tool to send packets to the target system. These
packets are designed to disable or overwhelm the target system, often forc-
ing a reboot. Often, the source address of these packets is spoofed, making
it difficult to locate the real source of the attack. In the Distributed DoS
(DDoS) attack, there might still be a single attacker, but the effect of the
attack is greatly multiplied by the use of attack servers known as “agents.”
To get an idea of the scope of this attack, over 5000 systems were used at
different times in a concerted attack on a single server at the University of
Minnesota. The attack not only disabled that server but denied access to a
very large university network [89].

6.2.1 Effect of DoS attacks

Let us now take a look at the trends of different types of cyber attacks that
are taking place in the Internet scenario. Figure 6.1 shows the different
types of attacks (in percentage figures) based on the CSI survey of 2001
[90]. The chart shows that DoS attacks is one of the most important attacks
as perceived by the respondents. Though the survey had been done a few
years ago, evidences suggest that the percentage of DoS attacks has in-

® ®

6.2 DoS Attacks and Countermeasures 109

creased rather than showing any decreasing tendency. Figure 6.2 shows the
different categories of attackers who are mostly responsible for attacking
the Internet infrastructure, based on the same survey. It shows that unlike
the popular imagination of cyber terrorism, and corporate based cyber war-
fare, most of the attackers are independent hackers or disgruntled employ-
ees doing it for the fun or due to animosity against his/her employer.

Fig. 6.1. Attack trends [90]

Though there have been indications about the importance of DoS at-
tacks, the actual data are mostly hidden because most companies prefer to
keep the attack stories hidden from public. One of the interesting works on
the importance of DoS attack has been carried out by Moore et al. [91]. In
this paper, the authors have tried to answer the simple question about how
prevalent are denial-of-service attacks in the Internet today. The results are
far-reaching and remain to this day an important warning about the impor-
tance of tackling DoS attacks. As a means to demonstrate this, the authors
described a traffic monitoring technique called “backscatter analysis” for
estimating the worldwide prevalence of denial-of-service attacks. Using
backscatter analysis, the authors have observed that 12,805 attacks on over
5000 distinct Internet hosts belonging to more than 2000 distinct organiza-
tions during a three-week period. The authors further estimated a

110 6 Service Level Security in Grid Systems

As is quite evident from the above paragraph, denial-of-service attack

is becoming one of the most potent attacks carried out over the Internet.
With whatever little data is available, the damages seem to run in millions.
Most of the attackers are amateurs rather than corporates or rogue coun-
tries engaged in cyber warfare. Now the natural question that comes to the
mind is, how do these amateurs have the enough firepower to break the se-
curity of biggest corporates of the world? There are two reasons for this.
Firstly, the wide availability of DoS launching tools. If one searches for the
“DoS attack tool,” one would get over 1000 hits and lots of open freeware
for launching DoS attacks. Secondly, the defense against this type of attack
is still in its nascent stage, and lots of research is required to provide
enough protection against DoS attacks. For the rest of the chapter, we will
concentrate on the different types of DoS attacks and techniques and
methods available to mitigate them.

Fig. 6.2. Different types of attackers

lower-bound on the intensity of such attacks – some of which are in excess
of 600,000 packets-per-second. The paper showed the importance of DoS
attacks in the context of the Internet.

6.2 DoS Attacks and Countermeasures 111

The above paragraph highlights the importance of DoS attacks in an
Internet scenario. Grid infrastructure is also distributed in nature and DoS
attacks are quite relevant in grid scenario as well. Most of the grid infra-
structure that has been implemented is much smaller than the Internet and
hence the DoS attacks have limited impact. However, with the grid infra-
structure destined to grow the impact is going to get bigger and there is a
need to understand the vulnerabilities in the underlying infrastructure and
implement the existing solutions. In the rest of this chapter, we are going
to provide an overview of different DoS attacks along with solutions and
research ideas.

6.2.2 Distributed Denial-of-Service Attacks

One of the deadliest forms of DoS attacks is when the attackers are distrib-
uted in nature. Such an attack is called Distributed Denial-of-Service
(DDoS) attack. According to the CIAC (Computer Incident Advisory Ca-
pability), the first DDoS attacks occurred in the summer of 1999 [92]. In
February 2000, one of the first major DDoS attacks was waged against
Yahoo.com. This attack kept Yahoo® off the Internet for about 2 hours and
cost Yahoo® a significant loss in advertising revenue [93]. Another recent
DDoS attack occurred on October 20, 2002 against the 13 root servers that
provide the Domain Name System (DNS) service to Internet users around
the world. They translate logical addresses such as www.abc.edu into a
corresponding physical IP address, so that users can connect to Web sites
through more easily remembered names rather than numbers. If all 13
servers were to go down, there would be disastrous problems accessing the
World Wide Web. Although the attack only lasted for an hour and the ef-
fects were hardly noticeable to the average Internet user, it caused 7 of the
13 root servers to shut down, demonstrating the vulnerability of the Inter-
net to DDoS attacks [94]. If unchecked, more powerful DDoS attacks
could potentially cripple or disable essential Internet services in minutes.

An example of distributed denial-of-service attack is provided in Fig. 6.3.

In this example, the attacker hacks into one of the machines and uses it
to launch the attack. This machine is called the attack host. The attacker
then installs the attack code into the slave machines, also known the zom-
bies. These slave machines are generally the machines in the same network
as the attack host on which it has some amount of control. The attacker and
the zombies want to attack the victim as shown in the figure. The zombies
send a huge number of packets to a set of machines called reflectors, with
the return address as that of the victim. The reflector, unknowing of the

112 6 Service Level Security in Grid Systems

whole episode, returns the response to the victim. Overwhelmed by the
number of packets, the victim goes down. The attack is easy to generate, as
downloadable tools are available to install the zombies and launch the
DDoS attack. The attack is very difficult to prevent and detect as the pack-
ets are coming from a host of different reflectors, who themselves are un-
aware that they are aiding in the DDoS attack.

Fig. 6.3. Example of DDoS attack using a relector

Let us now discuss some of the common DDoS attacks carried out by
the malicious adversaries. Most of these attacks target a particular network
protocol like the TCP, UDP, etc. Subsequently, we will discuss some of
the common modes of attacks. However, it is to be noted that the expanse
of DDoS attacks go beyond these attacks only, and can be used as a tech-
nique with other commonly used protocols.

SYN Flood Attacks

Perhaps the most popular among the DDoS attacks is the SYN flood at-
tack. This type of attack targets the Transfer Control Protocol (TCP) to
create the service denial. The TCP protocol includes a three-way hand-

6.2 DoS Attacks and Countermeasures 113

shake between sender and receiver, before data packets are sent. The pro-
tocol works in the following manner:

• The initiating system sends a SYN (Synchronize) request. This in-

dicates the system’s intention in creating a TCP session.
• The receiving system sends an ACK (acknowledgement) with its

own SYN request. This indicates that the receiving system would
like to carry on with the connection.

• The sending system then sends back its own ACK and communica-
tion can begin between the two systems. It has been proved that
three-way handshake is an efficient and effective way in creating a
network connection. If the receiving system is sent a SYNX packet
but does not receive an ACKY+1 to the SYNY it sends back to the
sender, the receiver will resend a new ACK + SYNY after some
time has passed. The processor and memory resources at the re-
ceiving system are reserved for this TCP SYN request until a time-
out occurs.

In a DDoS TCP SYN flood attack, the attacker instructs the zombies

to send bogus TCP SYN requests to a victim server in order to tie up the
server’s processor resources, and hence prevent the server from responding
to legitimate requests. The TCP SYN attack exploits the three-way hand-
shake between the sending system and the receiving system by sending
large volumes of TCP SYN packets to the victim system with spoofed
source IP addresses, so the victim system responds to a non-requesting sys-
tem with the ACK+SYN. When a large volume of SYN requests are being
processed by a server and none of the ACK+SYN responses are returned,
the server begins to run out of processor and memory resources. Eventu-
ally, if the volume of TCP SYN attack requests is large and they continue
over time, the victim system will run out of resources and be unable to re-
spond to any legitimate users. SYN flood attacks are illustrated in Fig. 6.4.

PUSH + ACK Attacks

In this type of attack, the attacker again uses the properties of the TCP pro-
tocol to target victims. In the TCP protocol, packets that are sent to a desti-
nation are buffered within the TCP stack and when the stack is full, the
packets are sent to the receiving system. However, the sender can request
the receiving system to unload the contents of the buffer before the buffer
becomes full by sending a packet with the PUSH bit set to one. PUSH is a
one-bit flag within the TCP header. TCP stores incoming data in large
blocks for passage on to the receiving system in order to minimize the

114 6 Service Level Security in Grid Systems

processing overhead required by the receiving system each time it must
unload a non-empty buffer. The PUSH + ACK attack is similar to a TCP
SYN attack in that its goal is to deplete the resources of the victim system.
The attacking host or the zombies and the reflectors send TCP packets with
the PUSH and ACK bits set to one. These packets instruct the victim sys-
tem to unload all data in the TCP buffer (regardless of whether or not the
buffer is full) and send an acknowledgement when complete. If this proc-
ess is repeated with multiple agents, the receiving system cannot process
the large volume of incoming packets and it will crash.

Fig. 6.4. TCP SYN flood attack

Smurf Attacks

In a DDoS Smurf attack, the attacker sends packets to a network amplifier
(a system supporting broadcast addressing), with the return address
spoofed to the victim’s IP address. The attacking packets are typically
ICMP ECHO REQUESTs, which are packets (similar to a “ping”) that re-
quest the receiver to generate an ICMP ECHO REPLY packet. The ampli-
fier sends the ICMP ECHO REQUEST packets to all of the systems within
the broadcast address range, and each of these systems will return an

6.2 DoS Attacks and Countermeasures 115

ICMP ECHO REPLY to the target victim’s IP address. This type of attack
amplifies the original packet tens or hundreds of times.

Routing Table “Poisoning”

Routing tables are used to route packets over the Internet. They are created
by exchange of routing information or updates between routers. Poisoning
attacks refer to the malicious modification or “poisoning” of routing tables.
This can be achieved by maliciously modifying the routing information
update packets required by the routing protocols. This attack can result in
wrong entries in the routing table and could lead to a breakdown of one or
more domains of the Internet.

Fig. 6.5. A router attack scenario

Attack on the Internet infrastructure can lead to enormous destruction,
as different infrastructure components of the Internet have implicit trust re-
lationship with each other. Consider the scenario listed in Figure 6.5. In
this scenario, an intruder wishes to attack Domain Z, which contains a
high-profile server. Most of the links are fairly heavily loaded but are un-
der capacity (70 - 80% usage). The attacker compromises Router A, so that
the router increases the cost of link B to an artificially high value, say

116 6 Service Level Security in Grid Systems

(10,000). Traffic, in the Internet, is generally routed along the shortest
path. Since link B has a high cost, packets will be routed around B. Thus,
packets will be routed through the border router of domain Z. This would
cause enormous congestion at domain Z. Artificial congestion, thus cre-
ated, will slow down the services to the clients of domain and many clients
will be denied access to the server located in that domain.

DNS Hacking

Domain Name System (DNS) is a distributed, hierarchical global directory
that translates machine/domain names to numeric IP addresses. The DNS
infrastructure consists of 13 root servers at the top layer, top-level domain
(TLD) servers (.com and .net), as well as country code top-level domains
(.us, .uk and so on) as the lower layers. Due to its ability to map human
memorable names to numerical addresses, its distributed nature, and its ro-
bustness, DNS has evolved into a critical component of the Internet.
Therefore, an attack on the DNS infrastructure has the potential to affect a
large portion of the Internet.

DNS consists of a distributed database which lends to its robustness
and also leads to various types of vulnerabilities, which can be categorized
into three main types:

• Cache poisoning: Generally, to hasten the process of query re-
sponse, DNS servers store the common information in a cache. If
the DNS server is made to cache bogus information, the attacker
can redirect traffic intended for legitimate site to a site under the at-
tacker’s control.

• Server compromising: Attackers can compromise a DNS server,
thus giving them the ability to modify the data served to the users.
These compromised servers can be used for cache “poisoning” or
DoS attacks on some other server.

• Spoofing: In this type of attack, the attacker masquerades as a
DNS server and feeds the client wrong and/or potentially malicious
information. This type of attack can also redirect the traffic to site
under attacker’s control and also launch a DoS attack on the un-
suspecting client.

6.2 DoS Attacks and Countermeasures 117

Fig. 6.6. DNS cache poisoning

Figure 6.6 shows an example of Cache poisoning

Application Layer DoS

Unlike most of the previous attacks, which exploit the infrastructure to
launch a denial of service attack, application layer DoS attacks specifically
target the application vulnerabilities to satisfy their malicious intents. This
type of attacks has several advantages compared to the traditional DoS at-
tacks. Firstly, the traditional DoS monitoring techniques are unable to de-
tect attacks of this nature as most of the times the attacks are indistinguish-
able from normal traffic. Secondly, they can sometimes represent a much
more sophisticated attacking tool for the adversary which can be launched
much more easily than traditional attacks. Lastly, most of these attacks are
very difficult to trace as most of them use HTTP or HTTPs to carry out the
attacks. Some common attacks of this type are as follows:

• XML Based DoS Attacks (XDoS): In this type of attack, the at-
tacker takes advantage of the XML to launch a denial-of-service att-
ack on the host by exhausting the resources like the memory, CPU, etc.

118 6 Service Level Security in Grid Systems

XML documents with loops and long hierarchies can sometimes
exhaust the resources. The most popular example of XDoS attack
is the entity expansion attack. This type of attack uses the echo ca-
pabilities to launch a full-fledged attack by expanding the contents
of a message. Another attack generally used is using arrays in
SOAP message. A Web service that expects an array can be the
target of a DoS attack by forcing the SOAP server to build a huge
array in the machine’s RAM, thus inflicting a DoS condition on
the machine due to memory pre-allocation. In another attack called
the Quadratic Blowup Attack, the attacker defines a single huge
entity (say, 500 KB), and references it a significantly high number
of times (say, 50,000 times), inside an element that is used by the
application.

• Schema Poisoning: XML schemas provide formatting instructions
for parsers when interpreting XML documents. Denial-of-service
attacks against the grammar are straightforward if the schema is
compromised. Manipulation of data, launching denial-of-service
attacks in other servers, etc. can be easily achieved.

• Routing Detours: WS-Routing specifications provide mecha-
nisms to route messages to destinations through complex environ-
ments. Similar to the routing table poisoning attacks described
above, a compromised node can result in looping and partitioning in
the environments.

• SQL Injection Attack: This type of attack allows the adversary to
launch different type of attacks by executing multiple comm-
ands in the input field. It can be used to manipulate the data as
well as denial-of-service attacks like buffer overflow attack.

• Replay Attack: In this type of attack, the attacker can launch a
DoS attack by replaying old messages. Since the messages had
been sent from valid IP addresses, the messages are considered to

6.2.3 Existing DoS Countermeasures

Solutions proposed in literature for DoS attacks, can be broadly catego-
rized as (i) preventive and (ii) reactive. Preventive DoS solutions take pre-
cautionary steps in preventing DoS attacks. A wide range of solutions have
been proposed, however, this problem still remains an open one. The reac-
tive solutions aim at identifying the source of the attacks. This is very im-
portant because attackers spoof their addresses, thus techniques are needed

be valid also. A timestamp based approach can prevent this attack.

6.2 DoS Attacks and Countermeasures 119

to trace back to the source of the attack. We discuss in the subsequent sub-
sections some of the interesting solutions.

6.2.4 Preventive DoS Counter-measures

The preventive DoS techniques are used to detect and reduce the effective-
ness of the attacks. In this section we will talk about some of the methods
that have been proposed to detect and prevent the DoS attack, namely fil-
tering, location hiding, and the throttling techniques.

Packet Filtering Techniques

All preventive DoS detection techniques are based on some prior informa-
tion, on the basis of which the filtering is carried out. A few filtering tech-
niques are described in Cisco® white papers [95]. One of the most common
methods for detecting and preventing potential attacks is to use egress fil-
tering. Egress filtering refers to the practice of scanning the packet headers
of IP packets leaving a network (egress packets) and checking to see if
they meet certain criteria. If the packets pass the criteria, they are routed
outside of the subnetwork from which they originated. If the filter criteria
are not met, the packets will not be sent to the intended target. Since one of
the features of DDoS attacks is spoofed IP addresses, there is a good prob-
ability that the spoofed source address of DDoS attack packets will not
represent a valid source address of the specific sub-network. If the network
administrator places a firewall or packet sniffer in the subnetwork that fil-
ters out any traffic without an originating IP address from this subnet,
many DDoS packets with spoofed IP source addresses will be discarded,
and hence neutralized. This is a common technique and has been deployed
as a defense mechanism in routers [95]. It is to be noted that these types of
measures can minimize attack to some extent, however can no way guaran-
tee an absolute defense against DoS attacks.

Similar to egress filtering, different ingress filtering mechanisms have
also been proposed and implemented. In this type of mechanism, the filter-
ing is done on all packets coming into the network. In [96], the authors
have presented techniques for preventing DoS attacks through filtering
techniques. They presented a technique called Distributed Packet Filtering
(DPF), where decision to drop or accept the packet is made based on the
incoming packet interface. The route information plays a major role in de-
termining whether a packet would be dropped or not. The route information

120 6 Service Level Security in Grid Systems

stored at each node indicates the source address and the corresponding
interface that the packet is supposed to come from.

Application Filtering

Depending on just filtering packets does not provide enough protection
from XDoS attacks where there is a need to understand the XML docu-
ments to prevent the Denial of Service attack. The XML level firewalls ex-
amine the received SOAP messages or native XML messages. Several
companies like Reactivity have developed this type of firewalls. Once the
target Web service is resolved, the XML firewall can apply a stored secu-
rity policy based on the target address, originating caller identity, message
content, and in some cases, the successful execution of prior policies. Most
of the common XDoS attacks like entity expansion attacks can be filtered
by adding specific policies at the XML firewall level. It is to be noted that
this type of filtering has a significant effect on performance as complex
policies need to be applied to the incoming XML messages. Moreover,
newer attacks are constantly being invented in the growing field of Web
services. Therefore, the filtering techniques need to keep up with the dif-
ferent types of attacks.

Location Hiding

In this type of prevention mechanism, the actual location is hidden from
the end users, preventing the attack from taking place. An architecture
built on this principle is called Secure Overlay Service (SOS) [97]. The
goal of the architecture is to allow communication between a confirmed
user and a target. The target select a subset of nodes N that participate in
the SOS overlay to act as forwarding proxies The filter only allows packets
whose source address matches the address of some overlay node n in N. It
is assumed that the set of nodes that participate in the overlay is known to
the public and to the attacker as well. Attackers in the network are inter-
ested in preventing traffic from reaching the target. By hiding the actual
target, SOS reduces the effectiveness of DoS attacks. However, there are
some concerns: Firstly, the SOS architecture may result in additional la-
tency because of the multiple forwarding and routing that takes place. In
some applications, this may be really critical. Secondly, the architecture
assumes that the attack is coming from outside and does not concentrate on
insider attack. A high level overview of the SOS architecture is provided in
Fig. 6.7.

6.2 DoS Attacks and Countermeasures 121

Fig. 6.7. Location hiding through secret overlay service

Throttling

One proposed method to prevent servers from going down is to use max-
min fair server-centric router throttles [98]. This method sets up routers
that access a server with logic to adjust (throttle) incoming traffic to levels
that will be safe for the server to process. This will prevent flood damage
to servers. Additionally, this method can be extended to throttle DDoS at-
tacking traffic versus legitimate user traffic for better results. This method
is still in the experimental stage; however similar techniques to throttling
are being implemented by network operators. The difficulty with imple-
menting throttling is that it is still hard to decipher legitimate traffic from
malicious traffic. In the process of throttling, legitimate traffic may some-
times be dropped or delayed and malicious traffic may be allowed to pass
to the servers. One of the projects which use throttling as a means of miti-
gating DoS attacks is the D-WARD project from UCLA. D-WARD is a
DDoS defense system deployed at source end network, which autono-
mously detects and defeats attacks originating from these networks. It in-
cludes observation and throttling components, which can be part of source

122 6 Service Level Security in Grid Systems

router, or can be a separate unit to interact with the source router to obtain
traffic statistics and install rate limiting rules. The observation component
monitors two-way traffic at a flow granularity to detect the attack. Flow
classification, connection classification, TCP normal traffic model, ICMP
normal traffic model, UDP normal traffic model are used to differentiate
the malicious flow and the legitimate flow. Once the attack flow is found,
the misbehavior flow is under the control of rate limiting rules. D-WARD
can detect some attacks at the source edge network and it attempts to

instances of agents, the detection may be error prone. Source end defense
defense is a promising scheme that can be applied in the active defense
system. However, it faces a lot of challenges such as detection sensitivity,
agent coordination, and liability. When the defense system is deployed in
the source end, there are fewer strong signals to indicate the attack than at
the victim end, at which there are usually apparent signals such as high
volume of network traffic. So a high sensitivity is essential for source end
defending.

Intrusion Detection Systems (IDS)

It would not be right to categorize Intrusion Detection Systems (IDS) as
just a preventive DoS measure. IDS systems [99, 100] basically consist of
a set of detectors that detect attacks based on a set of policies and informa-
tion. In principle, it works similar to alarm systems implemented in many
buildings and apartments for protection against burglars. In [100], the au-
thors have categorized IDS systems into two main categories: anomaly de-
tection systems and signature detection systems. The former type of IDS
systems, intrusion is detected based on abnormalities of system behavior.
The detector forms an opinion based on the normal behavior of the system
through a long term observed behavior and system policies. In signature
detection system, an intrusion is detected based on a specific signature or a
model. It is to be noted that the signature is based on long term information
about the intrusion behavior.

Several grid based IDS systems have been conceived, designed, and
implemented. Figure 6.8 shows the basic components of a grid based IDS
system. Most of the grid based IDS systems consist of several components:
A set of sensors which are able to monitor the state of the grid systems.
The information supplied by the sensors are then collected and analyzed by
IDS systems like SNORT [101]. The information is then logged through an
interface to query the information, and suitable alarms and action mecha-
nisms are then provided. Several grid based systems, described in the

determine outgoing attack traffic. But since there is no coordination among

6.2 DoS Attacks and Countermeasures 123

R-GMA for querying the monitored information. More information about
R-GMA is provided in Chap. 11. Another example of grid based IDS is
GIDA [103] which also uses a similar structure. IDS on Oracle® 10G data-
base is provided in [104]. IACID [105] from USC, provides a Grid based
IDS system having separate network and host IDS systems.

Fig. 6.8. Grid based IDS systems

6.2.5 Reactive DoS Countermeasures

Reactive techniques aim at identifying the attacker after the attack has
been completed. This is an active area of research because the current
identification techniques are totally manual, and may span over months.
The current solutions can be broadly categorized into: (i) link testing, (ii)
logging, (iii) ICMP traceback, and (iv) IP traceback.

Link Testing

This technique involves iteratively checking the upstream link until the
source is reached. This type of identification technique assumes that the

literature, are SANTA-G [102], which uses SNORT as the IDS system and

124 6 Service Level Security in Grid Systems

ing approach is called input debugging, where routers develop an attack
signature based on some attack pattern. The victim informs the operator
about the signature which then checks the packets, and iteratively carries
out this process. This is employed in some routers now, though the process
is time-consuming. Another suggested link testing is through controlled
flooding [106]. In this type of technique, the victim floods all the links
based on the assumption that packet drop taking place from an attacked
link is much more than from any other link. This technique suffers from
being a mode of DoS attack by itself.

Fig. 6.9. Logging based traceback – SPIE architecture

Logging

A simple technique has been suggested in [107], where logging of data
packets are done at key routers. Traceback is carried out by using data
mining techniques. Another interesting work in this area is reported in
[108], where the authors have presented a hash-based technique for IP
traceback that generates audit trails for traffic within the network. The ori-
gin of packets can be traced back to the source based on the audit trails.

attack remains active after the completion of the trace. One type of link test-

6.2 DoS Attacks and Countermeasures 125

Figure 6.9 shows a high level description of the Source Path Isolation En-
gine (SPIE) architecture. Each router consists of a Data Generation Agent
(DGA) which computes the hash of the packets and stores them in a
Bloom Filter. The information is flushed after every time interval t, where t
is a design parameter. As soon as the attack is detected, the SPIE Trace-
back Manager (STM) calculates the attack signature of the packet or pack-
ets used for the attack. It then contacts the centralized SPIE Collection and
Reduction Agent (SCAR). SCAR polls DGA for the information stored,
creates a local attack graph, and sends the information back to the STM.
The STM then assembles the local graphs, plugs holes in the graph, and fi-
nally makes the traceback information. This technique suffers from scal-
ability problem, as enormous resources are required to carry out logging
based identification. Another negative, which is associated with all trace-
back schemes, is that they can traceback to a single attacker. However,
most of the attacks are carried out using reflectors, in which case the trace-
back schemes can rarely be used.

ICMP Messages

In the Internet draft [109], the author has proposed a scalable technique
where each router stores packet with a low probability. Whenever a packet
is stored the router sends an ICMP traceback message towards the destina-
tion. When attacked, the destination can traceback to the source based on
the router ICMP messages. This scheme has a problem as the ICMP mes-
sages can be used by an adversary to cause DoS attacks.

Packet Marking

One of the earliest efforts to identify the source of the packet through IP
traceback was done in [110] through probabilistic marking of packets at
each router. In this technique, a router marks any packet flowing through it
with a very small probability. Getting sufficient number of packets (in case
of DoS attacks), the destination can retrace the attack path. The process is
described in Fig. 6.10. The scheme introduces a huge amount of overhead
on the packets, which is reduced by node sampling where only one field is
reserved for marking and the information get overwritten. The attack path,
in this case, is retraced by relative number of packets marked at each
router. This type of traceback is called node sampling. The authors also in-
troduced a concept called edge sampling where in addition to the informa-
tion of the node the distance to the node is also maintained. The schemes
were further extended in [111], where the authors showed that using partial

126 6 Service Level Security in Grid Systems

network information, the number of packets required to traceback can be
substantially reduced.

Fig. 6.10. Example of packet marking

6.2.6 Comparison between DoS Countermeasures

Table 6.1 provides a summary of the different techniques mentioned in the
section. It is to be noted that DoS attacks cannot be mitigated by one solu-
tion alone and multiple solutions should be employed to improve the effec-
tiveness. Among the different available solutions, the preventive solutions
like application filtering, packet filtering, and intrusion detection are the
only techniques that have been successfully implemented. However, most
of these solutions have limited success and more research and development
efforts are needed. The reactive solution space is sparser. Though several
interesting research ideas like packet marking and link testing have been
proposed, the implementations have not been carried out due to the com-
plex nature of the analysis involved.

6.3 QoS Violation Attacks and Countermeasures 127

Table 6.1. Comparing the different DoS countermeasures

Solution Type Effective for Strengths Weaknesses
Packet Fil-
tering

Preventive Detection,
Prevention

Different
policies can
be employed

Need to be updated

Application
Filtering

Preventive Detection,
Prevention

Different ap-
plication
level policies
can be used

Still more research is
needed

Location
Hiding

Preventive Detection,
Prevention

Prevents the
attacker from
knowing the
victim

Introduce latency

Throttling Preventive Detection,
Prevention

Able to re-
duce the ef-
fect of at-
tacker

May result in per-
formance drop

Intrusion
Detection

Preventive/
Reactive

Detection,
Prevention

Different
policies can
be employed.
Goes beyond
DoS.

Requires extensive
system support.

Link Test-
ing

Reactive Identification Identification
through link
testing

Huge bandwidth
overhead, may be a
tool for DoS attacks

Logging Reactive Prevention,
Detection,
Identification

Can identify
using very
small num-
ber of pack-
ets

Results in a huge
storage overhead and
is a slow process

ICMP Reactive Detection,
Identification

Can be done
using exist-
ing tools

Overhead in terms of
messages, can also be
a DoS tool

Packet
Marking

Reactive Identification Less over-
head, gener-
ally one field
in the packet

Requires a large
number of packets
to make the iden-
tification

6.3 QoS Violation Attacks and Countermeasures

As grid computing moves towards enterprise level adoption, the issue of
Quality of Service (QoS) assumes enormous importance. Grid computing,
like the Internet, is typically best-effort in its performance. This best effort

128 6 Service Level Security in Grid Systems

type of service may not be sufficient for enterprise users who demand tight
QoS for their applications and jobs running on the grid infrastructure. The
issue becomes especially important in cases where different types of ser-
vices are expected from the grid infrastructure based on the amount of
money the customers pay.

Developing QoS architecture for a grid system is a complex issue as it
contains a heterogeneous mix of systems and infrastructure. Therefore if a
grid system is to deliver a certain quality-of-service, each layer within the
grid stack including network, host, and service, also has to deliver a certain
level of QoS. An attacker targeting the QoS of the grid system can launch
the attack by selectively attacking the different components of the grid in-
frastructure. For example, in some cases slowing the network traffic or
creating network level congestion can significantly affect the QoS of the
entire grid system. In this section, we will discuss the different QoS attacks
and solutions that have been proposed in literature.

6.3.1 Different Types of QoS Violation Attacks

The QoS attacks can mainly be achieved in two ways: One way to achieve
such an attack would be to spoof a legitimate user and create disruption by
widespread SLA violation. These attacks are difficult to detect and prevent
as the typical intrusion detection systems would not be able to detect such
attacks. In this type of attack, the attacker gets into the grid system and car-
ries out network level QoS attacks by dropping packets or delaying pack-
ets. Another type of attack can be carried out by “greedy” users wanting to
get more out of the system. Since most of these attacks remain undetected
by standard IDS systems they can be carried out surreptitiously.

Dropping Packets

In this type of attack, the attacker chooses to drop packets flowing through
the grid networks. Packets can be dropped in a specific order or in a ran-
dom manner. To carry out such an attack the adversary takes over a com-
ponent within the grid infrastructure like a router through a virus or a
worm. If TCP is used as a transport protocol then such selective dropping
of packets results in TCP reducing its sending window as a result of which
the network throughput decreases. Unlike DoS attacks, dropping of selec-
tive packets are very difficult to detect as packets get dropped naturally in
any network. In many systems especially in multi-media systems UDP is
used as a transfer protocol. Selective dropping of packets in those systems

6.3 QoS Violation Attacks and Countermeasures 129

will result in lesser QoS received by the end systems. Similarly some ad-
versaries may choose protocol or application specific packet dropping by
selectively dropping the DNS packets or ICMP packets like “HELLO”
packets which are used by many protocols for heart beat purposes. Solu-
tions to these problems are mostly complex and protocol specific. How-
ever many monitoring techniques have been discussed in literature (dis-
cussed subsequently) which attempt to detect attacks of this nature.

Delaying Packets

In this type of attacks, the attackers don’t drop packets; rather the packets are
delayed to reduce the effective QoS delivered by the system. This can be
achieved through routing table poisoning as mentioned before or by mis-
routing the packets flowing through the system. This type of attack gener-
ally increases the latency of packets resulting in higher end-to-end latency.
Looping of packets may also be a result of this type of attack which may
eventually lead to the dropping of packets. The solutions proposed are
mostly adhoc and through monitoring of QoS parameters.

Resource Hacking

We mention a similar type of attack in Chap. 7, where resources of indi-
vidual hosts are compromised. Similarly, network and infrastructure re-
sources also can be compromised. This type of attack can be mitigated by
provisioning and monitoring of resources in an efficient manner.

6.3.2 Existing Solutions

Let us now discuss the different solutions available to detect and mitigate
SLA violations. The solutions can be of mainly two types: monitoring and
auditing systems, and protocol specific solutions. As part of the monitoring
and auditing discussions, we will mention the network monitoring mecha-
nisms and grid auditing systems like GridBank. We will also briefly touch
upon an interesting work in detecting packet dropping called WATCHERS
in University of California at Davis.

SLA Violation Detection in Networking Infrastructure

In this type of mechanism, SLA violations in networks are detected by
monitoring packets and measuring the delays and packet losses suffered by
the packets [112 - 115]. Delay bound guarantees made by a provider net-
work to user traffic flows are for the delays experienced by the flows

130 6 Service Level Security in Grid Systems

Delay meas-
urements either use delay of real user traffic or injected traffic. The first
approach is intrusive because encoding timestamps into the data packets
would require changing the packets at the ingress and rewriting the origi-
nal content at the egress after appropriate measurements. The second ap-
proach is nonintrusive in that one can inject probe packets with desired
control information to enable an egress router to recognize such probes,
perform measurements and delete the probes from the traffic stream.
Packet loss guarantees made by a provider network to a user are for the
packet losses experienced by its conforming traffic inside the provider do-
main. To compute the loss ratio, the number of packet drops, as well as the
number of packets traversing the domain, is required. Loss ratio is defined
as the ratio of the number of packet drops within the domain to the total
number of packets passing through the domain. Core routers can detect the
number of packets dropped, and edge routers can compute the number of
packets traversing the domain. This loss measurement mechanism can be
called the core-assisted scheme for loss measurement. An alternative
mechanism is to use stripe-based probing to infer loss characteristics inside
a domain. In stripe based mechanism, a series of packets or “stripes” are
sent which do not introduce intermediate delays [116].

WATCHERS Project

The WATCHERS [117] from UC Davis was proposed to detect and react
to routers that maliciously drop or misroute packets. WATCHERS is based
on the “principle of packet flow conservation” i.e., the number of incoming
packets for a router, excluding those destined to it, should be the same as
the number of outgoing packets, excluding those generated by it. In order
to validate the conservation law, multiple decentralized counters are peri-
odically and synchronously exchanged among neighbors of the target sus-
pected router. Subsequently, each neighboring router runs a validation al-
gorithm to diagnose the health condition of the target router. Furthermore,
WATCHERS is robust against Byzantine faults. While WATCHERS of-
fers theoretically an interesting way to deal with malicious packet dropping
it cannot handle the packet dropping problems in today’s Internet effec-
tively. First, the number of messages for counter value exchanges can be
very large. Secondly, the “principle of packet flow conservation” does not
hold “deterministically” for today’s Internet environment. For instance, an
innocent router might drop packets for good reasons such as preventive
congestion control or insufficient resources to keep all incoming packets.
Though, WATCHERS as a solution may not be viable in an Internet

between the ingress and egress routers of the provider domain.

6.4 Chapter Summary 131

number of packets dropped is not as large as that in the Internet.

Grid Accounting Systems

Researchers in the grid community have started to realize the importance
of QoS in grid computing systems. Several research projects like GridBank
[118], from University of Melbourne and SweGrid [119] from Royal Insti-
tute of Technology (Sweden) have tried to address this issue through their
accounting and auditing systems. The former is more of an accounting sys-
tem where there are charging and payment modules. It also includes a ser-
vice cost negotiation (e.g. $ per hour) which is carried out by the Grid Re-
source Broker (GRB). GRB negotiates service cost per time unit (e.g. $ per
hour). GridBank issues GridCheques (similar to credentials) for the service
consumers and grid resource meters gather resource specific usage infor-
mation to be used for charging purposes. SweGrid system goes beyond be-
ing just an accounting system through SLA negotiation, monitoring, and
management. The SLAs are negotiated through the negotiation phase and
monitored using agents. Any SLA violation may result in renegotiation or
moving the job to some other grid service provider.

6.4 Chapter Summary

The third component of the secure grid architecture is to protect the service
offered by the grid system. The different service level threats are QoS vio-
lation, Denial-of-Service (DoS), and unauthorized access. It is to be noted
that due to the limited deployment of grid systems, not many instances of
these attacks are there in the grid systems. However, instances are there
where DoS attacks have ripped the Internet. There is a need for grid re-
searchers to study the effects of the DoS attacks and solutions in the grid
computing perspective. DoS attacks can be performed in multiple different
ways. The most popular is called the TCP SYN attack where attacker over-
flows the buffer of the grid system through millions of SYN packets. Other
transport layer attacks like PUSH+ACK and ICMP are also very popular.
At the network layer, DoS attack can be carried out through routing table
poisoning, where bogus and maliciously intended packets corrupt the rout-
ing tables of the networks resulting in a DoS attacks which are extremely
difficult to detect and prevent. At the application layer, DoS attacks can be
carried out by poisoning and spoofing the DNS entries. Other application
layer attacks include XML based DoS attacks where intentional loops are
created in the XML documents which effectively creates a DoS attack.

environment, it may be a useful tool in a controlled grid system where the

132 6 Service Level Security in Grid Systems

Other varieties of attack include SQL injection, schema poisoning, replay
attacks, and so on. The solutions can be broadly categorized into preven-
tive and reactive. The former, like application filtering, intrusion detection,
and other solutions, tries to prevent the DoS attacks from taking place by
either generating alarms, or drop suspicious packets or request, or reroute
to balance the load. The latter type of solution reacts to the attack and tries
to identify the location of the attacker. Solutions like Logging, ICMP
traceback, and packet marking fall into this category. In this chapter differ-
ent attacks and solutions have been discussed and contrasted. Different
QoS violation attacks and solutions have also been discussed in this chap-
ter.

This brings us to the end of the architectural security issues. In Chap.
7 and 8, we will look at the infrastructure related issues starting with the
host level security in the next chapter.

7 Host Level Security

7.1 Introduction

When I rented my apartment for the first time, I was worried about a few
things. I was worried whether the new tenant would keep my apartment in
a good condition. I was worried whether my assets in my apartment would
be in order once the tenant starts living there. I was worried about the
cleanliness of the tenant, whether he would pay electricity bills in time,
and so many other things. In short, I was worried about the general health
of the apartment and the resources that were in the apartment. The reason
was that I was not sure how my apartment would be used by the new ten-
ant, as I had no prior information about the tenant and his habits. There-
fore, I made it a point to visit the apartment once every two months to
make sure that everything was in order. I also checked that the electricity
bills had been paid properly or not. I continued this for six months before
feeling entirely confident about my tenant.

Donating hosts to be used as part of the grid is like renting an apart-
ment. Given the background provided in the previous paragraph, I fully
understand the anxiety of the users in donating their machines to grids.
They are concerned due to the lack of confidence about the jobs that are
running on their machines. Since the jobs are being submitted by faceless
entities, the hosts can think that the adversaries are hidden among them.
One way to tackle this problem would be to create a mechanism of trust,
and provide access controls to prevent untrusted users from accessing the
hosts.

Figure 7.1 shows the model described above. A trusted set of users is
defined through the distribution of digital certification, passwords, keys
etc. and then access control policies are defined to allow the trusted users
to access the resources of the hosts. These mechanisms have been dis-
cussed in detail in Chap. 5.

134 7 Host Level Security

 Fig. 7.1. A secure architecture based on trust and access control

However, does that mean that if a secure architecture is in place the
concerns of the users will be nonexistent? In that case, in enterprises, the
users would be donating their hosts for an enterprise-wide grid without any
concern. On the contrary, in enterprises, where all the users are trusted, the
users are unwilling to let their hosts/machines be used by jobs from other
departments/groups. The concern, in those cases, may be less about the
malicious users, rather about the bad jobs. Therefore, there is a need for
mechanisms to be in place so that the users feel confident that their data,
jobs, and machine would be safe in spite of bad jobs running on their sys-
tems.

Now, let us look at the different issues that any host would be con-

cerned about when affiliating itself with the grid. Following are the issues
of concerns for the host:

• The host will be concerned with its data being corrupted by outside

jobs running on the system. We will call this issue as the issue of
data protection.

7.2 Data Protection Issue 135

• The host will also be concerned about its own jobs. The jobs may
be starved by resource consuming outside jobs. We call this issue
as the issue of job starvation.

Data protection issues are generally tackled through isolation where

the local data and jobs are isolated from the outside jobs through different
mechanisms like sandboxing, virtualization, etc. Job protection is tackled
through a combination of techniques including priority reduction, advance
reservations, etc. In the rest of the chapter, we will discuss these issues and
the solutions in detail.

7.2 Data Protection Issue

The issue of data protection involves protecting the host data from outside
jobs. A job from a malicious user can corrupt local data, crash the local
jobs, and make the local system unusable. It is similar to a tenant using an
apartment. The tenant can destroy the assets of the apartment, and make
the apartment unusable for later use. One way to localize the damage
would be to keep the part of the apartment rented out as only accessible to
the tenant and keep the rest of the apartment inaccessible to the tenant.
This is exactly what the isolation solution talks about. It keeps the outside
jobs in the protected environment, so that even if the job is malicious, it
remains confined to the isolated environment. This isolation can be
achieved through several mechanisms:

• Application Level Sandboxing: This mechanism also known

as Proof Carrying Code (PCC) enables the code provider to
generate proofs of the safeness of the code and embed it inside
the compiled code.

• Virtualization: Virtualization is a solution where the applica-
tions are run on isolated environment called Virtual Machines
(VM).

• Flexible Kernels: These systems typical include kernels
which can be extended in a flexible manner for better perform-
ance and isolation.

• Sandboxing: Perhaps the most popular of the isolation sys-
tems, these systems typically enforce isolation through inter-
rupting system calls and loadable kernel modules.

136 7 Host Level Security

7.2.1 Application Level Sandboxing

Application level sandboxing is a technique where the isolation and secu-
rity capabilities are embedded in the application. Security features are
hardwired into the application which can be verified before executing the
application on a remote system. Cryptographic mechanisms can be used to
determine whether a piece of code was produced by a trusted person or
compiler. These concepts were used in the development of SPIN kernel
[120]. Another seminal work done in the area of application level sandbox-
ing was Proof Carrying Code (PCC) [121] developed by George Necula
and team from CMU.

Proof Carrying Code (PCC) introduces the concepts of code producer
and code consumer. In the former system, the code is produced and in the
latter system, the code is executed. PCC is a mechanism by which a code
consumer is convinced that the code produced by the code producer is not
malicious is nature. To achieve that, the code producer is required to pro-
vide a safety proof which guarantees that the code conforms to a formally
defined safety policy. The code consumer then validates the safety proof
using a validator to ascertain the safeness of the code.

Fig. 7.2. Overview of the proof carrying code system

7.2 Data Protection Issue 137

Figure 7.2 shows the overview of the PCC system. Specifically, PCC
systems consist of the following components:

• Safety Policy: Safety policy is a set of policies defined by the

code consumer and it is assumed to be known to all the code
producers. The policies state precisely under what conditions
the execution of foreign code is safe in its environment. It con-
sists of two components: safety rules and interface. The safety
rules indicate all the operations and preconditions that the code
is authorized to perform. An example of such rules can be that a
foreign code can only access certain portion of the data in the
code consumer’s system. The interface, on the other hand, in-
cludes standards methods or invariants by which the consumer
and producer can interact without needing to exchange any in-
formation.

• Certification: In this stage, the code producer compiles the
code based on the safety policies of the code consumer and gen-
erates a proof which guarantees that the source program adheres
to the safety policies. This certificate is embedded in the native
code and sent as a whole to the code consumer.

• Validation: Once the code consumer receives the foreign code
along with the proof, it validates it against its safety policies.
The validation is generally faster, as it is done at the native code
level and generally the validation algorithms are straightfor-
ward. Once the proof is validated, the foreign code is accepted
to be safe, and the native code is loaded for execution. The vali-
dation process can be further accelerated, if it can be performed
offline and only once.

The PCC concept is quite powerful and provides a unique way of

verifying the safeness of a particular code generated in a foreign machine.
There are distinct advantages of using PCC in a wider scale. They are:

• The entire burden of formally proving the safety of the code is
shifted to the code producer from the code recipient, whose job
is to perform a fast, simple and easy-to-trust proof-checking
process.

• No cryptographic mechanisms or third-party tool is required as
the checking is done on the intrinsic properties of the code.

138 7 Host Level Security

• PCC does the checking statically before the code execution,
which not only saves time but also detects the potentially dan-
gerous code early before execution.

However, there are several drawbacks which make PCC unsuitable

for grid based applications.

• Complexity: Though the PCC concept is very powerful, the
case studies used are simple and hence generation of the proofs
is simple and feasible. However, for a complex system like the
grid, the policies will be fairly complex and generation and
validation of the proofs require a thorough analysis and experi-
ments.

• Heterogeneity: Grid systems are typically heterogeneous in na-
ture and therefore there may exist many different systems and
code producer need to develop proofs for each and every system
and embed them in the code. This becomes very expensive and
infeasible to be used in real life systems. Added to this, there
may be different policies for different systems within the grid
which makes the generation, validation, and transfer of proofs
more complex and infeasible.

• Applications: In real-life, especially in an enterprise, there are a
large number of pre-compiled third party applications which are
run on a grid based system. Therefore, PCC requires the appli-
cation vendors to make their applications conform to the PCC
requirements. Until that happens, PCC will remain a very pow-
erful concept with limited implementation especially in the en-
terprises.

7.2.2 Virtualization

A typical data center today hosts different applications in different servers
resulting in over-provisioning of resources and low utilization. Therefore,
for some time there has been a move towards consolidation of servers to
increase the overall utilization of the data centers. Research and develop-
ment in the area of server consolidation has resulted in virtualization solu-
tions in the server consolidation space. These solutions typically allow ap-
plications to run on self-contained environments called virtual machines
(VM). It is possible to create different instances of VMs on individual
servers, resulting in a better provisioning environment and higher overall
utilization. Not only different instances of VMs can run but these instances

7.2 Data Protection Issue 139

can also host completely different operating systems. Therefore, virtualiza-
tion techniques allow legacy systems to run on new systems seamlessly. In
addition to these advantages, a by-product of virtualization is isolation.
Therefore, virtualization techniques allow the creation of secure environ-
ments and can be used as an isolation solution. It is to be noted that the
main goal of virtualization solutions is to provide higher resource utiliza-
tion and server consolidation. The ability to provide secure and isolated
environments come as a by-product. Therefore, there is a need to create
flexible policies on the virtualized environment. Research is currently be-
ing carried out in this regard [122].

To provide virtualization, there is a need for a layer of software which
provides the illusion of a real machine to multiple instances of virtual ma-
chines. This layer has been traditionally called Virtual Machine Monitor
(VMM). There are also concepts called the host operating system and
guest operating system. The former is the operating system or OS which
hosts the VMM, and the latter is the operating system which is hosted on
top of the VMM. It is also possible for the VMM to run directly on the
hardware. In that case, host operating system is not required, and VMM
will the minimal OS. There are three popular virtualization technologies:
hosted virtualization, para-virtualization, and shared kernel based virtual-
ization techniques.

• The Hosted Virtualization model is one where the VMM and

the guest OS run on the user space of the host OS. The applica-
tions running on the host OS and the guest OS share the same
user space. Generally, this model does not require any modifica-
tion to the host OS. However, since there are multiple redirec-
tions, the performance of such a model suffers significantly.
VMWare® GSX Server is an example of hosted virtualiza-
tion system.

• The Para-Virtualization model is one where the operating sys-
tems are modified and recompiled so that the multiple redirec-
tions of the hosted model can be avoided. The performance of
the para-virtualization based systems is comparatively better
than the hosted virtualization based systems. Xen [123] and Vir-
tuozzo® [124] are examples of para-virtualization systems.

• The Shared Kernel systems are those systems where the kernel
is shared and the user space is partitioned to be used by different
sets of applications. An example of shared kernel based virtual-
ization systems is the Linux VServer [125].

140 7 Host Level Security

Hosted Virtualization Model

The hosted virtualization model allows multiple guest Operating Systems
(OS) to be run on the user space of the host OS. Figure 7.3 provides an
overview of the hosted virtualization model. As shown on the figure, App1
and App2, and the Guest OS share the user space. Applications running in
the guest OS are sandboxed within the guest OS. The applications within
the guest OS contact the hardware being redirected through the virtualiza-
tion layer, thereby reducing the performance of the overall systems.

Fig. 7.3. Overview of a hosted virtualization model

VMWare® GSX Server – A Hosted Virtualization Solution: One of the
most popular hosted virtualization solutions is VMWare’s® GSX Server.
Similar to the other hosted virtualization models, VMWare® GSX Server

has a host operating system, and guest operating systems which run as ap-
plications on the host operating system. VMWare® Workstation's hosted
architecture also includes a user-level application (VMApp), a device
driver (VMDriver) for the host system, and a virtual machine monitor
(VMM) that is created by VMDriver as it loads. Thereafter, an execution
context can be of two types, native or virtual. The former context belongs
to the host, and the latter belongs to the virtual machine. The VMDriver is
responsible for switching this context. I/O initiated by a guest system is

7.2 Data Protection Issue 141

trapped in the VMM and forwarded to the VMApp, which executes in the
host's context and performs the I/O using the normal system calls.
VMware® uses numerous optimizations that reduce various virtualization
overheads. In spite of the optimizations, the overheads introduced by the
GSX Server can be significantly high, depending on the application. This
led to the development of another model of virtualization called the para-
virtualization model. However, it is to be noted that the hosted virtualiza-
tion model in spite of the performance is extremely popular as it provides
an easy solution to the virtualization problem.

Para-virtualization System

The hosted virtualization model mentioned before is one of the easiest
mechanisms to achieve isolation through virtualization. However, the ease
of managing hosted operating systems comes at a price. That price being
performance. Since, in a hosted model there are multiple redirections of
system calls, the performance suffers. In addition, the virtualization layer
must manage all the underlying hardware structures like DMA controllers,
page tables, I/O devices, and others, to provide a consistent view to all the
operating systems hosted by the model. Whenever the virtualization layer
context switches between the different OS images, it first needs to preserve
the current states in the hardware structures, which can be used when the
execution is resumed again. This managing of the structures puts a huge
overhead on the performance of the hosted virtualization models. This
overhead is sometimes quite significant.

To counter the problems of the hosted virtualization mentioned
above, researchers have developed another virtualization model called the
para-virtualization model. This model introduces the concept of the ideal-
ized hardware interface which completely abstracts the underlying hard-
ware infrastructure. The virtualization layer or the hypervisor is embedded
in the address space of each guest OS, so whenever the guest OS is re-
quired to update a hardware structure, it makes an API call to the hypervi-
sor. Therefore, the hypervisor is able to keep track of all the happenings in
the hardware data structures helping it to make optimal decision of updat-
ing the structures during context switching. It can also provide run-time
specific information to the guest OS-es, enabling them to make better
scheduling decisions. Based on these, the para-virtualization solutions have
several distinct benefits:

• Performance of the para-virtualization solutions is significantly

better than the hosted virtualization model. The hypervisor,

142 7 Host Level Security

since it is embedded with the guest operating systems, results in
having fewer redirections. In addition, the information between
the guest OS and the underlying hardware abstraction layer is
exchanged much faster resulting in better managment of the
guest OSes.

• Para-virtualization solutions provide significant benefits in
terms of device drivers and device interfaces. Para-virtualization
allows the virtualization of device drivers. It helps to provide re-
source CPU guarantees, and porting OS images across hard-
ware.

• Para-virtualization offers better protection to the hypervisor
compared to the hosted virtualization model. Since the hypervi-
sor is run in a different protection domain compared to device
drivers, it is protected from bugs and crashes of the device driv-
ers.

In spite of the above benefits, the market share of the para-

virtualization solutions are much less compared to the hosted virtualization
solutions. Though the performance of para-virtualization solutions is bet-
ter, they do not work across different platforms. The para-virtualization
model requires the hypervisor to be embedded into the address space of the
guest OS. Therefore, to achieve this, the guest OS need to be recompiled.
This can be applied to the open source operating systems like Linux. How-
ever, for closed OS like Windows, para-virtualization solutions are cur-
rently not available. However, with chip vendors developing chips which
support virtualization like Intel’s® Virtualization Technology (VT) [126]
and AMD’s® Pacifica [127], applicability of the para-virtualization solu-
tions will be greatly enhanced. The experts in the field of virtualization are
confident that the para-virtualization techniques will be the future of virtu-
alization.

Xen – A Para-Virtualization Solution: One of the most popular para-
virtualization solutions is Xen which was initially developed from Univer-
sity of Cambridge. Currently, Xen is marketed by a company called Xen-
Source® founded by the leader of of the Xen project, Dr. Ian Pratt. Market
share of the Xen software is increasing in the virtualization space, where
VMWare® has significant presence.

Xen presents all the benefits of the para-virtualization systems. It is
fast and has a very low overhead on the overall performance of the system.
This is achieved by storing the hardware states in memory and managing
them efficiently. Figure 7.4 shows the high level architecture of the Xen

7.2 Data Protection Issue 143

para-virtualization system. Because of its open-source nature, and good
performance, Xen is even witnessing commercial implementations. One of
the biggest impediments in the wide-scale adoption of Xen and other para-
virtualization solutions is the lack of virtualization capabilities of the popu-
lar IA-32 architecture. As mentioned in [128], the architecture has at least
17 instructions which make the architecture “non-virtualizable.” This leads
to the compiling of kernels to make them aware of the Xen virtualization
features. However, Intel ® is coming up with Intel VT which will
introduce virtualization features into the processors along with better
management capabilities. The technology will push the adoption of
Xen in a greater way.

Fig. 7.4. Architecture of Xen

Nova – On Demand Virtual Execution Environments: One of the main
challenges in having the virtualization solutions catering to isolation needs
of grid systems is to have a policy manager which interacts with the virtu-
alized environment. One of the key requirements of such a policy manager
would be to create a virtualized execution environment on-demand based
on the policies and incoming job requests. Nova [129] provides such a fa-
cility for the grid systems. The goals of Nova are (a) to reduce the time re-
quired to get a “working” virtual machine, (b) to ensure that the virtual

144 7 Host Level Security

machine allocated to the grid job has the necessary hardware and software
resources, to perform the job, (c) to perform effective clean-up of the vir-
tual machine once the job is complete, and (d) to ensure that the effect of a
completed job does not spill over to another future job. Nova addresses the
goals by creating, in advance, virtual machines with configurations that
consume very little resources which are called “Tiny VM”. Nova has been
built on top of Xen system. The authors have shown that Nova is able to
create virtual machines in the order of a few milliseconds. It is to be noted
that the solution is a research in progress and significant effort is needed
before it can be deployed effectively in enterprises.

Shared Kernel Systems

The third type of virtualization system is the shared kernel system. An ex-
ample of such a system is the Linux VServer. The basic concept of the
Linux VServer and other shared kernel systems is to divide the user space
environment into distinctly separate units also called Virtual Private Serv-
ers (VPS), in such a way that the processes within each VPS treat them as
separate kernels. The shared kernel systems are very efficient compared to
the other virtualization technologies. However, the flexibilities are greatly
reduced as they tend to work on a single operating system, as all the appli-
cations use a shared kernel. For example, the Linux VServer runs exclu-
sively on Linux.

Shared kernel systems are able to achieve the following benefits:

• Higher Resource Utilization: One of the biggest advantages of
the shared kernel systems is the increase in resource utilization.
By proper allocation of resources across the partitions and abil-
ity to share common resources across the partitions helps in in-
creasing the utilization levels. The Linux VServer implementa-
tion uses token bucket implementation to achieve fairness
across the different partitions or contexts.

• Security: The shared kernel based virtualization systems have
high security as they can isolate the different contexts in an effi-
cient and secure manner.

• Low Overhead: The overhead associated with the shared ker-
nel systems is very low as they do not pass through multiple
layers unlike the other virtualization systems. As mentioned in
[130], the overhead of a Linux VServer system can be as low as
2%.

7.2 Data Protection Issue 145

7.2.3 Flexible Kernel Systems

Some operating systems researchers argue that the performance, flexibility,
and extensibility of operating systems are greatly limited by the design,
where the interfaces and the implementations of OS abstractions such as
inter-process communication and virtual memory are fixed. The need for
flexibility and extensibility have been recognized as OS requirements by
researchers even in the 1970s [131, 132]. In [131], the authors have advo-
cated the design of open operating systems, where the system provides a
variety of facilities, and the user may use, accept, reject, modify the facili-
ties based on permissions and requirements. In many cases, one facility
may become a component on which other facilities are built or developed,
like files and disk pages. In that case, there is a need to identify smaller
components, and make them accessible to the users and other larger com-
ponents. The development of flexible kernel design provides a whole lot of
interesting concepts and design. In this chapter, we will try to cover the
three decades of conceptualization, design, and development efforts by
identifying two representative solutions in this research area. The first pro-
ject called Hydra [133] was developed in the 1970s, where the researchers
have separated the policies and mechanisms of kernel, and used it as a
guiding principle in kernel design. The second work, called exokernels
[134] developed in MIT, looks at handling resource management at the ap-
plication layer, thus providing faster transactions, and secure operations.

Project Hydra

One of the earliest examples of a flexible operating system was Hydra, de-
signed in Carnegie Melon University (CMU), way back in 1974. It was an
ambitious project designed to exploit the inherent potential of the multi-
processor computing system. The system was designed on C.mmp [135], a
proprietary multiprocessor also designed and developed at CMU. The main
purpose of the project was to demonstrate the possible development of a
flexible operating system, where at the center there is an arbitrary set of fa-
cilities, which can be used to create the operating system based on the cus-
tom defined policies. Some of the considerations which guided the devel-
opment of the Hydra system are as follows:

• Multi-Processor Environment: The main use case of the Hy-

dra system was the development in a multi-processor environ-
ment.

• Mechanism and Policy Separation: Another consideration that
led to the development of the Hydra project was to separate the

146 7 Host Level Security

mechanisms and policies. This separation leads to a flexible sys-
tem design as the system designer can make complex system
decisions.

• Protection: Hydra develops protection based on capabilities.
These capabilities can also be custom defined and are used to
provide protection for all entities in the system.

• Reliability: The reliability of the system is guaranteed by the
C.mmp hardware through the redundancy of critical hardware
resources.

As mentioned earlier, the protection of the Hydra system is provided

through the mapping of policies and mechanisms. Hydra system develops
the protection mechanism by building on top of the underlying core facili-
ties guided by the custom-defined policies. The protection mechanisms are
defined through the interaction between objects, capabilities, and proce-
dures. Objects refer to abstract reference of the arbitrary set of resources,
capabilities are references to objects, and procedures are the abstract no-
tion of any arbitrary set of operations. Each capability includes information
detailing operations that can be performed on the object referenced by the
capability. Whenever an operation is attempted on an object, the requestor
supplies the capability referencing that object. The kernel examines the
rights list of the requestor and prevents the operation when the rights fail-
ure occurs. The right has been defined as the set of permissions granting
the requestor to supply capability as a parameter to any procedure. Based
on the rights, some operations can be denied access to certain objects
based on exclusive “kernel” rights.

The Hydra project may not be useful for immediate deployment;
however, the concept of separating policies from mechanisms is powerful
and has been applied in security systems in different contexts. The next
system that we will discuss in this chapter is called an exokernel imple-
mented as Aegis system in MIT. Exokernels extends the Hydra concept by
eliminating mechanisms whenever possible through the application level
policy handling, which offers high performance and flexibility.

Exokernels

In the mid 1990s, researchers in MIT came up with the design of a flexible
operating system architecture, where the management of physical re-
sources is handled at the application layer. The lack of flexibility of the ex-
isting operating system architectures to incorporate domain-specific op-
timizations and implementations motivated the development of the

7.2 Data Protection Issue 147

exokernel architecture. Another point that motivated the design is the need
to provide more flexibility to the application builders, as the abstraction
development methodology followed in traditional operating systems lim-
ited the application development to a great extent. The researchers in MIT
attempted to solve these problems through application level resource man-
agement. The flexible operating system, thus designed, implements the
traditional kernel level functionalities like Inter-Process Communication
(IPC), Virtual Memory (VM), etc. at the application layer. In this architec-
ture, the exokernel is a minimal kernel which securely multiplexes the un-
derlying hardware resources. Library operating systems, working on top of
the exokernel interfaces, implement higher level abstractions. The applica-
tions select libraries, or implement their own libraries by simply relinking
the application interfaces. Different components of the exokernel system
are illustrated in Fig. 7.5. As shown in the figure, the exokernel architec-
ture securely multiplexes and exposes the hardware through low level
primitives. The library operating system uses the low level primitives to
implement the higher level abstractions, and finally the applications uses
these to manage the resources according to need.

The different components of the exokernel systems are:

• Managing Policies: The task of managing policies is handled

by the library operating system. The policies identify the appli-
cations, the share of resources, the way to arbitrate the compet-
ing applications, and so on. Different security policies can be
embedded into the general policy definitions, as exokernels al-
low the extensibility in the systems.

• Secure Bindings: Another important task of the exokernel sys-
tem is to securely multiplex resources, and provide protection to
applications which have an existing trust relationship. The pro-
tection mechanism in secure bindings is created by separating
the authorization from the actual use of the resources. This im-
proves the performance of the system to a great extent. The pro-
tection checks are carried out by the kernel as simple processes,
which are done quickly. The authorizations are carried out at
bind time only, allowing the separation of management from
protection.

• Secure Multiplexing: Secure multiplexing of physical memory
is implemented in the exokernels using capabilities which can
be authenticated. Whenever a library operating system allocates
physical memory page, the exokernel creates a secure binding

148 7 Host Level Security

for the page recording the owner and the permissions. The
owner will then have the rights to access the page based on the
permissions. In addition to multiplexing at the physical memory
level, there is a need for multiplexing at the network
packet/message level. The message multiplexing at software can
be provided through packet filtering mechanisms.

Fig. 7.5. High level view of an exokernel

Researchers have shown that the exokernel approach is able to attain
a very high performance. Experiments show that the Aegis (an implemen-
tation of the exokernel architecture) is much more efficient that any other
traditional operating system. Though the exokernel architecture does not
include security benefits directly, there are security benefits which are at-
tained as a byproduct. The benefits are:

• Separation of management and protection guarantees a more flexi-

ble and scalable mechanism of providing security. Different secu-
rity policies can be incorporated easily.

• High performance of the overall system implies that the overhead
associated with security is considerably reduced. Therefore, sys-

7.2 Data Protection Issue 149

tem administrators can go for more complicated policies and secu-
rity mechanisms without sacrificing performance to a great extent.

In spite of the advantages, the exokernel approach is still limited to

laboratory implementation and has not seen an industry scale implementa-
tion. More research and development efforts need to be undertaken in this
direction to make the concept of exokernel a commercially viable solution.

7.2.4 Sandboxing

One of the most popular techniques to achieve isolation is called sandbox-
ing where applications are run in sandboxes to provide isolation and re-
source accessibility. It is to be noted that many of the solutions mentioned
before in this chapter like virtualization has similar features. However,
while the main motivation of virtualization solutions are server consolida-
tion and improving resource utilization, sandboxing solutions were primar-
ily designed with isolation in mind. Sandboxing solutions developed over
the years can be broadly divided into three main types: through user level
monitoring or system call trapping, through loadable kernel modules, and
through the creation of user level virtual machines.

User Level Monitoring – Janus

Janus [136] is a user level sandbox developed as part of the research pro-
ject in University of California, Berkeley. The motivation behind the Janus
project was to transparently protect a large legacy system from an un-
trusted pre-existing application. Therefore, Janus makes an assumption that
it does not have any control over the application or the environment on
which the application is running. In other words, it cannot get any assis-
tance from the applications, and should make use of the tools provided by
the operating system to monitor and provide fine-grained control on the
task execution.

Figure 7.6 shows a high level overview of the Janus architecture. At

the lowest layer lie the tracing primitives available with the different oper-
ating systems like ptrace for Linux and proc for Sun® Solaris. The authors
have mentioned that the ptrace primitive had to be modified to accommo-
date the different features like the abortion of system processes before exe-
cution, fine grained control of system process tracing, and so on. The au-
thors called the tracing mechanism ptrace++ indicating that it is an
extension of the already available ptrace functionality. Another important

150 7 Host Level Security

component of the Janus architecture is the user adaptation layer which
provides a simple interface to the tracing primitives provided by the under-
lying operating systems.

Fig. 7.6. High level overview of the Janus architecture

Looking at the sandboxing systems based on system level monitoring
and system call tracking, a few advantages come to the fore. The pre-
dominant advantage of such systems is the ability to provide fine-grained
and flexible sandboxing policies. Most of these systems allow the system
users to provide system specific and business specific policies. The ability
to create flexible policies makes these systems distinctly advantageous
over the virtualization systems. However, the enhanced flexibility takes its
toll on the overall performance of the system. Monitoring the process and
system parameters and trapping system calls based on the policies have a
significant performance overhead. Another disadvantage of these systems
is that they do not provide isolations under all scenarios as the entire con-
text may not be available at the interception point. Sometimes there may
be a need to replicate the original system call's implementation because pre
and post processing may not suffice. These problems assume significant
proportions in closed systems. Taking all these considerations into ac-

7.2 Data Protection Issue 151

count, virtualizations provide more robust solutions in spite of their in-
flexibility in policy definitions.

Loadable Kernel Module – Remus

As mentioned earlier, another mechanism of sandboxing is through the
monitor placed at the kernel. This can be achieved without a need to
change the kernel source code or recompilation of the kernel, through a
loadable kernel module. An example of such a system is Remus [137], de-
veloped by researchers in Italy.

Fig. 7.7. Overview of Remus

The basis of the Remus system is the detailed analysis of the system
calls for the UNIX operating system. The analysis includes various threats
like penetrating the system with full control, and denial-of-service attacks.
The Remus system (Reference Monitor for the UNIX systems) monitors
the system calls that may be used for performing malicious activities. Re-
mus intercepts the system calls and allows the system calls to execute only
in the case where the invoking process and the value of the arguments
comply with the rules kept in the Access Control Database (ACD) within
the kernel.

152 7 Host Level Security

Figure 7.7 shows an overview of the Remus system. The heart of the
system is the reference monitor which monitors and controls the system
calls and allows only the permissible calls to be executed on the system.
The reference monitor consists of two main functions: the reference func-
tion and the authorization function. The reference function is used to make
decisions whether to allow or disallow a system call based on the informa-
tion kept in the Access Control Database (ACD). The ACD consists of
rules or conditions that control the system calls and by specific system
calls or values of their arguments. Authorization functions, on the other
hand, allow the administrators to delete, add, and modify rules and entries

If loadable kernel modules are compared with the system level moni-

toring techniques, the former systems have reduced flexibility as the poli-
cies have to be embedded into the kernels as loadable modules. Therefore,
any change in system policies would require the new policies to be loaded
into the kernel which reduces the flexibility of the system. However, the
performance of these systems is better than the traditional system level
monitoring systems. The robustness of the systems based on the loadable
kernel modules is better than the other sandboxing systems.

Virtual Machines – Entropia VM

Perhaps the most common mechanism of providing sandboxing is through
the Virtual Machine (VM) technique. This is the technique used in Java
Virtual Machines (JVM). A similar technique used in grid is the Entropia
approach, called the Entropia Virtual Machine (EVM) [138]. EVM has
been specifically designed to cater to the desktop grid environment, where
there are a large number of desktop clients on which the grid jobs run, in
addition to the Entropia server. EVM is part of Entropia Desktop Distrib-
uted Computing Grid (DCGrid) environment.

The different layers of the DCGrid are: Physical Node Management
(PNM), Job Management (JM), Resource Scheduling (RS), and Entropia
Virtual Machine (EVM). PNM is concerned about the physical node in the
DCGrid environment. In addition to collecting a huge amount of informa-
tion regarding CPU utilization, memory, system health, and so on, it also

in the ACD. In addition to the two sets of functions, a couple of data
structures are used mainly for auditing purposes. As shown in the figure,
the admitted data structures contain the list of system calls admitted into
the system, and the failure data structure contains the list of system calls
which have been rejected by the reference function based on the rules stored
in ACD.

7.2 Data Protection Issue 153

takes care of the reliability issues. The information captured by PNM are
then used by the resource scheduler to provide better scheduling. The sec-
ond layer, JM is responsible for breaking the jobs up into possible smaller
subjobs and hands them over to the RS layer. The third layer or RS, dis-
tributes the jobs to different execution machines. The last layer or the
EVM is responsible for starting the execution of the jobs on the execution
host, monitoring the jobs, and provides security for the host by mediating
the job’s interaction with the host Operating System. We will discuss the
different components of EVM. For details regarding the other layers, the
readers can refer to [138]. A high level view of the EVM system is pro-
vided in Fig. 7.8.

EVM consists of two components: the desktop controller and the

sandbox execution layer. The desktop controller is responsible for launch-
ing the processes to run the subjob, and monitoring the running of the sub-
job on the host desktop. The controller monitors CPU, memory, I/O usage,
and other system and process specific information. The sandbox execution
layer, on the other hand, provides desktop security through sandboxing and
the mechanisms to interface with the desktop controller. The different
components which facilitate the working of the sandbox execution layer
are:

• Application Wrapping Technique: After a user submits an appli-

cation or job to be executed on the DCGrid, the application is
automatically wrapped inside an Entropia Virtual Machine through
binary modification. It is achieved through the modification of the
import table of the binary, which forces Windows to execute the
customized Entropia dll to be executed. This allows the virtualiza-
tion of address spaces for safe execution of the binaries. Before
execution, the binaries are validated through checksums provided
with each binary, to ensure the integrity of the binary.

• Interception Technique: The interception is the heart of the EVM
sandboxing. It is similar to the Virtual Machine Monitor (VMM)
described in Sect. 7.2. The interceptor is installed as a Windows
Device Driver which intercepts the calls made to specific hardware
resources. This technique along with the application wrapping
technique provides the host security in DCGrid.

154 7 Host Level Security

Fig. 7.8. Overview of the Entropia distributed computing grid environment

Paper [138] also talks about the performance implication of such a
technique. Based on the evaluations the authors have concluded that a sys-
tem has an impact of around 6%. Comparing the VM based sandboxing
systems with others we find that the flexibility of these systems is greatly
reduced because they are closely aligned to specific applications or operat-
ing system. For example the Java Virtual Machine or JVM can only be
used in a Java based system. The policy level flexibility, however, is
strong as user and business level policies can be attached, modified with-
out significant burden unlike the loadable kernel based sandboxes. The
performance of the VM based systems are comparable or better than the
system level monitoring based sandboxing systems. The robustness of
these systems is generally high because they are tuned to a particular cate-
gory of applications, operating systems, etc.

7.3 Job Starvation Issue

Job starvation refers to a scenario where jobs originating locally are de-
prived of resources by alien jobs scheduled on the host as part of the grid

7.3 Job Starvation Issue 155

system. This type of scenario becomes critical in grid systems due to the
resource consuming nature of the grid jobs. Therefore, situations may arise
where an alien grid job takes up a huge amount of grid resource resulting
in a resource starvation for the local jobs. Different solutions pertaining to
this are: advanced reservations and priority reduction. The former solu-
tion tries to tackle the problem by pre-allocating a certain amount of re-
sources to the external grid jobs so that the local jobs are never starved of
resources. Policies can be enforced in this regard. The latter solution is
more of an ad hoc one, where the priorities of the jobs are reduced after a
certain amount of time to prevent the starvation. In this chapter, we will
briefly talk about the two techniques as scheduling is a discipline by itself
and mostly would be outside the scope of the book. Interested readers may
look at [139, 140] for more detailed insights into different scheduling poli-
cies, mechanisms, and their implementations.

7.3.1 Advanced Reservation Techniques

Under the advanced reservation system [141, 142], a user requests for a set
of resources (can be CPU, memory, disk space, etc.) for a specified amount
of time for the set of jobs to be run. The resources are booked based on the
availability, security, QoS and other metrics. Once the resources are
booked, the resource providers honor the contract and have every right to
terminate the job once the contract expires. These techniques require
schedulers to work hand-in-hand with the resources/hosts providing ser-
vice to the end users. Under the advanced reservation schemes, users re-
quest the grid schedulers/meta-schedulers for resources. The schedulers
talk to the different hosts for resources and based on the gathered informa-
tion reserves resources. The host then agrees to grant access to certain re-
sources and honors the contract. Advanced reservation techniques provide
flexibility to the users to set aside some resources for their local use in case
the resources are needed. One of the most extensive works done in this
area is by researchers from University of Melbourne who have come up
with a resource management and scheduling framework called Nimrod-G
[143]. It is to be noted that virtualization solution mentioned in the previ-
ous section can be used as implementation techniques for enforcing reser-
vations. Since each virtualized compartments can have specific amount of
resources available to it, external grid jobs may be run on one of the com-
partments to provide reservation guarantees in addition to isolations. It is
to be noted that an on-demand virtual execution environment on the lines
of Nova will be essential to achieve this.

156 7 Host Level Security

Based on the above discussions, the advanced reservation techniques
provide a flexible mechanism to provide resource to the grid from the re-
source owner or host point of view. However, there are some concerns:

• Advanced reservation schemes require the users to have detailed

knowledge about the resource needed by the submitted jobs, which
may not be possible all the time.

• The grid schedulers need to implement advanced reservation.
• Though most of schedulers support advanced reservations, the in-

tegration of resource and scheduler through advanced reservation
is a research problem.

7.3.2 Priority Reduction Techniques

Under these types of techniques, the priorities of the jobs are manipulated
to reduce the possibility of starvation. Different techniques have been de-
veloped. One such technique called local priority reduction [5] reduces the
priority of all jobs which are not local to the system. This ensures that the
local jobs are never starved of resources. This technique has been em-
ployed in the United Devices GridMP software suite. Other innovative
technique have also been developed which tries to reduce the possibility of
starvation in the whole system. In the Sun® Grid engine [142] a flexible
priority scheme called RRDP has been developed where the priority of the
job is determined by the normalized value as a combination of per resource
weighting factor, deadline weighting factor, waiting time weighting factor
in combination with host or resource policies.

These techniques can work as an ad hoc mechanism to prevent job
starvation. These have their advantages as they can be implemented easily
and mostly requires changes at the host or the resource owner end. How-
ever, the disadvantages are:

• These may result in lower QoS, if QoS is a concern to the users of

the grid.

• They may result in unpredictable behavior unless integrated with

the advanced reservation schemes.

®

7.4 Chapter Summary 157

7.4 Chapter Summary

When a host or a machine enrolls itself to the grid system it is concerned
about the reliability of the jobs that would be running. The host level issues
can be broadly categorized into data protection issues and job starvation is-
sues. While the former is concerned about protecting the host data from
outside jobs, the latter is concerned about protecting the local jobs from
starvation. Most of the data protection solutions use isolation as a mecha-
nism to ensure that the local system remains unaffected by the external
jobs. Different types of solutions existing are: application layer sandbox-
ing, virtualization, flexible kernels, and sandboxing. As a result, the solu-
tion remains only of academic interest without having any commercially
viable implementation. On the other hand, the second category of solutions
viz. the virtualization solutions provides efficient isolation. However, some
of the virtualization solutions like the hosted virtualization model come
with a performance overhead which for some applications may be signifi-
cant. The para-virtualization solutions the Xen provide very good perform-
ance. However, most of these solutions are available for open operating
systems like Linux and currently not available for closed systems like
Windows. However, advances in the field of processor level support for
virtualization auger well for the para-virtualization systems. There is an-
other point of concern before virtualization systems become default solu-
tions for isolation needs. There is a need for development of policy man-
agement mechanisms on the virtualization systems. The third category of
solutions is the flexible kernel systems. These are mainly research solu-
tions which require more research and development effort before they can
become mainstream. Finally, the sandboxing solutions are there which ca-
ter mainly to the sandboxing needs of the users. These solutions are mostly
through the monitoring of process and system parameters and trapping sys-
tem calls. Most of these solutions are flexible in terms of policy manage-
ment. However, the system level monitoring solutions have performance
overhead. The better performance of the loadable kernel modules is offset
by the lack of flexibility in terms of policy management. Table 7.1 summa-
rizes the different data protection solutions and related issues.

In the next chapter, we will look at another important component of
the grid infrastructure, viz. the network.

158 7 Host Level Security

Table 7.1. Data protection solutions

Solu-
tions

Type Example Policy
Flexi-
bility

Over-
head

Robust-
ness

Comments

Applica-
tion
Level
Sand-
boxing

Same Proof
Carrying
Code
(PCC)

Low Low at
the re-
cipient

High Low flexibil-
ity, requires
vendor sup-
port

Hosted
Virtual-
ization

VMWare
® GSX
Server

Need
to be
built

Medium
to High

High Relatively
High per-
formance
overhead

Para-
virtual-
ization

Xen Need
to be
built

Low High Only avail-
able in open
systems like
Linux. A
very promis-
ing technol-
ogy.

Shared
kernels

Vir-
tuali-
zation

VServer Need
to be
built

Low to
Medium

High Only avail-
able in Linux
systems

Flexible
Kernels

Same Hydra,
exoker-
nels

Low Can be
tuned as
per need

Gener-
ally
high,
can also
be tuned

Good con-
cept, requires
significant
research

System
Moni-
toring

Janus High Medium
to High

Medium High flexibil-
ity, low per-
formance

Load-
able
Kernels

Remus Low to
Me-
dium

Low to
Medium

Medium
to High

Low on pol-
icy flexibility

VM
Based

Sand-
box-
ing

Entropia
VM

High Low to
Medium

Medium Generally for
a specific
system like
Java

8 Grid Network Security

8.1 Introduction

As part of our discussions on grid security, we have talked about security
issues pertaining to the different components of the grid stack. However,
till now we have ignored the element which cradles the grid infrastructure
viz. the grid network. In course of this chapter we will discuss the several
network security related issues which are relevant in the context of grid
computing.

As a discipline, network security is becoming one of the most impor-

tant areas of research, especially in the context of the Internet [144]. Ini-
tially, the focus of the research community had been solely on the per-
formance issues of the Internet. In the last few years, several Internet level
security attacks and vulnerabilities has resulted in a surge in the activities
in this field. Grid computing, being a distributed system, naturally requires
networking infrastructure for its functioning. Therefore, a thorough under-
standing of the network security related issues is important. In addition,
grid adds complexities in terms of heterogeneity and high speed intercon-
nects which add complexities in terms of management and integration with
the grid system. In this chapter, we will discuss a few of the issues which
are important from the grid perspective. Some of the issues, like secure
multicasting and secure sensor grids may not be applicable immediately as
the research in those fields are also maturing. However, taking a holistic
view, we included the different areas which would be relevant to grid sys-
tems.

8.1.1 Grid Network Security Issues

Let us now look at the different issues pertaining to grid networks. The
network security assumes importance in grid computing context mainly
because of two reasons. Firstly, due to the typical requirements of the grid

160 8 Grid Network Security

system, viz. the heterogeneity and the high speed networks, several new
requirements arise which need to be tackled. Grid network access control
and high speed network issues fall into this category. Secondly, there are
issues which are challenging security issues in the area of generic network-
ing. These issues need to be tackled due to the distributed nature of the
grid systems, issues like secure routing, multicasting, sensor grids fall into
this category. All these issues will be discussed in detail in the course of
this chapter.

Network Access Control and Isolation

One of the immediate requirements for grid networks is the access control
and isolation of the traffic flowing through the network. One of the most
important technologies for access control is through firewalls where suspi-
cious traffic is controlled and resources are protected. One of the immedi-
ate needs is the integration of grid technologies with firewalls and existing
Virtual Private Networks (VPN) technologies. Sections 8.2 and 8.3 provide
information about integration of grid with these two technologies.

Secure Routing

Routing is one of the most important components of any networking infra-
structure. Routing mechanisms and protocols are designed to route packets
through the network in a resource efficient manner. They also take care of
network failure, network level congestion, etc. Researchers have looked
into the issue designing secure routing protocols which are also relevant in
the grid computing context. We look at the secure routing issues in Sect.
8.4.

Secure Multicasting

The main purpose of a grid system is to allow sharing of resources across
the networking infrastructure. Multicasting is a technology which allows
sending messages to a select set of users and has a direct relevance to grid
information dissemination. Multicasting being an efficient mechanism of

portance of multicasting and discuss a few research issues and solutions
which need to be taken into consideration for designing grid networks. Se-
cure multicasting is dealt with in Sect. 8.5.

group communication further adds its value to the grid system. However,
the technology does have some security issues where significant research
has been carried out in the last few years. In this chapter, we highlight the im-

8.2 Firewalls 161

Secure Wireless and Sensor Grid

One of the main attractions of grid computing is it pervasive nature. Appli-
cations are being developed which brings wireless and sensors networks
into the purview of grid systems resulting in a plethora of security issues
which need to be analyzed. In this chapter, we also look at the different se-
curity issues in sensor networks and promising solutions which can be
adopted. Issues related to wireless and sensor networks are looked into in
Sect. 8.6.

Security in High Performance Grid Networks

Grid computing has seen the adoption of very high speed interconnects
like Infiniband, 10-Gigabit Ethernet and others. Each of these technologies
presents a huge opportunity of expanding the grid horizon by targeting
high-throughput and high-performance applications. However, there is a
need to understand the security pitfalls and vulnerabilities that exist. In this
chapter (Sect. 8.7), we highlight some of the work carried out in this area.

8.2 Firewalls

As the name suggests, “firewalls” prevent intruders from getting access to
the network by creating a wall or a hindrance to the intruder’s traffic. The
concept is similar to the walls built outside the castles or cities in medieval
times. Examples of such walls can be found in many European and Asian
cities. As mentioned in [145], the term firewall was used as early as in
1764 by T. Lightoler, to describe walls which separated parts of the build-
ing most likely to have fire (for example, kitchen) from the rest of the
building. The concepts of the network firewalls are also similar. They are
meant to protect the network from the rest of the world by looking at the
traffic passing through them and making a decision of whether to allow the
traffic or not. Figure 8.1 illustrates a firewall in action. It shows that out of
the two types of traffic, the firewall allows one to enter into network based
on certain set of policies.

We had a detailed discussion about different access controllers in

Chap. 5. Readers should have guessed the similarities between the two.
Rather firewalls are a special type of access controller, where the resource
they are controlling the access to is the network. The main purposes for us-
ing the firewalls are:

162 8 Grid Network Security

• Security: The most important reason why most companies have
firewalls installed is to ensure security in the network. Many com-
panies do port level or packet level filtering to prevent the network
from security attacks.

• Enforce Policies: Firewalls are one of the easiest means to enforce
policies. For example, a company may not allow employees from
accessing FTP servers. In that case, the port 21 can be blocked as a
company policy. Most of the modern firewalls allow more complex
policies to be employed, where evaluation of network packets not
only happens at the network or transport level, but also at the ap-
plication layer.

• Auditing: Another important reason why firewalls have become
ubiquitous as they can monitor traffic and provide audit trails.
These become very good source of information in case of security
breach.

Fig. 8.1. A firewall in action

8.2 Firewalls 163

8.2.1 Different Types of Firewalls

As mentioned in [146], firewalls can be classified into four generations:
static packet firewalls, circuit-level firewalls, application level firewalls,
and dynamic packet filters.

Static Packet Firewalls

The static packet firewall is the first generation firewall technology which
works at the network and transport layer. A set of simple rules or policies
can be applied based on the port from which the packet is coming, the IP
address of the packet, or similar information. The rules are simple and
based on denying or permitting the packets. Though these firewalls are
simple to implement, they have several disadvantages. Firstly, the rules
exclude application level or state information which restricts their applica-
bility. Secondly, they assume that the adversary is outside the network and
cannot prevent internal attacks.

Circuit Level Firewalls

A circuit level firewall is a second-generation firewall technology that uses
state information to validate the packet. It is able to determine whether the
packet is a connection request packet or a data packet belonging to a par-
ticular connection. Several transport layer protocols like TCP follow a
three-way handshaking mechanism for session or connection establish-
ment. For the purpose of session validation, a circuit level firewall is able
to examine each connection setup to ensure that a legitimate handshake has
taken place for session establishment. In addition, data packets are not
forwarded until the handshake is complete. The firewall maintains a table
of valid connections and allows network packets containing data to pass
through when network packet information matches an entry in the virtual
circuit table. Similar to the static packet firewall, this type of firewall also
cannot restrict packets based on higher layer information.

Application Level Firewalls

An application level firewall is a third-generation firewall technology that
can evaluate network packets for valid data even at the application layer
before allowing a connection. It examines the data in all network packets
at the application layer and maintains complete connection state and se-
quencing information. In addition, an application layer firewall can validate

164 8 Grid Network Security

other security items that only appear within the application layer data,
such as user passwords and service requests. This type of firewall intro-
duces a significant amount of overhead as every packet needs to be evalu-
ated across the networking stack.

Dynamic Packet Filtering

A dynamic packet filter firewall is a fourth-generation firewall technology
that allows modification of the security rule base dynamically. This type of
technology is most useful for providing limited support for different con-
nectionless protocols like the UDP transport protocol. This type of firewall
is able to associate virtual connections for the connectionless UDP proto-
col. This type of firewall technology is an improvement over the static
packet filtering mechanism.

Fig. 8.2. Firewall requirements for Globus

8.2 Firewalls 165

8.2.2 Firewalls and Grid – Issues

Currently most research and development activities in grid computing
takes place for the e-sciences community. The community is big and the
research challenges are enormous. However, when the grid moves to en-
terprises several interesting and critical challenges will be witnessed. Some
of the challenges and possible efforts have been highlighted in the previous
chapters. Another big challenge is the integration with the firewall tech-
nologies. Most of the enterprises employ some amount of firewalls and
packet filtering and efforts need to be taken to solve the problem of easy
integration with the existing firewalls.

Globus and Firewall

Figure 8.2 shows the firewall requirements for different components of
Globus. In the figure, a controllable ephemeral port describes a port which is
selected by the Globus Toolkit, which is constrained by a configurable
limit. On the other hand, an ephemeral port describes a non-deterministic
port assigned by the system in the range less than 1024. The requirements
of the different components are described as follows:

• GSI: GSI involves the authentication, confidentiality, integrity,
and secure delegation modules of Globus. The request should
originate from an ephemeral port and similar to ssh configuration,
the server listens to port 22.

• GRAM: GRAM is the resource management module of Globus. In
the GT4 GRAM, connections are initiated by the client from an
ephemeral port. To initiate and control jobs, all traffic goes through
a single hosting environment defined by port 8443/tcp. For GT3,
this port is 8080/tcp.

• MDS: MDS is the monitoring service of Globus. Similar to
GRAM, connections are initiated by the client from an ephemeral
port and all traffic goes through a single hosting environment de-
fined by port 8443/tcp. As in GRAM GT3, for MDS GT3 this port
is 8080/tcp.

• MyProxy: As mentioned in Chap. 9, MyProxy is a credential stor-
age service for X.509 credentials. MyProxy connections are au-
thenticated and secured with GSI and are normally from ephemeral
ports on the client to 7512/tcp on the server.

• GridFTP: Similar to any FTP service, GridFTP also requires two
different channels: control and data channels. The control connec-
tion is established from a controllable ephemeral port on the client
to the well-known static port of 2811/tcp on the server. In the case

166 8 Grid Network Security

of a single data channel, the connection is established from a con-
trollable ephemeral port on the client to a controllable ephemeral
port on the server. In the case of third-party transfers (a client con-
trolling a file transfer between two servers), this connection may be
from a server to another server. In the case of multiple parallel data
channels, the direction of the connection establishment is depend-
ant on the direction of data flow – the connection will be in the
same direction the data flow.

Adaptive Firewall for the Grid (AGF)

The Adaptive Firewall for the Grid (AGF) [147] is a project done at Tech-
nical University of Denmark (DTU). The main motivation behind the work
is the observation that to meet the grid firewall requirements, the adminis-
trators need to open several well-known ports, and a range of ephemeral
ports for incoming connections. This can be dangerous as adversaries may
be able to sneak into the system through the open ports. The AGF system
develops a mechanism so that the firewall can adaptively open and close
ports based on service requests. The firewall will open the ports when it
receives authenticated requests. Moreover, the firewall will close the ports
when there are no service activities on those ports.

Fig. 8.3. Overview of AGF messages

8.2 Firewalls 167

Following are the different messages exchanged by the client and the
server which is illustrated in Figure 8.3.

• ASK is sent from client and is the first message for a session. The

message indicates that the client wants to open a port.
• Once the server receives the ASK message from the client, the

server sends the CHAL message to the client. This contains a chal-
lenge to the client, encrypted with the client’s primary key. It also
includes the session key to be used.

• The third message is the PORT message which is sent from the
client and includes the expected port number that the client wants
to open.

• On receiving the PORT message, an OPEN message is sent from
server indicating the firewall could be opened for such a port.

• Then, a KEEP message is sent from the client, confirming that the
client wants to open the firewall. The server then opens the fire-
wall.

• ACK is sent from server, indicating the firewall has opened, and
the client should continue to send the keep-alive message.

• KEEP and ACK are continuously sent between client and server,
until termination of the connection takes place.

• TERM is sent from client, when the client wants to terminate the
firewall. The server closes the firewall when such message is re-
ceived.

• “TACK” is sent from server, acknowledging that the server has
terminated the firewall. All the previous messages (from PORT to
TACK) are encrypted by the shared session key.

8.2.3 Firewalls and Web Services

Let us now focus on some of the issues and solutions in integrating fire-
walls with Web services.

Flexibility

As mentioned in [148], firewalls place some constraints and reduce the
ease for the home users especially in case of asynchronous message proc-
essing. This makes an assumption that that SOAP server/listener need to be
installed in the home machine, and the machine over the Internet would be
able to send message through the home user’s firewall. This decreases the

168 8 Grid Network Security

flexibility of the design which led to the concept of WS-Polling [148],
which works in the principle of emails and SMTP servers.

Effectiveness

With the growth of Web services and XML technologies, the effectiveness
of most of the third-generation firewalls (application level firewalls) is un-
der question. There is a need to parse the XML messages and understand
the contents of the messages before a policy decision can be made. Hence
sophisticated techniques are needed. To cater to these types of require-
ments, XML firewalls [149, 150, 151] have come into vogue. These are a
new generation technology, which operate above the conventional applica-
tion layer unlike conventional firewalls that operate on the network layer.
XML firewalls have the capability of examining an incoming SOAP re-
quest, and taking an appropriate action based on the message content. Such
content inspection is vital to prevent malicious as well as DoS attacks. Fur-
ther, XML firewalls can offer nonrepudiation mechanisms by providing
audit trails of all service accesses.

Coordination

Peer-to-peer interactions between Web services which are behind firewalls
introduce problems as the end-points are inaccessible. Several solutions
have been proposed to address this issue. The solution [152] attempts at
solving by implementing a mechanism similar to a post office mailbox. A
Web service client with no endpoint creates a mailbox and then uses this
mailbox address when it needs to receive messages. When the client is
ready, it can check the mailbox service (Post Office) for new messages and
download them for processing.

8.3 Virtual Private Networks (VPN)

To carry out business related activities, it has become absolutely essential
for employees, contractors, and business managers to access confidential
resources and communicating them across geography. It has become quite
common for business executives to log-on and access resources using lap-
tops while traveling or when they are in client or business locations. Since
the communications generally take place over the public network, confi-
dentiality, authentication, and integrity are very important. One prominent
communication service which provides these and allows access of re-
sources anywhere and anytime is called Virtual Private Networks (VPN).

8.3 Virtual Private Networks (VPN) 169

Before the advent and popularity of VPN technologies, private networks
were created using permanent links between corporate sites. VPN tech-
nologies extend this concept by providing virtual networks that are dy-
namic and connection setup can be provided according to organizational
needs. Unlike traditional corporate networks, VPNs do not maintain per-
manent links between end points. Rather the connection is torn down as
soon as it is not required resulting in bandwidth savings.

VPN technologies are cost effective alternatives to completely private

networks which allow different parties to come together and share re-
sources in a secure manner.

8.3.1 VPNs and Grid – Types of VPNs

There are mainly two different types of VPN technologies. These are
Layer 2 VPN service and Layer 3 VPN service.

Layer 2 VPN Service (L2VPN)

In L2VPNs, the provider extends layer 2 services to the customer sites. A
key property of L2VPNs is that the provider is unaware of Layer 3-specific
(Network Layer) VPN information. The customer and the provider do not
exchange any routing information with each other. Forwarding decisions in
the provider network are based solely on Layer 2 (Data Link Layer) infor-
mation such as MAC address, ATM VC identifier, MPLS label, and port
number. Currently, two different approaches to L2VPNs are described in
the literature, Virtual Private Wire Service (VPWS) and Virtual Private
LAN Service (VPLS) [153]. The major difference between the two is that
the VPWS provides VPN service between one site and another while
VPLS provides a service across multiple sites. The VPWS approach can be
regarded as a generalized version of the traditional leased line service, in
which the sites are connected in a partial or full mesh. The VPLS approach
emulates a LAN environment where a site automatically gains connectivity
to all the other sites attached to the same emulated LAN.

Layer 3 VPN Service (L3VPN)

In L3VPNs, the provider offers layer 3 (Network Layer) connectivity,
typically Internet Protocol (IP), between the different customer sites. At
present, there are two dominating L3VPN approaches, BGP/MPLS VPN
[154] and Virtual Router (VR) [155]. Both approaches concentrate the
VPN functionality at the edge of the provider network (provider edge or

170 8 Grid Network Security

PE nodes) and hide VPN-specific information from the provider core
nodes, to improve scalability. In the BGP/MPLS VPN approach, a routing
context is represented as a separate routing and forwarding table in the PE.
Each PE node runs a single instance of a BGP variant called Multiprotocol
BGP (MPBGP) [156] for VPN route distribution across the core network.
PE nodes use MPLS labels to keep VPN traffic isolated and transmit pack-
ets across the core network in tunnels. The tunnels are not necessarily
MPLS tunnels, they can be of any type, such as IPSec (see Chap. 2). If a
tunnel type other than MPLS is used, the only nodes that need to know
about MPLS are the PEs. Any routing protocol can run between the Cus-
tomer Edge (CE) nodes and the PEs, but in practice the customer must use
the routing protocol chosen by the provider. In the VR approach, PE nodes
have one VR instance running for each VPN context. A VR emulates a
physical router and functions exactly like one. VRs belonging to the same
VPN are connected to each other via tunnels across the core network.

8.3.2 VPNs and Grid – Issues

If grid computing has to become an important part of any enterprise’s in-
frastructure, there is a need to integrate with the VPN technologies which
have become a norm with most enterprises for secure access to the internal
resources. Let us now discuss some of the issues in integrating VPNs with
Grid technologies.

Manageability

VPNs and grids represent two diametrically opposite paradigms. In a typi-
cal grid computing environment, different entities share resources. VPNs,
on the other hand, are point-to-point security solutions between two enti-
ties. In order to use a VPN over each connection between a user and a re-
source node, a potentially enormous number of VPNs will be needed, with
associated key management challenges for each. This will result in a huge
manageability cost for the enterprise. Even a simple example of having one
grid node, scheduler, and a few resources, with VPN connections between
each of them is not at all feasible.

Performance

Like any other security solutions, VPN will introduce additional overheads
which will reduce the overall throughput of the grid systems. Several re-
search works have addressed this issue. In the next subsection, we will

8.3 Virtual Private Networks (VPN) 171

throughput in a scalable manner.

Setup

Another issue that hinders the integration of VPN and grid technologies is
the requirement of manual configuration required at each VPN. In a grid
computing environment, flexibility is one of the key drivers. Nodes are
added or deleted on demand based on the utilization of the systems. This is
very difficult to achieve in a VPN setup. Added to this is the issue of trust
management, which would be really difficult to manage and maintain. It is
to be understood that VPNs do not provide end-to-end security, rather pro-
vide security at the network or the data link layer (Layer 3 or Layer 2 secu-
rity). Grids, on the other hand, require security at the message level. There-
fore, integration is needed which is always through manual setup, and
hence not scalable.

8.3.3 VPNs and Grid – Some Solutions

Several research efforts have been undertaken in combining VPN and grid
services. In this chapter, we will discuss in brief about two such solutions:
Hose and On-demand grid support system.

Hose – A Resource Management Solution

The Hose service model [157] is an effort to provide flexible resource
management in a VPN environment. Proposed by researchers from
AT&T® Research, the Hose service model is characterized by aggregate
traffic from a set of end-points to another in a VPN. The hose service
model is a flexible alternative to the customer pipe service model, where a
customer buys a set of fixed allocations (customer-pipes) from the service
provider. In this model, the customers specify the incoming and outgoing
traffic aggregated over the different sites in the VPN system.

Figure 8.4 shows a traditional VPN setup where proper provisioning
of bandwidth is required to satisfy the Service Level Agreement (SLA) for
each customer. Taking the same example for a hose model, each site would
be provisioned by the aggregated amount of traffic coming in and going
out of the site. Following are the advantages of the Hose model:

discuss Hose, which talks about managing VPN connections and improving

172 8 Grid Network Security

• Flexibility: The Hose model allows the flexibility of clubbing to-
gether traffic having similar QoS requirements. Overall, it provides
more flexibility in terms of resource allocation and utilization.

• On demand resource: This type of model fits nicely with the grid
vision as resources could be adjusted on demand.

In spite of the flexibility provided by this model, one of the main dis-

advantages of this type of model is the lack of QoS guarantees that it can
provide. Since the resources can be shared, the absolute guarantees are
hard to provide which became a bottleneck for such a system to be ac-
cepted widely.

Fig. 8.4. A traditional VPN setup

On-Demand VPN Support for the Grid

In [158], the authors have proposed a network resource abstraction for re-
source discovery of on-demand VPN. The main contribution of the work
lies in the abstraction of the information provided so that the VPN re-
sources can be discovered. The proposed abstraction is implemented and

8.4 Secure Routing 173

integrated with Globus MDS, version 2. The two main components of the
abstractions are:

• Path Element (PE): The different elements of the VPN service are
abstracted into the concept of Path Element (PE). The PE provides
unidirectional connectivity between two network nodes. A network
node can represent a single device like an end-system, a router or a
switch or a network domain like an autonomous system, IP net-
work, or even a LAN. PE is the generalized class from which tech-
nology dependant classes like the DiffServPathElement and the
LSPPathElement classes are derived.

• Path Discovery: The process of path discovery is carried out by
simple match making based on some Service Attributes. Different
types of service attributes are Service Types, which indicates the
type of service (a premium service for example); Time, which indi-
cates the amount of reservation time; Application Type, and Service
Properties.

8.4 Secure Routing

Routing tables are used to route packets over any network especially the
Internet. Routing protocols like distance vector, link state, and path vector
protocols have been designed to create routing tables through the exchange
of routing packets. Routing table “poisoning” is a type of attack on the
routing protocols where the routing updates are maliciously modified by
the adversaries resulting in creation of wrong routing tables. A simple ex-
ample of routing table “poisoning” leading to DoS attack has been de-
scribed in Chap. 6.

8.4.1 Impacts of Routing Table “Poisoning”

Routing table “poisoning” can have impacts like suboptimal routing, con-
gestion, partition, overwhelmed host, looping, and illegal access to data.

Suboptimal Routing

With the emergence of the Internet as a means of supporting soft real-time
applications, optimality in routing assumes significant importance. Routing
table poisoning attacks can result in suboptimal routing that can affect

174 8 Grid Network Security

Congestion

Routing table “poisoning” can lead to artificial congestion if packets are
forwarded to only certain portions of the network. Artificial congestion,
thus created, cannot be solved by traditional congestion control mecha-
nisms.

Partition

The “poisoning” attack may result in the creation of artificial partitions in
the network. This can become a significant problem since hosts residing in
one partition will be unable to communicate with hosts residing in the
other partition.

Overwhelmed Host

Routing table poisoning may be used as a weapon for DoS attacks. If a
router sends updates that result in concentration of packets to one or more
selected servers, the servers can be taken out of service because of huge
amounts of traffic. This type of DoS attack is more potent as the attacker is
not spoofing identity, and is thus impossible to detect by the detection
techniques mentioned in Chap. 6.

Looping

The creation of triangle routing caused due to packet mistreatment attacks
could also be simulated through improper updation of the routing table.
Loops thus formed may result in packets getting dropped and hence lower-
ing of the overall network throughput.

Access to Data

Adversaries may gain illegal access to data through the routing table poi-
soning attack. This may lead to adversaries snooping packets which were
not supposed to pass through that part of the network.

real-time applications. Similarly, in a grid scenario also this type of attack
may lead to suboptimal routing resulting in a QoS violation.

8.4 Secure Routing 175

8.4.2 Different Routing Protocols

Routing protocols can be broadly categorized into three main categories:
distance vector, link state, and path vector routing protocols.

Distance Vector

In this set of protocols, the nodes in the network create a vector of shortest
paths distances to all the other nodes in the network. This distance vector
information is exchanged between the nodes. After receiving the distance
vector information from its neighbors, each node calculates its own dis-
tance vector. One point to note about these protocols is that, no node has
the full topology information and depends on its neighbors for creating its
routing tables. It has been shown that several problems like the Count to
Infinity problem can be a result of not having the full topology informa-
tion. Routing Information Protocol (RIP) [159] is an example of distance
vector protocol.

Link State

In link state protocols, each node sends its connectivity information to all
other nodes in the network. Based on the information received from all
other nodes, each node computes the shortest path tree by applying the
Bellman Ford algorithm. Unlike the distance vector protocol, each node
participating in the link state protocol has the full topology information. As
a result, link state protocols are inherently robust. Open Shortest Path For-
warding (OSPF) [160] is an example of the link state protocol.

Path Vector

This protocol is a variation of the distance vector. In this protocol, each
node sends the full shortest path information of all the nodes in the net-
work to its neighbors. It has been shown that problems associated with
standard distance vector protocols can be avoided in the path vector proto-
col. Border Gateway Protocol (BGP) [161] is an example of the path vec-
tor protocol.

8.4.3 Routing Attacks and Countermeasures

Routing table poisoning can be broadly categorized into (a) link and (b)
router attacks. Link attacks, unlike the router attacks, are similar in case of
both link state and distance vector protocols.

176 8 Grid Network Security

Link Attacks - Interruption

Routing information can be intercepted by an adversary, and the informa-
tion can be stopped from propagating further. However, interruption is not
effective in practice. The reason for this is that, in the current Internet sce-
nario there is generally more than one path between any two nodes, since
the average degree of each node is quite high (around 3.7). Therefore, even
if an adversary stops a routing update from propagating, the victim may
still be able to obtain the information from other sources. Most routing
protocols employ robust updates between neighbors [159, 160], by using
acknowledgments. Link attacks are detected in those cases. However, if
links are interrupted selectively, it is possible to have unsynchronized rout-
ing tables throughout the network. The after-effects of such routing tables
are looping and denial-of-service. Unsynchronized routing tables can also
be created if a router drops the updates, but sends an acknowledgment. The
problem of router dropping routing updates selectively has not been stud-
ied in the literature.

Link Attack – Modification/Fabrication

Routing information packets can be modified/fabricated by an adversary
who has access to a link in the network. As solutions for this problem,
digital signatures are generally employed. In case of digital signatures, the
routing updates increase by the size of the signature (typically between 128
to 1024 bits). This is a viable solution in link state routing protocols, since
the LSAs are transmitted infrequently. This is also proposed as a solution
for distance vector protocols. Distance vector protocols suffer from exces-
sive bandwidth consumption as the distance vectors are exchanged quite
frequently. Therefore, the addition of extra overhead in the form of a digi-
tal signature has been looked upon by the research community with con-
cern. Efforts have been undertaken to reduce the overhead through the use
of efficient digital signatures [162]. Another problem with this approach is
that it relies on the existence a public key infrastructure (PKI) for its func-
tioning [163]. In the absence of a PKI, the proposed solutions are not vi-
able.

Link Attack – Replication

Routing table “poisoning” can also be in the form of replication of old
messages, where a malicious adversary gets hold of routing updates and
replays them later. This type of attacks cannot be solved using digital sig-
nature schemes, because the updates are valid, only they are time shifted.
As a solution to this problem, sequence information are generally used.

8.4 Secure Routing 177

Sequence information can be in the form of sequence numbers or time-
stamps. An update is accepted as a valid update if the sequence number in
the packet is greater than or equal to the sequence number of the previ-
ously received update from the same router.

Router Attacks – Link State

A router can be compromised, making it malicious in nature. Router at-
tacks differ in their execution depending on the nature of the routing proto-
col. In case of link state routing protocol, a router sends information about
its neighbors. Hence, a malicious router can send incorrect updates about
its neighbors, or remain silent if the link state of the neighbor has actually
changed. A router attack can be proactive or inactive in nature. In case of
proactive router attack, the malicious router can add a fictitious link, delete
an already existing link, or change the cost of a link proactively. In case of
inactive router attacks, a router ignores a change in link state of its
neighbors. The solutions proposed for router attacks in link state protocols
can be categorized into two types: intrusion detection and protocol-driven.
The use of intrusion detection techniques have been suggested as a mecha-
nism to detect router attacks [164]. In these techniques, a centralized attack
analyzer module detects attacks based on some possible alarm events se-
quences. Using an attack analyzer module in the Internet scenario is not a
scalable solution. In a protocol-driven solution, the detection capability is
embedded in the link state protocol itself. In [165], Secure Link State Pro-
tocol (SLIP) has been proposed, where attack detection capability has been
incorporated in the routing protocol itself. A router does not believe an up-
date, unless it receives a “confirmation” link state update from the node
supporting the questionable link. However, the solution is not complete as
it works only in a symmetric network where both nodes supporting a link
can identify the change in the link state. It also makes an assumption that
no malicious collusion exist in the network.

Router Attacks – Distance Vector

Unlike the link state, in the case of distance vector protocols, routers can
send wrong and potentially dangerous updates regarding any nodes in the
network, since the nodes do not have the full network topology. In distance
vector protocols, if a malicious router creates a wrong distance vector and
sends it all its neighbors, the neighbors accept the update since there is no
way to validate it. As the router itself is malicious, standard techniques like
digital signatures do not work. In [166], the authors have proposed a vali-
dation scheme through the addition of predecessor information in the

178 8 Grid Network Security

also being proposed. However, most of these solutions work under some
assumptions. More research is needed before these solutions can be
adopted in practice.

8.5 Multicasting

The proliferation of group applications associated with the growing con-
cern for secure group communication drives the need for efficient and se-
cure solutions for group communication services [168 - 172]. Multicasting
is an effective mechanism for supporting group communication. In a mul-
ticast communication, each sender transmits only one copy of each mes-
sage that is replicated within the network and delivered to multiple receiv-
ers. For this reason, multicasting typically requires less total bandwidth
than separately unicasting messages to each receiver. Since most of com-
munications occurring on a grid imply many participants that can be geo-
graphically spread over the entire planet, multicast protocols can provide
an efficient way of handling the data transfer. Several multicast systems
have been developed for grid based applications [173]. Since there are lots
of security issues in multicasting where still research is being carried out,
most of the grid based implementations do not have them in place. In this
section, we provide a brief overview of existing general multicast security
issues and solutions.

8.5.1 Secure Multicasting

Secure multicasting, like any other fields of security, is based on the prin-
ciple of confidentiality and integrity. These solutions cannot be trivially
extended to multicasting scenario for multiple reasons:

• Unlike unicasting, in multicasting, data has to be shared among
multiple group members.

• Group members may join/leave the multicast session at any time.
• Nonmembers must be prevented from collaborating (colluding) to

recover the session key.

The issues that differentiate secure multicasting from any other
modes of secure communication can be broadly categorized into member
authentication, key management and packet authentication. An interaction
between the different modules of secure multicasting is shown in Fig. 8.5.
Whenever a user (A in the figure) is accepted into the multicast group, a

distance vector update. Several other variations of this algorithm [167] have

8.5 Multicasting 179

new key is generated (in the rekeying module) and distributed (in the key
distribution module). The source authentication module comes into the pic-
ture when the multicast group receives packets from the sender S. The
sender may be part of the group or may be outside the group. When a
member leaves the multicast group, rekeying and key distribution modules
are invoked. The three issues along with their proposed solutions are listed
in Fig. 8.5.

Fig. 8.5. Overview of the different issues in secure multicasting

Member Authentication

Group management involves the fundamental functionality of admission
control of the group members. In secure multicasting, only valid users
should be able to access data. For example, in a live lecture session only
the registered users should be able to listen to the lectures. Member au-
thentication has been traditionally performed in multicasting using a cen-
tralized architecture. Recently some systems have been proposed which
authenticate members in a hierarchical fashion. Scalability and complexity
in implementation are the main selection criteria.

180 8 Grid Network Security

• In centralized member authentication, a centralized controller is
used for authentication purposes. It is simple to implement. How-
ever, it introduces a single point of failure. An example of such
schemes is the Core Based Tree (CBT) mechanisms.

• In a hierarchical member authentication scheme, there are mul-
tiple controllers arranged in a hierarchical fashion. The member
joins to the nearest controller. Iolus architecture [174] introduces
the hierarchical member authentication approach. These systems
are more scalable; however controllers need to be deployed in each
multicast node.

• In case of distributed authentication techniques, the authentica-
tion capability is distributed throughout the network. In [175], the
authors describe a mechanism where the authorization server pro-
vides access tokens to the group members and access control lists
to the routers. These types of schemes require additional intelli-
gence at the router level.

Key Management

After the establishment of multicast session, management of keys needs to
be handled. Management of keys involve: distribution of keys in a scalable
and secure manner to all the group members, and rekeying when members
join/leave the multicast group. Distribution of keys remains an interesting
and challenging problem. This is quite different from a unicast scenario,
where a key is to be shared by the sender and the receiver only. In multi-
casting, keys need to be shared among the group members in a scalable
manner.

• Core based techniques were discussed by [176]. In this scheme
the core of the multicast group is also responsible for distribution
of keys.

• In the hierarchical key distribution scheme, the distribution is
split up among different entities in a hierarchical fashion. Two
common hierarchical key distribution schemes are [174], and
KHIP [177].

• In the last few years, a new technique [178, 179] has been
proposed which allows the use of single group data key for data
transmission (as in core based schemes), as well as having scalable
add and delete operations (as in hierarchical schemes). These tech-
niques are referred to as tree based techniques or key graph tech-
niques. The main idea behind these techniques is to have a single
server or core, and to have the server distribute subgroup keys in

8.5 Multicasting 181

addition to the individual user and group keys. To balance the cost
of addition and deletion, the keys are arranged in logical hierarchy
(instead of physical hierarchy as in Iolus), with the root key being
the root and the individual user keys being the leaves. The sub-
group keys then correspond to the intermediate nodes of this con-
ceptual tree.

Rekeying is needed as keys need to be changed to prevent the users

from accessing them after the user leaves a multicast group.

• Individual Rekeying: In this technique, new keys are created as
soon as a member joins/leaves a multicast group to provide
join/leave secrecy.

• Periodic Batch Rekeying: In this type of rekeying, requests are
collected for a certain amount of time (called the rekey interval),
and then rekeying is carried out in a batch. The batch rekeying
techniques have been explained and analyzed in [180].

Source Authentication

The source authentication problem is different in multicasting than in tradi-
tional unicasting, as the authentication has to be carried out in a scalable
manner, and there is a possibility of group members colluding.

• Individual Signature: The simplest way to deal with the authenti-
cation problem is to sign each and every packet. This is not a prac-
tical scheme as this is computationally very expensive. However,
the scheme does not introduce any extra delay into the authentica-
tion mechanism, i.e. the latency is low. The scheme also is not
vulnerable to collusion, as each and every packet is signed.

• Single MAC Schemes: Message Authentication Codes (MAC) are
also traditionally used for authentication. A MAC creates an out-
put from a shared secret key and the message itself. The output,
the signature of the packet, is then appended to the packet itself for
transport across the network. MACs are generally faster to com-
pute than the public key signatures; they also require that every re-
ceiver has access to a shared key. This is different from the public
key approach, where any user can have access to the key. These
schemes are more efficient than the individual signature scheme.
Any receiver can pose as a sender by signing a message of its own
with the shared key.

182 8 Grid Network Security

• Stream Signing: A stream can be defined as a potentially very
long (infinite) sequence of bits that a sender sends to a receiver
[181]. The key aspect of the stream is that the receiver must take
data as received, and process it as soon as possible. In [181], the
authors assumed that it is possible for the sender to embed authen-
tication information into the stream, and the receiver has a small
buffer where it can authenticate received bits. The stream is di-
vided into blocks, and the authentication information is embedded
into the stream. The information from the ith block is used to au-
thenticate the (i+1)th block. The signer needs to sign only the first
block, this signature will propagate through the rest of the stream
through authentication information. The above mechanism re-
quires high efficiency and packet loss cannot be tolerated. There-
fore, there must exist an underlying reliable transport protocol like
TCP.

• Chaining: To increase the efficiency of the stream signing proto-
cols, in [182] efficient schemes have been proposed which remove
the deficiencies of the stream signing problems. To accomplish
these requirements two chaining schemes have been proposed to
sign and verify multiple packets, denoted as blocks, in a single op-
eration. Since all the packets in a block are signed and verified in
only one operation, the procedure can be amortized over the entire
block, making the overall rates much faster than the other meth-
ods. The basic function of both these methods is to compute the
block digest of each block as part of the authentication informa-
tion. The authentication information consists of the signed digest
of the block and some addition chaining information so the re-
ceiver may verify where it belongs in the block. This is a very effi-
cient approach. However, unequal authentication information may
lead to bursty traffic.

8.6 Sensor Grids

With the growth of the data-centric nature of grid computing applications,
newer grid applications are being developed which requires interaction
with sensors and actuators for tapping into the resource specific informa-
tion. Some recent works in this area have been captured as part of our dis-
cussions on monitoring systems in Chap. 11. With the emergence of sensor
networking technologies as a major area of research and development, re-
searchers have been able to integrate the tiny sensors and actuators with

8.6 Sensor Grids 183

general purpose computing elements. These networks typically consist of
hundreds or thousands of self-organizing, low-power, low-cost wireless
nodes deployed en masse to monitor and affect the environment. Sensor
networks have found applications in various fields, viz. medical and pa-
tient care, military, supply chain, etc. [183]. Researchers are working on
integrating grid systems with the sensor networks. One such system is the
Hourglass model developed in Harvard [184]. Integrating sensor networks
into the grid infrastructure poses challenges in terms of routing, aggrega-
tion, and querying, diverse sensor network data. Since the sensor networks
can be dispersed geographically, the challenge of routing becomes quite
critical. In addition, since the sensors have low computation capabilities,
and requires mechanisms to conserve power, the ability to aggregate and
query information in a sensor network is a challenge. Security is another
great challenge in a sensor networking infrastructure. Integration of sensor
networks in a grid requires mechanisms to address the security challenges
posed. Since the grid based sensor networks have limited implementations,
we provide an overview of security challenges and some solutions in ge-
neric sensor networks.

8.6.1 Security in Sensor Networks – Issues

Sensor networks can be of mainly two types: centralized and distributed.
The difference between the two lies in the way in which data is aggregated
across the sensor nodes. In the first type, sensor networks often have one
or more points of centralized control called base stations or sinks. A base
station is typically a gateway to another network, a powerful data process-
ing or storage center, or an access point for human interface. The sensors
collect information and pass it on to the base stations for further process-
ing. Typically, base stations have more processing capabilities and battery
lifetime compared to the individual sensors. In the distributed sensors, the
data is stored in a distributed manner in individual sensors. However, most
of the work done assumes a centralized architecture, where the sensor
nodes establish a routing forest with the base station as the root.

Sensor networks typically consist of small sensors or motes which
limit the amount of processing that a sensor node can carry out. Most of
these sensors have limited battery power and hence need to be in a sleep
mode for most of the time to conserve energy. Sensor networks also are
generally deployed in places where bandwidth availability may be very
limited. All these constraints limit the sensor network designers from im-
plementing expensive cryptographic mechanisms. Since bandwidth is very

184 8 Grid Network Security

expensive in most sensor network implementations, therefore special care
must be taken in ensuring that too much bandwidth is not wasted in adding
security measures limiting the sizes of the messages exchanged.

Let us now discuss some of the attacks possible in a sensor network-
ing infrastructure. Interception, node hijacking, sybil, sinkhole, and worm-
hole are some of the attacks which can make the sensor networks vulner-
able. The attacks can be performed by a mote class or a laptop class
attacker. The former class of attackers has the same capabilities as that of
the sensor nodes, while the latter class of attackers has more capabilities
than the sensor nodes.

Interception

Perhaps the easiest means of attack in a sensor networking environment is
eavesdropping or information gathering in a passive manner. A laptop type
attacker can easily intercept the data streams passing between different
sensor nodes or between sensor nodes and the base station. The passive na-
ture of the attacker can hide the information about the attack and hence the
identity of the attacker. A more malicious adversary can actually change
the contents of the information to cause confusion. However, content cor-
ruption can lead to much easier detection. Encryption techniques can be
used to mitigate this type of attack.

Node Hijacking

There are two modes of hijacking a node: a node can be compromised and
secret information in that node can be obtained. In such a case, there is a
need to exclude the compromised node. The second type of hijacking is
where a new node is introduced into the network. The node not only intro-
duces spurious and sometimes potentially dangerous information, it also
can consume a lot of network bandwidth which is a scarce commodity.

Sybil Attack

In this type of attack, an attacker poses multiple identities to other nodes in
the sensor network. The attack is dangerous especially in the context of
routing in sensor networks. Assume that a node A is posing as n additional
nodes A1, A2, …, An. When routing a packet within the network, one of
the fictitious nodes may be chosen as the next hop resulting in unauthor-
ized data access, additional latency, resource wastage, looping, and some-
times even network partitioning. If the attacker is an external attacker,

8.6 Sensor Grids 185

some type of authentication may reduce the probability of such an attack.
This type of attack is very difficult to detect and prevent especially when
the attacker is a laptop type attacker and is an internal member of the net-
work.

Sinkhole Attack

In this type of attack, the attacker acts as if all the traffic in the network is
intended towards the attacker. Sinkhole attacks typically work by making a
compromised node look especially attractive to surrounding nodes with re-
spect to the routing algorithm. Typically, routing algorithms work by the
principle of least cost path. If the attacker or adversary can advertise that
the shortest path to all the nodes in the network is through it, then all the
packets can traverse through it. It is to be noted that such an attack is pos-
sible in traditional Internet also. However, the effect is much reduced be-
cause of the packet by packet authentication of routing updates required
for generating the routing tables. Sinkhole attacks become an important
problem in sensor networks because it is a constrained bandwidth envi-
ronment and it is extremely expensive to even sign the Hello messages ex-
changed during route establishment.

Wormhole Attack

Another interesting attack is the wormhole attack [185] where an adversary
tunnels messages received in one part of the network over a low latency
link and replays them in a different part. The simplest instance of this at-
tack is a single node situated between two other nodes forwarding mes-
sages between the two of them. In a typical attack scenario, wormhole at-
tacks involve two distant malicious nodes colluding to understate their
distance from each other by relaying packets along an out-of-bound chan-
nel available only to the attacker. An adversary situated close to a base sta-
tion may be able to completely disrupt routing by creating a well-placed
wormhole. An adversary could convince nodes who would normally be
multiple hops from a base station that they are only one or two hops away
via the wormhole. This can create a sinkhole: since the adversary on the
other side of the wormhole can artificially provide a high quality route to
the base station, potentially all traffic in the surrounding area will be drawn
through the adversary if alternate routes are significantly less attractive.

186 8 Grid Network Security

8.6.2 Existing Solutions

Several sensor network security solutions have been proposed in the litera-
ture. Most of them have been implemented in the lab settings and have
limited deployment. We are presenting two of the most widely cited solu-
tions in this area: Security Protocols from Sensor Networks (SPINS), and
TinySec.

Security Protocols for Sensor Networks (SPINS)

SPINS [186] is a suite of security mechanisms proposed from the Univer-
sity of California, Berkeley. SPINS has two basic components, SNEP and
µ TESLA. While SNEP provides confidentiality, authentication, and data
freshness, µ TESLA provides authenticated broadcast for severely re-
source constrained environment.

• SNEP: SNEP uses encryption to achieve confidentiality and mes-
sage authentication code (MAC) to achieve two-party authentica-
tion and data integrity. In addition to confidentiality SNEP also
achieves semantic security, which ensures that the eavesdropper
will not be able to infer anything about the message, even if it can
get hold of multiple encryptions of the same information. The ba-
sic technique to achieve this is randomization: Before encrypting
the message with a chaining encryption function the sender pre-
cedes the message with a random bit string (also called the initiali-
zation vector). This prevents the attacker from inferring the plain-
text of encrypted messages if it knows plaintext-ciphertext pairs
encrypted with the same key. To avoid adding the additional
transmission overhead of these extra bits, SNEP uses a shared
counter between the sender and the receiver for the block cipher in
counter mode (CTR). The communicating parties share the counter
and increment it after each block.

• µ TESLA: µ TESLA is a mechanism to authenticate broadcast
messages. The heart of the mechanism is the concept of key chains
where a chain of one-way keys are computed through a function so
that the (i+1)th key is dependent on the ith key. Whenever the base
station is sending a packet, it computes a MAC based on one of the
keys of the key chain. The receiver sensor nodes stores the packet
in the buffer waiting for the key to be disclosed. The base key of
the key chain is disclosed so that the other keys can be obtained
and the message can be authenticated based on the MAC. Though
the mechanisms is efficient, it requires a loose synchronization

8.6 Sensor Grids 187

corresponds to a particular time period.

TinySec

TinySec is another security architecture [187] for the wireless sensor net-
works from University of California, Berkeley. TinySec is a lightweight,
generic security package that can be integrated into sensor network appli-
cations. It is incorporated into the official TinyOS release. The important
point that differentiates the TinySec approach with any other security
mechanism is its link layer security characteristics. The authors in [187] try
to analyze the difference between link layer and end-to-end security. The
authors have concluded that the use of link layer compared to end-to-end
security is an effective mechanism for sensor network security. The rea-
sons are two-fold. Firstly, since most of the communication is between the
sensor nodes and the base station, unnecessary bandwidth is being wasted
for having end-to-end security. Moreover, sensor nodes require contents
and message suppression to reduce the message overhead, and hence end-
to-end security may not be an effective mechanism. Secondly, if message
integrity is checked only at the end node, a low-bandwidth sensor network
is vulnerable to denial-of-service attacks as messages travel throughout the
network. It is to be noted that no detailed analysis have been done in the
literature about the applicability of link-level security vis-à-vis end-to-end
security in sensor networks.

TinySec provides the basic security properties of message authentica-
tion and integrity (using MAC), message confidentiality (through encryp-
tion), semantic security (through an Initialization Vector) and replay pro-
tection. TinySec supports two different security options: authenticated
encryption (TinySec-AE) and authentication only (TinySec-Auth). With
authenticated encryption, TinySec encrypts the data payload and authenti-
cates the packet with a MAC. The MAC is computed over the encrypted
data and the packet header. In authentication only mode, TinySec authenti-
cates the entire packet with a MAC, but the data payload is not encrypted.
In terms of keying mechanisms, TinySec allows multiple types of mecha-
nisms. It allows a network-wide single key based mechanism, a key per
node-pair, or a group of neighboring nodes sharing a TinySec key.

between the base station and the receiver sensor nodes as each key

188 8 Grid Network Security

8.7 High Performance Interconnects

Performance is one of the main criteria which drives the adoption of dif-
ferent high speed interconnect technologies to create very high perform-
ance clusters. In this section, we will talk about the two most popular high
speed interconnects used by the cluster community, namely the 10-GB
Ethernet and Infiniband.

8.7.1 10-Gigabit Ethernet

One of the most popular high speed interconnect technology available is
the 10-Gigabit Ethernet. The 10 Gigabit Ethernet standard extends the
IEEE 802.3ae standard protocols to a wire speed of 10 Gbps and expands
the Ethernet application space to include WAN-compatible links. Under
the Open Systems Interconnection (OSI) model, Ethernet is fundamentally
a MAC Layer protocol. 10 Gigabit Ethernet retains the key Ethernet archi-
tecture, including the Media Access Control (MAC) protocol, the Ethernet
frame format, and the minimum and maximum frame size. 10-Gigabit
Ethernet sticks to the basic Ethernet architecture and differs by only one
key ingredient. Since 10 Gigabit Ethernet is a full-duplex only technology,
it does not need the carrier-sensing multiple-access with collision detection
(CSMA/CD) protocol used in other Ethernet technologies. In every other
respect, 10 Gigabit Ethernet matches the original Ethernet model. Since
10-Gigabit Ethernet is compatible with the Ethernet architecture, therefore,
applications can be seamlessly migrated to this infrastructure. In addition
to 10Gigabit Ethernet's advantage with respect to compatibility with legacy
infrastructures, Balaji et. al [188] show that it also delivers performance
that is comparable to traditional high-speed network technologies such as
Infiniband and Myrinet in a system-area network environment to support
clusters and that 10Gigabit Ethernet is particularly well-suited for socket-
based applications.

8.7.2 Infiniband Architecture (IBA)

Infiniband is a switched fabric based interconnect architecture operating at
a base speed of 2.5 Gbps to 10 Gbps in each direction. Instead of a shared
bus architecture, Infiniband uses a switched fabric architecture. A point-to-
point switch fabric means that every link has exactly one device connected
at each end of the link. Thus the loading and termination characteristics are
well controlled and also it can provide better scalability and fault-

8.7 High Performance Interconnects 189

tolerance. Infiniband is one of the most popular interconnect technologies
especially for high-speed, high-performance clusters. Several case studies
can be found where Infiniband is used in grid based deployment.

8.7.3 Some High Performance Security Solutions

One of the major issues in implementing security solutions in a high-speed
networking environment is performance. One of the earliest attempts to
identify the attacks and solutions in a high-performance distributed envi-
ronment is provided by Dimitrov and Gleeson [189]. The authors pre-
sented security enhancement methods in three levels: network host inter-
faces, SANs, and protocols for interconnecting many SANs. Their
approach can be a good systematic guideline for enhancing the security of
cluster systems based on the Myrinet or Virtual Interface Architecture
(VIA). Another security solution that talks specifically for the Infiniband
architecture is presented in [190]. A security solution which requires fire-
wall/intrusion detection, encryption/decryption, message authentication,
distributed denial of service (DDoS) attack protection, etc., it results in a
significant overhead which significantly reduces the performance. Cyber
Security Processor (CYSEP) [191] is a security solution implemented in an
Application Specific Security Circuit (ASIC) which provides very good
performance at high speed. In this chapter, we will discuss about the secu-
rity enhancements for IBA and the CYSEP solution.

Security Enhancements for IBA

In [190], the authors have mentioned that Denial of Service (DoS) attacks
are perhaps one of the most critical challenges that need to be addressed in
an IBA based network. IBA specifies a mechanism, referred to as parti-
tioning, for grouping nodes to limit access control [12]. Partitioning en-
ables several nodes to exclusively share some resources, forbidding other
nodes not in the same partition to access them. However, an attacker on a
compromised InfiniBand node can easily trigger a DoS attack by flooding
packets with random partition keys in the InfiniBand network. Destination
nodes will block those packets because they do not have legitimate parti-
tion keys. In the mean while, the packets have already traversed through
the network, incurring a significant delay to other legitimate traffic. IBA
allows the use of five different types of keys for isolation and protection.
Since the keys are available as plain text in the messages, the key level in-
formation can be easily obtained by the hacker. The authors propose to re-
duce the effect of the problem by two different types of key management:

190 8 Grid Network Security

partition level key management and queue pair-level key management. In
the former management mechanism, each partition has a key associated
with it. The key is not created through a Key Exchange protocol; rather the
Subnet Manager (SM) creates the key. For a more granular control, a key
is associated with each queue pair.

Cyber Security processor (CYSEP)

CYSEP is a high speed security module for high speed networks. The
CYSEP [191] supports, at wire-speed, four major functions, namely, fire-
wall/intrusion detection, encryption/decryption, message authentication,
and distributed denial of service (DDoS) attack protection at the speed of
10 Gbps or higher. The Firewall and Intrusion Detection Engine (FIDE)
prevents attacks and filters unwanted content at the edge of a network. It
includes the functions of finite automata based signature detection and
packet classification. The encryption/decryption engine implements the
message confidentiality primitives necessary to establish VPN over the
public Internet. The authentication and authorization engine implements
the message integrity primitive necessary to establish VPNs. The DDoS
protection engine uses the packet-score scheme, which estimates the le-
gitimacy of a suspicious packet according to the score assigned. The au-
thors have claimed that the throughput of the system to go beyond 70 Gbps
in the case of application specific integrated circuit implementation.

8.8 Chapter Summary

The network is one of the most important components of any infrastructure
and grid is no exception. Different network security issues are: Issues re-
lated to network access control and isolation, secure routing, multicasting,
wireless/sensor grids, and high performance interconnects. The first issue
is of immediate concern, where efforts are needed in integrating the grid
solutions with existing enterprise firewalls and VPNs. Most of the current
solutions include manual intervention or customizations to integrate with
firewalls. Several research projects like Adaptive Grid Firewall (AGF) are
looking at this issue. Solutions like Hose look at using VPNs for resource
management purposes. The second issue of secure routing is important and
several research efforts have been undertaken. Both third and fourth issues
are long term security issues which include secure multicasting over the

solutions like Secure IBA and CYSEP and efforts in that direction. Table 8.1

grid and secure sensor networks. These have exceptional research potentials.
Finally, high performance interconnects introduce security challenges and

8.8 Chapter Summary 191

summarizes the different network issues and solutions discussed in this
chapter. With this we come to the end of the infrastructure related issues.
In Chap. 9 - 11, we will look at the management related issues starting
with the credential management systems.

Table 8.1. Summarizing the different network issues

Types Issues Solutions Comments
Firewalls – Flexibil-
ity, effectiveness, and
coordination Issues

AGF, XML
Firewalls

More research and devel-
opment efforts are needed
in automation front Network

Access
Control &
Isolation

VPNs – Manageabil-
ity, Performance, and
setup issues

Hose, On-
demand VPN

Similar to Firewalls, more
work is needed for auto-
mated setup and deploy-
ment

Link Attacks Signature
based

Most of the common prob-
lems have solutions, per-
formance is the key

Routing Router Attacks Consistency
based, Intru-
sion detection
based

Source related attacks re-
quire more research atten-
tion

Member Authentica-
tion

Centralized,
hierarchical,
and distrib-
uted tech-
niques

Hierarchical and distrib-
uted schemes are scalable.
However, they require
more intelligence.

Key Management Core-based,
hierarchical,
and tree-
based tech-
niques

Tree based techniques are
scalable, require more re-
search Multicast

Source Authentica-
tion

Individual,
single MAC,
stream-based,
chaining

Stream signing and chain-
ing are scalable. However,
they introduce restrictions
in terms of transport proto-
col and unequal informa-
tion size.

Sensor
Networks

Node Hijacking,
Sybil Attacks,
Wormhole attacks

SPINS and
TinySec

More research is needed in
this area

High Per-
form Net-
works

Performance related IBA Security,
CYSEP

More performance to secu-
rity trade-offs are needed

9 Grid Credential Management Systems

9.1 Introduction

When I reflect upon my activities of the day I find that I have used multi-
ple credentials to access resources of different forms. I used my company
identity card to enter the office premises, entered the password to enter
into the office network, used the smart card to access the high-security lab,
used the Personal Identification Numbers (PIN) to access my ATM ac-
count, and used my passport to get a US visa, and this was just one day.
Different identity checks were required by different systems, and my iden-
tities were in different forms which I either carried in my head or as a card
or a paper. I am surely not an exception; every one of us is doing the same,
maintaining multiple credentials to access some form of resource. This has
really become pronounced with the growth of information technologies,
where there are multitudes of system interfaces which require some sort of
user authentication. As a result individuals possess multiple digital identi-
ties and credentials, many of which are short lived.

At this point, one may be concerned about the relationship between
identities and credentials. Identity of an individual user is unique; however
it may be manifested in different ways to disparate systems through user
credentials. For example, my identity credential to the US consulate is my
passport, while to the company network is the combination of network’s
user id and password. Therefore, when we talk of managing different user
identities, it is actually the user identification credentials we are talking
about. However, credentials go beyond just identifying the user. Creden-
tials may authorize a user to access certain resource or can be used as a
proof of authentication. Credentials can be short-lived, for example iden-
tity cards or passwords which expire when the individual leaves the com-
pany, or after a fixed amount of time as the case may be. Other examples
of short time credentials are the tickets issued in busses for a short ride.
Therefore, the individuals manage their credentials by a combination of

194 9 Grid Credential Management Systems

paper, cards, and own memory as I did today. Secure management of user
credentials is a very important challenge. Identity theft has topped the list
of complaints to the US Federal Trade commission in 2002, accounting for
43% of all the complaints [192]. Therefore, identity and user credential
management is surely a very important problem and several research and
development efforts are undertaken in this direction. In a grid system also,
the management of credential assumes enormous proportion because of the
heterogeneity of resources, policies, and possible authentication and other
security mechanisms across the grid. In this chapter, we will talk about
credential management issues and solution in the grid computing environ-
ment. Before discussing the grid specific issues and solutions, we will talk
about the generic properties and systems used in this space.

9.1.1 Types of Credentials

Let us now discuss the different types of credentials generally used in digi-
tal systems. Credentials are of three main types: identity credentials, au-
thentication credentials, and authorization credentials.

Identity Credentials

This type of credentials is used to uniquely identify a particular user. The
use of identity credentials is quite prevalent in the physical world also.
There are numerous examples when one has to prove one’s identity. For-
eign travels, applying for credit cards, buying liquor, are few examples
when proving one’s identities becomes mandatory. Passports, driving li-
cense, or some other government issued photo identity cards are generally
used for this purpose. Identity credentials prove one’s identity as it is
vouched for by a trusted third party. Therefore, even though a person may
not be trusted, the identity proves that there exists a trusted third party who
vouches for the person’s identity. In the digital world also in many cases
proving a user’s identity becomes important. Some form of digital certifi-
cates signed by a certificate authority is used to prove the identity of the
users.

Authentication Credentials

In addition to identity credentials, another form of credentials typically
used is called the authentication credentials. At this point, one may wonder
about the utility of the authentication credential, when the identity creden-
tials actually can be used to authenticate a user. One way to differentiate
between identity credentials and authentication credentials lies in the longevity

9.1 Introduction 195

of the credentials. Identity credentials are generally long-term while
authentication credentials have lesser longevity. Another important distin-
guishing factor is that identity credentials are generic in nature while au-
thentication credentials generally have system specific and other policies
like temporal policies ingrained in them. The authenticating systems use
the identity credentials to make the authentication decision before issuing
the authentication credentials. For example, visa issued by different gov-
ernments can be considered to be an authentication credential. The visa is
issued by the government official after checking the identity credentials
which include passport and other supporting documents. In computing sys-
tems, there may be multiple systems which require authentications. Au-
thentication credentials become useful when a user gets authenticated from
one system and uses the credential to access the other systems also.

Authorization Credentials

The third type of credentials typically used is called the authorization cre-
dentials. These credentials are issued to authorize users to access certain
resources. Common examples of such authorization credentials are bus,
train, or flight tickets which authorize users to access the respective trans-
port for traveling purposes. Similar credentials are issued to access com-
puting resources also. A detailed description of grid authorization systems
is provided in Chap. 5.

9.1.2 Characteristics of Credential Management Systems

The Secure Available Credential (SACRED) working group in Internet
Engineering Work Force (IETF) [193, 194] is concerned with the secure
use and management of credentials in a roaming or desktop environment
using desk tops, laptops, mobile phones, PDA, etc. The main motivation of
the group is to develop solutions to support user mobility, use of the same
credentials from different network devices, and secure storage of creden-
tials. The group has developed a few RFCs concerning the requirements
for securely available credentials, and a framework to achieve that. The re-
quirements are briefly discussed below.

• Credential Transmission: The first requirement is that of creden-

tial protection during transmission in a networked environment.
The RFC [194] mandates the protection of credentials during net-
work transmission using a double layered encryption mechanism
through the exchange of a shared or session key between the client

196 9 Grid Credential Management Systems

and the server. Furthermore, the RFC mandates that the credential
transfer protocol should ensure that all the transmitted credentials
are authenticated in some way.

• Credential Storage: The RFC mandates that the credentials
should not be in the clear when stored. The credentials should be
defined as an opaque data object that can be used by the network
device. Clients should be able to recover the credentials from the
opaque objects. The credential format should provide a privacy and
integrity protection.

• Heterogeneity: The RFC mandates that different credential types
like X.509, PGP, etc. should be supported and also should allow
the use of different cryptographic protocols. This requirement is
especially important in a grid computing context as different sys-
tems may support different types of credentials and protocols.

Though the requirements provided by the RFCs operate at the high

level, they provide guidelines for the credential repository which enables
the design of the credential management system.

Desired Characteristics of Credential Management Systems

Based on the requirements provided in the previous section, it is clear that
the Credential Management (CM) system should provide secure transmis-
sion of credentials, secure storage of credentials, and should cater to dif-
ferent types of systems and mechanisms. Let us now look at the different
characteristics that a credential management system would require.

1. Initiation: Every CMS should provide mechanisms so that users

can obtain the initial credentials from the CMS system. The CM
system should provide the required credential after authenticating
the user. The authentication can be based on multiple different
mechanisms like password based, certificate based, or some other
mechanisms.

2. Secure Storage: As mandated by the SACRED RFC [193], the
long term credentials or the private keys should be stored in the
CM systems in a secure manner, preferably encrypted. This is a
very important requirement, as the compromise of the long term
credential would lead to disastrous consequences.

3. Accessibility: This is more related to the utility of the CM system.
The CM system should be able to provide credentials when the
user needs them. Proper access control mechanisms need to be
provided when the credentials are accessed.

9.1 Introduction 197

4. Renewal: Most credentials have a specific expiration time. The
CM system should be able to handle renewal of expired creden-
tials.

5. Translation: This is important if there are multiple systems hav-
ing different authentication and security mechanisms. The creden-
tials used in one domain or realm may have to be translated into
credentials in other domain which should be handled by the CM
system.

6. Delegation: As mentioned in Chap. 4, delegation is really impor-
tant from the grid perspective. CM systems should be able to dele-
gate specific rights to others on the user’s behalf.

7. Control: Monitoring and auditing of the credential usage is very
important because it not only provides a handle to credential com-
promise, it can be used for pricing if required. Therefore, CM sys-
tems should be able to monitor and audit the credentials provided
to the users.

8. Revocation: Finally, the CM system should provide mechanisms
to revoke credentials in case of user compromise.

9.1.3 Different Credential Management Systems

In the previous section we have listed the requirements and characteristics
of a credential management system. Based on the characteristics provided
in the previous section, the CM systems can be broadly categorized into
credential repositories and credential federation systems. As the name sug-
gests, the credential repositories or credential storage systems are con-
cerned about securely storing the credentials, generating new credentials
on demand, and sometimes generating proxy credentials on user’s behalf
for delegation purposes. Credential federation systems or credential
share systems are responsible for sharing the credentials across different
domains or realms. Examples of credential storage systems are smartcards,
MyProxy etc., and examples of credential share systems are the Liberty
Project, VCMan, etc. We will discuss the different systems in subsequent
chapters.

A high level overview of the two systems is provided in Fig. 9.1.
As illustrated in the figure, unlike the centralized credential management
systems, the federated systems are distributed resulting in no single point
of failure, however leading to more complexity in having to deal with het-
erogeneous authentication and policies.

198 9 Grid Credential Management Systems

Fig. 9.1. Centralized vs. federated credential management system

9.1.4 Centralized Vs. Federated Credential Management

When I enter my organization premises I use my user id and password to
access most of the documents and resources of the organization. Here, my
credentials (user id and passwords) are used to access the resources
through a centralized credential management system. Therefore, in a cen-
tralized credential management system there is a need for all the character-
istics of a CMS mentioned in the Sect. 9.1 other than translation. The rea-
son is that the system is homogeneous as all authentication mechanisms,
policies, etc. are managed centrally. However, centralized credential man-
agement systems do not serve all the purposes. For example, I am visiting
a city in Switzerland on a vacation. There are two Web sites called
xxx.com and yyy.com where the former is responsible for getting me the
cheapest fare and the latter is responsible for arranging my stay, arranging
for airport drops, sight-seeing, and others. Since I have two different ac-
counts or credentials in each of the Web sites, therefore I would have to
log on to the two sites and provide them separate information. Instead, if

9.1 Introduction 199

the flight information can be shared between the xxx.com and yyy.com in
spite of my having different credentials in each Web site, it would be ex-
tremely convenient for me. This is an example of federated credential
management. Therefore, in a federated credential management system the
characteristic that comes to the forefront is trust among the different sites
or entities sharing the credentials. Therefore, credentials are exchanged
among the entities that trust each other. It is to be noted that the credential
repositories and federated credential management systems are not compet-
ing technologies, rather they are complementary in nature.

Fig. 9.2. A federated grid system

From the example mentioned above, it may seem that federated cre-
dential management may be useful for the identity management across dif-
ferent Web sites. However its applicability to grid computing may not be
easily understood. Most of the grid systems that have been implemented
employ centralized control of the resources. However, when enterprises
come together to share resources, there may be a need to integrate the dis-
parate authentication mechanisms, policies, etc. across the different enter-
prises. Let us take an example illustrated in Fig. 9.2. In this figure, there
are three enterprises having different authentication mechanisms like Ker-
beros, password based, and X.509 certificate based. The enterprises have

200 9 Grid Credential Management Systems

come together to share the resources, however they do not want to give
away the control on the resources totally. Therefore, there is a need for in-
tegration of the policies across the different systems based on mutual un-
derstanding and trust and hence there is a need to manage heterogeneous
credentials across the different systems. Some of the features that are
needed in federated credential management systems are:

• Repository of Heterogeneous Credentials: Unlike the central-

ized credential management systems, a federated credential man-
agement system requires the storage of heterogeneous credentials.

• Credential Transfer: There is a need for transfer of credentials
across the different systems based on trust in a secure manner.

• Credential Translation: There is a need for mapping between
different credentials so that users can login and submit jobs with a
different credential from the credential of the domain or the site
executing the job.

9.2 Credential Repositories

The credential storage systems are designed so that the responsibility of
storing the credentials securely is outsourced from the user to these sys-
tems, and the users can get the credentials anytime on demand.

9.2.1 Smart Cards

The smart card, an intelligent token, is a credit card sized plastic card em-
bedded with an integrated circuit chip. It provides not only memory capac-
ity, but computational capability as well. The self-containment of smart
card makes it resistant to attack as it does not need to depend upon poten-
tially vulnerable external resources. Because of this characteristic, smart
cards are often used in different applications which require strong security
protection and authentication. Smart cards can be thought of as a user
managed portable credential storage, similar to a car key. The private key
of the user can be embedded in the hardware of the smart card, so the only
thing the user needs to worry about is the safety of the card itself. The
smart cards therefore act as the identification card for the user storing the
user’s credentials, which can be distributed beforehand. More sophisticated
cards mapping the user’s biometric information in the card are also being
developed. More details of the hardware and software architecture of the
smartcards are available in [195].

9.2 Credential Repositories 201

Let us now try to analyze the applicability of smart cards in the grid

scenario.

• Security: Smart cards are probably the safest way to store the
user’s credentials. There are two possible ways to compromise
smart cards. Firstly, as all the key material of a smart card is stored
in the electrically erasable programmable read only memory
(EEPROM), and due to the fact that EEPROM write operations can
be affected by unusual voltages and temperatures, information can
be trapped by raising or dropping the supplied voltage to the mi-
crocontroller. In [196], several examples of attacking the smart
card microcontroller by adjusting the voltage are provided. Sec-
ondly, the cards can be subjected to acid attack or the card can be
stolen or destroyed. The second point thus raises an important con-
cern. Since the users need to store the cards, and there may be mul-
tiple credentials associated with the user, therefore storing multiple
smart cards increase the storage problem for the users. The prob-
lem of storing multiple credentials can be substantially reduced if
the credential sharing techniques are employed in conjunction. An-
other way of addressing the problem is to go for virtual smart cards
described later in this section.

• Usability: In addition to the users’ woes of managing and storing
multiple smart cards, there is a cost associated with smart cards.
Though the cost of the smart cards has come down significantly,
they still cost around $20 - 50 which may increase the significant
overhead to the grid infrastructure.

9.2.2 Virtual Smart Cards

The term virtual smart card was first coined in [197] by Sandhu et al. They
made a distinction between virtual smart card and a virtual soft token. In
the former, the private key is never brought to the client system, similar to
a smart card where the private key never leaves the card. In the case of vir-
tual soft tokens, the user can retrieve the private key in any system of
user’s choice. The virtual soft tokens consist of two components, the key
and the password, which are combined to produce the final encrypted ver-
sion of the token. The simplest way to produce the encrypted key will be to
encrypt the key with the user password, so that without knowing the pass-
word the key cannot be used. Unfortunately this scheme is susceptible to
dictionary attacks. An attacker who has access to the encrypted private key

202 9 Grid Credential Management Systems

can verify guesses for the password by decrypting the private key with the
guess and verifying success or failure with respect to the known public
key.

Therefore, the virtual smart card schemes combine the advantages of
the smart cards and the online CAs.

• The virtual smart cards provide a cheaper alternative to the tradi-

tional smart cards. Since no infrastructural support is required, the
deployment of such a technology in a grid computing scenario pro-
vides a cheaper alternative to the smart card solution. Moreover,
since the user credentials are stored in a secure centralized place,
user concern regarding credential compromise is reduced to a great
extent. It also allows the user to store multiple credentials.

• Virtual smart cards are much more flexible than the credential
management handled by online CAs. Virtual smart cards, at least
theoretically, do not prohibit the storage of multiple credentials of
different types. Therefore, Kerberos credentials along with X.509
certificates can be stored. Similarly, the repository may not be re-
stricted to one CA, and manage credentials from multiple CAs.

9.2.3 MyProxy Online Credential Repository

MyProxy Toolkit [198] was developed in University of Illinois, Urbana
Champagne (UIUC) and was developed to meet the credential manage-
ment requirement of the grid community. It is a very popular grid creden-
tial management system. It has been used in major grids including NEES-
grid, TeraGrid, EU DataGrid, and the NASA information power grid.

Figure 9.3 shows an overview of the MyProxy online credential re-

pository system. It is based on the client server technology. The MyProxy
system is the implementation of the Virtual Soft Token system proposed in
[197], where the X.509 proxy certificates are used to store and retrieve
user credentials without having to expose the private key. During the en-
rollment phase, the long lived user credentials are stored in the MyProxy
repository, whose typical lifetime ranges from weeks to years. The users
fetch the short term credentials or proxies (with lifetime set to a week or
less) from the MyProxy server so that the long term credentials are safe.
To achieve the above, the client establishes a TCP connection to the server
and initiates the TLS handshake protocol as shown in the figure. The
server must authenticate with the client using its own certificate, the client

9.2 Credential Repositories 203

may also authenticate with the server. However, this step is optional for
clients which do not possess X.509 credentials. According to [197], sys-
tems similar to MyProxy system are stronger than physical soft token sys-
tems, but they are vulnerable to dictionary attacks. The reason is that the
private key is exposed to the server and can be compromised. However, it
is to be noted that though such an attack is theoretically feasible, it can be
greatly limited due to the use of SASL and hardware secured MyProxy so-
lutions [199].

Fig. 9.3. Overview of the MyProxy system

Following are some of the important features of the MyProxy creden-
tial manager:

• Proxy Certificates: Proxy certificates are used by the MyProxy

clients to retrieve credentials from the repository without having to
export the private keys from the repository. Proxy credentials are
derived from X.509 end entity certificates, and signed by corre-
sponding end entity private key, to provide restricted proxy and
delegation. The proxy credentials represent short term credentials
which are derived from the long term credentials like the private

204 9 Grid Credential Management Systems

keys. In the Globus system, the proxy credentials are stored unen-
crypted in the user’s end system, to be used for single sign on pur-
poses. MyProxy credential repository can be used to retrieve the
proxy credentials at the start of the session.

• Delegation: MyProxy credential repository allows the process of
delegation. This can be done through the proxy certificates. To
delegate responsibility to some other host, the client generates a
public/private key pair and sends a certificate request to the server.
The server signs the request with the private key and sends the cer-
tificate chain back to the client. The server also sets the validity pe-
riod of the new proxy certificates as much less than the original
credentials. The client can also use the MyProxy credential reposi-
tory system to store the delegated proxy credentials.

• Access Control: MyProxy allows the server administrators to have
different access control mechanisms to control the retrieval and
storage of the credentials. MyProxy allows the integration with
SASL, allowing MyProxy to use local site authentication mecha-
nisms. Therefore, policies can be set so that users with Kerberos
tickets can access the MyProxy credentials without having to enter
any other password.

• Secure Storage: MyProxy server encrypts the private keys using
the user-chosen password by Triple DES in CBC mode. MyProxy
does not store the password in the repository, as this would help
the adversary to get the password in case of server compromise.
Rather, the MyProxy uses the password sent by the client to sign
the proxy certificate. Figure 9.4 illustrates this process.

In [199], the authors have proposed a hardware secured MyProxy so-

lution, where cryptographic co-processors are used for secret storage of
private keys. The co-processor (IBM® 4758 cryptographic co-processor)
not only protects the user’s private key from the adversaries, but also pre-
vents the access of those keys by the administrators. The advantages of
such a mechanism are three-fold:

• Since the keys are stored and generated only in the crypto-

graphic co-processor, therefore neither the end-user nor the ad-
ministrator can retrieve the key resulting in strong security.

• The keys can be generated faster due to the use of hardware
random number generator.

9.3 Federated Credential Management Systems 205

• Since a cryptographic co-processor is used, the host does not re-
quire extensive security. Hence, machines of lesser configura-
tions can be used.

Fig. 9.4. Overview of the MyProxy storage

9.3 Federated Credential Management Systems

Let us now discuss some federated credential management systems which
are currently available. They can be broadly categorized into two main
types: specific and generic. The specific solutions aim at creating a feder-
ated solution for a specific platform or protocol. Examples of such systems
are Virtualized Credential Manager (VCMan) and KX.509. The former
tries to solve the inter-operability issue of CAS (refer to Chap. 5) by ex-
tending CAS to provide inter-operability, while KX.509 is a protocol of in-
ter-operability between X.509 and Kerberos credentials. Though these so-
lutions solve a niche problem, however the generic problem needs to be
tackled as well. Liberty framework from the Liberty Alliance is an attempt
in that direction. It is a framework for sharing attribute information in a

206 9 Grid Credential Management Systems

distributed manner across entities in a trusted domain called the Circle of
Trust (COT). Another solution to tackle the problem is Shibboleth.

9.3.1 Virtualized Credential Manager (VCMan)

VCMan [200] is an architecture to provide inter-domain virtualized cre-
dential and policy management. A high-level view of the VCMan architec-
ture is provided in Fig. 9.5.

VCMan consists of three parts: Local Policy Manager (LPMan), In-
ter-domain Policy Manager (IPMan), and Inter-domain Credential Man-
ager (ICMan).

Local Policy Manager (LPMan)

LPMan maps the policies between the users/resources and the Community
Authorization Service (CAS). This functionality can be provided using a
static or a dynamic mechanism. Currently the CAS implementation of the
Globus Toolkit provides static functionality. Please refer to the CAS de-
scription in Chap. 5 for more details.

Inter-domain Policy Manager (IPMan)

This functionality allows the mapping of the policies across different do-
mains. This mapping facility may involve a handshake mechanism be-
tween domains for policy-level understanding.

• Mapping of Policies: This part of the IPMan policy manager maps
the policies of different domains. Each CAS server of the domain
exposes the security policies of the domain based on the WS-
Policy specifications (see the appendix). The policies are stored in
local database of each CAS representing a domain. Domains have
flexibility in assigning policies. For example, a domain D1 may
decide on having a user based policy while a domain D2 may de-
cide on having a role based policy model. In a user based policy
model, a user is directly mapped to a resource, while in a role
based policy model, the user is mapped to a role which in turn is
mapped to a resource. For inter-domain policies, a particular do-
main may also employ user based, role based on some other cus-
tomized policy model. A domain D1 may specify that certain user
X from Domain D2 has read access to resource R. Otherwise; it

9.3 Federated Credential Management Systems 207

can specify that only administrators (some role) of domain D2 can
access the resource. In addition, it can also specify that all domains
having X.509 based authentication mechanism can access resource
R only in read only mode.

• Policy Exchange: When the CAS of domain D2 (CAS2) comes to
the CAS of another domain D1 (CAS1), policy exchange between
the domains takes place.

Inter-domain Credential Manager (ICMan)

Once the policies have been exchanged and established between the differ-
ent domains through the respective CAS-es, the actual mapping and man-
agement of credentials are required. The user is oblivious of the actual au-
thentication mechanism that is being used. The ICMan performs a two-
pronged action: (i) Mapping the credentials of the current domain to that of
the remote domain. This action is carried out at the CAS level. (ii) Manag-
ing the credentials. This includes regeneration of credentials once they ex-
pire.

Fig. 9.5. Overview of the VCMan credential manager

208 9 Grid Credential Management Systems

9.3.2 KX.509

KX.509 is a protocol which allows the workstations to acquire a temporary
X.509 certificate on behalf of a user based on the possession of the Kerbe-
ros ticket of the user. The advantage of the KX.509 protocol is that it al-
lows users to access applications or resources which accept X.509 certifi-
cate, though the user authenticates using the Kerberos system.

Fig. 9.6. Overview of KX.509 system

Figure 9.6 shows the overview of the KX.509 system. In the KX.509
system, the user logs in to the local system using the password. The local
system obtains the Ticket Granting Ticket (TGT) from the Kerberos
server. Once the TGT is obtained, the KX.509 protocol starts. KX.509 has
the following steps:

• KX.509 generates the public/private key pair.
• KX.509 obtains the Kerberos service ticket for the Kerberized

Certificate Authority (KCA) and sends the public half of the
key pair.

• The KCA decrypts the service ticket, and uses the session key
to send back a short lived certificate which can be used to ac-
cess the resources requiring the X.509 certificate.

9.3 Federated Credential Management Systems 209

9.3.3 Liberty Alliance for Federated Identity

The Liberty Alliance [201] is a world-wide consortium of 150 companies
who have come together to create the framework of federated identity. The
solution put forward by the consortium is a framework to create federated
identity. The framework provides mechanism standards for sharing attrib-
ute information across a trusted set of entities called the Circle of Trust
(COT). The framework defines two types of entities: The Service Provid-
ers (SP) and the Identity Providers (IP). SPs are responsible for providing
some service to the user, while identity providers are responsible for au-
thenticating the users. One user may have multiple identities with different
SPs. Once the user is authenticated by an IP, the user can access any ser-
vice from the SPs and the sessions will be transferred between the SPs. It
is to be noted that there is no globally unique identity for the user. The user
may possess different identities with different SPs as long as they are
linked through the Circle of Trust constraint. The Liberty Alliance archi-
tecture is illustrated in Fig. 9.7.

Fig. 9.7. Architecture of the Liberty Alliance

210 9 Grid Credential Management Systems

Liberty Alliance Specifications

The technology and standards work at the Liberty Alliance has focused on
three sets of specifications, viz. ID-FF, ID-WSF, and ID-SIS frameworks.

• Identity Federation Framework (ID-FF): This framework

mainly handles the account federation and single sign on aspects.
The different components of the ID-FF framework include account
linking, where multiple identities across different SPs or sites are
linked together. It also includes single sign on and session man-
agement components which allow the user to seamlessly sign-on to
Liberty enabled sites and manage sessions across sites respectively.
Components to maintain user anonymity and real-time exchange of
meta-data also form part of the ID-FF framework.

• Identity Web Services Framework (ID-WSF): This framework
handles the Web services discovery and transactions between Web
services based on identity. For example, a user A may be entitled
to more information regarding a Web service than user B based on
their identities. Specifically it includes permission based attribute
sharing, identity based service discovery, security profiles, identity
services template, SOAP based binding, and others.

• Identity Services interface Specification (ID-SIS): This is a col-
lection of specifications for inter-operable services to be built on
top of the Liberty’s ID-WSF. These might include services such as
registration, contact book, calendar, geo-location, presence, or
alerts.

9.3.4 Shibboleth Identity Federation

Shibboleth [201] is a federated identity management system based on open
source software developed by the Internet2 consortium members, with as-
sistance from the National Science Foundation. Internet2 is a consortium
of US universities working in partnership with industry and government to
develop and deploy advanced network applications and technologies.
Shibboleth is essentially a transport mechanism built on top of an institu-
tion’s existing architecture that allows organizations to exchange informa-
tion about their users in a secure and privacy-preserving manner. The pur-
pose of the exchange is typically to determine if a person using a web
browser has the permissions to access content or a service from a content
provider based on information such as being a member of an institution or
a particular class. The system preserves privacy in that it leads with this

9.3 Federated Credential Management Systems 211

tution) to determine whether to provide extra information about them-
selves. Shibboleth has been developed as an open architecture and as an
open source implementation; it is standards-based so that information that
is exchanged between organizations can interoperate with that from other
solutions. For the purpose of inter-operability, Shibboleth uses SAML and
SOAP. The basic concepts contained within Shibboleth include:

• Framework based on Clubs: Shibboleth uses clubs to specify
a set of parties who have agreed to a common set of policies.
Sites can choose to join multiple clubs. This moves the trust
framework beyond bi-lateral agreements, while providing
flexibility when different situations require different policy
sets.

• Federated Administration: The origin site provides attrib-
uted assertions about the user to the target site. Based on the
trust relationships between the origin and target sites, user can
be identified. Origin sites are responsible for authenticating
their users using any authentication mechanisms.

• Access Control: Access control decisions are made using
those assertions. The collection of assertions might also in-
clude identity assertions.

As can be surmised from the discussions above, the purpose of both Shib-
boleth and Liberty framework are the same, to provide federated credential
management. While Shibboleth is an academic project aiming at creating a
federated identity spanning a few hundred institutions, Liberty framework
aims at a management of tens of millions of accounts spanning over a mil-
lion enterprises. Given the problems each system typically attempts to
solve, the main difference lies in the way the credentials are accessed and
stored. Shibboleth assumes that the credentials or assertions are stored and
provided by the origin sites. Liberty framework makes no such assump-
tions as the credentials may be distributed in nature. Another significant
difference is that Liberty framework works on any wireless devices and
specifications are provided on how the different wireless protocols and de-
vices can be leveraged. However, it is to be noted that the flexibility pro-
vided by the Liberty framework comes at a cost of added complexity and
concerns about the credential privacy due to its distributed nature. Since
open source implementation of Shibboleth exists, many systems (even
commercial) have used it for federated identity management. We will pro-
vide an example of GridShib where Shibboleth is integrated with the
Globus toolkit.

information, not with the identity of the user, and allows users (or their insti-

212 9 Grid Credential Management Systems

Integration of Globus with Shibboleth

The management of federated identity is very useful in grid context. There-
fore, several researchers have looked at integrating Globus with the Shib-
boleth system. One such initiative is informally called GridShib [202],
whose objective is to provide mechanisms whereby a Grid service can ob-
tain from the Shibboleth service the specific user attributes that it is author-
ized to obtain. There are several scenarios where such a system could po-
tentially be used. One such scenario is where the user tries to access a
shared grid resource gets authenticated using GSI in its own organization
or campus, and the attributes are then pulled from the origin campus. The
GSI-Shibboleth integration consists of five main components:

• Assertion Transmission: Transmission of assertions is required
from the Shibboleth service to the Grid software and ultimately to
the Grid runtime authorization decision-making component.

• Attribute Authority: Since Grid resources serve users from mul-
tiple organizations, a mechanism is needed to determine which or-
ganization’s Shibboleth service is authoritative for a particular
user.

• Distributed Attribute Administration: Sometimes it becomes
necessary for projects or systems outside the domain to operate the
Shibboleth service on its portion of the attribute space.

• Pseudonymous Interaction: This helps in extending to Grids the
pseudonymous interaction provided by Shibboleth.

• Authorization: A mechanism is needed in Globus which can take
advantage of the attributes.

9.4 Chapter Summary

Credentials are important in grid systems as they are used for accessing the
Grid resources. Therefore, there are needs for mechanisms to securely
store, access, and manage credentials in grid systems. Credential Manage-
ment (CM) systems are precisely meant for this purpose. Credential man-
agement systems can be divided into two main categories: credential re-
positories and credential federation systems. As the name suggests, the
credential repositories or credential storage systems are concerned about
securely storing the credentials, generating new credentials on demand,
and sometimes generating proxy credentials on user’s behalf for delegation
purposes. Credential federation systems or credential share systems are re-
sponsible for sharing the credentials across different domains or realms.

9.4 Chapter Summary 213

Examples of credential storage systems are smartcards, MyProxy etc. and
examples of credential share systems are the Liberty Project, VCMan, etc.

Table 9.1. Summarizing the different schemes

Scheme Type Identity Credential
Type

Security Comments

Smart
Cards

Repository Single Keys Very
Secure

Cost and usability
may be limiting

Virtual
Smart
Cards

Repository Single Keys Very
Secure

Very secure
Can work on top
of repositories like
MyProxy

MyProxy Repository Multiple Keys Secure Susceptible to dic-
tionary attacks
Requires mult
credential support

VCMan Federation
mechanism

X.509
and
Kerberos

Tokens Secure Requires CAS
Only support
X.509 and Kerbe-
ros

KX.509 Federation
Protocol

X.509
andKer-
beros

Tokens Secure Limited to X.509
and Kerberos

Liberty
Alliance

Federation
Framework

Multiple Multiple Secure Extensive frame-
work

Shibbo-
leth

Federation
System

Multiple Multiple Secure Framework and
Open source im-
plementation

Table 9.1 summarizes the different schemes. As can be observed from the
table, smart cards are very secure; however cost can be a hindrance in its
widespread adoption. Research and development efforts are needed for
creating virtual smart card technologies on top of existing technologies like
MyProxy. MyProxy credential manager, though a good effort, is suscepti-
ble to dictionary attacks. VCMan and KX.509 have limited use at this
moment as they only support X.509 and Kerberos. VCMan also requires
CAS support. The Liberty framework is an important industry effort to
create a common framework for identity management and research is
needed for integrating that framework with existing grid based systems.

10 Managing Trust in the Grid

10.1 Introduction

In our everyday life, we come across different types of people, situations,
events, and environments. The interactions between the individuals depend
on implicit understanding of relationship across society. This implicit un-
derstanding between individuals is based on the confidence that the indi-
viduals can gather and emanate during the relationships, the personal and
professional connections bonding the individuals, societies, cultures, and a
host of other factors. When I meet a new car mechanic, I feel confident to
give him the responsibilities of repairing my car based on my personal in-
teractions or hunch about his abilities, his credentials, the company he
represents, and a host of other factors. In other words, my decision to ask
for his help depends upon amount of trust I can put to the claims that he is
making. Trust pervades through different strata of human society and ex-
tends beyond the human-human relationships. For example, trust can act as
a means of developing relationships between electronic gadgets like com-
puters with human beings. Trust is a complicated concept, and the ability
to generate, understand, and build relationships based on trust varies from
individual to individual, situations to situations, society to society, and en-
vironment to environment. For example, I may trust the car mechanic to
repair my car. However, I may not have enough trust in him repairing my
computer and so on. Each individual, in general, carry some amount of
prejudices based on past experiences or history which are generally used to
determine the trustworthiness of a person the individual is interacting with.
In this chapter we will discuss the different aspects of managing trust in
grid systems.

10.1.1 Definition of Trust

Trust is a fascinating subject, and social scientists have researched into the
concept and developed theories around it. One of the most popular definitions

216 10 Managing Trust in the Grid

of trust was coined by Deutsch [204] which states that, “(a) an indi-
vidual is confronted with an ambiguous path, a path that can lead to an
event perceived to be beneficial or to an event perceived to be harmful; (b)
he perceives that the occurrence of these events is contingent on the behav-
ior of another person; and (c) he perceives the strength of a harmful event
to be greater than the strength of a beneficial event. If he chooses to take
an ambiguous path with such properties, he makes a trusting choice; else
he makes a distrustful choice.” This definition was further extended again
by Deutsch later in 1973 [205], where he defined trust as confidence that
an individual will find, what is desired from another rather than what is
feared. The coupling of confidence and trust finds its way in the definition
of Webster dictionary as a confident dependence on the character, ability,
strength, or truth of something or someone.

All these definitions of trust fall into the domain of social settings and
social interactions. However, in the domain of digital systems also the
concept of trust is becoming more and more relevant. This is because of
the increased importance of distributed and autonomous systems. There is
a need for developing trust among the different systems which interact
among each other. Therefore, we are witnessing a renewed interest of re-
search related to trust in distributed systems. One of the most popular defi-
nitions of trust that has also been adopted by computer scientists is the one
coined by Diego Gambetta [206]. He defines trust as “a particular level of
the subjective probability with which an agent assesses that another agent
or group of agents will perform a particular action, both before he can
monitor such action (or independently of his capacity ever to be able to
monitor it) and in a context in which it affects his own action.” Gambetta
introduced the concept of using values for trust and also defended the exis-
tence of competition among cooperating agents. A recent definition of trust
has been put forth by Grandison and Sloman [207] who define trust as “the
firm belief in the competence of an entity to act dependably, securely,
and reliably within a specified context.”

As the above definitions show, trust is a multidimensional quantity,

and can be viewed as conditionally transitive [208]. By this we mean, that
if there are three individuals A, B, and C, and if individual A trusts B, and
B trusts C, then A will trust C based on certain policies and conditions.
Generally, researchers have defined trust graphs to determine the trust rela-
tionships between different entities. We provide more details about trust
graphs and relationships in subsequent sections. In addition to the term
trust, there are several concepts and terms which are used. They are:

10.1 Introduction 217

• Trustworthiness An entity's trustworthiness is an indicator of the
quality of the entity's services. It is often used to predict the future
behavior of the entity. Intuitively, if an entity is trustworthy, it is
likely that the entity will provide good services in future transac-
tions. In most trust models, the domain of trustworthiness is as-
sumed to be a [0,1] model. However, trustworthiness can be a con-
tinuous function also. It just increases the complexity of the
system manifold.

• Reputation: Reputation indicates the general perception of a sys-
tem’s trustworthiness as perceived by other entities. We have pro-
vided more detailed description and its relationship with trust in
the subsequent section.

• Feedback: A piece of feedback is a statement issued by the client
about the quality of a service provided by a server in a single
transaction. In general, feedback may be multidimensional, reflect-
ing the client's evaluation on a variety of aspects of a service, e.g.,
price, product quality, and timeliness of delivery. Many of the
times, for simplicity, feedback is assumed to be one-dimensional
in nature.

• Opinion: An opinion is a user's general impression about a server.
It is derived from its feedback on all the transactions that are con-
ducted with the server. Similar to feedback, opinion also can be
multidimensional in nature.

10.1.2 Reputation and Trust

Closely related to trust is the concept called reputation. Reputation as de-
fined in Merriam-Webster is “Overall quality or character as seen or
judged by people in general.” The concepts of reputation and trust are
therefore closely related. Reputation is the metric generally used by indi-
viduals based on word-of-mouth, or past history to determine the trustwor-
thiness of a person or things. The inter-relation between trust and reputa-
tion is widely exploited in day-to-day activities. Students looking for
higher educations rely on institute rankings to determine the quality of the
institute, or in other words the rankings of the institute determine the trust
the students can put on the quality of education the institute will provide.
In this case, the reputation is determined by the rank of the institute. How-
ever, this is not at all straightforward in all cases. When I read an article on
the Internet, I base my judgment on a host of different criteria: the creden-
tials of the authors who had written the article, the conference or journal
where the article has been published, and so on. Therefore, determining the

218 10 Managing Trust in the Grid

reputation of some system or individual may be based on a host of metrics
and policies, and is a challenging research topic. Computer scientists have
started to take a considerable amount of interest on the reputation of sys-
tems especially for distributed systems and applications. Abdul-Rehman et
al. [209] defines reputation as “an expectation about an individual’s be-
havior based on information about or observations of its past behavior.” In
online communities, where an individual may have much less information
to determine the trustworthiness of others, their reputation information is
typically used to determine the extent to which they can be trusted. Simi-
larly, in a distributed grid environment, where the grid nodes join or leave
the grid, there the reputation information can be used to determine the
trustworthiness of the nodes.

10.1.3 Categories of Trust Functions

Defining trust metrics is important, and researchers have developed trust
functions for distributed systems. It is to be noted that most of the research
done in this area are related to the fields of e-commerce and peer-to-peer
computing. However, most of the concepts apply generally to distributed
systems and therefore can be adapted to grid computing also. The follow-
ing categorizes the trust functions in different categories [210].

Subjective vs. Objective

An entity's trustworthiness is often related to the quality of services it pro-
vides to others. If the quality of a service can be objectively measured,
then an entity's trustworthiness for that service is called objective trust. For
example, suppose a website provides specification information of automo-
biles. The quality (or accuracy) of such information can be easily and in-
disputably checked against the official data released by manufacturers. For
some other services, their quality cannot be objectively measured. For ex-
ample, given a movie review from a website, different people may have
different opinions about its quality. It largely depends on each individual s
taste and other subjective factors. In this situation, it is only meaningful to
discuss the trustworthiness of the entity from the specific source’s point of
view. This type of trust can be classified as subjective trust.

Now the question arises about the relevance of these definitions in the
realm of grid computing. The reason is that a grid computing node would
rarely review a movie and provide subjective opinions. However, the defi-
nitions are still relevant. Let us take the following example. There are four

’

10.1 Introduction 219

grid nodes A, B, C, and D. The nodes A, B, and C try to make create a
trust decision regarding D based on the information collected from D in a
periodic manner. Though all the three nodes are collecting the same infor-
mation, they are constrained by the times at which the samples are taken
and hence the decisions made by the nodes are highly subjective.

Fig. 10.1. Example of trust in a dynamic grid

Transaction based vs. Opinion Based

Some trust models rely on the information of individual transactions to in-
fer an entity's trustworthiness, while others only request opinion informa-
tion. The former is called transaction based, while the latter is called opin-
ion based. In the grid system mentioned in Fig. 10.1, information can be
gathered based on number of successful transactions (transaction-based) or
based on the opinions of the other nodes in the grid (opinion-based).

Complete vs. Localized Information

Trust functions can also be classified according to the way information is
collected. Some trust functions [211, 212] assume that every entity has the
same access to all the transaction or opinion information. In other words,

220 10 Managing Trust in the Grid

to apply a trust function, a complete transaction or opinion graph is a must.
Such trust functions can be classified as global trust functions. Another
approach is to adopt a localized search process. Typically, it is assumed
that an entity has several neighbors, who may or may not have interactions
with the entity before. If Alice wants to evaluate Bob's trustworthiness, she
will broadcast to her neighbors the requests for Bob's transaction/opinion
information. This process continues until her neighbors have returned suf-
ficient information for Alice to make a trust decision. To achieve better
performance, information collection is usually a controlled flooding proc-
ess. Therefore, the trust function is applied on a subgraph of the complete
trust graph. Since each entity chooses their neighbors freely, different trust
evaluation sources may construct different subgraphs. Trust functions of
this kind can be classified as localized trust functions. Intuitively, for a lo-
calized trust function, each entity typically has access to different informa-
tion. A localized trust function is thus also subjective [213].

Rank based vs. Threshold based

For most trust functions, its returned trustworthiness can be interpreted as
an approximation of some of the properties of a system. For example, if
the trustworthiness of an automobile website is 0.8, we may think that ap-
proximately 80% of the information provided by the website is accurate.
For such trust functions, it is appropriate to predefine a threshold of trust-
worthiness to make trust decisions. For example, if a website's trustworthi-
ness is over 0.9, then we trust information from that website. Thus, such
functions can be categorized as threshold-based. In some other trust func-
tions, the calculated trustworthiness of a single entity alone does not con-
vey much information. It becomes meaningful only when it is compared
with the trustworthiness of other entities. In some sense, such trust func-
tions return the relative ranking of an entity. Such functions are called
rank-based functions.

Characteristics of different trust functions are summarized and
tabulated in Table 10.1. As can be inferred from the table, subjective,
transaction based, and global functions are less vulnerable to malicious
updates.

10.2 Trust Management Systems 221

Table 10.1. Characteristics of different trust functions

Type of
Trust Fn

Message Over-
head

Storage
Overhead Security Comments

Subjective
& Objec-
tive

Can vary Can vary

Subjective func-
tions are vulner-
able to malicious
updates com-
pared to the Ob-
jective functions

Subjective
functions
should be
used only in
cases where
objective in-
formation is
unavailable

Transaction
based &
Opinion
Based

High High

Transaction
based functions
are less vulner-
able than Opin-
ion based func-
tions

Transaction
based provide
more accurate
information
with more
overhead

Global &
Local High High

Global functions
are less Vulner-
able than local
functions

Global trust
provides high
accuracy with
high overhead

Rank based
& Thresh-
old Based

Can vary but
generally high

Can vary
but gener-
ally high

Similar in secu-
rity performance

When infer-
ence is based
on relative
performance a
rank based
function is
better

10.2 Trust Management Systems

Till now, we have talked about trust functions and reputations. Now, let us
concentrate on Trust Management Systems (TMS) responsible for manag-
ing trust in a distributed environment. TMS systems can be divided into
two main types: policy-based TMS and reputation-based TMS.

• Policy-based TMS: In policy-based systems, the different enti-

ties or components constituting the system, exchange and man-
age credentials to establish the trust relationships which are fur-
ther refined based on certain predefined policies. The primary
goal of such systems is to enable access control by verifying
credentials and restricting access to credentials based predefined

222 10 Managing Trust in the Grid

policies. Different credential management systems described
in Chap. 9 fall under this category. Since we have dealt with
this type of systems in detail in Chapter 9, in this chapter
we would mostly restrict ourselves to the reputation-based sys-
tems only. We will however, discuss about the policy based
TrustBuilder system.

• Reputation-based TMS: The second category of TMS sys-
tems, or the reputation-based TMS, provides a mechanism by
which a system requesting a resource evaluates the trust of the
system providing the resource. The trust values can be a func-
tion of the global and local reputation of the systems along with
the different policies. In this chapter, we will describe a few
reputation-based TMS systems in detail.

Management of trust within a TMS system includes negotiating of

trust when a new member joins the distributed environment, storage of the
trust metrics, and distribution of trust metrics. More details about the life
cycle of the TMS system is provided in the next subsection.

Fig. 10.2. Life cycle of a trust management system

10.2 Trust Management Systems 223

10.2.1 Life Cycle of Trust Management Systems

Figure 10.2 shows the event view of the life cycle of a trust management
system. The life cycle is composed of mainly three different phases: trust
creation phase, trust negotiation phase, and trust management phase. The
trust creation phase generally is done before any trusted group is formed,
and it includes mechanisms to develop trust functions and trust policies.
Trust negotiation, on the other hand, is activated when a new untrusted
system joins the current distributed system or group. The third phase, or
the trust management phase, is responsible for recalculating the trust val-
ues based on the transaction information, distribution or exchange of trust
related information, updating and storing the trust information in a central-
ized or in a distributed manner.

Trust Creation Phase

This phase actually takes place before any transactions and is responsible
for setting up the trust functions and the policies that will be used by the
trust management system. The first step in the trust creation phase is to de-
termine the type of the trust management system, whether it would be pol-
icy-based or it would be reputation-based. Once the type of TMS system is
decided; the policies are defined and created. The next important step in
this phase is to determine the trust function. As mentioned earlier, trust
functions can be of several categories: objective or subjective, transaction-
based or opinion-based, complete or localized, and threshold-based or
rank-based. The choice of a trust function depends on the type of applica-
tion the TMS is catering to. A high level comparison between the different
trust functions are provided in Table 10.1.

Trust Negotiation Phase

The second phase in the life cycle of the TMS is the trust negotiation phase
which is started when a new entity or node joins the system. Figure 10.3
shows a very high level overview of any trust negotiation phase. The phase
essentially consists of three different steps: request, policy exchange, and
credential exchange. At the heart of the trust negotiation lie the policies
and the policy language acceptable to both the parties. Several policy lan-
guages have been developed as part of the distributed trust management
solutions [214]. The different steps in the trust negotiation phase are:

• Request: This step identifies the client and the type of service the

client wants from the system. This step can succeed a key

224 10 Managing Trust in the Grid

two parties.
• Policy Exchange: This step exchanges the policies between the

new entity and the system. The policies can be expressed in policy
languages like the PeerTrust [215]. At this step, the trust computa-
tion of the new node can also be evaluated based on the system’s
trust function.

• Credential Exchange: In this phase, secure exchange of creden-
tials like keys, certificates, etc. take place. Proper security meas-
ures need to be taken to ensure the secure exchange of credentials.

Fig. 10.3. Typical trust negotiation phase

Trust Management Phase

After the trust negotiation phase comes the trust management phase which
is concerned with the general running of the distributed system. The differ-
ent activities that are part of this phase are:

• Trust Computation: In this step, the trust value is computed

based on the decided trust function.

establishment phase, where the session key can be established by the

10.2 Trust Management Systems 225

• Trust Distribution: This step includes the secure distribution of
trust information to other nodes in the distributed system. Since a
secure distribution is a necessity, all the principles of security, viz.
confidentiality, authentication, integrity, and non-repudiation need
to be maintained. This step also requires keeping in mind the type
of trust function in use and the number of nodes where the infor-
mation needs to be broadcasted.

• Trust Storage: The trust information needs to be securely stored.
The credential repositories like the MyProxy can be used for this
purpose.

• Trust Update: Updating the trust needs to be carried out either in
an event by event basis or in a timely manner. Event based trust
update can happen after a set of transactions or when the trust
value or opinion crosses a threshold.

10.2.2 Characteristics of Trust Management Systems

In this section, we will talk about some key characteristics of a trust man-
agement system.

Scalability

When we talk about distributed systems, scalability assumes paramount
importance. Same holds true for TMS on a grid also. The scalability of a
TMS refers to the ability of the system to scale with the increasing number
of nodes or entities in the system. The system should scale in terms of
messages which are exchanged between the nodes, the information stored
at each node, and the computation carried out at each node.

• Message Overhead: This indicates the number of messages and

the sizes of messages that are exchanged to create and manage
the trust information. High message overhead indicates a high
bandwidth cost. To ensure scalability, the message overhead
should not increase significantly with the number of nodes in
the system. The TMS systems which scale well do not exchange
all the information to all the nodes in the system. Rather, they
exchange with a select set of members or only transfer aggre-
gated information.

• Storage Overhead: The TMS should also scale in terms of
amount of information stored to compute the trust information.
It is possible that a TMS system may require nodes to store trust

226 10 Managing Trust in the Grid

data about other nodes in the system. This trust data may be as
detailed as each transaction detail that has taken place in that
node. Depending upon the type of information stored, it is pos-
sible that the TMS system may require a significant amount of
storage to make meaningful trust decisions. Therefore, storage
considerations are also important in deciding the TMS systems.

• Computational Overheads: Sometimes the trust computations
are too complex and compute-intensive for the nodes with less
computing power to do. Therefore, when one is architecting a
TMS system, one needs to keep the infrastructure in mind also.

Reliability

Reliability is another important characteristic that needs to be taken into
account when designing a TMS system. Reliability can be achieved at the
message level and the node level.

• Message Level Reliability: Here the information exchanged be-
tween the different nodes is reliable in nature. This can be
achieved by two ways, spatial and temporal redundancy. In case of
spatial redundancy, some extra information is put in the messages
like CRC, hashes, etc. In case of temporal redundancy, positive or
negative acknowledgments are used to achieve reliability. TCP at
the transport layer can be used to achieve temporal redundancy.

• Node Level Reliability: One of the main characteristics of a de-
centralized system is its constantly changing topology. This is
typically due to the transient nature of nodes constituting the to-
pology. The nodes may enter, leave or be disconnected from the
system at any time. Fault tolerance in this context represents the
ability of the trust model to adapt to this transient nature of the
system. When peers enter or leave the system, not only do new
trust relationships need to be formed but trust values and transac-
tion information may also need to be replicated across peers to en-
sure availability and reliability of trust data.

Security

Perhaps the most important characteristics of a TMS system are the secu-
rity characteristics of the system. Designed TMS systems must understand
the security characteristics and vulnerabilities associated with the system.

10.2 Trust Management Systems 227

Fig. 10.4. Liar farms creating sybil attack

The security vulnerabilities that a TMS needs to take care are:

• Fabrication/Modification: The different nodes or entities of the
TMS can fabricate or modify the trust data resulting in an artificial
reduction or increase of trust values of different nodes. This may
be dangerous for systems which build the trust based on informa-
tion obtained from different sources.

• Masquerade: In this type of attack the adversary node imperson-
ates or masquerades as someone else and sends information which
is generally wrong. Some form of authentication through digital
signatures or certificates eliminates this problem.

• Anonymity: In some cases anonymity can be an important secu-
rity criterion [216]. Anonymity guarantees that the nodes remain
anonymous to one another and are unaware of what the other node
is doing. Several solutions, especially in the domain of peer-to-
peer systems, are available which tackle anonymity [217, 218].
However, no anonymity solution has been applied in the context of
TMS.

228 10 Managing Trust in the Grid

• Collusion: Until now, we have only considered a single malicious
node in the system. However, if there are multiple malicious nodes
working in harmony towards the same malicious purpose, the ef-
fect can be really dangerous. The nodes can collectively send bad
information about one node in the system, or send very good repu-
tation information about one of the malicious nodes, forcing the
node to be used in most of the transactions.

• Sybil Attack: Collusion attack can be carried out by only a single
node by using a sybil attack or liar farms. If a proper identity man-
agement system is not in place then a malicious node can assume
multiple identities. Once multiple identities have been established,
then the node and its shadows can launch deadly attacks, as they
have the critical mass to actually change the trust values of the sys-
tem. A typical example of launching a sybil attack is illustrated in
Fig. 10.4. In the example, the malicious node assumes multiple
identities and sends wrong information to the other nodes resulting
in the creation of wrong trust metrics.

10.3 Reputation-Based Trust Management Systems

We have discussed different aspects of TMS systems. We will now discuss
some TMS systems which have either been implemented or are in their ad-
vanced stage of research and development.

10.3.1 PeerTrust – A P2P Trust Management System

Perhaps the most widely known trust management system is the PeerTrust
[219]. This was developed in Georgia Tech with Peer-to-Peer based elec-
tronic applications in mind.

Trust Metric

In PeerTrust, the trust metrics are derived from a combination of parame-
ters:

• The feedback that a node or peer receives from other peers in terms
of satisfaction. This value of satisfaction can be an average of the
number of successful transactions over a period of time.

• The total number of transactions that the peer has with other peers
which would indicate the nature of misbehavior of a peer.

10.3 Reputation-Based Trust Management Systems 229

• The factor of credibility for the source of the feedback. This indi-
cates how much importance needs to be given to the information
provided by the source.

• The transaction context, which discriminates between the mission
critical or important transactions from that of mundane or noncriti-
cal ones.

• The community context, which takes into account the vulnerabili-
ties and characteristics that can be associated with the community
as a whole.

The metric consists of two parts. The first part is a weighted average

of the amount of satisfaction a peer receives for each transaction. The
weight takes into account the credibility of feedback source to counter dis-
honest feedback, and transaction context to capture the transaction-
dependent characteristics. The second part of the metric adjusts the first
part by an increase or decrease of the trust value based on community-
specific characteristics and situations.

Architecture of PeerTrust

PeerTrust does not use a centralized database for storing the trust informa-
tion. Rather, the trust information is stored in a distributed manner over the
network. Each peer or a node in the network has a trust manager that is re-
sponsible for feedback submission and trust evaluation, a small database
that stores a portion of the global trust data, and a data locator for place-
ment and location of trust data over the network. The feedback submission
and trust evaluation by the trust manager is performed in two steps:

1. The node manager submits feedback to the network with the help
of the data locator. The data locator contains the information
about the different information stored at different nodes or peers
and uses this information to route the data to appropriate peers for
storage.

2. Node manager is also responsible for evaluating the trustworthi-
ness of a particular peer. This task is performed in two steps. It
first collects trust data about the target peer from the network
through the data locator and then computes the trust value using
the trust function defined for the system.

The trust data can be distributed in the different nodes or peers based on
any existing data management mechanisms like CHORD [22], CAN [23],
P-Grid [220], Pastry [221], etc. which use the Distributed Hash Table

230 10 Managing Trust in the Grid

(DHT) mechanism of distributing the data across the network. Figure 10.5
shows the high level architecture of the PeerTrust system. An example is
also shown, where the data is stored according to the P-Grid DHT architec-
ture.

Fig. 10.5. Architecture of the PeerTrust system

Let us now discuss some of the characteristics of the PeerTrust trust

management system. Specifically, we will talk about trust computation,
dynamic peer management, security, reliability, and peer selection proc-
esses with the PeerTrust system.

• Trust Computation: The trust computation is based on the com-

putation of trust data collected from different nodes or peers.
PeerTrust develops two different mechanisms of trust computation
and evaluation, Dynamic Trust Computation (DTC) and Approxi-
mate Trust Computation (ATC). The first computes trust based on
fresh trust data collected at runtime from different peers. The algo-
rithm requires the peers to recursively evaluate the other peers’
trust values as the credibility factor, in order to compute the differ-
ent trust values. Therefore, the process is really expensive and
cannot be used in practice, especially if the number of nodes or

10.3 Reputation-Based Trust Management Systems 231

peers is significantly high. The ATC mechanism, on the other
hand, computes trust metrics based on cached information and
hence is much less expensive compared to the DTC scheme. The
cached information removes the recursive computation of trust
values.

• Dynamic Peer Personality: Since the PeerTrust mechanism is
completely dependant on the dynamic calculation of trust values
based on reputation as maintained by different peers, a malicious
peer having very good reputation can start behaving maliciously
without reducing its trust value significantly. To prevent this type
of dynamic behavior, a window is used over which the trust com-
putation takes place. This gives more importance to the latest
transactions.

• Security and Reliability: The PeerTrust system uses a Public Key
Infrastructure (PKI) based security mechanism for secure ex-
change of trust data. Each peer, when they are sending, signs the
trust information so that the authenticity of the trust update can be
verified by the receiving peer. The information exchanged are also
encrypted, preventing a malicious node from getting sense out of
the routed packet. Reliability is achieved by replicating the key in-
formation in different nodes. A peer-to-peer based distributed ar-
chitecture for data storing scales well. One of the comments one
can make about this architecture is the dependence on the PKI ar-
chitecture and lack of trust negotiation mechanism.

• Peer Selection: A key objective of the trust based peer selection
scheme is to select a set of peers that can perform a set of tasks in
a most trusted manner. To achieve this, PeerTrust employs a
threshold-based peer selection mechanisms. Rules or policies can
be created where a trusted peer can be defined. For example, a pol-
icy can be defined where a peer is trusted if the trust metric is
greater than a threshold.

10.3.2 XenoTrust Trust Management System

Another interesting project that develops a distributed trust and reputation
management architecture is called XenoTrust [222] which is built on the
XenoServer Open Platform [223]. The platform was developed at the Uni-
versity of Cambridge. The platform consists of three main components:
XenoServer, XenoCorp, and XenoServer Information Services (XIS).
XenoServers provide services to the client like hosting the client tasks in
exchange of money. XenoCorp provides authentication, auditing, charging,

232 10 Managing Trust in the Grid

and payment services. Each XenoServer periodically reports its status and
the XIS is used for storing the XenoServer status updates. A high level
overview of the XenoServer is provided in Fig. 10.6.

The XenoTrust architecture introduces two levels approach of manag-
ing trust, called authoritative and reputation based. Authoritative trust is a
boolean property established between a XenoCorp and the clients and
servers that register with it. Reputation-based trust, on the other hand, is a
discrete continuous property which quantifies, in a particular setting, the
trustworthiness that one component ascribes to another. It is distributed
and highly subjective, in the sense that each entity has its own, independ-
ent view of others' reputations. Let us now discuss some of the aspects of
the XenoTrust Trust Management System.

Fig. 10.6. Overview of XenoServer open platform

Reputation Representation and Exchange

Reputation values of different components are stored in the XenoTrust sys-
tem in a centralized manner. The reputation information are stored in the
form of a vector which indicates the individual experiences of a particular
peer with other peers in the system. Different components of behavior like
performance, honesty, etc. are reflected in the reputation vector through

10.3 Reputation-Based Trust Management Systems 233

fields called tokens. The different peers or components of the system ex-
change statements with the XenoTrust system which is nothing but a tuple
containing information about the advertiser, subject, token, values, and the
timestamp. To maintain authenticity the information is signed.

Reputation Retrieval

The computation of reputation vectors is done at the XenoTrust itself
through aggregation of reputation information. The XenoTrust system
supports complex rulesets for combining the results. For information re-
trieval from XenoTrust, in addition to employing a query based pull
mechanism where the components or peers specifically ask for information
from the Xenotrust system, XenoTrust also employs a push-based architec-
ture. When participants of the XenoTrust system deploy rule sets, they can
either use an event-based mechanism or simple poll. In the former case,
XenoTrust notifies the participants whenever significant change happens,
based on individual subscription. The latter allows the participants to query
XenoTrust using the deployed rule sets.

Security

Let us now discuss the security implications of the XenoTrust system.
• XenoTrust employs a simple authentication mechanism to prevent

forgery. However, it does not specify anything more, and the users
are free to combine different negotiation and security mechanisms
on top of XenoTrust.

• Similar to other reputation systems, XenoTrust is susceptible to
negative reputation information. Sybil attack is also possible, but
expensive as it requires participants to acquire new identities and
provide information that significantly changes the overall trust
values of the system.

• Replay attacks are prevented using timestamps to maintain the
freshness of the trust updates.

10.3.3 NICE Trust Management System

The NICE framework [224], developed at the University of Maryland, is a
platform for implementing cooperative applications over the Internet,
which can be defined as a set of applications that allocate a subset of re-
sources, typically processing, bandwidth, and storage, for use by other

234 10 Managing Trust in the Grid

nodes or peers in the application. Therefore, grid computing is naturally an
application for the NICE trust management framework.

Fig. 10.7. Overview of the NICE framework

Figure 10.7 shows the high level architecture of the NICE framework.
As shown in the figure, applications locate the resources using APIs of the
NICE framework. The different secure trading, bartering, and redeeming
protocols are implemented within the NICE framework and are not ex-
posed as APIs. The different nodes exchange information based on policies
through an application layer multicasting [225] based signaling protocol.
One of the unique features of the NICE system is a distributed trust evalua-
tion scheme, which identifies robust cooperative group, and is able to iso-
late and hence nullify the effects of malicious nodes. Following are some
of the key components of the NICE trust management framework.

Policies in NICE

One of the basic assumptions of NICE is that malicious users can consume
resources so that the valid users can be prevented. The default policies in
NICE are used so that the resource consumption can be limited by cliques

10.3 Reputation-Based Trust Management Systems 235

of malicious users. There are two different policies to ensure limited usage
of resources: trust-based pricing and trust based trading limits.

• Trust-Based Pricing: In this type of policy, resources are priced
proportional to mutually perceived trust. This policy is motivated
by the trading system and hence the name. Transacting or trading
with a peer having significantly low trust will induce more risk for
a peer, which is reflected on the subsequent price of transaction.

• Trust-based Trading Limit: In this policy, instead of varying the
price of the resource, the policy varies the amount of resources.
This policy assures that when trading with a principal with rela-
tively low trust, a peer is bounded by the amount of resources that
a peer can lose.

Trust Metrics and Evaluation

Another interesting feature of NICE is the distributed trust evaluation
mechanism. Whenever there is a transaction between two different nodes
or peers, the peer receiving the service signs a cookie showing that the peer
generating that service has successfully completed the transaction. There-
fore, each node maintains a trust relationship and trust value based on the
transaction it has received. It is to be noted that the node generating trans-
action can store the signed cookies to prove its trustworthiness sometime
later. NICE framework defines two metrics of trust between two nodes:
strongest path and weighted sum of strongest disjoint path. The former is
the trust value of the strongest path, and the latter is the weighted average
of all the disjoint paths. Since the centralized and flooding based mecha-
nisms are both inefficient in terms of computation and bandwidth wastage
respectively, the implementers have used an intelligent forwarding scheme
for the distributed implementation of metrics computation.

Security, Reliability, Scalability

Different security features of NICE are as follows:
• Authentication: In the NICE framework, each and every node

signs the cookies that they transact and send signed updates. It is
to be noted that there is no need for the key associated with NICE
to be registered with any central authority. Each user can gener-
ate its own key.

• Sybil Attacks: Whenever each user can create its own persona,
there is a possibility of sybil attack in case of malicious users. To
prevent such an attack a PKI needs to be integrated with the

236 10 Managing Trust in the Grid

NICE system. However, one of the positives of the NICE archi-
tecture is the capability of the system to isolate malicious users
through cooperative which can reduce the effectiveness of sybil
attacks and other denial-of-service attacks.

• Reliability: The ability of NICE to form robust groups makes it
reliable in nature. However, NICE does not implicitly use a reli-
able storage and fault tolerant mechanisms to make the storage
and information retrieval reliable.

• Scalability: The distributed storage of information and probabil-
istic and intelligent flooding makes the protocol highly scalable.
The underlying signaling protocol based on application layer
multicasting increases the scalability, though may reduce the per-
formance of the system as the signals go through multiple layers
over the physical infrastructure.

10.3.4 Secure Grid Outsourcing (SeGO) System

The Secure Grid Outsourcing (SeGO) system [226, 227], conceptualized
and developed at the University of Southern California, is developed for
secure scheduling a large number of autonomous and indivisible jobs to
grid sites. A unique feature of the work is that the authors use a fuzzy in-
ference approach to binding security in trusted grid computing environ-
ment. The authors define the trust metrics based on the site reputation and
defense capability of a resource. The first characteristic is the behavior at-
tribute of a site and is composed of four parameters related to jobs behav-
iors like: Prior job execution success rate, cumulative site utilization, job
turnaround time, and job slowdown ratio. The second criterion is based on
defense capabilities of a site namely, the IVS related capabilities, Antivirus
capabilities, firewall capabilities, and secure job execution capabilities.
Fuzzy logic is used to integrate the different capabilities to finally develop
the trust metric. Figure 10.8 shows a high level view of the SeGO architec-
ture.

SeGO introduces fuzzy logic based trust integration model. The ap-

proach makes two basic assumptions:
• All resources have prior agreement for participating in grid op-

erations. Therefore, SeGO does not look at trust negotiation,
and trusted node join and leave mechanisms.

• The sites report their information honestly. Therefore, the pos-
sibility of malicious resources is discounted.

10.3 Reputation-Based Trust Management Systems 237

Based on the above assumptions, let us now discuss the different compo-
nents of the SeGO system.

Fig. 10.8. SeGO fuzzy trust integration over grid

SeGO Trust Model

The SeGO model introduces a hierarchical trust model, specifically de-
signed for distributed security enforcement in computational Grids. This
model has two levels of trust inference: the lower level fuzzy inference
system collects all input parameters from a single site, thus called the in-
tra-site level. The output of the intra-site level provides the inputs to the
upper level. The upper level collects inputs from all resource sites, thus
called the inter-site level. There are two fuzzy inference systems applied in
the intra-site level. One evaluates the self-defense capability and the other
one evaluates the site reputation. Each site reports its assessed self-defense
capability to all other sites. There is only one fuzzy inference system at the
inter-site level, which collects inputs from intra-site levels, and infers the
site trust indices to form the trust vector for each site.

238 10 Managing Trust in the Grid

Trust Integration and Updates

SeGO scheme does not explicitly deal with the storage of trust informa-
tion. A DHT based approach similar to PeerTrust can be used to store the
trust information in a distributed manner. SeGO can also be integrated with
a VPN-based direct transfer of trust information over the grid. Each site
has a SeGO agent installed on a SeGO server which is used for authenti-
cating the user and initial negotiation. The SeGO agent has a resource
manager and a trust manager. Resource manager is used for monitoring of
resource status, and the trust manager is used for calculating the trust in-
dex. The scheme also allows each site to reassess the reputation of some
other site through a manner similar to Time to Live (TTL) used in the net-
works. After counting the execution of sufficient number of jobs, a site A
reassesses the reputation of another site B. A new trust index is computed
as a function of the old trust index and the received information.

10.4 Policy-Based Trust Management Systems

While the reputation-based TMS are mainly concerned with developing a
trust metric based on the different components of the performance of the
system, policy-based systems are mainly concerned with developing a pol-
icy based trust language and developing trust negotiation mechanisms. In
this section, we will discuss about some of the mechanisms in this regard.

10.4.1 PeerTrust Trust Negotiation

At the outset, let us mention that the PeerTrust policy mechanism is differ-
ent from PeerTrust reputation model discussed previously. These are two
different projects from two different universities. PeerTrust Policy is a col-
laboration project between the University of Chicago, Urbana Champagne
and the University of Hannover in Germany. The main application of the
PeerTrust policy mechanism is the semantic Web and the researchers have
developed a simple and expressive policy language for trust negotiation.
The two basic components of a PeerTrust policy system is the PeerTrust
policy language and the PeerTrust automated trust negotiation.

PeerTrust Policy Language

The PeerTrust policy language is quite extensive. It provides well-defined
semantics, ability to express complex conditions, sensitive policies, and
delegation.

10.4 Policy-Based Trust Management Systems 239

Fig. 10.9. Negotiation in PeerTrust

We will provide a brief overview of the syntax and semantics of the
PeerTrust system. More details can be found in [219].

• Each peer defines a policy for each of its resources, in the form of

a set of definite Horn clause rules. These and any other rules that
the peer defines on its own are its local rules. A peer may also
have copies of rules defined by other peers, and it may use these
rules in its proofs in certain situations. Definite Horn clauses are
the basis for logic programs [228], which have been used as the
basis for the rule layer of the semantic Web and specified in the
RuleML effort [229, 230] as well as in the recent OWL Rules
Draft [231]. Each rule is signed based on the issuer’s digital signa-
ture to verify the authenticity.

• The semantics of the PeerTrust language is an extension of that of
SD3 [232]. For each authority argument that has not been speci-
fied explicitly in a rule or literal, ‘@ Self’ is added. The policy is
determined by a forward chaining nondeterministic fixpoint com-
putation process. In this process, at each step, a nondeterministi-
cally chosen peer can have three actions: Firstly, it can either apply

240 10 Managing Trust in the Grid

one of the rules. Secondly, it can send a literal or rule in its knowl-
edge base with a certain context. Thirdly, it can receive a context-
free signed rule or literal from another party.

PeerTrust Automated Trust Negotiation

Figure 10.9 shows the high level automated trust negotiation in the Peer-
Trust policy management system. The server on receiving client’s request
regarding the resource can look at its policy database, which is formed by
set policy rules and signed rules delegated by external sources. Based on
the set of rules, the server can ask for certain credentials from the client.
The client also may have some policies based on credentials disclosure
which are embedded in the disclosed credentials.

10.4.2 TrustBuilder

TrustBuilder [233] is a trust negotiation project done through collaboration
by researchers in the University of Chicago, Urbana Champagne, and the
Brigham Young University. Unlike the PeerTrust policy mechanism,
which develops a policy language for trust negotiation, TrustBuilder de-
velops an infrastructure for trust negotiation for open systems. The Trust-
Builder system has deployment of trust negotiation on TLS, SMTP, POP,
ssh, and HTTPs.

TrustBuilder basically allows strangers to access sensitive data and
services over the Internet. In TrustBuilder protocol and architecture, the
negotiating parties establish trust between themselves by negotiating trust
in a need-to-know manner. In this way, all the credentials are not disclosed
to the either party. To ensure correct inter-operation between the different
parties, TrustBuilder has identified four conditions:

• Both the parties should use the same protocol which defines the

messaging order, and information contained in the messages.
• Whenever one party’s strategy recommends the disclosure of a

resource, the credentials previously disclosed by the other party
must satisfy the resource’s policy.

• If the policies of two parties allow a successful negotiation,
there should be sequence of credential disclosure steps.

• There should always be a termination strategy in case the nego-
tiation is unsuccessful.

10.4 Policy-Based Trust Management Systems 241

TrustBuilder Architecture

Fig. 10.10. TrustBuilder security agent architecture

• Negotiation: Figure 10.11 shows the high level architecture of the
security agent which negotiates on a party’s behalf to mediate a
stranger’s access to a party’s local resource. The figure shows how
P2’s security agent identifies the amount of credentials to be dis-
closed to P1. P2’s security agent uses a policy compliance checker
to determine which of P2’s policies are satisfied by P1’s disclosed
credentials so that none of P2’s local resources is disclosed to P1’s
agent before the resource’s policy has been satisfied. P2’s agent
also uses a compliance checker to determine which of P2’s creden-
tials satisfy P1’s disclosed policies. When P2’s security agent re-
ceives a credential from P1’s agent, the credential verification
module performs a validity check, including signature verification,
revocation check, and credential chain discovery when necessary.
The verification module also handles P1’s agent’s demands that P2
demonstrate the possession of a private key that matches a certi-
fied public key.

242 10 Managing Trust in the Grid

• Ubiquity: TrustBuilder also allows for ubiquitous trust negotiation
which works across multiple protocols like TLS, by leveraging the
TLS rehandshake facility [234] RMI, SOAP, HTTP, and other pro-
tocols.

10.4.3 Trust Negotiation for the Grid

TrustBuilder is an interesting piece of work in the domain of policy-based
trust negotiations. Researchers have integrated the work with the grid
schedulers to develop a grid-based trust negotiation mechanism [235].
Grid-based trust negotiation architecture combines the TrustBuilder for
underlying trust infrastructure, and PeerTrust for the language for auto-
mated trust negotiation.

Fig. 10.11. Trust negotiation over the grid

Figure 10.11 shows the high level architecture of trust negotiation in
the grid. In the figure, a user A wants to submit a job onto the Grid infra-
structure. The grid uses MyProxy for credential management, and a sched-
uler for submitting the job. Let us go through the different steps involved:

1. User A sets up a TLS session with the resource access manager.
2. Once the session is established, a TLS rehandshake is estab-

lished using the TLS rehandshake protocol defined in [234]. A
also sends the policy written in RT [236] or PeerTrust language

10.5 Comparing the Trust Management Systems 243

[219]. Based on the policy, the access manager sends the policy
and the certificates, if required to A.

3. If the policy accepts a proxy certificate chain then that is ob-
tained from the MyProxy server. Based on all the information,
the job is granted access to the Grid resource.

The above example shows how the TrustBuilder agents can be used

for policy checking and negotiating strategies.

10.5 Comparing the Trust Management Systems

We had previously mentioned the different desirable characteristics of the
trust management systems. This section tries to understand how the differ-
ent systems perform with respect to the characteristics mentioned before.

10.5.1 Generic Understanding of Trust Management Systems

Let us now look at how the different trust management systems perform
with respect to individual characteristics. Table 10.2 shows the mapping
between the different trust management systems and the characteristics.

Scalability

Reputation-based trust management systems generally involve exchange of
trust metrics among the different entities or trust nodes. Policy-based sys-
tems, on the other hand, require a policy database and information to make
the trust related decisions. Therefore, with respect to message overhead,
most of the reputation-based systems perform below par compared to the
policy-based systems. However, the amount of message overhead depends
on the specific type of trust function used. Among the different reputation-
based systems, PeerTrust, and SeGO use global trust functions and hence
require a significant amount of message exchange to determine the trust
metrics. Therefore, it is not surprising that both of them have high message
overhead. Since NICE is based on local information, the message overhead
is controlled in this case. One exception to the general trend is the
XenoTrust system which has a centralized information base and has low
message overhead. policy-based systems, mostly, has low message over-
head as the message exchange is minimal. The computation overhead as-
sociated with the different systems depends on the type of trust function,
metrics, and policies used. Reputation functions used in XenoTrust,

244 10 Managing Trust in the Grid

resources, especially since the metrics need to be computed based on
global information. NICE, on the other hand, require a path-based trust
metric computed on local information and hence is less expensive. The
main component of latency in policy-based systems is due to searching the
policy database rather than computing complicated trust functions.

In terms of computation overhead, however, the reputation-based
trust management systems are mostly better than their policy-based coun-
terparts. The reason is that, reputation-based systems, can use a distributed
implementation of the reputation information by using concepts like Dis-
tributed Hash Tables (DHT). PeerTrust and SeGo use DHTs to reduce the
storage. However, it should be noted that distributed storage increases the
message overhead and overall system latency. Most of the policy-based
systems use a centralized database to store the policy information and
hence generally require higher storage.

Reliability

Reliability achieved in most systems in through replication of information.
Since XenoTrust assumes that the server maintains the entire information
base, it has a single point of failure. However, replication of the informa-
tion can improve the overall reliability of the system. Policy based systems
also require some amount of replication to provide better reliability. Sys-
tems using DHTs to store information like PeerTrust and SeGo have the
advantage in this respect, as selective information can be replicated across
the DHT.

Security

Security is one of the areas where the policy-based systems score more
than the reputation-based systems. Reputation-based systems are always
prone to collusion attacks as the reputation information computed depends
on the information sent by the other nodes in the system. Therefore, strate-
gically placed adversaries can collude and create corrupted information.
All the reputation-based systems are prone to this type of attack. Some of
the systems like XenoTrust, NICE, and SeGo are prone to sybil attack also
where a node creates several virtual nodes to create confusion and corrup-
tion. PeerTrust prevents this type of attack by having a PKI infrastructure
in place.

PeerTrust, and SeGO are quite complex and require significant computational

10.5 Comparing the Trust Management Systems 245

Table 10.2. Comparing the different trust management systems

Params Peer-
Trust

Xeno-
Trust

NICE SeGO PeerTrust
Policy

Trust-
Builder

Policy
Grid

Trust
Fns

Global Global Local Global Policy
based

Policy
based

Policy
based

Cen-
tralized

No Yes No Can be Yes Yes Yes

Storage Low High Low Can be
Low

High High High

Com-
puta-
tion

High High Low High Medium Medium Me-
dium

Reli-
ability

High Repli-
cation
possi-
ble

High Can be
high

Replica-
tion pos-
sible

Replica-
tion
possible

Repli-
cation
possible

Band-
width

High Low Me-
dium

Can be
High

Low Low Low

Au-
thenti-
cation

Using
PKI

Signa-
ture
based

Sig-
nature
based

No Can be in-
cluded

Yes Using
GSI

Collu-
sion

Possi-
ble

High Pos-
sible

Very
High

No No No

Sybil
Attack

No High Pos-
sible

Very
High

No No No

Trust
Nego-
tiation

No No No Can be
in-
cluded

Yes
through
PeerTrust
Language

Mainly
a trust
negotia-
tion
scheme

Inte-
grating
Trust-
Builder
with
Grid

10.5.2 Applicability of the Trust Management Systems

We have looked at different trust management systems. One may ask the
question about which of them can be readily deployed. Among the two
general categories of TMS, policy-based TMS is of immediate need rather
than reputation-based TMS. There are a couple of reasons for this observa-
tion. Firstly, the reputation-based TMS systems are still in evolution and
developed in research labs, and would require a few years before maturing.
Secondly, the vision of having a dynamic grid system with grid nodes join-
ing and leaving the system is not likely to be realized in the next few years.
However, our feeling is that enterprises would be requiring some type of

246 10 Managing Trust in the Grid

trust management system in the next few years to cater for the demand of
multiple enterprise grids. Then some form of policy-based TMS would
evolve, most likely from an evolved version of a CAS or VOMS type of
authorization system with more advanced integrated policies. In the next
five years, we expect to find the development of grid based trust language
and research and deployment of reputation-based TMS existing with the
policy based authorization systems.

10.6 Chapter Summary

In an extremely dynamic system, where members join and leave, managing
and maintaining trust is extremely important. A dynamic and large grid
system is also no different. The life cycle of a typical Trust Management
System (TMS) consists of trust creation, trust negotiation, and trust man-
agement. The trust creation phase generally is done before any trusted
group is formed, and it includes mechanisms to develop trust functions and
trust policies. Trust negotiation, on the other hand, is activated when a new
untrusted system joins the current distributed system or group. The third
phase, or the trust management phase, is responsible for recalculating the
trust values based on the transaction information, distribution or exchange
of trust related information, updating and storing the trust information in a
centralized or in a distributed manner. The different characteristics of a
good trust management system are scalability, reliability, and security. A
TMS needs to be scalable in terms of message and storage overhead, must
have message level and node level reliability, and be secure against differ-
ent attacks like fabrication, masquerade, anonymity, and collusion. The
different TMS include reputation-based TMS and policy-based TMS. The
different TMS systems discussed in this chapter are PeerTrust, XenoTrust,
NICE, and SeGO. The different policy-based systems discussed in this
chapter are PeerTrust policy, TrustBuilder, and policy grid. The different
systems have been discussed in detail and contrasted. As can be observed
from Table 10.1, reputation-based systems like XenoTrust, NICE, SeGO
are vulnerable to collusion due to the cooperative nature of the protocols
involved. Policy-based systems, on the other hand, though immune from
collusion attacks require more storage and are less flexible in managing
trust. Significant research efforts are needed in this area. In the next chap-
ter, the different grid based monitoring systems will be discussed.

11 Grid Monitoring

11.1 Introduction

Sharing of resources and collaboration among the different participating
entities form the basis of grid computing. In a grid computing environment
jobs are submitted to the heterogeneous grid infrastructure by users who
may be in different departments or even organizations. Collaboration of
users takes place in a grid community through the formation of a Virtual
Organization. In many cases, usage of resources needs to be tracked or
monitored. Monitoring of resources is needed because of primarily two
reasons. Firstly, different organizations or departments can be charged
based on their usage. Secondly, resource related information can be logged
for auditing or compliance purposes. In addition to tracking and logging,
there may be a need to integrate with the variety of different systems like
scheduling, replication, etc. which may be able to use the monitoring in-
formation for better performance. In this chapter, we provide an overview
of different distributed monitoring tools and techniques that can be applied
to the grid computing scenario.

It would be wrong to assume that monitoring is essential in only the
digital domain. Examples of distributed monitoring are very common in
day-to-day life also. Market research surveys are examples of monitoring
of human behavior with respect to a certain product or a brand. In these
surveys, different field researchers ask several questions based on a com-
mon questionnaire to the consumers. The field researchers also take a lot
of pain in gathering the information time, period, and the profile of the
consumers they interview. There is a team of coordinators whose responsi-
bilities include collation of the responses gathered by the field researchers
and making meaningful assessment based on the information. If we con-
trast this scenario with a face-to-face interview with a celebrity, in the lat-
ter case more flexibility is given to the interviewer in framing the ques-
tions, and collation of the information from the answers provided to the

248 11 Grid Monitoring

questions. This clearly shows the difference between centralized monitor-
ing systems and the distributed one. While market research is an example
of a distributed monitoring system, interviewing a celebrity is like moni-
toring a single system. Distributed monitoring systems are more complex
to design as they introduce synchronization and scalability problems. Mar-
ket researchers try to solve this problem by not only synchronizing in
terms of time, period, and demography of the consumers, but also having a
set questionnaire. These steps try to remove individual biases in getting
consumer feedbacks. Similarly, when one is designing distributed monitor-
ing systems, there is a need to gather information in a specified format, and
synchronize the information. Sometimes it may be required to determine
the freshness of gathered data based on the timestamp associated with the
data. Hence, there may be a need for synchronizing time across the distrib-
uted system. Another complexity introduced in a distributed monitoring
system is scalability. This can be handled in creating a hierarchical model
where the information is aggregated at each point.

11.1.1 Stages of Monitoring

Since grid systems are typically distributed in nature, we will focus our at-
tention on distributed monitoring. Monitoring of distributed systems has
been the focus of research for the distributed computing community for
many years. Several distributed monitoring architectures have been de-
fined and analyzed in papers [237, 238]. Distributed systems are composed
of independent components. For example, a grid infrastructure is com-
posed of servers, desktops, and the network connecting the different com-
ponents. The different stages of distributed monitoring are data collection,
data processing, data distribution, and data presentation.

Data Collection

The first stage in distributed monitoring is to gather or collect data from
different components through sensors. In the area of market researchers,
this activity is carried out by the field researchers. Similar to the field re-
searchers, the sensors gather specific information like the bandwidth us-
age, CPU and memory usage, health of the node, and so on. There are two
ways in which the data can be gathered by the sensors namely active and
passive monitoring. In the former case, the sensors actually introduce load
or messages in the distributed system to gather the information. As a gen-
eral rule, one end (the probe) generates a specific traffic pattern, while the
other (the target) cooperates by returning some sort of feedback; the ping

11.1 Introduction 249

tool is a well known example. Passive monitoring, on the other hand,
gather the information by looking at the link, CPU utilization, memory,
without actually introducing any message or load in the system. Once the
data have been collected, the sensors report the data in a specific format or
structure to the other layers. The gathered data can be static is nature like
the network topology, configurations of machines, or dynamic like the
utilization of the system, system load, network available bandwidth, and so
on. Moreover, the data can be collected in a time-based or in an event-
based manner. In the former case, data is collected in a periodic manner,
while in the latter, data is collected only when a specified event takes
place.

Data Processing

This step involves getting information out of collected data. This step is
generally application-specific and may take place during any stage of the
monitoring process. Typical examples include filtering according to some
predefined criteria, or summarizing a group of events (i.e., computing the
average). This step is essential as sensors may gather different types of
data from the components. However, an application may not be concerned
about all the gathered data and may only be concerned about certain in-
formation, or in some cases aggregated information. This step is similar to
the coordinators gathering the data supplied by the field researchers and
summarizing and packaging them in meaningful information. Due to the
hierarchical nature of many distributed monitoring systems, there is a need
to process and filter data at every step of the hierarchy.

Data Transmission

This step involves the transmission of collected and processed data to the
different entities interested. Transmission involves sending the data in a
format understood by other parties over a transmission medium for exam-
ple the network. Therefore, this step is also concerned with securely trans-
ferring the data over the network. Depending on the nature of the data, dif-
ferent authentication, encryption, and integrity mechanisms can be applied
to secure the transmitted data.

Data Storage

There may be a need for storage of gathered or processed data for future
references. For example, administrators may be interested in the average
utilization of a grid system for auditing purposes. Depending on the

250 11 Grid Monitoring

Data Presentation

The CEOs of the company sponsoring the market analysis may not be in-
terested in the huge amount of varied data that has been collected. Rather,
they would mostly be interested in reports that provide the answers to the
questions they seek. Similarly, different distributed monitoring schemes
present the data in forms of abstractions so that the data can be compre-
hended by the end users in a specified manner. The results may be pre-
sented in a standard format so that it can be fed to different systems for
visualization or analysis purposes.

11.1.2 Requirements of Distributed Monitoring System

During the design of a distributed monitoring system, one should be pri-
marily concerned about the scalability of the systems. In addition, one
should also look at the scalability, flexibility, portability, robustness, and
security requirements.

Scalability

As mentioned earlier, scalability is one of the most important criteria of a
distributed monitoring system. The monitoring system should be able to
scale with growing number of resources and users. Therefore, the monitor-
ing system must be designed with scalability in mind using a hierarchical
model. Moreover, the probes and sensors used in gathering the data from

One way to achieve this is through a nonintrusive way of gathering infor-
mation.

Flexibility

Another important requirement of any distributed monitoring system is its
flexibility. It should be flexible enough to accommodate different data
formats and schemas. It should also not only be flexible enough to handle
static and dynamic requests, but also application specific policies regarding
measurements can also be added. It should also be flexible enough to be
extended to different event types, protocols, and standards.

criticality of the gathered and processed information, proper security
measures need to be taken.

the system should not introduce an excessive amount of load in the system.

11.2 Grid Monitoring Architecture (GMA) 251

Portability

One of the main characteristic of the grid infrastructure is its heterogeneity.
Therefore, the distributed monitoring system suitable for grid systems
should be portable i.e., it should be able to work across the different sys-
tems and platforms.

Robustness

The system should be robust to infrastructure failures like node and net-
work failures of various types. As systems scale in the number of nodes,
failures become both inevitable and commonplace. The system should be
able to localize such failures so that the system continues to operate and
delivers useful service in the presence of failures and the effect is mini-
mized.

Security

Depending on the nature of the data, care must be taken to secure the
stored, processed, and transmitted data. Security principles like authentica-
tion, confidentiality, integrity must be maintained in all transactions in-
volving secure data.

11.2 Grid Monitoring Architecture (GMA)

The Grid Monitoring Architecture (GMA) has been put together by the
Global Grid Forum (GGF) as a recommendation for a grid monitoring sys-
tem. It is to be noted that it is not a standard and has been put forward for
further discussions and implementations and if possible getting results.
Figure 11.1 shows the components of the Grid Monitoring Architecture
(GMA). The different components of the GMA are sensors, producers,
consumers, and the directory service.

• Sensors: Sensors are the source of the monitoring data and are re-
sponsible for gathering data from the distributed grid system. They
are also responsible for generating events from the measured data.
The architecture can be further simplified by placing the sensors in
the consumers or users as mentioned in [239]. However, the archi-
tecture implicitly assumes that sensors are the logical block in the
overall GMA structure [240].

252 11 Grid Monitoring

• Producers: In GMA, the producers are responsible for registering
themselves to the registry or the directory service and also provide
information about the type and structure of information they want
to be made available to the grid. The producers are also some form
of sensor managers by making available the amount and type of
data that would be useful to the consumers.

• Directory Service or the Registry: The directory service (also
known as the registry) is responsible for publishing the event type
and the corresponding producers. Consumers can contact the ser-
vice to find out the type of information available and locate the
producers who can provide the information.

• Consumers: These are the users of the monitoring data. The con-
sumers query the directory service and get the information about
the producers. Once this information is obtained, the consumers
contact the producers directly to get the information.

GMA defines three types of interactions between producers and con-

sumers.
• Publish/subscribe refers to a three-phase interaction consisting of

a subscription for a specific event type, a stream of events from a
producer to a consumer, and a termination of the subscription.
Both the establishment and the termination of a subscription can
be initiated by any of the two parties. This type of interactions is
very useful when the producers are generating data in a periodic
interval, and the consumers can subscribe to the event.

• A query/response is a direct interaction initiated by a consumer
and followed by a single producer response containing one or
more events. This event is useful when the consumer require a
specific type of information, and similar to a database query.

• A notification can be sent by a producer to a consumer without
any further interactions. These can be because of some alarms or
triggers that need to be generated.

In addition to the three core components, the GMA also defines a re-

publisher which is sometimes referred to as a compound component or in-
termediary and a schema repository.

• A republisher is any single component implementing both pro-
ducer and consumer interfaces for reasons such as filtering, aggre-
gating, summarizing, broadcasting, and caching.

11.3 Different Monitoring Tools/Frameworks 253

• A schema repository holds the event schema, that is, the collec-
tion of defined event types. If a system is to support an extensible
event schema, such a repository must have an interface for dy-
namic and controlled addition, modification and removal of any
custom event types.

The GMA was devised as a framework for monitoring grid systems.

However, it goes beyond that and provides a nice framework for combin-
ing monitoring and information systems. The model is not constrained by
any protocol or data models. Therefore, implementers are free to choose
their own data models for querying over the monitoring system.

Fig. 11.1. Grid Monitoring Architecture (GMA) overview

11.3 Different Monitoring Tools/Frameworks

Let us now discuss the different monitoring tools available. Monitoring
systems can be divided into three main types: system level, cluster level,
and grid level. The system level monitors collect and communicate infor-
mation about standalone systems or networks. The main difference

254 11 Grid Monitoring

supported by the monitoring systems. The cluster level monitoring systems
generally are homogeneous in nature and require deployment across clus-
ter or a set of clusters for monitoring purposes. Grid level monitoring sys-
tems are much more flexible and can be deployed on top of different other
monitoring systems. We will discuss the Simple Network Management
Protocol (SNMP) and Mon as part as examples of system level monitors. It
is to be noted that SNMP is a standard for communicating management
and monitoring information and not a tool. However, it can be combined
with other tools to provide network specific information. As part of our
discussions on cluster level monitoring systems, we will discuss Ganglia
and Hawkeye. On the other hand, we will discuss about R-GMA, MDS,
MAGI, and GlueDomains as part of our discussions about grid level moni-
toring systems.

11.3.1 Simple Network Management Protocol (SNMP)

Perhaps the most popular protocol for managing and monitoring network
devices is the Simple Network Management Protocol or SNMP [241].
With regard to the OSI stack, SNMP is an application-layer communica-
tion protocol that allows network devices to exchange management and
monitoring information. By providing the monitoring and management of
information, SNMP enables network administrators to manage network
performance, find and solve network problems, and plan network growth.
Traditionally, SNMP was designed and used to gather statistics for net-
work management and capacity planning. For example, the number of
packets sent and received on each network interface could be obtained. But
because of its simplicity, SNMP’s use has expanded into areas of interest
to smaller networked devices. It is now used for many vendor-specific
management functions, e.g., showing a thermostat temperature, machine
tool RPM, or whether the front door was left open. An SNMP-managed
network consists of three primary components: managed devices, agents,
and management systems.

• Managed Devices: A managed device is a network node that con-
tains an SNMP agent and resides on an SNMP-managed network.
Managed devices collect and store management information and
use SNMP to make this information available to management sys-
tems that use SNMP. Managed devices include routers, access
servers, switches, bridges, hubs, computer hosts, and other net-
work elements.

between the cluster level and grid level monitors lies in the heterogeneity

11.3 Different Monitoring Tools/Frameworks 255

• SNMP Agent: A SNMP agent is a software module that resides in
a managed device. A SNMP agent has local knowledge of man-
agement information and translates that information into a form
compatible with SNMP. The SNMP agent gathers data from the
Management Information Base (MIB), which is the repository for
device parameter and network data. A MIB is a structured ar-
rangement of managed objects consisting of a database that maps
OIDs to actual variable instances. The MIB may be used as a
stand-alone hierarchical database without SNMP if required. The
SNMP agent can also send traps, or notification of certain events,
to the manager.

• Management System: A management system executes applica-
tions that monitor and control managed devices. Management sys-
tems provide the bulk of the processing and memory resources re-
quired for network management. One or more management
systems must exist on any managed network. A typical grid man-
agement system like MDS (refer to Sect. 11.3) can be extended to
interact with SNMP. Other examples of management systems in-
clude HP ® OpenView [242], CA ® Unicenter [243], and so on.

SNMP is therefore essentially a request-reply type communication

protocol operating between a management system and SNMP agents. Be-
ing standard-based, SNMP allows the integration with different manage-
ment systems and information collecting devices (sensors) as long as they
conform to SNMP standards.

11.3.2 Different System Monitoring Tools

In this subsection, let us provide an overview of some of the tools available
for monitoring and managing the systems. Some of the tools mentioned are
Orca, Mon, Aide, and Tripwire. There are a lot of tools available other
than the tools mentioned here which can be used for monitoring purposes.

• Orca Services: Orcallator and Orca Services [244] collect system

data and prepare it for Orca. Orcallator is a Linux version of Orca
Services. While the Solaris version explores the SE toolkit kernel
interface, the Linux version relies on information fetched from the
/proc pseudo file system. Orca uses collected data to make very
useful graphs through RRDTool. With rsync or ftp data can be col-
lected from multiple hosts and visualized.

256 11 Grid Monitoring

• Mon: Mon [245] is a general-purpose scheduler and alert man-
agement tool used for monitoring service availability and trigger-
ing alerts upon failure detection. Mon was designed to be open and
extensible in the sense that it supports arbitrary monitoring facili-
ties and alert methods via a common interface, all of which are
easily implemented with programs in C, Perl, shell, etc., SNMP
traps, and special mon traps.

• Aide and Tripwire: Aide [246] and Tripwire [247] are similar
open source programs designed to monitor changes in a key subset
of files identified by administrator, and report on any changes in
any of those files. Files are scanned periodically (daily or more
frequently) and the periodicity is defined through the cron facility.
Any change, addition or deletion is reported by mail, so that
proper action can be taken.

Most of the tools available for system monitoring purposes cannot be

used as a standalone system for monitoring grid systems. However, infor-
mation collected by the tools can be combined with the grid monitoring
systems like MDS to provide an integrated system.

11.3.3 Ganglia

Ganglia [248] is an open source hierarchical monitoring system developed
at the University of California, Berkeley, primarily designed for computer
clusters but also used in grid installations. Ganglia has over 500 installa-
tions all over the world and is one of the most popular open source moni-
toring tools. Ganglia is designed in a hierarchical manner (see Fig. 11.2). It
consists of three main components: intra-cluster monitoring, federation,
and visualization. Intra-cluster monitoring is used to collect the informa-
tion within a cluster, which is aggregated, and finally published through
the visualizer.

Intra Cluster Monitoring

In the Ganglia system, the intra-domain Ganglia monitor or the gmon
daemon (gmond), collects information based on different local metrics.
Ganglia uses a multicast based listen/announce protocol to monitor the
state within a cluster. The protocol works as follows: after collecting the
information about the local system, each node sends the information
to a well-known multicast address. Ganglia distinguishes between built-in
metrics and application-specific metrics through a field in the multicast

11.3 Different Monitoring Tools/Frameworks 257

monitoring packets being sent. All nodes listen for both types of metrics on
the multicast address and collect and maintain monitoring data for all other
nodes. The information sent uses XDR format. Thus, all nodes always
have an approximate view of the entire cluster’s state and this state is eas-
ily reconstructed after a crash. However, this also introduces overheads in
terms of having the multicast support, as well as message overhead. Within
each cluster, Ganglia uses heartbeat messages on a well-known multicast
address as the basis for a membership protocol. Membership is maintained
by using the reception of a heartbeat as a sign that a node is available and
the nonreception of a heartbeat over a small multiple of a periodic an-
nouncement interval as a sign that a node is unavailable. Therefore, Gan-
glia does not have any specific registration mechanism.

Fig. 11.2. Ganglia monitoring tool

Federation

Federation in Ganglia is carried out by Ganglia Meta Daemon (gmetad).
Ganglia constructs a tree of point-to-point connections to aggregate the
states from multiple clusters. At each node, the Ganglia Meta Daemon col-
lects the information from its children through XML over a TCP channel.

258 11 Grid Monitoring

The data collection is carried out by polling multiple child nodes, which
are mentioned in the configuration files. After collecting the information,
the XML is parsed using a SAX parse, and sent to the parent node again
over a TCP channel.

Visualization

Ganglia uses RRDTool (Round Robin Database) to store and visualize in-
formation for different types of systems like grid, clusters, etc. and for dif-
ferent metrics and time granularity. It also gives the flexibility for the de-
velopers to customize the information.

Fig. 11.3. Overview of the Hawkeye monitoring system

11.3.4 Hawkeye Monitoring System

Hawkeye [249] is another distributed monitoring system, coming from the
University of Wisconsin Madison. It is used to monitor different aspects of
the computing system which can be a cluster or a grid, namely monitoring
the health of the nodes, system load, watching run-away processes, and so
on. Mostly, Hawkeye system is used in combination with the cluster based

11.3 Different Monitoring Tools/Frameworks 259

scheduler called Condor [250, 251]. However, it is also available as a
stand-alone version in Linux and Solaris.

As shown in Fig. 11.3, each node that is monitored hosts a Hawkeye
monitoring agent which periodically calculates the different metrics that
are measured. The information is periodically sent to the Hawkeye central
manager using a XML based class advertisements as used in Condor. The
manager stores the information periodically in a round robin database. The
information can be queried through simple interfaces.

11.3.5 Relational GMA (RGMA)

The Relational Grid Monitoring Architecture (RGMA) [252] is built as
part of the European Data Grid (EDG) project. It is a framework based on
the GGF specification of GMA and combines the grid monitoring and in-
formation services based on the relational model.

Fig. 11.4. RGMA architecture

260 11 Grid Monitoring

Producers

Similar to GMA, RGMA also supports a producer-consumer architecture.
In RGMA, the producers are categorized into four main classes namely,
the DatabaseProducer, StreamProducer, ResilientStreamProducer, and
the LatestProducer. The DatabaseProducer supports history queries and is
employed for storing static data. This is slower than StreamProducer,
where the data is stored in memory resident circular buffers. However, Da-
tabaseProducers have more features like joins. The ResilientStreamPro-
ducer is similar to the StreamProducer but information is backed up to disk
so that no information is lost in the event of a system crash. The Latest-
Producer supports the latest queries by holding only the latest records in an
RDBMS. The architecture of the RGMA system is based on servlet tech-
nology. When a producer is created its registration details are sent via the
producer servlet to the registry.

Consumers

Similar to GMA, the main purpose of a consumer is to get the information
obtained by the producer. For this purpose, it takes the help of the registry.
When a consumer is created its registration details are also sent to the reg-
istry via a consumer servlet. The registry records details about the type of
data that the consumer has shown interest in. The registry then returns a
list of producers back to the consumer servlet that matches the consumers
selection criteria. The consumer servlet then contacts the relevant producer
servlets to initiate transfer of data from the producer servlets to the con-
sumer servlet and obtains the data.

Archiver

Another important RGMA component is the archiver which is a combined
consumer-producer. An archiver works by taking over control of an exist-
ing producer and instantiating a consumer for each table it is asked to ar-
chive. This consumer then connects via the mediator to all suitable produc-
ers and data starts streaming from the producers, through the archiver and
into the new producer. The inputs to an archiver are always streams from a
StreamProducer or a ResilientStreamProducer.

Registry

Registry is perhaps the most important component, which connects the in-
formation gathering and information usage mechanisms. The registry
stores information about all producers who are available. Extensions are

11.3 Different Monitoring Tools/Frameworks 261

being made to allow for multiple registries per Virtual Organization (VO),
which would increase the scalability significantly. The registry stores in-
formation about the producer once the producer is created and registration
details are being sent. The global schema includes a core set of relations,
while new relations can be dynamically created and dropped by producers
when required. The description of the data is actually stored as a reference
to a table in the schema. In practice, the schema is collocated with the reg-
istry. Then when the producer publishes data, the data are transferred to a
local producer servlet. Figure 11.4 shows the high level overview of the
RGMA architecture.

11.3.6 Globus Monitoring and Discovery System (MDS)

The Monitoring and Discovery System (MDS) [253] of the Globus Toolkit
is a suite of components for monitoring and discovering grid resources and
services. The latest version of the MDS system (MDS4) is compliant with
WSRF and WS-Notification specifications. The basic difference of MDS4
with cluster monitors like Ganglia is does not possess a detailed event han-
dling mechanism like the latter. However, MDS4 can interface with differ-
ent monitoring systems in multiple administrative domains. Example [253]
also provides a simple case study about the deployment of MDS4 in an en-
vironment consisting of 30 sites. Out of the 30 sites, many of them run

The MDS4 has two main services which form the heart of the system

which are responsible for gathering information from different sources and
providing actionable trigger events.

• Index Service: It is perhaps one of the most important services in
the MDS4 framework. It collects information about the grid re-
sources and makes this information available. The index service
collects information from the different data sources through stan-
dards WS-ResourceProperties and WS-BaseNotification services.
Any service which can publish the information according to the
WSRF specification can be indexed using the index service. Es-
sentially, it is a republisher of data that was originally made avail-
able by some service. However, the index service does not guaran-
tee the availability of the resource and the absolute freshness of the

Ganglia as the monitoring system, some of them run Condor and Hawkeye,
and many of them have proprietary queuing based scheduling systems
like PBS, LSF Multicluster, etc.

262 11 Grid Monitoring

data available. It uses a soft consistency model and the data may
be a little delayed to avoid unnecessary load in the system.

• Trigger Service: This service collects information and compares
it to a set of conditions defined in the configuration file. Once a
condition or a trigger condition is met a pre-defined action is
taken. For example, an administrator needs to be emailed in case
of node failure or when a server reaches its limits and so on.

Fig. 11.5. Overview of the interactions in MDS4

The two services mentioned above collect information from the dif-
ferent types of sources called the aggregator sources. The aggregator
sources may be of three types: The first type is a Query source which col-
lects information using the WS-ResourceProperties interface. This source
can work wherever the information is specified according to the specifica-
tion. The second type is a Subscription source, which collects data from a
service WS-Notification subscription/notification. The third and final type
of source is an execution source which executes an administrator supplied
program to collect data. This type of sources is very useful as most of the
system and cluster administrators have custom defined scripts to collect
data. The three different types of sources allow MDS4 to interact with data
provided by other systems and custom defined scripts.

11.3 Different Monitoring Tools/Frameworks 263

Figure 11.5 shows the interaction between the different components
of the aggregator framework in MDS4. WebMDS is a web-based interface
to WSRF resource property information that can be used as a user-friendly
front-end to the index service.

11.3.7 Management of Adaptive Grid Infrastructure (MAGI)

Management of the Adaptive Grid Infrastructure (MAGI) [254] has been
developed in the Grid Computing Focus Group of Infosys ® Technologies.
MAGI includes the following features:

• Multi-level QoS Repository: The QoS repository of MAGI stores

QoS-related data of different services or resources at different lev-
els of a conceptual hierarchy. So there could be data about differ-
ent parameters like: current queue length at a processor, average
load value at a machine over the last 6 hours, and a composite
reputation rating of different online book selling services. An im-
portant characteristic of this repository is that is makes the QoS re-
lated history of the service or resource persistent. Before making a
selection of scheduling decision, therefore, a user can take into ac-
count all this historical data.

• Scheduling: MAGI allows the synching of scheduling with the
QoS repository in the MAGI architecture. This allows scheduling
decisions to be based on historical as well as transient data about
the service. This also allows the user to specify constructs such as-
“schedule the job at a resource with the minimum Q-length”, or
“select a service with a composite reputation rating greater than
80%.”

• Autonomic Capabilities: In the context of multi-level QoS man-
agement, autonomic capabilities also allow the monitoring of con-
tractual conditions based on QoS, and action to be taken in case
these conditions are violated. These behave a lot similarly to the
Trigger service in MDS4.

The components of MAGI include c-agents, i-agents, Meta Attribute

Management Server (MAMS), Auditor and the Web based Interface. The
details and the necessity of each of the components are described below.

• c-Agents: These agents are located at each execute node. It is the

responsibility of a c-Agent (or contract agent) to see whether the
node fulfills its contractual obligations to MAGI. For example a

264 11 Grid Monitoring

node can promise a physical memory of M over a certain period of
time t and the c-agents monitor such resources on the node. It may
so happen that a node fails to meet the contractual obligations. In
such a case, there exists a reporting mechanism through which the
auditor is informed.

• i-Agents: i-Agents (or infrastructure agents) are responsible for
keeping an account of the resource availability at a given time.
They differ from the c-agents in the sense that they are not aware
of any contractual obligations of the node. They serve the purpose
of reporting the resource availability on the nodes to the Job Sub-
mission and Scheduling System (JSSS), which can be a system
like Condor, LSF Multicluster or PBSPro. Condor already pro-
vides this functionality through its ClassAd mechanism, but we
have duplicated it for the sake of inter-operability with other sys-
tems.

• Meta Attribute Management Server (MAMS): MAMS is a da-
tabase server containing three kinds of data. The transient data re-
flects all the contractual violations generally encountered in the
last few hours, and is refreshed after a certain interval of time.
While transient data reflects only the recent past, the entire history
of the nodes’ performance is stored in the historical service data of
the MAMS database. The historical service data table is updated
from the transient table periodically, averaging many of the pa-
rameters stored there. A third type of data in the database is the
mapping data. This gives the user the option of not supplying the
data which needs to be processed. MAGI, in such scenarios, takes
the data to be processed from its own storage, or from a third
party. The mapping data table contains the mapping of where this
data is stored, and how to access it.

• Auditor: The auditor is a metering and monitoring system that
also has exception handlers to handle any exceptions that may oc-
cur on account of the nodes on MAGI not meeting contractual ob-
ligations. In such cases, the auditor basically serves two purposes.
Firstly, it updates the transient data of the MAMS database. The
second function of auditor is taking control action, depending upon
the type and severity of the violation. A typical example of control
action can be checkpointing the job on a machine whose available
memory is lower than a threshold in anticipation of node failure.

• Web-based Interface: MAGI provides a Web-based interface for
observing the system performance. Users can query custom based
as well as system specific information from the MAMS database.

11.3 Different Monitoring Tools/Frameworks 265

11.3.8 GlueDomains

GlueDomains [255] is an interesting prototype which is included in our
discussions mainly because of its novelty. GlueDomains supports the net-
work monitoring activity of the prototype grid infrastructure of INFN, the
Italian Institute for Nuclear Physics. GlueDomains follows a domain-
oriented approach and the activity results are published using the Globus
Monitoring and Discovery System (MDS). Following are the components
of the GlueDomains monitoring system.

Domains

The domain oriented approach consists of an overlay network which di-
vides the network into several partitions or domains. This concept is simi-
lar to the concept of Autonomous Systems (AS) in the Internet. The moni-
toring of the grid takes place in inter-domain rather than intra-domain
which increases the overall scalability of the system. This type of monitor-
ing scales in the order of O(D) rather than O(N) where D and N are the
number of domains and the number of nodes in the grid infrastructure re-
spectively.

Theodolite Service

A theodolite service monitors a number of grid network components which
can be servers, storage, routers, and other components. In GlueDomains
monitoring system, theodolites perform active network monitoring. In this
type of monitoring systems, test traffic is induced into the grid infrastruc-
ture to see the effect and benchmarks are computed. Generally, each active
monitoring service consists of two parts; one part (the probe) generates a
specific traffic pattern, while the other (the target) cooperates by returning
some sort of feedback.

Monitoring Database

The description of the overlay network is made available through a topol-
ogy database which is generally static in nature. However, in a dynamic
system this can be updated based on current network scenario. Observa-
tions collected by active monitoring tools are associated to a network ser-
vice based on the location of the theodolites. Observations collected by
passive traffic observers are associated to a specific network service using
basic attributes (like source and destination IP address, service class, etc.)
of the packets captured by such devices. The monitored information is up-
dated periodically into an information system.

266 11 Grid Monitoring

11.4 Discussions on the Different Monitoring Systems

Let us now try to summarize the different monitoring systems used for the
Grid systems in this section.

11.4.1 Comparison

Let us first compare the monitoring systems based on the different qualita-
tive parameters mentioned before. It is to be noted that grid and cluster
based monitoring systems are complementary rather than competitive in
nature. Grid monitoring systems can work at a higher level with the cluster
monitoring systems providing information about the different clusters. Ta-
ble 11.1 provides a comparison between the different monitoring systems.

Scalability

Monitoring systems which are hierarchical in nature are generally scalable
in nature as they allow information to be aggregated and transferred. Most
grid systems like R-GMA and MDS allow for hierarchical architecture and
therefore scalable. MAGI and Hawkeye are architected as a one-level sys-
tem and hence may suffer from scalability problems especially for a large
number of nodes in the grid system. However, the issues are not as straight
forward as this. As mentioned in the study carried out in [256, 257], the
authors have concluded that R-GMA producer’s and registry appear to be
the least scalable compared to Hawkeye and MDS if the number of concur-
rent user’s are very high. The study also showed that the number of con-
sumers should be less that 400 for R-GMA and 500 for MDS (version 2).

Inter-Operability

This is one of the strong points of the grid monitoring systems. Most of the
grid monitoring systems and frameworks have been designed to inter-
operate with other systems and interfaces, many times even vendor prod-
ucts. All the systems can interface with cluster and network monitoring
systems for monitoring information. Cluster monitoring systems, on the
other hand, are standalone in nature and require a significant amount of in-
tegration effort. However, it is to be noted that this is a complex issue as
there exists plethora of communication methodologies (Java RMI, sockets
etc.), information mechanisms (XML, flat files, RDBMS schema), and
other issues. As mentioned in [256], producer-consumer based framework

11.4 Discussions on the Different Monitoring Systems 267

may not be sufficient in achieving inter-operability. However, more re-
search is needed in this direction.

Security

Another important characteristic for the monitoring systems is security.
Most of the grid monitoring systems have provisions for some type of se-
curity mechanisms. MDS and R-GMA use GSI credentials for authentica-
tion purposes. MAGI can use X.509 credentials as well as passwords for
authentication purposes. Cluster-based monitoring systems do not explic-
itly provide any security mechanisms.

Table 11.1. Comparison between the different monitoring systems

Params Ganglia Hawkeye R-GMA MDS4 MAGI GD
Hierarchi-
cal

Yes No Yes Yes No Domain
type

Integration
with dif-
ferent sys-
tems

No No Yes Yes Yes Through
R-GMA

Registry Not
available

Using
Condor
manager

Through
Registry
system

Using
Index
Service

Using
MAGI
server

Not avail-
able

Security Not ex-
plicitly

Not ex-
plicitly

GSI GSI X.509
based

SSL

Trigger
Support

No No No Using
Trigger
Service

Using
Auditor

No

Visualiza-
tion

Through
RRDTool

No Simple
like
Pulse

WebM
DS

Web
Inter-
face

Possible

Scheduler
Supported

Inde-
pendent

Mostly
Condor

Inde-
pendent

Inde-
pendent

Inde-
pen-
dent

Independ-
ent

Implemen-
tation
Language

C C++ Java
Servlets

Java C,
Java,
Perl

C, Perl

Comments Requires
Multicast
support

Less fea-
tures,
stable
perform-
ance

Not very
stable
under
high
load

Col-
lects
info.
from
differ-
ent sys-
tems

Com-
parable
to
Hawk-
eye

Mostly
collects
network
specific
informa-
tion

268 11 Grid Monitoring

11.4.2 Applicability

Let us look at the current enterprise scenario. Enterprises are slowly look-
ing at grid computing solutions. Monitoring is one of the immediate re-
quirements for the enterprise grid systems. The reasons are threefold:

• Pricing and Tracking: Grid systems designed in most enterprises
are composed of shared clusters and servers across the different
departments of the enterprise. There is a need to track the usage of
the different department and policies need to be developed based
on the usage pattern. For example, an enterprise may assign 30%
of its grid resources to Department A, 20% to Department B, and
rest to Department C. The policies are generally not so straight-
forward and include time, users, priorities, and other parameters.
Therefore, monitoring systems are needed and they should inter-
act with the authorization system for proper policy implementa-
tion. The situation is complex as there are host level, cluster level,
and network level monitors already implemented which need to
be integrated with the grid monitoring systems.

• Compliance: The reason mentioned in the previous point is a
more immediate concern for enterprises. However, compliance is
one of the long-term concerns which enterprises are getting aware
and grid systems need to conform to those. One of the major
compliance issues is the Serbanes Oxley (Sox) compliance [258]
which states that different entities in the enterprise supply chain
need to comply to certain regulations. Regulations are also present
in specific like life sciences where the processes need to comply
to certain standards. These regulations require auditing of all the
transactions taking place in the enterprise. The information avail-
able from the monitoring system can be used for auditing pur-
poses.

• Better Optimization: In the next few years enterprises would
also require scheduling of grid jobs based on business policies and
metrics obtained from the monitoring systems. Therefore, better
and more fine-grained monitoring would result in better optimiza-
tion of the resources.

11.5 Chapter Summary 269

11.5 Chapter Summary

In this chapter, we have looked at the monitoring systems available in the
grid. Data collection, data processing, data transmission, data storage, and
data presentation are the different stages of a typical monitoring system. In
designing a robust monitoring system, one should look at scalability, flexi-
bility, portability, robustness, and security requirements. Monitoring
tools/frameworks can be broadly divided into system level, cluster level,
and grid level. The system level monitors collects and communicates in-
formation about standalone systems or networks. The main difference be-
tween the cluster level and grid level monitors lies in the heterogeneity
supported by the monitoring systems. The cluster level monitoring systems
generally are homogeneous in nature and require deployment across clus-
ter or a set of clusters for monitoring purposes. Grid level monitoring sys-
tems are much more flexible and can be deployed on top of different other
monitoring systems. In this chapter, we have discussed SNMP, Orca, mon,
Aide, and Tripwire as examples of system level monitoring tools. Ganglia
and Hawkeye have been discussed as part of the cluster level monitors, and
R-GMA, MDS, MAGI, and GlueDomains have been discussed as grid
level monitors. The different monitoring systems are compared and con-
trasted in the chapter. Researchers need to look at integrating the different
host level, cluster level, and grid level monitoring systems for providing an
end-to-end and holistic monitoring solution.
 With this we come to the end of the discussions on management re-
lated security issues and solutions. In the next chapter, we will look at two
case studies for integrating the different concepts discussed in the book.

12 Putting it All Together

12.1 Security in the European Data Grid (EDG)

Let us now concentrate on full fledged systems integrating all the compo-
nents described in the previous chapters. The first example is from the
European Data Grid (EDG) [259, 260] which has highly distributed re-
sources spanning different management and security domains. EDG
mainly deals with scientific applications which are typically long-running
in nature. However users can submit jobs from different domains as well
as geographical locations. Hence the security policies and mechanisms
should be able to span multiple organizations and able to utilize services
which are compatible with the grid at different levels. As in any other se-
curity system the different components include authentication, delegation,
authorization, and credential management systems.

12.1.1 Authentication and Delegation

The authentication and delegation framework is based on the Grid Security
Infrastructure (GSI). Please refer to Chap. 4 for more details. The default
authentication mechanism in GSI is based on X.509 certificates, hence
there is a need of a Certification Authority (CA). Instead of having a single
CA which may result in a single point of failure in EDG it was decided
that each participating country would have its own CA.

To prove its identity the user obtains a certificate from a CA and all
the participants trust a user based on the issued certificate. As in GSI, the
delegation in EDG is handled through proxy certificates. The user can is-
sue the proxy certificate to some other delegated entity which can act on
users behalf. For example there is a need of some agent to copy a file or
run an application as the user. Since the resources are distributed, it may be
unnecessary to authenticate the user every time. In this type of case delega-
tion becomes important as the agent can do the activity as a user and

272 12 Putting it All Together

credentials are delegated to the agent by copying the proxy certificate and
transferred over a secured channel (SSL channel).

The secured channel prevents malicious adversaries from eavesdrop-
ping into the channel. It is to be noted that the proxy certificates are gener-
ally short lived, i.e. they expire after a limited amount of time. Therefore
even if the certificate is stolen the adversary has limited time to orches-
trate the attack using the compromised certificate. The authorization in
EDG is provided by Virtual Organization Membership Service (VOMS),
which is a central database of members constituting the Virtual Organiza-
tion. More details about VOMS is provided in Chap. 5. VOMS uses a role-
based mechanism for authorization. The VOMS database is managed by an
authenticator and authorized administrator who is responsible for manag-
ing roles and responsibilities for different roles. An authenticated user can
request group membership and capabilities which is provided by the
VOMS service through a short lived Attribute Certificate (AC). This AC is
presented by the user to the grid resources.

12.1.2 Credential Management

Another important component of the EDG security system is the MyProxy
credential manager (for details see Chap. 9). The users store their long time
credentials in the MyProxy system. Generally these credentials are valid
for a few weeks to a month. The MyProxy server restricts the access of the
proxy to a very select set of clients. One of the services that can access the
proxy is the credential renewal service. The importance of this service lies
in the fact that the jobs may actually take a longer time than what is speci-
fied in the proxy certificates. The credential renewal service periodically
contacts the MyProxy server to ensure that a new proxy has been issued
before the expiry of the old one. It is to be noted that the credential renewal
service may need to contact the VOMS server in case the proxy certificate
contains the VOMS specific information.

12.1.3 Job Execution

Now let us take a look at how a job is submitted to a grid resource (refer to
Fig. 12.1).

submit the proxy certificate which the user had previously issued. The user

12.1 Security in the European Data Grid (EDG) 273

Fig. 12.1. Job execution overview in EDG

In the first step the user gets a certificate from a CA. The user then
contacts the VOMS server to obtain the attribute certificate based on the
user credential. It is to be noted that there may be multiple VOMS servers
and the user needs to get the attribute certificates from each of them
to be able to submit jobs to the resources which accept a specific
VOMS credential. The user may then decide to store the long term creden-
tial in MyProxy credential manager. A proxy certificate can also be gener-
ated which can be delegated to a specific agent directly or with the help of
a scheduler. In addition to the global authorization credentials supplied by
the VOMS server a site may have local policies to be applied on top of the
user specific authorizations. For example, a site may decide to ban or sus-
pend a user or a group of users based on some policies. It may not be scal-
able to send the entire request to the VOMS server to handle all this site
specific policies. The VOMS may have actually issued the certificate and
may result in more complexities. To handle local authorization EDG has a
Local Central Authorization Service (LCAS). The concept of LCAS is that
different authorization modules may be incorporated to provide additional
flexibility. LCAS is able to make authorization decision based on request
resources the identity of the requestor the VOMS credential and the proxy

274 12 Putting it All Together

certificate. Once the access control or local authorization decision has been
made the grid credentials need to be mapped to the local fabric or unique
operating system through a Local Credential MAPping Service
(LCMAPS). In addition to these different components there is also a Job
Repository (JR) which maintains a record of the credential information as-
sociated with all jobs running inside the operating system. Now as men-
tioned earlier the job submitted to the local site may be queued which may
result in a large latency for the job. Here the credential renewal service
plays its part. It contacts the MyProxy credential manager with the renewal
request and the old proxy certificate. It may also contact the VOMS ser-
vice with a certificate to obtain attribute credentials. It then supplies the
credential and the new proxy certificate to the job manager in the local
centre. This takes care of the expedition of the proxy certificate.

12.2 An Enterprise Case Study

In this section, we will look at a typical example of an enterprise grid
computing system. The enterprise we are looking at here is a financial ser-
vices company having offices in US, Europe, and India. Before the integra-
tion of grid, the IT infrastructure looked as follows:

• There were different clusters across the globe. The clusters were
provisioned at their peak usage and hence grossly under utilized.

• The enterprise had spent considerable effort in consolidating the
user identities through Windows Active Directory . However,
users in different clusters were using multiple user accounts.

• The workload in the clusters was mainly composed of highly com-
pute intensive jobs like the credit analysis type of job and the long
running batch kind of applications. Since most of the batch jobs
were running at night resource sharing across geography was con-
sidered a very effective mechanism of increasing resource utiliza-
tion. Hence, grid was the obvious choice.

• In addition to in-house users, the enterprise allowed external users
to run jobs on the statistical models. Though the usage and work-
load of external jobs were significantly less than in-house jobs,
separate clusters were used to cater to those, mainly for security
purposes.

The requirements that the enterprise had in moving towards a grid-

based system are as follows:

12.2 An Enterprise Case Study 275

• A centralized identity management system that tracks the users
submitting jobs to different clusters. It should be combined with
the centralized monitoring mechanism which would be able to
track usage per department and groups. The above information
would also be used to price external users.

• The enterprise would also like to use the huge pool of enterprise
desktops mainly for the batch jobs. Since the jobs would be com-
ing from different departments, the desktops need to have sand-
boxing mechanisms.

• Elaborate policy mechanisms are needed to bind the users, applica-
tions, resources, and different metrics.

• Since the enterprise had spent a significant effort towards integrat-
ing Service Oriented Architecture (SOA), all solutions should be
compatible to SOA standards.

• There are multiple grid/cluster interfaces for submission of differ-
ent applications. There should be a single sign on and authentica-
tion mechanism for all the different interfaces.

12.2.1 Overview of the Security Architecture

Figure 12.2 shows the high level architecture of the grid security solution
for the enterprise. The main components of the architecture include: au-
thentication system, perimeter defense system, authentication and authori-
zation system, monitoring system, intrusion detection system, SLA man-
ager, local access controller, and host data protection system.

Perimeter Defense

Perimeter defense is provided by controlling the incoming traffic through
XML firewalls. The Web services compliant request necessitates XML
firewall based requirements. The system is able to parse the XML and
SOAP messages and makes sure that the XML is in order and no XML
based attacks are possible. At this point, different policies are checked be-
fore finally allowing the job to enter the grid system. Policies can vary
from the location and port of the acceptable request to the type of accept-
able applications, the credentials attached and so on.

Authentication System

As mentioned earlier, one of the requirements of the system was the inter-
operability of the security mechanisms with all the existing interfaces of

276 12 Putting it All Together

the enterprise. A design of the system is based on a centralized authentica-
tion system which validates the user credential and sends an authentication
token back to the grid entry point. The grid entry point can be any interface
which redirects the request to the centralized authentication system. The
authentication token is signed by the authentication system and hence can
be verified at any point. The authentication system currently supports
password and X.509 tokens. It is to be noted that there are several other au-
thentication systems which are still active for partners and departments
who authenticate the user themselves. To cater to those types of job re-
quests, SAML is used as an authentication token. The external interfaces
submit the authentication token along with the jobs, which is revalidated
by the grid authentication system.

Authorization System

The authentication token generated by the grid authentication system is
passed on to the authorization system for generating the authorization to-
kens. The first point of contact with the authorization system is the Policy
Decision Point (PDP). The PDP sends the authentication token to the cen-
tralized authorization system. The authorization decision is based on the
policy information stored in the policy database. The authorization system
verifies the authentication token and then consults the policy database and
creates a SAML token based on the policies. The token contains informa-
tion which binds the resources with the roles and the applications that run
on these resources. For example, a policy statement can state that role R is
entitled to run jobs on machines X, Y, and Z. Similarly, policy information
can also state that: application A has x number of licenses, or application B
is only installed on machines X1, Y1, and Z1, and so on. Another impor-
tant component of the authorization system is the identity manager which
contacts the centralized identity directory to get the identity information.
The policy database is updated manually by an administrator as well as
through an identity manager service.

Monitoring and Logging

Another important component of the security architecture is the monitoring
and logging system. Each node in the grid infrastructure has a monitoring
agent which reports the information about the grid node. The monitoring
system is very similar to Ganglia (discussed in Chap. 11). Information sent
by the agents are CPU utilization, memory, current status of the jobs, SLA
status of the jobs, etc. The information obtained by the agents is mostly
transient in nature. A hierarchical architecture is provided for a scalable

12.2 An Enterprise Case Study 277

three different purposes. Firstly, the information is placed in a Monitoring
Database (MDB) which are used for auditing purposes. An extensive inter-
face is provided for querying the information stored in the MDB. Sec-
ondly, the information is used for better scheduling as the run time infor-
mation can be used to restrict the scope of the scheduler. Finally, the
information is sent to the SLA manager for managing SLAs. The informa-
tion is also used by the Intrusion Detection system for predicting malicious
activities in the system.

Intrusion Detection System

Since a shared grid is used to cater to both internal and external job traffic
a preliminary form of Intrusion Detection System (IDS) became necessary.
The system is based on anomaly detection and detects the anomalous pat-
terns in the system for raising alarms by looking at the information pro-
vided in MDB. If a job runs for significant amount of time, it is a cause of
concern. Similarly, if the CPU utilization is extremely skewed ranging be-
tween 90%-100%, then an alarm is raised. The system behavior is learned
by taking into account the different parameters over a period of time.

SLA and Trust Manager

Another interesting component in the security architecture is the SLA
manager which creates a contract for all jobs through a WS-SLA. Based on
the information obtained from the monitoring agents decision is made
whether to transfer the job to some other node in case of SLA violation.
Each node also has a trust rating associated with it. In the current imple-
mentation, the trust metric is a simple average based on the number of
times the SLAs are met which is normalized to 1. Once a node fails to
honor its SLA, its trust rating is downgraded. During scheduling of jobs,
the trust rating of a node is taken into account. The dynamic trust informa-
tion of a node is put in a trust table which is part of the MDB.

Local Access Controller and Host Data Protection

The centralized policy database stores long-term policy decisions. How-
ever, different clusters in different departments may have local policies.
The local access controller denies suspended users the access to the grid
resources. Some other access control policies can also be implemented in
the local system. The data protection within a host is provided using the
virtualization system which creates multiple Virtual Machines (VM)

retrieval and access of monitoring information. The information is used for

278 12 Putting it All Together

within a single physical machine. The local access controller also interacts
with the Virtual Machine scheduler which submits the jobs to the virtual
machines within a grid node. Xen (discussed in Chap. 7) is used to create
the virtual machines within a grid node. Creating of VMs has three-
pronged advantages. Firstly, the data protection can be provided through
isolation. Secondly, the SLAs can be guaranteed in a more stringent man-
ner as CPU and memory can be allocated precisely for a particular applica-
tion. Finally, VMs provide a better utilization of resources.

Fig. 12.2. Overview of the security architecture

12.3 Chapter Summary

In this chapter, we have looked at two interesting case studies which inte-
grate the different concepts discussed as course of the book. The first case
study is from the European Data Grid (EDG) where GSI is used as infor-
mation security architecture and VOMS is used for authorization purposes.
The main problem handled in this case study is authenticating and author-
izing huge number of users of the EDG system. The second case study
is that of a financial services firm, where the security problem lies in

12.3 Chapter Summary 279

raphy, identity management, and SOA. The chapter explains the case study
in detail.

In the next chapter, we will conclude the book by providing a few

new technologies which could be useful in the long-term and mapping the
different issues into immediate, medium-term, and long-term categories.

integrating security standards across different clusters spread across the geog-

13 Conclusion

13.1 Looking at the Future

In this section we will look at some of the technologies that may have an
impact on the grid security landscape in the future. One of the technologies
that we will be looking at is Identity Based Encryption (IBE) which is a
new cryptographic technique where encryption can be done using any
known string associated with the receiver. We will also be looking at ap-
plication oriented networking which is an exciting future technology.

13.1.1 Identity Based Encryption (IBE)

One of the most interesting advancements in the field of cryptography
came from Dan Boneh and Matthew Franklin from Stanford [261], pub-
lished in 2001 – it is called Identity Based Encryption (IBE). IBE is the so-
lution to the problem floated by Shamir in 1984 [262]. The problem is as
follows: Based on a set of global system parameters and a fixed master
key, the problem is to generate a set of private keys corresponding to any
set of public keys. The public keys would be used to encrypt messages
which can only be decrypted by the corresponding private key. Let us take
an example to understand the problem better. Alice wants to send a mes-
sage to Bob using Bob’s email address bob@nobody.com. Let G be the set
of global parameters known to everybody including Alice and M be the se-
cret master key. Let P be the private key corresponding to the string
bob@nobody.com. It is to be noted that different private keys can be gen-
erated corresponding to different strings. Once the private key is generated
the message can be encrypted by the string and decrypted using P. This
problem was solved by Boneh and Franklin based on the bilinear maps be-
tween groups. They showed that Weil pairing on elliptic curves is an ex-
ample of such a map and implemented the system based on the pairing.
The authors have proved that the system thus implemented has very strong

282 13 Conclusion

security properties. The inventors had also floated a company called Volt-
age Systems ®[263] which implements the IBE based solution.

At this juncture, the readers may question the usefulness of such a
scheme. One of the main advantages of the IBE scheme is that it frees the
sender from having to obtain the public key of the receiver. In the case of
IBE, the sender can encrypt with any string that can be associated with the
receiver. For example, the email address or IP address can be a string that
anyone can associate with the receiver and hence there is no need to obtain
or store the public key of the receiver. This becomes important in a band-
width constrained environment where getting public keys through certifi-
cates may result in a lot of bandwidth wastage. The authors have presented
several situations where such a scheme can be very useful:

• Public Key Revocation: Public key certificates contain a preset
expiration date. In an IBE system key expiration can be done by
having Alice encrypt message sent to Bob using the public key:
“bob@nobody.com||current-year.” In doing so Bob can use his
private key during the current year only. Once a year Bob needs to
obtain a new private key from the trusted private key generator.

• User Credential Management: IBE system can also be used to
generate user credentials. Alice encrypts the message with the fol-
lowing string: “bob@nobody.com||current-year||clearance.” Bob
would be only able to decrypt the message if he has the correct
clearance i.e., private key for that string.

The IBE system described above can be very useful to a grid infra-

structure in a constrained environment where security is required. An ex-
ample of such a system would be a sensor grid. Using an IBE system,
managing credentials and public keys would be possible in a much less ex-
pensive manner. However, it is to be noted that such a system is still in re-
search and not being deployed yet. Another critical point about such an in-
frastructure would be storage of the master key as the security of the whole
system hinges on that. In case the master key is compromised all the pri-
vate keys need to be re-generated.

13.1.2 Application Oriented Networking (AON)

Another important technology that is gaining momentum is called Applica-
tion Oriented Networking (AON). Traditional networking systems route
packets to destinations solely by looking at the packet headers of incoming

13.2 Summarizing the Security Issues in Grid 283

traffic. Application artifacts, integration applications or SOA, are wholly
software based and have redundant usage of XML based operations and
routing. Therefore, moving a lot of these operations over to the network
layer may result in more flexibility by allowing disparate applications to
communicate, better consistency in applying uniform security policies, bet-
ter visibility and monitoring of information flow across the network, and
better application optimization as redundancy of XML operations can be
reduced with better load balancing capabilities. Application Oriented Net-
working (AON) is a step forward towards achieving that vision.

AON enabled devices have the capability to look into the packets and

understand the contents before forwarding it to the next router or network-
ing device. AON can not only route based on XML messages but it also
has the capability to verify XML data integrity. It also offers message level
security such as digital signatures, encryption, etc. to make the transfer
over the network more secure and reliable. Most of the AON products and
devices integrate over the existing routers and switches to provide the extra
application level services. In terms of security, AON devices can interact
with Web Services standards like WS-Security and other existing stan-
dards like Kerberos, OpenLDAP, etc.

One of the most important challenges in grid systems is the heteroge-

neity present in the infrastructure and ways to handle such heterogeneity.
AON provides a mechanism to handle such heterogeneity in the network-
ing infrastructure itself. Therefore, AON provides the grid with another op-
tion in integration that may reduce the redundancy at several levels and
hence result in increased efficiency. AON products from Cisco® [264], Data-
Power® [265], etc. are already out in the market. Extensive studies are
needed about how these products and solutions can be used in the overall
secure grid infrastructure.

13.2 Summarizing the Security Issues in Grid

In the different chapters of this book, we have looked at security issues at
different levels of grid computing stack. This section is our attempt to
categorize issues in terms of immediate, medium-term, and long-term. As
the name suggests, immediate issues require immediate attention and solu-
tion, probably within the next twelve months, medium-term issues need so-
lutions in a 1-3 year timeframe, while long-term issues eventually need to
be solved, probably in the next five years.

284 13 Conclusion

13.2.1 Immediate Issues

Let us now look at the current enterprise scenario to understand the secu-
rity needs. Enterprises are looking at grids mostly from the resource shar-
ing point of view. As illustrated in the case study in Chap. 12, most of the
enterprises requiring compute intensive jobs have invested heavily on clus-
ters. Most of these clusters are either managed by proprietary cluster man-
agers like LSF Multicluster, PBSPro, Data Synapse ® GridServer, or even
open source systems like Condor. When the issue of resource sharing
comes, the enterprise either moves completely to a proprietary solution
like LSF Multicluster or Data Synapse or comes up with some adhoc way
of integrating the different components. Rarely does one find the usage of
the Globus toolkit for this purpose, mainly because of the enterprises’ re-
luctance to go with open-source software which nobody is using. We do
however find some pilots undertaken in this direction. With Univa® taking
up the role of evangelizing, marketing, and developing Globus based solu-
tions, in the near future we do expect to see more Globus based enterprise
level grid solutions. However, these do not figure in the immediate con-
cerns for enterprises. For enterprises, integration with disparate systems,
identity management, authorization, and basic authentication are the im-
mediate concern areas.

Integration

Perhaps the most important issue that the enterprises are grappling is that
of integration. Grid system should work with the other components of the
enterprise. There may be need to integrate with Kerberos based system in
the enterprise or with the enterprise specific policies. Many of the already
available components can be extended to provide the needed support. Ser-
vice Oriented Architecture (SOA) based approach is also needed for enter-
prise wide adoption and standardization. We feel that for immediate need,
ad-hoc solutions and customized integration may go a long way in solving
the integration issues. In the long run, a Globus like standardized approach
over SOA can be the ideal way to go forward.

Identity Management and Monitoring

Another issue closely related to the integration issue mentioned earlier is
the issue of managing identities in the grid system. Many of the large en-
terprises have invested on hundred of clusters across the globe. Each of the
clusters are well-managed, however there is very little management across
clusters. Therefore, we find one user possessing multiple identities in the

13.2 Summarizing the Security Issues in Grid 285

different clusters. This becomes a nightmare in monitoring and tracking
the usage of users or departments, as redundancy of information is available
resulting in complexity in collating the information. Added to this is the
fact that most of the enterprises possess some kind of user directory like
Active Directory or LDAP where the identities of the users of the enter-
prise are stored. Therefore, there is a need for integration of the enterprise
user identities with the enterprise wide identity management systems.
Many of the proprietary systems like LSF Multi-cluster already allow this
type of integration. Regarding monitoring, most of the enterprises either
have open source systems like Ganglia, Hawkeye, or other proprietary sys-
tems. Therefore, there is a need for integration of the identity management
systems with the monitoring systems for department-wise and user-wise
reporting. In the long-term, many organizations are also looking at Liberty
framework for identity management and integration.

Authentication and Authorization

Some amount of authentication of users and policy based authorization is
needed for an effective management of the grid system. Most of the grid-
based implementation uses simple authentication like password based au-
thentication or no authentication at all as most of the grid systems are con-
sidered to be safe as they are within the organization premises. However, a
solution which integrates the enterprise authentication system like the Ker-
beros and the grid systems would be useful. A WS-Security based solution

Authorization is another important area where efforts need to be car-

ried out to provide an enterprise wide solution. Most enterprises have very
complex business policies and structure which need to be taken care before
execution of jobs. At present, most of the enterprises are developing secu-
rity and business policy as layers above the scheduler so that jobs which
qualify after being subjected to verification and validation are only submit-
ted to the scheduler for execution. This is necessitated by the fact that most
of the policy managers are inadequate in addressing the needs of the enter-
prises.

13.2.2 Medium-term Issues

Let us now look at the medium-term issues in grid security which would
impact the security landscape of the enterprises in the 1-3 year timeframe.

would be greatly appreciated by the enterprise community, though rarely
undertaken due to the scale and cost involved.

286 13 Conclusion

One of the steps that enterprises are going to take in this time-frame is to
incorporate the different hosts in the grid infrastructure. Hence the issue of
host-level security would become very important in that case. Probably,
towards the end of this three year period, one may see the adoption of grid
standards and Globus becoming more and more commonplace as an enter-
prise level grid solution. Furthermore, architecture level issues discussed in
Chap. 4 would become more intense and important. Management of cre-
dentials would become more important as more and more applications
would be using grid as the computing infrastructure. Some aspects of net-
working like firewalls, VPNs, etc. would also gain prominence as the users
would be using other networks to use the grid infrastructure.

Host Level Security

Many enterprises are looking at including desktops into the grid infrastruc-
ture. The integration results in two types of concerns: Firstly, the data and
applications in the hosts need to be protected resulting in the need for some
type of sandboxing for the grid jobs on the host. The second concern is re-
garding the development of better security policy manager to handle the
complexity. Most of the sandboxing solutions implemented by the enter-
prises are those provided by grid middleware systems like GridMP from
United Devices . However , severa l enterprise s hav e started experimenting
with proprietary virtualization solutions like VMWare®. However, the cur-
rent trend suggests that many enterprises would be willing to experiment
with open-source Xen as a virtualization solution which would also pro-
vide them with sandboxing options. Please refer to Chap. 7 for details of
the different sandboxing solutions available.

Credential Management

In the medium term, the importance of credential management systems
also would be growing. The main reason for that is the projected growth of

need for storage for different types of credentials, transporting them, re-
generating them, and integrating them with the existing identity manage-
ment systems.

Networks

With the growth of grid-based infrastructure in the enterprises, there would
be need for incorporating the basic networking infrastructure like firewalls
and VPNs with the grid infrastructure. As mentioned in Chap. 8, there are

®

grid based applications and usage in the enterprises. There would be a

13.2 Summarizing the Security Issues in Grid 287

a plethora of issues that need to be solved before grid systems can easily
inter-operate with these networking technologies. With the growth of inter-
connect technologies, enterprises would also be looking at secure transfer
at high rate towards the end of the three year time period. This would find
adoption in the enterprises given the research in this area could produce so-
lutions that can be deployed and used. The other networking issues like
multicasting, sensors, etc. can only be viewed as long-term and futuristic
issues.

13.2.3 Long-term Issues

Let us now look at the long-term issues in grid computing security, the is-
sues affecting the enterprises probably in the three-five year time period.
During this time, we would probably see multi-enterprise level grid sys-
tems, where different enterprises come together to form a single grid.

Service Security

The long term vision of grid security should capture the issues pertaining
to managing the service level issues like preventing denial-of-service and
prevention of QoS violation. Research is active in these areas and based on
the result of the research, enterprises would be adopting them as part of the
grid infrastructure.

Trust Management

In a controlled grid environment, trust can be managed using static con-
figurations. However, with the growth of flexible grid systems, the need
for managing trust would become more and more important. Please refer to
the several trust systems described in Chap. 10. However, those systems
would not be deployed in the enterprises until towards the end of the five
year time period. More research also needs to be carried out for managing
trust across disparate systems.

Moreover, during that time grid hosting services would also be in great
demand. Given this vision, service level security would gain tremendous
importance at that time. Denial-of-service and QoS attack prevention can
take precedence over other types of solutions during that time. Multi-enterprise
grids also would require a trust management system in place. Grid
multicasting and sensor grid security would not be important until towards
the end of the five year timeframe.

288 13 Conclusion

Multicast and Sensors

Multicast provide optimized use of bandwidths, and enterprises would be
deploying them in a few years time as they are finding the transfer of data
as one of the biggest bottlenecks facing the enterprise grid systems. In the
case of selected broadcast, multicast technologies can provide a better
bandwidth usage and hence higher throughput. However, multicast secu-
rity may not be an immediate concern for the enterprises mainly because of
the complexity involved. Sensor network based grid systems would also
see some deployment in the next four to five years. However, security may
not be the primary concerns there also because of the complexity involved
in security the tiny sensor devices. Both these areas have a vibrant research
community and positive outputs from research would surely see deploy-
ment towards the end of the five year time frame. The above discussion is
summarized in Fig. 13.1.

Fig. 13.1. Time frame of different security issues

13.3 Summarizing the Security Solutions in the Grid 289

13.3 Summarizing the Security Solutions in the Grid

In this section, we will try to analyze the solutions and map them to one of
the three security issues mentioned above. We will also try to analyze the
gaps existing which need to be addressed.

13.3.1 Solutions to Immediate Issues

As mentioned earlier, the immediate issues are the integration issues, iden-
tity management issues, authentication, monitoring, and authorization is-
sues. Integration is not a single issue, it spreads itself to all the different
aspects of the grid system. Mostly, the solution to integration problem is
handled in a on-to-one basis and in an ad hoc manner. For example, if
there is a need for integrating the identity management solution of the en-
terprise with the grid middleware it is done by building a layer on top of
the middleware to handle the problem. Therefore there is a need for enter-
prise-wide standards based approach to integrate the grid specific solutions
with the enterprise products and mechanisms. For identity management,
authentication, monitoring, and authorization, stand-alone solutions exist.
Therefore, integration with the grid specific requirements is the need of the
hour. For example, identity management in enterprises are carried out us-
ing standard products which currently do not integrate with grid systems,
therefore a gap exists. Similarly, GSI is an extensive solution, however
cannot be employed directly in enterprises due to the inter-operability is-
sues. Therefore a standards based approach is needed. Adoption of WS-
Security is a step in the right direction. Similarly, several monitoring tools,
techniques, and protocols exist which monitor different elements of the in-
frastructure. For example, SNMP is a standard protocol for network moni-
toring, Ganglia and Hawkeye are extremely powerful tools to measure
cluster performance. Therefore, integration of the grid specific monitoring
tools like MDS, R-GMA needs to be integrated with the system and cluster
specific tools. It is to be noted that integrations have been achieved to
solve specific problems. However, there is lack of a holistic integration so-
lution available in system and cluster monitoring. A standardized approach
is needed in this area. Similar observations can also be made about au-
thorization solutions. Need for integration of resource level authorization
solutions and Virtual Organization (VO) level authorization solution is
needed. Some specific integration solutions like CAS and PERMIS have
been carried out in a controlled manner. A more integrated and holistic so-
lution is needed here. Table 13.1 summarizes the immediate issues.

290 13 Conclusion

Table 13.1. Immediate issues

Issues Solutions Comments

Integration

Integration solutions are
ad hoc and specific in na-
ture

More complete integra-
tion solution is the need
of the hour, standardized
efforts are needed

Identity Management

Identity management so-
lutions are ad hoc and
specific in nature

Need for integration of
specific identity man-
agement systems with
enterprise Identity Man-
agement systems

Authentication

Autentication using stan-
dard technologies like
Public key Cryptography,
GSI is an example

Most of the authentica-
tion solutions are avail-
able, GSI needs to be in-
tegrated with existing
technologies and stan-
dards

System Based like Orca
Cluster based like Gan-
glia

Monitoring Grid based like R-GMA,
MDS

Grid based systems
should be able to work
with different system
based and Cluster based
monitoring systems

VO Level

Authorization
Resource Level

Integration is again an
important issue here.
Need for integration of
VO level and Resource
level authorization solu-
tions.

13.3.2 Solutions to Medium Term Issues

Next we will discuss the solutions to the medium term issues. Integration
of grid solutions with VPNs and firewalls, credential management, and so-
lutions to the host level issues are discussed here. Currently, all VPNs and
firewalls need to be statically and manually configured. Extensive research
is needed to integrate the existing VPNs and firewall techniques. Creden-
tial management is another issue that will become critically important in
medium term. Several standalone solutions like MyProxy exist mainly as
repositories for credentials. The Liberty Alliance type solution which

13.3 Summarizing the Security Solutions in the Grid 291

the credential repository systems. More prototypes and research efforts are
needed in this direction. Host level issues also are becoming critical for en-
terprise grids. Virtualization solutions provide good and powerful solutions
to this problem. Research is needed to evaluate the performance of the dif-
ferent isolation solutions with respect to the application and infrastructure
patterns. Table 13.2 summarizes the medium term issues.

Table 13.2. Medium term issues

Issues Solutions Comments

VPN Firewalls

Integration with Grid
platforms is either man-
ual or fixed.

Research is needed for
providing automated and
flexible management of
VPNs and Firewalls

Credential Repositories
like MyProxy, Smart
Cards

Credential Management Credential Federation
Systems like Liberty Al-
liance, Shibboleth

Integration is needed for
Credential Repositories

with Federation Systems.

Application Level Sand-
boxing (Proof Carrying
Code)
Virtualization
Flexible Kernels

Host Level – Data Pro-
tection

Sandboxing

Virtualization is a scal-
able and powerful solu-
tion. More research is
needed for policy inte-
gration with different vir-
tualization and sandbox-
ing solutions.

Resource Reservation Host Level – Job Starva-

tion Priority Reduction

Resource reservation
support is needed for
most middlewares

13.3.3 Solutions to Long Term Issues

Long term issues include service security, trust management, and network-
ing issues like multicasting and sensor grids. All these issues are research
intensive and require extensive research and development efforts. The is-
sues will only become important in the long term and hence there is some
time for research efforts to materialize. The solutions to service level is-
sues can be categorized into preventive, reactive, and QoS solutions. Most
of these solutions can be inherited from the Networking and OS domain.

integrates different credential types and systems can be used to integrate with

292 13 Conclusion

Currently, most trust management solutions are policy-based. Reputation-
based solutions have huge potential. Therefore, active research is needed to
develop more reputation-based solutions and integrate them with the pol-
icy-based ones. Multicasting and sensor networks are nascent areas and ac-
tive research is currently underway. Table 13.3 summarizes the long term
issues.

Table 13.3. Long term issues

Issues Solutions Comments
Preventive DoS Solutions
Reactive DoS Solutions

Service Security QoS Solutions

More research is needed
for developing the differ-
ent service level solu-
tions

Reputation based

Trust Management Policy based

Most of the implemented
trust management solu-
tions are policy based.
Extensive research is
needed for developing ef-
fective Reputation based
solutions

Multicast solutions like
Tree based Key Man-
agement

Secure Multicasting &
Sensor Grids Sensor Solutions like

SPINS and TinySec

Both the areas require ex-
tensive research before
deployed as security so-
lutions. In Multicasting,
key distribution and
management is a very
important issue. In case
of sensor networks, man-
aging collusion and Sybil
attacks is an important
area of research.

Appendix

A.1 Web Services

Before going into the details about Web services one small story comes to
my mind. At that time I was in United States doing my graduate studies
and my passport had expired. I knew the process of passport renewal in In-
dia. However, being in a foreign country I had no idea about how complex
the process was. Since I had no other choice, I went to the Indian consulate
Web site, saw the instructions and was relieved to find that it was possible
to renew my passport from the United States. I got a list of consulates from
the Web site and selected Chicago as it was the nearest to Iowa State Uni-
versity where I was doing my graduate studies. From there I could under-
stand the steps or protocols involved in getting my passport renewed. I fol-
lowed the steps and got a new passport. At this point, the readers may
wonder about the significance of this story. With the advent of the Internet,
this is exactly what people do now-a-days. However, could anyone imag-
ine what I would have done if the language of the Web site had been any-
thing other than English, or I could not find the list of consulates, or I
could not understand the steps mentioned in the web site? Therefore, to ob-
tain any service, the service should be based on four basic principles: Un-
derstandable language, a directory which lists the service locations, a de-
scription of the service, and an understandable protocol. When we go back
and analyze my actions during my passport renewal, it is quite clear that
the consulate did follow these principles and resulted in my being satisfied
with the service that I received. When we subsequently look at Web ser-
vices, we find that it has these four principles embedded in it. These prin-
ciples, in my opinion, result in making Web services simple and intuitive
which helped in its popularity.

294 Appendix

A.1.1 Components of Web Services

The last couple of decades has seen numerous implementations of distrib-
uted computing like CORBA [266], Java RMI [267], DCOM [268], etc.
None of these systems were taken up in a big way by the industries mainly
because of their tightly coupled nature. Current trends in the application
space suggest that enterprises are moving away from monolithic tightly
coupled systems towards loosely coupled dynamically bound components.
With the growth of the Internet as a premier means of communication, a
new paradigm called Web services [269] emerged. Web services can be
thought of as reusable, loosely coupled software components which are
deployed over the network or specifically the World Wide Web. There are
some advantages which the experts claim as the major reasons for the
adoption of Web services as a de facto standard for application integration.
These are:

1. Simplicity: Implementation of Web services is very simple

from the point of view of programmers and as a result easy and
fast deployments are possible. All the underlying technologies
and protocols are based on the Extended Markup Language

2. Loosely Coupled: Since the very design of Web services is

based on loose coupling of its different components, they can be
deployed on demand.

3. Platform Independent: The Web services architecture is plat-
form and language independent since they are based on XML
technologies. Therefore, one can write a client in C++ running
on Windows, while the Web service is written in Java running
on Linux.

4. Transparent: Since most of the deployed Web services use
HTTP [271] for transmitting messages, they are transparent to
the firewalls which generally allow HTTP to pass through. This
may not always be the case for CORBA, RMI etc.

According to many experts, CORBA and RMI provide a much better

alternative to Web services because of the flexibility and features that
CORBA provide. Moreover, performance wise the CORBA RMI combina-
tion may be better than protocol designed over HTTP. However, because
of its simplicity and backing of the big commercial vendors Web services
are steadily becoming a standard which none can ignore. There are many
forums where debates are being pursued as we move on to the different

(XML) [270] which is simple and intuitive.

A.1 Web Services 295

components which constitute the Web services. There are three main com-
ponents of Web services:

• SOAP: The Simple Object Access Protocol (SOAP) [272] is a

lightweight protocol for exchange of information between di-
verse and distributed computing environments. It combines the
extensibility and portability of XML with the ubiquitous Web
technology of HTTP. It provides a framework for defining how
an XML message is structured using rich semantics for indicat-
ing encoding style, array structure, and data types.

• WSDL: The Web Service Description Language (WSDL) [273]
can be used to describe a Web service, providing a standard in-
terface. A WSDL document is written in XML and describes a
service as a set of endpoints, each consisting of a collection of
operations. XML input and output messages are defined for
each operation and their structure and data types are described
using an XML schema in the WSDL document. The WDSL and
XML schema provide a complete definition for the service in-
terface, allowing programmatic access to the Web service, in the
manner of an API. Tasks like data requests or code execution
can be performed by sending or receiving XML messages using,
for example, SOAP.

• UDDI: The Universal Description, Discovery and Integration
(UDDI) [274] specification defines a way to publish and dis-
cover information about Web services. It is collaboration be-
tween Ariba®, IBM®, and Microsoft® to speed inter-operability
and adoption of Web services. The project includes a business
registry (an XML document) and a set of operations on it. The
registry can be used by programs to find and get information
about Web services and check compatibility with them, based
on their descriptions. UDDI allows categorization of Web ser-
vices so that they can be located and discovered and WSDL en-
ables a programmatic interface to a service once it has been lo-
cated.

Let us now look at how the different technologies and protocols
which constitute the Web services through a simple example.

1. As mentioned before, a client may have no knowledge of what
Web service it is going to invoke. So, the first step will be to find a
Web service that meets the client’s requirements. For example, the

296 Appendix

client may be interested in finding the list of Indian consulates in
the United States. The client will do this by contacting a UDDI
registry.

2. The UDDI registry will reply, telling the client the location of
servers which provide the information about the Indian consulates
in United States.

3. The client now knows the location of a Web service, but it has no
information about how to actually invoke it. It knows that the Web
service inputs the name of the US state and returns the nearest
Indian consulate. The client does not know the input types and
other information about the service that the Web service is going
to provide.

4. The Web service replies in a language called WSDL which allows
the client to programmatically invoke the Web service.

5. The client now knows where the Web service is located and how
to invoke it. The invocation itself is done in a language called
SOAP and mentioned earlier, which is built on top of HTTP.
Therefore, the client will first send a SOAP request asking for the
nearest consulate to a certain US state.

6. The Web service will reply with a SOAP response which includes
the name of the city where the consulate is located, or maybe an
error message if the SOAP request was incorrect.

A.2 Web Services Security

Security is important in any distributed systems. However, in Web services
security attains enormous proportions because of the following reasons:

1. The boundary of interaction between communicating partners is
expected to expand from intranets to the Internet. For example,
businesses increasingly expect to perform some transactions over
the Internet with their trading partners using Web services. Obvi-
ously, from a security perspective, Internet communication is
much less protected than intranet communication.

2. Communicating partners are more likely to interact with each
other without establishing a business or human relationship first.

A.2 Web Services Security 297

This means that all security requirements such as authentication,
access control, nonrepudiation, data integrity, and privacy must be
addressed by the underlying security technology.

3. More and more interactions are expected to occur from programs
to programs rather than from humans to programs. Therefore, the
interaction between communicating partners using Web services is
anticipated to be more dynamic and instantaneous.

4. Finally, as more and more business functions are exposed as Web
services, the sheer number of participants in a Web services envi-
ronment will be larger than what we have seen in other environ-
ments.

Secure Socket Layer (SSL) or Transport Layer Security (TLS), de-
scribed in Chap. 2, has become a standard in transport layer security. What
is the necessity for developing a new set of security standards rather than
use SSL as transport layer security? There are a few reasons which limit
the development of Web services on SSL alone. They are:

1. SSL is designed to provide point-to-point security, which falls
short for Web services because one needs end-to-end security,
where multiple intermediary nodes could exist between the two
endpoints. In a typical Web services environment XML-based
business documents route through multiple intermediary nodes. In
such a scenario, it proves difficult for those intermediary nodes to
participate in security operations in an integrated fashion. There-
fore, actions such as authorization, nonrepudiation, auditing, etc.
are difficult in such a scenario.

2. SSL secures communication at transport level rather than at mes-
sage level. As a result, messages are protected only while in transit
on the wire and unprotected at the end points. For example, sensi-
tive data on the hard disk drive of a HTTPs end point is not gener-
ally protected unless there exists specific mechanisms to protect
the data

3. SSL or HTTPs in its current form does not support non repudiation
well which is critical for many business transactions. Non repudia-
tion means that a communicating partner can prove that the other
party has performed a particular transaction. For example, if an
online trading company A received a stock transaction order from
one of its clients and performed the transaction on behalf of that

298 Appendix

client, A would want to ensure that it can prove the completion of
the transaction to an arbitration committee if a dispute arises.
There is a need some level of nonrepudiation for Web services-
based transactions.

4. Finally, SSL does not provide element-wise signing and encryp-
tion. For example, if one has a large purchase order XML docu-
ment, one could want to only sign or encrypt a specific element
say SSN or credit card number. However, signing or encrypting
only that element with SSL proves rather difficult. This is due to
the fact that SSL is a transport-level security scheme as opposed to
a message-level scheme and the whole content is encrypted reduc-
ing the flexibility.

Fig. A.1. Web services security architecture

In Fig. A.1, different components of Web services security are shown.
In the next section a brief primer will be provided for different security
standards like WS-Security, WS-Policy, and WS-SecureConversation. In
addition some basic information will be provided about policy languages
like Security Assertion Markup Language (SAML) and Extensible Access
Control Markup Language (XACML).

A.2 Web Services Security 299

A.2.1 WS-Security

WS-Security [275] is a set of standards that describe the security mecha-
nisms in a Web services scenario through the extensions of SOAP header
to provide message integrity and confidentiality. WS-Security is flexible
and is designed to be used as the basis for the construction of a wide vari-
ety of security models including Public Key Infrastructure (PKI), Kerbe-
ros, and SSL. Specifically WS-Security provides support for multiple secu-
rity tokens, multiple trust domains, multiple signature formats, and
multiple encryption technologies. It provides mechanisms for propagation
of security tokens, message integrity and message confidentiality. These
mechanisms by themselves do not provide a complete security solution.
Instead, WS-Security is a building block that can be used in conjunction
with other Web service extensions and higher-level application-specific
protocols to accommodate a wide variety of security models and encryp-
tion technologies.

Following are the requirements which drove the adoption of WS-
Security as a Web Services security standard:

• Multiple security tokens like username password based, X.509 cer-
tificates, Kerberos tickets, SAML assertions, and so on;

• Multiple trust domains;

• Multiple encryption technologies;

• End-to-end message-level security.

In the Fig. A.2, a WS-Security message structure is shown. It consists
of a SOAP envelope which specifies how to route the message. Then it
contains the <Security> header which contains the security information for
an intended receiver which may be the ultimate receiver or an intermedi-
ary. The header consists of a security token which is associated with the
message.

As mentioned in Fig. A.2, WS-Security allows two types of security
tokens in the message, one is a simple username and password and the
other is a binary security tokens which can be of the form of Kerberos to-
kens and X.509 certificates. Message integrity is provided by leveraging
the XML signature in conjunction with security tokens to ensure that mes-
sages are transmitted without modifications. The integrity mechanisms are
designed to support multiple signatures, potentially by multiple actors, and

300 Appendix

are extensible to support additional signature formats. Different algorithms
as specified by [276] are allowed.

Fig. A.2. WS-Security message structure

The WS-Security specification allows encryption of any combination
of body blocks, header blocks, any of these substructures, and attachments
by either a common symmetric key shared by the sender and the receiver
or a key carried in the message in an encrypted form. In order to allow this
flexibility, WS-Security leverages the XML encryption [277] specifica-
tions. When a sender or an intermediary encrypts portion(s) of a SOAP
message using XML encryption they will add a sub-element to the <Secu-
rity> header block. Furthermore, the encrypting party then should prepend
the subelement into the <Security> header block for the targeted receiver
that is expected to decrypt these encrypted portions. The subelement
should have enough information for the receiver to identify which portions
of the message are to be decrypted by the receiver. This ability of WS-
Security to provide partial encryption scores a big point over security pro-
vided at the transport level like SSL.

A.2 Web Services Security 301

A.2.2 WS-Policy*

WS-Policy* define the policy framework for Web services. These include:
WS-Policy, WS-PolicyAttachment, and Policy languages which include
WS-PolicyAssertions, and WS-SecurityPolicy.

WS-Policy

WS-Policy [278] provides a flexible and extensible grammar for express-
ing the capabilities, requirements, and general characteristics of entities in
an XML Web services based system. WS-Policy provides a generic
framework and a model for the expression of these characteristics and re-
quirements as policies. It defines a policy as a collection of policy alterna-
tives where each policy alternative is a collection of policy assertions. WS-
Policy supports different requirements and capabilities like authentication
systems, transport protocol, privacy policies, QoS characteristics, etc. WS-
Policy does not specify how policies are discovered or attached to a Web
service, which is generally done using WS-PolicyAttachment.

In the top level of the WS-Policy structure we have the policy expres-

sions identified by <Policy> which describe the combination of assertions.
Inside the policy expressions, operators are defined which describe the se-
mantics of combination of assertions. These operators can be All, Oneor-
More, and ExactlyOne, which indicate the combination of assertion al-
lowed by the Web services. In a WS-Policy structure, multiple assertions
can also be included and the operators work on the combination of these
assertions.

WS-PolicyAttachment

The WS-PolicyAttachment [279] specification defines mechanisms for as-
sociating policies with the subjects to which they apply. The policies may
be defined as part of the existing metadata about the subject or the policies
may be defined independently and associated through the external binding
to the subject. The policies defined as part of the WS-Policy with one or
more policy subjects. WS-PolicyAttachment allows associating a policy
with a policy subject through UDDI, WSDL, or through end point refer-
ences. It also allows mechanisms for signing the attachments to prevent
tampering.

302 Appendix

WS-SecurityPolicy

WS-SecurityPolicy [280] identifies the basic set of policy assertions for
security. Different features supported by it are:

• Message Integrity/Confidentiality: Senders of a message can

make use of the integrity/confidentiality mechanisms provided by
WS-Security to verify and encrypt different aspects of the message.
However, a service may require specific portions of the message to
be signed and specific algorithms and keys to be used. For exam-
ple, a service may require only the body to signed and only SHA
for signing and RSA for encryption. This can be provided using the
<Integrity> and <Confidentiality> assertions of WS-
SecurityPolicy.

• Message Replay Semantics: This provides assertions for identify-
ing the freshness of the messages within the system. This is
achieved through <wsse:MessageAge> element in WS-
SecurityPolicy, which is used to indicate the acceptable time period
after which the message can be considered “stale” and discarded. If
a policy specifies such an element, then service that is the target of
the policy requires the <Timestamp> header of the WS-Security
specification in the message, to evaluate and enforce the policy.

• Security Tokens: A Web service may require a specific type of
security token to be attached to the message. Different tokens may
be needed for different purposes. For example, a SAML authoriza-
tion token may be required for authorization information and a
Kerberos ticket for authentication purposes. The
<wsse:SecurityToken> element is used to describe what security
tokens are required and accepted by the Web service. Also it can
specify the service’s policy for associating security tokens when
sending out messages.

A.2.3 WS-SecureConversation

As we have discussed earlier, WS-Security specifies mechanisms to pro-
vide confidentiality/integrity to the messages transmitted to and from a
Web service. WS-Policy specifies the policy framework within which the
Web Service operates. However, a normal transaction may involve multi-
ple handshakes and multiple messages to be sent. Then it becomes neces-
sary to store the context and send a message identifying the context and
possibly encrypting the message based on the keys shared during the

A.2 Web Services Security 303

SecureConversation [281] specification has been developed primarily to
tackle this problem. It introduces the concept of Security Context Token
(SCT), which can be shared among the communicating parties for the life-
time of a communication session. SCT is identified by <SecurityCon-
textToken> in the WS-SecureConversation specification. The elements and
attributes of <SecurityContextToken> are:

• Identifier: This identifies the security context using an absolute
URI.

• Created/Expires: This identifies the creation time/expiration time
of the security context.

• Shared Keys: Holds the shared secrets of the security context.
• SecurityTokenReference: This references the shared secrets of

the security context.

For a secret communication, a security context needs to be created
and shared by the communicating parties before being used. The WS-
SecureConversation defines three different ways of establishing a security
context among the communicating parties.

• By a Security Token Service: The context initiator asks for a se-
curity token. For this purpose, the initiating party sends a Request-
SecurityToken request to the token service and gets the RequestSe-
curityTokenResponse back containing the new security context
token.

• By One of the Communicating Parties: Here, the initiator sends
a security context token and sends it to the other parties. This
model works if the sender is always trusted. In this case the sender
generates a token and sends an unsolicited RequestSecurityToken-
Response to the other parties containing the signed security token.

• Through Negotiation: When there is a need to negotiate a security
context among the communicating parties, then WS-
SecureConversation specification allows the exchange of messages
so that a new security context is established through the exchange
of data.

context. This is similar to what SSL does in the transport layer. WS-

304 Appendix

 Fig. A.3. SAML example scenario

A.2.4 Security Assertions Markup Language (SAML)

In the context of Web services security, it sometimes becomes important to
exchange authentication and authorization decisions. Take the example
shown in Fig. A.3. There are two Web sites where the user needs to log in.
Instead of authenticating twice, the user authenticates only to the source
Web site and logs in to the destination Web site using the reference id that
the host had provided. Therefore there is a need for a standard way of ex-
changing authentication information across different systems. Similar to
the previous case, a user may be provided with authorization credentials or
assertions which it uses to access certain resources. Secure Assertion
Markup Language (SAML) [282] provides a standard way of exchanging
authorization and authentication information across diverse platforms and
systems.

A.2 Web Services Security 305

Fig. A.4. A typical Web service authorization dialog

At the heart of SAML lie the SAML assertions. SAML assertions
make a statement about the subject which can be an individual or a service.
SAML supports three types of assertions: authentication, attribute, and au-
thorization assertions. The assertions can be digitally signed.

• Authentication Assertions: This type of assertion asserts that a

subject S was authenticated by some means M at time T. The
SAML generated by the issuer contains an identification or refer-
ence which can be used for single sign on purposes. It also contains
some conditions like the assertion cannot be used before a certain
time and after a certain time, the method by which the authentica-
tion has been carried out, and the information about the subject
who is authenticated.

• Attribute Assertions: This type of assertion asserts that a subject
S is associated with attributes A, B, C, etc. with values a, b, c, etc.
For example, a subject Alice can be associated with attribute “Uni-
versity” and value “Iowa State University.”

• Authorization Assertions: This type of assertion asserts that a
certain subject S is authorized to perform action A on a resource R

306 Appendix

given evidence E. For example, a subject Bob can have action
“Read” on resource “File Server X” if he is able to provide an au-
thorization certificate which can be used as evidence.

In Fig. A.4, a typical Web service is shown using SAML. A client

asks a SAML authorization service for credentials to access certain Web
service or resource. The client returns credentials/tokens which are used by
the client to access the Web service which requires the credentials/tokens.

Fig. A.5. XACML overview

A.2.5 eXtensible Access Control Markup Language

Extensible Access Control Markup Language (XACML) [283] provides a
policy language which allows administrators to define the access control
requirements for the enterprise resources. The language and schema sup-
port include data types, functions, and combining logic which allow com-
plex (or simple) rules to be defined. XACML also includes an access deci-
sion language used to represent the runtime request for a resource. When a
policy is located which protects a resource, functions compare attributes in

A.3 Open Grid Services Architecture (OGSA) 307

the request against attributes contained in the policy rules ultimately yield-
ing a permit or deny decision.

When a client makes a resource request upon a server, the entity

charged with access control by enforcing authorization is called the policy
enforcement point. In order to enforce policy, this entity will formalize at-
tributes describing the requester at the policy information point and dele-
gate the authorization decision to the policy decision point. Applicable
policies are located in a policy store and evaluated at the policy decision
point, which then returns the authorization decision. Using this informa-
tion, the policy enforcement point can deliver the appropriate response to
the client. The process is described in Fig. A.5.

A.3 Open Grid Services Architecture (OGSA)

The open standard as has been put forward by the GGF community is
called Open Grid Standards Architecture (OGSA). OGSA defines mecha-
nisms based on Web services for different systems to communicate and
share the heterogeneous grid resources.

Fig. A.6. Open grid standards architecture

308 Appendix

Figure 4.1 shows the high level view of the Open Grid Standards Architec-
ture. The different layers are:

• Resource Layer: At the lowest layer we have the resources which

comprise the grid infrastructure. The physical resources consist of
servers, storage devices, and interconnection networks. Above the
physical resources are the logical resources which provide addi-
tional functions by virtualizing and aggregating the resources in the
physical layer.

• Web Services: The second layer in the OGSA architecture is Web
services. All grid resources – both logical and physical – are mod-
eled as services. The Open Grid Services Infrastructure (OGSI)
specification defines grid services and builds on top of standard
Web services technology. OGSI exploits the mechanisms of Web
services like XML and WSDL to specify standard interfaces, be-
haviors, and interaction for all grid resources. OGSI extends the
definition of Web services to provide capabilities for dynamic,
stateful, and manageable Web services that are required to model
the resources of the grid.

• OGSA Architected Grid Services Layer: This layer defines the
services that are defined on top of the OGSI layer to manage and
execute the underlying grid resources. Different services including
the security services fall in this category.

• Grid Applications Layer: As the grid acquires mainstream stat-
ure, more and more grid applications are being written, becoming
the highest layer in the OGSA stack.

A.3.1 Open Grid Services Infrastructure (OGSI)

Open Grid Services Infrastructure (OGSI) is primarily concerned with cre-
ating, addressing, inspecting, and managing the lifetime of stateful grid
services. OGSI specification version 1 [61], defines a grid service as a
Web service that conforms to a set of interfaces and behaviors that define
how a client interacts with the grid service. These conventions, and other
OGSI mechanisms associated with grid service creation and discovery,
provide for the controlled, fault resilient, and secure management of the
distributed and often long-lived state that is commonly required in ad-
vanced distributed applications. OGSI defines a component model by

A.3 Open Grid Services Architecture (OGSA) 309

cepts of stateful Web service instances, common metadata and inspection,
asynchronous notification of state change, references to instances of ser-
vices, collections of service instances, and service state data declaration.
The last component augments the constraint capabilities of XML schema
definition (refer to the appendix for the different components of Web ser-
vices). More specifically, the OGSI specification defines:

• A set of WSDL extensions some of which have analogous support
in WSDL 2.0

• WSDL constructs and standard operations for representing, query-
ing, and updating service data (metadata and state data) associated
with a service.

• The Grid Service Handle and Grid Service Reference constructs,
used to address grid services.

• A definition of common fault information from operations that de-
fines a base XML Schema and associated semantics for WSDL
fault messages to support a common interpretation. The approach
simply defines the base format for fault messages, without modify-
ing the WSDL fault message model.

• A set of operations for creating and destroying grid services that
provides for both explicit destruction of services and implicit gar-
bage collection of expired services without the need for explicit
destruction.

• A set of operations for creating and using heterogeneous by-
reference collections of Web services.

• Mechanisms for requesting asynchronous notifications of changes
in the value of service data elements.

A.3.2 Web Services Critique of OGSI

Once the OGSI framework was proposed, the Web services community
started voicing their disapproval mainly because of the stateful nature of
the grid services. Following are a few criticisms against the OGSI specifi-
cation which resulted in the grid and Web services community working to-
gether and converging on the WS Resource Framework [62].

1. Too Much Stuff in One Specification: OGSI did not have a clean
separation or factoring of functions to support incremental adoption.
For example, event notification could have been made independent of
service data as it was useful even without it. Metadata introspection is

using extended WSDL and XML Schema definition. It introduces the con-

310 Appendix

a useful concept that does not require expression through service data.
Therefore, the criticisms mandated more modular specification which
was provided in WSRF.

2. Does not Work Well with Existing Web Services and XML
Tooling: OGSI v1.0 uses XML schema aggressively, for example
with substantial use of generic (xsd:any) attributes and “document-
oriented” WSDL operations. These features cause problems with,
for example, JAX-RPC. These considerations resulted in the use of
standard XML schema mechanisms that are familiar to developers
and are supported by existing tooling in the WS-Resource Frame-
work.

3. Too Object Oriented: OGSI v1.0 models a stateful resource as a
Web service that encapsulates the resource’s state, with the identity
and lifecycle of the service and resource state coupled. Since Web
services supposedly do not have states or instances, this approach
led to a lot of criticism from the Web services purists. In addition,
some Web service implementations do not accommodate dynamic
service creation and destruction. These considerations were used
when the design of WS-Resource was drawn for the WS-Resource
Framework.

A.3.2 Web Services Resource Framework (WSRF)

Based on the criticisms mentioned in the previous section, the Web ser-
vices and the grid community had come together to define a set of specifi-
cations, collectively known as the WS-Resource Framework. The WS-
Resource Framework is primarily concerned with the creation, addressing,
inspection, and lifetime management of the stateful resources. There is also
a WS-Notification family of specifications [63,64] which addresses notifi-
cation, subscription, and delivery functionalities. Following are some of
the high-level specifications which define WS-Resource Framework.

• WS-ResourceProperties: These specifications define how to as-
sociate the stateful resources and Web services to produce WS-
Resources. The specifications also define mechanisms to retrieve,
change, and delete the properties of a WS-Resource.

• WS-ResourceLifetime: These sets of specifications define
mechanisms to manage the lifetime of WS-Resource by providing
means to destroy immediately or in some scheduled time in the fu-
ture.

A.3 Open Grid Services Architecture (OGSA) 311

• WS-RenewableReferences: Sometimes an endpoint reference
may become invalid for many reasons. These specifications define
mechanisms to retrieve a new endpoint when the old one becomes
invalid.

• WS-ServiceGroup: These specifications allow the creation and
use of heterogeneous by-reference collection of Web Services.

• WS-BaseFault: These are used for reporting errors by defining
base faults.

• WS-Notification: These set of specifications do not fall under the
WS-Resource Framework. They define notification mechanisms
through publish and subscribe patters, and can be used by the WS-
Resource Framework.

Bibliography

1. Spiderman movie. http://spiderman.sonypictures.com, accessed on 13th July,
2006

2. Shrek movie. http://www.shrek.com, accessed on 13th July, 2006
3. National Weather Service (NWS). http://www.nws.noaa.gov/, accessed on

13th July, 2006
4. European Organization for Nuclear Research (CERN). www.cern.org, ac-

cessed on 13th July 2006
5. SETI@home. http://setiathome.ssl.berkeley.edu/, accessed on 13th July 2006
6. A. Ghosh, A. Chakrabarti, R.A. Dheepak, S. Ali S, I. Gupta. Streamlining

Drug Discovery Research by Leveraging Grid Workflow Manager. In Life
Sciences Grid (LSGrid), Singapore, 2005.

7. L. Dimitriou. Financial services Grid virtualization for increased business
performance and lower TCO. In Grid in Finance, NY, 2006.

8. R. Reuter R, R. Hoffmann, J. Kamarajan. Application of stochastic Simula-
tion in Automotive Industry. In Proc. AMERI-PAM, Detroit, 2000.

9. G. Koch G. Discovering Multi-Core: Extending the Benefits of Moore’s
Law. In Technology Intel® Magazine, 2005.

10. C. Vilett C. Moore’s Law vs. storage improvements vs. optical improve-
ments. In Scientific American, 2001.

11. R. Buyya (Ed). High Performance Cluster Computing: Architectures and
Systems. Kluwer Academic Publishers, 2003.

12. InfiniBand Trade Association. InfiniBand Architecture S̀pecification, Vol-
ume 1, Release 1.1, 2002.

13. I. Foster, C. Kasselman. The Grid 2: Blueprint for a new Computing Infra-
structure. Morgan Kaufman Publishers, 2004.

14. I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International J. Supercomputer Applica-
tions, 15(3), 2001.

15. Oracle® Corporation. Oracle® Grid Computing. White Paper, 2002, avail-
able at http://www.oracle.com/technologies/grid/OracleGridBWP0105.pdf,
accessed on 13th July, 2006.

16. Sun® Microsystems. Employing Grid Computing for Competitive Advan-
tage. Executive Brief, 2003.

17. G. Lee. HP and the Grid. In Intl. Symp. on Grid Comp. (ISGC), Taiwan,
2003.

18. IBM® Grid Computing Group. IBM® and Grid. White Paper, 2003.
19. W. Gropp, E. Lusk, A. Skjellum. Using MPI. 2nd Edition, MIT Press, 1999.

314 Bibliography

20. A. Geist, A. Beguelin, A. Dongarra, W. Jiang, R. Manchek, V. Sunderam.
PVM: Parallel Virtual Machine – A User’s Guide and Tutorial for Net-
worked Parallel Computing. MIT Press, 1994.

21. Gnutella. www.gnutella.com, accessed on 13th July, 2006.
22. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan H. Chord:

A Scalable Peer-to-peer Lookup Service for Internet Applications. In Proc.
ACM SIGCOMM, San Diego, 2001.

23. S. Ratnasamy. A Scalable Content Addressable Network. PhD Thesis, Uni-
versity of California, Berkeley, 2002.

24. D. Heap. Scorpion: Simplifying the Corporate IT Infrastructure. IBM® Re-
search White Paper, 2000.

25. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman. Basic local
alignment search tool. J. Mol. Biol, pp. 403-410, 1990.

26. Data Synapse®.. www.datasynapse.com, accessed on 13th July, 2006.
27. United Devices®.. www.ud.com, accessed on 13th July, 2006.
28. T.G. Lewis, H. El-Rewini. Parallax: A Tool for Parallel Program Schedul-

ing. IEEE J. Parallel and Distributed Technology, Vol.1, No. 3, pp. 62–72,
1993.

29. T. Yang, A. Gerasoulis. PYRROS: Static Task Scheduling and Code Gen-
eration for Message-Passing Multiprocessors. In Proc. 6th ACM Int’l Conf.
Supercomputing, ACM Press, New York, pp. 428–433, 1992.

30. P-Grade Team. Parallel Grid Runtime and Application Development Envi-
ronment. User’s Manual version. 8.4.2, 2006..

31. I. Ahmed, Y-K. Kwok, M-Y. Wu, W. Shu W. CASCH: A Tool for Com-
puter-Aided Scheduling. IEEE Concurrency, vol. 8, no. 4, pp. 21-33, 2000.

32. Aspeed®.www.aspeed.com, accessed on 21st July, 2006.
33. Cornell Theory Center. www.tc.cornell.edu, accessed on 21st July, 2006.
34. K. Gor, R.A. Dheepak, S. Ali, L.D. Alves, N. Arurkar, I. Gupta, A. Chakra-

barti, A. Sharma, S. Sengupta. Scalable Enterprise Level Workflow and In-
frastructure Management in a Grid Computing Environment. In Proc.
CCGrid, Cardiff (Wales), pp. 661-667, 2005.

35. S. Pfleeger, C.P. Pfleeger. Security in Computing. 3rd Edition, Prentice Hall
Publishers, 2002.

36. US Dept. of Commerce/ NIST. Data Encryption Standard. Federal Informa-
tion Processing Standard (FIPS) Publication, 46-2, 1993.

37. NIST. Advanced Encryption Standard. Federal Information Processing
Standard (FIPS) Publication 197, 2001.

38. R. Rivest, A. Shamir, L. Adleman. A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems. Communications of the ACM, vol. 21,
no. 2, 120-126, 1978.

39. T. El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, v. IT-31, no.
4, pp. 469–472, 1985.

Bibliography 315

40. H.M. Heys. A Tutorial on Linear and Differential Cryptanalysis. Technical
Report CORR 2001-17, Centre for Applied Cryptographic Research, De-
partment of Combinatorics and Optimization, University of Waterloo, 2001.

41. W. Diffie, M.E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, vol. 22, pp. 644-654, 1976.

42. W.R. Cheswick, S.M. Bellovin, A.D. Ruben. Firewalls and Internet Secu-
rity: Repelling the Wily Hacker. Addision-Wesley Publishers, 2003.

43. R. Rivest. MD5 Message Digest Algorithm. IETF RFC 1321, 1992.
44. D. Eastlake, P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174,

2001.
45. M. Bellare, R. Canetti, H. Crawczyk. Keying Hash Functions for Message

Authentication. In Proc. Advances in Cryptography (Crypto), Springer-
Verlag, 1996.

46. R. Housley, W. Ford, W. Polk, D. Solo. Internet X.509 Public Key Infra-
structure Certificate and CRL Profile. IETF RFC 2459, 1999.

47. C. Kaufman, R. Perlman, M. Speciner. Network Security: Private Communi-
cation in a Public World. Prentice Hall Publishers, 1995.

48. T. Dierks, C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, 1999.
49. Netscape® Corporation. www.netscape.com, accessed on 13th July, 2006.
50. Internet Engineering Task Force (IETF). www.ietf.org, accessed on 13th July

2006.
51. J.T. Kohl, B.C. Neuman, T.Y. T'so. The Evolution of the Kerberos Authenti-

cation System. Distributed Open Systems, IEEE Computer Society Press, pp.
78-94, 1994.

52. R. Needham, M. Schroeder. Using Encryption for Authentication in Large
Networks of Computers. Communications of the ACM, vol. 21, pp. 393-399,
1978.

53. S. Kent, R. Atkinson. Security Architecture for Internet Protocol. IETF RFC.
2401, 1998.

54. W. Stallings. IP Security. Internet Protocol Journal, vol. 7, no. 1, 2000.
55. S. Kent, R. Atkinson. IP Authentication Header. IETF RFC 2402, 1998.
56. S. Kent, R. Atkinson. IP Encapsulated Security Payload (ESP). IETF RFC

2406, 1998.
57. G. McDaniel. IBM® Dictionary of Computing, McGraw-Hill, 1994.
58. Global Grid Forum (GGF). www.ggf.org, accessed on 13th July 2006.
59. I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration. Tech
Report, Argonne National Lab, 2002.

60. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman. Grid
Service Specification. Tech Report, Argonne National Lab, 2002.

61. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T.
Maquire, T. Sandholm, D. Snelling, P. Vanderbilt. Open Grid Services Infra-
structure: v. 1.0. GGF Draft, 2003.

62. I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F.
Leymann, M. Nally, I. Sedukhin, D. Snelling, T. Storey, W. Vambenepe, S.
Weerawarana. Modeling Stateful Resources with Web Services. IBM ®

316 Bibliography

 2004, available at http://www.128.ibm.com/developer
works/library/ws-resource/ws-modelingresources.pdf, accessed on 13 th

July,

 2006.
63. S. Graham, D. Hull, B. Murray. Web Services Base Notification 1.3 (WS-

BaseNotification,). OASIS Draft, 2006, available at http://www.oasis-
open.org/committees/download.php/13488/wsn-ws-base_notification, ac-
cessed on July 13th, 2006.

64. D. Chappell, L. Liu. Web Services Brokered Notification 1.3 (WS-
BrokeredNotification). OASIS Draft, 2006, available at http://www.oasis-
open.org/committees/download.php/13485/wsn-ws-
brokered_notification.pdf, Accessed on 13th July, 2006.

65. N. Nagarathnam, P. Janson, J. Dayka, A. Nadalin, F. Siebenlist, V. Welch, I.
Foster, S. Tuecke. The Security architecture for Open Grid Servies. GGF
Draft, 2002, available at http://www.cs.virginia.edu/~humphrey/ogsa-sec-
wg/OGSA-SecArch-v1-07192002.pdf, accessed on 13th July 2006.

66. www.globus.org, accessed on 13th July 2006.
67. B. Sundaram. Introducing GT4 Security. IBM® Developer Works, 2005,

available at http://www.ibm.com/developerworks/grid/library/gr-gsi4intro,
accessed on 13th July, 2006.

68. Documentation Team. GT4 toolkit, 2006, available at, http://www-
unix.globus.org/toolkit/docs/4.0/admin/docbook, accessed on 13th July
2006.

69. M. Abdalla, O. Chevassut, D. Pointcheval. One-time Verifier-based En-
crypted Key Exchange. In Proc. International Workshop on Practice and
Theory in Public Key Cryptography (PKC), Switzerland, pp 47-64, 2005.

70. O. Kornievskaia, P. Honeyman, B. Doster, K. Coffman. Kerberized Creden-
tial Translation: A Solution to Web Access Control. In Proc. USENIX Secu-
rity Symposium, Washington, pp. 235-249, 2001.

71. S. Shirasuna, H. Nakada, S. Matsuoka, S. Sekiguchi. Evaluating Web Ser-
vices based Implementation of GridRPC. In Proc. IEEE High Perf. Dist.
Computing (HPDC), pp. 237-245, 2002.

72. D. Bell. Secure computer systems: A network interpretation. In Proceedings
on 3rd Annual Computer Security Application Conference, pp. 32–39, 1987.

73. T. Lee. Using mandatory integrity to enforce “commercial” security. In Pro-
ceedings of IEEE Symposium on Security and Privacy, Oakland (CA), pp.
140–146, 1988.

74. B. Lampson. Protection. In Proceedings of the 5th Symposium on Informa-
tion Sciences and Systems, Princeton (NJ), pp. 437–443, 1974.

75. R. Sandhu, E. Coyne, H. Feinstein, C. Youman. Role-Based Access Control
Models. IEEE Computer, vol. 29, no. 2, pp. 38-47, 1996.

76. D.E. Denning. A Lattice Model of Secure Information Flow. Communica-
tions of the ACM, 19 (2), pp. 236–243, 1976.

77. R. Sandhu. Role Hierarchies and Constraints for Lattice-based Access Con-
trols. In Proceedings of the Conference on Computer Security, New York,
pp. 65–79, 1996.

Developer Works,

Bibliography 317

78. S. Osborn, R. Sandhu, Q. Munawer. Configuring Role -Based Access Con-
trol to Enforce Mandatory and Discretionary Access Control Policies. ACM
Trans. on Information and System Security, vol. 3, no. 2, pp. 85-106, 2000.

79. L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke. A Community
Authorization Service for Group Collaboration. In Proceedings of the IEEE
3rd International Workshop on Policies for Distributed Systems and
Networks, Monterey (CA), pp 50-59, 2002.

80. R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, A. Gia-
noli, K. Lorentey, F. Spataro. VOMS: an Authorization System for Virtual
Organizations. In 1st European Across Grids Conference, Santiago e Com-
postella (Spain), 2003.

81. A. Chakrabarti, A. Damodaran. Enterprise Authorization and Licensing Ser-
vice. Infosys Tech. Report, 2006.

82. M. Thompson, A. Essiari, S. Mudumbai. ACM Transactions on Information
and System Security, (TISSEC), vol. 6, issue 4, pp: 566-588, 2003.

83. D. Chadwick, O. Otenko. The PERMIS X.509 Role Based Privilege Man-
agement Infrastructure. In ACM SACMAT, Lake Tahoe (CA), pp. 135-140,
2002.

84. www.earthsystemgrid.org, accessed on 13th July, 2006.
85. M.B. Juric, B. Mathew, P. Sarang. Business Process Execution Language

for Web Services: BPEL and BPEL4WS, PACKT Publishing, ISBN
1904811817, 2006.

86. D. Chadwick, O. Otenko, V. Welch. Using SAML to Link the Globus Tool-
kit to the PERMIS Authorization Infrastructure. In Proc. IFIP TC-6 TC-11
Conf. on Comm. and Multimedia Security, Windermere (UK), 2004.

87. Altair ® Engineering. www.altair.com, accessed on 13th July 2006.
88. Platform® Computing. www.platform.com, accessed on 13th July, 2006.
89. K.J. Houle, G.M. Weaver. Trends in Denial of Service Attack Technology.

CERT Advisory, v1.0, 2001.
90. CSI/FBI. Computer Crime and Security Survey, 2001, available at

http://www.crime-research.org/news/11.06.2004/423, accessed on July 13th,
2006.

91. D. Moore, G.M. Voelker, S. Savage. Inferring Internet denial-of-service ac-
tivity. In Proceedings of the 2001 USENIX Security Symposium, Washington
DC, 2001.

92. P.J. Criscuolo. Distributed Denial of Service Trin00, Tribe Flood Network,
Tribe Flood Network 2000, and Stacheldraht CIAC-2319. Department of En-
ergy Computer Incident Advisory Capability (CIAC), UCRL-ID-136939,
Rev. 1., Lawrence Livermore National Laboratory, 2000.

93. Web Report. Yahoo on Trail of Site Hackers. Wired.com, 2000, available on
http://www.wired.com/news/business/0,1367,34221,00.html, accessed on
13th July, 2006.

94. Web Report. Powerful Attack Cripples Internet. Associated Press for Fox
News, 2002, available at http://www.linuxsecurity.com/content/view/112716/2/,

 accessed on July 13th 2006.

318 Bibliography

95. Cisco® White Papers. Strategies to Protect against Distributed Denial of
Service Attacks (DDoS), 2001.

96. K. Park, H. Lee. On the Effectiveness of Route-Based Packet Filtering for
Distributed DoS Attack Prevention in Power-Law Internet. In Proc. ACM
SIGCOMM, San Diego (CA), pp. 15-26, 2001.

97. A.D. Keromytis, V. Misra, D. Rubenstien. SOS: Secure Overlay Services. In
Proc. ACM SIGCOMM, Pittsburgh (PA), pp. 61-72, 2002.

98. D.K. Yau, J.C.S. Lui, F. Liang. Defending Against Distributed Denial of
Service Attacks with Max-min Fair Server-centric Router Throttles Quality
of Service. Tenth IEEE International Workshop on QoS (IWQoS), Miami
(FL), pp. 35-44, 2002.

99. J. Allen. State of The Practice: Intrusion Detection Technologies. Carnegie
Mellon, SEI, Tech, Report CMU/SEI-99-TR-028, ESC-99-028, 2000.

100. S. Axelsson. Intrusion Detection Systems: A Survey and Taxonomy. Techni-
cal report 99-15, Dept. of Computer Engineering, Chalmers University of
Technology, Goteborg (Sweden), 2000.

101. Snort. http://www.snort.org, accessed on 13th July, 2006.
102. S. Kenny, B. Coghlan. Towards a Grid wide Intrusion Detection System. In

Proc. European Grid Conference (EGC), Prague, 2005.
103. M.F. Tolba, M.S. Abdel-Wahab, I.A. Taha, A.M. Al-Shishtawy. GIDA: To-

ward Enabling Grid Intrusion Detection System. In Proc. Conference on
Cluster Computing and Grid (CCGrid), Cardiff (Wales), 2005.

104. www.oracle.com/technology/products/bi/odm/pdf/odm_based_intrusion_det
ection_paper_1205.pdf, accessed on 13th July, 2006.

105. T. Ryutov, C. Neumann, L. Zhou. Integrated Access Control and Intrusion
Detection (IACID) Framework for Secure Grid Computing. Tech. Report.,
University of Southern California, 2005.

106. H. Burch, B. Cheswick. Tracing anonymous packets to their approximate
sources. In Proc. USENIX LISA Conf., New Orleans (LA), pp. 319-327,
2000.

107. G. Sager. Security Fun with OCxmon and eflow. Internet2 Working Group
Meeting, 1998.

108. A.C. Snoeren, C. Partridge, L.A. Sanchez, C.E. Jones, F. Tchakountio, T.
Kent, T. Strayer. Hash-Based IP Traceback. In Proc. ACM SIGCOMM, San
Diego (CA), pp. 3-14, 2001.

109. S.M. Bellovin. ICMP Traceback Messages. Internet Draft, 2000. draft-
bellovin-itrace-00.txt.

110. S. Savage, D. Wetherall, A. Karlin, T. Anderson. Network Support for IP
Traceback. IEEE Trans. on Networking, vol. 1, no. 3, pp. 226-237, 2001.

111. D.X. Song, A. Perrig. Advanced and Authenticated Marking Schemes for IP
Traceback. In Proc. INFOCOM, Alaska, pp. 878-886, 2001.

112. A. Habib, S. Fahmy, S.R. Avasarala, V. Prabhakar, B. Bhargava. On Detect-
ing Service Violations and Bandwidth Theft in QoS Network Domains.
Computer Communications, Elsevier, vol. 26, issue 8, pp. 861-871, 2003.

113. Y. Breitbart et al. Efficiently monitoring bandwidth and latency in IP net-
works. In Proc. IEEE INFOCOM, Alaska, pp. 933-942, 2001.

Bibliography 319

114. M.C. Chan, Y-J. Lin, X. Wang. A scalable monitoring approach for service
level agreements validation. In Proc. of the International Conference on
Network Protocols (ICNP), Osaka (Japan), pp. 37–48, 2000.

115. M. Dilman, D. Raz. Efficient reactive monitoring. In Proc. IEEE
INFOCOM, Alaska, 2001.

116. N.G. Duffield, F.L. Presti, V. Paxson, D. Towsley. Inferring link loss using
striped unicast probes. In Proc. IEEE INFOCOM, Alaska, pp. 915-923,
2001.

117. K.A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, R.A. Olsson. Detecting
Disruptive Routers: A Distributed Network Monitoring Approach. In Symp.
on Security and Privacy, Oakland (CA), pp. 115-124, 1998.

118. A. Barmouta A, R. Buyya. GridBank: A Grid Accounting Services Architec-
ture (GASA) for Distributed Systems Sharing and Integration. In Interna-
tional Parallel and Distributed Processing Symposium (IPDPS'03), Nice
(France), 2003.

119. T. Sandholm. Service Level Agreement Requirements of an Accounting-
Driven Computational Grid. Royal Institute of Technology, Technical Report
TRITA-NA-05332005, 2005.

120. B. Bershad, S. Savage, P. Pardyak, E.G. Sirer, D. Becker, M. Fiuczynski, C.
Chambers, S. Eggers. Extensibility, Safety, and Performance, in the SPIN
Operating System. In ACM Symp. On Operating Systems Principles (SOSP),
Copper Mountain (CO), pp. 267-283, 1995.

121. G. Necula. Proof Carrying Code. Principles of Programming Languages,
Paris (France), 1997.

122. VMWare®. www.vmware.com, accessed on 13th July, 2006.
123. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, A. Warfield. Xen and the Art of Virtualization. In ACM Proc.
Symp. On Operating Systems Principles (SOSP), NY, pp. 164-177, 2003.

124. Virtuozzo Team. A Complete Server Virtualization and Automation Solu-
tion. Virtuozzo White Paper and Data Sheet, 2005.

125. VServer. http://linux-vserver.org/Documentation, accessed on 13th July,
2006.

126. R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V. Ander-
son, S.M. Bennett, A. Kagi, SF.H. Leung, L. Smith. Intel® Virtualization
Technology. IEEE Computer, vol. 38, no. 5, pp. 48-56, 2005.

127. AMD® Corporation. www.amd.com, accessed on 13th July 2006.
128. J.S. Robin, C.E. Ervine. Analysis of the Intel® Pentium's Ability to Support a

Secure Virtual Machine Monitor. In Proc. 9th USENIX Security Symposium,
Denver (CO), 2000.

129. S. Sundarrajan, H. Nellitheertha, S. Bhattacharya, N. Arurkar. Nova: An
Approach to On-Demand Virtual Execution Environments for Grids. In
Proc. CCGrid, Singapore, pp. 544-547, 2006.

130. S. Soltesz, H. Potzl, M.E. Fiuczynski, A. Bavier, L. Peterson. Container-
based Operating System Virtualization: A Scalable, High-performance Al-
ternative to Hypervisors. Princeton White Paper, 2005.

320 Bibliography

131. B.W. Lampson. On reliable and extendable operating systems. State of the
Art Report, Infotech, 1, 1971.

132. B.W. Lampson, R.F. Sproull. An Open Operating System for a Single-User
Machine. In Proc. Seventh ACM Symposium on Operating Systems Princi-
ples, Pacific Grove (CA), pp. 98–105, 1979.

133. W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, F. Pollack.
HYDRA: The Kernel of a Multiprocessor Operating System. Communica-
tions of the ACM, vol. 17, no. 6, , pp. 337-344, 1974.

134. D.R. Engler, M.F. Kaashoek, J. O'Toole Jr. Exokernel: An operating system
architecture for application-level resource management. In ACM Symp. On
Operating Systems Principles (SOSP), Copper Mountain (CO), pp. 251-266,
1995.

135. W. Wulf, C.G. Bell. C.mmp – a multi-mini-processor. In Proc. AFIPS,
FJCJ, Vol. 41, AFIPS Press, pp. 765-777, 1972.

136. I. Goldberg, D. Wagner, R. Thomas, E.A. Brewer. A Secure Environment
for Untrusted Helper Applications: Confining the Wiley Hacker. In USENIX
Security Symposium, San Jose (CA), 1996.

137. M. Bernaschi, E. Gabrielli, L.V. Mancini. REMUS: a Security-Enhanced
Operating System. ACM Transactions on Information and System Security,
vol. 5, no. 1, pp. 36-6, 2002.

138. B. Calder, A. Chien, J. Wang, D. Yang. The Entropia Virtual Machine for
Desktop Grids. In Intl. Conf. on Virtual Execution Env, Chicago (IL), 2005.

139. P. Brucker. Scheduling Algorithms, 4th Edition, Springer Publishers, ISBN 3-
540-20524-1, 2004.

140. C.S.R. Murthy, G. Manimaran. Resource Management in Real Time Systems
and Networks, MIT Press, ISBN 0262133768, 2001.

141. GGF Document. Advanced Reservation: State of the Art. GGF Draft, ggf-
draft-sched-graap-2.0, 2003.

142. Sun® One Grid Engine, http://wwws.sun.com/software/gridware, accessed
on 13th July, 2006.

143. D. Abramson, R. Buyya, J. Giddy J. A Computational Economy for Grid
Computing and its Implementation in the Nimrod-G Resource Broker. Fu-
ture Generation Computer Systems, vol. 18, issue 8, pp. 1061-1074, 2002.

144. A. Chakrabarti, G. Manimaran. Internet Infrastructure Security: A Taxon-
omy. IEEE Networks, vol. 16, no. 6, pp. 13-21, 2002.

145. K. Ingham, S. Forrest. History and Survey of Network Firewalls. Tech. Re-
port. of University of New Mexico, TR-2002-37, 2002.

146. Cisco® Systems. Evolution of Firewall Industry. White Paper, Cisco® Sys-
tems, 2002.

147. T.D. Yao. Adaptive Firewalls for the Grid. Master’s Thesis, Technical Uni-
versity of Denmark, 2005.

148. D. Davis. Firewalls: Web Services Achilles Heel? In IBM® Developer
Works, 2005, available at http://www.128.ibm.com/developerworks/library/
ws-pollingpaper.html, accessed on 13th July, 2006.

Bibliography 321

149. Reactivity XML Firewall. http://www.react ivity.com/products/solution.html,
accessed on 13th July 2006.

150. Quadrasis EASI Soap Content Inspector. http: / /www.quadrasis.com/ solu-
tions/ products/ easi_product_packages/ easi_soap.htm, accessed on 13th
July, 2006.

151. M. Cremonini, E. Damiani, S. De Capitani di Vimercati, P. Samarati P. An
XML-based Approach to Combine Firewalls and Web Services Security
Specifications. ACM Workshop on XML Security, Fairfax (Virginia), pp. 69-
78, 2003.

152. D. Caromel, A. Costanzo, D. Gannon, A. Slominski. Asynchronous Peer-to-
Peer Web Services and Firewalls. In Proc. IPDPS, Washington DC, 2005.

153. W. Augustyn, Y. Serbest. Service requirements for layer 2 provider provi-
sioned virtual private networks. Internet Draft, 2003, draft-augustyn-ppvpn-
l2vpn-requirements-02.txt.

154. E. Rosen, Y. Rekhter. BGP/MPLS VPNs. IETF RFC 2547, 1999.
155. H. OuldBrahim, G. Wright, B. Gleeson, T. Sloane, R.B.C. Sargor, I. Ne-

husse, J. Yu, R. Bach, A. Young, L. Fang, C. Weber. Network based IP VPN
architecture using virtual routers. Internet Draft, 2003, draft-ietf-ppvpn-vpn-
vr-03.txt.

156. T. Bates, Y. Rehkter, R. Chandra, D. Katz. Multiprotocol extensions for
BGP-4. IETF RFC 2858, 2000.

157. N.G. Duffield, P. Goyal. Greenberg, P. Mishra, K.K. Ramakrishnan, J.E. van
der Merive. A flexible model for resource management in virtual private
networks. In Proc. of the Conference on Applications, Technologies, Archi-
tectures, and Protocols. Computer Communication, ACM Press, pp. 95–108,
1999.

158. S. Andreozzi, T. Ferrari, E. Ronchieri. On-Demand VPN Support for Grid
Applications. In Conf. on High Energy Physics (CHEP), Interlaken (Switzer-
land), 2004.

159. G. Malkin. RIP Version 2. IETF RFC 2453, 1998.
160. J. Moy. OSPF Version 2. IETF RFC 1583, 1995.
161. Y. Rekhter, T. Li. A Border Gateway Protocol 4. IETF RFC 1771, 1995.
162. K. Zhang. Efficient Protocols for Signing Routing Messages. In Proc. Symp.

on Network and Distributed System Security (NDSS), San Diego (CA), 1998.
163. S. Kent, C. Lynn, K. Seo K. Secure Border Gateway Protocol (S-BGP).

IEEE J of Selected Areas of Comm. (JSAC), vol. 18, no. 4, pp. 582-592,
2000.

164. F. Wang, F. Gong, F.S. Wu, R. Narayan. Intrusion Detection for Link State
Routing Protocol Through Integrated Network Management. In Proc.
ICCCN, Boston (MA), pp. 694-699, 1999.

165. A. Chakrabarti, G. Manimaran. Secure Link State Routing Protocol. Techni-
cal Report, Dept. ECpE, Iowa State University, 2002.

166. B.R. Smith, S. Murthy, J.J. Garcia-Luna-Aceves. Securing Distance-Vector
Routing Protocols. In Proc. NDSS, San Diego (CA), pp. 85-92, 1997.

322 Bibliography

167. A. Chakrabarti, G. Manimaran. An Efficient Algorithm for Routing Update
Detection & Recovery in Distance Vector Protocols. In Proc. ICC, Alaska,
2003.

168. C. Diot, W. Dabbous, J. Crowcroft. Multipoint communications: A survey of
protocols, functions and mechanisms. IEEE J. Select. Areas Communica-
tions (JSAC), vol. 15, no. 3, pp. 277-290, 1997.

169. J. Hou, B. Wang. Multicast routing and its QoS extension: Problems, algo-
rithms and Protocols. IEEE Networks, pp. 22-36, 2000.

170. L. Sahasrabuddhe, B. Mukherjee. Multicast routing algorithms and proto-
cols: A tutorial. IEEE Network, pp. 90-102, 2000.

171. J.C. Pasquale, G.C. Polyzos, G. Xylomenos. The multimedia multicasting
problem. Multimedia Systems, vol.6, no.1, pp.43-59, 1998.

172. M. Ramalho. Intra- and Inter- domain multicast routing protocols: A survey
and taxonomy. IEEE Communications Surveys and Tutorials, vol. 3, no. 1,
pp. 2-25, 2000.

173. AccessGrid. www.accessgrid.org, accessed on July 13th, 2006.
174. S. Mittra. Iolus: A Framework for Scalable Secure Multicasting. In Proc.

ACM SIGCOMM, Cannes (France), pp. 277-288, 1997.
175. T. Hardjono, B. Cain. Key establishment for IGMP authentication in IP mul-

ticast. In Proc. IEEE ECUMN, Colmar (France), 2000.
176. A. Ballardie. Scalable Multicast Key Distribution. RFC 1949, 1996.
177. C. Shields, J.J. Garcia-Luna-Aceves. KHIP - A Scalable Protocol for Secure

Multicast Routing. In Proc. ACM SIGCOMM, Cambridge (MA), pp. 53-64,
1999.

178. D.M. Wallner, E.J. Harder, R.C. Agee. Key Management for Multicast: Is-
sues and Architectures. IETF RFC 2627, 1999.

179. C. Wong, M. Gouda, S. Lam. Secure Group Communications Using Key
Graphs. IEEE/ACM Trans. On Networking (ToN), vol.8, issue 1, pp. 16-30,
1998.

180. Y.R. Yand, X.S. Li, X.B. Zhang, S.S. Lam. Reliable Group Rekey: A Per-
formance Analysis. In Proc. ACM SIGCOMM, San Diego (CA), pp. 27-38,
2001.

181. R. Gennaro, P. Rahtogi. How to sign digital streams. In Proc. CRYPTO,
Santa Barbara (CA), Springer-Verlag, pp. 180-197, 1997.

182. C.K. Wong. Digital Signatures for Flows and Multicasts. IEEE/ACM Trans.
on Networking, vol. 7, no. 4, pp. 502-513, 1999.

183. M. Gaynor, S. Moulton, M. Welsh, E. LaCombe, A. Rowan, J. Wynne. Inte-
grating Wireless Sensor Networks into the Grid. IEEE Internet Computing,
vol. 8, no. 4, pp.32-39, 2004.

184. P. Pietzuch, J. Shneidman, J. Ledlie, M. Welsh, M. Seltzer, M. Roussopou-
los. Hourglass: A Stream-Based Overlay Network for Sensor Applications.
Harvard Industrial Partnership (HIP'04), 2004.

185. Y.C. Hu, A. Perrig, D.B. Johnson. Wormhole detection in wireless ad hoc
networks. Tech. Rep. TR01-384, Department of Computer Science, Rice
University, 2002.

Bibliography 323

186. A. Perrig, P. Szewczyk, J.D. Tygar, V. Wen, D. Culler D. SPINS: Security
Protocols for Sensor Networks. Wireless Networks, vol. 8, no. 5, pp. 521-
534, 2002.

187. C. Karlof, N. Sastry, D. Wagner. TinySec: A Link Layer Security Architec-
ture for Wireless Sensor Networks. In Proc. ACM SenSys, Baltimore (MD),
2004.

188. P. Balaji, W. Feng, Q. Gao, R. Noronha, W. Yu, D.K. Panda. Head-to-Toe
Evaluation of High Performance Sockets over Protocol Offload Engines. In
Proc. Cluster Computing and Grid (CCGrid), Cardiff (Wales), 2005.

189. R. Dimitrov, M. Gleeson. Challenges and New Technologies for Addressing
Security in High Performance Distributed Environments. In Proc. of the 21st
National Information Systems Security Conference, Arlington (Virginia), pp.
457-468, 1998.

190. M. Lee, E.J. Kim, M. Yousif. Security Enhancements in Infiniband Architec-
ture. In Proc. IPDPS, Denver (CO), 2005.

191. H.J. Chao, R. Karri, W.C. Lau. CYSEP – A Cyber Security Processor for 10
Gbps Networks and Beyond. In IEEE MILCOM, Monterey (CA), pp. 1114-
1122, 2004.

192. J. Basney, W. Yurcik, R. Bonilla, A. Slagell. Credential Wallets: A Classifi-
cation of Credential Repositories, Highlighting MyProxy. In 31st Annual
TPRC, Research Conference on Communication, Information, and Internet
Policy, Arlington (Virginia), 2006.

193. A. Arsenault, A. Diversinet, S. Farrel. Securely Available Credentials – Re-
quirements. IETF RFC 3157, 2001.

194. D. Gustafson, M. Just, M. Nystrom. Securely Available Credentials
(SACRED) - Credential Server Framework. IETF RFC 3760, 2004.

195. S. Petri. An Introduction to Smart Cards. Messaging Magazine, Sep. Issue,
1999.

196. B. Schneier, A. Shostack. Breaking Up is Hard to Do: Modeling Security
Threats for Smart Cards. In USENIX Workshop on Smart Card Technology,
Chicago (IL), pp. 175-185, 1999.

197. R. Sandhu, M. Bellare, R. Ganesan. Password-Enabled PKI: Virtual Smart-
cards versus Virtual Soft Tokens. In 1st Annual PKI Workshop, pp. 89-96,
2002.

198. J. Basney, M. Humphrey, V. Welch. The MyProxy Online Credential Re-
pository. IEEE Software Practice and Experience, vol. 35, issue 9, pp. 801-
816, 2005.

199. M. Lorch, J. Basney, D. Kafura D. A Hardware-secured Credential
Repository for Grid PKIs. In IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid), Chicago (IL), pp. 640-647, 2004.

200. K. Mosebach, L.D. Alves, A. Chakrabarti. Virtualized Credential Manage-
ment in Inter-domain Grid System. Trusted Internet Workshop (TIW), 2004.

201. Liberty Alliance. Introduction to Liberty Alliance Identity Architecture. Lib-
erty Alliance White Paper and Documentation, available at Liberty Web site
http://www.projectliberty.org/resources/whitepapers/LAP%20Identity%20A
rchitecture%20Whitepaper%20Final.pdf, accessed on 13th July, 2006.

324 Bibliography

202. Shibboleth Internet2 project. http://shibboleth.internet2.edu, accessed on 13th
July, 2006.

203. V. Welch, T. Barton, K. Keahey, F. Siebenlist. Attributes, Anonymity, and
Access: Shibboleth and Globus Integration to Facilitate Grid Collaboration.
4th Annual PKI R&D Workshop, 2004.

204. M. Deutsch. Cooperation and Trust: Some Theoretical Notes. Nebraska
Symposium on Motivation, M. R. Jones, Nebraska University Press, pp. 279-
319, 1962.

205. M. Deutsch. The Resolution of Conflict: Constructive and Destructive Proc-
esses. New Haven,Yale University Press, 1973.

206. D. Gambetta. Trust: Making or Breaking of Cooperative Relations. Oxford,
Blackwell, 1990.

207. T. Grandison, M. Sloman. A Survey Of Trust in Internet Applications. IEEE
Communications Surveys, vol. 3, no. 4, pp. 2-16, 2000.

208. G. Suryanarayan, R.N. Taylor. A Survey of Trust Management and Resource
Discovery Technologies in Peer-to-Peer Applications. ISR Technical Report,
UCI-ISR-04-6, 2004.

209. A. Abdul-Rahman, S. Hailes. Supporting trust in virtual communities. Ha-
waii International Conference on System Sciences, Maui (Hawaii), 2000.

210. Q. Zhang, T. Yu, K. Irwin. A Classification Scheme for Trust Functions in
Reputation-Based Trust Management. Workshop on Trust, Security, and
Reputation on the Semantic Web, Hiroshima (Japan), 2004.

211. L. Mui, M. Mohtashemi, A. Halberstadt. A Computational Model of Trust
and Reputation. In 35th Hawaii International Conference on System Science
(HICSS), Maui (Hawaii), 2002.

212. L. Xiong, L. Liu. Building Trust in Decentralized Peer-to-Peer Electronic
Communities. In The 5th International Conference on Electronic Commerce
Research. (ICECR), Montreal (Canada), 2002.

213. C-N. Ziegler, G. Lausen. Spreading Activation Models for Trust Propaga-
tion. In IEEE International Conference on e-Technology, e-Commerce, and
e-Service (EEE '04), Taipei (Taiwan), 2004.

214. M. Blaze, J. Feigenbaum, J. Lacy. Decentralized Trust Management. In
Proc. IEEE Symposium on Security and Privacy, Oakland (CA), pp. 164-
173, 1996.

215. W. Nejdl, D. Olmedilla, M. Winslett. PeerTrust: Automated Trust Negotia-
tion for Peers on the Semantic Web. In Proc. of the Workshop on Secure
Data Management in a Connected World (SDM'04), Springer, Toronto
(Canada), 2004.

216. M. Freedman, R. Morris. Tarzan: A Peer-to-Peer Anonymizing Network
Layer. In ACM Conference on Computer and Communications Security,
Washington DC, 2002.

217. C. Shields, B. Levine. A Protocol for Anonymous Communication Over the
Internet. In ACM Conference on Computer and Communications Security,
Athens (Greece), pp. 33-42, 2000.

Bibliography 325

218. V. Scarlata, B. Levine. Responder anonymity and anonymous peer-to-peer
file sharing. In IEEE International Conference on Network Protocols, River-
side (CA), 2001.

219. L. Xiong, L. Liu. PeerTrust: Supporting Reputation-Based Trust for Peer-to-
Peer Electronic Communities. IEEE Transactions of Knowledge and Data
Engineering, vol. 16, no. 7, pp. 179-194, 2004.

220. K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information
Systems. In Proc. Ninth Int’l Conf. Cooperative Information Systems,
Springer-Verlag, pp. 179-194, 2001.

221. A. Rowstron, P. Druschel. Pastry: Scalable, Decentralized Object Location
and Routing for Large-Scale Peer-to-Peer Systems. In Proc. IFIP/ACM Intl.
Conf. on Dist. Systems and Platforms, Heidelberg (Germany), Springer-
Verlag, pp. 329-350, 2001.

222. B. Dragovic, E. Kotsovinos. XenoTrust: Event-based distributed trust man-
agement. Second International Workshop on Trust and Privacy in Digital
Business, Prague (Czech Republic), 2003.

223. B. Dragovic, S. Hand. Managing trust and reputation in the XenoServer
Open Platform. First International Conference on Trust Management, Crete
(Greece), 2003.

224. S. Lee, R. Sherwood, B. Bhattacharjee. Cooperative peer groups in NICE. In
IEEE INFOCOM, San Francisco (CA), 2003.

225. S. Banerjee, B. Bhattacharjee, C. Kommareddy. Scalable application layer
multicast. In Proc. ACM SIGCOMM, Pittsburgh, pp. 205-217, 2002.

226. S. Song, K. Hwang, M. Macwan. Fuzzy Trust Integration for Security En-
forcement in Grid Computing. In Proc. NPC, Wuhan (China), pp. 9-21,
2004.

227. S. Song, K. Hwang, Y.K. Kwok. Trusted Grid Computing with Security
Binding and Trust Integration. Journal of Grid Computing, vol. 3, no. 1, pp.
24-34, 2005.

228. J.W. Lloyd. Foundations of Logic Programming, 2nd Edition, Springer-
Verlag, 1987.

229. B. Grosof. Representing e-business rules for the semantic web: Situated
courteous logic programs in RuleML. In Proceedings of the Workshop on In-
formation Technologies and Systems (WITS), New Orleans (LA), 2001.

230. B. Grosof B, T. Poon. SweetDeal: Representing agent contracts with excep-
tions using XML rules, ontologies, and process descriptions. In WWW12,
Budapest (Hungary), 340-349, 2003.

231. I. Horrocks, P. Patel-Schneider. A proposal for an OWL rules language,.
http://www.cs.man.ac.uk/ horrocks/DAML/Rules, accessed on 13th July,
2006.

232. J. Trevor, D. Suciu. Dynamically distributed query evaluation. In PODS,
Santa Barbara (CA), pp. 28-39, 2001.

233. M. Winslett, T. Yu, K.E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith,
L. Yu. Negotiating Trust on the Web. IEEE Internet Computing, vol. 7, no.
6, pp. 45-52, 2002.

326 Bibliography

234. A. Hess, J. Jacobson, H. Mills, R. Wamsley, K.E. Seamons, B. Smith. Ad-
vanced client/server authentication in TLS. In NDSS, 2002.

235. J. Basney, W. Nejdl, D. Olmedilla, V. Welch, M. Winslett. Negotiation Trust
on the Grid. In Workshop on Semantics in P2P and Grid Computing, NY,
2004.

236. N. Li, J. Mitchell. RT: A Role-based Trust Management Framework. In
DARPA Information Survivality Conference and Exposition (DISCEX),
Washington DC, pp. 201-212, 2003.

237. M. Mansouri-Samani. Monitoring Distributed Systems (A Survey). Tech.
Rep., DOC92/23, Imperial College, London, 1992.

238. M. Mansouri-Samani, M. Sloman. Monitoring distributed systems. IEEE
Network, vol. 7, no. 6, pp. 20–30, 1993.

239. B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, R. Wolski.
A Grid Monitoring Architecture, GWDPerf. 16–3, Global Grid Forum, Au-
gust 2002.

240. Z. Balaton, P. Kacsuk, N. Podhorszki, F. Vajda. Use Cases and the Proposed
Grid Monitoring Architecture. Tech. Rep. LDS-1/2001, Computer and
Automation Research Institute of the Hungarian Academy of Sciences, 2001,
available at http://www.lpds.sztaki.hu/publications/reports/lpds-1-2001.pdf,
accessed on 13th July, 2006.

241. J. Case, M. McCloghrie, M. Rose, S. Waldrusser. Protocol Operations for
Version2 of the Simple Network Management Protocol (SNMP). IETF RFC
1905, 1996.

242. http://h20229.www2.hp.com/, accessed on 13th July, 2006.
243. http://www3.ca.com/Solutions/Solution.asp?ID=1629, accessed on 13th July,

2006.
244. Orca. http://www.orcaware.com/orca, accessed on July 13th, 2006.
245. Mon. http://www.kernel.org/software/mon, accessed on July 13th, 2006.
246. Aide. http://sourceforge.net/projects/aide, accessed on July 13th, 2006.
247. Tripwire. http://sourceforge.net/projects/tripwire, accessed on July 13th,

2006.
248. M.L. Massie, B.N. Chun, B.E. Culler. Ganglia Distributed Monitoring Sys-

tem: Design, Implementation, and Experience. Parallel Computing, vol. 30,
pp. 817–840, 2004.

249. Hawkeye Team. Hawkeye, Monitoring and Management Tool for Distrib-
uted Systems, 2004. http://www.cs.wisc.edu/condor/hawkeye, accessed on
16th July, 2006.

250. M. Litzkow, M. Livny, M. Mutka. Condor - A Hunter of Idle Workstations.
In Proc. of the 8th International Conference of Distributed Computing Sys-
tems, pp. 104-111, 1988.

251. D. Thain, T. Tannenbaum, M. Livny. Distributed Computing in Practice:
The Condor Experience. Concurrency and Computation: Practice and Ex-
perience, vol. 17, no. 2-4, pp. 323-356, 2005.

252. B. Coghlan, A. Djaoui, S. Fisher, Magowan, M. Oevers. Time, information
services and the grid. In Advances in Database Systems (BNCOD): Supplement

Bibliography 327

to the Proceedings of the 18 th British National Conference on Databases
at RAL, pp. 9–11, 2001.

253. J.M. Schopf, M.D. Arcy, N. Miller, L. Pearlman, I. Foster, C. Kasselman.
Monitoring and Discovery in Web Services Framework: Functionalities and
Performance of Globus Toolkit’s MDS4. Tech. Report, #ANL/MCS-P1248-
0405, 2005.

254. K. Gor, R.A. Dheepak, S. Ali, L.D. Alves, N. Arurkar, I. Gupta, A. Chakra-
barti, A. Sharma, S. Sengupta. Scalable Enterprise Level Workflow and In-
frastructure Management in a Grid Computing Environment. In Proc. Clus-
ter Computing and Grid (CCGrid), Cardiff (Wales), pp. 661-667, 2005.

255. S. Andreozzi, D. Antoniades, A. Ciuffoletti, A. Ghiselli, E.P. Markatos, M.
Polychronakis, P. Trimintzios. Issues about the Integration of Passive and
Active Monitoring for Grid Networks. In Proc. CoreGrid Integration Work-
shop, Pisa (Italy), 2005.

256. X. Zhang, J. Freschl, J. Schopf. A performance study of monitoring and in-
formation services for distributed systems. In Proc. of the 12th IEEE High
Performance Distributed Computing (HPDC), IEEE Computer Society
Press, Seattle (WA), pp. 270–282, 2003.

257. S. Zalikonas, R. Sakellariou. A Taxonomy of Grid Monitoring Systems. In
FGCS, vol. 21, issue 1, pp. 163-188, 2004.

258. TNT Systems. The Role of IT Monitoring, Alerting, and Reporting in Satis-
fying Serbanes-Oxley Requirements. TNT White Paper, 2005.

259. European Data Grid. www.cern.org/eu-datagrid, accessed on 13th July, 2006.
260. L.A. Cornwall, J. Jensen, D.P. Kelsey, A. Frohner, D. Kouril, F. Bonnas-

sieux, S. Nicoud, J. Hahkala, M. Silander, R. Cecchini, V. Ciaschini, L.
dell’Agnello F. Spataro, D. O’Callaghan, O. Mulmo, G.L. Volpato, D.
Groep, M. Steenbakkers, A. McNab. Security in Multi –domain Grid Envi-
ronments. In Journal of Grid Computing, Kluwer Academic Press, 2004.

261. D. Boneh, and M. Franklin. Identity based Encryption from the Weil Pairing.
SIAM J. of Computing, vol. 32, no. 3. pp. 586-615, 2003.

262. A. Shamir. Identity-based Cryptosystems and Signature Schemes. In Proc.
CRYPTO, pp. 47-53, 1984.

263. Voltage® systems. www.voltage.com, accessed on 13th July, 2006.
264. http://www.cisco.com/en/US/products/ps6692/Products_Sub_Category_Ho

me.html, accessed on 13th July, 2006.
265. DataPower. www.datapower.com, accessed on 13th July, 2006.
266. S. Vinoski. CORBA: Integrating Diverse Applications Within Distributed

Heterogeneous Environments. IEEE Communications Magazine, vol. 14,
no. 2, pp. 46-55, 1997.

267. W. Grosso. Java RMI, 1st Ed., O’Reilly Publishers, 2001.
268. W. Ruben, M. Brain. Understanding DCOM, Prentice Hall, ISBN 0-13-

095966-9, 1999.
269. E. Cerami. Web Services Essentials, O’Reilly, ISBN: 0596002246, 2002.
270. E.T. Ray. Learning XML, O’Reilley, ISBN: 0596004206, 2001.

328 Bibliography

271. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masintere, P. Leach, T.
Berners-Lee. Hypertext Transfer Protocol – HTTP 1.1. IETF RFC 2616,
1999.

272. N. Mitra(Ed). SOAP Version 1.2, Part 0: Primer. W3C Recommendations,
2003.

273. R. Chinnici, J.J. Moreau, A. Ryman, S. Weerawarana. Web Services De-
scription Language (WSDL) 1.1. W3C Note, 2001, available at
http://www.w3.org/TR/wsdl20, accessed on 13th July 2006.

274. Computer Associates ®, IBM®, Microsoft®, Oracle®, SAP®, SeeBeyond
Technologies®, Systinet®, and Others. UDDI v.3.0. OASIS Standard, 2005.

275. A. Nadalin, C. Kaler, R. Monzino, P. Hallam-Baker (Ed). Web Services Se-
curity: SOAP Message Security 1.1. OASIS Standard Specification.

276. D. Eastlake, J.R.D. Solo, M. Bartel,J. Boyer, B. Fox , E. Simon XML Sig-
nature Syntax and Processing. W3C Recommendation, 2002, available at
http://www.w3.org/TR/xmldsig-core/, accessed on 13th July, 2006.

277. T. Imamura, B. Dillaway, E. Simon. XML Encryption Syntax and Process-
ing. W3C Recommendations, 2002, available at http://www.w3.org/
TR/xmlenc-core/, accessed on 13th July, 2006.

278. S. Bajaj, D. Box, D. Chappell. Web Services policy Framework (WS-
Policy). IBM® Developer Works, 2006.

279. S. Bajaj, D. Box, D. Chappell, et al. Web Services Policy Attachment (WS-
PolicyAttachment). W3C Member Submission, 2006, available at http://
specs.xmlsoap.org/ws/2004/09/policy/ws - policyattachment.pdf, accessed
on 13 th July, 2006.

280. G. Della-Libera, M. Gudgin, P. Hallam-Baker, et. al. Web Services Security
Policy Language (WS-SecurityPolicy), 2005, available at http://specs.
xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf, accessed on
July 13 th, 2006.

281. S. Anderson, J. Bohren, T. Boubez, et. al. Web Services Secure Conversa-
tion Language (WS-SecureConversation). OASIS Specification, 2005, avail-
able at http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf,
accessed on July 13th, 2006.

282. E. Maler, P. Mishra, R. Philpott. Assertions and Protocol for the OASIS Se-
curity Assertion Markup Language (SAML) v 1.1. OASIS Standard, 2003,
available at http://www.oasis-open.org/committees/download.php/6837/sstc-
saml-tech-overview-1.1-cd.pdf, accessed on 13th July 2006..

283. T. Moses (Ed). eXtensible Access Control Markup Language (XACML)
Version 2.0. OASIS Standard, 2005, available at http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf, accessed on
13th July, 2006.

Index

Advanced Reservation, 155
AES, 18
AGF, 166
Aide, 256
Akenti, 90
AON, 282
Application Filtering, 120
Application Level Firewalls, 163
ASPEED, 10
Athorization Credentials, 195
Attribute Certificates, 92
Authentication, 15
Authentication Credentials, 194
Authentication Header, 29

BGP, 175

Caesar Cipher, 17
CAN, 4
CAS, 80
CASCH, 9
Cerrtification Authority, 25
Certification Authority, 22
Chaining, 182
CHORD, 4
Circuit level Firewalls, 163
Confidentiality, 15
Confusion, 18
CORBA, 294
Core-based Key, 180
Cornell Theory Center. See CTC
CRL, 77
Cryptanalysis, 19
CTC, 10
CYSEP, 190

DAC, 70
DCOM, 294

DDoS, 111
Delegation Service, 64
Denial-of-Service, 108
DES, 18
DHT, 4
Diffie-Hellman, 20
Diffusion, 18
Distance Vector, 175
Distributed Hash Table. See DHT
DNS Hacking, 116
Dynamic Packet Filtering, 164

EALS, 88
EDG, 87, 271
Egress Filtering, 119
El Gamal, 18
Entropia VM, 152
ESP, 30
Exokernels, 146

Fabrication, 16
Firewalls, 161

Ganglia, 256
GGF, 49
Globus, 54
GlueDomains, 265
GMA, 251
Grid Definition, 3
Grid Evolution, 4
Grid Security Infrastructure. See

GSI
Grid Taxonomy, 35
GridBank, 131
GridMap, 100
GridShib, 212
GSI, 50
GT4, 61

330 Index

IBE, 281
Identity Credentials, 194
IDS, 122
Infiniband, 188
Information Security, 49
Integrity, 15
Interception, 16
Interruption, 16
IPSec, 29

Janus, 149
Java RMI, 294

KDC, 28
Kerberos, 27
Key Graphs, 180
KX.509, 208

L2VPN, 169
L3VPN, 169
LBAC, 69
LCMAPS, 274
Liberty Alliance, 209
Link State, 175
Link Testing, 123
LSF, 103

MAC, 22, 69
MAGI, 263
MD5, 23
MDS, 261
Message Level Security, 62
Message Passing Interface. See MPI
Mon, 256
Moore's Law, 2
MPI, 4
Multicasting, 178
MyProxy, 202

OGSA, 49, 307
OGSI, 308
Orca, 255
OSPF, 175
OWL, 239

Packet Marking, 125
Parallax, 9
Parallel Virtual Machines. See PVM
Para-Virtualization, 141
Path Vector, 175
PBS, 103
PeerTrust, 228
PeerTrust Negotiation, 238
PERMIS, 94
P-Grade, 9
PKI, 24
Policy Certificates, 92
Priority Reduction, 156
Proof-Carrying-Code, 136
Proxy Certificate, 59
Proxy Certificates, 203
PUSH+ACK, 113
PVM, 4
PYRROS, 9

RBAC, 70
Rekeying, 181
Remus, 151
Replication, 16
Reputation, 217
RGMA, 259
RIP, 175
RSA, 18
RuleML, 239

SACRED, 195
SAML, 304
Schema Poisoning, 118
Secure Overlay Service, 120

Hawkeye, 258
HMAC, 24
Hose, 171
Hosted Virtualization, 140
Hydra, 145

NICE, 233
Non-Repudiation, 16
Nova, 143

OGF, See GGF

Index 331

Sinkhole Attacks, 185
SLIP, 177
Smart Cards, 200
Smurf, 114
SNMP, 254
SNORT, 122
SOAP, 295
SPIE, 125
SPINS, 186
SQL Injection, 118
SSL, 27
Static Packet Firewalls, 163
Stream Signing, 182
SweGrid, 131
Sybil Attacks, 184
SYN Flood, 112

TESLA, 186
TGS, 28
Throttling, 121
TinySec, 187
TLS. See SSL
Tripwire, 256
Trust, 216
TrustBuilder, 240

UDDI, 295
Use Condition Certificates, 92

VCMan, 206
Virtual Organization, 50
Virtual Smart Cards, 201
Virtualization, 138
VMWare GSX, 140
VOMS, 87
VPN, 168
VServer, 144

WATCHERS, 130
Wormhole Attacks, 185
WSDL, 295
WS-Policy, 301
WS-PolicyAttachment, 301
WS-Resource Framework, 310
WS-SecureConversation, 302
WS-Security, 299
WS-SecurityPolicy, 302

X.509, 24
XACML, 306
XDoS, 117
Xen, 142
XenoTrust, 231

SeGO, 236
Sensor Grids, 182
Service, 106
SETI@Home, 1
SHA-1, 23
Shibboleth, 210

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	back-matter.pdf

