

This page intentionally left blank

Mainframe
Basics for
Security
Professionals:

Getting Started with RACF®

Requirements
Requirements
Management

IBM Press

Visit www.ibmpressbooks.com for a complete l ist of IBM Press books

RATIONAL AND SOFTWARE DEVELOPMENT
IBM Rational® ClearCase®, Ant, and CruiseControl

Lee � ISBN 0321356993

IBM® Rational® Unified Process® Reference and Certification Guide

Shuja and Krebs � ISBN 0131562924

Implementing IBM® Rational® ClearQuest®

Buckley, Pulsipher, and Scott � ISBN 0321334868

Implementing the IBM® Rational Unified Process® and Solutions

Barnes � ISBN 0321369459

Outside-in Software Development

Kessler and Sweitzer � ISBN 0131575511

Project Management with the IBM® Rational Unified Process®

Gibbs � ISBN 0321336399

Requirements Management Using IBM® Rational® RequisitePro®

Zielczynski � ISBN 0321383001

Software Configuration Management Strategies and IBM®

Rational® ClearCase®, Second Edition
Bellagio and Milligan � ISBN 0321200195

Visual Modeling with IBM® Rational® Software Architect
and UML™

Quatrani and Palistrant � ISBN 0321238087

COMPUTING
Autonomic Computing

Murch � ISBN 013144025X

Business Intelligence for the Enterprise
Biere � ISBN 0131413031

Grid Computing
Joseph and Fellenstein � ISBN 0131456601

Implementing ITIL Configuration Management

Klosterboer � ISBN 0132425939

Inescapable Data
Stakutis and Webster � ISBN 0131852159

Mainframe Basics for Security Professionals

Pomerantz, Vander Weele, Nelson, and Hahn � ISBN 0131738569

On Demand Computing
Fellenstein � ISBN 0131440241

A Practical Guide to Trusted Computing

Challener, Yoder, Catherman, Safford, and Van Doorn � ISBN 0132398427

RFID Sourcebook
Lahiri � ISBN 0131851373

Service-Oriented Architecture (SOA) Compass
Bieberstein, Bose, Fiammante, Jones, and Shah � ISBN 0131870025

INFORMATION MANAGEMENT
An Introduction to IMS™

Meltz, Long, Harrington, Hain, and Nicholls � ISBN 0131856715

DB2® Express
Yip, Cheung, Gartner, Liu, and O’Connell � ISBN 0131463977

DB2® for z/OS® Version 8 DBA Certification Guide
Lawson � ISBN 0131491202

DB2® SQL PL, Second Edition
Janmohamed, Liu, Bradstock, Chong, Gao, McArthur, and Yip
ISBN 0131477005

DB2® 9 for Linux®, UNIX®, and Windows®

Baklarz and Zikopoulos � ISBN 013185514X

High Availability Guide for DB2®

Eaton and Cialini � ISBN 0131448307

The Official Introduction to DB2® for z/OS®, Second Edition
Sloan � ISBN 0131477501

Understanding DB2® 9 Security
Bond, See, Wong, and Chan � ISBN 0131345907

Understanding DB2®, Second Edition

Chong, Wang, Dang, and Snow � ISBN 0131580183

WEBSPHERE
Enterprise Java™ Programming with IBM® WebSphere®,
Second Edition

Brown, Craig, Hester, Pitt, Stinehour, Weitzel, Amsden, Jakab, and Berg
ISBN 032118579X

Enterprise Messaging Using JMS and IBM® WebSphere®

Yusuf � ISBN 0131468634

IBM® WebSphere®

Barcia, Hines, Alcott, and Botzum � ISBN 0131468626

IBM® WebSphere® Application Server for Distributed
Platforms and z/OS®

Black, Everett, Draeger, Miller, Iyer, McGuinnes, Patel, Herescu, Gissel, Betancourt,
Casile, Tang, and Beaubien � ISBN 0131855875

IBM® WebSphere® System Administration
Williamson, Chan, Cundiff, Lauzon, and Mitchell � ISBN 0131446045

WebSphere® Business Integration Primer

Iyengar, Jessani, and Chilanti � ISBN 013224831X

LOTUS
IBM® WebSphere® and Lotus®

Lamb, Laskey, and Indurkhya � ISBN 0131443305

Lotus® Notes® Developer’s Toolbox
Elliott � ISBN 0132214482

OPEN SOURCE
Apache Derby—Off to the Races

Zikopoulos, Baklarz, and Scott � ISBN 0131855255

Building Applications with the Linux® Standard Base
Linux Standard Base Team � ISBN 0131456954

Performance Tuning for Linux® Servers
Johnson, Huizenga, and Pulavarty � ISBN 013144753X

BUSINESS STRATEGY & MANAGEMENT
Can Two Rights Make a Wrong?

Moulton Reger � ISBN 0131732943

Developing Quality Technical Information, Second Edition
Hargis, Carey, Hernandez, Hughes, Longo, Rouiller, and Wilde
ISBN 0131477498

Do It Wrong Quickly

Moran � ISBN 0132255960

Irresistible!
Bailey and Wenzek � ISBN 0131987585

Mining the Talk

Spangler and Kreulen � ISBN 0132339536

Reaching the Goal

Ricketts � ISBN 0132333120

Search Engine Marketing, Inc.
Moran and Hunt � ISBN 0131852922

The New Language of Business
Carter � ISBN 013195654X

www.ibmpressbooks.com

IBM WebSphere

[SUBTITLE]

Deployment and Advanced
Configuration

Roland Barcia, Bill Hines, Tom Alcott, and Keys Botzum

Mainframe Basics
for Security
Professionals:

Getting Started with RACF®

Ori Pomerantz

Barbara Vander Weele

Mark Nelson

Tim Hahn

IBM Press
Pearson plc
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

Ibmpressbooks.com

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liabil-
ity is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

© Copyright 2008 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication,
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with
Corporation.

IBM Press Program Managers: Tara Woodman, Ellice Uffer

Cover design: IBM Corporation

Associate Publisher: Greg Wiegand
Marketing Manager: Kourtnaye Sturgeon
Publicist: Heather Fox
Acquisitions Editor: Bernard Goodwin
Managing Editor: Gina Kanouse
Designer: Alan Clements
Project Editor: Anne Goebel
Copy Editor: Krista Hansing Editorial Services, Inc.
Indexer: Lisa Stumpf
Compositor: Nonie Ratcliff
Proofreader: Chelsey Marti
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc
Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content partic-
ular to your business, training goals, marketing focus, and branding interests. For more informa-
tion, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com.

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com.

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both: IBM, the IBM logo, IBM Press, CICS,
DB2, developerWorks, DFSORT, Distributed Relational Database Architecture, DRDA, IMS,
MVS, OS/390, RACF, Redbooks, System/360, System/370, System z, Tivoli, WebSphere, z/OS,
and zSeries. Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both. Microsoft, Windows, Windows NT, and the Windows
logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

Library of Congress Cataloging-in-Publication Data

Mainframe basics for security professionals : getting started with RACF / Ori Pomerantz ...
[et al.].

p. cm.
ISBN 0-13-173856-9 (hardback : alk. paper) 1. z/OS. 2. Computer security. 3. Electronic

digital computers. I. Pomerantz, Ori.
QA76.9.A25M3138 2008
004.16—dc22

2007044290

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-13-173856-0
ISBN-10: 0-13-173856-9

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing December 2007

http://www.awprofessional.com/safarienabled

This page intentionally left blank

To my children, Itai, Ari, Yael, and Tamar—
sorry this took so much time away from you.

—O. P.

For little Sara.
—B. V. W.

For Julie, Nicole, and Brenna, whose smiles make everything worthwhile!
—M. N.

To my wife, Jeanne, and children, Jeff and Dylan.
—T. J. H.

This page intentionally left blank

xi

Contents

Foreword xv

Preface xvii

Acknowledgments xix

About the Authors xxi

Chapter 1 Introduction to the Mainframe 1
1.1 Why Use a Mainframe? 1

1.1.1 A Little History 1
1.1.2 Why Are Mainframes Different? 2
1.1.3 Mainframe vs. Client/Server 3

1.2 Getting Started 4
1.2.1 What You Will Need 4
1.2.2 Logging in to the Mainframe 5
1.2.3 “Hello, World” from TSO 6

1.3 Job Control Language (JCL) 7
1.3.1 Introduction to JCL 8
1.3.2 Data Sets 9
1.3.3 Using ISPF to Create and Run Batch Jobs 10
1.3.4 JCL Syntax 15
1.3.5 Viewing the Job Output 16

1.4 z/OS UNIX System Services 19
1.5 Getting Help 22

1.5.1 Context-Sensitive Help 22
1.5.2. The Manuals 24

1.6 Additional Information 25

Chapter 2 Users and Groups 27
2.1 Creating a User 27
2.2 How to Modify a User for OMVS Access 31

2.2.1 Modifying the User 31
2.2.2 Creating the OMVS Home Directory (and Modifying Users from TSO) 34
2.2.3 Verifying MYUSER Has OMVS Access 36

2.3 Groups 36
2.3.1 Searching Groups 36
2.3.2 Displaying a Group 38
2.3.3 Connecting Users to a Group 39

2.4 zSecure 42
2.5 Additional Information 43

Chapter 3 Protecting Data Sets and Other Resources 45
3.1 Protecting Data Sets 45

3.1.1 Default Permissions 45
3.1.2 Access Control List Permissions 49
3.1.3 Project Groups and Generic Profiles 53

3.2 Other Resources 57
3.2.1 Gathering Information 57
3.2.2 Activating UNIXPRIV 59
3.2.3 Delegating chown Privileges 61
3.2.4 Verifying the Change 63
3.2.5 Deleting Resource Profiles 63

3.3 Security Data (Levels, Categories, and Labels) 64
3.3.1 Defining the Policy 64
3.3.2 Assigning Security Levels and Categories 65
3.3.3 Security Labels (SECLABELs) 66

3.4 Securing UNIX System Services (USS) Files 68
3.5 zSecure 70
3.6 Additional Information 71

Chapter 4 Logging 73
4.1 Configuring Logging 73

4.1.1 SMF Configuration 74
4.1.2 RACF Configuration 80

4.2 Generating Reports 82
4.2.1 Unloading Log Data to Sequential Text Files 82
4.2.2 Understanding Sequential Reports 85
4.2.3 Generating Reports with ICETOOL 87
4.2.4 Other Types of Reports 91

xii Contents

4.3 UNIX System Services (USS) Logging 91
4.3.1 Classes for USS Logging 92
4.3.2 SMF Settings for USS 93
4.3.3 Specifying Logging in USS 93
4.3.4 Viewing the USS Log Records 95

4.4 Logging in zSecure 95
4.5 Additional Information 97

Chapter 5 Auditing 99
5.1 Auditing 99
5.2 The RACF Data Security Monitor (DSMON) 100

5.2.1 Running DSMON 101
5.2.2 The System Report 102
5.2.3 The Program Properties Table Report 103
5.2.4 The RACF Authorized Caller Table (ICHAUTAB) Report 104
5.2.5 The RACF Exits Report 104
5.2.6 The Selected User Attribute Report 105
5.2.7 The Selected Data Sets Report 106

5.3 The Set RACF Options (SETROPTS) Command 108
5.4 The RACF Database Unload Utility (IRRDBU00) 110

5.4.1 Removing IDs with IRRRID00 111
5.5 The RACF Health Checks 114

5.5.1 RACF_SENSITIVE_RESOURCES 114
5.5.2 RACF_IBMUSER_REVOKED 117
5.5.3 RACF Classes Active Health Checks 117

5.6 zSecure Auditing 118
5.7 Additional Information 120

Chapter 6 Limited-Authority RACF Administrators 121
6.1 Profiles Owned by Users 121
6.2 Group-Owned Profiles and Group Authorities 122

6.2.1 The group-AUDITOR Authority 124
6.2.2 The group-SPECIAL Authority 127
6.2.3 The group-OPERATIONS Authority 128

6.3 System-Level Authorities 128
6.4 Manipulating Users 129

6.4.1 Creating Users 129
6.4.2 Manipulating Users 131

6.5 Additional Information 133

Contents xiii

Chapter 7 Mainframes in the Enterprise-Wide Security
Infrastructure 135

7.1 What Is an Enterprise? 136
7.1.1 Enterprise Components 137
7.1.2 Security across Enterprise Components 139
7.1.3 Communication Protocols 141

7.2 Enterprise Security Administration 144
7.2.1 Authentication and Authorization 145
7.2.2 Credential Propagation and Transformation 145

7.3 Communicating between Enterprises—and Beyond 148
7.4 Additional Information 149

Index 151

xiv Contents

xv

Foreword

Security—it comes in many forms in the IT world: physical security around a data center, user ID
authentication when a transaction gets executed, access control against a database, audit records
for anomaly detection. All these forms can be bought and paid for, yet, one element must be
taught. That is, the human, the person who administers the security system, the person who oper-
ates a data center, the person who executes a transaction, or the person who moves data on tapes
between buildings. Today there is so much personally identifiable data and so many chances for
fraud that securing that information is critical to the global economy.

For more than 40 years, the IBM® mainframe has been the backbone of financial services
and the retail industry. Billions of transactions are executed every day across this infrastructure.
The mainframe is known for its rock-solid security and integrity, yet, that is possible only with
the assurance of a well-trained staff operating those systems and ensuring that the essential
processes are being adhered to.

UNIX® systems have become ubiquitous in the IT world as well. Universities train thou-
sands of students on these systems annually. Most businesses with mainframe computers are
operating UNIX systems as well. It is important that a consistent operational approach be taken
across these systems, to maintain the security of the overall environment. This book is intended
for administrators and systems programmers who have come from the UNIX world and attempts
to explain the security nuances of the mainframe. Remarkably, although the syntax of commands
might be completely different, a wealth of similarities exists in the operational environment.
Based on its heritage and holistic design across the hardware, firmware, operating system, and
middleware, the mainframe has some unique capabilities for additional security. This book looks
at many of the basic and advanced properties for securing a mainframe, to help businesses main-
tain the integrity of their transactions.

The authors of this book have decades of experience in designing, developing, and operat-
ing mainframe security systems. They are experts in their field and have shared their knowledge
to simplify the learning experience for the UNIX administrator who might be asked to step up to
the management of mainframe security. I think you’ll find this book to be a valuable addition
toward gaining experience with the mainframe security model.

Jim Porell
IBM Distinguished Engineer
Chief Architect, System z™ Software
IBM

xvi Foreword

xvii

Preface

The reports of my death are greatly exaggerated.
—Mark Twain

Throughout the 1990s, many industry pundits predicted the demise of the mainframe. It seemed
that the entire information technology (IT) industry got caught up in the frenzy of client/server
this and distributed that. Some lost sight of the fact that the purpose of IT is to address business
problems and opportunities. Many didn’t realize that, during this time, the mainframe evolved
substantially with the addition of a standardized UNIX® development and execution environ-
ment, web serving capabilities, Java™, XML support, TCP/IP, firewall, and virtualization, while
continuing to grow in both standalone processing power and clustering capabilities. Of course,
the mainframe also maintained its traditional strengths of reliability, availability, and security.

We are at a very interesting point in the continuing evolution of the mainframe: Regulatory
pressures such as the Payment Card Industry (PCI) standards and Sarbanes-Oxley mandate that
companies understand their data assets and protect them properly. Cooling and power costs are
driving companies to consolidate their servers, to avoid the costs of building new facilities. The
rapid multiplication of servers causes substantial growth in support and software costs. All of this
together explains why many companies are taking a fresh look at the mainframe to expand both
existing applications and new applications. Mainframes are not appropriate to every business
need, but they are optimized for high-availability and I/O-intensive applications.

That growth in the use of the mainframe drives up the need for knowledgeable security
administrators. This is where this book comes in. We assume that you are already an experienced
security administrator on other systems, such as UNIX, Linux®, or Windows®. We also assume
that you’ve never logged on to TSO, the z/OS® command-line interface.

This “nuts of bolts” book will teach you how to log on, work with the mainframe’s TSO
and ISPF (similar to a GUI for z/OS, except that it uses text and not graphics) interfaces, and per-
form the major tasks of a security administrator. We are very big believers in learning by doing.
Hey, that’s how we learned! Of course, going through the exercises requires you to have access to
an actual mainframe.

Chapter 1, “Introduction to the Mainframe,” teaches the historical background and the
basics of using a mainframe. By the end of the chapter, you will be able to log on, allocate data
sets and edit their members, run JCL jobs, use UNIX System Services, and access the documen-
tation when you need it. UNIX System Services (USS) is a version of UNIX running under z/OS.

Chapter 2, “Users and Groups,” teaches users and groups. By the end of the chapter, you
will be able to create, modify, and delete users and groups.

Chapter 3, “Protecting Data Sets and Other Resources,” teaches resource protection. This
chapter teaches you how to manipulate the profiles that protect data sets (a term that covers the
rough equivalents of files and directories), the profiles that protect other permissions, and the per-
missions for files and directories within USS.

Chapter 4, “Logging,” teaches logging. You will learn how to configure the mainframe to
log security events and how to generate reports that include only the relevant log entries.

Chapter 5, “Auditing,” teaches auditing. You will learn about the main weaknesses that
auditors look for and will learn how to use the standard auditing tools to find those weaknesses
yourself and remedy them.

Chapter 6, “Limited-Authority RACF Administrators,” teaches how to create limited-
authority administrators when they are appropriate, and discusses their permissions. Your first
mainframe security job is likely to be as a limited-authority administrator. Unlimited access,
called system-SPECIAL, is usually reserved for a few senior security administrators in the
mainframe environment.

Chapter 7, “Mainframes in the Enterprise-Wide Security Infrastructure,” teaches how the
mainframe integrates into the enterprise-wide security infrastructure. In contrast to the other
chapters, this chapter is very theoretical. It explains what the enterprise-wide security infrastruc-
ture does and how it relates to the mainframe, but it does not include exercises.

Time to get started. Grab a cup of coffee, fire up your terminal emulator (we explain what
that is in Chapter 1), and get started!

xviii Preface

xix

Acknowledgments

This book was so easy to write that it practically wrote itself. If you believe that, the authors have
some ocean-front property in Arizona, Hungary, Chad, and Mongolia they would like to sell you,
along with the Brooklyn Bridge and the Tower of London (pictured on the cover). The truth of the
matter is that writing this book took a lot of effort, not all of it by the authors.

Jay Hill was the senior technical advisor, especially during the first phase of the book
before Mark Nelson and Tim Hahn joined. Without him, this book would have never been
conceived, let alone written.

Marie Vander Weele provided suggestions and guidance while helping us ensure that the
material is accurate and easy to read. Her comments hugely improved this book for our readers,
and we extend our thanks for her valuable contributions.

To our reviewers, Daniel Craun, Mark Hahn, Nigel Pentland, Kevin See, and Dr. Frank
Tate: Without you, the book would have been a lot harder to write, a lot harder to read, and a lot
closer to a work of fiction. Of course, any remaining errors are our own fault.

We couldn’t have written this book without our editors, Bernard Goodwin and his assis-
tant Michelle Vincenti from Prentice Hall, and Bill Maloney from IBM. We would also like to
thank Jim Porell for his support during this project and for writing the foreword.

We thank Teresa Pomerantz for inspiring the title of this book. We found that we were too
close to the solution to find a good title, and Teresa provided a much appreciated fresh perspec-
tive. Ori would also like to thank her for all the times she took care of the children on her own so
he could write this, as well as for those children and being a wonderful wife in general.

This page intentionally left blank

xxi

About the Authors

Ori Pomerantz has been securing computer networks, and teaching other people to do the same,
since 1995. Since joining IBM in 2003, he has written classes on various Tivoli® security prod-
ucts, including IBM Tivoli zSecure. He has a CISSP, and his expertise is security, not main-
frames—just like the intended audience of this book.

Barbara Vander Weele is a software engineer at IBM Corp. As a part of IBM Worldwide
Education, she has developed and presented education material for provisioning, security, stor-
age, and business technologies. A University of Michigan graduate, Barbara began working in
the IT industry in 1993 as a C++ programmer, converting legacy mainframe systems to Windows
and UNIX applications. Since 2004, she has authored numerous education courses for IBM.

Mark Nelson, CISSP, is a Senior Software Engineer at IBM, a 20-year veteran of the
RACF® Design team, and a frequent speaker on RACF and z/OS security-related topics. Mark’s
areas of expertise in RACF include logging and reporting, RACF database analysis, and DB2®.
Mark’s publications include NaSPA Technical Support magazine, IBM Hot Topics, the zJournal,
and now this book!

Tim Hahn is a Distinguished Engineer at IBM and has been with IBM for 17 years. He is
the Chief Architect for Secure Systems and Networks within the IBM Software Group Tivoli
organization. He works on security product strategy, architecture, design, and development. Tim
has worked on a variety of products in the past, including lead architecture, design, and develop-
ment for the IBM Encryption Key Manager and the z/OS Security Server LDAP Server. Tim is
currently working on encryption key management, W3C standards concerning end users’ web
experience, and integration of Tivoli Security products into end-to-end client deployment envi-
ronments. Tim has published numerous articles discussing the use of Tivoli Security products in
end-to-end deployment environments, and is a co-author of the book e-Directories: Enterprise
Software, Solutions, and Services.

This page intentionally left blank

1

C H A P T E R 1

Introduction to the
Mainframe

The mainframe is the backbone of many industries that are the lifeblood of the global economy.
More mainframe processing power is being shipped now than has ever been shipped. Businesses
that require unparalleled security, availability, and reliability for their “bet your business”
applications depend on the IBM zSeries® mainframe, which runs the z/OS operating system and
is protected by the IBM Resource Access Control Facility (RACF).

In this book, we explain the basics of z/OS, focusing on z/OS security and RACF. This chapter
describes the evolution of the mainframe and the reasons it is the leading platform for reliable
computing. It also explains how to use the key elements of z/OS.

1.1 Why Use a Mainframe?
This book introduces security administrators to the world of z/OS. We expect that you already
have experience with Linux, UNIX, or Windows. Using this prerequisite knowledge, we teach
you how to use the mainframe and how to configure RACF, the security subsystem. At the end of
each chapter, we list sources for additional information.

If you are the kind of person who wants to go right to typing commands and seeing results,
skip on over to Section 1.2, “Getting Started,” to learn about the z/OS Time Sharing Option (TSO)
environment. However, we recommend that you read the rest of this section to understand the
mainframe design philosophy. Many of the differences between the mainframe and other operat-
ing systems only make sense if you understand the history and philosophy behind mainframes.

1.1.1 A Little History
Few industries have had the rapid, almost explosive growth that we have seen in the information
technology industry. The term computer originally referred to people who did manual calcula-
tions. The earliest nonhuman computers were mechanical devices that performed mathematical

computations. Mechanical devices evolved into vacuum tube devices, which, in turn, were
replaced by transistorized computers, which were replaced by integrated circuit devices.

Where do mainframes fit in? The mainframes we use today date back to April 7, 1964, with
the announcement of the IBM System/360™. System/360 was a revolutionary step in the devel-
opment of the computer for many reasons, including these:

• System/360 could do both numerically intensive scientific computing and input/output
intensive commercial computing.

• System/360 was a line of upwardly compatible computers that allowed installations to
move to more powerful computers without having to rewrite their programs.

• System/360 utilized dedicated computers that managed the input/output operations,
which allowed the central processing unit to focus its resources on the application.

These systems were short on memory and did not run nearly as fast as modern computers.
For example, some models of the System/360 were run with 32K (yes, K, as in 1,024 bytes) of
RAM, which had to accommodate both the application and the operating system. Hardware and
software had to be optimized to make the best use of limited resources.

IBM invested $5 billion in the development of the System/360 product line. This was a
truly “bet your company” investment. Five billion dollars represented more than one and a half
times IBM’s total 1964 gross revenue of $3.2 billion. To put it into perspective, given IBM’s 2005
gross revenue of $91 billion, an equivalent project would be more than a $140 billion project!

The z/OS operating system that we are discussing here traces itself back to System/360.
One of the operating systems that ran on System/360 was OS/360. One variant of OS/360 was
MVT (multitasking with a variable number of tasks). When IBM introduced virtual memory with
System/370™, the operating system was renamed to SVS (single virtual storage), recognizing
that a single virtual address space existed for the operating system and all users. This was quickly
replaced with a version of the operating system that provided a separate virtual address space for
each user. This version of the operating system was called MVS™ (multiple virtual storage).
Later, IBM packaged MVS and many of its key subsystems together (don’t worry about what a
subsystem is just now…we’ll get to that later) and called the result OS/390®, which is the imme-
diate predecessor to z/OS.

1.1.2 Why Are Mainframes Different?
Mainframes were designed initially for high-volume business transactions and, for more than 40
years, have been continually enhanced to meet the challenges of business data processing. No
computing platform can handle a diversity of workloads better than a mainframe.

2 Chapter 1 Introduction to the Mainframe

But aren’t “insert-your-favorite-alternative-platform” computers cheaper/faster/easier to
operate? The answer is: It all depends. A student who is composing his term paper does not have
the same information needs as a bank that needs to handle millions of transactions each day, espe-
cially because the bank also needs to be able to pass security and accounting audits to verify that
each account has the correct balance.

Mainframes aren’t for every computing task. Businesses opt for mainframes and main-
frame operating systems when they have large volumes of data, large transaction volumes, large
data transfer requirements, a need for an extremely reliable system, or many differing types of
workloads that would operate best if they were located on the same computer. Mainframes excel
in these types of environments.

1.1.3 Mainframe vs. Client/Server
In a client/server architecture, multiple computers typically cooperate to do the same task. For
example, in Figure 1.1 the application uses a Web server, a database server, and an LDAP server.

1.1 Why Use a Mainframe? 3

Internet

Firewall

Web Server

Database

LDAP Server

Figure 1.1 Client/server architecture

Figure 1.2 Mainframe architecture

That’s a little of the “why” of mainframes. Now let’s get started with the “how.”

1.2 Getting Started
Virtually every computer book starts with a simple example that enables you to get your feet wet.
We’ve got several “Hello, World” examples that will introduce you to:

1. Interactive computing using the z/OS Time Sharing Option (TSO)

2. Batch computing using Job Control Language (JCL)

3. UNIX System Services (USS)

1.2.1 What You Will Need
For the purposes of this chapter, you’ll need a TSO and OMVS user ID for a z/OS system and the
initial password. This user ID is created for you by a system administrator. Your user ID is a one- to
seven-character string that is your “handle” for all the work you do within z/OS. It’s the basis for
your computer identity within z/OS and the anchor point for all your access control permissions.

For the other chapters of this book, you will need your own z/OS image, a copy of the oper-
ating system running inside its own virtual machine. On this image, you will need a TSO account
with RACF special authority, which corresponds roughly to root under UNIX. Because you will
need to change audit settings, it is not enough to have privileges for a specific group within
RACF—you need to have global RACF special authority.

4 Chapter 1 Introduction to the Mainframe

Mainframe

Internet

TCP/IP

RACF z/OS

LDAP Identity
Store

UNIX System
Services (with
Web Server)

DB2 Database

On a mainframe, the same computer does everything. One security package (RACF, in
most cases) protects one operating system kernel. Mainframe subsystems do everything else, as
you can see in Figure 1.2.

1.2.2 Logging in to the Mainframe
In the old days, access to the mainframe was handled mostly by dedicated terminals that were
hard-wired to the mainframe. Today, the terminal is a run-of-the-mill PC connected by TCP/IP.
The PC runs a program that imitates an old-fashioned terminal.

To connect to the mainframe, run the terminal emulator and point it to the IP address of the
mainframe and the TCP port number for TSO. After you do that, you might need to “dial” to the
correct virtual machine. Figure 1.3 shows a user “dialing” to NMP122, the z/OS 1.6 image used
for the screenshots in this book. Some terminal emulators require you to press the right Ctrl key,
instead of Enter, to enter a command to the mainframe; this is because the right Ctrl key is located
where the Enter key was located on the original 3270 terminal. After you connect to the image,
you might need to type TSO <your user ID> to reach the TSO logon panel.

1.2 Getting Started 5

Figure 1.3 The command to dial the correct system

Figure 1.4 shows the TSO logon panel. On this panel, enter the user ID that you’ve been
given in (1) in the figure, your password in (2), and a new password of your choosing in (3).
Because the person who created your user ID knows the password, you need to change it to
ensure that, from now on, only you can log on to TSO using your user ID. Press Enter to start the
logon process.

Figure 1.4 TSO logon panel

After a few moments, you’ll see lines displayed that look similar to Figure 1.5. The first
line tells you the last time your user ID was used. This is an elementary intrusion-detection mech-
anism: If the date and the time do not look correct, you should call your security department to
investigate who is using your user ID without your permission.

6 Chapter 1 Introduction to the Mainframe

Figure 1.5 TSO logon results

The second line tells you how long you have until you will need to change your password.
A good security policy requires that you change your password periodically. Your installation’s
policy is enforced whenever you enter the system.

The next line tells you that you have been authenticated (that is, your password is correct
and you have not been denied access to the system for any other reason), and now TSO starts to
build your logon environment.

This is followed by an installation-specific message, usually reminders of important
aspects of your installation’s information policy.

Some installations take users immediately into ISPF, the menu-driven system you will later
see in Figure 1.8. In that case, type =x to exit into TSO so you can run the next exercise.

1.2.3 “Hello, World” from TSO
When this is done, you’ll see READY. This is the TSO command prompt, similar to C:\> under
Windows. It’s time for our simplistic, trivial, yet traditional, “Hello, World” example. We’ll use
the SEND command to send a message with the text “Hello, World” to a user. Think of SEND as
TSO’s instant messenger (IM). Because the only user that you know right now is yourself, you
will be the originator of the message as well as the recipient. Ready (pun intended)? Type this:

send ‘Hello, World’ u(<your user name>)

As you can see in Figure 1.6, TSO echoes what you typed. The SEND command processor
sends the message to the intended recipient, the user ID ORIPOME. After the SEND command,
TSO prompts you with READY to let you know that you can enter more commands.

Figure 1.6 “Hello, World” from TSO

Congratulations! You’ve logged on to TSO and said hello to the world. Note that the only
person who saw your exclamation was you, so feel free to experiment with other (business-
appropriate, of course!) phrases.

When you are done with the mainframe, you need to log off, using the logoff command.
If you just close the terminal emulator, the session remains open. If you already closed the termi-
nal emulator and you need to log on while you have a running session, type S before the
Reconnect option, as shown in Figure 1.7.

1.3 Job Control Language (JCL) 7

Figure 1.7 TSO logon panel with Reconnect

1.3 Job Control Language (JCL)
Entering commands from TSO is one way to accomplish tasks in z/OS, but many other ways
exist. One of the most popular and powerful ways is to create files that contain lists of things to
do. These lists are called batch jobs and are written in z/OS Job Control Language (JCL), which
fulfills roughly the same role as shell scripting languages in UNIX.

1.3.1 Introduction to JCL
JCL is a language with its own unique vocabulary and syntax. Before you can write your first
JCL, you need to understand a few z/OS concepts and facilities.

We use JCL to create batch jobs. A batch job is a request that z/OS will execute later. z/OS
will choose when to execute the job and how much z/OS resources the job can have based upon
the policies that the system administrator has set up. This is a key feature of z/OS: z/OS can man-
age multiple diverse workloads (jobs) based upon the service level that the installation wants. For
example, online financial applications will be given higher priority and, therefore, more z/OS
resources, and noncritical work will be given a lower priority and, therefore, fewer z/OS
resources. z/OS constantly monitors the resources that are available and how they are consumed,
reallocating them to meet the installation goals. We could spend volumes describing just this one
feature of z/OS, but this book is supposed to be about security, so we won’t.

In your batch job, you will tell z/OS this information:

• You’ll give the name of your job, with a //JOB statement

• You’ll specify the program you want to execute, with a
//EXEC PGM=<program name> statement

• If your program uses or creates any data, you’ll point to the data using a //DD statement.

Listing 1.1 shows a trivial JCL job. Don’t worry about executing this job, or about the exact
meaning of each word—we explain them later in this chapter.

Listing 1.1 Trivial Batch Job

//MARKNJ JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H

// EXEC PGM=IEFBR14

This job executes an IBM-provided z/OS program called IEFBR14. This is a dummy pro-
gram that tells z/OS “I’m done and all is well.” It requires no input and produces no output other
than an indication to the operating system that it completed successfully.

You can also run TSO as a batch job by using JCL to tell z/OS this information:

• The name of the job

• The program to run, which is the TSO interpreter IKJEFT01

• Where to get the input for IKJEFT01 and the commands that you want to execute

• Where to put the output from IKJEFT01, the output from TSO, and the commands that
you execute

Listing 1.2 shows a batch job that runs TSO to send a message.

8 Chapter 1 Introduction to the Mainframe

Listing 1.2 Batch Job That Sends a Message Using TSO

//TSOJOB JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H

// EXEC PGM=IKJEFT01

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

SEND ‘Hello, World’ U(ORIPOME)

/*

1.3.2 Data Sets
To submit a batch job, you need to understand data sets. As the name implies, a data set is a set or
collection of data. Data sets are made up of records. To improve performance, records can be
gathered together into blocks. Data sets fill the same function as files and directories in UNIX and
Windows.

When you create a data set, you assign it a name. The name can be up to 44 characters long
and consists of multiple parts, separated by dots (.). Each part can be up to eight characters. In a
RACF-protected system, the first qualifier is either a user ID or a group name. We discuss group
names in Chapter 2, “Users and Groups.”

Note
This means that in a z/OS system protected by RACF, each data set belongs to either a user
or a group. This is different from the situation in UNIX and Linux, where each file has a user
and a group. We explain the meaning of data set ownership in Chapter 3, “Protecting Data
Sets and Other Resources.”

Examples of valid data set names are

• MARKN.BOOK.CNTL

• ORI.LONG$$$$.DATASET.NAME.WITHLOTS.OFQUALS

• SYS1.PARMLIB

Examples of data set names that are invalid are

• MARKN.QUALIFIERTOOLONG.CNTL (the middle qualifier is longer than eight
characters)

• ORI.THIS.DATA.SET.NAME.IS.WAY.WAY.WAY.TOO.LONG (the total data set name
is longer than 44 characters)

1.3 Job Control Language (JCL) 9

The act of creating a data set is called data set allocation. To allocate a data set, you need to
tell z/OS a few things about the data set:

• The length of records within the data set expressed in bytes (often called the LRECL)

• The expected size of the data set

• If records are to be blocked, the number of bytes in the block (called the BLKSIZE)

• The organization of the data set (referred to as the DSORG)

Data set organization requires a little explanation. z/OS allows you to define a data set that
is partitioned into multiple “mini data sets” called members. This type of data set is called a parti-
tioned data set (PDS). PDSs contain a directory that tells z/OS the name of the member as well as
how to locate the member, similar to directories under UNIX, Windows, and Linux. Much of the
work that you do in z/OS involves the use of PDS data sets, or their more modern version, the
extended PDS called the PDSE or library.

In contrast to UNIX, Linux, and Windows, z/OS requires you to specify the maximum size
of each data set, for two reasons. The first is historical—z/OS is backward compatible and can
run applications that were developed 40 years ago when disk space was at a premium. The second
reason is that z/OS is designed for high-availability applications. When you specify the maxi-
mum size of each data set, you can ensure that the important data sets will always have the disk
space they need. For simple data sets, such as the ones that we are discussing here, the allocation
consists of two parts:

1. The initial size of the data set is called the primary extent. This is the amount of space
that z/OS reserves for the data set right now. If you think that your data set might grow in
size later, you can specify the size of the secondary extents.

2. If the data set is expected to grow beyond its initial size, additional allocations of disk
storage can be given to the data set by specifying the size of the secondary extent. If the
primary extent of your data set fills up, z/OS allocates the secondary extent up to 15
times. This allows your data set to grow gradually up to the maximum data set size.

When defining the size of the primary and secondary extents, you can do it in bytes or
based on the device geometry in units of space called tracks or cylinders. Understanding these
two terms requires understanding how a disk drive works. A disk drive consists of a set of rotating
metallic platters upon which data is stored magnetically. Data is written on the disk in sets of con-
centric circles. Each of these circles is called a track. If you project that track from the top of the
stack of platters to the bottom, you have created a cylinder. It is faster to read information that is
stored in the same cylinder than information that is spread across cylinders.

1.3.3 Using ISPF to Create and Run Batch Jobs
Before we can create and submit a batch job, we need to create a data set to hold it. The simplest
way to allocate a data set is to use the Interactive System Productivity Facility (ISPF).

10 Chapter 1 Introduction to the Mainframe

1.3.3.1 Data Set Creation

Getting into ISPF is very simple: just type ISPF on the TSO command line. ISPF enables you to
perform many common z/OS tasks from a full-screen interactive dialog. You move about the
ISPF dialogs by specifying the number of the dialog that you want to use. For example, Utilities
is option 3. You can then choose the suboption, which enables you to define and delete data sets.
That’s option 2. We often combine these two and type them as ISPF option 3.2.

As you can see in Figure 1.8, each ISPF panel presents the list of options that you can
select. When you get familiar with ISPF, you can use ISPF’s fast-path feature and specify =3.2
from any ISPF panel to have ISPF take you directly to the data set allocate and delete panel.

1.3 Job Control Language (JCL) 11

Figure 1.8 Main menu of ISPF

Select option 3.2 and press Enter (or the right Ctrl key). ISPF now takes you to a panel
where you can allocate and delete data sets. Type A as the option, your user ID as the project
(ORIPOME in the screenshot), RACFBK as the group, and CNTL as the type, as shown in Figure 1.9.
By convention, CNTL is used for data sets that store JCL jobs, which correspond roughly to shell
scripts or batch files.

Figure 1.9 Step 1 in data set creation

To allocate the data set, you need to tell z/OS this information:

• The expected size of your data set. We’ll be adding other members to this partitioned
data set, so let’s give it an initial size (primary allocation) of ten tracks and allow it to
grow five tracks at a time (secondary allocation). Remember that z/OS uses the second-
ary allocation 15 times before the data set reaches its maximum size.

• The length of each record in your data set. One of the most common record lengths in
z/OS is 80 bytes, which is what we will use for our first few data sets.

• The size of each block. For performance reasons, you might want to tell z/OS that when-
ever it reads a record, it should read a group of them. That way, when you read the next
record, it will already be in memory. Every time z/OS reads from the disk, it reads an
entire block. The block size that you select also affects the efficiency of the records
stored on the disk drive. If you specify 0, z/OS calculates the best block size for the
device upon which the data set is placed.

• The number of directory blocks. When a data set is a partitioned data set, you need to
tell z/OS how much space on the data set should be reserved for the directory. Each
directory block has enough space to hold the information for about five members. We’ll
specify 20 blocks, which will give us plenty of space for new members.

• The organization of the data set. Many different types of data sets exist. For our pur-
poses, we’ll be working with two types of data sets: normal data sets (called sequential
data sets) and partitioned data sets. For this data set, specify PDS for a partitioned data
set. Sequential data sets are similar to files under other operating systems. Partitioned
data sets contain multiple members, distinguished by name. Each member is similar to a
file, so the entire partitioned data set is similar to a directory.

After you have typed all this information, your panel should look similar to Figure 1.10.
Press Enter to create the data set. ISPF responds by representing the Data set utility panel with
Data Set Allocated highlighted in the upper-right corner.

1.3.3.2 Editing Data Set Members

When the data set is created , go to the ISPF editor. To do this, enter =2 on any command line.
This is the ISPF “fast path” to the ISPF edit panel, which is option 2 from the main ISPF menu.
On this panel, specify the name of the data set that you just allocated. Because you are editing a
PDS, you need to specify either the name of an existing member or the name of a member that
you want created, as shown in Figure 1.11. In this example, we’re creating a member named
HELLOW.

12 Chapter 1 Introduction to the Mainframe

1.3 Job Control Language (JCL) 13

Figure 1.10 Step 2 in data set creation

Figure 1.11 ISPF edit panel

The ISPF Editor
A full description of the ISPF editor with all its features is beyond the scope of this book. For a
detailed explanation of the commands, browse to http://publibz.boulder.ibm.com/bookmgr_
OS390/libraryserver/zosv1r6/ and open z/OS V1R6.0 Elements, Features, and Software
Products → z/OS Elements and Features, z/OS Collection Kit, March 2005 → z/OS V1R6.0
ISPF Edit and Edit Macros → 1.0 Part 1, The ISPF Editor.

http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver/zosv1r6/
http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver/zosv1r6/

After you press Enter, ISPF creates the member and places you in the ISPF editor. At this
point, type the JCL shown in Listing 1.2. You need to type it on the lines that start with ‘‘‘‘‘‘,
under the blue asterisks (*), as shown in Figure 1.12. Remember to change ORIPOME to your own
user ID. Traditionally, JCL lines use the eight characters after the // for identifiers or leave them
empty when no identifier is required. That is the reason, for example, that the word EXEC on the
second line starts on the same column as the word JOB on the first line. The JCL would work with
just one space, but it is more readable this way.

14 Chapter 1 Introduction to the Mainframe

Figure 1.12 The editor after typing the batch job

After this is done, press Enter. ISPF saves your changes and replaces the quotes on the left
with line numbers.

At this point, you’re ready to submit your job. Type SUBMIT on the command line, and your
batch job is submitted to the job entry subsystem at your installation. You will get a confirmation
message with the job number, as shown in Figure 1.13.

Figure 1.13 Job submission confirmation message

Your installation has a policy for executing batch jobs, and that policy determines when
your batch job is executed. After it has executed, you can view the output of the job. When your
job executes, it sends a message to your TSO user ID. If you are logged on and are accepting mes-
sages, the message appears as your batch job executes. If you are not logged on or are not accept-
ing messages, it is saved and displayed when you next log on.

When you see the confirmation message, press Enter again. In all likelihood, your job will
have already executed and you will see the message, as well as a job confirmation message, as
shown in Figure 1.14.

Figure 1.15 The log data panel when leaving ISPF

1.3.4 JCL Syntax
Now that you’ve run the JCL and seen that it works, let’s review Listing 1.2 line by line and
explain exactly what it does.

First, you’ll notice that most lines start with two slashes. The two slashes mark a line as part
of JCL. Lines that do not contain those slashes, such as the last two lines in this job, are usually
embedded input files.

//TSOJOB JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H

This line is the job header. It defines a job called TSOJOB. The CLASS parameter specifies
the job’s priority, the maximum amount of resources the job is allowed to consume, and so on. A
is a good default in most installations, at least for the short jobs we’ll use in this book.

The NOTIFY parameter specifies that a user should be notified when the job ends. It could
be the name of a user to notify, but here it is &SYSUID, which is a macro that expands to the user
who submits the job.

The MSGCLASS parameter specifies that the output of the job needs to be held. This makes it
accessible afterward, as you will see in Section 1.3.5, “Viewing the Job Output.”

// EXEC PGM=IKJEFT01

This line starts an execution step—a step in the batch job that runs a program. It is possible
for these steps to be named using an identifier immediately after the two slashes. However, this is
a very simple job, so there is no need to identify this stage.

1.3 Job Control Language (JCL) 15

Figure 1.14 The message the job sent

When you are done with ISPF, enter =X on the command line to tell it to exit. If you get a
log data panel, such as the one in Figure 1.15, select option 2 to delete the log. You can then use
LOGOFF to exit TSO.

The program that this step executes is IKJEFT01, which is the TSO interpreter.

//SYSTSPRT DD SYSOUT=*

This line is a data definition. It defines the data stream called SYSTSPRT, which is the out-
put of TSO. SYSOUT=* means that this data stream will go to the standard output of the job. In the
next section, you will learn how to get to this output to read it.

//SYSTSIN DD *

This line is another data definition. It defines SYSTSIN, which is the input to the TSO
interpreter. The value * means that the text that follows is the data to be placed in SYSTSIN.

SEND ‘Hello, World’ U(ORIPOME)

/*

This is the input to the TSO interpreter. The first line is a command, the same “Hello,
World” command we executed in Section 1.2.3, “ ‘Hello, World’ from TSO.” The second line, /*,
is a delimiter that means the end of the file.

1.3.5 Viewing the Job Output
One of the outputs from your batch job was the “Hello, World” that was sent to your TSO ID.
Your batch job produced other output as well. What happened to that output? It waits in the sys-
tem until you or your system administrators tell the system what to do with it.

When you submitted the batch job, it was handed over to the job entry subsystem (JES).
JES is responsible for scheduling the job, allocating some of its resources, and managing the
job’s input and output.

IBM provides job entry subsystems: JES2 and JES3. Most of the z/OS environments use
JES2, so our examples are oriented toward it. For those of you who are using JES3, equivalent
services exist there.

JES2 and JES3
z/OS has two Job Entry Subsystems (JES): JES2 (part of the base z/OS) and JES3 (an
optional add-on). Both provide similar capabilities to manage batch jobs and SYSOUT, the
job’s output data stream. The primary differences are how systems in a SYSPLEX, a main-
frame cluster, are managed. In JES2, each system is a peer, selecting work it can process. In
JES3, a control system (the global) passes work to other systems (locals) for processing.
JES3 also has additional services to provide additional controls over the timing of job execu-
tion. Because each JES has its own set of commands and JCL extensions, it is difficult for an
installation to change from one JES to another. As a result, mainframe installations generally
run the same JES they have used historically.

One of the most popular ways to view the output of your job is to use the IBM System Dis-
play and Search Facility (SDSF) program product. You start up SDSF either as a TSO command
(SDSF) or as a dialog from within ISPF. In most installations, SDSF is option S from the ISPF
Primary Options menu.

16 Chapter 1 Introduction to the Mainframe

Figure 1.16 The SDSF Primary Option menu

The job’s output is in the output queue. Type O to enter the output queue, find your job, and
type S next to it to open the output, as shown in Figure 1.17. If necessary, you can scroll down
using F8 or up again using F7.

1.3 Job Control Language (JCL) 17

From the ISPF Primary Options menu, select the SDSF option, which brings you to the
SDSF Primary Option menu, shown in Figure 1.16. On this panel, the options that are presented
depend upon your level of authorization: The more things you are authorized to do, the more
options you’ll see presented by SDSF on the panel.

Figure 1.17 The job’s output in the output queue

18 Chapter 1 Introduction to the Mainframe

The top part of the output, shown in Figure 1.18, tells when the job started, when it ended,
which user ID was assigned to the job, and other job statistics. JES also displays the JCL. Scroll
down a page to see more system-generated messages telling you about the resources allocated for
your job. You can scroll up (F7), down (F8), left (F10), and right (F11).

Figure 1.18 The first part of the job’s output

The real output of the job is in the last four lines of the job, shown in Figure 1.19. These
lines show where we see the batch version of TSO displaying the READY prompt, the echoing of
the “Hello, World” command, TSO’s READY response, and the generated END statement.

Figure 1.19 The output of the job’s TSO interpreter

1.3.5.1 Filtering Jobs

A large z/OS installation can have many jobs running at the same time. It is possible to use filter-
ing to see only the jobs that are relevant to you.

To see the current filters, run this command inside SDSF:

SET DISPLAY ON

To filter, enter the name of the field to filter (prefix in the job name, destination, owner, or
sysname) and the value. For example, this command filters for jobs that start with L.

PREFIX L*

After this command, SDSF will show only those jobs that start with L, as you can see in
Figure 1.20.

1.4 z/OS UNIX System Services 19

Figure 1.20 Filtered job list in SDSF

To remove the filter, run this command:

PREFIX

1.4 z/OS UNIX System Services
Many changes have occurred in the world of computing since the announcement of System/360
in 1964. Among the many significant changes is the development of the UNIX operating system
by employees at AT&T’s Bell Labs in the 1960s. Although UNIX has concepts such as processes
and threads, which are analogous to z/OS concepts such as address spaces and tasks, many sig-
nificant differences exist. For example, in UNIX, files are byte-oriented streams of data, but in
z/OS, files (data sets) are record oriented.

Within z/OS, you have a complete UNIX environment with z/OS UNIX System Services.
This UNIX environment is integrated with the “traditional” z/OS environment. For example, you
can access a z/OS UNIX file from a batch job and you can access a data set from a z/OS UNIX
application.

You can enter the world of UNIX from z/OS in several ways. From TSO, you can enter the
z/OS UNIX environment using the OMVS command from the TSO READY prompt. Within the
ISPF environment, you can type the command tso omvs to enter UNIX (in general, you can run
any TSO command from ISPF by prefacing it with tso).

Why OMVS?
When IBM first added the UNIX environment to MVS, it was called Open Edition, with the
“Open” designating this environment and set of interfaces as one that was not designed or
owned by IBM. The logical extension of this is Open MVS, which was shortened to the com-
mand OMVS. You can see vestiges of this naming convention in the OMVS command, the
OMVS segment in user profiles, and the z/OS UNIX “O” commands, such as OGET, OPUT,
and OEDIT.

Regardless of the way you enter it, OMVS provides a shell interface where you can type
UNIX commands, as shown in Figure 1.21. By default, you type commands close to the bottom,
at the ===> prompt (it is possible to configure OMVS to place the ===> prompt at the top
instead).

20 Chapter 1 Introduction to the Mainframe

Figure 1.21 OMVS shell

Can we do our “Hello, World” example as a z/OS UNIX program? Sure! Let’s do it in the C
programming language. Start by using OEDIT, which is the ISPF editor for z/OS UNIX:

oedit test.c

You are now in an editor that is very similar to the editor that you used to edit your JCL.
This time, enter the “Hello, World” program, as shown in Figure 1.22. When you are done, press
F3 to exit the editor. If it asks about log file disposition, as in Figure 1.15, enter 2 to delete it.

Figure 1.22 “Hello, World” program in C for OMVS

Now compile and execute the program:

c89 –o test test.c

./test

It should write the message, as shown in Figure 1.23. If the compiler fails, type exit from
OMVS and LOGOFF from TSO. Then when you log back on, type 2096128 in the size field of the
TSO logon panel, the panel shown in Figure 1.7 earlier. Note that the C compiler is a separate
product from OMVS, and your site might not have it.

The TSO Size Field
The size field in the TSO logon screen specifies the region size, the maximum amount of
memory that will be allocated to you for that TSO logon.The C compiler requires a lot of mem-
ory, so you might need to increase this number from the default to about 2MB.

In JCL jobs, you can use REGION=<number> to specify the same information.

1.4 z/OS UNIX System Services 21

Figure 1.23 Execution of the “Hello, World” program in C for OMVS

When you are done with OMVS, use exit to leave it.

1.5 Getting Help
At this point, we would like to write that you are completely comfortable with the mainframe’s
user interface and that you know how to do everything you might need to learn RACF. However,
that would be a bold-faced lie. We could have filled the entire book with directions on how to use
the mainframe and still not included everything you might need.

Instead, this section teaches you how to get help when you need it.

1.5.1 Context-Sensitive Help
The mainframe itself has a lot of documentation for your use.

1.5.1.1 TSO

To get help on a TSO command, type HELP <name of command>. For example, Figure 1.24
shows the help text for the ISPF command. The prompt at the bottom (***) shows that more
information is available if you press Enter.

22 Chapter 1 Introduction to the Mainframe

Figure 1.24 Output of the TSO HELP command

This help file shows that you can run ISPF with an option to immediately reach whatever
panel you need. Use this to get to the ISPF data set utility panel, which is option 3 from the main
menu followed by option 2 from the Utilities menu.

ISPF 3.2

1.5.1.2 ISPF

Inside ISPF, you can press F1 for context-sensitive help. For example, Figure 1.25 shows the con-
text-sensitive help for the data set utilities panel. Inside the help panel, you can press Enter to
advance to the next screen, or choose an option from the menu (if available). To get back to the
panel, press F3.

1.5 Getting Help 23

Figure 1.25 ISPF context-sensitive help for the data set utilities panel

1.5.1.3 OMVS

In OMVS, you can press F1 to get help about the shell itself. To get help for a specific command,
use man <name of command>, as you would in any other version of UNIX.

24 Chapter 1 Introduction to the Mainframe

Figure 1.26 List of manuals for z/OS 1.6

1.5.2. The Manuals
IBM makes the manuals for z/OS available at http://publibz.boulder.ibm.com/bookmgr_OS390/
libraryserver. Select your z/OS version and you will see a list of manuals, as shown in Figure 1.26.

For example, Figure 1.27 shows part of z/OS 1R5.0-1R6.0 TSO/E User’s Guide, Topic
1.1.2.1, “Issuing the LOGON Command.” This manual, similar to most manuals we will use in this
book, is available under z/OS Elements and Features—z/OS Collection Kit (the top subdirectory
in the list of manuals).

http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver
http://publibz.boulder.ibm.com/bookmgr_OS390/libraryserver

1.5 Getting Help 25

Figure 1.27 Example of a topic in a z/OS manual

1.6 Additional Information
A plethora of additional information is available on mainframes. Some of our favorite references
are

• The IBM Redbooks® web site. Redbooks are books written by technical professionals
working with the IBM International Technical Support Organization (ITSO). These
books (and shorter works called Redpieces) are tactical “how to” books on a variety of
subjects. The books and Redpieces “Introduction to the New Mainframe: z/OS Basics”
and “Introduction to the New Mainframe: Networking” are available for free from the
IBM Redbooks web site at www.redbooks.ibm.com. We highly recommend the books
Introduction to the New Mainframe: z/OS Basics, Introduction to the New Mainframe:
Networking, Introduction to the New Mainframe: Security, and C/C++ Applications on
z/OS and OS/390 UNIX.

• The IBM publications web site for z/OS at www.ibm.com/servers/eserver/zseries/
zos/bkserv/. From this web site, you can find almost all the product publications for the
various z/OS products.

• z/OS ISPF Edit and Edit Macros, which explains the ISPF editor. It is available on the
IBM publication web site for z/OS.

www.redbooks.ibm.com
www.ibm.com/servers/eserver/zseries/zos/bkserv/
www.ibm.com/servers/eserver/zseries/zos/bkserv/

• IBM’s 360 and Early 370 Systems, by Emerson W. Pugh, Lyle R. Johnson, and John H.
Palmer (MIT Press, 1991), the definitive history of the development of the System/360.

• The IBM Archives, which contain a wealth of history of the mainframe, at www.ibm.
com/ibm/history/exhibits/mainframe/mainframe_intro.html.

26 Chapter 1 Introduction to the Mainframe

www.ibm.com/ibm/history/exhibits/mainframe/mainframe_intro.html
www.ibm.com/ibm/history/exhibits/mainframe/mainframe_intro.html

27

C H A P T E R 2

Users and Groups

In this chapter, you learn how to create users and groups using RACF.

2.1 Creating a User
The easiest way to control RACF is from the ISPF menus. Select Programs from the main ISPF
menu. A list of applications is displayed, one of which is RACF. Enter the appropriate number to
select RACF. In this installation, the application number happens to be 1, as shown in Figure 2.1.
If numerous applications are shown, you might need to scroll down by pressing F8 to locate the
RACF application. You can press F7 to scroll back up.

Figure 2.1 RACF in the ISPF programs menu

28 Chapter 2 Users and Groups

This selection takes you to the main RACF menu, shown in Figure 2.2. Select 4 for user-
related options.

Figure 2.2 The RACF main menu

To add a user, select option 1 and enter the name of the user in the USER field, as shown in
Figure 2.3.

Figure 2.3 First step in user creation

2.1 Creating a User 29

Next, you must add information for the user who was just created. Enter a name for the user
and type the password twice, as shown in Figure 2.4. Enter your own user ID as the owner. The
owner is any user or group authorized to manage a RACF entity. In this example, the RACF entity
you are managing is the user MYUSER.

Figure 2.4 Second step in user creation

This creates a user account. Because RACF serves as the user registry for z/OS, the user-
specific information that is required for systems such as TSO and UNIX System Services is also
specified from RACF. To configure additional user information for this account, enter YES in the
optional information field, as shown in Figure 2.5.

Figure 2.5 Enter optional information for the new user.

30 Chapter 2 Users and Groups

This user needs to use TSO. To configure TSO access for MYUSER, enter ? next to TSO
PARAMETERS and press Enter, as shown in Figure 2.6.

Figure 2.6 Selecting TSO parameters

This user will start ISPF automatically at logon. To configure this, set LOGON PROCEDURE
NAME to GENERAL or to a different value used for general-purpose users in your installation (ask a
system programmer). Set COMMAND to ISPF. The COMMAND setting is similar to the logon shell in
UNIX in the /etc/passwd file. Figure 2.7 shows the completed panel.

Figure 2.7 TSO parameters to start ISPF automatically

Log on as MYUSER on a separate terminal emulation window. At this initial login, the new
user will be required to enter a new password. Because you set COMMAND to ISPF earlier,
MYUSER will enter ISPF automatically upon logging in.

Note that MYUSER enters ISPF automatically, but it is still a TSO logon. At the end of the
session, MYUSER must exit ISPF first with =x, and then must exit TSO with logoff.

2.2 How to Modify a User for OMVS Access
At this point, MYUSER can log on to TSO and ISPF. However, MYUSER cannot log on to
OMVS, which will be needed later. This section shows you how to give the user the ability to
access OMVS.

2.2.1 Modifying the User
Return to the RACF user profiles menu, shown in Figure 2.3, type the user name, and select
option 2 to change the user.

No changes are required in the first page, so press Enter.
On the second page, enter yes to add or change optional information, as shown in

Figure 2.8.

2.2 How to Modify a User for OMVS Access 31

Figure 2.8 Selecting to modify optional information

To enable OMVS access for MYUSER, type a character next to OMVS PARAMETERS and
press Enter, as shown in Figure 2.9.

Note
On many RACF panels, you can just type any character instead of the underline (_) to select
an option. Figure 2.9 shows a question mark used for this. Figure 2.10 shows the letters x, q,
and r.

32 Chapter 2 Users and Groups

Figure 2.9 Choosing to change OMVS parameters

Provide the required parameters for the UID, HOME, and PROGRAM fields. You can select the
HOME and PROGRAM parameters using any character. For the UID to be assigned automatically,
select the AUTOUID option. This is shown in Figure 2.10.

Enter /u/myuser as the value for the home directory, as shown in Figure 2.11. Note that
all the lines beginning with => comprise a continuous RACF input field. This is a RACF generic
input field element.

2.2 How to Modify a User for OMVS Access 33

Figure 2.10 OMVS parameters

Figure 2.11 Entering the home directory

Figure 2.13 AUTOUID failure

In such a case, you must determine an unused UID manually. In this case, ask a local sys-
tem programmer what is the procedure in your site.

2.2.2 Creating the OMVS Home Directory (and Modifying Users from TSO)
To be productive, MYUSER must be provided a home directory to use OMVS. Your user might
not be authorized to create /u/myuser. To create that directory, you must have permission to
write to /u. You can do that in several ways, but the easiest at this point is for you to change your
UID to 0 to become root.

Warning
This is not the proper way to do this; you should get specific authorization instead. However,
the next chapter explains authorizations, and we wanted you to be able to see MYUSER
using OMVS now.

What you are about to do here violates security procedures on almost all production systems.
We suggest this method only if you are not on a production system. On a production system,
you must ask the service owner for OMVS what to do.

34 Chapter 2 Users and Groups

Set the shell program path name to /bin/sh, as shown in Figure 2.12.

Figure 2.12 Entering the shell

At this point, MYUSER will be able to use UNIX System Services. For example,
MYUSER will be able to enter OMVS from TSO.

On some systems, creating a user with AUTOUID fails, as shown in Figure 2.13.

You already know how to modify a user from ISPF, so now you will do it from the TSO
command line. The RACF command-line interface is documented in Chapter 5, “RACF Com-
mand Syntax,” of z/OS V1R6.0 Security Server RACF Command Language Reference (or the
equivalent for other versions of z/OS). If you do not remember how to get to it, refer back to Sec-
tion 1.5.2, “The Manuals.”

First, run this command to get your current UID from the OMVS READY prompt:

LISTUSER <your user name> OMVS

This command shows your general RACF user profile and then the OMVS section with the
UID, as shown in Figure 2.14. It is somewhat similar to the id command under UNIX that shows
user information, except that the information shown is much more extensive. You might need to
press Enter to allow it to scroll some of the information. Make a note of this UID; you will need it
later.

2.2 How to Modify a User for OMVS Access 35

Figure 2.14 LISTUSER OMVS output

Next, run this command to change your OMVS UID to zero. Notice the syntax: OMVS fol-
lowed by all the OMVS parameters in parenthesis. The only OMVS parameter is UID, which is
again followed by the value, 0, in parenthesis. This command is roughly equivalent to editing
/etc/passwd to change user information.

Note
As explained earlier, this is not how you should do things in a production environment.We are
using this method here for expedience, with the assumption that you are running on a test
system where you have administrator privileges in RACF. On a production system, special
permissions can be specified to control precisely who can perform operations such as creat-
ing a new user’s home directory.You will learn about these later in this book. For now, we are
using this method only to get you up and running quickly.

ALTUSER <your user name> OMVS(UID(0))

Now you can repeat the LISTUSER command to see that your UID is zero. OMVS is a ver-
sion of UNIX, so UID zero is interpreted as the super user. Now you can enter OMVS again and
run the following command to create a home directory for MYUSER:

mkdir /u/myuser

chown myuser /u/myuser

The final step is to return your UID to its original value. Run this command:

ALTUSER <your user name> OMVS(UID(<your original UID>))

2.2.3 Verifying MYUSER Has OMVS Access
You are finally ready to log on as MYUSER and enter OMVS. Because you are running inside
ISPF, you must enter this command:

TSO OMVS

Note
This is the way to get to OMVS from ISPF. You can also run OMVS from the TSO command
line or use Telnet.

2.3 Groups
When the number of users is relatively small, you could manage them directly. However, main-
frames are usually used in large environments with many users. RACF supports user groups to
simplify the administration of a large number of users.

A user can belong to multiple groups, in which case the user’s permissions are the union of
the permissions provided by all the groups to which the user belongs (to which the user is con-
nected, in mainframe terminology).

Groups can own other groups, resulting in a hierarchy. Note, however, that this hierarchy is
only for group-management purposes. Users get permissions from the groups to which they are
connected, but not from permissions of groups higher in the hierarchy. If group EARTH contains
groups US and BRITAIN, and group US is connected to user ORIPOME, that user will have per-
missions from US but not from EARTH. Exceptions to this rule exist, but they are complex and
beyond the scope of an introductory book.

This section teaches you how to search groups and display group information, which is
similar to the way you search and display users. Also, the way to create and modify groups is sim-
ilar to the way to create and modify users, which you learned earlier in this chapter.

2.3.1 Searching Groups
The next chapter covers how to assign permissions to users and groups. To begin learning about
groups, we examine the existing ones. Begin by navigating to the main RACF Services Options

36 Chapter 2 Users and Groups

2.3 Groups 37

menu and enter option 3 for group management. In the group menu, shown in Figure 2.15, enter
S to get a list of RACF groups.

Figure 2.15 Group management menu

Figure 2.16 shows the group search panel. In this panel, you can specify the criteria for dis-
played groups. If you do not specify any criteria, as in the figure, you get all the groups defined in
RACF.

Figure 2.16 Group search panel

Pressing Enter retrieves the list of groups, as shown in Figure 2.17. Choose a group name to
use later and then press F3 to close the list.

38 Chapter 2 Users and Groups

Figure 2.17 Group search results

2.3.2 Displaying a Group
To display group information, type D as the option and enter the group name. Figure 2.18 uses the
group name DB2PM.

Figure 2.18 Displaying group information

You can select to display additional group information in the next panel, shown in Figure
2.19. This is useful for groups that affect additional products, such as those that correspond to a
UNIX group in UNIX System Services.

Figure 2.20 Group information

2.3.3 Connecting Users to a Group
To make a user a member of a group, the user is “connected” to that group. To connect users to a
group, go to the group profile services panel, shown in Figure 2.15. Enter the group name and

2.3 Groups 39

Figure 2.19 Panel for selecting additional group information

Figure 2.20 shows the top part of the group information. It shows the superior group, the
group to which this group belongs, as well as all the subgroups and users that this group contains.
Users are shown with their permission levels, as explained in Section 2.3.3, “Connecting Users to
a Group.”

select option 4. In Figure 2.21, we are adding MYUSER to the OMVS group. Enter myuser as
the user, enter none as the default UACC, specify the default access level, and enter use as the
group authority.

40 Chapter 2 Users and Groups

Figure 2.21 Panel to connect a user to a group

The default Universal Access Authority (UACC) field determines the level of permissions
for resources such as data sets that the user will create while connected to the group. In almost all
cases, it is better to use a default permission level of None and then give users the permissions
they require using data-set specific ACLs, as you will learn in the next chapter.

The Principle of Least Privilege
This suggestion is based on the Principle of Least Privilege, which states that users should
be given the minimum level of permissions to accomplish their jobs. With not enough permis-
sion, someone might encounter a problem in doing his or her job. As a security administrator,
you will be informed about this and can correct the problem. If given too much permission, no
user is likely to complain immediately. The problem becomes apparent only when a security
audit or break-in occurs, or when someone loses vital data in a file because someone
accessed the data inappropriately.

Four levels of group authority affect a user’s ability to access and modify group resources:

• Use—Use the resources of the group. A user with this level can access the shared
resources of the group. For example, a user with this level might be able to read a group
data set, a data set that belongs to the group (depending on the ACL).

2.3 Groups 41

• Create—Adds the right to create new data sets that members of this group can access.
Typically, you give this permission level to someone in the group who is responsible for
configuring new applications.

• Connect—Adds the right to add existing users to the group. This might be given to a
manager or team lead who needs to add existing users to the group when their job role
requires access.

• Join—Adds the right to create new users (who will be members of the group), the right
to add new subgroups, and the right to change users’ permission level on the group. This
might be a Human Resources person who needs to be able to define new users.

Separation of Duties
The separation of duties principle states that when an operation is particularly sensitive or
tempting, it should require more than one person. The temptation to commit fraud is signifi-
cantly less when it requires a conspiracy of several people.

You can use the different levels of permissions to implement separation of duties for account
creation. Give one person join permissions on a group that has no resources, and the other
connect permission on the group with the resources. The first person has to create the RACF
user, and the second person has to connect the user to the group.

Keep the default options on the next panel, shown in Figure 2.22. To review their meanings,
click F1 to see context-sensitive help. The bottom three options, SPECIAL, OPERATIONS, and
AUDITOR, enable you to define a user as a group administrator. Chapter 6, “Limited-Authority
RACF Administrators,” explains this in detail.

Figure 2.22 User-group connection attributes

42 Chapter 2 Users and Groups

Figure 2.23 zSecure new user panel

Then, in the segments list, select the segments you want to see and modify using S, as
shown in Figure 2.24.

You can now repeat the procedure in Section 2.3.2, “Displaying a Group,” to verify that
MYUSER was added to OMVS correctly. This concludes the exercises for this chapter. By this
point, you should be able to create and modify users and groups.

2.4 zSecure
IBM Tivoli zSecure is an optional IBM product that simplifies RACF administration. Full
description of zSecure is beyond the scope of this book, but we can show you how to do basic
RACF operations with it.

To create a new user, start the zSecure shell (xc2r) and run RA.U to edit RACF users. Then
select Add New User or Segment. In the new user screen, enter the user name, the default
group, the password, the owner, and which segments of the user profile will be needed, as shown
in Figure 2.23.

Figure 2.24 zSecure user segments

You get a screen for each segment you selected. On each screen, you enter the information
for that segment, as shown in Figure 2.25 for the OMVS segment.

Groups are manipulated the same way, using RA.G.

2.5 Additional Information 43

Figure 2.25 zSecure user OMVS segment

Information security is based on three processes: authentication, authorization, and auditing. In
this chapter, you learned how to authenticate users and create identities so RACF can determine
who is using the mainframe. In the next chapter, you learn how to use profiles and create authori-
zations so users can access specific data. Chapter 4, “Logging,” covers auditing as a means to
identify who did what and when.

2.5 Additional Information
The manuals contain a lot of additional information about users and groups. These books are par-
ticularly relevant:

• z/OS Security Server RACF Security Administrator’s Guide, Chapter 3, “Defining
Groups and Users”

• z/OS Security Server RACF Command Language Reference

• The zSecure Documentation at publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.
jsp?topic=/com.ibm.zsecure.doc/welcome.htm

This page intentionally left blank

45

C H A P T E R 3

Protecting Data Sets
and Other Resources

A production z/OS system using a mainframe can contain a wide variety of resources: data sets,
UNIX file system files, databases, transactions, and so on. Information security is necessary to
preserve the confidentiality, integrity, and availability of those resources. In this chapter, you
learn how to configure profiles in RACF. Profiles specify the authorization level of users to deter-
mine who is authorized to read and modify resources such as those noted.

Most UNIX systems give all users similar permissions. Users who use just a specific application,
such as the web server, are stored in a different user registry. Very often a single computer hosts
only one application. On the other hand, a single z/OS mainframe can host a large number of
applications, and the user registry can have everybody from users who are allowed to access only
certain parts of a web site, to trusted administrators. Because of the diverse user population, it is
vital to use profiles to limit resource access to authorized users.

3.1 Protecting Data Sets
Data sets are the z/OS equivalent of files and directories. In this section, you learn how to control
the ability to access data sets for reading and writing.

3.1.1 Default Permissions
This example manipulates the permissions of the data set <username>.RACFBK.CNTL, which
you created in Chapter 1, “Introduction to the Mainframe.” To do this, define a RACF profile to
set the permissions for access to the data set. This is similar to setting access controls using the
chmod command in UNIX and to modifying the values in the Security tab in a file’s properties in
Windows.

Begin at the main RACF menu and choose option 1 for data set profiles. Next, choose
option 1 to create a new profile. Optionally, typing 1.1 on the ISPF command line selects both
options at the same time.

The RACF data set profile screen appears (see Figure 3.1).
The name of the profile is the same as the name of the data set it protects. Type the profile

name RACFBK.CNTL, as shown in Figure 3.1, and press Enter. The user name is added automati-
cally. You can leave the other fields empty.

46 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.1 Adding a new profile

The default permission level in RACF is called UACC, for Universal Access Authority. In
this exercise, the UACC is set to None so users cannot access the data set unless they are explic-
itly permitted to do so.

Table 3.1 shows the permission levels in RACF. The permissions are cumulative. For
example, update permission includes read and execute permissions. These permissions apply to
UACC and to explicit permission specifications, explained later in this chapter.

Table 3.1 RACF Permission Levels for Data Sets

Permission Level Meaning

None No permission

Execute Can run the data set, if it is a binary executable (not an interpreted
program—interpreted programs can be executed only if the interpreter has
permission to read them)

Read Can also read the contents of the data set

Update Can also modify the content of the data set

Control Can also modify the control interval of a VSAM data set

Alter Can also alter the permissions for the data set, create it if it does not exist,
and delete it if it does exist

VSAM
Virtual Storage Access Method, or VSAM, is the access method used for data sets that
require random access, such as a list of bank accounts and their respective owners and bal-
ances. For more information about VSAM, see the IBM Redbook VSAM Demystified.

Do not specify any additional information at this time. The screen should look similar to
that shown in Figure 3.2. Press Enter.

3.1 Protecting Data Sets 47

Figure 3.2 Adding a data set profile

At this point, the UACC to the data set is NONE and there are no access control list
(ACL) items to override it. This is equivalent to making a file inaccessible using chmod 000
<filename>. The data set should not be accessible to anybody without special permissions that
are similar to root.

To determine whether the change in permission level was effective, open another terminal
window. Log in as MYUSER, the user you created in Chapter 2, “Users and Groups.” Attempt to
edit <username>.RACFBK.CNTL(HELLOW), as shown in Figure 3.3.

Figure 3.3 Attempt to edit <username>.RACFBK.CNTL(HELLOW) as MYUSER

The attempt to edit the data set should generate an error message, as shown in Figure 3.4.

Figure 3.4 Permission denied

MYUSER attempted to edit a data set without the proper permission level. Note that the error
message shows the attempted access (the access intent) as read. The editor reads the data set mem-
ber as soon as you try to access it, but attempts to write it only when you save or exit the editor.

An audit trail of RACF violations is kept. To view the audit record, return to the administra-
tive user’s terminal window (that’s the regular user you use for most of the exercises). From the
main ISPF menu, choose option S for the System Display and Search Facility. This is the same
option used to view the output of JCL jobs in Chapter 1.

Within SDSF, type log to access the system log. Press F8 to scroll to the bottom of the log
and F11 to scroll to the right. The log contains the same error message MYUSER sees, as shown
in Figure 3.5.

48 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.5 The message in the log

If you are having difficulties finding the message, use the find command. In this case,
enter find ich408i in the command input field to search the system log for the error MYUSER
generated. ICH408I messages are generated for every RACF violation.

Why the Log Is So Wide
The system log was not originally designed for terminals with 80 characters per line, but for
line printers with 132 characters per line. This is why it is necessary to scroll to the right to
view the entire error message.

To interpret this message, use the IBM LookAt search engine at http://www-03.ibm.
com/servers/eserver/zseries/zos/bkserv/lookat. Type the message ID, ICH408I, and select the
z/OS version.

Here’s how this worked: The z/OS OPEN service (the equivalent to a system call in UNIX
and Windows) called RACF to get permission for access. RACF figured that MYUSER should
not be allowed access, so it issued the message ICH408I and told the OPEN service that access
should be denied. OPEN then issued the message IEC150I, with the reason code 38, meaning
that access was denied for security reasons.

http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/lookat
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/lookat

3.1.2 Access Control List Permissions
If the HLQ (high-level qualifier, the part of the data set name until the first dot) is identical to a
user’s name, that user is allowed to do everything with the data set (read, edit, modify permis-
sions, etc). It is possible to use a UACC for all other users. However, usually a higher degree of
granularity is required. Access control lists (ACLs) provide this granularity. The UACC is the
default access permission to be used only when nothing else is found to be applicable for a user
attempting to access a resource.

The owner you set in the RACF data set profile is the owner of the profile that controls
access, not the owner of the actual data set. In theory, this owner might not be able to access the
information in the data set. He or she would be able to change the ACL to get access, but that
action should be audited, and the owner might not have the capability to delete the audit trail.

The owner of the actual data set is the user or group whose name is the first component of
the name of the data set. For example, ORIPOME.RACFB.CNTL is owned by the user ORIPOME.
In most cases, this user has complete control of the data set.

To add an entry to the ACL, go to the RACF data set menu. Once there, choose option 2 to
change a profile. The profile name is RACFBK.CNTL. Choose the option to change optional infor-
mation by entering yes, as shown in Figure 3.6.

3.1 Protecting Data Sets 49

Figure 3.6 Changing a data set profile

Figure 3.7 Choosing what to change

Next, choose option 1 to add a user to the access control list, as shown in Figure 3.8.

50 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.8 Adding an ACL entry

Enter yes in the second field to specify the users and groups to be added to the access list,
as shown in Figure 3.9. Later you might find it useful to use the other option to copy an existing
access control list from a different profile.

Enter the authority level (read) and the name of the user with the permission level
(MYUSER), as shown in Figure 3.10. Press Enter to accept access changes.

From the terminal window where you are logged on as MYUSER, try again to edit
<username>.RACFBK.CNTL(HELLOW). It will work. Try to save the modified data set using the
save command, as shown in Figure 3.11.

Select the access list by entering yes, as shown in Figure 3.7.

Figure 3.9 Choosing to specify users and groups

3.1 Protecting Data Sets 51

Figure 3.10 Specifying users and groups

Figure 3.11 Attempting to save <username>.RACFBK.CNTL(HELLOW) as MYUSER

The attempt to save the modified data set member will fail, as shown in Figure 3.12. The
attempt fails because the access authority is limited to read. Update authority is not permitted.

52 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.13 The ACL LISTDSD returns

For more information about LISTDSD, see the manual at z/OS V1R6.0 Security Server
RACF Command Language Reference, Topic 5.13, “LISTDSD (List Data Set Profile),” or the

Figure 3.12 Save failure

To edit from the editor, enter the command cancel. If you made any changes, you might
need to press Enter to confirm the cancellation.

In preparation for later exercises, you need to remove MYUSER from the access list for the
resource. We show you how to do this from the command line so that you will learn the com-
mand-line interface, too.

As you recall from the previous chapter, RACF commands are documented in the manual
z/OS Security Server RACF Command Language Reference (see Chapter 5). The relevant com-
mands are LISTDSD, which lists a data set profile, and PERMIT, which alters ACLs.

At the TSO READY prompt, run this command to list the data set profile, including the ACL:

LISTDSD DATASET(RACFBK.CNTL) AUTHUSER

The DATASET parameter on the LISTDSD command specifies the data set profile to exam-
ine. Alternatively, you can use the shortened version:

LD DA(RACFBK.CNTL) AUTHUSER

The AUTHUSER parameter specifies to display the access list. Figure 3.13 shows the rele-
vant part of the output.

equivalent for other z/OS versions. Alternatively, you can issue HELP LISTDSD from the TSO
prompt.

To modify the ACL, use the PERMIT command. The following command deletes MYUSER
from the ACL for RACFBK.CNTL. MYUSER’s access after this command depends on the UACC
and any groups to which MYUSER belongs that appear in the ACL.

PERMIT RACFBK.CNTL DELETE ID(MYUSER)

For more information about PERMIT, see the manual at z/OS V1R6.0 Security Server RACF
Command Language Reference, Topic 5.17, “PERMIT (Maintain Resource Access Lists),” or the
equivalent for other z/OS versions. Alternatively, you can issue HELP PERMIT from the TSO
prompt.

You can repeat the LISTDSD command to see that the access list is now empty. If you are
truly paranoid (and, as a security professional, you are supposed to be), log on as MYUSER and
verify that you cannot read the data set any longer.

3.1.3 Project Groups and Generic Profiles
In this example, we create a group profile to manage mainframe library information. Everyone
should have read access to the library information because it contains information to be refer-
enced by all mainframe users. It is not necessary to use a group in this scenario, but we expect
eventually to have a team of librarians allowed to modify the library data sets—and it will be eas-
ier to accommodate that if the data sets are grouped together.

The first step is to create a group profile called TEXTS. Choose option 3 from the RACF
menu. Type the group name, TEXTS, and then select option 1 to add the group profile.

Enter the owner as your user ID and the superior group as SYS1 (a group that is created
by default during z/OS installation). Leave the other fields as the default values, as shown in
Figure 3.14.

3.1 Protecting Data Sets 53

Figure 3.14 Creating the TEXTS group

Generic profiles are profiles that apply to every data set that matches a specific expression.
For example, if all users on the mainframe should be allowed to read TEXTS data sets that begin
with B, create a data set profile with the name ‘TEXTS.B*.*’ of type GENERIC, as shown in
Figure 3.15, to specify the permission. Under the ISPF naming conventions, TEXTS is the project
name, B* matches every group name that starts with a B, and the final * matches the data set type
in most cases. Some data set types have another component beyond the type, in which case this
generic profile will not match them. To cover those, use double asterisk (**), as explained shortly.

Note
The name of the profile is enclosed in apostrophes because otherwise the system would
automatically add the name of the current user to the beginning of the profile name.

54 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.15 Creating the generic profile

Everyone requires read access to these data sets, so set the default UACC to read. Set both
audit levels to read so that RACF will audit any type of access attempt to these files, as shown in
Figure 3.16. Press Enter to create the profile.

Figure 3.16 Generic profile information

Figure 3.17 Creating a new data set

Leave all the parameters on the next screen as their default values and press Enter. Then
create another data set called TEXTS.USERS.TEXT. In contrast to the previous data set, this one
will not be affected by the generic profile.

Next, choose option 2 from the main ISPF menu and use the editor to create the members
TEXTS.BOOKS.TEXT(DESC) and TEXTS.USERS.TEXT(DESC). In each member, enter a short
line to describe the data set.

In the other terminal window, where you are logged on as MYUSER, try to edit
TEXTS.BOOKS.TEXT(DESC). The edit is permitted, but the save fails, as shown in Figure 3.18.

3.1 Protecting Data Sets 55

Figure 3.18 Saving the changes fails

Exit the editor. F3 does not exit because it automatically tries to save the file. Instead, enter
the command cancel. If you made any changes, you might need to press Enter to confirm the
cancellation.

Now try to edit TEXTS.USERS.TEXT(DESC). MYUSER might be able to edit and save the
changes. This data set is not covered by any profile, so it is protected by the default behavior. This
default behavior is specified as the PROTECTALL option. To see the value of PROTECTALL, run
this command:

SETR LIST

Return to the main menu and create two library data sets. You can get to that screen by
entering the command =3.2, which moves back to the main ISPF menu; then choose option 3,
utilities from the main ISPF menu, followed by option 2, data set utilities. Allocate a new data set
in the TEXTS project called Books, of type TEXT, as shown in Figure 3.17.

The relevant line starts with PROTECT-ALL, as shown in Figure 3.19.

56 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.19 PROTECTALL setting in the output of SETR LIST

PROTECTALL has three possible settings:

• NOPROTECTALL—Access is open by default. Access is always allowed unless there
is a protection profile.

• PROTECTALL(WARN)—If there is no protection profile, access is allowed, but with
a warning to the user and the security administrator.

• PROTECTALL(FAIL)—Access is closed by default. Access is always denied unless a
protection profile allows it. This is the proper setting for a production system.

To avoid this “open by default” scenario for the TEXTS project, create a new generic profile
called ‘TEXTS.**’. Set the UACC value to none as the default permission level for this profile.
The asterisk (*) matches one component of the data set name. Data set name components are sep-
arated by periods. In contrast, the double asterisk (**) can match any number of components.

This operation fails if the EGN (enhanced generic names) option is disabled. In such a case,
you can create a profile ‘TEXTS.*.*’ or run this command to enable it:

SETR EGN

Choose option D (for display) from the data set profile services menu to see which data sets
the new profile protects. The first screen displays the name of the new profile by default. In the
second screen, enter yes next to data sets to see the names of the protected data sets, as shown in
Figure 3.20.

Figure 3.20 Asking for protected data sets

The profile information fills more than one screen. Press F8 to scroll down and verify that
TEXTS.USERS.TEXT is protected, as shown in Figure 3.21.

3.2 Other Resources 57

Figure 3.21 Data sets protected by a generic profile

Notice that even though TEXTS.** matches TEXTS.BOOKS.TEXT, this generic profile
does not protect it. When multiple profiles apply to a data set, the most specific one is used.
TEXTS.B*.* is more specific than TEXTS.**. A discrete profile for a data set always takes
priority over a generic profile, even when the generic profile has the same name.

3.2 Other Resources
We now use z/OS UNIX System Services resources to demonstrate how to protect resources that
are not data sets. In contrast to UNIX, z/OS does not operate on the concept that everything is a
file (or a data set). To protect other resources, you must create a profile with the appropriate
resource class. The resource class identifies the type of the resource.

UNIX systems make a distinction between root and nonroot users. Mainframe permission
levels allow a more granular approach. You can provide users some of the root privileges without
giving them full control of the system.

3.2.1 Gathering Information
You need to know how to use RACF to manage z/OS UNIX permissions and what each permis-
sion allows users to do. We could list the options in this book, but that would defeat the purpose
of this section: to teach you to use authorization for any mainframe resource. Too many resource
types exist to teach them all in this book.

Protecting resources is part of the role of a security administrator. Therefore, the place to
look is the manual z/OS Security Server RACF Security Administrator’s Guide. In that manual,
Chapter 20 deals with z/OS UNIX, and Topic 20.7 deals with managing z/OS UNIX privileges,
as shown in Figure 3.22.

58 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.22 Topic 20.7 in the Security Administrator’s Guide—UNIX privileges

This section specifies that the information is in the z/OS UNIX System Services Planning
Guide. Within that manual for z/OS Version 1.6, you’ll find the list of UNIXPRIV class profiles in
Topic 5.5, as shown in Figure 3.23.

3.2 Other Resources 59

Figure 3.23 The UNIXPRIV resources in Topic 5.5 of the z/OS V1R6.0 UNIX System Services
Planning Guide

3.2.2 Activating UNIXPRIV
To manage z/OS UNIX privileges, you need to use the UNIXPRIV class. To use UNIXPRIV, you
must take the following actions (as documented in the z/OS UNIX System Services Planning
Guide):

1. Ensure that the UNIXPRIV class is active.

2. Ensure that SETROPTS RACLIST is in effect for the UNIXPRIV class.

3. Create a profile.

The first two are global operations. To verify, navigate to the main RACF menu and choose
option 5 for system options; then choose 1 to display the current status of options.

If UNIXPRIV is configured, it will be displayed in the ACTIVE CLASS list, as shown in
Figure 3.24.

60 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.24 UNIXPRIV is active and has SET RACLIST

If UNIXPRIV is not active, select option 3 (class options) and change it for specific classes,
as shown in Figure 3.25.

Figure 3.25 Choosing to change specific classes

Enter the name of the class, UNIXPRIV. Enter yes in the ACTIVE and RACLIST columns,
as shown in Figure 3.26.

Figure 3.26 Configuring the UNIXPRIV class

3.2 Other Resources 61

What Is RACLIST?
RACLIST is a RACF option that controls the caching of profiles.With RACLIST turned on, the
profiles for that class, such as UNIXPRIV, are stored in memory (or virtual memory) and
shared by different users running on the system. This improves performance.

Note that the profile cache does not refresh automatically. When you change the RACF
profiles, you need to issue the refresh command for the changes to take effect.

For more information about this subject, see the z/OS V1R6.0 Security Server RACF
Security Administrator’s Guide, Topic 5.3.2.

3.2.3 Delegating chown Privileges
Typically in UNIX, a user is either authorized to use su to become the super user or not. In Win-
dows, the equivalent operation is to be a member of the Power User and/or Administrators
groups. RACF allows much more finely grained control of root privileges. You learn most of the
details about controlling RACF itself in Chapter 6, “Limited-Authority RACF Administrators.”
In this section, you learn how to allow a user to use some root privileges in UNIX System Ser-
vices without allowing all root access. To do this, you use the UNIXPRIV class to enable
MYUSER to change files’ ownership. MYUSER will not have any of the other root privileges,
such as the capability to read any file or to terminate processes.

Topic 5.5 in the z/OS V1R6.0 UNIX System Services Planning Guide contains a table with
the profile names for the UNIXPRIV class. As an exercise, you will use one of those profiles,
SUPERUSER.FILESYS.CHOWN, to enable MYUSER to change file ownership. This change will
not give MYUSER any other privileges.

From the main RACF menu, select option 2 to create a general resource profile (any profile
that is not for data sets). Select option 1 to add a new profile. The class for the new profile must be
UNIXPRIV. The profile is named after the permission it grants, SUPERUSER.FILESYS.CHOWN,
as shown in Figure 3.27.

Figure 3.27 Creating a general profile

Leave all the information as the default values, and specify yes to add optional informa-
tion. Type any key next to ACCESS LIST to specify the access list. Select option 1 to add users,
and then select to specify the users, as shown in Figure 3.28.

62 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.28 Choosing to specify the users to add to the access list

According to Section 5.5 of the z/OS UNIX System Services Planning Guide, the minimum
access level required for SUPERUSER.FILESYS.CHOWN is read. This means that a user must be
granted at least read permission on this profile to be able to run the chown command. Specify
read as the authority level for MYUSER, as shown in Figure 3.29.

Figure 3.29 Adding MYUSER to the access list

After you enter the values, the profile is added. Depending on the RACLIST settings, the
changes might not be effective until a SETROPTS REFRESH command is issued. Issue this
command:

TSO SETROPTS REFRESH RACLIST(UNIXPRIV)

This command refreshes the cache, the in-memory version of the RACF permission set-
tings, for the UNIXPRIV class. The TSO at the beginning of the command example specifies for
ISPF that it is a TSO command.

3.2.4 Verifying the Change
After you update the cache with SETROPTS REFRESH, the RACF cache has the added profile.
Next, verify that the change works as expected. Use the terminal window where you are logged in
as MYUSER. From the main ISPF menu, run OMVS. You can run it directly from the option line:

tso omvs

Then run the following UNIX commands to create a file and change its ownership:

touch testfile

ls –l testfile

chown omvskern testfile

ls –l testfile

This changes the owner of testfile to OMVSKERN, the root user for UNIX System
Services. The window should look similar to the one shown in Figure 3.30.

3.2 Other Resources 63

Figure 3.30 Changing file ownership

3.2.5 Deleting Resource Profiles
As the last exercise in this section, use the command-line interface to delete the SUPERUSER.
FILESYS.CHOWN profile in the UNIXPRIV class to remove MYUSER’s privilege. Run this com-
mand at the READY prompt or by preceding it with TSO from the ISPF command line:

RDELETE UNIXPRIV SUPERUSER.FILESYS.CHOWN

Then refresh the RACLIST for UNIXPRIV. This operation is also called doing a SETROPTS
RACLIST REFRESH on the UNIXPRIV class.

SETROPTS REFRESH RACLIST(UNIXPRIV)

3.3 Security Data (Levels, Categories, and Labels)
You’ve seen several ways to give users access to resources that are based solely on the identity of
the person accessing the resource. Consider the access list entry: If you are on the access list with
the correct level of authority or in a group that is on the access list with the correct level of author-
ity, you are allowed access to the data.

You can also control access to data based on the characteristics of the data and the user by
assigning a security level and one or more categories to the user and the data.

Warning
Security labels and categories can be useful in controlling access to data. However, they are
discretionary access controls, in the sense that once the data is accessible by the user, the
user can reclassify the data, potentially to a lower (or no) sensitivity level or a different set of
categories—possibly the empty set.

3.3.1 Defining the Policy
To activate security data checking, run this command:

SETR CLASSACT(SECDATA)

3.3.1.1 Security Levels

A security level is a hierarchical classification of the sensitivity level of a resource. For example,
if you have a data set that anyone is allowed to access, you might assign that data set the security
level of PUBLIC. A data set that is allowed only to employees could be assigned the security level
of EMPONLY. Confidential information could be assigned the security level of CORPCONF. These
levels are hierarchical, in the sense that CORPCONF is more sensitive than EMPONLY, which is, in
turn, more sensitive than PUBLIC.

RACF implements security levels by allowing you to define labels such as PUBLIC,
EMPONLY, and CORPCONF, and assigning them a numeric value between 1 and 255, which repre-
sents the level of sensitivity.

All of an installation’s security levels are defined in the SECLEVEL profile in the RACF
SECDATA general resource class. The z/OS security administrator defines these profiles using the
RDEFINE command.

This command creates the security levels profile:

RDEFINE SECDATA SECLEVEL

64 Chapter 3 Protecting Data Sets and Other Resources

This command adds security levels. It implements the three security levels explained
previously:

RALTER SECDATA SECLEVEL ADDMEM(PUBLIC/10 EMPONLY/50 CORPCONF/100)

This is the command to use to list the security levels:

RLIST SECDATA SECLEVEL

3.3.1.2 Categories

You can also assign one or more categories to a resource. A category is a description of the infor-
mation contained in the resource. For example, FINANCIAL, DESIGN, and TEST could all be
categories. With categories, no hierarchical relationship exists: The operating system can’t tell
from the category name which category is more sensitive.

All of an installation’s categories are defined in the CATEGORY profile in the RACF
SECDATA general resource class. The z/OS security administrator defines these profiles using the
RDEFINE command, as shown here.

This command creates the new categories profile:

RDEFINE SECDATA CATEGORY UACC(NONE)

This command adds categories:

RALTER SECDATA CATEGORY ADDMEM(FINANCIAL DESIGN TEST)

This is the command to use to list the categories:

RLIST SECDATA CATEGORY

3.3.2 Assigning Security Levels and Categories
Just defining the security levels and categories does nothing to change who is allowed access to
what resources. You must assign levels or categories to users and resources. After that, access to
the resource is allowed only under these conditions:

1. The user has been assigned a security level that is not lower than the security level of the
sources.

2. The user has been assigned all the categories that are assigned to the resource.

Security levels are assigned to users using either the RACF panels or the RACF commands.
For example, this RACF ALTUSER command can be used to assign the security label EMPONLY
and the categories DESIGN and TEST to the user ID MYUSER:

ALTUSER MYUSER SECLEVEL(EMPONLY) ADDCATEGORY(DESIGN TEST)

You can also assign categories and levels to data sets using either the RACF panels or the
RACF commands. This is the RACF ALTDSD command to add the security level CORPCONF and
the category TEST to the data set RACFBK.CNTL:

3.3 Security Data (Levels, Categories, and Labels) 65

ALTDSD RACFBK.CNTL SECLEVEL(CORPCONF) ADDCATEGORY(TEST)

Now add MYUSER to the ACL for RACFBK.CNTL:

PERMIT RACFBK.CNTL ACCESS(READ) ID(MYUSER)

MYUSER should not have access to RACFBK.CNTL, despite the ACL, because of the secu-
rity level. Log on as MYUSER and try to edit <your user name>.RACFBK.CNTL(HELLOW).
You will get the error shown in Figure 3.31.

66 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.31 Access denied because of security level

To allow access, run this command to modify MYUSER’s security level:

ALTUSER MYUSER SECLEVEL(CORPCONF)

Log off as MYUSER and log back on. Now MYUSER should be able to read the data set
member in the editor.

Note
The security level of a user is cached during a TSO session. Therefore, it is necessary to log
MYUSER off and then back on before the new security level takes effect.

3.3.3 Security Labels (SECLABELs)
Security labels (SECLABELs) are a means of aggregating security levels and categories into a
single entity that can be assigned to users and resources. Using SECLABELs allows an installa-
tion to protect against the data owner or the user of the data using their discretionary access con-
trol (DAC) authority to change the classification or categorization of data. By controlling these
discretionary powers, you can move your installation into a mandatory access control (MAC)
environment. Moving into MAC allows the safe concurrent processing of multiple levels of secu-
rity within the same computing environment. This is called Multilevel Security (MLS). This
enables an organization to set rules on data access that the data and application administrators
cannot override. The authority to modify those data access rules can be limited to a small number
of trusted security administrators.

Although MAC environments are often thought of as being of interest only to three-letter
government agencies, there is significant commercial benefit to a MAC environment. For
example, if a company wants to isolate information from different divisions or has information
that must not be divulged across some IT boundary, an MLS environment could be an excellent
solution.

To activate security labels, run these commands:

SETR CLASSACT(SECLABEL)

SETR RACLIST(SECLABEL)

SECLABELs are profiles within the RACF SECLABEL general resource class. SECLA-
BELs can be defined with the RDEFINE RACF command. For example, this command defines a
SECLABEL called FINCONF:

RDEFINE SECLABEL FINCONF SECLEVEL(CORPCONF) ADDCATEGORY(FINANCIAL)

UACC(NONE)

After the SECLABEL is defined, you assign it to resources using either the RACF panels or
the RACF commands. For example, to assign the FINCONF SECLABEL to <username>.
RACFBK.CNTL, use this ALTDSD command:

ALTDSD RACFBK.CNTL SECLABEL(FINCONF)

This command classifies RACFBK.CNTL as having “FINCONF” data. After you run it,
MYUSER would fail to access <username>.RACFBK.CNTL and would see the error message
shown in Figure 3.32.

3.3 Security Data (Levels, Categories, and Labels) 67

Figure 3.32 Access denied because of security label

To grant MYUSER the right to access resources that have the FINCONF SECLABEL, mod-
ify the ACL to give it read access to the SECLABEL. These commands specify that MYUSER is
allowed to access FINCONF classified information.

PERMIT FINCONF CLASS(SECLABEL) ID(MYUSER) ACCESS(READ) SETROPTS

REFRESH RACLIST(SECLABEL)

When users start their work, they need to identify what SECLABEL is to be used. For TSO
users, this is done on the TSO LOGON panel, as shown in Figure 3.33. For batch jobs, this is
done using the SECLABEL JCL keyword. Other environments have their own ways of specifying
what SECLABEL is to be assigned to the work.

68 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.33 TSO logon with SECLABEL

3.4 Securing UNIX System Services (USS) Files
In USS, an entire file system is stored in a single z/OS data set. To see the data sets that are
mounted as file systems, use the df command, as shown in Figure 3.34. Obviously, the different
files on each file system must have different permissions.

Figure 3.34 Data sets used as USS file systems

USS supports the standard UNIX security model, with different permissions for a file’s
owner, a file’s group, and everybody else. In addition to using ls –l, you can view the permis-
sions using getfacl. Run these commands:

touch acl_test

chmod 640 acl_test

ls –l acl_test

getfacl acl_test

3.4 Securing UNIX System Services (USS) Files 69

Figure 3.35 Normal UNIX permissions in USS

In addition to the standard UNIX model, USS supports ACLs. These ACLs are controlled
using the setfacl command. To allow MYUSER to read acl_test, run this command:

setfacl –m user:MYUSER:r-- acl_test

Now the getfacl results should show the new entry in the ACL, as you can see in
Figure 3.36.

Figure 3.36 USS ACL with an added user

Log on to OMVS as MYUSER to verify that you can read acl_test (it should be empty)
but not write to it. USS ACL checks require the FSSEC class to be active. If MYUSER cannot
read acl_test, run this TSO command to activate it and try again:

SETR CLASSACT(FSSEC)

To delete the ACL entry, use this command:

setfacl –x user:MYUSER acl_test

For more information, run man setfacl and man getfacl.

The output should be similar to that shown in Figure 3.35.

3.5 zSecure
In zSecure, you use RA.D to manipulate data set profiles, and RA.R to manipulate general
resource profiles. To view the profiles that match particular criteria, enter those criteria in the data
set selection panel. For example, Figure 3.37 shows a search for all the data set profiles that start
with OMVS.

70 Chapter 3 Protecting Data Sets and Other Resources

Figure 3.37 Searching data set profiles in zSecure

In the list of data set profiles, use S to select the one you want to view. Figure 3.38 shows
the view of the OMVS.SOW1.HFS profile. This data set contains the hierarchal file system (HFS)
that contains the OMVS files.

Figure 3.38 Data set profile in zSecure

To modify the profile, overwrite fields and press Enter. You will then get the RACF com-
mand that you can modify or execute. Figure 3.39 shows the result of overwriting the profile
owner with ORIPOME.

3.6 Additional Information 71

Figure 3.39 zSecure shows the RACF command for modifying a profile.

3.6 Additional Information
The manuals document this subject in details. These manuals are particularly relevant:

• z/OS Security Server RACF Command Language Reference, which documents the
command-line interface for RACF.

• z/OS Security Server RACF Security Administrator’s Guide, which explains the various
resources that RACF can protect.

• IBM LookAt—z/OS Message Help, at http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/lookat. This search engine has the documentation to interpret all the z/OS
messages.

• z/OS UNIX System Services Planning, which explains the UNIXPRIV class that protects
UNIX System Services.

• z/OS UNIX Security Fundamentals, IBM Red Paper, available at www.redbooks.ibm.
com/redpapers/pdfs/redp4193.pdf. Appendix A of this document lists BPX profiles that
control UNIX functions.

• The UNIX man command for getfacl and setfacl.

• Multilevel Security and DB2 Row-Level Security Revealed, IBM Redbook SG24-6480,
available at www.ibm.com/redbooks.

http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/lookat
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/lookat
www.redbooks.ibm.com/redpapers/pdfs/redp4193.pdf
www.redbooks.ibm.com/redpapers/pdfs/redp4193.pdf
www.ibm.com/redbooks

This page intentionally left blank

73

C H A P T E R 4

Logging

Thus far we have shown how to authenticate users and create profiles that authorize users to use
various resources. Now we demonstrate how to log user actions to ensure that users are using
their rights appropriately.

Terminology
You will often hear the words auditing and logging used interchangeably. Don’t be confused by
the two: Logging is the act of recording information about an event. Auditing is the examination
of information, including logs, to ensure compliance with the installation security policy.

Unfortunately, the operating system documentation sometimes uses these terms inconsis-
tently. In the TSO commands, log options are used for logging information about a particular
resource, such as when a data set is modified. Audit options are used for logging information
about a particular resource’s RACF profile, such as when a user is removed from the ACL for
a particular resource. ISPF panels just use the term audit.

4.1 Configuring Logging
Security log records are stored using the System Management Facility (SMF). This facility also
stores other logging records, which are related to availability, hardware reliability, and so on. To
configure logging, both SMF and RACF must be configured properly.

Event Logging
SMF is analogous to the Event Log in Windows or syslog in UNIX. Like those subsystems, it
contains a large number of events from diverse sources on the operating system. It is more
similar to the Event Log than to syslog because the records in SMF are not usable in their raw
form and must be unloaded.

4.1.1 SMF Configuration
Before you can audit events using RACF, you need to configure SMF to record the RACF event
types. The first step is to identify the current SMF parameters, such as what event types are logged
and where. Changing those parameters enables you to change the SMF configuration to add RACF
audit records to the records that SMF keeps. To do this, go to SDSF (=S from any ISPF menu) and
type /d smf,o. This z/OS console command is used to display the full SMF configuration.

Console Commands
When you prefix a command with / in SDSF, it is interpreted as a command to the system
console of the mainframe.These commands allow the operator to start, reconfigure, and stop
various mainframe subsystems, such as SMF.

For more information about the console, see the z/OS V1R6.0 MVS System Commands
guide.

After you enter the command, the screen displays the results of the command, as shown in
Figure 4.1. The top parameter, MEMBER, is the data set member in one of the parameter library
data sets that currently controls SMF configuration.

74 Chapter 4 Logging

Figure 4.1 The SMF configuration

To see the list of parameter library data sets, run /d parmlib. The result is a list of data
sets, ordered by priority, as shown in Figure 4.2.

4.1 Configuring Logging 75

Figure 4.2 The parameter library data sets

Parameter Libraries
The parameter libraries contain operating system parameters. They are roughly equivalent to
the /etc directory under UNIX and the Registry under Windows.

One difference is that UNIX and Windows keep only one copy of their configuration. In z/OS,
there are multiple copies. For example, Figure 4.2 shows that NMP122 has four configuration
data sets. This allows installation to clearly mark which configuration settings are the operat-
ing system defaults and which are customized for a particular data center or mainframe. This
feature simplifies administration, especially for administers who are new to a particular main-
frame. They can easily see what is different from the default.

Another difference is that most parameter “files” (data set members) can have multiple ver-
sions. For example, the current SMF parameters are stored in SMFPRM00, as shown in
Figure 4.1. However, any other member with the name SMFPRM followed by two characters
also contains SMF parameters.This makes it easy to back out of a change when needed and
to keep multiple parameter settings when needed.

To find the SMF parameters, look for the SMFPRM00 member in one of the data sets listed.
The list is ordered, meaning that the SMFPRM00 in use is the one found in the data set highest in
the list. The list of data sets is called the PARMLIB concatenation. Type =3.4 to enter the data set
utilities. Type the name of the first data set and click Enter, as shown in Figure 4.3.

Figure 4.3 Data set utilities

You get a list of matching data sets (in this case, there is only one). Type B next to the one
you want to browse, as shown in Figure 4.4.

76 Chapter 4 Logging

Figure 4.4 Selecting a data set

You get a list of members. Type F <member name from Figure 4.1> to find the mem-
ber that has the SMF parameters, as shown in Figure 4.5.

Figure 4.5 Finding a specific member

If the member is not found, repeat the process with the other parameter libraries in
Figure 4.2.

On the system we used for the screenshots, the member SMFPRM00 is in the data set
SYS1.PARMLIB.

To configure SMF to support RACF, do the following:

1. Copy the member currently used for SMF configuration to a new member in
USER.PARMLIB.

2. Edit the new member to add the RACF event types, and remember the data sets that
SMF uses for logging.

3. Use the console command to point SMF to the new configuration.

Figure 4.6 Copying the data set with the SMF parameters

In the copy entry panel, type ‘USER.PARMLIB’ as the other data set name. The single
quotes are necessary because otherwise it will be interpreted as your own personal data set,
whose full name is <your user name>.USER.PARMLIB. The new member name must start
with SMFPRM, followed by two characters that are unused, to create a new member. Figure 4.7
shows an example, using the name SMFPRMOP. We used Ori’s initials to show whose configura-
tion this is; follow any conventions that your site defines for configuration member names.

4.1 Configuring Logging 77

To copy the member, type C next to the member’s name, as shown in Figure 4.6.

Figure 4.7 Copy entry panel

After the member is copied, the member list is redisplayed. The word Copied appears next
to the member name. However, you will not see the new member even if it is in the same data set.

To refresh the member list, press F3 to exit. You will then be able to type E to edit
USER.PARMLIB again (if you’ve been editing it) or =3.4 to get back to the data set utilities. Enter
E next to the new member to edit it. Figure 4.8 shows the contents of the new member.

78 Chapter 4 Logging

Figure 4.8 SMF parameters

Two parameters directly affect RACF auditing. The first, DSNAME, contains the names of
the data sets where SMF writes logging entries. On this system, they are SYS1.MAN1,
SYS1.MAN2, and SYS1.MAN3. The second is SYS(TYPE(x)), which controls the event types that
will be recorded. RACF uses four event types: 30 (common address space work record, which is
also created during job initiation), 80 (resource access), 81 (RACF initialization), and 83 (secu-
rity event). Make sure these four types are listed in the SMF parameters, and then save the mem-
ber. If the line becomes too long for the editor (more than 72 characters), end the first line with a
comma and a space, and continue the list of types in the next line (see Figure 4.9).

The other SMF configuration parameters are beyond the scope of this book. If you want to
learn more about this SMF configuration, look in z/OS V1R6.0 MVS Initialization and Tuning
Reference, Topic 69.10.

Figure 4.9 Edited SMF parameters for RACF

The new configuration member has been created. The next step is to tell SMF to use the
new configuration member. To do this, return to SDSF and run /set smf=xx, where xx is the

two-character ending of the SMFPRMxx data set member you just created. Because the data set
member in the example is SMFPRMOP, the command is /set smf=OP (mainframe commands are
not case significant). This command returns the names of the data sets that SMF uses for logging,
as shown in Figure 4.10.

4.1 Configuring Logging 79

Figure 4.10 SMF parameter member changed

Note
This changes only the configuration used on the running system. To make z/OS use the new
SMFPRMxx member after subsequent system restarts, change the SMF= line on the
IEASYS00 member in the PARMLIB concatenation, the list of data sets returned by /d
parmlib.

Which Member?
When you issue /set smf=OP, the operating system looks for a member called SMF-
PRMOP in the PARMLIB concatenation. In most cases, the first parameter library is
USER.PARMLIB, which is the reason you put your configuration member there.

To verify that the RACF event types will be logged, enter /d smf,o to see the SMF param-
eters again. The SYS(TYPE(x)) parameter might not be visible onscreen.

To view the complete command output, return to the SDSF menu and type ULOG for the
user session log, which can be shortened to just U. Scroll until you can see the SYS(TYPE(x))
parameter, as shown in Figure 4.11.

80 Chapter 4 Logging

Figure 4.11 New SYS(TYPE(x)) parameter with the RACF event types

4.1.2 RACF Configuration
At this point, SMF is properly configured to record logging entries from RACF. The next step is
to configure RACF to generate the appropriate log entries.

As discussed in the previous chapter, RACF profiles are divided by class, such as DATASET
and UNIXPRIV. The log options, which are modified using SETROPTS LOGOPTIONS, control the
logging when a resource is used, such as when a data set is opened. The audit options, which are
modified using SETR AUDIT, control the logging when the RACF profile for a resource is modi-
fied, such as when a user is added to the ACL.

Five possible log settings exist, shown in Table 4.1.

Table 4.1 Log Settings for RACF Classes

Setting Meaning

Always Audit all access attempts

Never Never audit access attempts

Successes Audit all successful access attempts

Failures Audit all failed access attempts

Default Use the audit settings in the profile

To view the RACF options, which include the log settings, from the RACF ISPF menus,
type 5.1 at the top RACF menu. Figure 4.12 shows a possible result.

Figure 4.12 RACF options (the log options)

Figure 4.12 lists the DATASET class which controls data set logging under default. This lets
you control the logging on data set access from the RACF profiles. If it is listed under a different
value on your system, you will need to change it. Run this TSO command:

SETROPTS LOGOPTIONS(DEFAULT(dataset))

This command sets the DATASET logging option to default.
The term used in SMF and in the RACF configuration options for tracking system activity

is logging. The term the ISPF interface uses for the same functionality is auditing.
After you configure a class to log based on the profiles of that class, as you have done here

with the DATASET class, you can specify logging for specific resources. To do this for data sets,
go to the data set menu of RACF. Modify the profile for RACFBK.CNTL, as you learned to do in
the previous chapter. Set the audit level for both successes and failures to READ to log every
attempt to access (read or higher) the data set, as shown in Figure 4.13.

4.1 Configuring Logging 81

Figure 4.13 Auditing in the profile

Use the editor to open <username>.RACFBK.CNTL(DSMON) both as yourself and as
MYUSER. Opening the data set as yourself should succeed. Opening it as MYUSER should fail.
This generates the audit records you read in the next section.

4.2 Generating Reports
Before you can use the SMF records, you must unload them to a different data set.

4.2.1 Unloading Log Data to Sequential Text Files
To unload the data from SMF to a sequential file, create the following job in RACFBK.
CNTL(AUDIT) (see Listing 4.1). Wait to submit it until you read the description of the JCL
because the DATE parameter in the JCL will probably need to be changed. You could just leave
out the DATE parameter, but depending on the number of SMF records on your system, this could
cause the job to run a long time and generate a huge results data set.

Listing 4.1 RACFBK.CNTL(AUDIT)

//AUDIT JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H

//UNLOAD EXEC PGM=IFASMFDP

//SYSPRINT DD SYSOUT=*

//ADUPRINT DD SYSOUT=*

//OUTDD DD DSN=&SYSUID..RACF.AUDIT,DISP=(MOD,CATLG,DELETE),

// UNIT=SYSALLDA,SPACE=(CYL,(10,10)),

// DCB=(RECFM=VBS,LRECL=8192)

//SMFDATA DD DSN=SYS1.MAN1,DISP=SHR

//SMFOUT DD DUMMY

//SYSIN DD *

INDD(SMFDATA,OPTIONS(DUMP))

OUTDD(SMFOUT,TYPE(30,80,81,83))

DATE(2007030,2007090)

ABEND(NORETRY)

USER2(IRRADU00)

USER3(IRRADU86)

Here is an explanation of this JCL job:

//OUTDD DD DSN=&SYSUID..RACF.AUDIT,DISP=(MOD,CATLG,DELETE),

// UNIT=SYSALLDA,SPACE=(CYL,(10,10)),

// DCB=(RECFM=VBS,LRECL=8192)

82 Chapter 4 Logging

These lines define the output data set, the one that will contain the log entries.
The data set’s name is &SYSUID..RACF.AUDIT, which is translated to <user who ran

the job>.RACF.AUDIT.
When a JCL data definition (DD) uses a data set, the data set disposition is specified in the

DISP parameter. The first value in this parameter specifies the source of the data set and how it is
handled while the program step is running:

• OLD—The data set already exists. If it doesn’t exist, the job will fail. It will be opened
for exclusive access.

• SHR—The data set already exists. If it doesn’t exist, the job will fail. It will be opened
for shared access. This means that other jobs can open the data set for input and read
from it while this job runs.

• MOD—The data set might or might not already exist. If it does not exist, it will be allo-
cated. This requires the UNIT and SPACE parameters so that z/OS will know where to
allocate it and with what parameters. If it does exist, append to it. Either way, the access
is exclusive.

• NEW—The data set does not exist. It is allocated and opened for exclusive access. This
requires the UNIT and SPACE parameters. If the data set already exists, the job will fail.

The second and third parameters tell z/OS what to do with the data set when the program
step ends. The second parameter applies when the program step completes successfully or if
there is no third parameter. The third parameter, if used, applies in case the program step fails.
These are the possible values:

• KEEP—Keep the data set without any changes to the Storage Management Subsystem
(SMS) catalog.

• CATLG—Keep the data set and add it to an SMS catalog.

• UNCATLG—Keep the data set, but remove it from the catalog.

• PASS—Keep the data set for another step in the same job. This lets the output of one
program become the input of the next one, similar to pipes in a UNIX environment.

• DELETE—Delete the data set.

UNIT=SYSALLDA specifies that if the data set is created, it can be created on any disk drive.
SPACE=(CYL,(10,10)) specifies the storage for the new data set, if it is created. This

value means that the first extent of the data set will be ten disk cylinders and that each additional
extent will also be ten disk cylinders. Because a data set can have up to 16 extents, this means the
total data set size will never exceed 160 cylinders.

The final parameter is DCB=(RECFM=VBS,LRECL=8192). If the DD statement creates a
new data set, this parameter defines the data control block for the new data set. In contrast to
UNIX and Windows, which treat files as streams of bytes, the mainframe keeps information
about the structure of the data set as a set of records.

4.2 Generating Reports 83

The first parameter inside the data control block (DCB) is RECFM, which defines the record
format. VBS stands for variable-length records, blocked, and spanned. Variable means that the
record length varies. Blocked means that each data set block can include multiple records. In
unblocked access, each record corresponds to a single block, which is inefficient use of disk
space for small records. Spanned means that a record can be divided between two blocks, if nec-
essary. To learn more about data set record formats, see z/OS DFSMS Using Data Sets in the
library center.

The second parameter in DCB is LRECL. For fixed-length records, LRECL specifies the
record length. For variable-length records, such as here, LRECL specifies the maximum length. In
this case, the maximum record length is set to 8,192 bytes.

//SMFDATA DD DSN=SYS1.MAN1,DISP=SHR

This line defines the log record data set that will be used as input for the job. The name of
the data set is taken from the SMF parameters, as seen with an ACTIVE status in Figure 4.10. The
disposition is shared, meaning that other tasks can use the same data set at the same time.

//SMFOUT DD DUMMY

This line defines SMFOUT as a dummy. IFASMFDP, the utility that translates SMF records
to sequential text files, also has capabilities to filter SMF records and copy them to a new data set.
This line disables this functionality:

//SYSIN DD *

SYSIN contains the control statements for IFASMFDP. This line specifies that the data for
SYSIN will follow in the JCL job. We explain the configuration options used in the job here, but
to learn more about the configuration options available with IFASMFDP, see z/OS V1R6.0 MVS
System Management Facility (SMF), Topic 3.1.1, “Processing the SMF Dump Program.”

INDD(SMFDATA,OPTIONS(DUMP))

This line specifies that the input will be the SMFDATA data definition, defined earlier as:
SYS1.MAN1. DUMP specifies that the records will be read but not modified (the other options are
CLEAR—delete the records in the data set—and ALL—read the records and then delete them).
The TYPE parameter specifies which SMF types to unload—in this case, we are interested in only
those that are relevant to RACF: 30, 80, 81, and 83.

OUTDD(SMFOUT,TYPE(30,80,81,83))

IFASMFDP copies the records into an output data set specified by the OUTDD statement.
SMFOUT was defined earlier as a dummy, so it does nothing.

DATE(2007030,2007090)

This line specifies the start and end dates. The mainframe date format is the year followed
by the number of the day in the year. This date format, specified in ISO-8601, is sometimes called
the Julian date. This line specifies records from the thirtieth day of 2007 (January 30) until the

84 Chapter 4 Logging

ninetieth day (March 31). These values were useful when this chapter was written; when you run
the job on your own system, change them to the desired interval.

Converting Dates
One way to convert between this format and regular dates is with a tool that does date arith-
metic, such as Microsoft® Excel.The day number is the difference in days between a date and
December 31 on the previous year.

Another way is to use the online calendar calculator at www.fourmilab.ch/documents/calendar.

ABEND(NORETRY)

Abend is a mainframe term that is analogous to crash. Abend is short for “abnormal end.” If
the program abends, this line specifies that the system should not try to rerun it.

USER2(IRRADU00)

USER3(IRRADU86)

These lines specify common exit routines (mainframe term for hooks) that RACF uses to
process RACF SMF records.

Now, modify the DATE parameter to a value appropriate for when you are reading this and
submit the job.

This job should create a data set called <USERID>.RACF.AUDIT, which contains the SMF
log records.

4.2.2 Understanding Sequential Reports
Browse the RACF.AUDIT data set created in the previous section. Type the command COLS ON to
view the column numbers. It shows the tens digit of the column number above the text.

Figure 4.14 shows part of a RACF.AUDIT data set.

4.2 Generating Reports 85

Figure 4.14 Auditing results

Each line in this data set is a separate record. The format of the unloaded SMF records is
documented in z/OS Security Server RACF Macros and Interfaces, Chapter 6. For example, let’s

www.fourmilab.ch/documents/calendar

review the bottom line shown in Figure 4.14, the one for an access request at 17:15:28 on
February 20, 2007.

The first fields are the same for all records of types 30 and 80. These fields are documented
in Topic 6.2, “The Format of the Header Portion of the Unloaded SMF Records.” For every field,
this topic contains the field name and an explanation, as well as the start and end columns for the
field. For example, the event type starts at position 1 and ends in position 8. The event qualifier
starts at position 10 and ends at position 17. Therefore, the event type is ACCESS and the qualifier
is SUCCESS.

The job name is at positions 180–187. To see that portion of the record, press F11 to scroll
right until you reach column 161, as shown in Figure 4.15. Because the first column is 161, as
shown in the upper-right corner of the screen, the 8 on the columns line stands for column 180.
Therefore, the job name is ORIPOME, the TSO login for the user ORIPOME.

86 Chapter 4 Logging

Figure 4.16 The resource accessed

Figure 4.15 The job name

Topic 6.2, “The Format of the Header Portion,” describes only the header information,
which is common to most records. To see the extensions specific to event types, see Topic 6.3,
“Event Codes.” According to that topic, lines with the ACCESS event type describe access to
resources that are not (UNIX System Services) files or directories, and those lines are further doc-
umented in Topic 6.4.3 (for z/OS Version 1.6—other versions might have it in a different topic).
That topic lists the fields in the record. The next topic, Topic 6.4.4, lists the event qualifiers.
Because the event qualifier is SUCCESS, Topic 6.4.4 tells you that the record describes a success-
ful access attempt.

According to Topic 6.4.3, the name of the resource requested starts at position 282. Therefore,
as Figure 4.16 shows, this record refers to access of ORIPOME.RACFBK.CNTL. The level of access
requested is in positions 538–545, the level of access granted is in 547–554, and so on. RACF log
records provide a lot of information about who attempted to do what on the z/OS system.

4.2.3 Generating Reports with ICETOOL

Note
This section uses DFSORT™, which is a separately licensed program. It is very common on
z/OS systems, and your mainframe might have it. If it does not, you probably have some com-
peting sort package to generate reports, such as SYNCSORT. Ask a system programmer for
help.

The format of the data unloaded from SMF is not very user friendly. It contains all the
records from the report period rather than just the relevant ones. You might have to consult the
documentation to interpret what each field means.

ICETOOL, which is part of DFSORT, allows for more user-friendly reports. To use it, copy
the batch job RACFBK.CNTL(AUDIT) to RACFBK.CNTL(REPORT) (the method to copy data set
members is covered in Section 4.1.1, “SMF Configuration”). Then modify the file as shown in the
bolded lines of Listing 4.2 and submit the job.

Listing 4.2 RACFBK.CNTL(REPORT)

//REPORT JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H

//UNLOAD EXEC PGM=IFASMFDP

//SYSPRINT DD SYSOUT=*

//ADUPRINT DD SYSOUT=*

//OUTDD DD DSN=&&RECS,DISP=(MOD,PASS,DELETE),

// UNIT=SYSALLDA,SPACE=(CYL,(10,10)),

// DCB=(RECFM=VBS,LRECL=8192)

//SMFDATA DD DSN=SYS1.MAN1,DISP=SHR

//SMFOUT DD DUMMY

//SYSIN DD *

INDD(SMFDATA,OPTIONS(DUMP))

OUTDD(SMFOUT,TYPE(30,80,81,83))

DATE(2007030,2007090)

ABEND(NORETRY)

USER2(IRRADU00)

USER3(IRRADU86)

4.2 Generating Reports 87

//DELOLD EXEC PGM=IEFBR14 Delete old report

//DELME DD DSN=&SYSUID..REPORT.TEXT,DISP=(MOD,DELETE,DELETE),

// UNIT=SYSALLDA,SPACE=(CYL,(1,1))

//GENRPRT EXEC PGM=ICETOOL Generate the report

//TOOLMSG DD SYSOUT=*

//DFSMSG DD SYSOUT=*

//TOOLIN DD *

SORT FROM(RECS) TO(SORTED) USING(USER)

DISPLAY FROM(SORTED) LIST(REPORT) DATE TITLE(’Resource Access’) –

BTITLE(’User:’) BREAK(63,8,CH) –

HEADER(’Viol’) ON(48,4,CH) –

HEADER(’Date’) ON(32,10,CH) –

HEADER(’Time’) ON(23,8,CH) –

HEADER(’Resource’) ON(286,30,CH) –

HEADER(’Result’) ON(14,8,CH) –

BLANK

//RECS DD DSN=&&RECS,DISP=(OLD,DELETE)

//REPORT DD DSN=&SYSUID..REPORT.TEXT,DISP=(NEW,CATLG,DELETE),

// UNIT=SYSALLDA,SPACE=(CYL,(1,1)),

// DCB=(RECFM=FB,LRECL=80)

//SORTED DD DSN=&&SORT,DISP=(NEW,DELETE)

//USERCNTL DD *

SORT FIELDS=(63,8,CH,A)

INCLUDE COND=(5,6,CH,EQ,C’ACCESS’)

Note
In the interest of simplicity, this job unloads the SMF records and then generates a report. On
production systems with heavy logging loads, that would be tremendously wasteful. Instead,
you would write one job to unload the SMF records to a data set and other jobs that produce
reports.

88 Chapter 4 Logging

Figure 4.17 Report from the audit data

How does it work? The first execution step of the JCL, which unloads data from SMF, is
almost identical to RACFBK.CNTL(AUDIT). The only difference is in the OUTDD data definition:

//OUTDD DD DSN=&&RECS,DISP=(MOD,PASS,DELETE),

// UNIT=SYSALLDA,SPACE=(CYL,(10,10)),

// DCB=(RECFM=VBS,LRECL=8192)

The data set name here is &&RECS. When a data set name in JCL starts with two amper-
sands, it means that it is a temporary data set, for use only in this job. The operating system names
it because the name is not important. The PASS in the disposition specifies that the data stream
will be passed to an execution step later in the job. The DELETE specifies that if this execution
step fails—and, therefore, the job stops—the temporary data set can be deleted.

Because the unloaded SMF data will be used only for creating the report, there is no need to
keep it afterward.

//DELOLD EXEC PGM=IEFBR14 Delete old report

//DELME DD DSN=&SYSUID..REPORT.TEXT,DISP=(MOD,DELETE,DELETE),

// UNIT=SYSALLDA,SPACE=(CYL,(1,1))

The second execution step deletes the old report, if one exists. It runs IEFBR14, which is a
dummy program that does nothing. The DELME DD statement for this step specifies MOD on
&SYSUID..REPORT.TEXT, so the program will be able to open the data set whether or not it
exists. Then, when the program is done, it will delete the data set.

//GENRPRT EXEC PGM=ICETOOL Generate the report

4.2 Generating Reports 89

The resulting output is placed in REPORT.TEXT. It should look similar to Figure 4.17.

The last execution step calls a program named ICETOOL, which is used to manipulate data
and generate reports in a mainframe environment. It is a programmer-friendly front end to the
DFSORT data-manipulation utilities. For a complete description of ICETOOL, see Chapter 6 in
z/OS V1R6.0 DFSORT Application Programming Guide.

//TOOLIN DD *

TOOLIN is the data stream that controls ICETOOL. Each operator in TOOLIN can be one
line or more. If an operator spans more than a single line, each line but the last must end with a
hyphen as a continuation symbol.

SORT FROM(RECS) TO(SORTED) USING(USER)

This operator specifies that ICETOOL will take the records from RECS, sort and select
them according to the rules in the USERCNTL data stream, and output them to SORTED—all
defined using DD in this execution step. ICETOOL does not allow the sorting rules to be specified
directly in TOOLIN; they must be specified in a separate data stream. The USING(xxxx) clause
always appends CNTL to the USING(xxx) value to get the name of the data stream, resulting in
USERCNTL.

Because we use it here, let’s jump ahead to the definition of USERCNTL.

//USERCNTL DD *

SORT FIELDS=(63,8,CH,A)

INCLUDE COND=(5,6,CH,EQ,C’ACCESS’)

This data definition has two parts: a sort rule and a select rule.

SORT FIELDS=(63,8,CH,A)

For reasons that will be explained later, the records need to be sorted by user ID. This line
specifies the sort fields. In this case, there is one field, which starts in byte 63 of the record and
continues for 8 bytes. It is a character field, and the sort order is ascending.

According to the documentation (Topic 6.2 in z/OS V1R6.0 Security Server RACF Macros
and Interfaces), the user name field starts at byte 59. However, because the data set uses variable-
size records, each record starts with a 4-byte record length. For that reason, we need to add 4 to
the starting location for every field.

INCLUDE COND=(5,6,CH,EQ,C’ACCESS’)

This line requires the six characters starting in location 5, which is location 1 in the table, to
be equal to the character string ACCESS. This limits the results to resource access records.

Using the full definition of USERCNTL, SORTED will have the resource access records and
they will be sorted by user.

DISPLAY FROM(SORTED) LIST(REPORT) DATE TITLE(‘Resource Access’) –

This line directs ICETOOL to create a report from the records in SORTED and write it to
REPORT. This line also specifies that the top line of each report page must include the date the

90 Chapter 4 Logging

report was created and the title Resource Access. The hyphen sign at the end of the line speci-
fies that the next line is a continuation.

BTITLE(‘User:’) BREAK(63,8,CH) –

This line specifies that the report is broken up by the character field that starts at byte 63
and continues for 8 bytes (the user field). Every time a new user name is encountered, the report
will write User: followed by the user name. This division into sections is the reason the records
had to be sorted by user name earlier.

HEADER(‘Viol’) ON(48,4,CH) –

HEADER(‘Date’) ON(32,10,CH) –

HEADER(‘Time’) ON(23,8,CH) –

HEADER(‘Resource’) ON(286,30,CH) –

HEADER(‘Result’) ON(14,8,CH) –

These lines specify the columns in the report. The HEADER specifies the name that will be
displayed, and the ON specifies the first byte, the length, and the format. Because the unloaded
records already use characters, the format is always CH.

BLANK

This line specifies that columns for character fields must be as narrow as possible while fit-
ting their header and the length of their data. Without it, all character columns would be at least
20 characters wide and this report would be wider than a single screen.

ICETOOL retrieves different fields from data streams, sorts them, and rewrites them in a
different format. This is similar to the functionality provided by sort, cut, and awk in UNIX.

4.2.4 Other Types of Reports
In addition to ICETOOL, the SMF records can be unloaded to a DB2 database if you have DB2
on your system. This is explained in Topic 3.6 of z/OS V1R7.0 Security Server RACF Auditor’s
Guide.

Starting with z/OS Version 1.7, it is also possible to unload the SMF data as XML. To do
that, use the same job as in Listing 4.1, but specify XMLOUT instead of OUTDD in the data definition.

At this point, you know how to perform the basics of computer security with RACF: authen-
ticate users, authorize them to access resources, and log their activities. The following chapter
teaches you the basics of auditing and how to verify that a mainframe is configured to be secure.

4.3 UNIX System Services (USS) Logging
Three steps are involved in logging information from USS:

1. Ensure that the relevant classes are active.

2. Modify the SMF settings.

4.3 UNIX System Services (USS) Logging 91

3. Specify logging on specific files and directories.

4. Create reports based on the SMF logs.

For more information about USS logging, see the z/OS UNIX System Services Planning
Guide, Chapter 19, “Monitoring the z/OS UNIX Environment.”

4.3.1 Classes for USS Logging
These classes define auditing for various actions in USS:

• DIRACC—Read and write requests on USS files and directories

• DIRSRCH—Directory searches

• FSOBJ—File system requests that aren’t included in DIRACC and DIRSRCH

• FSSEC—Changes to the security data of files and directories

• IPCOBJ—Interprocess communication

• PROCACT—Actions that affect processes, such as ps and nice

• PROCESS—Changes to the UID and GID of processes

To verify that these classes are set to default logging, issue this TSO command:

SETROPTS LIST

See that they are listed under LOGOPTIONS “DEFAULT,” as Figure 4.18 shows for DIRACC.

92 Chapter 4 Logging

Figure 4.18 DIRACC is set to default logging

If those classes are not set to default, run these commands to set them.

SETROPTS LOGOPTIONS(DEFAULT(DIRACC))

SETROPTS LOGOPTIONS(DEFAULT(DIRSRCH))

SETROPTS LOGOPTIONS(DEFAULT(FSOBJ))

SETROPTS LOGOPTIONS(DEFAULT(FSSEC))

SETROPTS LOGOPTIONS(DEFAULT(IPCOBJ))

SETROPTS LOGOPTIONS(DEFAULT(PROCACT))

SETROPTS LOGOPTIONS(DEFAULT(PROCESS))

4.3.2 SMF Settings for USS
USS can have different SMF settings from the rest of z/OS. To activate security auditing on USS,
add this line to the parameter data set member you edited in Section 4.1.1, “SMF Configuration.”
Either add these lines or modify SUBSYS(OMVS,TYPE(…)) if it already exists.

SUBSYS(OMVS,TYPE(4,5,6,14,14,26,28,30,37,38,39,64,70,71,72,73,

74,75,76,77,78,80,81,83))

Then go to SDSF (=S) and enter the console commands to reread the parameter data set
member and then display the SMF setting. If your member’s name is SMFPRMOP, these are the
commands:

/set smf=op

/d smf,o

The parameters should include the parameters for USS, as shown in Figure 4.19. Note that
type 80 is shown in the SUBSYS(OMVS,TYPE(…)) line, as shown by the arrow.

4.3 UNIX System Services (USS) Logging 93

Figure 4.19 SMF parameters with USS logging

4.3.3 Specifying Logging in USS
To specify logging for actions on a file or directory, enter OMVS and use the chaudit command.
To view the audit settings, use ls –W.

It is possible to audit any of the three UNIX file actions: read (r), write (w), and execute (x).
These actions can be audited when permission is granted so the request is successful (s), when
permission is not granted and request fails (f), or in all cases (a).

The first format for chaudit is to specify the actions, an equal sign (=), and the conditions
under which they will be audited. For example, the following command specifies that any attempt

to read or write acl_test, whether or not it is successful, will be audited. This format deletes
any previous audit settings.

chaudit rw=sf acl_test

The second format is to specify the actions, a plus sign (+), and then the conditions. This
adds auditing on a particular action. For example, to log failed attempts to execute acl_test,
run this:

chaudit x+f acl_test

The third format is to specify the actions, a minus sign (-), and then the conditions. This
removes auditing on a particular action. For example, to avoid logging failed reads on acl_test,
run this:

chaudit r-f acl_test

Now view the audit settings:

ls –W acl_test

They should be the same as in Figure 4.20.

94 Chapter 4 Logging

Figure 4.20 Audit settings on a USS file

Auditor Audit Settings
In Figure 4.20, three other characters come after the ones for the audit settings you just cre-
ated. These are for the audit settings for auditors, users with special permissions that are
explained in Chapter 6, “Limited-Authority RACF Administrators.”

Neither the owner of a file nor the UNIX system administrators can modify these permissions.
Having these audit bits makes it harder for users to hide their actions, which helps keep
people honest.

Now try to write to the file, read from it, and execute it. The first two should succeed, and
the last fail:

ls –W acl_test >> acl_test

cat acl_test

./acl_test

4.3.4 Viewing the USS Log Records
Going back to z/OS Security Server RACF Macros and Interfaces, Topic 6.3, “Event Codes,” you
can see that the event code for checking access to a file is FACCESS. Looking at Table 61 for the
details, the user name is in positions 291–310 and the path name is in positions 572–1594. If the
requested access was read, it would be in positions 1651–1654, write in 1656–1659, and execute
in 1661–1664.

Run the RACFBK.CNTL(AUDIT) job again. When it is done, open RACF.AUDIT and use
the command F FACCESS to find the relevant lines. Scroll to the right (F11) to see the other
fields.

Modifying RACFBK.CNTL(REPORT) to produce a report of file access in USS is left as an
exercise to the student.

4.4 Logging in zSecure
zSecure Audit handles the SMF formats for you. To access SMF, add the SMF data sets to the
zSecure input files, as shown in Figure 4.21.

4.4 Logging in zSecure 95

Figure 4.21 Adding SMF to the zSecure input files

The events menu lets you decide which type of log entries you want to see, as shown in
Figure 4.22.

96 Chapter 4 Logging

Figure 4.22 The zSecure event menu

Next, you specify a filter for the events you want. Figure 4.23 shows a possible filter for
data set events.

Figure 4.23 zSecure filter for data set events

After you do this, zSecure displays the list of relevant SMF records, such as those shown in
Figure 4.24.

4.5 Additional Information 97

Figure 4.24 zSecure displays SMF events.

4.5 Additional Information
The manuals document this subject in details. These manuals are particularly relevant:

• z/OS MVS System Commands, which explains console commands

• z/OS MVS Initialization and Tuning Reference, which explains how to tune SMF param-
eters, such as the parameters that control RACF auditing

• z/OS DFSMS Using Data Sets, which explains the parameters used to create data sets,
including when creating them in JCL

• z/OS MVS System Management Facility (SMF), which explains how to dump SMF
records into a data set

• z/OS Security Server RACF Macros and Interfaces, which documents the format of
RACF SMF records

• z/OS DFSORT Getting Started, which introduces ICETOOL and the other DFSORT
utilities

• z/OS DFSORT Application Programming Guide, which includes a detailed explanation
on how to use ICETOOL to create reports

• z/OS UNIX System Services Planning, which explains USS logging

This page intentionally left blank

99

C H A P T E R 5

Auditing

Few things instill more fear in security administrators and systems programmers than learning
that their system has been selected for an audit. That’s really a shame because when a system is
properly managed, having an auditor review the system should result in the auditor finding noth-
ing significant. The best way to ensure that is to routinely review your system and fix problems
before the auditor comes to town. In this chapter, we introduce you to the role of the auditor and
show the various RACF utilities you can use to help ensure that your system passes muster.

5.1 Auditing
At a high level, the auditor has a very simple job: ensure that the installation security policy is
being followed. The auditor might want to look at lots of things, many of which are outside the
scope of this book. For example, the auditor might look at the physical controls on your data
center, your hiring policies for your systems staff, and your change-control policies and practices.

For the z/OS portion of the audit, the items of interest to your auditor can be divided into
two broad categories:

• Static system configuration information, such as which user IDs are defined with system
level authorities.

• Dynamic event information that is generated during the normal operation of the system,
such as log records that are created when resources are accessed

In Chapter 4, “Logging,” you learned how to capture event information for an audit. In this
chapter, you learn how to display the system configuration to show an auditor that it is configured
correctly.

You can use several RACF functions to review your system’s configuration:

• The RACF Data Security Monitor (DSMON), which examines key system settings

• The RACF options, available using the SETROPTS command

• The RACF Data Base Unload Utility (IRRDBU00), which unloads your RACF database
into a format that can be easily fed into your favorite reporting tools

• The RACF Remove ID Utility, which finds “residual” authorities on your system

• The RACF health checks that are a part of the IBM Health Checker for z/OS

The following sections look at each of these and show how they can be a part of the audit
process.

5.2 The RACF Data Security Monitor (DSMON)
The RACF Data Security Monitor (DSMON) utility provides an overview of the security settings
on your z/OS system. DSMON creates several different reports on the security characteristics
of your system. You can either ask for each report individually or ask for DSMON to create a
default set.

Table 5.1 shows the different reports created by DSMON. The most important reports are
explained later in this section. For information about the other reports, refer to z/OS Security
Server RACF Auditor’s Guide.

Table 5.1 DSMON Reports

Report Name Description

SYSTEM Overall information about the z/OS environment.

RACGRP The Group Tree Report, which shows the group structure for the entire system.

SYSPPT Program Properties Table Report, which shows the programs that run with
extraordinary authority.

RACAUT RACF Authorized Caller Table Report, which shows the unauthorized programs
that are allowed to use the RACROUTE REQUEST=LIST and RACROUTE
REQUEST=VERIFY functions.

RACCDT RACF Class Descriptor Table Report, which shows the general resource classes
defined on the system.

RACEXT RACF Exits Report, which shows the RACF exits being used.

RACGAC RACF Global Access Table Report, which shows the entries in the RACF Global
Access Table.

100 Chapter 5 Auditing

Report Name Description

RACSPT RACF Started Procedure Table Report, which shows the assignments of
identities to started procedures.

RACUSR User Attribute Report, which shows the attributes for users.

SYSLNK, SYSAPF, These are the various data sets that can appear in the Selected Data Set
SYSCAT, RACDST, Report. Each represents data sets that have a key impact on your z/OS
and SYSSDS environment. These data sets are in each report:

• Link list data sets (SYSLNK)
• Authorized program facility (APF) data sets (SYSAPF)
• Catalogs (SYSCAT)
• Data sets that comprise the RACF database (RACDST)
• Other system data sets (SYSSDS)

USRDSN Installation-specified data set names

5.2.1 Running DSMON
DSMON is typically run as a batch job. Listing 5.1 shows the JCL to run DSMON with the
“default” set of reports (which are the SYSAPF, SYSLNK, SYSSDS, SYSCAT, SYSPPT,
RACAUT, RACEXT, RACDST, RACUSR, RACSPT, RACCDT, RACGAC, and RACGRP
reports).

Listing 5.1 JCL Job to Run DSMON

//DSMON JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H

//DSMON EXEC PGM=ICHDSM00

//SYSPRINT DD SYSOUT=*

//SYSUT2 DD SYSOUT=*

//SYSIN DD DUMMY

You can run this job by placing this JCL into your data set RACFBK.CNTL(DSMON). Save
and submit the job, just as you submitted batch jobs in the earlier chapters.

//SYSPRINT DD SYSOUT=*

//SYSUT2 DD SYSOUT=*

These lines tell the job entry subsystem to place the output in the same place where the job
messages are directed, which, in this case, is also the held queue.

You can now use SDSF to browse the output of the DSMON utility. To do this, go into
SDSF (=S). From the SDSF primary option panel, select H or O. SDSF displays a list of the jobs
that have held output. (If no jobs are listed, enter the PREFIX DSMON* command to tell SDSF to

5.2 The RACF Data Security Monitor (DSMON) 101

Figure 5.1 Selecting job output to display

This places you in a browse session where you can see the entire output of your job, includ-
ing your interpreted JCL, system messages, and the output generated by your job.

Let’s take a look at some of the default reports DSMON produces. For the complete list of
DSMON reports, see the z/OS V1R6.0 Security Server RACF Auditor’s Guide, Topic 5.2.3,
“Functions DSMON Uses.”

5.2.2 The System Report
The first report created by this execution of DSMON is the System Report, shown in Figure 5.2.
Scroll down the job output with F8 until you get to it. This report provides general system infor-
mation, such as the version of the operating system, the system residence volume for the operat-
ing system, the Systems Management Facility (SMF) ID for the system, and the CPU serial
number and model. This information is roughly equivalent to the version information that typi-
cally appears at the top of the dmesg command output in UNIX.

102 Chapter 5 Auditing

Figure 5.2 The System Report

Think of the System Report as the “title page” or “cover” of your report. You should ask
these questions when looking at this report:

• Does it describe the correct system?

• Is the operating system at the expected level?

retrieve output from any job that has a name that begins with DSMON). From that list, select the job
that you just submitted by placing an S in the NP column, as shown in Figure 5.1.

• Is the operating system level supported?

• Was the expected SYSRES volume used when the system was initialized? SYSRES is
the DASD volume that contains the system software.

5.2.3 The Program Properties Table Report
The next report is the Program Properties Table (PPT) report, shown in Figure 5.3.

5.2 The RACF Data Security Monitor (DSMON) 103

Figure 5.3 The Program Properties Table (PPT)

Entries in the PPT give programs special privileges. Note, however, that those privileges
are granted to programs only if their binary is in an APF-authorized data set, a data set that is
authorized for system privileges. This prevents unauthorized users from setting up their own
authorized programs. For more information about APF authorized data sets, see Section 5.2.7,
“The Selected Data Sets Report.”

DSMON reports two of the privileges that are specified in the PPT:

• Bypass RACF access controls for data sets. Programs that can do this have a YES in the
BYPASS PASSWORD PROTECTION column. The capability to bypass RACF access con-
trols has nothing to do with passwords; the term refers back to a time when data sets
were protected by passwords associated with the data set. This is roughly equivalent to
running under the root user in UNIX or Linux because root can read and modify any file,
regardless of permissions. By the way, this privilege is implemented not by RACF itself,
but by the services that normally call RACF. RACF is bypassed completely.

• Execute in a system key. Each program that executes on z/OS has an associated storage
access key. Keys 8–15 are used for programs that do not require system storage access
permissions. A program that has NO in the SYSTEM KEY field is running with a user exe-
cution key. A YES in this field means that the program runs initially with a system stor-
age protection key of 0–7 and can modify memory that the operating system itself uses.
This is roughly equivalent to running as a kernel module, which is allowed to change
everything on a UNIX or Linux system.

When looking at this report, ask yourself, “Are these the programs that I expect to find?”
The z/OS MVS Initialization and Tuning Reference has a list of the IBM defaults for the PPT.

5.2.4 The RACF Authorized Caller Table (ICHAUTAB) Report
Most of the time, modules that call RACF run with system privileges of some kind. It is possible
to configure RACF so that a module without any other system privileges can issue some
RACF requests (RACROUTE REQUEST=LIST, which reads RACF profiles, and RACROUTE
REQUEST=VERIFY, which verifies that access is allowed). The list of these modules appears in
the RACF Authorized Caller Table, shown in Figure 5.4.

104 Chapter 5 Auditing

Figure 5.4 The RACF Authorized Called Table (ICHAUTHAB) report

This is the simplest report to review because IBM recommends that the Authorized Caller
Table have no entries.

5.2.5 The RACF Exits Report
The next report DSMON produces is the RACF Exits report, which shows the RACF
exits that have been defined to the system, shown in Figure 5.5. Those are hooks used to
alter or augment RACF processing. They are used to add installation-specific modules to
RACF, and it is important to verify that none of these modules introduces vulnerabilities.

Figure 5.5 The RACF Exits report

In a perfect world, there would be no need for exits. However, sometimes an installation
decides to write an exit to augment how a product works. If your installation has chosen to do so,
this report will list your exit. Ask yourself these questions:

• Are the exits that I expect identified? Your installation should be capable of document-
ing the purpose, ownership, and status of each exit.

• Do they have the expected length? An incorrect length might indicate that an unexpected
change has been made to the exit.

• Are there any error messages? If an exit has been defined to RACF and it cannot be
located, DSMON returns an error. The absence of an exit could cause RACF to not
return the access control answer that you expect. Error messages should be reported to
the systems programming staff and should be investigated.

Warning
RACF exits can be dangerous. This report provides a measure of security, but if you use any
RACF exits, you should verify that you have the source code, that the exit is secure, and that
the module hasn’t been tampered with.To do this, you must examine the link pack area (LPA).
This topic is beyond the scope of this book; for more information, see the z/OS MVS Initial-
ization and Tuning Reference manual.

5.2.6 The Selected User Attribute Report
The next report is the Selected User Attribute report (shown in Figure 5.6), which is a report of all the
users who have extraordinary RACF authorities. These user IDs are often the RACF administrators.

5.2 The RACF Data Security Monitor (DSMON) 105

Figure 5.6 The RACF Administrators report

Chapter 6, “Limited-Authority RACF Administrators,” explains the different administrator
attributes and their meanings. For now, it is enough that you see the list of RACF administrators
and their permission levels. This is followed by a summary of the permission levels and the num-
ber of users who have them, as shown in Figure 5.7.

Figure 5.7 The RACF Administrators Summary report

This report deserves a careful review. Focus on these items:

• Is the user ID IBMUSER revoked? As a predefined user ID, IBMUSER is a well-known
ID that should not be used for any work after the system has been defined. IBM recom-
mends revoking IBMUSER after you have defined other user IDs on your system. Note
that the RACF_IBMUSER_REVOKED check in the IBM Health Checker for z/OS infra-
structure also reports on the status of IBMUSER. Section 5.5, “The RACF Health
Checks,” explains the IBM Health Checker.

• Do you have any user IDs that have too much authority? In the spirit of the principles of
separation of duties and least privilege, you should question any user ID that has mul-
tiple attributes that give it extraordinary authority, such as the SPECIAL, OPERATIONS,
or AUDITOR attributes. You should also consider who is allowed to use these user IDs.
From a separation of duties perspective, having one user who has a user ID that has
SPECIAL, OPERATIONS, and AUDITOR is just as dangerous as having a user who has
access to three user IDs, one that has SPECIAL, one that has OPERATIONS, and one that
has AUDITOR.

• Do you have an excessive number of user IDs with any of these extraordinary authori-
ties? There’s no hard-and-fast rule for the correct number of user IDs that have the
extraordinary authorities. You should be able to justify and show management approval
for each user ID with an extraordinary authority.

5.2.7 The Selected Data Sets Report
The Selected Data Sets report shows many of the key system data sets for your z/OS environ-
ment, including these:

• APF-authorized data sets, which contain programs that might execute with the capabil-
ity to perform restricted privileged functions. These data sets allow unauthorized users
to call system services, similar to SETUID programs in UNIX and Linux.

• Link list data sets, which comprise the default program search order. These data sets are
somewhat analogous to /bin and /usr/bin under UNIX and Linux.

• Catalogs, which are data sets where the data sets are “cataloged” so that they can be
found more easily (such as by their name). They have some similarities to a directory,
except that the data sets can be on different volumes or device types, or might not exist
at all.

• Data sets that make up the RACF database.

Figure 5.8 shows this report.

106 Chapter 5 Auditing

Figure 5.8 The Selected Data Sets report

Table 5.2 explains the data fields in the data set report.

Table 5.2 Fields in the Data Set Report

Field Name Meaning

Data Set Name The full name of the data set.

Volume Serial The serial number of the volume that contains the data set.

Selection Criterion The reason this data set is part of the report.

RACF Indicated Is there a discrete profile for this data set? N.F. indicates that the data set could
not be found on the volume. N.M. means that the volume is not mounted.

RACF Protected Is the data set protected by any profile? If the data set is RACF protected but not
RACF indicated, it means that access to it is specified by a generic profile.

UACC Default permission level.

This report contains a lot of information. Be sure to review these key items:

• Are the data sets listed the data sets you expected to see? Additional data sets might rep-
resent an inadvertent extension of the operating system.

• Why are data sets shown as not found (N.F.) or not mounted (N.M.)? What controls are
in place to ensure that unauthorized users will not allocate data sets with those names?

• Is the UACC value consistent with the data contained within the data set? For example,
it makes sense to allow everybody to read an APF data set, which contains programs. It
does not make sense to allow everybody to read a data set with payroll information.

• Is the access list for the data set consistent with the installation security policy? Note
that “RACF protected” means only that a RACF profile protects the resource. That pro-
file could allow access to users who should not have access to the resource.

5.2 The RACF Data Security Monitor (DSMON) 107

Tip
Check for additional information on APF data sets, link list data sets, PARMLIB data sets, and
RACF database data sets. See Section 5.6, “The RACF Health Checks.”

5.3 The Set RACF Options (SETROPTS) Command
As part of a z/OS audit, review the RACF options in effect on your system. To do that, use this
TSO command:

SETROPTS LIST

This command can create hundreds of lines of output. To capture the output, run the TSO
command interpreter (IKJEFT01) in a batch job and give it the command as input, as shown in
Listing 5.2. You can use the short version of the command, SETR.

Listing 5.2 JCL Job to List RACF Options

//SETROPTS JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H

//SETROPTS EXEC PGM=IKJEFT01,DYNAMNBR=100

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSTSIN DD *

SETR LIST

/*

The list of RACF options shows many different aspects of the RACF environment. This
section explains the most important ones. For a complete description, see z/OS Security Server
RACF Command Language Reference, Topic 5.30, “SETROPTS (Set RACF Options)”; and z/OS
Security Server RACF Security Administrator’s Guide, Chapter 5, “Specifying RACF Options.”

The attributes line, shown in Figure 5.9, contains a number of log settings. In most cases,
those settings should be on.

• SAUDIT—Does RACF log the actions of RACF administrators, users with the
system-SPECIAL attribute?

• CMDVIOL—Does RACF log RACF command violations, unauthorized attempts to
change RACF profiles?

• OPERAUDIT—Does RACF log the actions of RACF operators, users with the
system-OPERATOR attribute?

• INITSTATS—Does RACF record the last logon date and time of each user?

108 Chapter 5 Auditing

Figure 5.9 Attributes in the RACF options

The WHEN(PROGRAM) attribute indicates that RACF program control is activated. For more
information about this function, see z/OS Security Server RACF Security Administrator’s Guide,
Chapter 9, “Protecting Programs.”

SETROPTS lists each of the RACF general resource classes that are active, as shown in Fig-
ure 5.10. RACF access control and logging are active for only those resource classes. Check your
security policy to ensure that no classes are missing.

5.3 The Set RACF Options (SETROPTS) Command 109

Figure 5.10 Active RACF classes

RACF enables installations to specify the protection of data sets that are not protected by a
profile, using the PROTECTALL option (shown in Figure 5.11). Three possible settings exist for
PROTECTALL.

• NOPROTECTALL—Open access by default. Access is always allowed unless there is
a protection profile.

• PROTECTALL(WARN)—If there is no protection profile, access is allowed, but with
a warning message (ICH408I) to the user and the security administrator.

• PROTECTALL(FAIL)—Closed access by default. Access is always denied unless a
protection profile allows it. This is the proper setting for a production system.

Figure 5.11 The PROTECTALL option

Figure 5.12 shows the password options. The settings are self-explanatory, but for more
details, you can look at the z/OS Security Server RACF Security Administrator’s Guide, Topics
5.2.1–5.2.3.

Figure 5.12 Password options

Unused user IDs are a security risk. A hacker could break into them and nobody would
notice. On production systems, it is a good idea to automatically revoke those accounts. Figure
5.12 was taken from a test system on which security is not an issue.

5.4 The RACF Database Unload Utility (IRRDBU00)
In Chapter 4, you learned about the RACF SMF Unload Utility, IRRADU00. This utility translates
security-related SMF records (SMF types 30, 80, 81, and 83) into an ordered data set of records,
similar to a file under UNIX or Windows. This data set is suitable for processing using virtually
any report-generation package, browsing using an editor, or loading into a relation database man-
ager of your choice.

The RACF Database Unload Utility, IRRDBU00, does the same for the RACF database.
IRRDBU00 can be run using the live primary RACF database, the live backup RACF database, or
an offline copy of the RACF database. IBM recommends running the utility against an offline
copy of the RACF database, for performance reasons. Many installations run IRRDBU00 as a part
of their daily backup of the RACF database.

To identify the location of the RACF database and any live backups, use the TSO command
RVARY LIST, as shown in Figure 5.13.

110 Chapter 5 Auditing

Figure 5.13 RACF databases

Listing 5.3 shows the JCL to run IRRDBU00. Use the name of your live backup RACF data-
base, to provide the latest information, in the INDD1 data definition. Enter this JCL into
RACFBK.CNTL(UNLRACF) and submit it.

Warning
We unload from a live database because we assume that you are running the exercises on a
test system where performance is not an issue. If you are using a production machine, ask
where the offline backup is located.

Listing 5.3 JCL Job to Unload the Live RACF Database

//UNLRACF JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H

//UNLRACF EXEC PGM=IRRDBU00,PARM=NOLOCK

//INDD1 DD DISP=SHR,DSN=SYS1.NMP122.RACF

//OUTDD DD DISP=(MOD,CATLG,DELETE),DSN=&SYSUID..RACF.UNLOAD,

// UNIT=SYSALLDA,DCB=(RECFM=VB,LRECL=8096,BLKSIZE=0),

// SPACE=(CYL,(10,10))

//SYSPRINT DD SYSOUT=*

The IRRDBU00 program uses these data definitions:

• INDD1, INDD2 … INDDn—Your input RACF data set. If your RACF database is
stored in a single data set, use INDD1. If it is split among multiple data sets, use INDD2,
INDD3, and so on.

• OUTDD—The output data set for the unloaded records. IRRDBU00 expects this data set
to have a record format of VB (variable-length records in blocks) with a maximum
record length of at least 8,096. The data definition in Listing 5.3 creates such a data set.

• SYSPRINT—Messages produced by IRRDBU00. Those are the kind of messages that a
UNIX program would put in stderr.

For more information about unloading RACF databases, read the z/OS Security Server
RACF Security Administrator’s Guide, Chapter 11, “Working with the RACF Database.” To see
how to analyze the unloaded records using ICETOOL, see the examples in SYS1.
SAMPLIB(IRRICE).

5.4.1 Removing IDs with IRRRID00
One important use for unloaded RACF databases is to identify and delete references to nonexist-
ent users and groups. To do this, use the RACF remove ID utility, IRRRID00. This utility has two
modes:

1. Residual IDs—These are IDs that are used improperly, such as deleted IDs that still
appear in ACLs or group IDs that appear where a user ID is required. Deleted IDs that
appear in ACLs are a serious risk because if another ID is created with the same name, it
will have unintended permissions.

2. Specified IDs—IDs specified in SYSIN.

5.4 The RACF Database Unload Utility (IRRDBU00) 111

Listing 5.4 has two job steps to show the use of IRRRID00 in both modes.

Listing 5.4 JCL Job to Identify References to Users

//DELIDS JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H

//RESIDIDS EXEC PGM=IRRRID00

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SORTOUT DD UNIT=SYSALLDA,SPACE=(CYL,(5,5))

//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(3,3))

//INDD DD DISP=OLD,DSN=&SYSUID..RACF.UNLOAD

//OUTDD DD DISP=(MOD,CATLG,DELETE),DSN=&SYSUID..RESIDS.CLIST,

// UNIT=SYSALLDA,DCB=(RECFM=VB,LRECL=1024,BLKSIZE=0),

// SPACE=(CYL,(5,5))

//SYSIN DD DUMMY

//SPECIDS EXEC PGM=IRRRID00

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SORTOUT DD UNIT=SYSALLDA,SPACE=(CYL,(5,5))

//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(3,3))

//INDD DD DISP=OLD,DSN=&SYSUID..RACF.UNLOAD

//OUTDD DD DISP=(MOD,CATLG,DELETE),DSN=&SYSUID..SPECIDS.CLIST,

// UNIT=SYSALLDA,DCB=(RECFM=VB,LRECL=1024,BLKSIZE=0),

// SPACE=(CYL,(5,5))

//SYSIN DD *

MYUSER

/*

This job has two job steps, RESIDIDS and SPECIDS. Both jobs use two temporary data
sets, SORTOUT and SYSUT1. Because these are temporary data sets, we let JES assign names for
them. If you look at the job output in Figure 5.14, you will see the names used and the fact that
they were deleted.

112 Chapter 5 Auditing

Figure 5.14 Temporary data sets in the job output

The output of IRRRID00 is a command list, written to OUTDD. After you review it and mod-
ify it as needed, you can execute it to remove the user IDs and references to them. In the job in
Listing 5.4, that output is written to data sets RESIDS.CLIST (for residual IDs) and SPECIDS.
CLIST (for specified IDs).

On a well-configured system, RESIDS.CLIST should not have anything interesting.
SPECIDS.CLIST, on the other hand, would have the commands to delete MYUSER and all the
references to it, as shown in Figure 5.15.

Notice the EXIT command before the line that actually deletes the user. To avoid mistakes
through carelessness, you must delete that line to actually remove the user.

5.4 The RACF Database Unload Utility (IRRDBU00) 113

Figure 5.15 Command list generated by IRRRID00

If a user owns a resource, deleting this user requires an administrator to decide who will be
the new owner. IRRRID00 still produces the commands, but with ?<deleted user ID> in the
fields that need to be replaced. For example, Figure 5.16 shows part of the output of IRRRID00
on the user used as the RACF administrator in this book. To remove this user, you must first come
up with alternative owners to everything it owns and insert those owners to the commands.

Figure 5.16 IRRRID00 identifies resources that will need a new owner

To execute the command, run the TSO interpreter, as you saw earlier in Listing 5.2. Change
the SYSIN definition to the data set IRRRID00 creates.

5.5 The RACF Health Checks
IBM Health Checker for z/OS is a new feature in z/OS V1R7. This feature allows z/OS compo-
nents such as RACF to write checks that are then managed by the Health Checker infrastructure.
Several of the RACF checks are relevant to audits.

Checks are defined with a default severity and execution interval. Your installation can
change the severity and interval, or can disable a check entirely. Details on installing and tailoring
the IBM Health Checker for z/OS are in the IBM Health Checker for z/OS Users Guide.

5.5.1 RACF_SENSITIVE_RESOURCES

The first of these checks is the RACF_SENSITIVE_RESOURCES check, which reports on various
key z/OS resources.

RACF_SENSITIVE_RESOURCES reports on the following sensitive data sets:

• APF list—Data sets with programs that can be executed as authorized, roughly equiva-
lent to the list of programs with set UID in UNIX

• PARMLIB concatenation—Data sets with operating system parameters, roughly
equivalent to the content of the /etc directory

• LINKLIST concatenation—Data sets with programs, roughly equivalent to the default
path

• RACF database—Data sets that contain the RACF database

For all these data sets, the check examines the RACF protection attributes of the data set. It
flags exceptions if data sets have

• Inappropriate UACC—Universal access that compromises the security of z/OS. For
example, most users should not be allowed READ access on the RACF database. They
should not be allowed UPDATE access for the other data sets that RACF_SENSITIVE_
RESOURCES checks.

• Inappropriate ID(*) ACL entry—Such an ACL entry applies to all RACF-authenti-
cated users. Any access level that is inappropriate in UACC is inappropriate for ID(*).

• Warning mode profile—RACF protection profiles can either forbid access (fail mode)
or allow it and issue a warning to the user and the system log (warning mode). Warning
mode prevents downtime in the case of RACF configuration errors, but it is not appro-
priate for the sensitive data sets.

RACF_SENSITIVE_RESOURCES also checks access to sensitive general resource, such as
SUPERUSER.FILESYS.SUPERUSER, SUPERUSER.FILESYS.CHANGEPERMS, and SUPERUSER.
FILESYS.CHOWN in the UNIXPRIV class. The full list of sensitive resources is available in the
check report itself.

114 Chapter 5 Auditing

To see the result of the health check, go to SDSF and select CK. Use S to select the appro-
priate check from the list, as shown in Figure 5.17. If the option CK is not available on the SDSF
menu, it means your system programmer did not configure health checks; ask him or her to do so.

5.5 The RACF Health Checks 115

Figure 5.17 Health checks list

Selecting a check from the CK panel shows the health check’s results. Figure 5.18 shows
part of the results for the APF data sets. Notice that no characters exist in the status column, the
first column on the left. This means that no exceptions were found.

Figure 5.18 Health check results

You can specify a user ID as a parameter to the RACF_SENSITIVE_RESOURCES check.
That user ID has its access tested to these data sets, and an exception is raised if the user ID has
access that would exceed that of a normal user.

Health checks are executed as operator commands. However, they are too long to enter on
the SDSF command line. Instead, type / on the SDSF command line and press Enter. SDSF

Figure 5.19 Running a health check from SDSF with a parameter

Figure 5.20 shows the results of the health check. Note that the two top data sets have E in
the status column. This means that MARKN has too much access for a regular user.

116 Chapter 5 Auditing

Figure 5.20 Health check with an administrator as a parameter

Resources that are flagged either have improper access, have no access control, or are data
sets located on a different volume than the expected one. If a resource is not protected by a pro-
file, the UACC, Warn, and ID* columns will be empty (as is the case with CBC.SCLBDLL in
Figure 5.20). If that causes exceptions, either create the appropriate profiles or change the RACF

opens a large prompt for an operator command. In that prompt, type the following command, as
shown in Figure 5.19:

F HC,UPDATE,CHECK=(IBMRACF,RACF_SENSITIVE _RESOURCES),PARM=<user>

properties to protect all the resources using PROTECTALL(FAIL), as explained in Chapter 3,
“Protecting Data Sets and Other Resources.” Because a change of this magnitude can have wide-
ranging results, do not move to PROTECTALL(FAIL) without careful planning.

5.5.2 RACF_IBMUSER_REVOKED
When RACF is first installed, the only user ID that is defined is IBMUSER. During the RACF
installation process, this user is used to define other user IDs. After this is done, IBMUSER
should be revoked. People who try to break into mainframes often try to use this account because
it has permissions to administer RACF.

By convention, when IBM Health Checker for z/OS raises an exception, the report includes
everything that appears in the product’s Messages and Codes manual, including the solution.
Figure 5.21 shows the health check report when IBMUSER is active.

5.5 The RACF Health Checks 117

Figure 5.21 Health check report for RACF_IBMUSER_REVOKED with the solution

5.5.3 RACF Classes Active Health Checks
For RACF to protect z/OS properly, several general resource classes should be active:

• FACILITY—Protects various z/OS subsystems

• OPERCMDS—Restricts access to specific commands for specific users to specified
consoles

• TAPEVOL—Restricts access to data sets on tape

• TEMPDSN—Restricts access to temporary data sets created by jobs that are aborted
(for example, because of hardware failures)

• TSOAUTH—Restricts TSO user authorities

• UNIXPRIV—Grants specific OMVS privileges instead of the UNIX superuser

Figure 5.22 Health check report for an active class

Tip
Before activating a class, be sure to review the implications of having the class active. For
example, the TEMPDSN class should not be activated while the z/OS is processing a job that
might have a temporary data set allocated.

5.6 zSecure Auditing
zSecure includes a number of audit reports. Type AU.S and then select the type of entity you want
to audit, as shown in Figure 5.23.

118 Chapter 5 Auditing

Figure 5.23 Selecting entity type to audit in zSecure

Then you select from a list of preconfigured audit reports. Figure 5.24 shows part of the list
of reports about users.

For each of these classes there is a health check that verifies it is active. Figure 5.22 shows
the health check for an active class. Note that an active class is a necessary condition for security,
but not a sufficient one. After the class is activated, the RACF administrator needs to create the
appropriate resource profiles to actually restrict access to authorized users.

Figure 5.24 Selecting a user audit report in zSecure

Then you get a report, such as the group authorities report shown in Figure 5.25.

5.6 zSecure Auditing 119

Figure 5.25 zSecure group-level authorities report

If you need more information about a specific line in a zSecure audit report, use the S line
command. For example, Figure 5.26 shows the groups that CRMAINT has authorities for and
what those authorities are.

Figure 5.26 zSecure report details

The intent of this chapter has been to provide you with a sample of some of what an auditor
reviews as a part of a z/OS audit and how you can use RACF facilities to get the auditor useful
information. This chapter is not intended to be a comprehensive list of what a good auditor looks
for, so don’t be surprised if the auditor asks you for other information, such as operational proce-
dures, lists of applications, and data store information.

5.7 Additional Information
For additional information on auditing RACF, check out these resources:

• z/OS Security Server RA CF Auditor’s Guide, which explains DSMON

• An Introduction to DSMON, which explains DSMON with a slightly different slant,
available at ftp://ftp.software.ibm.com/eserver/zseries/zos/racf/pdf/r05_dsmon_
introduction.pdf

• IBM Health Checker for z/OS Users Guide, for complete details on the IBM Health
Checker for z/OS and the checks that IBM ships with z/OS

• z/OS MVS Initialization and Tuning Reference, for information on the z/OS initializa-
tion parameters, IBM recommended defaults, and the link pack area (LPA)

• z/OS Security Server RACF Macros and Interfaces, which has a complete mapping of
the output of the records produced by IRRDBU00

• z/OS Security Server RACF Systems Programmer’s Guide, which explains DSMON

• z/OS Security Server RACF Security Administrator’s Guide, which explains
IRRDBU00 and IRRRID00

• Mainframe Audit News, available at www.stuhenderson.com/MANEWS01.pdf

120 Chapter 5 Auditing

www.stuhenderson.com/MANEWS01.pdf

121

C H A P T E R 6

Limited-Authority
RACF Administrators

Each installation needs to have a small number of superusers with unlimited powers. Typically, a
much higher number of RACF administrators would be authorized to perform limited actions,
such as adding users to a specific group or managing permissions to specific data sets. In this
chapter, you learn how to plan and create such limited-authority RACF administrators.

6.1 Profiles Owned by Users
The RACF profile owner is a user or group that manages access to that resource. This is different
than the owner of the actual resource, which is the user or group whose name is the first compo-
nent of the name of the resource.

If the profile owner is a user, he or she is authorized to do anything to the profile that con-
trols access to that resource. To see this feature in action, log on as MYUSER. Go to the RACF
main menu, then choose 1.2 to change a data set profile. Choose to change ‘<your user

name>.RACFBK.CNTL’. Remember, the single quotes are necessary; otherwise, ISPF will inter-
pret the data set name as MYUSER.<your user name>.RACFBK.CNTL. Choose, for example, to
change the owner to MYUSER. This will fail, as shown in Figure 6.1.

Figure 6.1 MYUSER can’t change the profile.

Now, in a different window, log on as yourself. Choose to change RACBK.CNTL’s owner to
MYUSER, as shown in Figure 6.2.

122 Chapter 6 Limited-Authority RACF Administrators

Figure 6.2 Changing the resource owner for RACFBK.CNTL to MYUSER

Now try to change the profile as MYUSER again. Because MYUSER is already the profile
owner, change the ERASE ON DELETE to YES. This should work—choose D to display the profile
to verify that, as shown in Figure 6.3.

Figure 6.3 The modified profile

As the profile owner, MYUSER can now modify the access control list (ACL) and univer-
sal access level (UACC) and gain access to ‘<your user name>.RACFBK.CNTL’. Note that
without changing those fields, MYUSER still cannot access the actual data set—the ownership is
limited to the RACF profile.

6.2 Group-Owned Profiles and Group Authorities
User ownership of profiles is discouraged. If the user leaves the company, nobody will be able to
change the profile until an unlimited administrator changes the profile owner. Best practices are
to have a group own the profile instead.

If a group owns a profile, it does not mean that everybody in that group can do whatever
they want with that profile. Instead, each user who is connected to the group has some level of

permission to each profile. Four standard levels of group authority exist, which affect a user’s
ability to access and modify group resources:

• Use—Use the resources of the group. A user with this level can access the shared
resources of the group. For example, a user with this level might be able to read a group
data set, a data set that belongs to the group (depending on the ACL).

• Create—Adds the right to create new data sets that will be accessible by members of
this group. Typically, you would give this permission level to someone in the group who
is responsible for configuring new applications.

• Connect—Adds the right to add existing users to the group. This might be given to a
manager or team lead who needs to add existing users to the group when the job role
requires access.

• Join—Adds the right to create new users (who will be members of the group), the right
to add new subgroups, and the right to change users’ permission level on the group. This
might be a human resources person who needs to be able to define new users.

In addition to these group access levels, a user can have three special types of authority for
profiles owned by a group. Each provides different privileges for users who have them—but only
for profiles owned by that group or its subgroups.

• group-AUDITOR—This authority grants privileges related to auditing. It enables users
to specify what information will be audited, to read and delete auditing information, and
so on. This is separate from group-OPERATIONS to allow for separation of duties. This
prevents rogue operators from erasing the traces of their actions or even knowing
whether their actions leave a trace.

• group-SPECIAL—This authority grants the right to assign users permissions and
modify RACF profiles.

• group-OPERATIONS—This authority grants the right to read and modify data sets,
bypassing the UACC and ACL. As usual on the mainframe, there are exceptions to this,
as explained in Topic 3.4.5.3 of z/OS V1R7.0 Security Server RACF Security Adminis-
trator’s Guide. Note that it is recommended to use ACLs for this purpose instead of the
group permission.

If a profile belongs to a group, the group-level permissions of that group apply to that profile.
So do the permissions of the group’s ancestors in the group inheritance hierarchy. For example, in

6.2 Group-Owned Profiles and Group Authorities 123

Figure 6.4, group EARTH owns groups AMERICA and EUROPE, group AMERICA owns groups
US and CANADA, and group CANADA owns groups ONTARIO and MANITOBA. Users with
the group-AUDITOR authority on MANITOBA, CANADA, AMERICA, or EARTH can audit
profiles that MANITOBA owns.

If a profile is owned by a user who is owned by a group, the group authorities for that
group—and any group above it—apply to that profile. For example, if ONTARIO owns JOE,
then profiles JOE owns can be managed by users with group authority in ONTARIO, CANADA,
AMERICA, or EARTH.

124 Chapter 6 Limited-Authority RACF Administrators

EARTH

AMERICA EUROPE

CANADA US

MANITOBA ONTARIO

JOE JANE JACK JILL

Figure 6.4 The inheritance of group privileges

Inheritance is explained in greater detail in Topic 3.4.6.1 of z/OS V1R7.0 Security Server
RACF Security Administrator’s Guide.

6.2.1 The group-AUDITOR Authority
The group-AUDITOR authority enables users to see the RACF profiles of a group and set certain
auditing options. It is appropriate for auditors, managers, and other people who need to see what
happens with a group’s resources but who should not be able to modify them.

To see the effects of group ownership of resources and group-AUDITOR, use the TEXTS
group you created in Chapter 3, “Protecting Data Sets and Other Resources.” Choose option 3
from the main RACF menu to modify groups, enter the group’s name, and choose option 4 to
connect a user to it. After you type the user’s name (MYUSER) and press Enter, you will see a
screen with the group authorities. Give MYUSER group-AUDITOR, as shown in Figure 6.5.

Figure 6.5 Giving MYUSER group-AUDITOR

Next, delete the TEXTS data set profiles: ‘TEXTS.*.*’ and ‘TEXTS.B*.*’ (remember
the single quotes). You can do this using these TSO commands:

DELDSD ‘TEXTS.*.* ‘ GENERIC

DELDSD ‘TEXTS.B*.*’ GENERIC

Note
These are TSO commands. To run them from ISPF, prefix them with TSO.

Create a new ‘TEXTS.*.*’ generic profile that TEXTS owns and gives nobody access, as
shown in Figure 6.6.

6.2 Group-Owned Profiles and Group Authorities 125

Figure 6.6 The new ‘TEXTS.*.*’ profile

Figure 6.7 Log on as a member of TEXTS.

Warning
For performance reasons, user permissions are read when the user logs on. This means that
if you revoke a user’s access because of an intrusion, real or suspected, you have to log off
that user immediately. To do so, go to SDSF, select DA for active users, and issue the line
command K (for kill) for the job whose name is the same as the user ID.

Now MYUSER should be able to view the RACF profiles of data sets in the TEXTS group.
Run this TSO command to list the data set profiles of that group. If you are running it from ISPF,
remember to prefix it with TSO.

LISTDSD PREFIX(TEXTS)

To see that the rights of MYUSER are limited, try to read the group profile for TEXTS and
then the group profile for a different group, such as SYS1:

LISTGRP TEXTS

LISTGRP SYS1

126 Chapter 6 Limited-Authority RACF Administrators

Now you can get back to the window where you are logged in as MYUSER. However,
before you can use your new privileges, you might need to log on as a member of the TEXTS
group. In some cases, a RACF user is treated as a member of only one group at a time (this
depends on the system options and is explained in Topic 5.2.6 of z/OS V1R7.0 Security Server
RACF Security Administrator’s Guide).

If you already logged on as MYUSER, log off. Then log on again, entering TEXTS as your
group, as shown in Figure 6.7.

Figure 6.8 MYUSER is authorized to view only some group profiles.

6.2.2 The group-SPECIAL Authority
The group-SPECIAL authority enables users to do anything with any profile or resource owned
by the group and its subgroups and users.

As yourself, the user with SPECIAL permissions, take away MYUSER’s group-AUDITOR
and instead grant that user group-SPECIAL on TEXTS. You can do it with this TSO command:

CONNECT MYUSER GROUP(TEXTS) NOAUDITOR SPECIAL

As MYUSER, log off and log back on to reset your permissions. MYUSER should now be
able to alter the RACF profiles of group resources. To demonstrate this, give MYUSER the abil-
ity to read data sets protected by the generic profile you created in the previous section:

PERMIT ‘TEXTS.*.*’ GENERIC ACCESS(READ) ID(MYUSER)

Use the editor to verify that you now have read access to TEXTS.BOOKS.TEXT(DESC), but
not update access. Use cancel to leave the editor without saving.

Warning
This is not the recommended way to let users manipulate profiles. If you know which profiles
the user will need to manipulate in advance, it is even better to just put the user in the ACL of
the profile with ALTER access. To let the user create new profiles, connect him or her to the
group with CREATE, which lets the user create new profiles owned by the group and auto-
matically grants the user ALTER access to manipulate them.

The group-SPECIAL permission is used when it is not known which profiles a user will
need to manipulate. For example, this is the permission you would give a group of security
administrators who will need to handle all the group’s profiles.

6.2 Group-Owned Profiles and Group Authorities 127

The results should be similar to those shown in Figure 6.8.

Finally, remove MYUSER’s group-SPECIAL authority. You can do it as MYUSER
because that user is currently group-SPECIAL:

CONNECT MYUSER GROUP(TEXTS) NOSPECIAL

After you do this, log off as MYUSER and log on again to reset your permissions. After
you log on again, try to give yourself back the special authority and see you fail:

CONNECT MYUSER GROUP(TEXTS) SPECIAL

6.2.3 The group-OPERATIONS Authority
Another group-level authority, group-OPERATIONS, enables users to read and update all the
data sets that belong to a group. Note that the same functionality is available using ACLs, which
is the preferred method.

6.3 System-Level Authorities
Three system-level authorities correspond to the three group-level authorities, except that they
apply to all the profiles on a system instead of just those owned by a group or its subgroups.

• system-AUDITOR—This authority grants privileges related to auditing. It enables
users to specify what information will be audited, to read and delete auditing informa-
tion, and so on.

• system-SPECIAL—This authority is the nearest thing RACF has to a superuser. Users
with system-SPECIAL can modify profiles to give themselves any permission they do
not possess. Your own account, which you’ve used to manipulate RACF this entire book,
has this authority.

• system-OPERATIONS—This authority grants the right to read and modify data sets,
bypassing the UACC and ACL. As with group-OPERATIONS, it is recommended that
you use ACLs instead.

Warning
Most z/OS systems are set up so that very few user IDs have such strong authorities. In most
cases, it is possible to administer RACF using a set of users who have group authorities over
parts of the database.This allows enterprises to implement separation of duties, which allows
for checks and balances even among the z/OS security administrators.

System-level authorities allow administrators to bypass such checks and balances. Use with
caution and only when absolutely necessary.

128 Chapter 6 Limited-Authority RACF Administrators

6.4 Manipulating Users
The previous sections dealt with delegating the capability to view and manipulate data and its
protections. Another action that is often delegated is the capability to create and manipulate user
accounts.

6.4.1 Creating Users
To create new profiles in RACF, a user must have CLAUTH, class authority, for that class (or have
an applicable SPECIAL authority). For a user who doesn’t have SPECIAL authority to create new
users, the user must fulfill two conditions:

• Have class authority for the class USER

• Have JOIN group authority for some group

To delegate user creation, modify MYUSER’s user profile. You can do it using the follow-
ing TSO commands:

ALTUSER MYUSER CLAUTH(USER)

CONNECT MYUSER GROUP(TEXTS) AUTHORITY(JOIN)

Next, log off as MYUSER and log on again to refresh the permissions. At this point, you
should be able to create a new user using the same method you used to create MYUSER back in
Section 2.1, “Creating a User.” Alternatively, you can create a new user using a TSO command:

ADDUSER YAUSER PASSWORD(YAUSER) DFLTGRP(TEXTS)

Figure 6.9 shows the profile of the new user. You can then view the user’s profile because,
as the creator, MYUSER is the default owner.

6.4 Manipulating Users 129

Figure 6.9 The new user created by MYUSER

Now try to create another user whose default group is one where MYUSER does not have
join authority—for example, OMVS:

ADDUSER YAUSER2 PASSWORD(YAUSER2) DFLTGRP(OMVS)

It will fail, as shown in Figure 6.10.

130 Chapter 6 Limited-Authority RACF Administrators

Figure 6.10 MYUSER cannot create a user in OMVS.

If you try to log on to TSO with YAUSER, you will fail because YAUSER does not have a
TSO segment in the user profile. MYUSER is not allowed to access TSO segments, as you can
see in Figure 6.11. The command specifies to show the TSO information and to not show the
RACF base information that is shown by default.

Figure 6.11 MYUSER fails to read the TSO segment of a user profile.

6.4.1.1 Permitting MYUSER Access to the TSO Segment

Permissions for fields inside RACF profiles are explained in z/OS 1.6 Security Server RACF
Security Administrator’s Guide, Topic 7.3, “Field-level Access Checking.” Unless a specific pro-
file governs access to TSO segments, only users with system-SPECIAL will be able to modify it.

These commands must be executed by your regular user, the one with system-SPECIAL.

SETROPTS CLASSACT(FIELD)

SETROPTS RACLIST(FIELD)

SETROPTS GENERIC(FIELD)

These commands activate the FIELD class if it is not already activated, make sure that pro-
files are cached in memory, and activate generic profiles within that class.

RDEFINE FIELD USER.TSO.* UACC(NONE)

PERMIT USER.TSO.* CLASS(FIELD) GENERIC ACCESS(UPDATE) ID(MYUSER)

SETROPTS RACLIST(FIELD) REFRESH

These commands define a generic profile that covers all the fields in the TSO segment of
user profiles and grant access to MYUSER. The final command refreshes the cached copy in
memory so the change will be effective the next time MYUSER logs on.

Warning
This provides MYUSER with access to the TSO segments for all users. RACF has no way to
restrict access to users in a particular group.

6.4.1.2 Creating the New TSO Segment

At this point—at least, after you log off and log back on—MYUSER can read the TSO segment
of YAUSER’s profile, as you can see in Figure 6.12. However, there is no TSO information.

6.4 Manipulating Users 131

Figure 6.12 MYUSER reads an empty TSO segment.

At this point, MYUSER can specify that TSO procedure for YAUSER. In most cases, this is
GENERAL:

ALTUSER YAUSER TSO(PROC(GENERAL))

Now YAUSER should be able to log on TSO.

Note
New accounts are always created with expired passwords.The first time YAUSER logs on, he
or she will have to change to a new password.

6.4.2 Manipulating Users
Several profiles in the FACILITY class enable users to manipulate existing user profiles. These
profiles give permissions only to manipulate regular users. They do not apply to users with any of
the three administrative authorities: AUDITOR, SPECIAL, and OPERATIONS.

• IRR.LISTUSER—The capability to list user information

• IRR.PASSWORD.RESET—The capability to reset passwords

• IRR.DIGTCERT.**—Permissions to manage digital certificates

To demonstrate the first two profiles, run these commands as your own user to give permis-
sions to YAUSER.

First, verify that the FACILITY class is active. Run this command:

SETROPTS LIST

The FACILITY class is probably active, as shown in Figure 6.13.

132 Chapter 6 Limited-Authority RACF Administrators

Figure 6.13 FACILITY class active

If it is not active, run this command:

SETROPTS CLASSACT(FACILITY)

Next, see if you have the top two profiles:

RLIST FACILITY IRR.LISTUSER

RLIST FACILITY IRR.PASSWORD.RESET

These profiles probably do not exist, as shown in Figure 6.14.

Figure 6.14 The user-manipulation profiles do not exist.

If the profiles do not exist, use these commands to create them:

RDEFINE FACILITY IRR.LISTUSER UACC(NONE)

RDEFINE FACILITY IRR.PASSWORD.RESET UACC(NONE)

Next, create the ACL entries and refresh the RACF cache.

PERMIT IRR.LISTUSER CLASS(FACILITY) ACCESS(READ) ID(YAUSER)

PERMIT IRR.PASSWORD.RESET CLASS(FACILITY) ACCESS(READ) ID(YAUSER)

SETROPTS REFRESH RACFLIST(FACILITY)

To see the entries with the ACLs, run these commands:

RLIST FACILITY IRR.LISTUSER ALL

RLIST FACILITY IRR.PASSWORD.RESET ALL

To verify that this works, log on as YAUSER and try to list MYUSER and change its
password.

LISTUSER MYUSER

ALTUSER MYUSER PASSWORD(MYUSER)

This will work. However, if you try to do the same thing with your own user, it will fail
because your own user has administrative privileges, as shown in Figure 6.15.

6.5 Additional Information 133

Figure 6.15 User-manipulation profiles do not affect users with administrative authority
on RACF.

These permissions are appropriate for people who need to administer users but do not have
permission to create new users, such as service desk employees.

This concludes the hands-on part of this book. At this point, you should be able to create users,
authorize them, log their actions, audit the system, and delegate administrative privileges to
other users. You are still far from being a mainframe security expert, but you should also know
where to go for more information.

The final chapter of this book is more theoretical. It explains, in broad details, how to build an inte-
grated security infrastructure for an enterprise and how mainframes fit into such infrastructure.

6.5 Additional Information

• z/OS Security Server RACF Security Administrator’s Guide, which explains the use
of groups and inheritance, as well as the three authorities (AUDITOR, SPECIAL,
OPERATIONS) and the use of FACILITY class profiles

• z/OS Security Server RACF Command Language Reference, which explains the com-
mands used in this chapter

This page intentionally left blank

135

C H A P T E R 7

Mainframes in the
Enterprise-Wide Security
Infrastructure

Until now, we have discussed how to interact with a z/OS system and how to administer users, set
permissions, and collect and view audit reports on a z/OS system. In this chapter, we look beyond
the z/OS system to understand how security capabilities on z/OS work in combination with security
capabilities on other systems and security components in a heterogeneous computing environment.

This chapter reviews the concept of an enterprise and what comprises an enterprise. It introduces
security functions that span an enterprise (end-to-end security). It also reviews several commonly
used communications protocols and how they are used to communicate with applications running
on z/OS systems and information stored on them. All these characteristics impact how end-to-end
security is configured and used within an enterprise.

This chapter covers enterprise-wide security administration, enterprise authentication and
authorization (access control) configurations, and credential propagation and transform pro-
cessing used to avoid reauthentication of users interacting with systems in the enterprise. We
close this chapter with a discussion on cross-enterprise security and how to pass credentials
between cooperating partners over the Internet.

Because of the topic, this chapter has to be different from the rest of the book. RACF is a specific
system that performs similar functions on all mainframes where it is installed. This similarity
enabled us to explain exact steps and commands that would work for all readers of this book. On
the other hand, enterprise-wide security infrastructures vary enormously among enterprises.
Some enterprises use manual account provisioning, some use home-grown scripts, and some use
IBM Tivoli Identity Manager. Some enterprises protect their web-based applications on the web
servers, some use IBM Tivoli Access Manager, and some use a mixture of both. It would be impos-
sible to describe the commands and methods used by all the enterprises within the scope of this

book. Therefore, this chapter is a high-level architectural view of the tasks that an enterprise-wide
security infrastructure performs. For exact details about the implementation in your enterprise,
you will need to ask a knowledgeable security administrator or read the local documentation.

7.1 What Is an Enterprise?
Organizations that use computers employ a wide range of methods of procuring, configuring, and
managing these systems. Some organizations contract with specialists or services groups to man-
age the systems they own. Other organizations contract with services groups to provide both the
systems and the management of those systems.

In this chapter, we define an enterprise as systems that are used by an organization and
within the organization to support the organization’s business. This includes server systems in
server rooms (including z/OS systems), networking equipment and communications links
between sites, network appliances that serve a variety of specialized functions, desktop terminals
of whatever form is appropriate for the organization (e.g., point-of-sale terminals, dedicated
workstations, or hand-held devices), and any storage systems in both disk and tape formats. The
collection of these systems, networks, and storage devices makes up the enterprise for any orga-
nization. Figure 7.1 shows a number of enterprises connected to the Internet.

136 Chapter 7 Mainframes in the Enterprise-Wide Security Infrastructure

Enterprise 1
Enterprise 2

Enterprise 3

Internet

Figure 7.1 Enterprises

The organization’s employees or customers might use these systems. The direct use of
these systems by an organization’s customers has become an accepted and necessary part of an
organization’s enterprise computing and has drastically expanded the complexity of securing all
the systems used in the enterprise, including z/OS. In the past, employees of an organization used
z/OS systems (through customer-service applications or back-office applications). Now the same
systems are used to service requests from an organization’s customers without an intermediate
employee of the company serving as an arbiter between the enterprise and the customer.

Later sections in this chapter show how a combination of systems and applications running
in the enterprise can securely and accurately track requests from an organization’s customers as
those requests are handled.

7.1.1 Enterprise Components
As discussed in the previous section, many components come together to construct an enterprise
computing environment. Each of these must be installed, configured, customized, and main-
tained. Furthermore, every device in the enterprise needs to be monitored so that an organization
understands the types of devices used and how those devices are being used. Figure 7.2 shows an
enterprise with multiple components.

7.1 What Is an Enterprise? 137

Data

Data

DataLinux

Linux

z/OS
z/OS

AIX

Enterprise 2

Figure 7.2 The components of an enterprise

In many environments, systems are used as “hosting platforms” for various applications to
run. When a new application is to be installed and configured, new systems are often deployed to

run those applications, thereby dedicating those systems to be used for just that single applica-
tion. Although this builds a level of isolation between applications, the methodology also tends to
cause a proliferation of systems, some of which are used much more than others. This results in
systems that stand idle while other systems are constrained for resources (memory, disk, I/O, etc.)
to keep up with the load of requests.

From a security perspective, these dedicated systems (often Linux, UNIX, or Windows
server systems) utilize a strict separation between user IDs defined to the operating system and
user definitions defined to the application running on the operating system. This is especially
prevalent in web server and web application server deployments in which the user registry that
the application server uses is typically very different from the user registry defined to the operat-
ing system. User IDs on the operating system are meant for administrative work on the system or
for user IDs that represent the application server itself (separate and distinct from the users who
interact with the application server).

On z/OS, the typical configuration is the opposite. Over many years, organizations have
built the user registry on their z/OS systems as the union of administrative users, application
server (sometimes referred to as resource manager) user IDs, and user IDs representing people
within the organization (employees and contractors/partners of the organization). In this way, the
security processing on z/OS serves multiple users and must handle a variety of requests.
Although this at first seems more complex, having security definitions for multiple “layers” of the
computing environment in one location is beneficial. One benefit is that this provides easier, more
coordinated administration of all these security definitions, using a common set of interfaces for
administering over the security definitions.

Note
A similar situation exists on many multiuser UNIX systems. Systems contain a few adminis-
trative users, such as root, some application server users (daemon users in UNIX terminol-
ogy) such as httpd, and regular users.

Unlike many other systems, z/OS systems are used to host multiple, concurrent applica-
tions and application-serving environments. z/OS contains sophisticated load-balancing support
to ensure that computing resources (memory, CPU, and I/O) are directed to those applications
that are in greatest need of each resource. This results in higher overall CPU usage percentages
without proliferation of an ever-increasing number of server system footprints.

An enterprise often consists of a combination of Linux, UNIX, and Windows systems along
with several z/OS “transaction server” systems. Added to this are myriad networking devices,
from firewalls, routers, and wireless access points, to load balancers, cryptographic accelerators,
and virtual private networking (VPN) appliances. On z/OS, many organizations run a combination
of Customer Information Control System (CICS®), Information Management System (IMS™),
WebSphere® MQ (messaging and queuing), and database management systems (e.g., DB2
Universal Database for z/OS). z/OS systems are also used to host other application-serving

138 Chapter 7 Mainframes in the Enterprise-Wide Security Infrastructure

environments, including web servers and web application servers (e.g., WebSphere Application
Server), as well as directory and security servers such as LDAP directory servers and Kerberos
Key Distribution Centers (KDCs).

When applications are deployed on smaller server platforms, these applications are typi-
cally isolated from one another by deploying new systems for each application. Alternatively,
applications and application servers running on z/OS run alongside other applications and appli-
cation servers. The difference in scope of the z/OS security registry relative to other systems’ user
registries results in several interesting challenges (and solutions) in accomplishing end-to-end
security across the enterprise. We explore this subject in greater detail later in this chapter.

7.1.2 Security across Enterprise Components
Although the use of multiple systems and system types across the enterprise creates a challenge
for consistent and coordinated administration, such configurations enable organizations to set up
highly secure computing systems. One of the basic tenets of setting up secure environments is to
utilize the concept of “layers of defense,” as shown in Figure 7.3. By building a system with mul-
tiple layers of security checking before an undesirable action is taken, it is less likely that the
action will be performed.

7.1 What Is an Enterprise? 139

Data

Data

DataLinux

Linux

z/OS

z/OS

AIX

Enterprise 2

proxy
servers

request level
access control

transaction level
access control

database level
access control

packet
filters

Figure 7.3 Heterogeneous systems require multiple security technologies.

By building a computing environment that has these multiple layers of defense, an organization
can be more confident that its corporate assets will not be misused or tampered with by outside or
inside attackers. If multiple layers of defense are not employed, organizations typically have
weak points in their security configurations that lend themselves to an attack. Many organizations
consider the information and processing that is performed within the computing environment as
their most valued corporate assets. And often this information and processing is hosted on a com-
plex of z/OS systems running within their enterprise.

Multiple diverse technologies are used to build these layers of defense across an enterprise.
Typically, the outer layers of defense revolve around constraining communications into the enter-
prise from outside and even among various networking zones (physical/logical areas within the
enterprise). Networking security is built using several technologies, including firewalls, intelli-
gent network routers, proxy servers, and packet-filtering appliances. These devices and systems
build a first layer of defense for the enterprise, effectively filtering out, at the networking level,
communications that are deemed potentially dangerous or suspected attacks. Examples of this
type of operation are network filters that can be set up to disallow any communications through
those filters except TCP/IP communications over port 80 (designated for HTTP) to a designated
HTTP proxy with a specific IP address. This HTTP proxy might further filter the HTTP requests
to allow only those requests that it deems valid to pass on to an HTTP server, which can then
respond to the request.

Access control (also referred to as authorization) is then used in multiple areas of the enter-
prise to form additional layers of defense around the enterprise’s information and applications.
By using multiple layers of access control, organizations can ensure proper use and protect
against misuse of their information and processing capacity, even when these applications and
databases are accessed through a diverse set of paths; these might include requests from outside
the enterprise (from an organization’s customers and partners), requests from within the enter-
prise (through applications that the organization’s employees and contractors use), and opera-
tions by the administrative staff (through commands, operations, and procedures that the system
administrators use to keep the enterprise operating, secure, and backed up).

HTTP proxy servers running in the computing environment can apply access control for each
request (request-level access control). These checks ensure that the requester is allowed to make
the request that was passed into the environment. If the request appears valid, the application/
transaction often performs additional access-control checks, using additional context and infor-
mation found within the request, to determine whether the requester is allowed to invoke the
transaction. If all the checks are approved, the transaction is performed. With widely distributed
applications, it is quite common for multiple transactions to be invoked as part of processing a
single incoming request and for a transaction to be invoked from several different requests.

140 Chapter 7 Mainframes in the Enterprise-Wide Security Infrastructure

Correctly defining the access controls at the transaction level can be a difficult task because the
alignment among applications, external requests, and transactions is often quite complex.

Even after transaction-level access controls are applied, additional access checking at the
file or database level can offer yet another layer of defense. This layer of defense is often used to
ensure that only a user defined on the specific system (possibly the user ID under which the appli-
cation server environment is running) is allowed to access the information held on the system.

Recall from the previous section that it is quite common for z/OS systems to have user def-
initions for employees of the organization who are using the applications served by the enter-
prise. Because of this, and because such environments have been built up over many years, these
employees have been granted access to databases, files, and transactions running on the z/OS sys-
tem. An organization often needs to ensure that the access controls that have been put in place on
the z/OS systems continue to be used even when new applications, running on different systems
but used by the same employees of the organization, are provided to these employees. Further-
more, when applications and services are provided to the organization’s customers or partners,
similar access controls need to be set up at each of these layers of defense to ensure consistent
access to these resources (files, databases, and transactions).

Building an enterprise containing multiple layers of defense is a challenge. However, to
ensure that the resources served by the enterprise are used as intended, these multiple layers of
defense are necessary. The task for enterprise security administrators is to deploy and configure
these layers of defense so that the right people are allowed to perform the right tasks with the
right amount of access-control checking and auditing applied as requests flow from system to
system and environment to environment across the enterprise.

7.1.3 Communication Protocols
When employees who connected directly to z/OS systems through “green-screen” interfaces
accessed mainframe transaction systems such as the Information Management System (IMS) and
Customer Information Control System (CICS), only a couple protocols were required. Terminal
emulator software, running on desktop computers, allowed for direct 3270 (LU 2) protocol com-
munication with the z/OS system, and users authenticated directly to the z/OS system to use its
applications. Today, these same transaction systems are used at the core of many enterprise-
computing environments. However, the communications protocols used between the end user
(employee, customer, or partner) and the transaction systems vary widely; in many cases, mul-
tiple protocols are employed among multiple proxy, appliance, and application-server environ-
ments as requests travel from an end user to the transaction servers that handle these requests.
The communications protocols used across the enterprise are important to understand because
these protocols dictate networking requirements such as firewall configuration. These protocols

7.1 What Is an Enterprise? 141

also determine the sets and types of credential formats that can be used between communicating
parts of the enterprise. A credential is information that represents the authenticated identity of the
user making the request.

142 Chapter 7 Mainframes in the Enterprise-Wide Security Infrastructure

proxy

proxy

proxy

proxy

proxy

web
service

web
service

web
service

webservice

web

service

WAS

MQ
MQ

MQ MQ

HTTP HTTP

CICS
or

IMS

DB2

DRDA

HTTP
HTTP

From
Inside

From
Outside

Figure 7.4 Communication protocols transfer security information.

The communications protocol with the most explosive growth, due to the popularity and useful-
ness of the Internet, is the Hyper Text Transfer Protocol (HTTP). This protocol enables HTTP
“browsers” to send requests to HTTP “servers,” allowing interaction by a user with whatever is
running on the HTTP server. HTTP began as a means for delivering information to users (thus the
term browser on the requester side). HTTP is now used to convey very expressive, interactive
user interfaces, making applications that are isolated available within an enterprise, as well as
enabling applications to be “customer facing” or accessible from outside the enterprise. Figure
7.4 shows that the same application servers and transaction servers are often used to handle
requests coming from both internal (enterprise) applications and customer-facing (Internet)
applications. Because of the capabilities of the HTTP protocol, its popularity, and the pervasive-
ness of high-function “browsers,” HTTP is often the first protocol through which transaction
requests pass in today’s computing environments. HTTP protocol requests contain header and
content information within requests. Security information about the requester and server often
flows in customized fields in the HTTP headers, enabling both requester and responder to under-
stand who is requesting the information or service.

Emerging as the next generation of protocol used to convey requests and responses, both
over the Internet and within organizations, is the web service. A web service is most often built as
an extension that rides on top of the HTTP protocol and consists of a specially designed definition
of the information that flows within the content area of HTTP protocol requests and responses.
Web services often use the Simple Object Application Protocol (SOAP) over HTTP. SOAP
requests and responses have been standardized to include extensible security header fields that

are more structured than HTTP header fields. Furthermore, certain formulations of security infor-
mation in SOAP headers have been standardized to allow for interoperability between communi-
cating partners, enabling organizations to separate the implementations of requester and server
while still enabling the secure conveyance of who is requesting the information or service.

HTTP, through a browser, is used for end-user interactions. Web services are used when
programs communicate with one another.

An enterprise uses a wide variety of additional protocols. As communications come closer
to applications running on z/OS, these protocols become more streamlined to enable fast commu-
nications and fast response to requests passed in. Many z/OS applications are accessible using
Message Queuing (MQ) interfaces. Message Queuing is a form of communications in which the
sender/requester puts a message onto a queue and then waits for a response via a message on a
response queue. Such processing enables a separation of requester and responder, and also
enables asynchronous handling of requests. MQ interfaces exist as a way of communicating
between application servers as well as with transaction servers, such as IMS and CICS. Note that
MQ messages have a header section (where security-relevant attributes about the requester are
located) as well as a message payload (where parameters or response information for the request
are passed).

Some enterprises employ transaction server-specific protocols. Two examples of these are
Open Transaction Manager Access (OTMA), used to communicate with an IMS transaction
server running on z/OS, and External CICS Interface (EXCI), used to communicate with a CICS
transaction server running on z/OS. Both of these protocols flow over TCP/IP communications
links and enable invocation of IMS and CICS transactions, respectively. Both of these protocols
define specific security-relevant fields in their protocol definitions and, thus, constrain the types
of security information that can be passed into IMS and CICS.

In addition to transaction server-specific protocols for transaction servers, another protocol,
defined by the Distributed Relational Database Architecture™ (DRDA®) is used to communicate
directly with relational database management systems (DBMSs). DRDA also defines specific
security information fields that can be used to convey who is requesting the DBMS to perform the
operation, supplied within the DRDA protocol request.

Many enterprises use distributed object applications that conform to the Java 2 Enterprise
Edition (J2EE) specification. Distributed object communications typically flow over a protocol
called Remote Method Invocation/Internet Inter-Orb Protocol (RMI/IIOP). This protocol con-
tains an extensible security section within which information about the requester of the remote
method invocation is passed.

In most enterprises, the applications the employees, customers, and partners use have been
built over time with incremental enhancements from release to release of these applications. The
net result of this process is that requests commonly pass through multiple communications sys-
tems across the enterprise, with various protocols used between communicating entities. An
external-facing HTTP proxy (HTTP protocol) might communicate with an application server,
which, in turn, communicates with a set of J2EE Enterprise Java Beans (EJBs) using RMI/IIOP.

7.1 What Is an Enterprise? 143

Those EJBs might then communicate with CICS transactions on z/OS using the EXCI protocol.
Or the EJBs might use MQ messages to invoke IMS transactions. Or the application server might
use DRDA to make direct database requests to a DB2 DBMS running on z/OS. In every case, the
authenticated identity (credentials) corresponding to the original requester (or some identity rep-
resenting the requester) must flow to each computing system so that proper access controls (those
layers of defense) can be properly utilized. Later in this chapter, we discuss this credential trans-
fer and transform in more detail.

7.2 Enterprise Security Administration
Across the enterprise, multiple security systems commonly are employed by the wide variety of
platforms and applications. This multiplicity of security systems, built over years of evolution of
the enterprise, now presents a challenge for organizations to administer in a coordinated, consis-
tent manner. The set of user and group definitions in each of these security systems represents a
subset of the overall set of users and groups defined to be capable of interacting with the enter-
prise in some way.

Administration of user and group information in RACF databases across multiple z/OS sys-
tems is part of this administration work. RACF administration must be coordinated with updates
made to other enterprise user and group registries so that people and applications represented by
the user IDs are able to access and interact with only their allowed systems and applications.

Enterprise administration refers to the capability to manage RACF information alongside
other user registries, such as Lightweight Directory Access Protocol (LDAP)–accessible directo-
ries, e-mail systems, and UNIX systems. Ideally, administration of users is done based on a per-
son’s job function or the roles that person plays within the organization.

Tools such as IBM Tivoli Identity Manager and IBM Tivoli Directory Integrator offer the
capability to administer multiple security systems across the enterprise in a policy-based manner.
This enables organizations to concentrate on the roles and job functions of their employees and
the set of permissions those roles require. Administering users in a policy-based manner frees
administrators from the burden of entering, in a repeatable manner, user-specific permissions set-
tings; instead, administrators can deploy a role-based access control (RBAC) model. With an
RBAC model in place, organizations are less dependent on individual user permissions and are
better able to articulate the capabilities that people have within the organization—more impor-
tant, they can better define why they have such capabilities based on the roles each person
can play.

When performing administration at the enterprise level, it is important to manage the
multitude of user and group registries in a coordinated manner to ensure consistency across the
enterprise.

144 Chapter 7 Mainframes in the Enterprise-Wide Security Infrastructure

7.2.1 Authentication and Authorization
After users are defined to the multiple security systems that comprise security for the enterprise,
users have the ability to authenticate themselves to various applications running within the enter-
prise. Such authentication should be performed “at the edge” of a user’s interaction with the
enterprise (whether at a login prompt on a desktop of a notebook computer or at some login
prompt used to access an enterprise portal environment through which multiple applications are
made accessible).

To streamline employees’ use of the enterprise, users should not be reprompted for the
same authenticating information when they communicate with multiple underlying servers or
systems upon which the applications are hosted. Sometimes referred to as single sign-on (SSO),
the capability to reuse credentials acquired during an initial login processing greatly simplifies a
user’s interaction with enterprise applications. Operating this way requires that this authenticat-
ing information be passed from application to application and system to system across the enter-
prise. As discussed in Section 7.1.3, “Communication Protocols,” the authenticating information
(credentials) that can be passed between communicating entities is limited by the capabilities of
the communications protocol used between those communicating entities.

It is quite possible that several credential transformations will be used as requests flow from
one part of the enterprise to be handled by an application running in another part of the enterprise.
When credentials are transformed, two benefits emerge: Precise access controls already in place
and applicable to the requester can be applied or enforced, and audit log information can indicate
the specific requester of the processing. Because multiple-authorization-checking policy enforce-
ment points (PEPs) are likely to exist along the path that an application request takes, multiple
credential transformations might be necessary as the request crosses the enterprise for processing.

Enterprise security authentication and authorization implement the layers of defense that
users must get through for the enterprise to process their requests.

7.2.2 Credential Propagation and Transformation
Previous sections described the topics of cross-enterprise security administration, authentication
at the edge of the enterprise, and authorization at multiple policy enforcement points (PEPs)
across the enterprise. Central to enabling such constructs to be implemented in an independent
and layered fashion across an enterprise is the capability to associate user and group definitions
across user registries and to transform credentials into formats that are useful on the systems and
over the protocols that are used in implementing applications that cross multiple systems and net-
works, including z/OS.

Enterprise user administration systems implicitly hold association between user definitions
in separate user registries. These systems must maintain which user IDs are assigned to which
people and applications in the enterprise. This association is critical for performing coordinated

7.2 Enterprise Security Administration 145

administration of user and group definitions across the enterprise. This association is also
required for credential transformations as application request processing flows from one comput-
ing system to another in handling the end user’s requests.

As was described in the section on communications protocols and credentials, the creden-
tials used over the protocols are often not in a format that enables PEPs on the computing systems
to invoke access control checks. A transformation of credentials, from the format used over the
protocol into the format required by the access control checking function, must be performed.
Products such as IBM Tivoli Federated Identity Manager help organizations set up, configure,
and maintain credential transformation as a callable service available to multiple parts of the
enterprise. Figure 7.5 shows an example application request flow as the request starts from a user
and moves through elements that process the request. At each point in the processing is a layer of
defense in the form of access control checks. However, the access control checking function
expects user information to be supplied in a form that is specific to each system used in building
enterprise applications.

146 Chapter 7 Mainframes in the Enterprise-Wide Security Infrastructure

userID: G1299531
group: TELLER

userID: G1299531
pwd: 932ade01

userid: tim
pwd: 76av==

cred: 9bef...

DB2
CICS

or
IMS

WAS proxy user

Figure 7.5 Credential propagation example within an enterprise

In the example, the user initially authenticates using a user ID and password combination that
flows over HTTP basic authentication fields defined by the HTTP protocol. An intervening proxy
is able to verify the user ID and password combination (based on the user registry that the proxy
is configured to use). The proxy builds an internal credential to be used for URL-level access con-
trol checks. Before the request is passed on to the next system to be used to handle the request
(assuming that the access control check determines that the user is allowed to invoke the opera-
tion), the proxy must transform the user credentials into a format that is acceptable for the proto-
col over which the request will pass—as well as one that is acceptable to the application server
listening for requests over that protocol.

The proxy in the example transforms the credentials used for the request into a format that
the application server (WebSphere Application Server—WAS) and proxy server have mutually
agreed to use. The figure indicates that a private format represented by the name “cred:” is used;
in this case, this is a binary formulation of user identity and group membership (abbreviated by
“9bef…” in Figure 7.5). The application server receives the request and transforms the incoming
credential format into a form that is usable by the access-control checking function used by the
application server. Access checks in the application server represent the next layer of defense for
allowing the user to invoke the request that has been made.

In the example, the application server contacts a CICS (or IMS) transaction server to
handle part of the original request made by the user. Here the CICS (or IMS) transaction server
was contacted using protocols that require information about the requester to be passed in various
formats. In the example, a user ID and password combination has been selected, in which the user
ID is a valid user ID on the system on which the CICS (or IMS) transaction server is running (in
many cases, this is a RACF database on the z/OS system in which CICS [or IMS] is running).
Again, a credential transform operation is required to establish which user ID (and password) to
use as the credential passed to CICS (or IMS). In the case of RACF, a one-time password formu-
lation called a passticket can be used, alleviating the need to hold password vaults or store pass-
word values in configuration files.

When the CICS (or IMS) transaction server receives the request, RACF verifies the user ID
and password or passticket, and an operating system–specific credential format called an ACEE
is constructed. This ACEE travels with the request processing on the z/OS system and passes to
other subsystems on z/OS (such as DB2) so that access control checks within those subsystems
can use the information about the requester of the processing. These access control checks in the
transaction server and database server represent additional layers of defense for the enterprise
application.

Several algorithms can be used for credential transformation. Those algorithms can be cat-
egorized by their user-mapping characteristics:

• 1:1—For any incoming user definition, find a corresponding user definition in the target
user registry. Each incoming user ID has a unique user ID in the target user registry that
is to be selected.

• Many:1—For any incoming user definition, use a single configured user definition as
the user ID to send to the next layer of processing.

• Many:some—For any incoming user definition, determine, based on user characteris-
tics or environmental information, a representative user ID in the target user registry to
use. The target user ID might be chosen based on the application that is being used,
based on the group or organizational unit that the user is a part of or some combination
of other factors (e.g., time of day, connection method).

In enterprise applications, initial authentication, credential transform, layers of defense,
and security administration must be set up in a coordinated manner across the enterprise. Access
control checks across multiple systems in the enterprise form these layers of defense. Enterprise
security administration based on the associations between user IDs held in separate security reg-
istries ensures that these layers of defense have appropriate user definitions that requests can uti-
lize. Credential transform uses these security associations so that application processing and
requests can transfer the necessary credentials between communicating partners as requests are
processed.

7.2 Enterprise Security Administration 147

7.3 Communicating between Enterprises—and Beyond
Organizations are no longer using their computing systems only in isolated enterprise environ-
ments. Enterprises are connected to the Internet to allow for customers’ direct use of an organiza-
tion’s computing systems through “web-facing” applications. Also, organizations often contract
with service providers to provide various types of computing functions, such as backup services,
employee benefits processing, employee travel services, etc. Figure 7.6 illustrates this.

148 Chapter 7 Mainframes in the Enterprise-Wide Security Infrastructure

userid: partner
attr: csr@Ent2

SAML:
user: csr@Ent2

userid: tim
group: cust-svc

Enterprise 1

Enterprise 2

svcA

svcB

Web
Service user

Internet

Figure 7.6 Credential propagation between enterprises

The same types of problems shown in the previous section occur when enterprises open up
their operations to allow customers to invoke processing on their computing systems, as well as
when enterprises contract for using services provided by some service provider. In all cases,
enterprises need to accept user credentials over some communications protocol, transform these
credentials into something that can be used within the enterprise, perform access control checks
on requests, handle them, and log that these requests have been requested and performed.

Although the pattern for processing is the same, the types of credentials used and the trans-
formations required differ. In the case of sending requests between communicating partners
(either from customers or with partner organizations), standards-based formats such as web ser-
vices (communicated using the Simple Object Access Protocol [SOAP]) are commonly used to
convey requests. Also, standards-based credential formats such as Security Assertion Markup
Language (SAML) are used within SOAP requests to convey requester credential information.

Standardized credential formats are used between organizations. These formats are usually
transformed into formats based on user registries defined within the enterprise as the request is
received and processed within the enterprise. The standard formats and the credential transforma-
tions enable organizations to isolate the credential formats and user registries used internally
from those used between enterprises. Such layers of isolation enable independent change and
upgrade of computing environments, while still supporting the same form of external interfaces.
Isolation also enables existing credential formats to be used internally, thereby enabling existing
applications to be used without requiring massivechanges to these applications.

In this chapter, we discussed how z/OS systems that utilize RACF can be used as a part of enter-
prise applications that make use of computing resources running on multiple, heterogeneous sys-
tems across an enterprise. We also discussed how such cross-enterprise processing uses multiple
protocols to convey requests between communicating partners, and we stated that credential
transformations are required to establish a user’s credentials in the required formats so that
requests can flow among systems within the enterprise. We also showed how request processing
between organizations and enterprises is similar to such processing within an enterprise; the dif-
ference is the credential formats and protocols used for communication. By implementing secu-
rity administration, authentication, authorization, and credential transform capabilities across
the enterprise, including RACF and z/OS systems, an organization can apply its many computing
resources across the enterprise in a coordinated manner.

7.4 Additional Information

• “Understanding SOA Security Design and Implementation,” IBM Redbook
SG24-7310, www.redbooks.ibm.com/abstracts/sg247310.html?Open

• “Enterprise Security Architecture Using IBM Tivoli Security Solutions,” IBM Redbook
SG24-6014, www.redbooks.ibm.com/redpieces/abstracts/sg246014.html?Open

• LDAP on z/OS manuals

• TFIM manuals

• Redbook on patterns: “Connecting Apps to the Enterprise,” www.redbooks.ibm.com/
pubs/pdfs/redbooks/sg246572.pdf

• CICS—CICS Transaction Gateway, www.ibm.com/servers/eserver/design_center/
websphere_cics.pdf

• IMS—IMS Connector for Java, www.ibm.com/software/data/db2imstools/imstools/
imsjavcon.html

• IMS Connect, www.ibm.com/software/data/db2imstools/imstools/imsconnect.html

• WebSphere MQ CICS and IMS Bridges, http://publibfp.boulder.ibm.com/epubs/pdf/
csqsav03.pdf

7.4 Additional Information 149

www.redbooks.ibm.com/abstracts/sg247310.html?Open
www.redbooks.ibm.com/redpieces/abstracts/sg246014.html?Open
www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246572.pdf
www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246572.pdf
www.ibm.com/servers/eserver/design_center/websphere_cics.pdf
www.ibm.com/servers/eserver/design_center/websphere_cics.pdf
www.ibm.com/software/data/db2imstools/imstools/imsjavcon.html
www.ibm.com/software/data/db2imstools/imstools/imsjavcon.html
www.ibm.com/software/data/db2imstools/imstools/imsconnect.html
http://publibfp.boulder.ibm.com/epubs/pdf/csqsav03.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/csqsav03.pdf

• WebSphere MQ Application Programming Reference, http://publibfp.boulder.ibm.com/
epubs/html/csqzak09/csqzak09tfrm.htm

• Tivoli Access Manager Command Reference, http://publib.boulder.ibm.com/tividd/td/
ITAME/GC32-1107-00/en_US/PDF/GC32-1107-00.pdf

• Tivoli Access Manager Java API Reference, http://publib.boulder.ibm.com/tividd/td/
ITAME/SC32-1141-00/en_US/PDF/SC32-1141-00.pdf

150 Chapter 7 Mainframes in the Enterprise-Wide Security Infrastructure

http://publibfp.boulder.ibm.com/epubs/html/csqzak09/csqzak09tfrm.htm
http://publibfp.boulder.ibm.com/epubs/html/csqzak09/csqzak09tfrm.htm
http://publib.boulder.ibm.com/tividd/td/ITAME/GC32-1107-00/en_US/PDF/GC32-1107-00.pdf
http://publib.boulder.ibm.com/tividd/td/ITAME/GC32-1107-00/en_US/PDF/GC32-1107-00.pdf
http://publib.boulder.ibm.com/tividd/td/ITAME/SC32-1141-00/en_US/PDF/SC32-1141-00.pdf
http://publib.boulder.ibm.com/tividd/td/ITAME/SC32-1141-00/en_US/PDF/SC32-1141-00.pdf

151

Index

A
access control list permissions,

protecting data sets, 49-53
ACLs, modifying, 53
activating UNIXPRIV, 59-60
adding

dataset profiles, 47
profiles, 46
users (RACF), 28

administrators, limited-
authority RACF
administrators. See limited-
authority RACF
administrators

APF lists, 114
audit settings, 94
auditing, 99

Program Properties Table
report, 103

RACF Authorized Caller
(ICHAUTAB) Table
report, 104

RACF Exits report, 104-105
RACF health checks. See

RACF health checks

running DSMON, 101-102
Selected Data Sets report,

106-107
Selected User Attribute

report, 105-106
Set RACF options

(SETROPTS) command,
108-110

System Report, 102-103
z/OS, 99
zSecure, 118-119

auditors, audit settings, 94
authentication, enterprise

security administration, 145
authorization, enterprise

security administration, 145

B
backward compatibility,

z/OS, 10
batch jobs, ISPF, 10

dataset creation, 11-12
editing data set members,

12-15

C
categories, security data, 65-66
checks, RACF health

checks, 114
classes, 117-118
RACF_IBMUSER_

REVOKED, 117
RACF_SENSITIVE_

RESOURCES, 114-116
chown privileges, deleting,

61-63
CICS (Customer Information

Control System), 141
classes

RACF active health checks,
117-118

for USS logging, 92
client/server architecture

versus mainframes, 3-4
CMDVIOL, 108
commands

console commands, 74
Set RACF options

(SETROPTS), 108-110

152 Index

communicating between
enterprises, 148-149

communication protocols,
enterprise components,
141-144

components of enterprises,
137-139

communication protocols,
141-144

security, 139-141
configuring logging, 73

RACF configuration, 80-82
SMF configuration, 74-80

connecting users to groups
(RACF), 39-41

console commands, 74
context-sensitive help, 22
converting dates, 85
credential propagation,

enterprise security
administration, 145-147

Customer Information Control
System (CICS), 141

D
data set members, editing,

12-15
data sets

JCL, 9-10
protecting, 45

access control list per-
missions, 49-53

default permissions,
45-48

project groups and
generic profiles, 53-57

dataset creation, batch jobs
(ISPF), 11-12

dataset profiles, adding, 47
dates, converting, 85
DD (data definition), JCL, 83

default permissions, protecting
data sets, 45-48

delegating chown privileges,
protecting other resources,
61-63

deleting resource profiles,
protecting resources, 63

DIRACC, 92
DIRSRCH, 92
displaying groups (RACF),

38-39
DRDA (Distributed Relational

Database Architecture), 143
DSMON, running, 101-102

E
editing data set members, batch

jobs (ISPF), 12-15
editors, ISPF editor, 13
EJBs (Enterprise Java

Beans), 143
enterprises

communicating between,
148-149

components of, 137-139
communication proto-

cols, 141-144
security, 139-141

defined, 136-137
security administration, 144

authentication and
authorization, 145

credential propagation
and transformation,
145-147

event logging, 74

F
FACILITY, 117, 131-133
filtering jobs, JCL, 18-19
FSOBJ, 92
FSSEC, 92

G
generating reports

ICETOOL, 87-91
other reports, 91
sequential reports, 85-86
unloading log data to

sequential text files, 82-85
generic profiles, protecting data

sets, 53-57
group authorities, limited-

authority RACF
administrators, 122-124

group authority, 40
group-AUDITOR, 123-127
group-OPERATIONS,

123, 128
group-owned profiles, limited-

authority RACF
administrators, 122-124

group-AUDITOR, 124-127
group-OPERATIONS, 128
group-SPECIAL, 127-128

group-SPECIAL, 123, 127-128
groups, project groups

(protecting data sets), 53-57
groups (RACF), 36

connecting users to, 39-41
displaying, 38-39
searching, 36-38

H
“Hello, World,” TSO, 6-7
help, 22

context-sensitive help, 22
ISPF, 23
manuals, 24-25
TSO, 23

HLQ (high-level qualifier), 49
home directories, OMVS,

34-36
HTTP (Hyper Text Transfer

Protocol), 142
HTTP proxy servers, 140

Index 153

I
IBM Health Checker for

z/OS, 114
IBM LookAt search engine, 48
IBM Tivoli zSecure, 42-43
ICETOOL, 87-91
ICHAUTAB report, 104
IDs

removing with IRRRID00,
111-113

residual IDs,
IRRRID00, 111

specified IDs,
IRRRID00, 111

IMS (Information Management
System), 141

INDD1, 111
Information Management

System (IMS), 141
INITSTATS, 108
Interactive System Productivity

Facility (ISPF), 10
batch jobs, 10

dataset creation, 11-12
editing data set mem-

bers, 12-15
help, 23

IPCOBJ, 92
IRR.DIGTCERT.**, 131
IRR.LISTUSER, 131
IRR.PASSWORD.RESET, 131
IRRDBU00, 110-111

removing IDs with
IRRRID00, 111-113

IRRDU00, 110
IRRRID00, removing IDs,

111-113
ISPF (Interactive System

Productivity Facility), 10
batch jobs, 10

dataset creation, 11-12
editing data set mem-

bers, 12, 14-15
help, 23

ISPF editor, 13

J
JCL (Job Control Language), 7

data sets, 9-10
DD (data definitions), 83
introduction to, 8
ISPF, batch jobs, 10-15
job output, viewing, 16, 18
jobs, filtering, 18-19
syntax, 15-16

JES (Job Entry
Subsystems), 16

JES2, 16
JES3, 16
job output, viewing (JCL),

16-18
jobs, filtering (JCL), 18-19

L
libraries, parameter

libraries, 75
limited-authority RACF

administrators
group authorities, 122-124
profiles owned by groups,

122-124
group-AUDITOR,

124-127
group-

OPERATIONS, 128
group-SPECIAL,

127-128
profiles owned by users,

121-122
system-level

authorities, 128
users, 129

creating, 129-130
creating TSO segments,

131
manipulating, 131-133
permitting access to TSO

segments, 130
LINKLIST concatenation, 114
logging

configuring, 73
RACF configuration,

80-82
SMF configuration,

74-80
events, 74
reports

ICETOOL, 87-91
other reports, 91
sequential reports, 85-86
unloading log data to

sequential text files,
82-85

USS, 91-92
classes for, 92
SMF settings, 93
specifying, 93-94
viewing log records, 95

zSecure, 95-97
logging into mainframes, 5-6

M
main menu, RACF, 28
mainframes, 2-3

history of, 1-2
logging into, 5-6
versus client/server, 3-4

manipulating users, limited-
authority RACF
administrators, 131-133

manuals, help, 24-25
modifying

ACLs, 53
users (RACF)

for OMVS access,
31-36

from TSO, 34-36

N
NOPROTECTALL, 109

154 Index

O
OMVS, 20-21

home directories, creating,
34-36

modifying users for access,
31-32, 34

verifying access, 36
Open Edition, 20
Open Transaction Manager

Access (OTMA), 143
OPERAUDIT, 108
OPERCMDS, 117
OS/390, 2
OTMA (Open Transaction

Manager Access), 143
OUTDD, 111

P
parameter libraries, 75
PARMLIB concatenation, 114
PDSs (partitioned data sets), 10
permission levels for data sets,

RACF, 46
permissions

access control list permis-
sions, protecting data sets,
49-53

default permissions, protect-
ing data sets, 45-48

permitting access to TSO
segments, limited-authority
RACF administrators, 130

policies, security data, 64
categories, 65-66
security labels, 66-68
security levels, 64-66

PPT (Program Properties
Table), 103

Principle of Least Privilege, 40
Privileges, delegating chown

privileges (protecting other
resources), 61-63

PROCACT, 92
PROCESS, 92

profiles
adding, 46
dataset profiles, adding, 47
generic profiles, protecting

data sets, 53-57
group-owned profiles, lim-

ited-authority RACF
administrators, 122-124

group-AUDITOR,
124-127

group-
OPERATIONS, 128

group-SPECIAL,
127-128

resource profiles,
deleting, 63

user-owned profiles, lim-
ited-authority RACF
administrators, 121-122

Program Properties Table
(PPT), 103

project groups, protecting data
sets, 53-57

PROTECTALL, 56
PROTECTALL(FAIL), 109
PROTECTALL(WARN), 109
protecting

data sets, 45
access control list per-

missions, 49-53
default permissions,

45-48
project groups and

generic profiles, 53-57
other resources, 57

delegating chown privi-
leges, 61-63

deleting resource pro-
files, 63

gathering information,
57-59

UNIXPRIV, 59-60
verifying change, 63

R
RACF (Resource Access

Control Facility), 1
configuring logging, 80-82
groups, 36

connecting users to,
39-41

displaying, 38-39
searching, 36-38

main menu, 28
permission levels for data

sets, 46
users

adding, 28
creating, 27-31
modifying, 31-34

RACF Administrators
report, 105

RACF Administrators
Summary report, 105

RACF Authorized Caller Table
(ICHAUTAB) report, 104

RACF Database Unload Utility
(IRRDBU00), 110-111

removing IDs with
IRRRID00, 111-113

RACF databases, 114
RACF Exits report, 104-105
RACF health checks, 114

RACF classes, 117-118
RACF_IBMUSER_

REVOKED, 117
RACF_SENSITIVE_

RESOURCES, 114-116
RACF_IBMUSER_

REVOKED, 117
RACF_SENSITIVE_

RESOURCES, 114-116
RACLIST, 61
removing IDs with IRRRID00,

111-113

Index 155

reports
logging

ICETOOL, 87-91
other reports, 91
sequential reports, 85-86
unloading log data to

sequential text files,
82-85

PPT (Program Properties
Table), 103

RACF Administrators
report, 105

RACF Administrators
Summary report, 105

RACF Authorized Caller
Table (ICHAUTAB), 104

RACF Exits, 104-105
Selected Data Sets report,

106-107
Selected User Attribute

report, 105-106
residual IDs, IRRRID00, 111
Resource Access Control

Facility (RACF), 1
configuring logging, 80-82
groups, 36

connecting users to,
39-41

displaying, 38-39
searching, 36-38

main menu, 28
permission levels for data

sets, 46
users

adding, 28
creating, 27-31
modifying, 31-34

resource profiles, deleting, 63
resources, protecting, 57

delegating chown
privileges, 61-63

deleting resource
profiles, 63

gathering information,
57-59

UNIXPRIV, 59-60
verifying change, 63

running DSMON, 101-102

S
SAUDIT, 108
searching groups (RACF),

36-38
securing USS files, 68-69
security

enterprise components,
139-141

enterprise security adminis-
tration, 144

authentication and
authorization, 145

credential propagation
and transformation,
145-147

zSecure, 70-71
security categories, 64
security data, policies, 64

categories, 65-66
security labels, 66-68
security levels, 64-66

security labels, 64
security data, 66-68

security levels, 64-65
security data, 65-66

Selected Data Sets report,
106-107

Selected User Attribute report,
105-106

separation of duties, 41
sequential reports, 85-86
servers, HTTP proxy

servers, 140
Set RACF options

(SETROPTS) command,
108-110

SETROPTS, 108-110

size fields, TSO, 21
SMF (System Management

Facility), 73-74
configuring logging, 74-80
settings for USS logging, 93

specified IDs, 111
syntax, JCL, 15-16
SYSPRINT, 111
System Report, 102-103
system-AUDITOR, 128
system-level authorities,

limited-authority RACF
administrators, 128

system-OPERATIONS, 128
system-SPECIAL, 128
System/360, 2

T
TAPEVOL, 117
TEMPDSN, 117
transformation, enterprise

security administration,
145-147

TSO
“Hello, World,” 6-7
help, 23
modifying users, 34-36
size fields, 21

TSO parameters, users
(RACF), 30

TSOAUTH, 117

U
UACC, default access

permissions, 49
UNIX System Services files.

See USS files, 68
UNIX systems

protecting resources, 57
delegating chown

privileges, 61-63
deleting resource

profiles, 63

156 Index

gathering information,
57-59

UNIXPRIV, 59-60
verifying change, 63

UNIXPRIV, 117
activating, 59-60

unloading log data to
sequential text files
(generating reports), 82-85

user IDs, 4
user-owned profiles, limited-

authority RACF
administrators, 121-122

users
connecting to groups

(RACF), 39-41
limited-authority RACF

administrators, 129
creating TSO

segments, 131
creating users, 129-130
manipulating users,

131-133
permitting access to TSO

segments, 130
users (RACF)

adding, 28
creating, 27-31
modifying for OMVS

access, 31-32, 34
creating OMVS home

directories, 34-36
verifying OMVS access, 36

USS, logging, 91-92
classes for, 92
SMF settings, 93
specifying, 93-94
viewing log records, 95

USS (UNIX System Services)
files, 68

securing, 68-69

V
verifying

change, protecting
resources, 63

OMVS access, 36
viewing

job output, JCL, 16-18
USS log records, 95

VSAM (Virtual Storage Access
Method), 46

W-X-Y-Z
z/OS

auditing, 99
backward compatibility, 10
history of, 2

z/OS UNIX System Services,
19-21

zSecure, 42-43
auditing, 118-119
logging, 95-97
security, 70-71

	Mainframe basics for security professionals
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 1 Introduction to the Mainframe
	1.1 Why Use a Mainframe?
	1.1.1 A Little History
	1.1.2 Why Are Mainframes Different?
	1.1.3 Mainframe vs. Client/Server

	1.2 Getting Started
	1.2.1 What You Will Need
	1.2.2 Logging in to the Mainframe
	1.2.3 “Hello, World” from TSO

	1.3 Job Control Language (JCL)
	1.3.1 Introduction to JCL
	1.3.2 Data Sets
	1.3.3 Using ISPF to Create and Run Batch Jobs
	1.3.4 JCL Syntax
	1.3.5 Viewing the Job Output

	1.4 z/OS UNIX System Services
	1.5 Getting Help
	1.5.1 Context-Sensitive Help
	1.5.2 The Manuals

	1.6 Additional Information

	Chapter 2 Users and Groups
	2.1 Creating a User
	2.2 How to Modify a User for OMVS Access
	2.2.1 Modifying the User
	2.2.2 Creating the OMVS Home Directory (and Modifying Users from TSO)
	2.2.3 Verifying MYUSER Has OMVS Access

	2.3 Groups
	2.3.1 Searching Groups
	2.3.2 Displaying a Group
	2.3.3 Connecting Users to a Group

	2.4 zSecure
	2.5 Additional Information

	Chapter 3 Protecting Data Sets and Other Resources
	3.1 Protecting Data Sets
	3.1.1 Default Permissions
	3.1.2 Access Control List Permissions
	3.1.3 Project Groups and Generic Profiles

	3.2 Other Resources
	3.2.1 Gathering Information
	3.2.2 Activating UNIXPRIV
	3.2.3 Delegating chown Privileges
	3.2.4 Verifying the Change
	3.2.5 Deleting Resource Profiles

	3.3 Security Data (Levels, Categories, and Labels)
	3.3.1 Defining the Policy
	3.3.2 Assigning Security Levels and Categories
	3.3.3 Security Labels (SECLABELs)

	3.4 Securing UNIX System Services (USS) Files
	3.5 zSecure
	3.6 Additional Information

	Chapter 4 Logging
	4.1 Configuring Logging
	4.1.1 SMF Configuration
	4.1.2 RACF Configuration

	4.2 Generating Reports
	4.2.1 Unloading Log Data to Sequential Text Files
	4.2.2 Understanding Sequential Reports
	4.2.3 Generating Reports with ICETOOL
	4.2.4 Other Types of Reports

	4.3 UNIX System Services (USS) Logging
	4.3.1 Classes for USS Logging
	4.3.2 SMF Settings for USS
	4.3.3 Specifying Logging in USS
	4.3.4 Viewing the USS Log Records

	4.4 Logging in zSecure
	4.5 Additional Information

	Chapter 5 Auditing
	5.1 Auditing
	5.2 The RACF Data Security Monitor (DSMON)
	5.2.1 Running DSMON
	5.2.2 The System Report
	5.2.3 The Program Properties Table Report
	5.2.4 The RACF Authorized Caller Table (ICHAUTAB) Report
	5.2.5 The RACF Exits Report
	5.2.6 The Selected User Attribute Report
	5.2.7 The Selected Data Sets Report

	5.3 The Set RACF Options (SETROPTS) Command
	5.4 The RACF Database Unload Utility (IRRDBU00)
	5.4.1 Removing IDs with IRRRID00

	5.5 The RACF Health Checks
	5.5.1 RACF_SENSITIVE_RESOURCES
	5.5.2 RACF_IBMUSER_REVOKED
	5.5.3 RACF Classes Active Health Checks

	5.6 zSecure Auditing
	5.7 Additional Information

	Chapter 6 Limited-Authority RACF Administrators
	6.1 Profiles Owned by Users
	6.2 Group-Owned Profiles and Group Authorities
	6.2.1 The group-AUDITOR Authority
	6.2.2 The group-SPECIAL Authority
	6.2.3 The group-OPERATIONS Authority

	6.3 System-Level Authorities
	6.4 Manipulating Users
	6.4.1 Creating Users
	6.4.2 Manipulating Users

	6.5 Additional Information

	Chapter 7 Mainframes in the Enterprise-Wide Security Infrastructure
	7.1 What Is an Enterprise?
	7.1.1 Enterprise Components
	7.1.2 Security across Enterprise Components
	7.1.3 Communication Protocols

	7.2 Enterprise Security Administration
	7.2.1 Authentication and Authorization
	7.2.2 Credential Propagation and Transformation

	7.3 Communicating between Enterprises—and Beyond
	7.4 Additional Information

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W-X-Y-Z

