
The AIDE manual

About this document

This manual is by no means complete, usable, readable, comprihensible,
or error free.

If you have any corrections, additions or constructive comments, please
report them as bugs, patches or feature requests here.

This document was originally written by Rami Lehti <rammer@cs.tut.fi> with
additions made by Marc Haber <mh+aide-manual@zugschlus.de> and Richard
van den Berg <richard@vdberg.org> .

Table of Contents

About this document1.
Table of Contents2.
What is AIDE?3.
Compiling AIDE4.
Configuration5.
Usage6.
Database and config signing7.
General guidelines for security8.

What is AIDE?

AIDE (Advanced intrusion detection environment) is an intrusion detection
program. More specifically a file integrity checker.

AIDE constructs a database of the files specified in AIDE.conf, AIDE's
configuration file. The AIDE database stores various file attributes including:
permissions, inode number, user, group, file size, mtime and ctime, atime,
growing size, number of links and link name. AIDE also creates a cryptographic
checksum or hash of each file using one or a combination of the following
message digest algorithms: sha1, sha256, sha512, md5, rmd160, tiger (gost and
whirlpool can be compiled in if mhash support is available). Additionaly, the
extended attributes acl, xattr and selinux can be used when expliticly enabled
during compile time.

Typically, a system administrator will create an AIDE database on a new system
before it is brought onto the network. This first AIDE database is a snapshot of
the system in it's normal state and the yardstick by which all subsequent
updates and changes will be measured. The database should contain

AIDE Manual version 0.13 http://www.cs.tut.fi/~rammer/aide/manual.html

1 de 11 24/11/14 12:29

information about key system binaries, libraries, header files, all files that are
expected to remain the same over time. The database probably should not
contain information about files which change frequently like log files, mail
spools, proc filesystems, user's home directories, or temporary directories.

After a break-in, an administrator may begin by examinining the system using
system tools like ls, ps, netstat, and who --- the very tools most likely to be
trojaned. Imagine that ls has been doctored to not show any file named
"sniffedpackets.log" and that ps and netstat have been rewritten to not show
any information for a process named "sniffdaemond". Even an administrator
who had previously printed out on paper the dates and sizes of these key system
files can not be certain by comparison that they have not been modified in some
way. File dates and sizes can be manipulated, some better root-kits make this
trivial.

While it is possible to manipulate file dates and sizes, it is much more difficult to
manipulate a single cryptographic checksum like md5, and exponentially more
difficult to manipulate each of the entire array of checksums that AIDE
supports. By rerunning AIDE after a break-in, a system administrator can
quickly identify changes to key files and have a fairly high degree of confidence
as to the accuracy of these findings.

Unfortunately, AIDE can not provide absolute sureness about change in files.
Like any other system files, AIDE's binary and/or database can also be altered.

Compiling AIDE

I'm in a hurry. Bottomline about compilation.

After you have installed all the necessary sofware do ./configure;make;make install
in the main AIDE directory of the unpacked source tree. You should carefully
think about the configuration and what a possible hacker can do if
he/her/they/it has root access.

Getting all that is needed

Before you can compile AIDE you must have certain things.

ANSI C-compiler (GCC will do just fine)
GNU Flex
GNU Bison
GNU Make
AIDE source code
Mhash library
And if you want to use postgres sql for database storage you must have the
postgres sql developer library installed

AIDE Manual version 0.13 http://www.cs.tut.fi/~rammer/aide/manual.html

2 de 11 24/11/14 12:29

Please check to see if there are mirrors available.

Once you have the source code of AIDE you should unpack it. If you have GNU
tar then the command is tar zxvf aide-version.tar.gz .

Compile-time configuration

Next you must use the configure script found in AIDE's source code package to
configure the compilation process.

There are several options you can give to configure. You can find out what
options are available with ./configure --help command. Most of the time you do
not need to give any options. You can just use configure without any
parameters.

If you want to use the bundled gnu regular expression package you can give the
--with-gnu-regexp option. Some OS's that a buggy regexp implementation you
must use this option.

If you want to change the directory where AIDE is installed you can use --prefix
option. For example ./configure --prefix=/usr

Compilation and installation

The compilation is done by simply typing make. You can now type make install to
install the binary and the manual pages. The binary however should be installed
on read-only media or in some other tamperproof place. Also the databases
should be kept somewhere where a possible intruder cannot change them.

Configuration

Next you have to create a configuration file. You can find more documentation
for this in aide.conf(5) manual page.

There are three types of lines in aide.conf:

configuration lines - used to set configuration parameters and
define/undefine variables
selection lines - indicate which files will be added to the database
macro lines - define or undefine variables within the the config file

Lines beginning with # are ignored as comments.

Here is an example configuration.

#AIDE conf

 # Here are all the things we can check - these are the default rules

AIDE Manual version 0.13 http://www.cs.tut.fi/~rammer/aide/manual.html

3 de 11 24/11/14 12:29

 #
 #p: permissions
 #i: inode
 #n: number of links
 #l: link name
 #u: user
 #g: group
 #s: size
 #b: block count
 #m: mtime
 #a: atime
 #c: ctime
 #S: check for growing size
 #I: ignore changed filename
 #md5: md5 checksum
 #sha1: sha1 checksum
 #sha256: sha256 checksum
 #sha512: sha512 checksum
 #rmd160: rmd160 checksum
 #tiger: tiger checksum
 #haval: haval checksum
 #crc32: crc32 checksum
 #R: p+i+l+n+u+g+s+m+c+acl+selinux+xattrs+md5
 #L: p+i+l+n+u+g+acl+selinux+xattrs
 #E: Empty group
 #>: Growing logfile p+l+u+g+i+n+S+acl+selinux+xattrs
 #The following are available if you have mhash support enabled:
 #gost: gost checksum
 #whirlpool: whirlpool checksum
 #The following are available when explicitly enabled using configure:
 #acl: access control list
 #selinux SELinux security context
 #xattr: extended file attributes

 # You can alse create custom rules - my home made rule definition goes like this
 #
 MyRule = p+i+n+u+g+s+b+m+c+md5+sha1

 # Next decide what directories/files you want in the database

 /etc p+i+u+g #check only permissions, inode, user and group for etc
 /bin MyRule # apply the custom rule to the files in bin
 /sbin MyRule # apply the same custom rule to the files in sbin
 /var MyRule
 !/var/log/.* # ignore the log dir it changes too often
 !/var/spool/.* # ignore spool dirs as they change too often
 !/var/adm/utmp$ # ignore the file /var/adm/utmp

Here we include files in /etc, /bin and /sbin. We also include /var but ignore
/var/log, /var/spool and a single file /var/adm/utmp.

It is generally a good idea to ignore directories that frequently change, unless
you want to read long reports. It is good practice to exclude tmp directories,
mail spools, log directories, proc filesystems, user's home directories, web
content directories, anything that changes regularly. It is also good practice to
include all system binaries, libraries, include files, system source files. It will

AIDE Manual version 0.13 http://www.cs.tut.fi/~rammer/aide/manual.html

4 de 11 24/11/14 12:29

also be a good idea to include directories you don't often look in like /dev
/usr/man/.*usr/. Of course you'll want to include as many files as practical, but
think about what you include.

One example: If you have a block device whose owner is changing frequently,
you can configure aide to just check the attributes that do not normally change
(inode, number of links, ctime).

Note that if you are referring to a single file you should add $ to the end of the
regexp. This matches to the name of the file exactly and does not include any
other files that might have the same beginning. In the example, all filenames
beginning with /var/adm/utmp would be ignored if there were no dollar sign at
the end of the last line. An intruder could then create a directory called
/var/adm/utmp_root_kit and place all the files he/she/they wanted there and they
would be ignored by AIDE.

There are two special group definitions to tweak what attributes are printed in
the report. First report_attributes lists those attributes that are always printed
from changed files. For example, if you say

attributes = u+g

and the size of a file changes, it's user and group id will also be printed in the
report. Secondly, ignore_list defines which attributes to ignore from the report.
For example, if you define

ignore_list = b

and this size of a file changes, it's block count will not be printed in the report,
even if it did change as well. Ignore_list overrules report_attributes where they
conflict.

Troubleshooting your config

Making a config file is a lot of hard work and must be done on a case by case
bases. Don't give up simply because you don't get it right the first time around.
This section gives you a few hints howto debug your config.

You can use aide --verbose=255 to generate a lot of debug output to help you see
which files get added and which are discarded. The following section gives
some more information about AIDE's rule matching algorithm.

Understanding AIDE rule matching

Before reading this you should have basic understanding of how regular
expressions work. There are several good books about this. Several Perl-books
have also decent explanations about this subject. Just remember that Perl has
some extensions to the standard regexps. There are also some differences in

AIDE Manual version 0.13 http://www.cs.tut.fi/~rammer/aide/manual.html

5 de 11 24/11/14 12:29

how different platforms handle regexps if you are using your platforms own
regexp implementation. For example GNU regexps have their own extensions.
Try reading the manual page of your system in this case. It might be a pain to
read but it is worth it.

As you already know, aide has three types of selection lines:

Regular selection lines, beginning with "/".
Equals selection lines, beginning with "=".
Negative selection lines, beginning with "!".

The string following the first character is taken as a regular expression
matching to a complete filename, including the path. In a regular selection rule,
the slash is included in the regular expression. An implicit ^ is added in front of
each rule. A group definition follows the regular expression.

When reading the configuration file, aide internally builds a tree that roughly
resembles the directory tree to be checked. Each node corresponds to a
directory, and each node has one rule list for the associated regular selection
lines, one for the associated negative selection lines and one for the associated
equals selection lines. If there is no associated rule, the respective list may be
empty.

aide tries to place a rule as far down in the tree as possible while still assuring
that it is above all files that it matches. This is determined by the first "special"
regexp character in the rule. For example, !/proc would be placed in the root
node, !/proc/.* would be placed in the /proc node, !/var/log/syslog* is placed in
the /var/log node and, finally, !/home/[a-z0-9]+/.bashrc$ is placed in the /home node.

The algorithm that aide uses for rule matching is described in the following
paragraphs. The pseudocode is an adaption from src/gen_list.c.

check_node_for_match(node,filename,first_time)
if (first_time)

 check(equals list for this node)

check(regular list for this node)

if (node is not the root node)
check_node_for_match(nodes parent,filename,false)

if (this file is about to be added)
check(negative list for this node)

return (info about whether this file should be added or not and how)

When aide needs to determine whether a file found in the file system is to be
checked, it first determines the deepest possible node x to match the current
file against (that algorithm is not part of the pseudocode above), and then calls
check-node_for_match(x, filename, true). So, the recursion starts at the deepest
possible match.

AIDE Manual version 0.13 http://www.cs.tut.fi/~rammer/aide/manual.html

6 de 11 24/11/14 12:29

As it can also be seen, equals selection lines are only checked in the first
recursion step, thus providing some kind of speed optimization by reducing the
number of necessary regular expression evaluations, which is a quite expensive
operation.

Pitfalls

There are some side-effects from this algorithm that might seem strange at first.
For example if you have the following rules:

/ R
=/etc R+a
!/etc/ppp/logs

The result would be that /etc and all files in it and in /etc/ppp except
/etc/ppp/logs would be added to the database. This is perfectly normal. This
happens because the =/etc matches not only /etc but all the files under it.
Remember that regexps match always just the part they are referring to. The
rest of the line is included by default. So =/etc$ R+a would be the correct form. If
you don't have the !/etc/ppp/logs you would get the results that you are looking
for because there is no node /etc in the regexp tree and there for it is not
checked when AIDE constructs the list of files to add to the database. But when
you have the negative rules the nodes /etc and /etc/ppp get created and they get
checked when the file list is generated. So the =/etc is used to find a match in
those nodes and it succeeds.

Consider the following rules:

/ R
=/var/log/messages$ R+a
!/var/log/messages.*

This is what you might write if you want to check /var/log/messages but not
/var/log/messages.0 and /var/log/messages.1 etc. However since the negative
selection rules are checked last and .* can match to an empty string /var/log
/messages is not added to the database. The following is a more correct way of
doing it.

/ R
=/var/log/messages$ R+a
!/var/log/messages\.[0-9]$

Now only messages files ending in number 0-9 and not included in the database.
Note an intruder could disguise a rootkit by creating a directory called
messages.9. If messages.9 does not already exist that is.

Consider the following rules:

/ n+p+l+i+u+g+s+b+m+c+md5+sha1+rmd160+haval+gost+crc32+tiger
/etc$ n+p+l+i+u+g
/etc/resolv.conf$ n+p+l+u+g

AIDE Manual version 0.13 http://www.cs.tut.fi/~rammer/aide/manual.html

7 de 11 24/11/14 12:29

This way, changing /etc/resolv.conf will also report /etc as having their mtime
and ctime changed, even if /etc is configured not to be checked for mtime and
ctime. The reason is that aide only uses a deepest-match algorithm to find the
tree node to search, but a first-match algorithm inside the node. Since /etc is in
the / directory, /etc will match the rule for the root directory and ignore the
specialized /etc rule.

Rearranging the configuration like this

/etc/resolv.conf$ n+p+l+u+g
/etc$ n+p+l+i+u+g
/ n+p+l+i+u+g+s+b+m+c+md5+sha1+rmd160+haval+gost+crc32+tiger

will solve the issue. It is generally a good idea to write the most general rules
last.

Usage

First you must create a database against which future checks are performed.
This should be done immediately after the operating system and applications
have been installed, before the machine is plugged into a network. You can do
this by giving the command aide --init. This creates a database that contains all
of the files that you selected in your config file. The newly created database
should now be moved to a secure location such as read-only media. You should
also place the configuration file and the AIDE binary and preferably the manual
pages and this manual on that media also. Please remember to edit the
configuration file so that the input database is read from that read-only media.
The config file should not be kept on the target machine. The attacker could
read the config file and alter it or even if he does alter it he could place his
rootkit to place that AIDE does not check. So the read-only media should be
accessible only during the check.

Now you are all set to go. You can now check the integrity of the files. This can
be done by giving the command aide --check. AIDE now reads the database and
compares it to the files found on disk. AIDE may find changes in places that
might not expect. For instance tty devices often change owners and
permissions. You may want to read long reports and that is up to you to decide.
But most of us do not have the time or the inclination read through tons of
garbage every day. So you should trim the config file to include only the files
and attributes of certain files that should not change. But keep in mind that you
should not ignore too much as that leaves you open for an attack. An intruder
might place his/her/its/their root kit in a directory that you have ignored
completely. One good example is /var/spool/lp or something similar. This is the
place that lp daemon stores its temporary files. You should not ignore it
completely however. You should only ignore the format of files that you lp
daemon keeps creating. And remember to use the $-sign at the end of your
regexps. This stops someone from creating a directory that is ignored along

AIDE Manual version 0.13 http://www.cs.tut.fi/~rammer/aide/manual.html

8 de 11 24/11/14 12:29

with its contents.

Now that you have trimmed your config file you should update the database this
can be done aide --update command. The update command also does the same
thing as check but it also creates a new database. This database should now be
placed on that read-only media along with the new config file. The check, trim,
update cycle should be repeated as long as necessary. I recommend that the
config file should be reviewed once in a while. The definition of "a while"
depends on your paranoia. Some might want do it daily after each check. Some
might want to do it weekly.

There is usually some drift in the databases. What I mean by drift is that new
files are created, config files of applications are edited, tons of small changes
pile up until the report becomes unreadable. This can be avoided by updating
the database once in a while. I myself run the update every night. But, I don't
replace the input database nearly as often. The replacement of the input
datbase should always be a manual operation. This should not be automated.

There is also an alternative way of doing this. This method may be preferable
for people that have lots of machines that run aide. You can run aide --init on all
of the hosts and move the generated databases to a central host where you
compare different versions of the databases with aide --compare This has the
benefit of freeing up resources on the monitored machines.

Database and config signing

The security of AIDE can be increased by signing the configuration and/or
database. When a database is signed, and it is changed manually, AIDE will
refuse to use it. Likewise, if a configuration is signed, AIDE will not use it until
the embedded hash is updated as well.

To make use of the signing features, use these options to the configure script:

--with-confighmactype=TYPE
Hash type to use for checking config. Valid values are md5 and sha1.

--with-confighmackey=KEY
HMAC hash key to use for checking config. Must be a base64 encoded byte
stream. Maximum string length is 31 chars.

--with-dbhmactype=TYPE
Hash type to use for checking db. Valid values are md5 and sha1.

--with-dbhmackey=KEY
HMAC hash key to use for checking db. Must be a base64 encoded byte
stream. Maximum string lentgth is 31 chars.

The base64 encoding was chosen so that the keys are not limited to printable
characters. You can use a local base64 tool or an online base64 encoder to
convert the keys to the right format. Then run configure, for example:

AIDE Manual version 0.13 http://www.cs.tut.fi/~rammer/aide/manual.html

9 de 11 24/11/14 12:29

./configure --with-confighmactype=sha1 -with-confighmackey="YWlkZSBhaWRlIGFpZGUgYWlkZQo="
--with-dbhmactype=sha1 --with-dbhmackey="YWlkZSBhaWRlIGFpZGUgYWlkZQo="

To make the presence of a valid signature mandatory, the following configure
options can be used:

--enable-forced_dbmd
Forces the file/pipe database's to have checksum.

--enable-forced_configmd
Forces the config to have checksum. Also disables --config-check

It is also possible to edit the config.h file by hand, and changing the values of the
FORCEDBMD and FORCECONFIGMD macros.

Creating the hash for the aide.db database is done by running aide --init or aide
--update. The hash for the aide.conf configuration file can be obtained by running
aide --config-check:

$ aide --config-check
Config checked. Use the following to patch your config file.
0a1
> @@begin_config 27GF0+oKj1CvP4tltuibhu8YGIU=
13a15
> @@end_config

The @@begin_config and @@end_config can be added to the aide.conf file manually, or
the output of aide --config-check can be directly piped into patch:

$ aide --config-check | patch
can't find file to patch at input line 2
Perhaps you should have used the -p or --strip option?
The text leading up to this was:

Config checked. Use the following to patch your config file.
File to patch: /etc/aide.conf
patching file /etc/aide.conf

Using forced_configmd will make AIDE refuse to use unsigned configuration files.
This also disables the --config-check option. This only makes sense if you already
have a signed configuration, or if you have an AIDE executable on another
machine that can create the signed configurations for you.

Miscellaneous

The AIDE database can be used to find the real names and places of files that
have been moved to lost+found directory by fsck.

General guidelines for security

Do not assume anything1.

AIDE Manual version 0.13 http://www.cs.tut.fi/~rammer/aide/manual.html

10 de 11 24/11/14 12:29

Trust no-one,nothing2.
Nothing is secure3.
Security is a trade-off with usability4.
Paranoia is your friend5.

AIDE Manual version 0.13 http://www.cs.tut.fi/~rammer/aide/manual.html

11 de 11 24/11/14 12:29

