
■ Information Assurance Research Group ■ 1

NSA Security-Enhanced Linux
(SELinux)

http://www.nsa.gov/selinux

Stephen Smalley

sds@epoch.ncsc.mil

Information Assurance Research Group

National Security Agency

■ Information Assurance Research Group ■ 2

Operating System Security

• Why secure the OS?
– Increasing risk to valuable information

– Information attacks don’t require a corrupt user

– Applications can be circumvented

– Must process in the clear

– Network too far/Hardware too close

• Key missing feature: Mandatory Access Control (MAC)
– Administratively-set security policy

– Control over all processes and objects

– Decisions based on all security-relevant information

■ Information Assurance Research Group ■ 3

Why is DAC inadequate?

• Decisions are only based on user identity and ownership

• No protection against malicious or flawed software

• Each user has complete discretion over his objects

• Only two major categories of users: administrator and other

• Many system services and privileged programs must run with
coarse-grained privileges or even full administrator access.

■ Information Assurance Research Group ■ 4

What can MAC offer?

• Strong separation of security domains
– Separate data based on confidentiality/integrity/purpose

• System, application, and data integrity
– Protect against unauthorized modifications

– Prevent ill-formed modifications

• Ability to limit program privileges
– Safely run code of uncertain trustworthiness

– Prevent exploit of flaw in program from escalating privilege

– Limit each program to only what is required for its purpose

■ Information Assurance Research Group ■ 5

What can MAC offer?

• Processing pipeline guarantees
– Ensure that data is processed as required

– Split processing into small, minimally trusted stages

– Encryption, sanitization, virus scanning

• Authorization limits for legitimate users
– Decompose administrator role

– Partition users into classes based on position, clearance, etc.

■ Information Assurance Research Group ■ 6

MAC Implementation Issues

• Must overcome limitations of traditional implementations
– More than just Multilevel Security / BLP

– Address integrity, least privilege, separation of duty issues

– Complete control using all security-relevant information

• Policy flexibility required
– One size does not fit all!

– Ability to change the model of security

– Ability to express different policies within given model

– Separation of policy from enforcement

• Maximize security transparency

■ Information Assurance Research Group ■ 7

SELinux provides Flexible MAC

• Flexible comprehensive mandatory access controls integrated into the Linux
kernel

• Building on 10 years of NSA’s OS Security research

• Application of NSA’s Flask security architecture
– Cleanly separates policy from enforcement using well-defined policy interfaces
– Allows users to express policies naturally and supports changes
– Fine-grained controls over kernel services
– Transparent to applications and users

• Role-Based Access Control, Type Enforcement, optional Multi-Level Security, easily
extensible to other models

• Highly configurable

■ Information Assurance Research Group ■ 8

Current Directions

• Transfer to mainline Linux 2.5/2.6 kernel
– General security framework/hooks (LSM) already merged

– Reworked SELinux APIs and implementation for merging

– SELinux module in 2.6.0-test1-mm series

• Kernel Integration Issues
– API

– File labeling

– Initialization

– Network access controls

– Coding style / code cleanup

■ Information Assurance Research Group ■ 9

API Changes

• Motivation: Removal of sys_security from 2.5.
– Required reworking SELinux API to meet kernel developers' criteria.

• SELinux API refactored into three components:
– Add /proc/pid/attr API for process attributes (in 2.5).

– Re-use existing xattr API for file attributes (in 2.5).

– Add selinuxfs pseudo filesystem for security policy API.

– Support for SELinux extensions for System V IPC and socket IPC to be
reinvestigated in the future.

• libselinux encapsulates all three components.

■ Information Assurance Research Group ■ 10

API Changes

• Pass contexts, not SIDs.

• Set-attribute calls instead of extended calls:
– execve_secure() => setexeccon();execve();

– open/mkdir_secure() => setfscreatecon();open/mkdir();

– Implemented via writes to /proc/self/attr/{exec,fscreate}.

– Cleared explicitly by program or automatically upon exec.

– Simplifies common case, but requires extra care for:

• Multi-threaded applications (if not 1-to-1 user-to-kernel).

• Signal handlers that call execve() or open/mkdir().

■ Information Assurance Research Group ■ 11

API Changes

• Explicit API for obtaining process contexts
– No longer stat_secure on /proc/pid inodes

– getcon(), getprevcon(), getfscreatecon(),getexeccon()

– getpidcon() for other processes

– Implemented via reads of /proc/pid/attr/*

• File context API layered on top of xattr API
– [gs]etfilecon, l[gs]etfilecon, f[gs]etfilecon

– Hides xattr name, handles allocation of context buffers

■ Information Assurance Research Group ■ 12

API Changes

• Security Policy API layered on top of selinuxfs
– Selinuxfs modeled after 2.5 nfsd, transaction based IO.

– Removed calls for converting between SIDs and contexts.

– Added security_check_context.

– Changed security_load_policy to take (data,size) pair.

– Renamed calls to reflect elimination of SIDs, clarify meaning, and provide
consistency in naming.

■ Information Assurance Research Group ■ 13

File Labeling Changes

• Motivation: Re-use xattr API and support included in 2.5.

• Reworked LSM hooks and added xattr handlers to support use of
xattr by security modules (in 2.5).

• Changed SELinux to use xattr when available.

• Added hooks and devpts xattr handler to support setting security
labels on ptys (in 2.5).

• Added hook to support /proc/pid inode security labeling based on
associated task (in 2.5).

■ Information Assurance Research Group ■ 14

Initialization Changes

• Early initialization for security modules.
– Required for SELinux to set up security state for all kernel objects.

– Replaced SELinux-specific patch with a security initcall patch created for
LSM by Chris Wright of WireX.

• Initial policy load
– Reworked API to move initial policy load to userspace.

– Presently performed via an initrd, may migrate to initramfs.

– Set up existing superblocks and inodes after initial load.

■ Information Assurance Research Group ■ 15

Network Access Control Changes

• Motivation: Many of the LSM network security fields and hooks
rejected for 2.5.

• Retained general socket layer hooks and Unix domain socket
hooks.

• Reworking sock_rcv_skb hook and NetFilter hooks to provide
subset of original SELinux functionality.

• Revisiting set of network access controls based on experience to
date.

■ Information Assurance Research Group ■ 16

Coding style cleanups

• Linux nativization of legacy code

• Consistency with kernel conventions
– Error return codes

– Single return paths

• Typedef extermination

• Using kerneldoc

• General code review and cleanup

• Locking review

■ Information Assurance Research Group ■ 17

Future Directions

• Refine locking to enhance scalability

• Further userland integration

• Complete integration into networked environment

– Integrate with 2.5/6 IPSEC implementation

– Integrate with NFSv4

• Security-Enhanced X

– Design report available

• Policy specification and analysis tools

• Platform for application security mechanisms

■ Information Assurance Research Group ■ 18

Questions?

http://www.nsa.gov/selinux/

■ Information Assurance Research Group ■ 19

End of Presentation

