

 1

Intrusion Detection Utilizing Ethereal
by 2Lt David Chaboya

11 Mar 02

This tutorial is an introduction to Ethereal and how it can be used as an invaluable assistant in performing
Intrusion Detection. I assume the reader has a basic understanding of network security concepts, TCP/IP,
and has seen network traffic before. Once you are more familiar with how Ethereal works, I will cover
some practical examples of utilizing it to detect and analyze malicious traffic. Since web traffic is
probably the most familiar to the majority of people using the Internet, I will start by reviewing HTTP
headers and the Unicode (Directory Traversal) vulnerability. Next, buffer overflows will be analyzed. In
the third topic we’ll look at ICMP and HTTP backdoors to show how a hacker can quietly access a
previously compromised box without drawing the suspicion of network administrators. Finally, through
analyzing NetBIOS and SMB traffic I will show the more powerful capabilities of Ethereal.

DISCLAIMER: Although I’m not releasing any information that most hackers don’t already know, some
of the sections in this paper show actual hacking techniques that if used out on the Internet could get you
into serious trouble. This is just a reminder to not use any of this information for illegal purposes. Use
this on a test network at home or in your lab.

Introduction to Ethereal

There are many network capture and analysis tools freely available including snoop, tcpdump, sniffit,
analyzer, etc. However, none have the support that Ethereal has for decoding protocols and application
layer traffic. Gerald Combs developed Ethereal in 1997 as a utility to track down network problems and
as a useful tool to improve his networking background. After its initial release in 1998, numerous people,
including Gilbert Ramirez, Guy Harris, and Richard Sharpe, have contributed patches, dissectors, and
other updates. Since that time there have been new protocols added, more powerful filtering capabilities,
and application decoders added by the many fans of the tool. At the time of this writing, Ethereal is at
version 0.9.2 and supports most platforms including Windows, Unix, Linux, and BSD. I will be giving a
quick introduction on the most essential parts of the program. For more details on command syntax,
additional toolbars, and other functions see the man pages or the Ethereal User Guide located at:
http://www.ethereal.com/docs/user-guide.

Ethereal can be used to actively sniff network traffic or to review the capture files that an IDS has saved.
In this tutorial, Ethereal will be used for both capture and analysis. However, in any network of
considerable size, it will be much more efficient and practical to analyze the data that your IDS has
captured, offline.

So what does the Ethereal program look like? Figure 1 on the next page shows the main layout of the
Ethereal GUI. There are 5 menu bars, a header field, traffic overview section, detailed protocol section,
hex and ASCII data representation section, filter field, reset, apply, and a general display field. The File
menu option allows you to open, close, save, reload, and print results either to a file or straight to printer.
The most useful option in this menu is the print section, which allows you to save the results to file or
straight to a printer. If you didn’t want the added size, or didn’t have the ability to do a screen capture of
the data, or wanted to perform some analysis on the data using custom tools, you can save the detailed
information to the file of your choice. Make sure to select the “print detail” and “print hex data” buttons
if you want full detail.

http://www.ethereal.com/docs/user-guide

 2

Figure 1. Ethereal Main Display

The Edit menu bar gives you the options of find frame, go to frame, mark and unmark frames, detailed
preferences, filters, and supported protocols. The Find Frame option is very useful. Any item that
shows up in the detailed protocol section can be searched on. This means source and destination IP’s and
ports, TCP flags, ICMP types, SMB commands, and just about any other option you can think of can be
searched on. I will use a simple example to start off with. Pretend that the capture file is huge and by
scrolling it is difficult to see where the first connection was attempted. Using the find frame option,
shown in Figure 2, we can select a custom filter to search for the first SYN.

 Figure 2. Finding a frame

 3

The filter section, shown in Figure 3, allows you to create a customized set of filters that you can save and
apply to later sessions. Display filters, which are accessed by clicking on the Filter button in the main
Ethereal window; will look very similar, but would also give an option to apply your changes.

 Figure 3. Creating Custom Filters

The Add Expression button allows someone that is new to filtering and even those of us that haven’t
used the more advanced features to quickly create useful filters. This is shown in Figure 4. Instead of
having to guess on the correct syntax or trying to remember if Ethereal even supports searching for a
particular value, just scroll until you find the protocol and field you want. Then choose the appropriate
relation and the value that should be assigned.

Figure 4. Adding an expression to match on the SYN flag set

After selecting the filter configurations shown above the correct frame will now be highlighted and
visible in the top traffic overview section. If there is a specific frame number that you are interested in,
the “Go To Frame” option can be used. Several options to mark frames are also available. The

 4

Preferences menu has options for just about every feature available in Ethereal, too many to list here. The
next menu option, Capture Filters, is very important. The menu looks nearly identical to Figure 3, but it
does not offer the expression addition option that the search and display filter provides. It is important to
note that the capture language and search/display language are different. For live captures, the libpcap
filter language is used. If you attempt to use the same filter during off-line analysis, a syntax error will
result. This can be a big source of frustration for first time Ethereal users.

For example, if I only wanted to look at HTTP and SSL traffic I could use the filter string of “tcp port 80
or tcp port 443”. However, if I wrote “http or ssl” I would receive an error. Another simple example
would be filtering on an IP address. For live captures I use “host ip_address”, but for display filtering
“ip.addr == ip_address” works. For more details on the libpcap filter syntax see the tcpdump man pages.

The last filter option is the Display Filter. Although the filter syntax has already been touched on, one
more example wont hurt. Lets say I saved a lot of network traffic on a busy web server, which also offers
telnet and ftp (Yes I know this is bad security practice). I want to be able to detect buffer overflow
attempts against my web server. How in the world can I manually go through each frame to find this type
of activity? The answer is that you would have to be insane to attempt it. The next thought is that maybe
I could use the TCP Stream option. This powerful feature will be covered later, but even it would still
involve too much manual work. The answer to detecting this is utilizing display filters. What is the first
thing I need to do? I could try filtering on large frames. This makes sense, because a buffer overflow
should generate a fairly large frame. So we use the Add Expression button and select Frame as shown in
Figure 5.

Figure 5. Filtering on Frame Length greater than 400 bytes

Unfortunately, applying this filter to general traffic is not such a good idea. TELNET and FTP will
definitely cause a plethora of false positives. It is time to refine the filter. Well for starters, I only want
HTTP traffic so I get rid of all of the excess ARPS, DNS, TELNET, FTP and other unneeded protocols
by filtering on “HTTP”. That’s much better. Now I combine the two filters together “HTTP and
frame.pkt_len > 400”. That didn’t work too well, as all of the HTTP Continuation data is well over 400
bytes. I need to focus on the GET request. Ethereal comes through with the “HTTP.request” filter rule.
Applying this rule and tweaking the byte value I come up with a rule that has very few false positive and
detects my buffer overflow attempts. Final filter rule: “http.request and frame.pkt_len > 775”

 5

The Capture menu holds configurations for starting Ethereal as a network sniffer, shown in Figure 6.
Here you can select the interface, number of packets to capture, max file size, max duration, capture
filters, and file to save the data. The capture length option or “snaplen” is very useful. By default it is
set to 65535 (tcpdump normally defaults to 68, which is sufficient for normal traffic).

 Figure 6. Capture Options

However, lets say that you are analyzing a new buffer overflow exploit, with tcpdump, that has packet
sizes larger than 2000 bytes. If you stick with the default setting, there will be a lot of fragmented IP
packets in the output. Bump the value up, -s option from the command line, and the fragments
mysteriously disappear. For capturing everything on your LAN, leave the promiscuous mode option
selected. If you want to view the traffic as it is being collected, select “Update in real time” and
“Automatic scrolling”. The last three options determine if Ethereal attempts name resolution on MAC,
network, and transport layer fields. This has the possibility of really slowing down the capture.

The Display menu allows you to define and format how Ethereal presents your network captures. The
“Options” section allows changes to primarily time display and name resolution. If you want to add a

 6

little a flavor to the data, the Colorize Display option allows special color filters to be added to highlight
areas of interest, shown in Figure 7.

Figure 7. Highlighting HTTP traffic using color filters

Another set of very useful features, and ones that save an analyst a lot of time, are the “collapse and
expand” all options. When you are analyzing traffic that ranges from Layer 1 up to 7, and there are many
fields in those layers, you don’t want to click on every button to expand out that particular field. This will
come in handy later when we look at NetBIOS and SMB traffic.

If you want to focus on a specific packet, the “Show Packet In New Window” option pulls up a separate
window for the frame number you selected. For advanced users that have specified their own protocol ID
to dissector mappings, the “user specific decodes” option will be useful.

Lastly, we have the Tools menu. “Plugins” is another advanced option to let you see what dissector
plugin modules are currently loaded. Following a TCP Stream is one of the best features that Ethereal
has. It can be very cumbersome weeding through line and line of network traffic trying to use the
Hex/ASCII section to determine what commands an attacker used to compromise your system. The
example below, Figure 8, shows an FTP transfer via the web. Notice how easy it is to read the client side
data (red) and server side text (blue).

 7

Figure 8. TCP Stream of a FTP session

Since Follow TCP Stream applies a custom filter to show only data in that particular session, we can use
this knowledge to reconstruct files captured by our IDS. Lets say an attacker compromised one of your
systems and then downloaded a new rootkit from an FTP server. If you were able to capture most of the
attack, you could use the “TCP Stream” option on the file transfer, and save the data as a file. You now
possibly have a new tool to analyze. I will warn you though, that this technique does not work 100% of
the time. Of course, you could get the file off of the compromised system, but that wouldn’t be as cool.
Just remember, that if you follow a TCP Stream it does indeed chop your transcript to only that particular
session. Don’t make the mistake of not resetting your data, click the “Reset” button or apply a blank
filter, or you might miss valuable data!!

If Ethereal did not decode the network traffic completely, and you know that the data is a certain protocol,
use the “Decode As…” feature to further analyze your results. The last three options under the Tools
menu, allow you to get summaries, statistics, and due additional analysis on your network capture.

The Traffic Overview Section is where you will look for the big picture of what is occurring on your
network. Figures 1 and 7 show the layout. It is here that you see connection times, source and
destination IP’s, protocol, source and destination ports, and a summary of the traffic. Lets say that you
are looking for connections to port 27374, on of the default ports of the Subseven Trojan. By scrolling
through the connections, or more efficiently by using a filter of tcp.port==27374, you can quickly
determine if someone is scanning, or has even gained access to the port. Be careful when you use the
above filter rule, as it doesn’t distinguish between source or destination port. It is very possible that the
rule could capture traffic being initiated from a random high port that just happened to hit 27374. A rule
of tcp.dstport==27374 could be used, although it would not show your system’s response. This is when a
skilled analyst, that is able to interpret the results, comes into play. Once you have selected a frame of
interest and want to look more closely at what is contained in the packets, the second main window in the
Ethereal GUI comes into play.

This Detailed Protocol Section allows complex traffic analysis from layer 2 up to layer 7. To get data to
review for this section, I will initiate an ftp connection to FreeBSD’s main ftp server and sniff the traffic.
The results using a runtime filter on ftp.freebsd.org are shown below in Figure 9.

ftp://ftp.freebsd.org/

 8

Figure 9. Detailed Protocol Section

The results above show an FTP response from ftp.beastie.tdk.net. I did chop out the Frame section,
which includes time, frame number, and bytes received and captured. The picture above shows a capture
including Ethernet (layer 2), IP (layer 3), TCP (layer 4) and FTP (layer 7). In the Ethernet fields we see
the MAC address for my computer (Sony) and the source, which will be my default router. The IP fields
show that I’m using IPv4, it gives source and destination IP’s, and includes the next layer protocol ID
(TCP 0x06). The TCP header shows that the server is sending data from port 21 (FTP) via a PSH ACK to
my system’s high port of 1377. Finally, in the FTP header we see that the server is ready for a new user,

ftp://ftp.beastie.tdk.net/

 9

code 220, and it gives us the hostname and version that it’s running. For more details on how FTP works,
see RFC 959.

It is in viewing this section that you really see how the protocol works. It also allows you to analyze
exploits, and network captures and determine if and how someone is abusing the protocol. This is very
handy in a lab environment and is one of the main tools I use to research new exploit code.

The Hex/ASCII display section wraps up our introduction to Ethereal.

Figure 10. Hex-ASCII Display

As you can see in the above figure, commands and data are represented in Hex and their ASCII
equivalent. This field is useful if you are reviewing commands that an attacker used to compromise your
system or if you are checking for poor user names and passwords. The most crucial time that this field
comes into play is when reviewing UDP traffic. I’m stating the obvious, but the TCP Stream option
doesn’t work when looking at UDP connections. Your only option is reviewing the Hex/ASCII dump.
I’ve used the Hex output numerous times to match up an intrusion attempt (particularly the shellcode)
against known exploits.

Now that you have an idea of what Ethereal looks like, know how to use several of its many features, and
have practiced filtering and viewing network captures, it is time to review several popular protocols, their
vulnerabilities, and some of the ways an intruder can exploit them. I will focus on determining exactly
what an intruder was attempting to do, and exactly what kind of access was gained without having to
obtain system logs, or having to bring a system administrator in to locally review the box. Having
confidence that no access was gained and that the system is configured correctly is crucial, especially
when dealing with very large computer networks that span multiple locations. You can imagine the
overhead and expense if you had to verify every single intrusion attempt personally. The first protocol we
will review is the Hypertext Transfer Protocol (HTTP).

 10

HTTP Traffic Analysis

Web traffic is probably what most people picture when they think of the Internet. HTTP, running
normally over TCP port 80, has been the primary medium for web access since 1990. Currently at
version 1.1, HTTP is an application layer protocol that follows a request/response format and allows use
of proxies, gateways, and tunnels to transfer its data. The problem that we encounter is that, unlike ssh or
telnet servers, most people want everybody to be able to access their web server. This means opening a
hole through the firewall, bad idea, or placing the web server in the Demilitarized Zone (DMZ). In
whatever configuration that you may have, typically there will be a lot of people accessing your web site,
and not all of them will have honorable intentions. Lets look at some normal web traffic.

Figure 11 depicts a normal GET request during a connection to a popular Internet search site.

Figure 11. HTTP GET Request

As you can see, a three-way handshake is completed followed by my request for information. This takes
the form of a GET request and includes what I’m searching for, firewalls. The referrer field tells the
server what site you just came from. The User-Agent field gives the software the your client is using. In
this case, you can tell that I’m using Windows 2000 with Internet Explorer (IE) 5.5. The connection field
is a new feature of HTTP 1.1 that allows the client or server to give desired connection state. Cookies,
the last field, are being used more frequently on the Internet to keep track of users, to store personally
information such as user ID’s and passwords, and to track what links a user frequents. I don’t
recommended using them to keep your passwords, credit card numbers, and other important information,
unless you don’t mind sharing your wealth with others. Of course, the connection above did not include
all headers that are possible in a HTTP session. There are several other important fields, all shown in
great detail in RFC 2616, that are worth mentioning.

 11

Areas that are of primary interest to me are the server response fields.

 Figure 12. HTTP Server Response

Shown above is a positive server response, 200 OK. It gives the date, the time the resource was last
modified, entity tag, keep-alive parameters, and other server information. Of particular interest to a
Hacker would be the server version. The example above shows poor server configuration as it gives away
just a little too much information. Isn’t there a root exploit for PHP is what the latest script-kiddie is
thinking right now. Of course, a system administrator could fake some of this information too. One last
important item is HTTP authentication. From an Intrusion Detection standpoint it is important to be able
to distinguish if someone is attempting to access resources they shouldn’t. Also, being able to see what
passwords they used, basic authentication only, lets an analyst know if users are following good security
practices. Really the best practice would be to use SSL (Secure Sockets Layer), but I won’t cover that in
this paper. Since it is normally running on a different port, default TCP port 443, and data must be
encrypted, worms and most script-kiddies probably won’t hit your server. However, be aware that most
hacks that work against HTTP like RDS, Unicode, and Buffer Overflows can work against sites running
SSL. SSL doesn’t magically protect your server from attack; it just encrypts your data. Since there is
already an excellent document on HTTP authentication I wont review it here. The white paper can be
found at http://www.owasp.org/downloads/http_authentication.txt. Lets move on to a few web exploits.

Unicode (Directory Traversal) Exploit

This exploit was first officially publicized around October 2000. It wasn’t until almost a year later, due to
the Nimda worm, that most sysadmins patched their systems to it. However, the Directory Traversal
Vulnerability is an excellent example of the kind of access an intruder can obtain through the web. It also
shows the numerous variations, making IDS detection difficult, that can be discovered in what appears to
be just a simple problem.

There are about three primary ways to exploit this vulnerability (although beneath these lie many
variations). The first involves two and three-byte Unicode encoding. RFC 2279 describes the theory
behind UTF-8, which is the standard used here. I won’t break the standard down into binary, but I will
show using several generic formulas’ how to go from a two-byte encoding to an ASCII value. Later on
we will see how this is useful. With knowledge of the UTF-8 standard and a Hex to ASCII converter the
following formulas should not be too difficult to follow.

http://www.owasp.org/downloads/http_authentication.txt

 12

Below is an example conversion for hex values in the second octet less than 0x80:

 %c1%1c -> (0xc1-0xc0) * 0x40 + 0x1c = 0x5c = ‘\’
 %c0%2f -> (0xc0-0xc0) * 0x40 + 0x2f = 0x2f = ‘/’

For second octet value greater than or equal to 0x80:

 %c0%af -> (0xc0-0xc0)* 0x40 + (0xaf-0x80) = 0x2f = ‘/’
 %c1%9c -> (0xc1-0xc0)*0x40 + (0x9c-0x80) = 0x5c = ‘\’

The second method is using “double-hex” encoding. The standard way of displaying hex values in a URL
is to precede the value with a ‘%’. A common value that you will likely see in a URL is ‘%20’, the
equivalent of a “space”. In our case we are looking for double encoding of forward and back slashes:

%255c = %5c = ‘\’ or %2547 = %2f =’/’ or %%35%63 = %%5c=’\’ and on and on.

As you can see there are several variations under this category that could work.

The last technique I’ll cover is %u encoding. It is not standard usage and therefore is often not decoded
by an IDS, however Microsoft allows its use. To follow the preceding example, just precede the hex
value with a %u00 to obtain %u005c. Just looking for %u00 is not enough as other variation exist. Now
that you have a background on the theory behind encoding techniques, lets look at how they are
implemented against an IIS server.

As an anonymous web user (I_USR), you can only reach directories that are found on the web directory
tree. You cannot access other directories, for obvious security reasons, like Winnt or System32 etc.
Unfortunately, Microsoft IIS versions 4.0 and 5.0 (3 was affected but if anyone is still running that, tough
luck) check for directory traversal (i.e. http://ip/scripts/../../winnt/system32/cmd.exe) before they fully
decode the UTF-8 or double encoded characters. So if you use a URL like:

http://target/scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir
http://target/msadc/..%255c..%255cwinnt/system32/cmd.exe?/c+dir

IIS will not recognize this as a security violation and merrily gives up a listing of the C: drive. This
vulnerability can be exploited even if the system files are located on a separate logical drive than the web
directories. To detect this activity in Ethereal we will look for a 200 OK and the resulting directory files
that get listed. This is shown on the next page in Figure 13.

It is important to realize that 200 OK will not be the only value of success when dealing with commands
sent over the web. Of course “403” will still be permission denied, and “404” is still resource not found.
However, lets say that an attacker has successfully viewed your directories and now wants to gain further
access to the Windows command shell (cmd.exe) using a URL similar to the one below:

http://site/scripts/..%c1%9c../winnt/system32/cmd.exe?/c+copy+..\..\winnt\system32\cmd.exe+help.exe

This command enables an intruder to be able to create files, and deface web pages using redirection. If
this command was successful what will a server return? It won’t be the 200 OK like you would have
probably thought. Instead it gives a “502 Server Gateway Error”. If the command is not typed correctly
you still get the same error. On patched systems, normally these requests will result in a different error
status code, making an analyst’s job a little easier.

http://ip/winnt/system32/cmd.exe
http://target/scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir
http://target/msadc/..%255c..%255cwinnt/system32/cmd.exe?/c+dir
http://site/scripts/..%c1%9c../winnt/system32/cmd.exe?/c+copy+..\..\winnt\system32\cmd.exe+help.exe

 13

Figure 13. Using Directory Traversal to view a directory

For common HTTP status codes visit http://www.inetmi.com/pubs/status.htm. Lets look at a couple of
transcripts to see the difference between success and failure. Figure 14 is example of a failed command.
Notice in the TCP stream how the error “The system cannot find the path specified” is returned.

Figure 14. Intruder is unsuccessful in copying cmd.exe

Now lets see what the server will respond with when the attack is successful. This is shown on the next
page in Figure 15. There is no confusion in interpreting the results as it clearly shows that 1 file is copied.
The 502 errors will also result from a successful file deletion, so keep that in mind.

http://www.inetmi.com/pubs/status.htm

 14

 Figure 15. Intruder gains additional privileges by copying cmd.exe

What I have showed so far is just a small glimpse of commands an attacker can use against an IIS server.
There are far more malicious activities that are just as easy to do, like using tftp to upload and install
netcat. Once this is done, log files can be erased or even worse modified, Trojans can be uploaded, and
full administrator access can eventually be gained. Covering all of these additional steps would be
sufficient for a separate paper. However, this knowledge will let you know when someone has stepped
through the door.

The previous Directory Traversal exploit gave anonymous user level access. Now lets turn our attention
to root level access buffer overflows.

Analyzing Buffer Overflows

Ah, the buffer overflow, the Mecca of the hacker world. Normally very complex to exploit, requiring
knowledge of C and Assembly language programming, computer architecture, and a lot of skill and
imagination. Many hackers dream of reaching the “elite” level; where they too will find the next root
access overflow. Unlike the Directory Traversal exploits, most buffer overflows result in root level
access, as network daemons/processes typically run with root privilege. Unfortunately, once someone
finds a flaw and develops an exploit for it, thousands of script-kiddies come along and use it to
compromise system after system. Vulnerabilities that many believed to be impossible to exploit, for
example the SSH CRC32 vulnerability, are typically discovered often several months after they have been
used in the “hacker underground”. There are many ways to go about detecting buffer overflow attempts.
Simple ASCII/HEX string matching can be done to look for common values like /bin/sh or .printer or
.ida. Many IDS’s look for a string of architecture standard NOPs (do nothing) like 0x90 or 0x220. There
are some exploits that can be discovered because they require specific data to be passed or they elicit a
certain response from a server. Some of the more advanced ways to detect buffer overflows involve
protocol analysis where a field size is larger than normal or contains a different type of data than the RFC
(Request for Comment) dictates. Traffic pattern analysis also falls into this category.

It’s unfortunate that many IDSs look primarily at only the first two examples listed above. Matching on
“known” exploit shellcode or the “standard” NOP will detect the majority of the script-kiddies. However,
what about the more skilled hackers? There are already several tools available that make it easier to
bypass an IDS. One such tool is ADMmutate, by ktwo, and utilizes Polymorphism to evade IDS. One of
the goals of ADMmutate is to make detecting the exploit too processor intensive by having a significant
amount of variation in the shellcode, which is encoded, and a large number of NOPs to choose from. I
will look at several buffer overflows in this section that cover the range from basic to polymorphic, and
some of the ways that they can be detected.

 15

So what does a buffer overflow look like? For our first example lets use the .printer or “ISAPI” buffer
overflow that affected Windows 2000 servers. This vulnerability can be exploited over the Web, port 80
or port 443. Figure 16 shows a successful exploit using the “jill.c” exploit by Dark Spyrit.

Figure 16. Successful exploit using jill.c

The figure above shows my Linux box (10.1.1.50) establishing a connection with a web server
(10.1.1.10). Then we see a GET request for NULL.printer followed by a lot of garbage looking data and
the Intel standard NOP (90h). The server acknowledges our request, and then we see an outbound
connection from the web server to my system on port 1400. I have netcat listening on port 1400 for the
command shell that the server will push back to me. The figure below shows the command shell with
system level access.

 Figure 17. Gaining system level access to a web server

 16

That compromise took less than a few seconds. So exactly what happened? First, I request NULL.printer
with my exploit code stacked after it. I take advantage of the unchecked buffer in the ISAPI extension
that handles this GET request. I know that the buffer size is about 420 bytes so I carefully construct my
exploit to include a jump that overwrites EIP and hops back to the “NOP sled”. This gives me flexibility
in guessing a return address. I ride the NOPs to a pointer that hops back to a larger buffer, located
between the NULL.printer and the Host option, where I have code that executes a remote shell. This
exploit is the example of a “stack overflow”. This particular exploit code would be easy to catch. We
could look for several NOPs (0x90) in a row, or we could match on the “.printer” request. However, what
if a more sophisticated attacker comes along and modifies the code to obfuscate the .printer request or
inserts another NOP that is not standard. Figure 18 shows a “modified jill.c” where I replace the NOP
with another value. As you can see the exploit is still quite successful.

Figure 18. Modified jill.c exploit

You could start looking for a NOP value of 0x45, but your fighting a losing battle as I could once again
modify the exploit with another value. I’m not saying that looking for 0x90 or other “standard” NOP is
bad; on the contrary, it will detect numerous intrusion attempts. Just be aware of your limitations. So
what is the best way to detect web based buffer overflows? Most HTTP requests should be under
approximately 800 bytes. Except many online web services like Hotmail exceed this value regularly.
Hey, maybe this is a good way to detect misuse of company time. It’s not that easy, as more and more
web sites are pushing this byte limit with extremely long URL’s. However, this method of protocol
analysis should not be ruled out, as it allows detection of even the most sophisticated hackers. Remember
when we were learning about Ethereal’s filter rules and we made a filter for buffer overflows? Lets try it
out and see how effective it is. Figure 19, shown on the next page, shows the filtered output.

 17

Figure 19. Filter eliminates extra web traffic

The next buffer overflow we will analyze is the Telnetd ‘AYT’ overflow. I’ll use code based on the
TESO crew exploit, to demonstrate what a “heap-based overflow” looks like and how to determine if an
exploit attempt was successful. The vulnerability lies in an unchecked buffer in the telnet option
handling. In this case, by using the ‘AYT’, Are You There option, you can actually get the system to
overflow itself. However, there is not enough space to execute a shell because I can’t hop back into the
buffer. The traditional stack overflow won’t work, because jumping back to a bunch of AYT’s won’t get
you anywhere. This is where the “heap-based overflow” comes in. The heap is an area in memory that is
dynamically allocated by an application when needed. This means that passwords, usernames, file
contents, etc. are all stored in heap memory somewhere. There are not as many exploits out for heap
overflows due to the complexity of exploiting them. When you think of the difference between heap and
stack, think dynamic and static (although this is an oversimplification). Lets see how the exploit places
code in heap memory and then uses a stack overflow to point back to the shellcode in memory. As part of
a telnet connection there is the three-way handshake followed by the telnet server providing connection
parameters. The “Do Authentication” option, RFC 2941, lets the client know that authentication other
than clear text password login is possible. See Figure 20 below.

Figure 20. Telnet Server connection options

 18

What the exploit now needs to do is place the NOPs and shellcode into memory. It attempts this by
asking to set a new encryption option.

 Figure 21. Request from client

This particular exploit is designed for FreeBSD and NETBSD so it will typically fail against another OS
(Solaris, Windows). I am going to show an example of an unsuccessful attempt, as I am running this
exploit against a Windows 2000 telnet server. We don’t even have to wait until the end of Ethereal
output, as we already know that the attempt will be unsuccessful, as shown below.

 Figure 22. Negative response from Server

Since there is no place to put the NOPs and shellcode, the stack overflow (AYT) will have nowhere to
point to. Lets pretend that the server responded with “Do Encryption Option”. What then? We will have
about 500 bytes, in the Telopt_encrypt variable allocated in heap memory, to place our code. This code
will have to be placed continually (normally over 15MB of data) until the process freezes.

Figure 23. NOPs and Shellcode placed in Telopt_encrypt variable

 19

Examine Figure 23. Do you notice anything strange about the Ethereal capture? Where are all of the
NOPs? What is that weird looking n/shh//bi? Welcome to the wonderful world of polymorphic buffer
overflows. The shellcode has been modified to not look like /bin/sh, but still produce a shell. The NOPs
are there, but are carefully chosen to be non-standard and non-repeating. This just makes our job more
difficult. The next portion of the exploit is the stack-based overflow.

Figure 24. AYT overflow with pointer to shellcode

This is really easy to detect, as the attacker must use a series of ‘AYT’ commands to cause the overflow.
Figure 25, on the following page, depicts an overview of the attack. I have removed numerous frames to
make the output more readable, but you can tell from the time that the overall exploit attempt lasted about
thirty seconds. Successful exploitation often takes a minute to several minutes to complete. Lets step
through the network capture. Frames 9-12 contain the three-way handshake, 15 is the server providing
connection parameters/options, in 16 the attacker acknowledges the servers packet, then in 17 sends the
shellcode to be stored in heap memory. Between 0 and 30 seconds, the contents of frame 17 are
repeatedly sent to the server. Frame 18 contains the stack-based overflow, 19 is the servers response to
the ‘AYT’ commands. In a successful overflow, the server will only respond with an ACK packet. This
is due to the Telnet process crashing. Of course, in an unsuccessful exploit that also crashes the Telnet
daemon, you might have to look at another area of the Ethereal capture to determine the outcome. The
particular shellcode used, in this example, simply executes a remote shell during the same connection. It
is easy to determine if an intruder gained access to the box, because you will see commands being typed
followed by positive responses from the server. However, what if port-binding shellcode is used? If you
are unable to reach a conclusion as to outcome of an intruder’s attack, then it is necessary to immediately
do further analysis on the potential victim system. Is the victim running the same O/S that the attack
exploits, is it running a vulnerable version of the software, and is it patched? If you discover that the
system was actually vulnerable to the exploit and find a backdoor, then your job is easy.

 20

Figure 25. Overview of unsuccessful Telnet ‘AYT’ buffer overflow

You would probably want to rebuild the box, as you don’t know exactly what the attacker has done. Now
there are excellent forensics techniques to determine what an intruder accomplished, but normally it is
better to “play it safe” and rebuild. The tricky situation is when you find nothing wrong at all on the
victim system, no sign of a backdoor, no rootkits, but you know the system was vulnerable. Once again,
just how risky do you want to be?

ICMP and Covert Backdoors

There are several ways that an intruder, after gaining access to your computer, can quietly continue to
keep control. Instead of obvious connections using FTP, SSH, or Telnet, an attacker might try something
more devious. Several tools have been designed to facilitate this type of access. LOKI is an example of
sending encrypted transactions using either ICMP_ECHO / ICMP_ECHOREPLY or DNS namelookup
query / reply traffic. Another example is Mixter’s Q-Shell program that uses encrypted TCP commands
as part of a shell/port bouncer. A recent program currently in development, ICMP SHELL, is similar to
LOKI in that it uses ICMP tunneling to transmit its data. It offers more flexibility in the number of ICMP
types that can be used, but it currently does not support encryption. Covert communication can also
happen through HTTP, using a tool like rwwwshell by THC. On a busy web server a sysadmin probably
wouldn’t notice the extra web traffic, and the firewall would have no effect since the program initiates the
connection. There are more sophisticated programs that are even harder to detect than the above-
mentioned tools, but this will give you a good introduction to how backdoors work.

Have you ever made the mistake of port scanning a system that was potentially compromised, but then
deciding everything was fine because you didn’t see any unusual ports open? A lot of people have. Lets
introduce the first of two tools we will examine using Ethereal. It is called ICMP SHELL (ISH) and was
written by Peter Kieltyka for Linux, BSD, and Solaris systems. It can use most ICMP types to execute
commands on a remote system. Before we look at a network capture of ISH traffic lets quickly examine
how normal ICMP Echo request/Reply packets should appear. ICMP is a Network layer protocol (layer
3) and is defined by RFC 792. In it we see that ICMP Echo Replies should mimic a request, with the only
changes being that the type code is now zero not eight, and the checksum will be recomputed. A typical

http://freshmeat.net/~elux/

 21

size for ICMP Echo packets is around 60-70 bytes. A reply should have the same size as a request.
Below is normal ICMP traffic.

Figure 26. Normal ICMP Echo request/reply traffic

The letters in the data portion are normal for a windows box “pinging” another system. As you can see,
one ping request gets one ping response. Now lets look at ISH traffic, Figure 27.

Figure 27. ISH traffic (10.1.1.5 is compromised)

 22

A sysadmin might not even notice anything peculiar about the above traffic. Especially if there is a lot of
ICMP activity. However, if we are looking for something that is out of the ordinary we have just found it.
First thing we see is that there is not a one to one ratio of ping requests to replies. Some might pass this
off as “heavy traffic” where not all of the requests are getting through. However, if you look closely, you
will notice that there are more replies than requests, which isn’t normal. A hacker can get around this by
setting the ISH program on the compromised system to send an echo request in response to an echo reply.
That’s hurts your brain if you think about it too hard. Then, of course the sysadmin will wonder, “Why
am I sending so many pings”. Other things that do not look “right” about this traffic are the size and
content of the data field. You shouldn’t see the words “root” being passed in the data portion.

How does the hacker install and run ISH? After compromising a computer, the intruder uploads the ISH
server and runs it. In the case for the Ethereal capture shown below it would be:
bash# ./ishd -i 780 -t 14 -p 200

Now the hacker sets up a client on his/her system: bash# ./ish -i 780 -t 13 -p 200 10.1.1.5
The –i option which sets the identifier and the –p option which sets the packet size must be the same on
both client and server.

Figure 28. ISH ICMP Timestamp option

So how do you go about detecting and stopping malicious ICMP activity? One technique is to look for a
“string” or hex value that should not be found in the data portion. Also, examining the total size of the
packet is useful against programs whose data content exceeds the typical ICMP length. Of course other
methods must be used to detect encrypted communication that has correct checksums, identifiers, packet
length, and sequence numbers. The best solution is disallowing ICMP types that aren’t required at border
routers, and preventing or detecting the initial compromise.

An attacker can control even computer systems that are behind a well-configured router, firewall, and
proxy server. Granted, it will be difficult for the intruder to place the backdoor on the compromised
system, but it is possible. An example of a tool that can allow an intruder to control such systems is
rwwwshell. Created in 1998 by van Hauser (member of “The Hacker's Choice” group), the Perl script

 23

initiates an outbound connection to the hacker’s system that is running a server listening on the chosen
port. If anyone, besides the rwwwshell client (which is the same script as the server) connects to the
intruder’s server it will respond with a 404 File Not Found Error. So what does the client-server
communication look like?

Figure 29. Compromised system initiates connection to hacker’s server

The client (10.1.1.5) establishes the connection with the attacker’s computer. This allows the attacker to
bypass normal firewall and proxy server rules. After the three-way handshake is complete, the client
sends the initial “authentication” information using a form of uuencoding as a configurable GET request.
Now the hacker sees the root shell and issues the “who” command using a HTTP continuation request.
The client sends the requested information in the next GET request, shown in Figure 30.

Figure 30. Client responds with the requested data

 24

The data requested was fairly small, but what if the password file or a large directory is listed? This
resulting GET request will be very large and should throw up a red flag. The next request I send is “cat
/etc/passwd”, shown in Frame 8, Figure 31. When the compromised system returns the contents of the
password file it is a fairly large GET request.

Figure 31. Abnormal GET request delivers /etc/passwd

As you can see, detecting a hidden backdoor can be difficult (and these are very primitive in function).
Covert Shells, by J. Christian Smith, is an excellent article that reviews some common backdoors and
ways to detect them. I encourage you to read this article and some of the links to get a better
understanding of this threat (http://rr.sans.org/covertchannels/covert_shells.php). The best defense
is configuring your network and securing your systems to make compromise very difficult. If an attacker
does manage to gain access, then early detection is once again the second best alternative.

http://rr.sans.org/covertchannels/covert_shells.php

 25

Interpreting NetBIOS/SMB Traffic

NetBIOS and Server Message Block traffic (also known as Common Internet File System (CIFS)) is one
area that is not looked at in much detail. It is usually very difficult if not impossible to determine exactly
what an intruder has done, without using Ethereal or Netmon. I will try to explain a little more in depth
on how NetBIOS/SMB operate, how to spot brute forcing, IPC$ connections, successful logins, and
common Windows hacking tools. There are many good tutorials out there on hacking NT/2000 so I
won’t repeat everything they say, but I will include some of them as a reference.

I am going to address two areas in this section. First, I’ll cover regular NetBIOS traffic, SMB traffic, and
a little theory on how the protocols work. During the same time I’ll throw in practical examples of what
commands are being issued and how the resultant traffic reads in Ethereal. This is not a tutorial on
Ethereal itself, but even with a basic understanding of the tool it should not be too difficult to follow.

Lastly, I will cover some common ways of hacking Windows using NetBIOS and SMB.

There are several very good references at the end of this paper. I encourage you to read the first few and
use the others as a reference when you encounter strange hex codes or SMB names that you are
unfamiliar with. I tried not to get bogged down too much with every technical detail of NetBIOS and
SMB. Those details are in the references.

DISCLAIMER: This is just a reminder, once again, to not use any of this information for illegal
purposes. Use this on a test network at home or in the lab.

Part I: Normal NetBIOS Traffic:

Here is an example of what connecting to a remote share looks like.

My computer is Bongo (10.0.0.50) and I want to access one of Testman’s (10.0.0.100) shares. There is a
file on one of the shares, but I don’t remember which one or the name so I have to start from scratch.

NOTE: Since I am running these sniffer traces and connections on the same network the traffic is going
to look slightly different than from a normal user (or attacker) connecting across the Internet. However,
the principles are the same.

First I query 10.0.0.100 to obtain information about the computer:

c:\ nbtstat –A 10.0.0.100

This returns, on the initiating display, the output shown on the next page.

 26

 Figure 32. Nbtstat screen output

NBNS (NetBIOS name service) runs in the session layer (5 for the OSI model). It runs from port 137 to
137 via UDP.

Figure 33. Ethereal display showing nbtstat response

The most important things to take from this output are: TESTMAN is the name of the computer <00> ,
has sharing enabled <20>, and is registered by the messenger service <03>. This means if you wanted to
graphically browse this computer you could add TESTMAN to your lmhosts file. NetBIOS was
originally designed as a local network protocol, where server names were automatically matched to their
IP addresses. Once TCP/IP support was added, Microsoft needed a way to perform server name to IP

 27

address matching for remote domain controllers and servers. The lmhosts file does this. Lastly we see
that the administrator is logged in (unless the sysadmin is tricky and renamed the admin account).
Now I want to connect to TESTMAN to see what shares are available. I add the correct entry to my
lmhosts file and start up Microsoft Network. I log in to TESTMAN (10.0.0.100) as administrator, but I’m
forgetful and make three incorrect entries before authenticating. Just this small step generates a whole
heap of traffic:

Figure 34. Setting up a SMB session

As you can see I (Bongo) send a SYN to Testman on port 139. The basic info gets passed (Seq
umber=1562215886, Src Port=1028, etc, etc.) and the handshake is completed. What I know so far (by
looking only at this Ethereal output) is that Networking is installed on Testman, but I don’t know yet if
there are any open shares. Next we look at the NBSS (NetBIOS Session Protocol, TCP, Layer 5) session
request, Figure 35. It is here that I give my computer name and the name of the server I want to connect
to.

 28

 Figure 35. Bongo requests a NetBIOS session with Testman

Testman returns a positive session response, so we know that there are shares we can connect to.
Now we go up two layers to layer 7 and SMB (Server Message Block). This rides atop NetBIOS and is
responsible for the majority of the action we will be seeing from here on out. See the two references at
the end for more information on SMB.

 Figure 36. SMB Negotiate Request

First, I need to tell the server what protocols I am capable of supporting. These range from the weak
Lanman 1 protocol, to the newer Lanman 2.1, and finally the strongest NTLM authentication. As most of
you know, Lanman uses much weaker encryption than NTLM and has it’s password broken up into two
8-byte chunks (7 bytes password, 1 byte filler). However, Windows is backwards compatible and will
send both hashes to authenticate. Lophtcrack version 3 (LC3) is now capable of sniffing SMB sessions
and cracking the passwords sent over the wire. It is very capable and was able to crack several test
passwords I threw at it in under 10 minutes (i.e. sun@fire! broke within 5 min). Picture below shows
LC3 in the middle of cracking this password.

 Figure 37. Lophtcrack version 3 cracking the Lanman hash

You can even manually create your own files from network traffic to feed to LC3 for cracking. Lets
continue with the SMBnegprot (negotiate protocol) request. I send the following options, shown in
Figure 38, to Testman.

 29

 Figure 38. Dialects Bongo can support

As you can see Bongo is capable of using most dialects.

 Figure 39. Testman indicates the required dialect

This means that the dialect used must be greater than Lanman2.1, most likely NTLM. Of course, both
Lanman and NTLM hashes end up getting sent as described before.

Now it is time for the most important part, the password authentication. SMBsesssetupx (SMB session
setup) is where the passwords get transmitted and checked. The documentation that comes with
Lophtcrack describes in great detail this process. What we are really interested in is the share I am trying
to connect to and if it was successful. In my case, since I am on the same network as Testman and I am
connecting through a GUI interface, output is a little weird. The first few lines I didn’t make (the
computer automatically tried to connect). So lets see what Bongo tried to do.

First thing I see is that a session setup was attempted and the target share was: \\testman\IPC$. Why is
Bongo trying to connect to the IPC$ share, I thought only hackers tried to. Turns out that this is business
as usual for machines on a LAN. Still I would like to know what type of access a computer can
automatically obtain and if Bongo will be denied. Looking at the SMB traffic further we see that a NULL
session was attempted. A Unicode password length of zero indicates this.

 Figure 40. Password length indicates a NULL session

 30

Figure 41. Session Setup requesting access to the IPC$ share

Now lets look at Testman’s response to see if the attempt was successful:

 Figure 42. Positive Session Response

What I’m looking for is the value in the status section. In this case the value is 0x00000000 or 0 and is a
sign of success. The next few lines are the result of searching through the Microsoft Windows Network
for servers. This LANMAN call is performing a Netserverenum2 (Network Server Enumeration).

 Figure 43. Network Server Enumeration Response

 31

Starting at Frame 26, Figure 34, is where I am manually trying to connect as administrator to Testman.
They clearly show (password length) that these new login attempts are not NULL sessions. Ethereal also
shows that I am attempting to connect to the IPC$ share as administrator, Figure 45.

 Figure 44. Login attempt as administrator

 Figure 45. Attempt to connect to IPC$ share

Response from Testman is shown below.

 Figure 46. Failed login attempt

This was one of my bad passwords, as shown by the Status value of: 0xc000006d. There are several more
unsuccessful attempts all with the same status value. There are several other values and responses that
indicate an unsuccessful login attempt. Some are as simple as “bad password” or “login failure”, while
others are a cryptic hex value. Finally, I type the correct password and I am logged in to Testman.

 Figure 47. Successful Session Setup

 32

It is obvious that the last authentication attempt was successful, as a flurry of network traffic results.
Also, several new commands are seen and all of the attempts are valid. Several of these commands may
be unfamiliar so I am including a brief chart of common SMB commands and an explanation as a
reference. Use it in conjunction with the Ethereal output.

I am almost there. All I need to do now is connect to the secret share on Testman and read my file.
Remember once again that my IP is (10.0.0.50, Bongo) and Testman is (10.0.0.100). You will probably
be looking at NetBIOS traffic with IP’s only and not the resolved names, for increased speed.

Figure 48. SMB Traffic after a (GUI) share connection

 I authenticate to the secret share (on Windows NT and 2000 authentication is usually based on user
permissions and not passwords per share) as shown in Figure 49. So if I had logged in to Testman as a
normal user and set the Secret share to be administrator only, I would be denied access. You can see
where I actually connect to the share (SMBtconx response in Frame 205, Figure 48). Now I am going to
open info.txt. An SMB Query and Find command locate info.txt and after a lot of extra information from
NetBIOS, I finally read the information I was looking for a long time ago. It reads, “Meeting at 1800…at
the AFCERT”. This is where using the TCP Stream option might prove to be useful. Although it doesn’t
give you in depth technical information, it does allow you to quickly see if a lot of data was transferred
and the shares/files that were accessed. Figure 50, shows the Read Response.

 33

Figure 49. Authentication with the Secret share

Figure 50. Reading the contents of info.txt

Before we proceed to techniques used to hack NetBIOS/SMB, lets look briefly at SMB extended security
and encrypted SMB Session Setups. These new features, incorporated in SMB over TCP/IP, can be
found in Windows 2000 and XP. If you’re expecting to review hashes and account password length to
determine if a NULL session was negotiated or if a user account was accessed, you will be in for a
surprise. Encryption, as expected, protects information such as password length and hash values from an

 34

attacker sniffing traffic on your network. However, it still shows the name of the user that is logging in.
The figure below shows an example of an encrypted login.

Figure 51. Encrypted Session Setup

The initial connection is slightly different than that of the older NetBIOS session protocol (via TCP 139).
First, the three-way handshake is established over port 445 (shown in Frames 10-13, Figure 51 as
microsoft-ds). Notice how there is no NetBIOS session setup, as SMB now rides directly over TCP.
Now the protocols are negotiated with the destination server indicating that passwords will be encrypted.
Next, the user sends the encrypted password as part of the “Security Blob” field. The server responds
with an error, but this is normal as it indicates “Status_More_Processing_Required”. This means that
there is more authentication information on its way from the client. The second Session Setup Request
contains the final part of the password authentication and contains the username of administrator. You
have to look in the ASCII display section to see this. In the example above, the middle computer
name/username section is: (4e 00 47 00 61). This translates to the ‘GO’ in BONGO and the ‘a’ in
administrator. In the case of a NULL session the above sequence would be (4e 00 47 00 00). Notice how
the last value is 00, which indicates a NULL username. Also, a NULL session will typically have a
security blob length under 100, while an authenticated login will be in the area of 150 to 250.

And that is it!!! This will give you an idea of what normal NetBIOS/SMB traffic looks like and better
prepare you to spot hackers/brute forcing etc….

 35

PART II: Hacking NetBIOS/SMB

This section will concentrate more on the Ethereal output of intrusion/enumeration attempts and not the
actual commands used to hack NetBIOS.

LanGuard: Fast tool that can scan a single computer or domain and enumerates shares, usernames,
registry entries, etc. LanGuard also has other scanning capabilities.

Redbutton Hack:

Is a very old hack, affecting Windows NT Servers older than SP3. New NT/2000 servers can still give up
information if not configured properly, and you never know when an admin will put a default server up.
It took advantage of the NT NULL Session to determine current Administrator name, all available shares,
and open registry entries. The redbutton tool did it automatically. These are some of the commands it
used.

First I create a NULL session with Testman: c:\ net use \\10.0.0.100\ipc$ “” /user:administrator

Figure 52. Successful NULL session login

There are a couple of interesting things here. First, look how bongo (10.0.0.50) attempts to connect to
port 445 (microsoft-ds) first. This is the equivalent of port 139 for Windows 2000 and XP. Testman
sends a reset, bongo then sends the SYN to port 139, the three-way handshake is established, and finally
session and protocols are negotiated. Now we see that a session setup is requested. The request is a
NULL session with administrator as the user. The traffic looks exactly the same as in the “normal traffic”
section, and is successful.

 36

Now I can list shares that I normally would not be able to see: c:\ net view \\10.0.0.100

Figure 53. Intruder enumerates shares

Then I determine the SID (Security Identifier) of Testman:

C:\ user2sid \\10.0.0.100 “testman”

 37

Now using this information, I determine the administrator’s name (even if it has been changed):

C:\ sid2user \\10.0.0.100 5 21 713231380 198978898 14044502 500

One of Ethereal’s shortfalls is analyzing named pipes (/PIPE) and other more complex Microsoft
functions. With the latest edition, its capabilities come very close to that of Microsoft’s Network
Monitor. Still, even in earlier versions of Ethereal, it is possible to see what data was transmitted.

 Figure 54. Ethereal version 0.8.19 displays the admin account

As you can see the prior version of Ethereal is not as detailed as 0.9.1. The new dissectors have greatly
improved the usefulness of reviewing named pipe network captures. So the hacker has confirmed that the
Administrator account is truly called administrator. Now it is time to brute force the account.

 38

NAT (NetBIOS Auditing Tool) by Rhino9

NAT is so easy to use it’s scary. All you do is specify the username list, password list and destination and
it does the rest for you:

C:\ nat –u userlist1.txt –p passlist.txt >> output.txt

I removed all usernames, except administrator, since we already determined that using the NULL session.
Also, I cheated and added the real password at the end of the password list for purposes of this paper (I
didn’t want to have to wait that long). You probably already have an idea what the failed login and
successful login attempts will look like.

Turns out that NAT makes the traffic look quite different. Since the password guessing attempt is
performed through the command line, the results are actually clearer to read. Also, NAT specifies that
passwords will be sent in the clear (no hashing, so ethereal will easily pick this up).

Figure 55. Brute forcing the Administrator account

The initial responses from Testman clearly show denied access.

 Figure 56. Failed Session Setup

 39

Now, what does the successful login look like?

Figure 57. Login attempt using password of windmill2

 Figure 58. Positive response from Testman

The hacker now has the password to Testman and can use Lophtcrack to dump the remote registry.

Lophtcrack:

Lophtcrackv3 has the ability to dump passwords from a remote registry. It does not work on a computer
with Syskey installed or on Windows 2000. All I do is fire up LC3 and request a Security Accounts
Manager (SAM) database dump from Testman. There are two ways you can analyze remote registry
activity either use the main layout or use TCP Stream. The TCP Stream method gives much clearer
information as shown by Figure 59.

 40

Figure 59. TCP Stream of remote registry access

You can see where the registry is being accessed, including the SAM. In the second half of the TCP
Stream (on the next page), it is clear that two usernames (hacker and daviesd) are having their SAM
information dumped. The numbers that can be seen are the hashes being sent across the wire by our
friendly tool Lophtcrack. All I need to do now is run Lophtcrack on these passwords and I will have all
of the accounts. Lets try it out and see how long it takes.

Figure 60. LC3 in action

 41

Figure 61. Lophtcrack accesses the registry to dump the SAM database

It took two minutes to crack the administrator password and hacker’s password. Daviesd’s password was
holding out a little bit longer, but it too cracked after about three minutes. ☺

SMBRelay:

This tool is capable of capturing SMB hashes or hijacking a session through a Man-In-The-Middle attack.
In order to perform this MITM attack a hacker has to either use ARP poisoning or send a malicious email
with code to cause the victim to connect to the hacker’s computer. Unfortunately, the traffic looks normal
and is something usually only detected on the client side (from strange errors due to having the session
dropped).

An example of using SMBRelay:

C:\ smbrelay /IL 2 /IR 2 /L+ 10.0.0.5 /R 10.0.0.15 /T 10.0.0.75

That concludes our review of NetBIOS and SMB. The learning curve can be steep at first due to the non-
ASCII commands used in Windows Networking. However, once the basic terminology and syntax is
learned, deciphering what a normal user or a malicious attacker is doing on your computer is not such a
daunting task.

 42

Conclusion

Whether Ethereal is used online for exploit code and signature analysis, or offline to analyze suspicious
packets, it is a useful and powerful ally. Instead of looking at garbled data that a simpler tool like
tcpdump would produce, you get the capability to dig through each network layer either by hand or using
custom filters. Exploits that would normally be very difficult to detect can be caught in the midst of an
overload of extraneous data. Even for those that don’t want to get into the technical details can use option
like TCP Stream to give a clear overview of a connection. I didn’t even come close to covering all of the
protocols and exploits that Ethereal can analyze. Hopefully, by covering some of the more common
protocols (HTTP) and not so commonly analyzed protocols (SMB) you will see the range of options that
you possess. Are there other freeware and commercial tools out there to analyze network captures? Sure
there are. I’d argue, that for the price (free) and the many capabilities that Ethereal has, it would be tough
to find a close competitor.

Acknowledgements

I would like to thank Richard Bejtlich, Chuck Port, and the Incident Response Team for reviewing and
commenting on this paper.

Useful References
Ethereal:

 Ethereal User Guide
 http://www.ethereal.com/docs/user-guide

 Tcpdump
 http://www.tcpdump.org/

Web Traffic:

 HTTP Status Codes
 http://www.w3.org/Protocols/HTTP/HTRESP.html

 Unicode (Directory Traversal)
 http://rr.sans.org/threats/unicode.php

 Http Authentication
 http://www.owasp.org/downloads/http_authentication.txt

Buffer Overflows:

 ADMmutate
 http://www.ktwo.ca/security.html

 Teso Security Group
 http://www.team-teso.net/

http://www.ethereal.com/docs/user-guide
http://www.tcpdump.org/
http://www.w3.org/Protocols/HTTP/HTRESP.html
http://rr.sans.org/threats/unicode.php
http://www.owasp.org/downloads/http_authentication.txt
http://www.ktwo.ca/security.html
http://www.team-teso.net/

 43

Heap-based Overflows – w00w00 Security Development
 http://www.w00w00.org/files/articles/heaptut.txt

 Smashing the Stack for Fun and Profit
 http://online.securityfocus.com/library/14

Backdoors:

 Placing Backdoors Through Firewalls
 http://www.terra-networks.com/Library/fw-backd.htm

 ICMP Shell
 http://freshmeat.net/projects/ish/

Covert Shells
http://rr.sans.org/covertchannels/covert_shells.php

 NetBIOS/SMB:

SMB Exchange
 http://samba.anu.edu.au/cifs/docs/what-is-smb.html

SMB Commands
 http://ourworld.compuserve.com/homepages/TimothyDEvans/smb.htm

COTSE-NetBIOS Tools
http://www.cotse.com/tools/NetBIOS.htm

NT HACK FAQ
http://www.nmrc.org/faqs/nt/

Modern Hackers Desk Reference

Rhino9 Group
http://www.technotronic.com/rhino9

NetBIOS Suffixes
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q163409

Named Pipes
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q128985

Great information on SMB
http://samba.he.net/using_samba/ch03_03.html

SMB Protocol In-Depth
http://www.protocols.com/pbook/ibm.htm

SMB Protocol In-Depth
ftp://ftp.microsoft.com/developr/drg/cifs/ smbpub.zip (SMB Full Documentation)

http://www.w00w00.org/files/articles/heaptut.txt
http://online.securityfocus.com/library/14
http://www.terra-networks.com/Library/fw-backd.htm
http://freshmeat.net/projects/ish/
http://rr.sans.org/covertchannels/covert_shells.php
http://samba.anu.edu.au/cifs/docs/what-is-smb.html
http://ourworld.compuserve.com/homepages/TimothyDEvans/smb.htm
http://www.cotse.com/tools/netbios.htm
http://www.nmrc.org/faqs/nt/
http://www.technotronic.com/rhino9
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q163409
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q128985
http://samba.he.net/using_samba/ch03_03.html
http://www.protocols.com/pbook/ibm.htm
ftp://ftp.microsoft.com/developr/drg/cifs/

 44

Tools:

 ADMmutate
 ICMP Shell (ISH)
 Rwwwshell.pl

Lophtcrack (v3)
 NAT
 LANguard Network Scanner
 Netbrute
 Sid2User/User2Sid
 Smbrelay

Additional NetBIOS/SMB Reference:

1.Excerpt from http://ourworld.compuserve.com/homepages/TimothyDEvans/smb.htm

SMB runs either over the NetBIOS Frames Protocol (NBF), NetBIOS over TCP/IP, or NetBIOS over
IPX.

SMB
Server Message Block (SMB)

/ | \
NetBIOS Frames Protocol (NBF)
ie NetBEUI ie NetBIOS or NetBIOS over TCP/IP

RFC 1001 RFC 1002 or NetBIOS over IPX

SMB Command Codes

Below is a table giving some of the Core SMB commands:

Core SMB Commands
Field Name smb_com Description

SMBmkdir 0x00 Create directory
SMBrmdir 0x01 Delete directory
SMBopen 0x02 Open file
SMBcreate 0x03 Create file
SMBclose 0x04 Close file
SMBflush 0x05 Commit all files
SMBunlink 0x06 Delete file
SMBmv 0x07 Rename file
SMBgetatr 0x08 Get file attribute
SMBsetatr 0x09 Set file attribute

 45

SMBread 0x0a Read byte block
SMBwrite 0x0b Write byte block
SMBlock 0x0c Lock byte block
SMBunlock 0x0d Unlock byte block

SMBmknew 0x0f Create new file
SMBchkpth 0x10 Check directory
SMBexit 0x11 End of process
SMBlseek 0x12 LSEEK

SMBtcon 0x70 Start connection
SMBtdis 0x71 End connection
SMBnegprot 0x72 Verify dialect

SMBbskattr 0x80 Get disk attributes
SMBsearch 0x81 Search multiple files

SMBsplopen 0xc0 Create spool file
SMBsplwr 0xc1 Spool byte block
SMBsplclose 0xc2 Close spool file
SMBsplretq 0xc3 Return print queue
SMBsends 0xd0 Send message
SMBsendb 0xd1 Send broadcast
SMBfwdname 0xd2 Forward user name
SMBcancelf 0xd3 Cancel forward
SMBgetmac 0xd4 Get machine name
SMBsendstrt 0xd5 Start multi-block message
SMBsendend 0xd6 End multi-block message
SMBsendtxt 0xd7 Multi-block message text
Never valid 0xfe Invalid
Implementation-dependant 0xff Implementation-dependant

Below is a table giving some of the Core plus commands:

 46

Core plus Commands
Field Name smb_com Description

SMBlockreadr 0x13 Lock then read data
SMBwriteunlock 0x14 Write then unlock data
SMBreadBraw 0x1a Read block raw
SMBwriteBraw 0x1d Write block raw

Below is a table giving some of the LANMAN 1.0 SMB commands:

LANMAN 1.0 SMB Commands
Field Name smb_com Description

SMBreadBmpx 0x1b Read block multiplexed
SMBreadBs 0x1c Read block (secondary response)
SMBwriteBmpx 0x1e Write block multiplexed
SMBwriteBs 0x1f Write block (secondary response)
SMBwriteC 0x20 Write complete response
SMBsetattrE 0x22 Set file attributes expanded
SMBgetattrE 0x23 Get file attributes expanded
SMBlockingX 0x24 Lock/unlock byte ranges and X
SMBtrans 0x25 Transaction (name, bytes in/out)
SMBtranss 0x26 Transaction (secondary request/response)
SMBioctl 0x27 Passes the IOCTL to the server
SMBioctls 0x28 IOCTL (secondary request/response)
SMBcopy 0x29 Copy
SMBmove 0x2a Move
SMBecho 0x2b Echo
SMBwriteclose 0x2c Write and Close
SMBopenX 0x2d Open and X
SMBreadX 0x2e Read and X
SMBwriteX 0x2f Write and X
SMBsesssetup 0x73 Session Set Up and X (including User Logon)
SMBtconX 0x75 Tree connect and X
SMBffirst 0x82 Find first
SMBfunique 0x83 Find unique
SMBfclose 0x84 Find close
SMBinvalid 0xfe Invalid command

 47

SMB Error Class

Below is a table giving some of the SMB Error class values:

SMB Error Class
Field Name Value Description
SUCCESS 0x00 The request was successful
ERRSRV 0x02 Error generated by the LMX server

SMB Return Codes for Error class 0x00

Below is a table giving some of the SMB Return Code Values when the Error class is 0x00:

SMB Return Code
Field Name Value Description

BUFFERED 0x54 The Message was buffered
LOGGED 0x55 The Message was logged
DISPLAYED 0x56 The Message was displayed

SMB Return Codes for Error class 0x02

Below is a table giving some of the SMB Return Code Values when the Error class is 0x02:

SMB Return Code
Field Name Value Description
ERRerror 0x01 Non-specific error code
ERRbadpw 0x02 Bad password
ERRbadtype 0x03 Reserved

2. Excerpt from What is SMB? by Richard Sharpe (http://samba.anu.edu.au/cifs/docs/what-is-
smb.html)

An Example SMB Exchange
The protocol elements (requests and responses) that clients and servers exchange are called SMBs. They
have a specific format that is very similar for both requests and responses. Each consists of a fixed size
header portion, followed by a variable sized parameter and data portion.

After connecting at the NetBIOS level, either via NBF, NetBT, etc, the client is ready to request services
from the server. However, the client and server must first identify which protocol variant they each
understand. The client sends a negprot SMB to the server, listing the protocol dialects that it understands.
The server responds with the index of the dialect that it wants to use, or 0xFFFF if none of the dialects

 48

was acceptable. Dialects more recent than the Core and CorePlus protocols supply information in the
negprot response to indicate their capabilities (max buffer size, canonical file names, etc).

Once a protocol has been established. The client can proceed to logon to the server, if required. They do
this with a sesssetupX SMB.

The response indicates whether or not they have supplied a valid username password pair and if so, can
provide additional information. One of the most important aspects of the response is the UID of the
logged on user. This UID must be submitted with all subsequent SMBs on that connection to the server.
Once the client has logged on (and in older protocols-Core and CorePlus-you cannot logon), the client can
proceed to connect to a tree.

The client sends a tcon or tconX SMB specifying the network name of the share that they wish to connect
to, and if all is kosher, the server responds with a TID that the client will use in all future SMBs relating
to that share.

Having connected to a tree, the client can now open a file with an open SMB, followed by reading it with
read SMBs, writing it with write SMBs, and closing it with close SMBs.

	Introduction to Ethereal
	Figure 1. Ethereal Main Display
	Figure 3. Creating Custom Filters

	Figure 4. Adding an expression to match on the SYN flag set
	Figure 5. Filtering on Frame Length greater than 400 bytes
	Figure 7. Highlighting HTTP traffic using color filters
	Figure 8. TCP Stream of a FTP session
	
	Figure 9. Detailed Protocol Section
	Figure 10. Hex-ASCII Display
	HTTP Traffic Analysis

	Figure 11. HTTP GET Request

	Unicode (Directory Traversal) Exploit
	
	
	Figure 13. Using Directory Traversal to view a directory
	Figure 14. Intruder is unsuccessful in copying cmd.exe
	
	Analyzing Buffer Overflows

	Figure 16. Successful exploit using jill.c
	Figure 18. Modified jill.c exploit
	Figure 19. Filter eliminates extra web traffic
	Figure 20. Telnet Server connection options

	Figure 24. AYT overflow with pointer to shellcode
	
	Figure 25. Overview of unsuccessful Telnet ‘AYT’ buffer overflow

	ICMP and Covert Backdoors
	
	
	Figure 28. ISH ICMP Timestamp option
	Figure 30. Client responds with the requested data
	Figure 31. Abnormal GET request delivers /etc/passwd
	Figure 33. Ethereal display showing nbtstat response
	Figure 34. Setting up a SMB session
	
	Figure 38. Dialects Bongo can support

	Figure 41. Session Setup requesting access to the IPC$ share
	
	Figure 43. Network Server Enumeration Response
	Figure 44. Login attempt as administrator

	Figure 45. Attempt to connect to IPC$ share

	SMB Command Codes
	SMB Error Class
	SMB Return Codes for Error class 0x00
	SMB Return Codes for Error class 0x02

