Microsoft

Windows Server 2008
Securnh~~

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2008 by Jesper M. Johansson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Control Number: 2008920563

Printed and bound in the United States of America.

123456789 QWT 3210098

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to rkinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, ActiveX, Authenticode, bCentral, BitLocker, DirectX,
Excel, ForeFront, Hotmail, Internet Explorer, MSDN, MSN, Outlook, PowerPoint, SharePoint, SQL
Server, Visio, Visual Basic, Visual Studio, Windows, Windows CardSpace, Windows Live, Windows
Media, Windows Mobile, Windows NT, Windows PowerShell, Windows Server, Windows Server
System, Windows Vista, Xbox, and Xbox Live are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Other product and company names
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Martin DelRe

Developmental Editor: Devon Musgrave

Project Editor: Maureen Zimmerman

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Mitch Tulloch; Technical Review services provided by Content Master, a member
of CM Group, Ltd.

Cover: Tom Draper Design

Body Part No. X14-14926

Contents at a Glance

Part |

coNoO VT hhWN

Part Il

9
10

Part Il

11
12
13
14
15
16

Windows Security Fundamentals

Subjects, Users, and Other Actors, 3
Authenticators and Authentication Protocols..................... 17
Objects: The Stuff YouWant. 55
Understanding User Account Control (UAC)...................... 91
Firewall and Network Access Protection 115
SOIVICES .« ettt e e 151
Group Policy 183
Auditing. . ..o e e 213
Implementing Identity and Access (IDA) Control

Using Active Directory

Designing Active Directory Domain Services for Security. 241
Implementing Active Directory Certificate Services. 265
Common Security Scenarios

Securing ServerRoles i e 285
Patch Management i 313
Securingthe Network o i, 341
Securing the Branch Office.......... i it 369
Small Business Considerations. 391
Securing Server Applications.......... i, 431
INdeX ..o e e 463

Table of Contents

Acknowledgements e XV
Introduction. e Xvii

partl Windows Security Fundamentals

1 Subjects, Users, and Other Actors iiiiiiiiinnan... 3
The Subject/Object/Action-Tuple 3
Types of Security Principals. o 4

U rS. et 4
COMPUEES. .t 7
GrOUPS .« - o ettt e e e e e e e e e e e 7
Abstract Concepts (LOgG-0Nn GroUPS)ot vvvvit e 10
SBIVICES et 11
Security Identifiers 12
SID COMPONENTS. . o .ottt e e e e e e e 12
SID AULhOKItiES . .o 13
SEIrVICE SIDS . . ot 14
Well-Known SIDSo 15
SUMMIAIY oo e e 16
Additional RESOUICESottt 16

2 Authenticators and Authentication Protocols..................... 17

Something You Know, Something YouHave o . 17
Something You Know 18
Something You Have 18
Something YoU Are ... oo 18

Understanding Authenticator Storage 19
LM Hash. .. 21
NT Hash . . 23

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vi Table of Contents

Password Verifier 24

IN M EMOTY 25
Reversibly Encrypted. 27
Authentication Protocols 29
Basic Authentication.............. 29
Challenge-Response Protocols 30

Smart Card Authentication. 37
Smart Cards and Passwords. 38
Attacks on Passwords 38
Obtaining Passwords. 38

Using the Captured Information................ 42
Protecting Your Passwords. i 44
Managing PassWords. 46
Use Other Authenticators. i 46
Record Passwords, Safely 46

Stop Thinking About Words. o 47

Set Password Policies. 47
Fine-Grained Password Policies. i i 49
SUMIMIAIY L e e 54
Additional RESOUICES.o 54
3 Objects: The Stuff YouWant. 55
Access Control Terminology. 55
Securable Objects 56
Security DesCriptOrs. . ..o 56
Access Control List. 58
Access Control List Entry 59
ACCESS MASKS . . .o 61
Relationship Between Access Control Structures 66
Inheritance 66
Security TOKENS. ... o 70
ACCESS CheCk ProCESS e e e 72
Integrity Labels. 74

Empty and NULL DACLSo oo 75
Security Descriptor Definition Language............coiiiiininn. 75

Tools to Manage Permissions.ttt 79

cacls and icacls. o 79

Table of Contents vii

S e 81
subinacl 81
Major Access Control Changes in Windows Server 2008. 81
TrustedInstaller Permissions i i 81
Network Location SIDs 82
File System Name Space Changes. ...t 82
Power User Permissions Removed., 82
OWNER_RIGHT and Owner Rights 82
User Rights and Privileges. s 83
RBAC/AZMAN . . o o 88
SUMIMIAIY ot e e e e e e 88
Additional RESOUICESo 89
4 Understanding User Account Control (UAC)...................... 91
What Is User Account Control? 92
How Token Filtering Works. e 92
Components of UAC ... 94
UAC Elevation User EXperienceueiiiinniiieeinnnina.. 94
Application Information Service L. 98
File and Registry Virtualization i i 98
Manifests and Requested Execution Levelscouun. 100
Installer Detection Technology., 101
User Interface Privilege Isolation. 102
Secure Desktop Elevation Prompts ..., 102
Using Remote Assistance ... 103
UAC Remote Administrative Restrictions 103
Mapping Network Drives When Running in Admin Approval Mode 104
Application Elevations Blocked at Logon............... oot 106
Configuring Pre-Windows Vista Applications
for Compatibility with UAC. 107
UAC Group Policy Settings 108
UAC Policy Settings Found Under Security Options. 108
Related UAC policies e 110
What's New in UAC in Windows Server 2008 and Windows Vista SP1........... 111
New Group Policy Setting: UlAccess Applications to Prompt for
Elevation without Using the Secure Desktop......................o.... 112

UAC Prompt Reduction When Performing File Operations
in Windows Explorer 112

viii Table of Contents

More Than 40 Additional UAC-Related Application

Compatibility Shims 112

UAC Best PractiCes. . ..ottt e e e e 112
GoOod Practice. 112

Better Practice ... 113

Best Practice. ...t 113
SUMIMIAIY . e e e e e 113
Additional RESOUICES. i 114
5 Firewall and Network Access Protection 115
Windows Filtering Platform ... 116
Windows Firewall with Advanced Security............ i 118
Improvements in the Windows Firewall..................... 118
Managing the Windows Firewall............. 122
Routing and Remote Access Services. 130
Improvements in RRAS 131
Internet Protocol Security. 133
IPSEC BaSICS . . o vttt ettt 133

New Capabilities in Windows Server 2008c.ou... 136
Network Access Protection. i 139
Architecture 140

NAP Implementation 143

NAP SCENAMIOS . . oottt et e e e e 146
UMY L . e e e e e e 150
Additional RESOUICES.ottt 150
6 YT Y/ =3P 151
Introduction tO SErviCes 151
What Is @ Service? 152
Service LOgon ACCOUNt. oot 152
Service Listener Portso 154
Configuring Services. o 155
Windows Server 2008 ServicesbyRole 161
Attacks ON SEIVICES . ..o 161
Blaster Worm 161
Common Service Attack Vectors. 163
Service Hardeningo 165

Least Privilege 165

Table of Contents ix

SErVICE SIDS . . .o 170

Write Restricted SIDs 172
Restricted Network ACCESSo v 174
Session 0 1solation 176
Mandatory Integrity Levels. 176

Data Execution Prevention 176

Other New SCM Features 177
SECUNING SEIVICES . . o oottt e 178
INVENTOrY SEIVICES . . oot e 178
Minimize Running Services. 178

Apply a Least-Privilege Model to Remaining Services................... 179

Keep Your UpdatesUp ToDate ...t 179
Creating and Using Custom Service Accounts 180

Use Windows Firewall and IPsec for Network Isolation.................. 181
Auditing Service Failures. 181
Develop and Use Secure Servicesovineeee i, 182
SUMIMIAIY o e e e e e 182
Additional RESOUICES oot 182
Group Policyo e 183
What Is New in Windows Server 2008 183
Group PoliCy BasiCs. . ..o oottt 184
The Local GPO 184
Active Directory-Based GPOS.ttt 185
Group Policy Processingooiiii 190

What Is New in Group Policy 194
Group Policy Service 194
ADMX Templates and the Central Store.ot 194
Starter GPOS 197

GPO CommENtS . ..ot 198
Filtering Improvements. i 199

New Security Policy Management Support...............cooiiio... 201
Windows Firewall with Advanced Security.................. 204

Wired and Wireless Network Policy. 206
Managing Security Settings 208
SUMMATY . o oo 212

Additional Resources 212

X Table of Contents

8 Auditing. e 213
Why AUdit? . 213
How Windows Auditing Works 214
Setting an Audit Policy 216

Audit Policy Options 221
Developing a Good Audit Policy 224
New Events in Windows Server 2008 226
Using the Built-In Tools to Analyze Events.o i iiin... 230

Event Viewer. 231

WEVEULILeXE . o oo 236
SUMIMIAIY .« .ttt e e e e e e 237

partil Implementing Identity and Access (IDA) Control
Using Active Directory

9 Designing Active Directory Domain Services for Security. 241
The New User Interface. i 241
The New Active Directory Domain Services Installation Wizard................ 243
Read-Only Domain Controllers e 245

Read-Only AD DS Database. ...t 246
RODC Filtered Attribute Set............ L 246
Unidirectional Replication i 247
Credential Caching 247
Read-Only DNS . .. 249
Staged Installation for Read-Only Domain Controllers.................. 250
Restartable Active Directory Domain Services ..., 251
Active Directory Database MountingTool............., 252
AD DS AUdItINg . ..ot 254
Auditing AD DS ACCESS vttt 255
Active Directory Lightweight Directory Services Overview. 258
New Features in Windows Server 2008 for ADLDS..................... 261
Active Directory Federation Services Overviewccoviieiiennn.. 261
What IS AD FS? . .. 262
What Is New in Windows Server 20087, 263
SUMIMIAIY . Lttt e e e e e e 264

Additional ReSOUrCes. 264

Table of Contents xi

10 Implementing Active Directory Certificate Services. 265
What Is New in Windows Server 2008 PKI.........o ... 266
Threats to Certificate Services and Mitigation Options 267

Compromise of a CAs Key Pair. 267
Preventing Revocation Checking............ 268
Attempts to Modify the CA Configuration............................. 271
Attempts to Modify Certificate Templates............... 272
Addition of Nontrusted CAs to the Trusted Root CA Store 273
Enrollment Agents Issuing Unauthorized Certificates 274
Compromise of a CA by a Single Administrator 275
Unauthorized Recovery of a User’s Private Key from the CA Database. 277
Securing Certificate ServiCes. 277
Implementing Physical Security Measures., 278
Best Practices. 279
SUMMATY . oo 280
Additional Resources 280

part it Common Security Scenarios

11 Securing ServerRoles i e 285
Roles vs. FEatUIeso 286
Default Rolesand Features.t 287

Your Server Beforethe Roles. 294
Default Service Footprint 294

Y=L =] € 294
Roles Supported by ServerCore i 296
Features Supported by Server Core i 297

What Is Not Included in Server Core. 297

Tools to Manage Server Roles. 298
Initial Configuration Tasks. 299

Add Roles and Add Features Wizards............ ..., 299
Server Managero 300

The Security Configuration Wizard o i i i 302
MuUlti-Role SErvers 311

SUMMATY .« oo e 312

xii Table of Contents

12 Patch Management i 313
The Four Phases of Patch Management..................................... 313
Phase L ASSESS . . v v et 314

Phase 2: Identify.o 315

Phase 3: Evaluate and Plan. i 318

Phase 4: Deploy 319

The Anatomy of a Security Update. ... 320
Supported Command-Line Parameters............. 321
Integrating MSU Files into a Windows Image File 321

Tools for Your Patch Management Arsenal 322
Microsoft Download Center. 322
Microsoft Update Catalog 322
Windows Update and Microsoft Update............... 323
Windows Automatic Updating 324
Microsoft Baseline Security Analyzer L. 326
Windows Server Update Services, 330
System Center Essentials 2007. i 338
UMY .« . e e e e e e e e e e 339
Additional RESOUICES. o 340
13 Securingthe Network....... o i 341
Introduction to Security Dependencies 344
Acceptable Dependenciest 345
Unacceptable Dependencies. ...t 345
Dependency Analysis of an Attack i 347

Types of Dependencies.t 348
Usage Dependencies. 349
Access-Based Dependencies 349
Administrative Dependenciesooiiiiiii i 352
Service Account Dependencies.t 352
Operational Dependencies.o i, 352
Mitigating Dependencies. i 353
Step 1: Create a Classification Scheme. 354

Steps 2 and 3: Network Threat Modeling 357

Step 4: Analyze, Rinse, and RepeatasNeeded 360

Step 5: Design the Isolation Strategy 361

Step 6: Derive Operational Strategy i 363

Step 7: Implement Restrictions i 363

Table of Contents xiii

SUMIMIAIY o e e 366
Additional RESOUICES oot 367
14 Securing the Branch Office......... i, 369
An Introduction to Branch Office Issues. i .. 369
Why Do Branch Offices Matter? 370

What Is Different in a Branch Office?, 370
Building Branch Offices. ... 371
Windows Server 2008 in the Branch Office i .. 373
Nonsecurity Features. 373
Security Features for the Branch Office 376

Other Security StePS. . .« oo 389
UMY o e e e e e 390
Additional RESOUICESt 390
15 Small Business Considerations................., 391
Running Servers on a Shoestring. it 392
Choosing the Right Platformsand Roles 393
Servers Designed for Small Firms. 395
Windows Server 2008 Web Edition................ 395
Windows Server Code Name “Cougar” ..., 395
Windows Essential Business Serverccoiiiiiiiiiii.... 399
Hosted Servers 400
Virtualization. 400
Violating All the Principles with Multi-Role Servers 401
Acceptable Roles 402
Server COmMPONENtSttt 402

Risk Considerations 403

Edge ServerIssues 405
Supportability and Updating 406

Server Recoverability 407

Best Practices for Small Businesses i 409
Following Hardening Guidance i 409
POliCiES . . oo 413
Vendor Best Practices 415
Remote ACCess ISSUES.ot 417
Monitoring and Management Add-ons. i, 418

The Server's Role in Desktop Control and Management................. 420

Recommendations for Additional Server Settings and Configurations423

xiv Table of Contents

SUMIMIAIY L e e e e e 428
Additional RESOUICES. o 428
16 Securing Server Applications. i il 431
INtrodUCtioN . ..o o 431
[IS 7: A Security Pedigree 433
Configuring 11S 7 . 433
Feature Delegation 434
TCP/IP-Based SECUKitYottt e e 436
IP Adress SeCUNityooinn e 436

POrt SECUNY . . oot 438
Host-Header Security e 439
Simple Path-Based Security 439
Defining and Restricting the Physical Path 440
Default Document or Directory Browsing?coviiiiiiinennn... 443
Authentication and Authorization 444
Anonymous Authentication. 445

Basic Authentication 446

Client Certificate Mapping. ... s 447

Digest Authentication......... i 450
ASPNet Impersonation. it 451

Forms Authentication i 451
Windows Authentication 452
Trusting the Server. 453
Further Security Considerations for lIS. 455
SUMIMATY .« o e e e e e e e e e e 460
Additional ReSOUICeS. oo 461
INdEX. . et e 463

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Acknowledgements

In no particular order, the authors have a number of people to thank for helping produce this
book. These people provided invaluable input during the development of the book and
helped ensure that high quality standards were met.

Chase Carpenter, Aaron Margosis, Paul Young, Pablo F. Matute, Dana Epp, Charlie Russel,
Wolfgang Schedlbauer, Nick Gillot, Steve Riley, John Michener, Greg Cottingham, Austin
Wilson, Chris Black, Ed Wilson, Erin Bourke-Dunphy, Kirk Soluk, Lara Sosnosky, Lee
Walker, Tal Sarid, Dan Harman, Richard B. Ward.

And, especially, Mitch Tulloch, our technical editor, who read everything in the book; Becka
McKay, our copy editor, who was fantastic about taking the voices of 12 authors and making
them sound like one; Devon Musgrave, who got us started and made sure we had some idea
of what was expected; Maureen Zimmerman, who got us finished, and sort of on time; and,
finally, Martin DelRe, who did more work than he deserved, dealing with 12 different authors.

Xv

Introduction

If you are like us, you are really excited right about now. No, not because we finished this
book, but because the fact that we did means that there is a new operating system to explore!
Even if you are not the type to get excited about such things, you hold in your hands the
comprehensive technical security resource for Windows Server 2008.

Windows Server 2008 is an upgrade to Microsoft’s flagship server operating system.

A significant amount of effort has been devoted to making sure it is not only of high quality,
but also has the appropriate security features to enable safe deployment. This book is meant
as your companion and guide as you explore these features and investigate how you can use
them to provide better services or make your life easier. Along the way, the book also
documents features that have never before been documented for the intended audience: the
IT professional.

This book contains all the technical details you have come to expect from a Resource Kit. It is
put together by 12 world-class experts, each recognized as a leading authority on his or her
particular topic. Among them they have written more than 20 books. However, first and
foremost they are IT professionals.

Overview of the Book

The book has 16 chapters, plus a bonus chapter on the CD. The chapters are divided into the
following three sections.

Part I: Windows Security Fundamentals

m Chapter 1, “Subjects, Users, and Other Actors” This chapter discusses how users and
other subjects are managed in Windows.

B Chapter 2, "Authenticators and Authentication Protocols” After a subject is identified,
it must authenticate the identification. This chapter covers how authentication works in
Windows.

B Chapter 3, "Objects: The Stuff You Want” Users access objects such as files, registry
keys, and so on. That means the objects must be secured. This chapter discussed how
that happens.

B Chapter 4, “Understanding UAC” Microsoft introduced User Account Control (UAC)
in Windows Vista. If you are primarily a server administrator, you mostly need to
understand UAC to manage your servers properly. However, if you work in any kind of
broader area of IT, you need to know how to use UAC to protect your network. This
chapter tells you how.

xvii

xviii

Introduction

m Chapter 5, “Windows Firewall(s)” The primary firewall in Windows is the Windows

Firewall with Advanced Security. This chapter covers how it works in Windows
Server 2008.

Chapter 6, “Services” When a process must run regardless of whether a user is logged
on, that process is installed as a service. Services, therefore, represent a significant
attack surface on your computers and it is important that you understand their
security implications.

Chapter 7, “Group Policy” When running Windows networks you are doing yourself
a disservice if you do not use Group Policy. Most security modifications we make to
systems are done using Group Policy.

Chapter 8, “Auditing” Security is not very useful unless you can use it to prove who did
what. Auditing is a fundamental component of all security. This chapter covers in detail
how auditing works in Windows.

Part Il: Implementing Identity and Access (IDA) Control
Using Active Directory

B Chapter 9, “Designing Active Directory Domain Services for Security” Anyone can create

an Active Directory deployment, but to actually create one that enhances the security of
your network takes skill. This chapter shows you how.

Chapter 10, “Implementing Active Directory Certificate Services” Public Key Infrastruc-
tures (PKI) are seen by many as an unnecessary complication. Nothing could be further
from the truth. For many (if not most) environments, they are a necessary complication.
This chapter covers what is new in PKI in Windows Server 2008.

Part Ill: Common Security Scenarios

B Chapter 11, “Securing Server Roles” One of the first things you will notice about

Windows Server 2008 is that the old methods for installing applications have been
removed. Instead you get Server Manager, which works on a roles-based metaphor.
In this chapter you will learn how this impacts security, and how to use roles to
protect servers.

Chapter 12. "Patch Management” Unfortunately, every server needs updated now and
then. Software, being the most complex thing ever built by mankind, is not perfect.
Patch management is not easy, but if you have the right tools and a good process you can
significantly ease the burden.

Chapter 13, “Managing Security Dependencies to Secure Your Network” Everycomputer
is dependent on something, or someone, for its security. Managing these dependencies
well is probably the most important thing you can do to protect your network. In this

Introduction Xix

chapter we discuss dependencies, show you how to do threat modeling on your network,
and introduce you to one of the most valuable security concepts today: server isolation.

Chapter 14, “Securing the Branch Office” One of the areas where Windows Server 2008
introduces significant new security features is in branch office scenarios. This chapter
shows you how to take advantage of all of them.

Chapter 15, “Small Business Considerations” Windows Server 2008 comes in more
flavors than any other server operating system Microsoft has built. Two of those

are designed specifically to meet the unique security needs of small and medium-sized
businesses. If you run a network in a small business, this chapter is an invaluable
resource.

Chapter 16, “Securing Server Applications” The point of most servers is to provide
some application support. While this book cannot possibly talk about every
application that could run on a server, Microsoft ships the IIS 7.0 application platform
with Windows Server 2008. This chapter shows you how to manage security in

that component.

Find Additional Content Online As new or updated material becomes available that
complements this book, it will be posted online on the Microsoft Press Online Windows Server
and Client Web site. Based on the final build of Windows Server 2008, the type of material you
might find includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web site will be available soon at http://www.microsoft.com/
learning/books/online/serverclient, and will be updated periodically.

Docume

nt Conventions

The following conventions are used in this book to highlight special features or usage.

Reader Aids

The following table describes the reader aids used throughout this book to point out
useful details.

Reader Aid Meaning

Note Underscores the importance of a specific concept or highlights a special case
that might not apply to every situation.

Important Calls attention to essential information that should not be disregarded.

Caution Warns you that failure to take or avoid a specified action can cause serious
problems for users, systems, data integrity, and so on.

On the CD Calls attention to a related script, tool, template, or job aid on the companion

CD that helps you perform a task described in the text.

XX Introduction

Sidebars

The following table describes the sidebars used throughout this book to provide added
insight, tips, and advice concerning different Windows Vista features.

Sidebar Meaning

Direct from the Source/Field Contributed by experts at Microsoft or Microsoft Most Valuable
Professionals (MVP) to provide “from the source” and “from the
field” insight into how Windows Vista works, best practices for
managing security, and troubleshooting tips.

How It Works Provides unique glimpses of Windows Server features and how
they work.

Command-Line Examples

The following table describes style conventions used in documenting command-line
examples throughout this book.

Style Meaning

Bold font Used to indicate user input (characters that you type exactly as shown).

Italic font Used to indicate variables for which you need to supply a specific value
(for example file_name can refer to any valid file name).

Monospace font Used for code samples and command-line output.

%SystemRoot% Used for environment variables.

Companion CD

In addition to the book itself, you also get a CD with some great tools on it. System
requirements for running the CD are at the back of this book. Included on the CD are:

Elevation Tools

UAC has undoubtedly introduced an additional level of complexity in managing systems.
Undoubtedly this was a long overdue change that implements absolutely necessary changes
in how we run our computers. However, as administrators, we sometimes need to modify files
that only administrators have access to, or need to quickly get to a folder with a command
prompt. This set of tools add some new right-click functionality to Windows Explorer, shown
in Figure I-1. Most notably, right-click any folder, select Elevate Explorer Here and answer the
elevation prompt(s). This will launch a Windows Explorer window running with a full
administrative token at whatever location you chose. You also get the elevate.exe tool, which
elevates any application from a command prompt.

Passgen

Passgen is a tool that enables you to manage passwords on the built-in Administrator account
and service accounts across a network. It is designed to help you ensure that you have unique

Introduction xxi

passwords on the Administrator account, and can also set passwords on any accounts and
configure services to start properly in those accounts.

File Edit View Tools Help

By Organize ~ = Vi

Favorite Links Total Size Free Space

E| Documents
I Downloads

Maore »

Folders -
a Bl Desktop Lacal Disk () DD R Drive (00} Rernowvable Disk SharedDocs
EH:JesperM.Johansson (3]
I 1. Public

Collapse

Manage o
Explore
Open Py Sharing-FUIders
Command Prompt Here
Elevated Command Prompt Here
Elevate Explorer Here

Map Metwark Drive...
Disconnect Metaark Drive..,

ory: 200 GB
Add 3 Metwork Location

Delete M Cornputer

Rename

Properties

Figure I-1 When you install the Elevation Tools you get a set of new right-click options on the
context menu in Windows Explorer.

Management Scripts

A set of scripts to manage Windows is also included on the CD. Among them is a script to get
configuration information on a computer, including installed software. These scripts all
require Windows PowerShell. The following scripts are included on the CD:

CreateLocalUser.psl

Creates a local user on a local or remote computer.

EvaluateServices.psl

Counts services on a local or remote computer. It then produces a report that tells how
many services are auto, how many are manual, and how many are disabled. It then counts
how many accouts are used: localsystem, localservice, networkservice, and user defined
accounts. Finally, it prints detailed information. An option allows you to display the report
when it is finished.

xxii

Introduction

FindAdmin.ps

Lists the members of the local admin group on a specific computer.

FindServiceAccounts.psl

Identifies services and their startup accounts on a local computer or remote computer. This
script can produce a complete list of the services and their accounts for one or more computers.

ListUserLastLogon.ps1

This script will list the last logon date of a specific user onto a local or remote domain. The
script will allow multiple users to be supplied for the -user parameter.

LocateDisabledUsers.psl

Locates disabled users in a local or remote domain.

LocateLockedOutUsers.psl

Locates locked-out users in a local or remote domain.

LocateOldComputersNotLogon.psl

Locates computer accounts in a local or remote domain that have not logged on for a specified
number of days.

LocateOldUsersNotLogOn.ps1

Scans a local or remote domain for user accounts that have not logged on to the domain for an
extended period of time.

LookUpUACEvents.psl

Lists User Account Control events on a local or remote computer.

ScanForSpecificSoftware.psl

Scans for the existence of a specific piece of software.

ScanForSpecificUpdate.psl

Scans for a specific update or updates on a local or remote computer. The script will also
produce a listing of all updates installed on the computer.

ScanConfig.psl

The ScanConfig.psl script produces a listing of the following information: installed software
updates, ActiveX objects, browser helper objects, network interfaces, proxy settings, auto run,
services, unsigned drivers, and the firewall policy.

Introduction xxiii

UnlockLockedOutUsers.psl

Unlocks user accounts that are locked out.

Whols.psl

Retrieves whois information from an Internet whois server.

eBook

If you would rather have a searchable electronic copy of the book, you can find one on the CD.

Bonus Chapters

An additional chapter, “Implementing Active Directory Rights Management Services” by
Kurt Dillard, is on the CD. This chapter contains late-breaking information that did not make
it in time to be included in the main book. To make sure you have the information, we put it
on the CD.

Also on the CD are sample chapters from related Microsoft Press books.

Chapter-Related Materials

Some chapters have additional documentation or electronic tools; these are mentioned in the
book text and located on the CD.

Links to Tools Discussed in the Book

Rather than give you versions of downloadable tools that become stale as soon as you buy the
book, we provide the following links to downloadable tools that are discussed throughout the
book, or that are just useful tools to have:

Windows PowerShell

Windows PowerShell is a new command-line shell and scripting language designed for
system administration and automation. Built on the .NET Framework, PowerShell allows IT
professionals and developers to control and automate the administration of Windows and
applications. Windows PowerShell is available at http://www.microsoft.com/downloads/
details.aspx?Family]D=c6ef4735-c7de-46a2-997a-ea58fdfcba63& DisplayLang=en (for Windows
Vista x64 editions) and http:;//www.microsoft.com/downloads/ details.aspx?FamilyID=af37d87d-
5de6-4af1-80f4-740f625cd084 & DisplayLang=en (for Windows Vista x64 editions).

Process Explorer

Many of the examples in the book show Process Explorer, which is an amazing tool that tells
you more about what is going on on your computer than you ever dreamed possible. Process
Explorer is available at http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx.

xxiv

Introduction

Microsoft Network Monitor

The newest version of Microsoft Network Monitor is an immensely powerful and useful network
management and troubleshooting tool. It lets you see all network traffic entering and exiting your
computer. Itis an indispensable part of any administrator’s toolbox. Network monitor is available
at http.//www.microsoft.com/downloads/ info.aspx?na=22&p=2&SrcDisplayLang=en&SrcCatego-
ryld=&SrcFamilyld=&u=%2fdownloads%2(details.aspx%3fFamilyID%3d18b1d59d-f4d8-4213-8d 17-
2f6dde7d7aac%26DisplayLang%3den.

Privbar

Privbar is a toolbar for Windows Explorer and Internet Explorer that tells you whether you are
an administrator or a standard user. As shown previously in Figure I-1, privbar is extraordinarily
useful in combination with the Elevation Tools because it shows you at a glance whether the
interface you are using is running as an administrator. Unfortunately, the version of privbar
available at the time of this writing works in Windows Vista, but not in Windows Server 2008.
Privbar is available at http://blogs.msdn.com/aaron_margosis/archive,/2004,/07,24,195350.aspx.

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can
enjoy select content from the print edition’s companion CD.

Visit http://go.microsoft.com/fwlink/?Linkld=108240 to get your downloadable content. This content
is always up-to-date and available to all readers.

Resource Kit Support Policy

Every effort has been made to ensure the accuracy of this book and the companion CD
content. Microsoft Press provides corrections to this book through the Web at the
following location:

http://www.microsoft.com/learning/support/search.asp

If you have comments, questions, or ideas regarding the book or Companion CD content, or
if you have questions that are not answered by querying the Knowledge Base, please send
them to Microsoft Press by using either of the following methods:

E-mail: rkinput@microsoft.com

Postal mail:

Microsoft Press

Attm: Microsoft Windows Server 2008 Security Resource Kit
One Microsoft Way

Redmond, WA 98052-6399

Introduction XXV

Please note that product support is not offered through the preceding mail addresses. For
product support information, please visit the Microsoft Product Support Web site at the
following address:

http://support.microsoft.com

Part |
Windows Security Fundamentals

In this part:

Chapter 1: Subjects, Users, and Other Actors 3
Chapter 2: Authenticators and Authentication Protocols.............. 17
Chapter 3: Objects: The Stuff YouWant............................. 55
Chapter 4: Understanding UAC it 91
Chapter 5: Windows Firewall(s) o i, 115
Chapter 6: Servicesciiiiiii it it 151
Chapter 7: Group Policyot i 183
Chapter 8: Auditing. ...t i i 213

Chapter 1

Subjects, Users,
and Other Actors

— Jesper M. Johansson

In this chapter:

The Subject/Object/Action-Tuple i i 3
Types of Security Principalsttt i it et 4
Security Identifiers. L 12
SUMIMAIY .« ottt e ettt et e et et et e et 16
Additional Resources.ttt e 16

At the most basic level, everything in security boils down to subjects and objects. Objects are
the things you protect, and subjects are the things you protect objects against. Subjects and
objects are used in authentication (proving who you are), authorization (granting access to
something), and auditing (tracking who accessed what). These concepts are fundamentally
very simple. Subjects are users. Objects are files. Authentication, authorization, and auditing
all have to do with how subjects and objects interact. That is the way it used to be, and in some
simpler systems, that's the way it still is.

Windows, however, supports some immensely rich semantics when it comes to security and
has greatly extended the definition of a subject and an object. A subject can be much more
than just a user, and the representation is far more complex than just a basic user identifier.
Windows also refers to them differently. You will very often come across the term security
principal. In Windows parlance, a security principal encompasses not only the typical subject
(what we would think of as a user) but also groups and computers. A security principal is
anything that can be assigned a security identifier (SID) and that can be given permission to
access something. In this chapter you will learn about the various things that can be security
principals, and how they are identified in Windows operating systems in general, as well as
what is new in Windows Server 2008. In Chapter 3, “Objects: The Stuff You Want,” you will
learn about the other side of security: objects.

The Subject/Object/Action-Tuple

Managing security very often comes down to the subject/object/action-tuple. The subject is
the actor that is trying to take some action on an object. For example, a user may try to access
a file, as shown in Figure 1-1.

Part I: Windows Security Fundamentals

Subject: Action:
User Read

Object:
File

Figure 1-1 A user attempts to read a file.

When a user tries to read the file, the operating system checks whether permissions are set on
the object—the file—that permit the subject—the user—to perform the action. If the permissions
are there to grant the user those permissions, the access request succeeds. If the permissions
do not grant the subject the requested permissions, the access request is denied. So far, this is
all very simple.

In Chapter 3, you'll learn far more about how permissions and the actual access checks work.
In this chapter we will focus on how the subject is defined. As mentioned earlier, various
things can be considered subjects. In most situations, subjects are users, but that is not always
the case. In the next section we will discuss the different types of subjects, and after that we
will go over how Windows represents those subjects internally.

Types of Security Principals

Users

Subjects—or as we shall henceforth refer to them, security principals—in a Windows-based
system, and by extension a Windows-based network, can be much more than just plain
users. However, the user is still the most basic concept.

A user is just that: some distinct entity that logs on to a computer. Fundamentally, all the
security principals are at least somewhat related to users.

In Windows, there can be two types of users: local and domain. A local user is defined in the
local Security Accounts Manager (SAM) database on a computer. Every Windows-based
computer has a local SAM, which contains all the users on that computer.

Note With one major exception, all Windows NT-based operating systems support the
same basic security constructs, although the richness of the semantics has changed, notably
starting with Windows 2000. The major exception is that Active Directory, available in server
versions starting with Windows 2000, supports a very different feature set than the client
versions and prior versions of Windows NT.

Chapter 1: Subjects, Users, and Other Actors 5

Note From this point on, when the book refers to “Windows-based computer” or just
"Windows" in the generic, we refer specifically to all computers in the Windows NT line of
operating systems. This includes:

Windows NT 3.1

Windows NT 3.5

Windows NT 3.51

Windows NT 4.0

Windows 2000

Windows XP

Windows Server 2003

Windows Vista

Windows Server 2008

Itis commonly thought that domain controllers (DCs) do not have a local SAM and hence
no local users. This is incorrect. Even a DC has a local SAM, but the accounts in its SAM
can only be used in Directory Services Restore Mode. By default, two user accounts are
always in the local SAM: the Administrator and the Guest. The Guest account is always dis-
abled by default.

Note When we spell "Administrator” or “Administrators” with a capital “A,” we are referring
to the user or the group, respectively. When we spell it in all lowercase—"administrator"—we
are referring to some user account or person that has administrative privileges. The same holds
for other entities, such as "Guest” and "guest.”

On Windows Server 2008 the Administrator account is enabled by default (with the excep-
tion of Windows Server Code Name ‘Cougar’ (The small business server version of Windows
Server 2008. As of this writing, the official product name had not been announced.)) and is
the account you must use to log on to the computer the first time. On Windows Vista the
Administrator account is disabled by default and can only be used under very restrictive cir-
cumstances. In either case, it is highly recommended that you create additional accounts for
each person that will be administering a given computer. If you are subject to almost any kind
of regulation, this is a requirement (Libenson, 2006). One account should be each person's
own personal administrative account. If the administrators also need to use the computer for
non-administrative tasks, they should also have personal non-administrative accounts.

The other type of account is a domain account. These are defined on the DC(s) for the domain
and can be used on any computer in the domain. Domain accounts can have a considerably
larger number of properties associated with them as compared to a local account. Compare
Figures 1-2 and 1-3.

Part I: Windows Security Fundamentals

strator Properties x|
Remote control I Teminal Services Profile I Dialin I
General | Member Of | Frofle | Envionment | Sessions
& Administrator
Full name: I
Description: Built-inn account for administering the

computer/damain

I User must change password at next logon
™ User cannot change password

[~ Password never erpires

™ Accourt is disabled

I™ | Aceourt s locked out

ok I Cancel | Lpply | Help |

Figure 1-2 The Properties window for a local account.

administrator Properties x|
Member OF I Dialin I Environment | Session:
Remote contiol I Teminal Services Profile I COk+

Gereral | Addiess | Account | Prafile I Telephones I Organization

& Administrator

First name: || Initials:

Last name: I

Dizsplay name: I

Description: IBulIt-m account for adminiztering the computer/dome
Office: |

Telephone number: I DOther |

E-mail |

‘web page: I Other.... |

ok I Cancel | Spply | Helg |

Figure 1-3 The Properties window for a domain account.

Chapter 1: Subjects, Users, and Other Actors 7

Domain accounts have a richer set of semantics, covering a variety of attributes in an organi-
zational environment, such as telephone numbers, management relationships, e-mail
accounts, and so on. Domain accounts are also far more useful in a network because they can
be used and assigned permissions on computers across the network. Defining accounts in the
domain also simplifies management. To learn more about Active Directory, see Chapter 9,
“Designing Active Directory Domain Services for Security.”

Computers

A computer is really just another type of user. In Active Directory this is particularly true and
is borne out by the inheritance model in Active Directory. The inheritance structure leading to
a computer is shown in Figure 1-4.

organizational Person

Figure 1-4 The inheritance hierarchy in Active Directory shows how users and computers
are related.

You will notice several very interesting things in Figure 1-4. First, as you can see, all classes
in Active Directory derive from a root class called Top. In fact, even Top is listed as a subclass
of Top. Second, as you can see, the User class is derived from the organizationalPerson class.
The organizationalPerson class is derived from Top. Third—and this is the most interesting
part—the Computer class is derived from the User class. In other words, in object-oriented
parlance, a Computer is a kind of user. This seeming anthropomorphizing of computers
does actually make a lot of sense, though, because computers need to be treated as subjects
as well, and have almost all the same attributes as users.

Groups

A subject, you will recall, is something that attempts to access an object. The operating system
verifies this access attempt by checking the permissions of the object. Very early on, operating
system designers realized that it would be very unwieldy to assign permissions to every single

Part I: Windows Security Fundamentals

object to every single user that needed it. To solve that problem, they permitted users to be
members of groups. This permits us to assign permissions to groups in addition to users. A
group may not be a user, but a group is still a type of security principal because it can have an
identifier, just like users and computers. In Windows a user can be a member of many groups
and an object can have permissions assigned for many groups. Nested groups are also permit-
ted, with some restrictions.

A non-domain controller has only two types of groups: builtin ones and local ones that the
administrator has defined. In Active Directory, however, you will find six different kinds of security
groups: built-in Domain Local, Global, and Universal groups; and user-defined Domain Local,
Global, and Universal groups. Domain Local groups can only be assigned permissions to
resources in the domain they are defined, but they may contain users, universal, and global
groups from any trusted domain or forest, as well as Domain local groups from their own domain.

A Global group may only contain users and global groups from the domain it was defined in,
but may be assigned permissions to resources in any domain in the forest the domain is part
of, or any trusting forest.

A Universal group may contain users and Universal and Global groups from any domain. A
Universal group may be assigned permissions to resources in any trusting domain or forest.

While a stand-alone server comes with only two groups by default—Administrators and
Guests—a domain comes with a relatively large number, of all three types. Figure 1-5 shows
the default groups in a domain. All are designated as Security Groups, which means they can

- Active Directory Users and Computers

File:

g [3]

Action Help

e J =l sl =R IENENENN 7 e
] Active Directary Users and Comput
| saved Queries

3 jesper-test Jocal
| Builkin

| Computers

Yiew

LaEFTER

| Type
Liser
Security Group - Domain Local
Security Group - Domain Local
Security Group - Domain Local

Iame
%, iBdminiskr ator
S_inllowed RODC Password Replication Group
B2, Cert Publishers
SiDenied RODC Password Replication Graup

| Description |
Built-in account For admini... :
Members in this group can. ..

mE[

Members af this group are. ..
Members in this group can...

KN I |

ﬂ\lDUmain Computers
ﬂ\lDUmain Controllers

52, Domain Guests

2, 0omain Users

iiEnterprlse Admins
SLEnterprisE Read-only Domain Controllers
SiGmup Palicy Creator Owners
!. (Guest

HLRAS and 145 Servers

52, Read-only Domain Controllers
B2, 5chema Admins

Security Group - Global
Security Group - Global
Security Group - Global
Security Group - Global
Security Group - Universal
Security Group - Universal
Security Group - Global
User

Security Group - Domain Local
Security Group - Global
Security Group - Universal

Dumta\n Cuntr.uller.s ol B2, Dnsadmins Security Group - Domain Local DNS Administrators Group
= EorelgnSecurltyPnnclpa s SansUpdataPery Security Group - Global DNS clients who are permi...
= E=B SlDomain Adrins Security Group - Global Designated administrators. ..

All workstations and serve. ..,
All domain controllers in th,..
All domain guests

Al damain users

Designated administrators, ..
Members of this group are. ..
Members in this group can. ..
Built-in account Far guest ...

Servers in this group can ...

Members af this group are...
Designated administrators. ..

Figure 1-5 A substantial number of groups are defined in the Users container in Active Directory

by default.

Chapter 1: Subjects, Users, and Other Actors 9

be assigned permissions. Security groups should not be confused with Distribution Groups,
which are used by Microsoft Exchange Server to group users into groups so that you can send
e-mail to a group of people at one time. Both are defined in Active Directory.

In addition to the groups defined in the domain, which exist only in domains, there are also
built-in local groups. These are groups defined in a different hierarchy, by a different authority,
than the domain groups. Built-in groups are not considered domain groups per se, but rather
are built in on all or at least some Windows-based computers, regardless of whether they are
domain controllers. They exist on all Windows-based computers, but are defined in AD on
DCs. For example, the Administrators group is a built-in group that exists on all Windows-
based computers, while Domain Admins is a domain group that exists only on domains.
Figure 1-6 shows 21 built-in groups on a test computer.

-icix
File Action Yiew Help
e HF00c=Hm e et vah
: Active Directory Users and Comput | Mame | Tvpe | Description |
_ Saved Queriss g\lnccount Operatars Security Group - Domain Local Members can administer d...
=)= je.sper-tast‘|0ca| iindministraturs Security Group - Domain Local - Administrators have compl. .,
| Builtin 2 Backup Operators Security Group - Domain Local - Backup Operatars can ov,,.
| Camputers B2, Certificate Service DOOM Arcess Securlty Group - Domain Local Members of this group are...
= Domta\n Contr.oller.s . iicryptographlc Qperators Security Group - Domain Local - Members are authorized £
- Ezr:rlsgnSecuntyPnncmals SLDistributed COM Users Security Group - Domain Local - Members are allowed ko ...
- S_iEvent Log Readers Security Group - Domain Local - Members of this group ca. ..
SLGuests Security Group - Dormain Local - Guests hawve the same acc. ..
SLIIS_IUSRS Security Group - Dormain Local - Built-in group used by Int. ..
Silncnming Forest Trusk Buiders Security Group - Domain Local - Members of this graup ca...
SlNetwork Configuration Operators Security Group - Dormain Local - Members in this group can...
:glParFormanca Log Users Security Group - Dorain Local — Members of this group ma...
iiParFormanca Manitar Users Security Group - Domain Local Members of this graup ca...
g\lPre-Windows 2000 Compatible Access Security Group - Domain Local A backward compatibility ...
S\lPrint COperators Security Group - Domain Local Members can administer d...
S{Remote Desktop Users Security Group - Domain Local — Members in this group are...
SiRepIicator Security Group - Domain Local - Supports File replication in ...
iisarver Operators Security Group - Domain Local - Members can administer d...
SLTerminaI Server License Servers Security Group - Domain Local - Members of this group ca...
SiUsers Security Group - Domain Local Users are prevented From...
S\LWindows Authorization Access Group Security Group - Domain Lacal Merbers of this group ha...
N 3|

Figure 1-6 Additional groups are so-called “built-in groups.”

However, if you were to attempt to assign permissions to an object you would find still more
groups. In fact, on a basic DC, you would find no fewer than 63(!) groups and built-in security
principals, as shown in Figure 1-7.

The additional 26 groups are abstract concepts representing a dynamic group of security prin-
cipals. They are usually referred to as special identities.

10

Part I: Windows Security Fundamentals

Select User, Computer, or Group 2l

Select this object type:

IGloup or Built-in security principal Obiject Types...

Erom this location,

||esper-test local Locations

Comrmon GQueries |

Hame: IStarts with j I LColumns |
Descriptior: IStarts with j I
I™ | Disabled accounts Stop |

I | Non ezpiting password

Diays since last lagon: ¥ 7;'_.
Search results ﬂl
Mame [RDM] | Description | Iri Falder [|

&’ Everyone
E&Gmup Palicy Creator Owners Members inthiz ... jespertestlocal/Users
Guests iesper-test local/Builtin
EE,IIS_IUSHS iesper-test local/Builtin
Incoming Forest Trust Builders iesper-test.local/Builtin J
B8 \NTERACTIVE
2%sR
2%\ nCal SERVICE
2 NETWORK
E&Nelwnrk Configuration Operators |esper-test local/Builtin
@ v inow oo e =l

Figure 1-7 You will find no fewer than 63 groups and built-in security principals on a DC.

Abstract Concepts (Log-on Groups)

In addition to the somewhat tangible groups that you define on a computer, as you can see in
Figure 1-7 there are also others. These are groups that represent some dynamic aspect of a
security principal, such as how a user or other security principal has logged on. For example,
the INTERACTIVE group shown in Figure 1-7 includes all users that logged on to the console
of the computer and via Terminal Services. By contrast, the NETWORK group includes all
users that logged on via the network. By definition, a user can only be a member of one of
these groups at a time, and membership in them is assigned at log-on time. You can use them
to grant permissions to all users logging on a certain way.

You will see other groups of this nature as well. Of particular note are the Everyone and
Authenticated Users groups. The Everyone group includes, as the name implies, every user
accessing this computer—except that starting with Windows XP completely anonymous users
are not included. Guests are, however. The Authenticated Users group, while also populated
dynamically, includes only those users that actually authenticated. That means that guests are
not included in Authenticated Users. That is the only difference. Because the only guest
account that exists on the operating system is disabled, however, there is no functional
difference between Authenticated Users and Everyone unless you have taken manual steps to
enable the Guest account. In spite of this, many administrators have lost many an hour of
sleep over the fact that "everyone in the world has permissions on my server," and have taken

Chapter 1: Subjects, Users, and Other Actors 11

very drastic steps to modify permissions to rectify this situation; typically these modifications
have completely disastrous results. You have no reason whatsoever to make these kinds of
modifications. Either you want guests to have permissions to your computer and you enable
the guest account, or you do not, and you leave it disabled. If you do want guests to have per-
missions, you need the permissions for Everyone. If you do not, Everyone will not be any
different from Authenticated Users. Some people argue that making these changes are
“defense in depth” changes. That would be true if we were to define “defense in depth” as
“changes we cannot justify any other way.” The fact is that they provide very little security and
carry a very large risk. Leave the defaults alone. If this is not persuasive enough, you should
also refer to Microsoft Knowledge Base Article 885409, which states, in a nutshell, that whole-
sale permissions replacement can void your support contract. When you do that, you basi-
cally build your own operating system, and Microsoft can no longer guarantee that it works.

It is also worth pointing out the difference between Users, which is a built-in group, and
Authenticated Users. The difference is the rather obvious fact that Authenticated Users
includes every user that has authenticated to the computer, including users in different
domains, users that are members of local groups other than Users, and users that are not
members of any groups at all (yes, such a thing is possible). In other words, the Users group
is far, far more restrictive than Authenticated Users. In spite of this, this author has seen
organizations that attempted to replace permissions for Users with permissions for Authenti-
cated Users in an attempt to harden their systems. Needless to say, these attempts were largely
unsuccessful, both with respect to security and, particularly, with respect to stability.

Services

A persistent debate about host-based firewalls has gone on for years. Many people, supported
eagerly by the vendors selling the products, argue that host-based firewalls must filter out-

bound traffic to be worthwhile because doing so protects the remainder of the network from
a compromised computer. More objective minds point out that if a computer is compromised,
the malware is already present on it, and can bypass or disable the host-based firewall entirely.

Of course, if the malware got on the computer by compromising some application that actu-
ally ran with least privilege, this argument does not hold. In recent years Microsoft has spent
a significant amount of time factoring services to run with lower privileges, but a service run-
ning as a particular user could still control any other service running as the same user, and
could do anything that service could. Therefore, if ServiceA could send traffic through the
firewall, but ServiceB could not, ServiceB could take over ServiceA and send traffic as long as
they both run as the same user.

To address this problem Microsoft needed a way to apply permissions to a process, or more
specifically, to a service. To do that, services became security principals in their own right
starting with Windows Vista and Windows Server 2008. Each service now has an identifier
that can be used to apply permissions against. By marking the permissions for that identifier
as restricted—see Chapter 3 for more information on restricted access control list entries—we

12

Part I: Windows Security Fundamentals

can even ensure that a particular security principal must be present when making a request,
regardless of what other permissions are listed on the object. Suddenly it became meaningful
to use outbound, host-based firewall filters in some situations, which is why the firewall in
Windows Vista and Windows Server 2008 now supports them. By default, it blocks outbound
traffic from services except on ports that are needed by those services. This is, frankly, as
much security as you can ever expect from a host-based firewall.

Security Identifiers

Thus far we have been skirting the issue of identifiers. I mentioned earlier that a security
principal is an entity that can have a security identifier (SID), but I never defined security
identifier. Simply put, a SID is a (mostly) numeric representation of a security principal.
The SID is actually what is used internally by the operating system. When you grant a user,
a group, a service, or some other security principal permissions to an object, the operating
system writes the SID and the permissions to the object’s Access Control List (ACL).

SID Components

A SID is composed of several required elements. Figure 1-8 shows the different components of
a SID.

Literal "S”

Revision
Level

Identifier
Authority
First |
Subauthority H
: H
1
: O-N |
| Subauthorities H
! H
: Relative
b e » Identifier
(RID)

Figure 1-8 A SID has a defined structure with several required elements.

SIDs always start with the literal “S,” which denotes them as a SID. They also always end with
arelative identifier (RID). In between, they have 0 or more sub-authorities. The second value
in a SID is always a revision level, which currently is always 1.

SID Authorities

Chapter 1: Subjects, Users, and Other Actors 13

After the S-1- prefix, the remainder of a SID can vary greatly, but it always begins with an iden-
tifier authority denoting what entity issued them. Table 1-1 shows the currently used
identifier authorities.

Table 1-1 SID Identifier Authorities

Identifier

Authority Description

0 SECURITY_NULL_SID_AUTHORITY. Used for comparisons when the identifier
authority is unknown.

1 SECURITY_WORLD_SID_AUTHORITY. Used to construct SIDs that represent all users.
For example, the SID for the Everyone group is S-1-1-0, created by appending the
WORLD RID (0) to this identifier authority, thereby selecting all users from that
authority.

2 SECURITY_LOCAL_SID_AUTHORITY. Used to build SIDs representing users that log on
to a local terminal.

3 SECURITY_CREATOR_SID_AUTHORITY. Used to construct SIDs that represent the
creator or owner of an object. For example, the CREATOR OWNER SID is S-1-3-0,
created by appending the creator owner RID (also 0) to this identifier authority. If
S-1-3-0is used in an inheritable ACL, it will be replaced by the owner's SID in child
objects that inherit this ACL. S-1-3-1 is the CREATOR GROUP SID and has the same
effect but will take on the SID for the creator's primary group instead.

5 SECURITY_NT_AUTHORITY. The operating system itself. SIDs starting with S-1-5

were issued by a computer or a domain. Most of the SIDs you will see start
with S-1-5.

to four.

Direct from the Source: History of SIDs

The original concept of the SID called out each level of the hierarchy. Each layer
included a new sub-authority, and an enterprise could lay out arbitrarily complicated
hierarchies of issuing authorities. Each layer could, in turn, create additional authori-
ties beneath it. In reality, this created a lot of overhead for setup and deployment, and
made the management model group even more baroque. The notion of arbitrary depth
identities did not survive the early stages of development, although the structure was
already too deeply ingrained to be removed.

In practice, two SID patterns developed. For built-in, predefined identities, the hierarchy
was compressed to a depth of two or three sub-authorities. For real identities of other
principals, the identifier authority was set to five, and the set of sub-authorities was set

Richard B. Ward, Architect
Windows Core

14

Part I: Windows Security Fundamentals

After the identifier authority the SID has some number of sub-authorities. The last of these is
called the relative identifier and is the identifier of the unique security principal within the
realm where the SID was defined. To make this idea a little more concrete, consider the
following SID:

S-1-5-21-1534169462-1651380828-111620651-500

As you have seen, the SID starts with S-1-5, indicating that it was issued by Windows NT. The
first sub-authority is 21 (0x15 in hexadecimal). The 21 defines this as a Windows NT SID that
is not guaranteed to be universally unique. It will be unique within the domain of its issuance,
but there may be other SIDs in the universe of computers that have the same exact value.
The first of the sub-authorities is very often a well-known sub-authority. Table 1-2 lists the
more commonly encountered well-known sub-authorities.

Our SID then has three additional sub-authorities: 1534169462, 1651380828, and
111620651. These do not in and of themselves have any implicit meaning, but together they
denote the domain or computer that issued the SID. In fact, the SID for the domain is
S-1-5-21-1534169462-1651380828-111620651, and all SIDs issued in that domain will start
with that value and end with some unique RID for the user or computer they denote. In this
case the SID ends with 500, which is a well-known RID denoting the built-in Administrator
account. 501 is the well-known RID for the built-in Guest account and 502 is the well-known
RID for the Kerberos Ticket Granting Ticket (krbtgt).

Table 1-2 Well-Known Sub-authorities

Sub-authority Description

5 SIDs are issued to log-on sessions to enable permissions to be granted to any
application running in a specific log-on session. These SIDs have the first
sub-authority set to 5, and take the form S-1-5-5-x-y.

6 When a process logs on as a service it gets a special SID in its token to denote that.
This SID has the sub-authority 6, and is always S-1-5-6.

21 SECURITY_NT_NON_UNIQUE. Denotes user and computer SIDs that are not
guaranteed to be universally unique.

32 SECURITY_BUILTIN_DOMAIN_RID. Denotes built-in SIDs. For example, the
well-known SID for the built-in Administrators group is S-1-5-32-544.

80 SECURITY_SERVICE_ID_BASE_RID. Denotes SIDs for services.

Service SIDs

As mentioned earlier, services also have SIDs in Windows Vista and Windows Server 2008.
Service SIDs always start with S-1-5-80 and end with a number of sub-authorities that are
deterministic based on the name of the service. This means that a given service has the same
SID on all computers. It also means that you can retrieve the SID for an arbitrary service even
if it does not exist. For example, to see what the SID would be for the “foo” service, run the sc
showsid command, as follows:

Chapter 1: Subjects, Users, and Other Actors 15

Cc:\>sc showsid foo
NAME: foo
SERVICE SID: S-1-5-80-2639291829-767035215-3510963033-3734144485-3832470211

If you try this on one of your servers, you will come up with the same answer. If you would
rather have the friendly name for the service, use NT SERVICE\foo.

Well-Known SIDs

When a developer writes a program for Windows, he often needs to know the SID of some
security principal. Usually SIDs can be easily constructed if only the RID is known because
it is just appended to the computer or domain SID, as in the case of the Administrator
account. However, for convenience, it is often desirable to have a shorter and static form of
some SIDs. To provide this, the security model used in Windows includes a significant
number of well-known SIDs—SIDs that are always the same across all computers. A few univer-
sally well-known SIDs are the same on all operating systems using this security model. These
are the SIDs that start with S-1-1, S-1-2, or S-1-3, including some that were discussed earlier
in the chapter, such as the CREATOR OWNER SID: S-1-3-0.

In addition, Windows NT has a significant number of well-known SIDs. S-1-5-32 is the well-
known SID for the built-in domain, for example. It can, in turn, be combined with a well-known
RID to form a well-known SID for a particular account. For example, the SID for the built-in
Administrators group, whether on a domain or on a stand-alone computer, is always
S-1-5-32-544. Table 1-3 lists some of the more commonly used domain-relative RIDs. In the
case of built-in groups the domain-relative RIDs can be combined with S-1-5-32 to form a SID
that is valid on any computer where that user or group is relevant. Other accounts are
appended to the domain to form the complete SID. This is the case with Domain Admins, for
example, which takes the well-known RID 512 to create a SID such as
S-1-5-21-1534169462-1651380828-111620651-512.

Table 1-3 Well-Known Domain-Relative RIDs

RID Description

500 Administrator

501 Guest

502 Krbtgt

512 Domain Admins
513 Domain Users

514 Domain Guests

515 Domain Computers
516 Domain Controllers
544 Built-In Administrators
545 Built-In Users

546 Built-In Guests

16 Part I: Windows Security Fundamentals

SIDs may look very complicated, but once you understand the structure, they become quite
simple to decipher. With a little practice, you will easily be able to tell whether a SID refers

to a service, a well-known principal, or a user in a domain. In chapter 3, we will see how these
SIDs are used to manage permissions.

Summary

Security principals and SIDs underlie so much of Windows security that as an administrator,
you must have at least a basic understanding of how they work. SIDs are the fundamental
building blocks of a token, which, in turn, is the basic entity used to check whether access is
permitted. Understanding how these components function together and being able to assign
permissions effectively using users, groups, domain groups, and the log-on types will enable
you to be far more effective, and encounter far less surprises, as you delve deeper into
Windows Security.

Additional Resources

m Libenson, E. “Controlling Privileged Accounts to Comply with SOX Section 404.”
http://www.s-ox.com/ Feature/detail.cfm?articleID=2178.

m Microsoft Knowledge Base article “Security Configuration Guidance Support.”
http://support.microsoft.com/kb,/885409/ en-us.

Chapter 2

Authenticators and
Authentication Protocols

— Jesper M. Johansson

In this chapter:

Something You Know, Something YouHave............................ ...
Understanding Authenticator Storage............ ... i,
Authentication Protocols e
Smart Card Authentication.
Attacks on Passwords i i e e e
Managing Passwords.ttt i e e
YT T 4=
Additional Resources.ot e e

Recall from Chapter 1, “Subjects, Users, and Other Actors” that the actors in a computer are

called subjects or principals. Once you have a principal, that principal needs some way to

prove that it really is who it claims to be. Consider the very real-world case in which you wish
to purchase something with a credit card in a store where they actually understand security.
You have your identity: you. However, the store’s personnel do not know who you are so they
require some proof—an authentication that you are who you say you are. To provide proof of

identity you use an authenticator of some form, such as an identity card or a passport. You
present this to the store clerk in a fairly routine fashion, as an authentication protocol.

The virtual world is no different, with the exception that the entity to which you have to

authenticate understands that a signature on the back of a credit card is not an authenticator;

that is, it provides absolutely no proof of identity. Therefore, you need a stronger form of
authentication. In this chapter, we will discuss how Windows handles authenticators and

which authenticators it supports.

Something You Know, Something You Have
Generally speaking, there are three types of authenticators:

® Something you know
® Something you have

m Something you are

17

18 Part I: Windows Security Fundamentals

Something You Know

A secret that you know, and in many cases share with the system you want to access, is
the simplest and most pervasive form of authenticator. A password is a perfect example of
something you know.

Something You Have

A token of some kind that you are in possession of is a different kind of authenticator. You
authenticate as yourself by proving that you are in possession of this token. An example is

a smart card (discussed later in the chapter) or a RSA SecurID one-time password device
(http://www.rsa.com/node.aspx?id=1156). These types of tokens are almost always combined
with something you know, and can greatly strengthen the quality of the authentication claims.

Something You Are

Some systems use something you are as an authenticator. These typically fall in the category
of biometric authenticators: tokens that attempt to measure something about you. Examples
include retina scans, fingerprints, blood samples, and voice recognition. Some people also
consider typing cadence while typing a password a biometric authenticator. However, that is
debatable; it really just measures more parameters about the “something you know” factor. As
such, it can easily be captured and replayed by the same system that can capture and replay
the original authenticator—without harming or inconveniencing the subject. Therefore, it fails
to provide proper two-factor authentication.

Biometric systems are inherently imprecise. While DNA provides an exact match, most people
would be reluctant to donate a blood sample to use a computer (although some computers

I have used felt like they were squeezing blood out of me). Most biometric factors are not as
precise. For example, fingerprints are considered to be unique. However, it is questionable
that recording it multiple times results in exactly the same print, as well as whether a machine
can produce the same analysis result of the same print twice. Therefore, biometric authentica-
tion systems typically operate on a range of acceptable values, and when you store your
authenticator you must record it several times. Based on this, the system develops the
acceptable range for your authenticator. To successfully authenticate, subsequent attempts
must fall within that range.

Biometric systems suffer from many other shortcomings. First, with the exception of typing
cadence, they require special-purpose hardware devices on every client, some of which can be
quite intrusive. The same is true for some “something you have” systems, such as smart cards.

Second, as mentioned above, biometric methods are imprecise and a close match is all that is
needed. With some methods this can be fatal. If, for some reason, your biometric authenticator
has changed, you will fail the authentication. For instance, if you use voice recognition you may
not get in if illness or fatigue affects your voice. Likewise, an ill-fated weekend of home improve-
ment projects may result in losing the digit you need to log on come Monday morning.

Chapter 2: Authenticators and Authentication Protocols 19

Third, many people consider biometric authentication very intrusive. Having extremely
personal details such as fingerprints stored on a computer system is not to many
people’s liking.

Fourth, many security experts consider biometrics oversold. The companies in the business of
selling biometric systems often make impossible claims. For example, a company making a
software solution that measures typing cadence claims to protect customers against keystroke
loggers, making stolen passwords worthless. That is impossible. For example, the user must
still type the password on the client, and a keystroke logger on the client could be easily
augmented to capture all the same information that the biometric software is capturing. This
information could be easily replayed to successfully authenticate. This solution, in fact, fails to
mitigate a single problem with passwords, but aggravates the problem that users must remem-
ber their passwords because it breaks solutions that rely on secure client-side storage of
randomly generated passwords, such as Password Safe (http://passwordsafe.sourceforge.net/).

Fifth, there is a common misperception that biometric systems are secure because they are
inherently a part of the user and cannot be left lying around the way passwords written on a
sticky note can. However, this ignores the fact that biometric authentication sequences can not
only be captured, such as fingerprints on a glass, but the tokens themselves are also most defi-
nitely removable. There have already been recorded instances of thieves making off with bio-
metric authenticators (Kent, 2005). Less intrusive methods of capturing authenticators have
also been used. For example, the Chaos Computer Club in Germany published a training video
a few years ago showing how to produce a synthetic fingerprint by lifting one off a bottle.

Finally, there are relatively few choices for biometric authenticators. For example, in a system
using fingerprints you only have 10 choices. If one of them is compromised or lost you have
nine left to choose from. This makes cycling your authenticators regularly difficult because
you will run out relatively soon. Because capturing and replaying credentials is a real risk, the
lack of choices of authenticators is a threat not to be discounted.

For all these reasons, Windows does not natively support biometric authentication. Third par-
ties do produce add-on software and hardware for biometric authentication. Microsoft also
sells a fingerprinting device, although this latter device is clearly labeled as a non-enterprise
grade security device. However, for all the reasons stated previously, biometric authenticators
in general are not enterprise-class authenticators and should not be used in enterprises or to
protect sensitive personal or corporate information. For enterprise use, smart cards and pass-
words can be far more secure, flexible, and easily integrated into ordinary business practices.
The remainder of this chapter will focus on those two technologies.

Understanding Authenticator Storage

Anytime you have an authenticator, you have to store some form of it so that it can be
compared at run time to what the principal enters when authenticating. The storage method
differs depending both on the type of authenticator and how the designer built the system.

20

Part I: Windows Security Fundamentals

In this section we will discuss various ways authenticators are stored in Windows, particularly
focusing on passwords because they are more commonly used and subject to far more
variation than smart cards.

Smart cards rely on certificates. (For more information about certificates, see Chapter 10,
“Implementing Active Directory Certificate Services.”) The smart card itself holds the secret
portion of the certificate. The authentication system, in this case an Active Directory domain,
holds the public portion. Therefore, when you use smart cards, no secrets related to the smart
card need to be stored on the domain controllers (DCs). This makes smart cards simpler in
some ways than passwords to manage.

Note As a practical matter, most systems that use smart cards escrow the secret keys in a
central location. Windows includes that functionality as well. By doing so you gain the ability to
access any secrets protected with smart card credentials, for example, for forensic purposes.
However, it also means that you now have sensitive secrets to protect on your network.

Passwords, in virtually every implementation available today, are shared secrets. The secret
the user uses to log on with is the same as the one the authentication server uses to authenti-
cate the user’s access. This means that passwords are sensitive secrets and must be protected.

In early shared computer systems, passwords were simply stored in clear-text in a text file. The
passwords in those systems were never really meant to keep people out because only a small
group of people had access to the system in the first place. They were mostly used to control
which environment you received. Eventually, however, the passwords in the password file
were encrypted or hashed.

Encryption and Hashing

Encryption is based on the word cryptography, which, literally, means “hidden writing.”
Encryption is the process of using cryptography to hide writing, or to convert some-
thing from a readable form—typically called clear-text or plaintext—into an obscured
form, typically referred to as the ciphertext. Decryption is the reverse operation—
converting something from ciphertext to plaintext.

While encryption uses cryptography to convert something into unreadable but revers-
ible form, hashing is a closely related function that converts plaintext into unreadable
and irreversible form. A hash can, for example, be used as a checksum to compare two
plaintexts. If they both generate the same hash, you have reasonably good assurance
that the plaintexts are identical. A hash is also typically far smaller—proportional to the
plaintext—than a ciphertext. Therefore, hashes are very well suited to uses like
password storage.

Chapter 2: Authenticators and Authentication Protocols 21

Most Unix-based systems still use this exact form of password storage, with two slight modi-
fications. First, the password file, typically stored in /etc/passwd, now contains no password
hashes but just user names and IDs. The actual hashes are stored in the shadow password
file—for example, in /etc/passwd.shadow. While the password file itself is world-readable, the
shadow file is readable only by superusers.

Second, because password hashes were originally world-readable in the /etc/passwd file, they
had to be protected against comparison attacks. Imagine a situation in which you and I both
have user accounts on the same computer. My password is "pas$word!" and, by sheer coinci-
dence, you choose the same password. With a straight hash, we would both have the same
password hash stored in the /etc/passwd file. I could search the file for my hash, and then
search for any other accounts with the same hash. If I found any, I would know that they had
the same password I had. This is an unacceptable situation. The solution is to add a randomly
generated salt to the password before hashing it. A salt is simply a random value that is added
to the password before hashing it. The salt is stored in clear-text in the password database.
This way, even if two passwords are identical, they will have different salts and therefore
different hashes. The process is shown in Figure 2-1.

Password hash
+

Salt

Password —»

Hashing

process Password
Salt Store

Dy
i

User

S

Figure 2-1 By salting the password before storing it the password file is protected against
comparison attacks.

Windows uses variants on all these techniques to store passwords. In the following sections
I will cover the five primary ways Windows stores passwords used to authenticate users to
Windows itself.

LM Hash

The LM hash is not actually a hash at all, although it has some of the same properties. It is a
one-way function, and is usually referred to internally as the LMOWF (LanManager One-Way
Function). In Windows Vista and Windows Server 2008 the LM hash is not stored by default,
nor is it used by default during a network authentication. However, on earlier versions of

Windows the LM hash is typically both stored and transmitted by default. Therefore, knowing

22

Part I: Windows Security Fundamentals

how the LM hash works is worthwhile. Note that both Windows Vista and Windows Server
2008 can be configured to store or authenticate with the LM hash, but this is not recom-
mended because of weaknesses in the algorithms.

Direct from the Field: LM Hash History

The LM hash was first used by Microsoft in its LAN Manager network operating system,
the last version of which was released in the early 1990s. LAN Manager ran on top of
IBM’s OS/2 operating system. When Windows NT was first released in 1993 it was
imperative that the new operating system interoperate with LAN Manager so that orga-
nizations that had invested in LAN Manager did not suddenly find that their invest-
ments were useless. However, this also meant that even though Windows NT supported
far better security structures than LAN Manager, Windows NT security still suffered
from LAN Manager design decisions made in the mid-1980s. In 2006 Microsoft shipped
the first operating system that disabled the LAN Manager password hashing mechanism
by default, although it can still be enabled. It took 13 years to deprecate this feature.

Jesper M. Johansson
Windows Security MVP

The LM hash is created using a large number of relatively complicated steps, shown in
Figure 2-2. The process starts when a user creates a new password. The password is immedi-
ately converted to all uppercase. In other words, passwords stored using the LM hash

are case-insensitive.

After the password is converted to uppercase it is padded out to 14 characters. If the password
is already longer than 14 characters, it could theoretically be truncated at this point, but in
practice, the process just fails and no LM hash is generated if the password is longer than

14 characters. This is why you get a warning about compatibility with older operating systems
when you set a password longer than 14 characters.

Next, the password is split into two 7-character chunks. This is because they will now be used
as a key in a Data Encryption Standard (DES) encryption, and the Data Encryption Algorithm
(DEA, the algorithm used in DES) operates on 56-bit chunks. These chunks are used as the
key to encrypt a fixed value.

Finally, the results of the two DES operations are concatenated and the results are stored as
the LM hash. The hash is stored either in the Security Accounts Manager database (if the
password is for a local account on a stand-alone computer or a domain member) or in the
DBCS-Pwd attribute of the user object in Active Directory.

This explains why an attacker is able to deduce how long a person’s password is just by look-
ing at the hash. If the second half of the LM hash is AAD3B435B51404EE, the second half

Chapter 2: Authenticators and Authentication Protocols 23

of the password is blank and the password is no longer than seven characters. If both halves
are AAD3B435B51404EE, the password is entirely blank.

User
Password!

Uppercase
PAS$WORD!

Pad
PASSWORDNO\O\O\O\O
AAD3B435B51404EE AAD3B435B51404EE
Split
PAS$WOR ——L— DI\0\O\O\O\O
DES DES

L—B34CE522C3E4C877 —l— 22C34254E51BFF62 —

B34CE522C3E4C87722C34254E51BFF62

Concatenate

Password
Store

Figure 2-2 The LM hash is created using a series of complicated steps.

NT Hash

When Windows NT first came out in 1993 a new password storage method was introduced.
This mechanism is far simpler than the LM hash, as shown in Figure 2-3.

24

Part I: Windows Security Fundamentals

Py

User
Pas$wOrd!

MD4 Hash
FC525C9683E8FE067095BA2DD(C971889

Password
Store

Figure 2-3 The NT hash is a straight MD4 hash.

The NT hash, or NTOWF as it is referred to internally, is stored either in the SAM or in the
Unicode-PWD attribute of an AD user.

Note that neither the NTOWF nor the LMOWEF are salted. Windows has never salted pass-
words for the simple reason that the password databases were never readable to others, so the
lookup issue was never particularly interesting as an attack vector. To read the databases you
have to be an administrator in the first place, meaning you have already fully compromised
the computer or domain. Furthermore, shared-secret authentication systems have a very inter-
esting property that we shall discuss shortly and which bears on this issue.

Password Verifier

If you have worked in a Windows Active Directory environment, you probably noticed that
you can carry a domain-joined laptop computer with you and authenticate to it using a
domain account even though you are not connected to the domain. This particular bit of
magic is thanks to something called the password verifier. The password verifier, often referred
to outside of Microsoft as cached credentials, is a local copy of your domain password hash that
you can use to log on locally. In operating system versions prior to Windows Vista, it was
created using the process shown in Figure 2-4.

In recent years attackers have focused in on the password verifier and have started creating
tools to crack it. While it is a salted hash of a hash, and therefore quite difficult to crack,

Chapter 2: Authenticators and Authentication Protocols 25

cracking it is possible if the password is not very strong. To combat this, in Windows Vista
and Windows Server 2008 the calculation for the password verifier was modified, as shown
in Figure 2-5.

o

User

Password!

Username

MD4 Hash
FC525C9683E8FE067095BA2DD(C971889

™

MD4 Hash
217D5954E0CC516DCE16F936441F1DC1

Figure 2-4 In earlier versions of Windows, the password verifier was simply a hash of a hash,
salted with the user name.

While there is no way to protect weak passwords, the improved password verifier calculation
makes for a much stronger verifier. By running the old verifier through a large number of
PKCS #5 operations, a brute-force cracker would only be able to compute about 10 tests per
second. This provides adequate protection against all but the very weakest passwords.

In Memory

When a user logs on interactively or using terminal services Windows caches the user’s

password hash (the NT hash and, if the computer is configured to store it, the LM hash). The
hash is held in a memory location available only to the operating system, and of course, any
process that can act as the operating system. When a user tries to access a network resource

26 Part I: Windows Security Fundamentals

that requires authentication, the operating system uses this cached hash to authenticate with.
This is what enables transparent authentication to network resources. As soon as the user logs
off or locks the workstation, the memory location is automatically purged.

User

Password!

® Username

MD4 Hash

FC525C9683E8FE06709SBA2DDC971889

i

MD4 Hash

217D5954EOCC516DCE16F936441F1DC1

i

PKCS#5

i

Figure 2-5 The password verifier is far stronger in Windows Vista and Windows Server 2008
than in prior versions.

These hashes have been subject to a fair bit of debate after it was shown that if a domain
administrator is logged on, any other user that is an administrator can read that domain

Chapter 2: Authenticators and Authentication Protocols 27

administrator’s password hash and use it to authenticate to a DC as a domain admin. This
really should be obvious to any observer, however, and, quite frankly, is putting far too much
effort into the attack. If an attacker has already compromised a workstation, it would be far
easier to simply install a sub-authentication package, which gets the password in clear-text
during the log-on process. These packages are supported to enable pass-through, single
sign-on to non-Windows network devices, just like the NT hash is cached to support single
sign-on to Windows devices. Although it would be possible to remove the cached password
hashes, most users would rebel at having to type their passwords every time they accessed

a network resource. If these cached password hashes were removed, the computer would no
longer be able to authenticate transparently to non-domain network resources on behalf of
the user.

The problem, therefore, is not really with how Windows caches the NT hash, nor with
sub-authentication packages, but rather with operational practices. A domain administrator
should never log on interactively to a workstation used by a user with local administrative
privileges unless that user is as trusted as all the domain administrators. By following this
simple principle, you can keep this legitimate functionality from becoming an attack vector.
For more information on managing this, see Chapter 13, “Managing Security Dependencies to
Secure Your Network.”

Reversibly Encrypted

Finally, Windows has an option to store passwords reversibly encrypted. When a password is
stored reversibly encrypted, it can be reversed to plaintext. Obviously, this means that no
cracking is needed. Storing passwords reversibly encrypted is disabled by default, and is gen-
erally only needed in two circumstances. First, it is required if you need to use certain older
authentication protocols for remote access, such as the CHAP or Digest protocols. Second, it
is required if you wish to perform advanced analysis on your passwords after they are set. For
instance, some organizations want to go through and analyze whether passwords contain cer-
tain words. Those organizations must store the passwords reversibly encrypted.

To enable reversible encryption, or check whether it is still disabled, use the Group Policy Edi-
tor, as shown in Figure 2-6.

The vast majority of organizations do not need reversible encryption, and as clients are
upgraded to support more secure authentication protocols, there should be fewer and
fewer reasons to do so. However, reversible encryption is another way Windows can store
passwords, and it is important to know that it is there.

@ Important Many people cringe when they hear that Windows can store passwords revers-
ibly encrypted. After all everyone knows that storing passwords in plaintext is bad. However,

this really misses the point. In every password-based system today, passwords are plaintext-

equivalent! Password-based systems use shared secrets. In the authentication process, the

28 Part I: Windows Security Fundamentals

only secret used is the one that is stored on the authentication server. If an attacker gets hold
of the authentication server’s password database, or the shared secret some other way, he has
everything he needs to authenticate. The only thing he needs to do now is insert himself at
the appropriate step in the authentication process so that he can send the shared secret
instead of the password it is derived from. Currently several tools are freely available on the
Internet that do this with Windows authentication across the network.

The fact that passwords are plaintext-equivalent, in and of itself, is not a security problem. It
only becomes a problem when an attacker obtains a password hash. However, as you should
realize by now, those are fairly well protected in Windows. If an attacker manages to obtain a
password hash, he has already compromised the computer as much or more than he would be
able to with that password hash! In other words, that password hash gives him no additional
privileges on an already compromised computer.

If passwords are valid on other computers, however, it is possible that an attacker can further
a compromise using the password hashes. Furthermore, because password hashes are cached
in memory, an attacker may be able to obtain domain administrative credentials from a mem-
ber computer if a domain administrator is logged on. This, however, is largely an operational

problem related to how you run your network. If you follow the advice in Chapter 11, you will
adequately protect yourself against that vector.

_." Group Policy Management Editor ;lglﬂ

File Action Wiew Help

G EEN

=/ Default Domsin Controllers Polic .« | | Palicy & | Policy Setting |

Password P
Account Log
15 kerberos Pe
Local Policies
| Ewentlog
4 Restricted Grou
4, System Service:
4 Registry
4, File System
[Wired Metwark
| Windows Firew:
| Metwark List Mz
alf wireless Metwo
| Public Key Polici
| Software Restri
| Nebwork Access
\g IP Security Polic
wl)y Policy-based Qos
| Administrative Template—
= 4 Ussr Configuration

| Software Settings _ILI
P :

|

FEFRER

=]

B E B E

= (& Computer Configuration Enforce password history Mot Defined
| Software Settings Maxirmurn password age MNat Defined
EI [Windaws Settings Minimum password age Mok Defined
2] Seripts {Startup/Sh. Minimum password length Mot Defined
B & g?curity settings Password must meet complesity requirements Mok Defined
[=NES| AEcount Policies n i "

Figure 2-6 To configure a computer or a domain to store passwords reversibly encrypted use this

Group Policy setting.

Chapter 2: Authenticators and Authentication Protocols 29

Authentication Protocols

So far, we have discussed how passwords are stored on Windows. Perhaps even more impor-
tant is how they are used. Passwords are authenticators—they are used to authenticate a user
to a computer. If the user is logging on interactively to a local account, the flow is quite simple:

1. User uses the Secure Attention Sequence (SAS, also known as the “three-finger salute,”
or just Ctrl+Alt+Delete) to bring up the log-on dialog box. This causes the Local Security
Authority Sub-System (LSASS) to spawn a new session and load WinLogon in that ses-
sion. WinLogon in turn loads the LogonUI.

2. User types in the user name and password.

3. The WinLogon process takes the password, hashes it to an NT hash, looks up the user
name in the local SAM, and compares the NT hash to the one that is stored for the user.
If the two match, the logon is successful.

4. 1f sub-authentication packages are installed on the computer, the log-on information is
passed to those for additional processing. Otherwise, user32.exe is invoked and the
user’s environment is loaded.

This process is quite straightforward because there is a secure channel all the way from the
LogonUI, which takes in the plaintext credentials the user types, to the comparison of the cre-
dentials. However, when authentication is taking place over the network it becomes a bit
more complicated because you have to worry about how the authentication claims are trans-
ferred between the client where the user is sitting and the authentication server that hosts
the accounts database. On Windows, this can take many forms, which I will discuss in the fol-
lowing sections.

Basic Authentication

Basic authentication is the simplest of all forms of authentication. It just transmits the raw
log-on information across the network. In other words, the user name and password are sent
across the network either as clear-text, or in a form that will transmit intact across the net-
work, such as Base-64 encoded. In some implementations, this is referred to as the Password
Authentication Protocol (PAP). Basic authentication is quite common in older network proto-
cols such as Telnet, FTP, POP, IMAP, and even in HTTP. Today it may be used, for example, in
the RPC/HTTPS connector mechanism used to connect a Microsoft Office Outlook client to
an Exchange server across the Internet. In that case the credentials are traversing inside an
encrypted channel to the Exchange Server or the ISA Server, whichever is terminating the con-
nection. However, other than across an encrypted channel such as in the Outlook-Exchange
example, Basic authentication should be avoided.

30

Part I: Windows Security Fundamentals

Challenge-Response Protocols

Challenge-response protocols are designed to obviate the need to transmit a password in
clear-text across the network. They all essentially operate the same way, shown in Figure 2-7.

2. Request
Logon
Server
4. Response
3. Challenge
Client

|

1. Initiate Logon

User
Figure 2-7 All challenge-response protocols are based on the same model.

The basic model for a challenge-response protocol is that a user initiates a logon, upon which
the client makes a request to the server. The server creates a challenge, which often is just a
random value, and sends this to the client. Meanwhile, the client has collected the user’s
credentials. The credentials are then combined with the challenge in a cryptographic opera-
tion. The result becomes the response. The actual implementation may differ, but the basic
structure is always the same. Challenge response protocols supported by Windows include
Digest authentication, the LM/NTLM family, and Kerberos.

Digest Authentication

Digest authentication is not a native protocol in Windows. It is used primarily with Internet
Information Services (IIS) in accordance with RFC 2617 for Web-based authentication, and
also with some third-party Lightweight Directory Access Protocol (LDAP) servers. Digest
authentication is designed as a replacement to Basic authentication. It is considered relatively
weak, and makes some security trade-offs on the authentication server.

Chapter 2: Authenticators and Authentication Protocols 31
The challenge-response sequence in Digest authentication is composed as follows:

1. The server generates a random nonce and sends it to the client. A nonce is simply a
randomly generated number. It is commonly used in authentication protocols as a value
that is permuted by an authenticator, as we shall see throughout this section.

2. The client computes an MD5 hash of the user name, authentication realm (domain in
Windows), and password.

The client computes an MD5 hash of the method and the digest URIL.

4. The client computes an MD5 hash of the result of operation 2, the server nonce, a request
counter, a client nonce, a quality protection code, and the result from operation 3. This is
the response value provided by the client.

5. The server computes all the same values.

The main concern with Digest authentication happens in step 2. As you can tell, the client
response is computed with the actual password, not a hash of the password. This means that to
validate the client’s response the server must have access to the clear-text password in step 5.
Hence, if you want to support Digest authentication, you must configure your domain to store
passwords using reversible encryption.

LM and NTLM

Contrary to Digest authentication, both LM and NTLM are considered native protocols in
Windows. They are very similar, differing mainly in the hash used to compute the response.
LM was first used in the LanManager product mentioned earlier. NTLM was designed as a
replacement for LM and was released with Windows NT 3.1 in 1993.

LM and NTLM are used in authentication in workgroups of Windows NT-based operating
systems. They are also used in a domain environment if either the client or the server is not a
domain member, or if the resource being accessed is specified using an IP address as opposed
to a host name. Otherwise, Kerberos is used in Active Directory domains. The reason LM/
NTLM must be used when accessing a resource using an IP address is that Kerberos is based
on fully qualified domain names (FQDNs) and there is no way to resolve one of those from an
IP address because each host can have multiple aliases.

The authentication flow in LM and NTLM typically occurs together. The same message
includes both protocols, and no negotiation takes place regarding which protocol is to be
used. This is one of the few instances where Windows does not negotiate protocols prior to a
transaction. The aggregate flow is shown in Figure 2-8.

All Windows NT-based operating systems prior to Windows Server 2003 worked as shown in
Figure 2-8, sending both the LM and NTLM responses by default. In Windows Server 2003
only the NTLM response was sent by default, while the LM response field was mostly unused.
Both protocols were accepted inbound. Starting with Windows Vista and Windows Server
2008, this has changed, as I will explain next.

Part I: Windows Security Fundamentals

2. Request
Logon

— -

3. Challenge

Server
4. Response [

[LM Response:

DES(LM OWF[0-6], Challenge)+

DES(LM OWF[7-13], Challenge)+

DES(LM OWF[14-15]+5*NULL, Challenge)] —
— [NT Response:

DES(NT OWF[0-6], Challenge)+

Client DES(NT OWF[7-13], Challenge)+
DES(NT OWF[14-15]+5*NULL, Challenge)]]

Figure 2-8 The LM and NTLM protocols are typically sent together.
NTLM v2

1. Initiate
Logon

User

Starting with Windows Vista, and also with Windows Server 2008, both LM and NTLM are
deprecated by default. NTLM is still supported for inbound authentication, but for outbound
authentication a newer version of NTLM, called NTLMv2, is sent by default instead. Prior
versions of Windows (back as far as Windows NT 4.0 Service Pack 4) could be configured to
behave this way, but it was not the default. Technically speaking, the computer will accept LM
for inbound authentication but by default neither Windows Vista nor Windows Server 2008
store the LM hash. Therefore, there is no way for them to authenticate an inbound LM response.

You can control the authentication behavior, starting with Windows NT 4.0 Service Pack 4,
using the LMCompatibilityLevel registry setting, shown in Group Policy as Network Security:
LAN Manager Authentication Level. (See Figure 2-9.)

E-: Local Security Policy -[3x|
File Action View Help
5 [—= = —

€= | 1FE (X = | HE
i Security Setkings Palicy = | Security Sefting | :I
'_g Account Policies Metwork access: Remotely accessible registry paths SystemiCurrentContralget, ..
=) ['4 Lacal Palicies Metwork access: Remotely accessible registry paths ... SystemiCurrentControl3et, ..

3 Audit FTDI‘CV) Metwork access: Restrict anonymous access to Mam.., Enabled

5 User Rights As<ion | (7 ot yark access: shares that can be accessed anon,.. Not Defined
; Metwork, access: Sharing and security model For local, .. Classic - local users authen...
_'5 Metwork security: Do not store LAM Manager hash v... Enabled
_E| Metwork security: Force logoff when logon hours ex... Disabled
gﬂ etwork security: LAN Manager authentication level Send NTLMyZ response only

5
| Windows Fireweall with
| Metwork List Manager |
~| Public Key Policies

| Software Restrickion Pt

[+

* #

g 1P Security Policies on | Metwaork security: LDAP client signing requirements MNegotiate signing
Metwork security: Minimum session security For NTL... Mo minimum
Metwork security: Minimum session security For NTL... Mo minimum
Recavery console: Allow autamatic administrative lo... Disabled
Recavery console: Allow Floppy copy and access ko ... Disabled
Shutdown: Allow system to be shut down without ha... Disabled
Shutdown: Clear virtual memory pagefile Disabled

System cryptography: Force strong key protection ... Mot Defined
System cryptography: Use FIPS compliant algorithm, .. Disabled

System objects: Require case insensitivity for non-... Enabled
KN — O | I =

sckarn mhiarker Sheanabhan dafaolk neerniccinne oF i Frishlad

Figure 2-9 The LAN Manager Authentication Level setting governs the
authentication behavior in non-domain authentication.

Chapter 2: Authenticators and Authentication Protocols 33

The default value for LMCompatibilityLevel in Windows Vista and Windows Server 2008 is 3,
or Send NTLMv2 Response Only. Tables 2-1 and 2-2 show how the possible values affect a
computer when acting as the client and authentication server, respectively. It is important to
recognize that the settings in Table 2-2 only relate to the server that performs the authentica-
tion, which is the one that contains the user accounts database. Any intermediate servers sim-
ply pass on the request to that server. This means that for domain members, Table 2-2 is only
relevant on DCs and domain members authenticating against their local accounts.

Table 2-1 Impact of LMCompatibilityLevel on Client Behavior

Level Group Policy Name Sends Accepts Prohibits Sending
0 Send LM and NTLM LM, NTLM, LM, NTLMv2 Session Security (on
Responses NTLMv2, Ses- NTLM, Windows 2000 below SRP1,
sion Security is NTLMv2 Windows NT 4.0, and Windows 9x)
negotiated
1 Send LM and NTLM—use LM, NTLM, LM, NTLMv2
NTLMv2 session security NTLMv2, NTLM,
if negotiated Session Security NTLMv2
is negotiated
2 Send NTLM response NTLM, NTLMv2, LM, LM and NTLMv2
only Session Security NTLM,
is negotiated NTLMv2
3 Send NTLMv2 response NTLMv2, LM, LM and NTLM
only Session Security NTLM,

is always used NTLMv2

Table 2-2 Impact of LMCompatibilityLevel on Authentication Server Behavior

Accepts Prohibits
Level Group Policy Name Sends Inbound Sending
4 Send NTLMv2 response NTLMv2, Session NTLM, LM
only/refuse LM Security NTLMv2
5 Send NTLMv2 response NTLMv2, Session NTLMv2 LM and NTLM

only/refuse LM and NTLM Security

On all versions of Windows prior to Windows Server 2003 the default value was 0. On
Windows Server 2003 the default value was 2. On Windows Vista and Windows Server 2008
the default value is 3.

NTLMyv?2 is a much improved version of NTLM. It also uses the NT hash. However, it also
includes a client challenge in the computation. Figure 2-10 shows the authentication flow
under NTLMv2.

As Figure 2-10 shows, the NTLMv2 protocol uses not only a client challenge, but also
computes two HMAC-MDS5 message authentication codes to create the response. It also
includes a time stamp to mitigate replay attacks. Figure 2-10 also shows an LMv2 response,
which is included in the response. The LMv2 response is a fixed-length response as opposed
to the NTLMv?2 response. It is included to provide the ability for pass-through authentication

34 Part I: Windows Security Fundamentals

with earlier versions of Windows such as Windows 95. When NTLMv2 was first designed,
those systems were prevalent.

Client 1. Hey, I'd like to authenticate _ Server
»

_ 2. 0K, hera is a challenge

3. NTLMv2OWF =
HMACMDS(NTOWF,
Username, LogonDomainMama)

4, NTLMvZResponse =
HMAC-MDS(NTLMvZ2OWEF,
ServerChallenge,
ResponseType, ...,

Timestamp, ClientChallenge, ...)

5. LMvZResponse =
HMAC-MDS{NTLMwZOWEF,
ServerChallenge +
ClientChallenge)

&. Response = (client challenge +
LMv2Response, NTLMv2
Response Buffer)

Figure 2-10 The NTLMv2 protocol uses HMAC-MDS5 and a client challenge.

Windows 9x did not support NTLMv2 natively, but did pass through the LM response.
However, it would strip pieces of the variable-length NTLMv2 response, breaking the
authentication. To prevent this problem the LMv2 response was included in the LM response
field. Because it has the same length as the LM response it passes through to the authentica-
tion server unharmed and can be used to complete the authentication. Today it is still passed
when NTLMv2 is used. However, the authentication server always starts out the authentica-
tion process by seeing whether there is an NTLMv2 response that validates successfully. If
there is, the authentication succeeds. Therefore, while the LMv2 response still exists, it is
rarely used for authentication.

NTLM++

Around the Windows 2000 time frame Microsoft added another NTLM-family protocol to
Windows. This one does not have an official name. In some places in the implementation it
is referred to as NTLM2, to contrast with NTLM3, which is actually NTLMv2. In other
places it is called NTLM++. It was never documented, but was discovered externally by
several people, including Eric Glass, Christopher R. Hertel, and Hidenobu Seki, and is even
picked up by the Ethereal network traffic analyzer, which refers to it as NTLM2 Session
Security. This is because it was always observed in conjunction with LMCompatibilityLevel
set to 1, which enabled NTLMv2 Session Security, which also was poorly understood.
Microsoft added NTLM++ to make certain man-in-the-middle attacks more difficult while
retaining the ability to pass through authentication when connecting to servers running
earlier versions of Windows. In a sense then, NTLM++ is an intermediate step between
NTLM and LMv2/NTLMv2.

When NTLM++ is used the LM response field is populated with a client challenge instead of
the LM response, as shown in Figure 2-11.

Chapter 2: Authenticators and Authentication Protocols 35

Client 1. Hey, I'd like to authenticate Server
»

2. OK, here is a challenge

3. Generate &-byte cliznt
challenge o

4, Blob =
HMAC-MDS5(ClientChallenge,
ServerChallenge)

5. Modified NTLM Response =

DES{NT OWF[0-4], blob) +

DES{NT OWF[7-13], blob} +

DESI[NT OWF[14-15]+5*NULL),

blob)
&. Response = Client Challenge,
Modified NTLM Response

»

Figure 2-11 The NTLM++ protocol includes a modified NTLM response and a client challenge.

The NTLM response field contains a modified NTLM response calculated exactly the same
way as the original NTLM response, but using an HMAC-MD5 of the client challenge and the
server challenge as the challenge, instead of just the server challenge.

The computer uses NTLM++ whenever NTLMv2 Session Security is enabled. Starting with
Windows 2000 Security Rollup Pack 1 (SRP 1), all computers will automatically send the
NTLM++ response on the first attempt. This means that starting with that release, the
effective LMCompatibilityLevel setting is actually 1 on all computers.

For reference, NTLMv2 Session Security actually refers to a stronger computation of session
keys that are used by applications that request session security after the connection is set up.
It is related to authentication protocols only in that it is managed with the same setting.

Kerberos

Kerberos is used in domain environments when host names (including fully qualified domain
names) are used to connect. This is most of the time, unless the user specifically requests a
connection to an IP address. Like the NTLM family, Windows implements Kerberos as a
Security Support Provider (SSP) and Kerberos also uses the NT hash for authentication, but
any similarities with the other protocols really end there.

Kerberos provides authentication both for the user who is trying to connect and between the
client and the server. This is quite a departure from NTLM, which does not provide the user
with any assurance that the server is the computer she thinks it is. Kerberos is also designed
with the explicit assumption that the network is hostile; that some adversary is able to
intercept all traffic; and that the adversary has the ability to read, modify, or delete any traffic
sent across the network.

To accomplish all this, Kerberos relies on encryption as well as time synchronization. By default
in Windows, the synchronization between client and server must be within five minutes of each
other. You can modify this setting if you are in an environment with high potential skew. To do
so, change the maximum Tolerance For Computer Clock Synchronization value in Computer

36

Part I: Windows Security Fundamentals

Configuration\Windows Settings\Security Settings\Account Policies\Kerberos Policies in a
GPO that applies to the computers for which you want to change the time skew. Remember,
however, that the effective maximum time skew will the lowest in the transaction. Either
computer can reject the transaction if the time stamp is outside its permitted time skew.

To understand how Kerberos works, let us analyze the exchange shown in Figure 2-12, which
shows how a user logs on to a workstation and then requests a file from a file server.

Key Distribution
Center (DC)

1. KRB_AS_REQ: UserPrincipal Name,
Account domain name,
B(Pre-auth data, Keyc“en-t)—\

2. KRB_AS_REP:
TGT[E((client, address, validity, Key i, 165)

Keyreol

3. KRB_TGS_REQ:

TGT, Service,

E(client, address, validity, Keyclient, TGS, KeyTGS
Authenticator: E((client, timestamp), Keyc“em, Tcs)

4. KRB_TGS_REP:
TICk_ethient, se_rvice: - . .
service, E((client, adress, validity, keyclient, service), key,,.;.o)

5. KRB_AP_REQ:
Ticket

client, service

service, E((client, address, validity, keyclient, service), key, ;o)
Authenticator: E((client, timestamp), KeY jient service)
| B]

File Server

Figure 2-12 This exchange occurs when a computer starts and requests a file from a file server.
The exchange in Figure 2-12 consists of the following parts:

1. After the computer starts it creates some preauthentication data, consisting of, among
other things, a time stamp. This preauthentication data is encrypted using a key derived
from the computer’s password. It is then packaged in a KRB_AS_REQ (Kerberos
Authentication Service Request) packet and sent to the Authentication Service (AS)
which resides on the Key Distribution Center (KDC), which, as it turns out, is the DC.

2. The AS constructs a Ticket Granting Ticket (TGT) and creates a session key that the cli-
ent can use to communicate with the Ticket Granting Service (TGS), which also resides
on the DC in Windows. This key is denoted with Key jjen 15 in Figure 2-12. It is trans-
mitted to the client encrypted with the client’s own public key. This message is sent back
as the KRB_AS_REP.

Chapter 2: Authenticators and Authentication Protocols 37

3. The client now sends a KRB_TGS_REQ message to the Ticket Granting Service (TGS)
on the KDC to request a ticket for the file server. This request has the TGT in it, and also
includes the service the client wants to access and information on the client encrypted
with the TGS public key. The KRB_TGS_REQ includes an authenticator, which is essen-
tially a time stamp encrypted with the session key the client shares with the TGS.

4. The TGS responds with a KRB_TGS_REP message that includes a ticket for the service
the client requested. It contains the same information the client sent in the
KRB_TGS_REQ), but this time is encrypted using the server’s public key. In other words,
the client cannot read this data. The TGS also creates a session key that the client can
share with the server and encrypts it with the session key the client shares with the TGS.

5. Finally, the client sends its ticket for the service to the server, in a KRB_AP_REQ message.
The client information, along with the client-server session key, is encrypted using the
server’s public key, and the message also includes the client’s authenticator, which is
encrypted using the shared session key.

When a user logs on to the client, the same process is repeated, but this time the messages
include user information. The Kerberos client sends another KRB_AS_REQ), but encrypts the
preauthentication data with a key derived from the client’s password—or rather, the client’s
NT hash. The KDC validates the authentication based on that information. In the
KRB_AS_REP the client receives a TGT that the user can use to contact the TGS. The TGT
includes session keys for the KDC along with Security Identifiers (SIDs) for the user and all
the groups the user is a member of. From then on, the client will use the user’s TGT for
requests made on behalf of the user.

Kerberos is clearly a rather complicated protocol, but it has proven remarkably robust in
Windows. It also proves to be extensible in that the user’s preauthentication data can just as
easily be encrypted with some secret not derived from a password. This happens in smart
card-based authentication, which I will discuss next.

Smart Card Authentication

A smart card is, in most cases, a credit card-sized device that contains a memory chip. These
devices have many uses. For example, they are used to provision a phone’s identity in the
Global System for Mobile (GSM) communications cellular telephone system and its deriva-
tives. Smart cards may also be used to authenticate to Windows. In that case they contain an
X.5009 certificate. (See Chapter 10 for more information about certificates.) The certificate con-
tains a private key, and the corresponding public key is stored in the user object in

Active Directory.

When the user authenticates using a smart card, WinLogon will ask for a PIN code instead of
a password. It then contacts the smart card provider and provides it with the PIN code along
with the preauthentication data. The smart card provider uses the PIN code to access the

38 Part I: Windows Security Fundamentals

smart card, which will encrypt the preauthentication data that the Kerberos SSP will use in
the KRB_AS_REQ message. From then on, most things happen the same way in a smart card
logon as in a normal password-based logon, with one major difference: If the user logs on with
a smart card, she never provided a password. This means that if the user tries to access any
resources that cannot use the Kerberos system, the computer must prompt her for a pass-
word. To avoid that, Windows handles passwords a bit differently in smart card-based logons.

Smart Cards and Passwords

All accounts have a password hash stored on the DC. In fact, even if the user is required to log
on with a smart card there is a password hash. When you configure an account to require
smart card logon, the DC will actually create a random password, hash it, and store it in the
user object.

When a user logs on with a smart card, the KDC actually provides the client with the user’s
password hash during the log-on process. These credentials are sent encrypted with the
client’s public key. The Kerberos SSP on the client will decrypt them and cache them in the
same way it would cache them if the user had entered them at the log-on prompt. The
computer then uses these credentials to log on seamlessly to computers that, for whatever
reason, are unreachable using Kerberos. This means that even with smart card logon required,
the hashes are still exposed on the client to any rogue software that happens to run as an
administrator. Using smart cards does not protect the password-based credentials any more
than password-based logons do. Therefore, all the same cautions apply against the attacks we
shall discuss next.

Attacks on Passwords

At this particular juncture, it is worth taking a little detour into attacks, if for no other reason
than that so many people are concerned about them. The primary concern with respect to
passwords is obviously bad guys getting at them. Once they have them, or some representa-
tion thereof, the question is how they use them. Let’s start by investigating how a potential
attacker can obtain a password, or some form of it.

Obtaining Passwords

Attackers have several ways to get hold of your passwords. The following sections list them in
order of ease of attack and prevalence (roughly speaking).

Ask for Them

An astonishing number of people, up to three-quarters in some studies, are willing to part
with their passwords in trade for something they value more, like chocolate in one particular
study (Wagner, 2004).

Chapter 2: Authenticators and Authentication Protocols 39

Capture the Passwords Themselves

Apart from just asking for them, the most fruitful, simplest, and possibly most common way
to attack passwords today is to use a keystroke logger to capture them in plaintext as the user
enters them. There are many different kinds of keystroke loggers. An innocuous option is
using a hardware device that mounts between the keyboard and the computer and has
onboard memory to hold all keystrokes. It can be surreptitiously installed or removed in a
matter of seconds. Such a device will get access to everything that the computer sees, includ-
ing all keystrokes, metadata such as typing cadence, and so on. A software program, com-
monly found in malware and spyware today, can also capture all keystrokes, and can typically
capture metadata as well, not just passwords. Some of these include an automatic upload fea-
ture to a Web site or an Internet Relay Chat (IRC) channel. Others include a small Web server
that the attacker can use to retrieve the goods.

However, the simplest and most direct route for an attacker to capture only passwords is to
write a sub-authentication package. Windows, like any other industrial-strength operating
system, includes functionality for third parties to extend its authentication subsystem to
authenticate to other network devices. An attacker can, with just a few application program-
ming interface (API) calls, write a sub-authentication package that will receive all passwords in
plaintext when a user logs on. With some more effort, the attacker can augment the package
with the same features as a more general keystroke logger, but generating far less noise
because it is specialized to capture only passwords.

Both of the software options require administrative privileges to install, meaning that the
attacker must first completely compromise the computer. Physical compromise would also be
sufficient to install these types of tools; and it is quite telling that keystroke loggers are now
found regularly on public access computers, especially at conferences.

Capture the Challenge-Response Sequence

It is rare that passwords are passed over the network in any form today, and even rarer to see
new implementations of plaintext protocols such as FTP, POP, and Telnet. However, even with
challenge-response protocols the attacker can often capture both the challenge and the
response and attack the combination. It requires more calculations than attacking ordinary
hashes, but can be very fruitful if the password is weak.

Capture the Hashes

This is the quintessential attack that everyone worries about. If an attacker has access to the
password hashes, he can crack them or use them in some other way. There are several ways to
crack them, as we shall see shortly. The most common way to capture the hashes is to com-
promise the authentication server that stores the passwords. As you will see in Chapter 13,
“Securing the Network,” the more dependencies you have in your network, the easier this
attack is to perpetrate.

40

Part I: Windows Security Fundamentals

Another option—less common but equally valid—is to compromise a computer where some-
one is already logged on. When a user logs on, as I mentioned earlier, Windows caches that
user’s NT hash in memory. An attacker with complete control over the computer can retrieve
that hash and use it in the same way as any other hash. Again, this is a problem largely related
to your operational practices. As you will see in Chapter 13, if you do not expose sensitive
hashes on computers that are less sensitive (and hence less secure), you will not have this
problem. In addition, if a criminal manages to compromise a computer to this extent, she can
easily capture the plaintext password as well, as we will see in the next section.

Guessing Passwords

Finally, the attacker can simply try to guess passwords. This is the easiest method to remedy,
and also the least fruitful, or at least it should be. Anyone who has an Internet-connected
Windows computer and actually looks at the log files will see attempts at this. Figure 2-13
shows a failed attempt on one of my computers on the day I was writing this chapter.

Most attackers use automated password “grinders” that attempt to log on using either Terminal
Services or Windows Networking (Server Message Block, or SMB). The log-on attempt in
Figure 2-13 is actually an Internet Information Services log-on attempt, which I know only
because the host does not respond on either Terminal Services or SMB across the Internet.

Event Properties ﬂ E
Ewent |

Date: 10/7/200F Source: Security +
Time: 07:54:38 Category: Logon/Logoff

Type: Failuie Aud Ewvent|D: 529 ¥
User NT AUTHORITYSYSTEM
Computer, WYaLHALLA

Deszcription:

Lagan Failure: -
Reazon: Unknawn uzer name or bad pagsword
User Name: surajraul
Dromairy;
Logon Type: 3
Logan Process: MtLmSsp
Authentication Package: M

TLM
“workstation Mame: RALL-0FI20CE1BS
Caller User Mame: -

Caller Daomain: © LI
Datz: & Bytes) Wiords
=
=]
Ok | Cancel | Apply |

Figure 2-13 Anyone with an Internet-connected Windows computer will get failed log-on attempts
in his or her event logs.

The automated password grinders will typically try common user names, such as Administra-
tor, with a dictionary of passwords. Shockingly, they must be successful enough with that
approach to make it worthwhile to continue. Many people argue that you should rename

the Administrator account to fool attackers, and some even say to create a decoy account
called Administrator. This has absolutely no effect whatsoever. The error message is the

Chapter 2: Authenticators and Authentication Protocols 41

same whether an account does not exist with the name Administrator or whether the
attacker gets the password wrong. Therefore, from the attacker’s perspective, he cannot tell
whether you have an account called Administrator. He can only tell that he did not get in.
You can assure yourself that he will not get in simply by setting a reasonably strong password.
For example, if the password is 15 characters long and seemingly random (meaning that it
seems random from the attacker’s point of view) the attacker will have to try
542,086,379,860,909,058,354,552,242,176, or so, times before he succeeds. More than likely
he will move on before he succeeds in guessing that password.

You May Want to Leave Your Passwords Blank

As with all versions of Windows since Windows XP, user accounts with blank pass-
words cannot log on from the network in Windows Server 2008. This is actually a
genius design, which can be used to great effect for the local Administrator account.

In a typical datacenter the servers are locked inside racks. In many cases, not everyone
has access to every rack. Only those personnel who need to get into particular servers
can get into those racks. The racks themselves are in locked rooms that require badge
and PIN access. Datacenters have guards (often armed) in parking log booths and in the
reception area. To get to the corridor by the server room you have to pass the surly look-
ing, and very bored, guard at the reception and usually pass through a man-trap that
weighs you both on the way in and the way out. (What happens if you weigh less when
you leave, by the way?) To get to the reception you pass another guard, in a booth, prob-
ably with a gun, in the parking lot. In that situation, are your servers physically secure?
More than likely you would say yes. If so, why not leave the password blank for the built-
in Administrator account? The only people that can use it are the ones that get past the
two guards, the mantrap, the badge scanner, have the PIN code to the right room, and
the key to the right rack. More than likely, if someone has all of those, he belongs in
there and needs to use that account—and has a way to get at the password should he
need to. Obviously, he should not use it for daily use, but if everything breaks and he
needs to log on as the built-in Administrator, he knows what the password is and can get
in very easily.

Leaving the password blank solves one of the huge problems in network security: how
do you keep the admin account from having the same password on every server in the
network? It is very difficult to argue that leaving the password blank compromises secu-
rity in any way at all-when you have adequate physical security. Unfortunately, it is
probably going to be far more difficult to convince an ill-informed security auditor that
leaving the password blank is more secure than setting the same eight-character pass-
word he requires on every single server. If you promise to try though, I'll do my part.
Having a password that is only usable by someone inside the data center is far, far more
secure than having one massive security dependency between thousands of servers, all
using the auditors’ ill-conceived, preferred solution.

42

Part I: Windows Security Fundamentals

Using the Captured Information

Assuming the attacker has captured something, how does he go about using it? If he has
captured a plaintext password, the answer is relatively straightforward. He just needs to find
somewhere to type it. However, if he has captured a challenge-response sequence, or a
password hash, the problem is slightly more complicated.

Cracking Passwords

The most common attack is to crack the password. By “crack” in this case, we generally mean
that the attacker creates a password hash or a challenge-response sequence based on some
trial password and compares it to the hash or response that he captured. If the test succeeds,
the trial password is the right password.

As you have seen earlier in this chapter, several additional computations are involved in com-
puting a challenge-response sequence as opposed to computing a straight hash. It stands to
reason, therefore, that cracking a captured challenge response sequence takes significantly
longer than simply cracking a password hash. On commonly available hardware today you
could compute anywhere from 3 million to 10 million hashes per second, while you could
compute only a third as many challenge-response pairs. If the bad guy only has the password
verifier, he will be able to compute only 10 per second, rendering them effectively uncrackable
unless the password is exceptionally weak.

Several approaches to cracking passwords speed up the process. An attacker can try with a
dictionary of common words, or common passwords (Burnett, 2005). The attacker can also
try a brute-force attack using all possible passwords of some given character set. For perfor-
mance reasons, the attacker may choose to greatly trim the character set. My own research has
shown that users pick 80 percent of the characters used in passwords from a set of only

32 characters. Finally, the attacker can try a hybrid approach, basing the test password on
some dictionary with characters permuted. For example, the attacker may try common
substitutions, such as using 47, “a” “e”

«»

or “1” instead of “i”, “@” instead of “a” or “at”, “3” instead of “e
and so on. Finally, to really speed up the attack at run-time, the attacker can spend some time
up-front generating a list of hashes and then use a pre-computed hash attack.

Precomputed Hash Attacks

Precomputed hash attacks are very simple in concept. The first common use of them was in
Gerald Quakenbush’s Password Appraiser tool from the late 1990s. The tool shipped with
several CDs full of password hashes. Several years later, Cedric Tissieres and Philippe Oechs-
lin developed Ophcrack, which cracked LM hashes using precomputed hashes, but used a
time-memory trade-off to reduce the amount of storage space required to hold the hashes.
Rather than storing all the hashes, they stored only a portion of them along with all the
passwords that created that hash. At run time the cracker would simply look up which set of
passwords possibly matched the hash it needed to crack, compute the hashes for all the
options, and compare them to the hash. This was significantly slower than Password

Chapter 2: Authenticators and Authentication Protocols 43

Appraiser, but many orders of magnitude faster than brute-force cracking. Zhu Shuanglei
implemented the same technique in the immensely popular Rainbow Crack tool, which can
crack almost any hash format out there. Precomputed hash attacks are often referred to as
Rainbow Cracks or Rainbow Table Attacks after that tool.

Precomputed hash attacks have created immense media buzz, and many, many people, and
many self-styled security “experts” have opined about how bad they are and how they work
only because Windows is flawed and how Microsoft needs to fix Windows to prevent them.
Typically they accompany these claims with statements about how (of course) other operat-
ing systems had the foresight to protect against these attacks. These characterizations

are gross simplifications that fail to account properly for either history or reality.

First, Windows is not flawed in that it does not take into account precomputed hash attacks
in its design. It is true that use of a salt in the password-hashing mechanism would combat
precomputed hash attacks. However, it simply was not (and still is not) an interesting threat
to protect against. As I mentioned earlier, if an attacker has access to your hashes, your com-
puter or network is already in the worst state of health—you have already been hacked at least as
badly as what the attacker can do with those password hashes by cracking them.

Furthermore, do not be lured into thinking that the designers of competing operating systems
had the foresight to protect against these attacks. Salts were added to protect against the fact
that the password file was world-readable. Precomputed hash attacks were not relevant when
those platforms were designed. Keeping hundreds of gigabytes, or even terabytes, of
password hashes was not particularly feasible when the computer had 16KB of core memory
and a tape drive.

Second, it makes no sense whatsoever to start salting Windows password hashes to protect
against precomputed hash attacks. Consider how the authentication protocols work. If you
change the hashing mechanisms, you must also introduce a new authentication protocol
because the old ones rely on the old hashes. The last time a new authentication protocol was
actually retired was in Windows Vista when LM was retired. That took 13 years from the intro-
duction of its replacement. Changing the hashing mechanism to add a salt would certainly stop
precomputed hash attacks. However, it would take 13 years or so before the old NT hashes
were gone. And, because password hashes are plaintext equivalent, with or without a salt, it would
not solve the real problem. Anyone who claims that merely salting passwords is a necessary
change to Windows either has not thought the problem through, or fails to understand it.

Why Password Cracking Should Not Be Your Biggest Concern

Itis important not to lose sight of the fact that in every case that involves compromise of
actual hashes, the attacker has defeated all the security systems and has complete con-
trol over at least a system that will provide him with advanced access, and probably to a
system that holds all the secrets—the DC. In other words, if an attacker has hashes to
crack, you have already been severely hacked and bad guys with password hashes

44

Part I: Windows Security Fundamentals

should be the least of your concerns. Regardless of whether the attacker manages to use
the hashes directly or crack them, your network is beyond repair already. Your only solu-
tion is to rebuild any compromised computer—including the entire network if a domain
or enterprise admin account could be compromised—from scratch or from a backup that
is provably not compromised.

Pass-the-Hash Attacks

Password hashes are plaintext equivalent. You have seen that stated several times, and it
should be eminently clear by now. The secret used by the server to verify the client’s identity
is the same secret the client uses to prove its identity. This is true of all shared secret authen-
tication protocols, not just those used by Windows. If a criminal manages to capture that
secret, he can simply use it to prove his identity, without any knowledge of the password used to
create that secret.

This is a crucial point. If we can accept the fact that password hashes are plaintext equivalent
the way we think about password security changes. First, we can immediately see why replac-
ing the current NT hashes with salted ones is meaningless, because the salted ones are also
plaintext equivalent. Protecting against stolen hashes with a salt is a bit like putting a band-aid
on a severed limby; it is unlikely to have much impact on the actual problem. Second, we can
also see that the core problem is not password hashes, but attackers with access to them. The
only real, technical, solution is to move completely away from challenge-response protocols to
public key protocols. However, this requires a substantial change to all platforms and is
unlikely to happen anytime soon.

Therefore, the real solution is to stop attackers from getting at password hashes. To do that we
need to minimize the exposure of password hashes and we need to ensure that we adequately
protect our authentication servers. Chapter 13 discusses these topics in depth.

Protecting Your Passwords

You can mitigate every one of the attacks we have discussed so far by either using better pass-
words, or managing and operating your network more securely. Chapter 13 goes into depth
about how to manage and operate the network more securely. Obviously, because password
hashes are plaintext equivalent, using strong passwords will not mitigate all the attacks out-
lined so far. However, it will have a significant impact on many of them.

What constitutes a strong password? The answer is: a long password! No single factor is more
important than length when it comes to password strength. Table 2-3 shows how long a pass-
word composed from n characters chosen randomly from a set of 32 characters resists both
guessing and cracking attacks.

Chapter 2: Authenticators and Authentication Protocols 45

Table 2-3 Password Attack Resilience for 32-Character Character Sets

Length Guessing Resilience in Days Cracking Resilience In Days
6 10 0

7 331 0

8 10,605 1

9 339,355 27

10 10,859,374 869

11 347,499,971 27,800

12 11,119,999,080 889,600

13 355,839,970,558 28,467,198

14 11,386,879,057,845 910,950,325

As you can tell from Table 2-3, the strength of the password goes up dramatically the longer
it gets. A 14-character password composed of randomly chosen symbols from a known
32-character character set resists guessing for more than 31 billion (!) years. Even an
8-character password would be impossible to guess in a reasonable time as long as the
attacker cannot rely on heuristics. The 14-character password resists a cracking attack for
2.5 million years, but of course it is still plaintext equivalent, so resistance to cracking is
really only relevant in the case of a captured challenge-response sequence.

The question, however, that many want answered is how important the character set is in
password strength. Obviously, the larger the character set the attacker has to contend with,
the stronger the password is. However, the effect is nowhere near as drastic as length.

Table 2-4 shows the same data as Table 2-3, but for passwords composed using a character set
consisting of 95 characters.

Table 2-4 Password Attack Resilience for 95-Character Character Sets

Length Guessing Resilience in Days Cracking Resilience In Days
6 7,090 1

7 673,551 54

8 63,987,310 5119

9 6,078,794,461 486,304

10 577,485,473,802 46,198,838

11 54,861,120,011,233 4,388,889,601

12 5,211,806,401,067,100 416,944,512,085

13 495,121,608,101,375,000 39,609,728,648,110

14 47,036,552,769,630,600,000 3,762,924,221,570,450

As Table 2-4 shows, the passwords based on the set of 95 characters are certainly stronger
than ones based only on 32. However, a 6-character password from the 95-character set is
weaker than an 8-character password from the 32-character set. Realizing that difficulty

46

Part I: Windows Security Fundamentals

dealing with complexity is often a human weakness, many people would probably have a
simpler time remembering an 8-character password composed of a small set of commonly
used characters than a 6-character password composed of characters they hardly ever use. You
can use these numbers to develop an appropriate strategy for different people, depending on
how they think. However, it is clear from this data that if we can simply get users to use longer
passwords, we can solve a lot of password-related problems. Fundamentally, passwords are a
perfectly acceptable, very convenient, comprehensible, and simple-to-implement authentica-
tion mechanism. The only flaw in the equation is that people are not good at remembering
passwords. If we could only remove the people that use them from the system passwords are
probably the best way to authenticate to a system. Fortunately, we can.

Note The password resilience data presented in Tables 2-3 and 2-4 are based on a theoretical
attacker than can guess 600 passwords per second or crack 7.5 million passwords per second.
These numbers are significantly greater than what can be achieved today both with respect to
password guessing and cracking captured challenge-response pairs, using a single machine.

Managing Passwords

Left to their own devices, people will not pick very good passwords. Yet we need them to pick
longer ones to protect themselves. To reconcile that dilemma, we need to rethink some old
concepts that many hold as truth.

Use Other Authenticators

First, a password that the user does not know is better than one the user does know. If you use
smart cards and configure the system to require smart card logon, every account will still have
a password, but it will be a long and random password. Its hash can still be stolen from any

computer that the user logs on to, providing that malware running as the operating system is
present on that computer, but the password, for all practical purposes, can never be guessed.

Record Passwords, Safely

Those of us who cannot require the use of smart cards on our networks must live with the fact
that the user must know the password. To help them remember their passwords, the Chinese
invented this marvelous technology in the second century CE. It is called “paper”. That is cor-
rect. [justimplied that users should write down their passwords. Currently most organizations
have a password policy that requires minimum 8-character passwords, and they must have
three different character sets in them. The result? Users pick passwords like “Seattle1”, which,
if you check it, complies with the policy. “Test1234” complies as well, as does “Password1”,
“PasswOrd”, and “Pa$$word”. If you were given the choice, wouldn’t you rather have a user
carry a little piece of paper in her wallet with the words “Get a skinny tall latte before work!”
on it? If a bad guy got hold of that note, the user would know pretty quickly and could take

Chapter 2: Authenticators and Authentication Protocols 47

appropriate steps to reset the password (assuming you have told her how to do that), and
what exactly would the bad guy do with the note? Which system does the password belong
to? Is it even a password, or is it a shopping list? A password the user can write down is far eas-
ier to manage than one she has to memorize after typing twice. Moreover, for all the other
passwords we use every day, you can use an electronic password management tool, such as
Password Safe (http://passwordsafe.sourceforge.net). Which is really worse: a weak password
that the user can remember after typing it twice, or a very strong one that is securely recorded?
What exact exposures are we worried about here?

Now imagine that you told your users that they could keep the password on a note until they
remembered them, and after that they had to put the notes in the secret disposal bin, or eat
them, whichever they preferred. If you do that, your users may even let you set the password
policy to require 10 characters and live to tell the tale.

Stop Thinking About Words

Notice that in the preceding discussion the imaginary password was “Get a skinny tall latte
before work!” That is not a password. It is a passphrase. Nothing says that passwords have to be
words anymore. The very term—password—is wrong. Windows will happily accept up to 127
characters, chosen from the entire keyboard (including the space bar) in a password. Recall
also that we concluded earlier in the chapter that the longer the password is the stronger it is.
Using a passphrase is the perfect way to add length to your password. Passphrases are long
and therefore strong. They are simpler to type and easier to remember than contorted strong
passwords, such as hG%'3m.”. Simply put, passphrases just work the way people are used to
working already. People are used to thinking about words. I have seen seven-year-old children
use passphrases successfully. In addition, a phrase such as the latte one is far, far longer and
many orders of magnitude stronger than the contorted strong password. If we assume a worst-
case scenario, in which the attacker knows that we use passphrases, knows that this one is
seven words long, and even knows the dictionary of words it was composed from, it could still
take millions of years to guess—even if the attacker uses an attack tool that permutes words as
opposed to characters. The set of possibilities is so many times larger than the set of charac-
ters on a keyboard. If you wanted to improve the strength a little, do one of the common
substitutions somewhere. For example, replace an “a” with “@”, or an “I” with a “1”, or an “e”
with a “3”, or an “0” with a “0”. In our eight-character password we’ll be lucky to get one of
those substitutions, merely doubling the possibilities. In the case of the passphrase, we get 12
possible substitutions just with those 4 substitution options, increasing the total search space
4,096 times! Passphrases are immensely powerful as an authenticator.

Set Password Policies

Finally, you should of course have password policies. You need both written organizational
policies and technically enforced policies. The written policies are beyond the scope of this
book, but should include policies that are realistic—in other words, don’t ban writing passwords

48

Part I: Windows Security Fundamentals

down. You should also have an implementation guideline that helps people understand how
to pick passwords.

Technical policies should be enforced domain-wide, and also on member computers if you
use local accounts on member computers. They should require complexity, long passwords
(10 or more characters are highly preferable, accounting for the fact that it will take you some
time to get people to pick good passwords) and should cycle the passwords regularly.
However, tie the policies together logically. If you require 10-character passwords, it is almost
certainly acceptable to keep them for 6 months or a year. With eight characters you should
change them every 3-6 months. With anything fewer than eight characters, you should
consider changing passwords monthly.

Policies can be managed with Group Policy (GP). Figure 2-14 shows where in GP the
settings are.

B Group Policy Management Editor =10] x|

File Ackion Wjew Help

e 5@ RE = H
_: Default Domain Policy [WIN-I0775WYQ | | Palicy ~ | Policy Setting |
= C9mDUtBV Configuration |Enforce password history
| Software Settings i8 v aximum pa .
=[] Windows Settings
| Seripts (StartupfShutdown)
= i Security Sethings
=] _:f:j Account Policies
_:Ej Password Policy
_:E:I Account Lockout Po
- kerberos Palicy
| Local Policies
H EventLog
4 Restricted Groups
4, System Services
o Registry

24 passwords remembered

rd age ;
| Minimurn password age 1 days
| Minimumn password length 10 characters
| Password must meet complexity requirements Enabled
| Store passwords using reversible encryption Disabled

ays

B EEEE

[Wired Metwork (TEEE 80
| Windows Firewsall with &
| Metwark List Manager P

;-_,@f Wireless Metwork (IEEE
| Public Key Policies
| Software Restriction Po
| Nebwork Access Protect

\g IP Security Policies on A
oy Policy-based Gos
| Administrative Templates —
= 4% User Configuration
| Software Settings

l‘ o e , |

Figure 2-14 Password policies can be managed with Group Policy.

& &

[E eSS e

Password policies applied with domain scope apply to domain accounts. Password policies

applied to an organizational unit scope apply to local accounts on all member computers in
that OU.

Chapter 2: Authenticators and Authentication Protocols 49

Fine-Grained Password Policies

A persistent request from customers has been the ability to manage password policies so that
different users in the domain have different password policies. In Windows Server 2008 this
is finally possible, with fine-grained password policies. Fine-grained password policies are avail-
able in all editions of Windows Server 2008, but only if the domain functional level is set to
Windows Server 2008. In other words, you must first upgrade all your domain controllers

to Windows Server 2008 before you can use this feature.

The primary purpose of fine-grained password policies is to apply stricter settings to privi-
leged accounts and less strict settings to the accounts belonging to normal users. In other
cases you might want to apply a special password policy for accounts whose passwords are
synchronized with other data sources.

Fine-grained password policies apply only to user objects, or inetOrgPerson objects if you use
those instead of user objects, and global security groups. Fine-grained password policies are
implemented using a password settings container (PSC) under the System container of the
domain. (See Chapter 9, “Designing Active Directory Domain Services for Security,” for more
details on Active Directory.) The PSC stores one or more password settings objects (PSO) that
hold the actual policies. Figure 2-15 shows a PSC with two PSOs.

Wosee =Y

File Action ‘Yiew Help

I EEEENE

2‘ ADSI Edic A | Mame - | Cls_s_'s | Distinguished Mame | Actions
= 5 Default naming context [WIN-107 75w 0! §—|§CN=ndministrative password palicy msDS-PasswordSettings CN=Administrative | CN=Passw.. &
[= [] DC=jesper-test,DC=local §—| Ch=User password policy msDS-Passwaord3ettings CN=User passward
_| CN=Builtin Maore ... »

| CM=Computers

_| OlU=Domain Controllers

| CM=ForeignSecurityPrincipals

| CM=LostAndFound

| CM=NTDS Quotas

| CM=Program Data

=[] CH=System

| CM=AdminSDHolder
| CM=ComPartitions
| CM=ComPartitionSets
| CH=Default Domain Policy
| CM=DFs-Configuration
| CN=DFSR-GlobalSettings
| CN=Domainllpdates
| CN=File Replication Service
“| CN=FileLinks
| CN=IP Security
| CH=Meetings
| CN=MicrosoftDNS
_| CN=Password Settings Conta
| CM=Falicies
| CMN=RAS and 145 Servers Hc—
| CN=RprServices

| CN=WinsockServices -
= ity _'l_l = . o
| | |
Figure 2-15 This domain uses one password policy for administrators and another for users.

Part I: Windows Security Fundamentals

Unfortunately, Microsoft did not provide a very good user experience for managing fine-
grained password policies in Windows Server 2008. To configure a separate password policy
for administrators, follow these steps:

1. Run the ADSI Edit tool by typing adsiedit.msc.

2. Connect to your domain by right-clicking the ADSI Edit node in the left-hand pane and
selecting Connect To. Type in the name of the domain.

3. Expand the domain, expand the DC node, navigate down to CN=System, and select
CN=Password Settings Container.

4. Right-click CN=Password Settings Container, select New, and then select Object.

5. Select the msDS-Password Settings object, as shown in Figure 2-16.

Create Dbject x|

Select a class:

= Back I [ext = I Cancel | Help |

Figure 2-16 To create a fine-grained password policy, you need to create a new msDS-Pass-
wordSettings object.

6. Name the new object something memorable, such as Administrative password policy.

7. Click Next, and set the precedence value for this object. This value governs which policy
takes precedence if two policies apply to the same user. The lowest precedence wins.

8. Walk through the rest of the wizard and set values for all the items. The possible values
are listed in Table 2-5.

9. After you configure the lockout duration you will see the screen shown in Figure 2-17. At
this point you need to configure which users this PSO applies to. To start that process,
click More Attributes.

10. From the Select A Property To View drop-down list, select msDS-PSOAppliesTo.

11. Type in the distinguished name (DN) of the user or the global security group you want
this policy to apply to. For example, to apply it to the Domain Admins group, use the
following syntax, replacing the DC attributes with your domain information:

Chapter 2: Authenticators and Authentication Protocols

CN=Domain Admins,CN=Users,DC=jesper-test, DC=local The net result is shown

in Figure 2-18.

Table 2-5 Fine-Grained Password Policy Values

51

Attribute Name

Description

Acceptable Value
Range

msDS-
PasswordSettingsPrecedence

Defines which policy takes
precedence if more than one policy
applies to a given user. The policy
with the lowest precedence wins.

Greater than 0

msDS-PasswordReversible

Whether passwords are stored with

FALSE / TRUE

EncryptionEnabled reversible encryption. False means
they are not.
msDS- How many passwords the system 0 through 1024

PasswordHistoryLength

remembers for a user. Practically
speaking, this means the user cannot
reuse a password until he has chosen
at least this many different ones.

msDS-
PasswordComplexityEnabled

False if password complexity is not
required for these user accounts.
True if password complexity is

required.

FALSE / TRUE

msDS-
MinimumPasswordLength

The minimum length for a password.
Note that passwords can be up to
255 characters long, but older
systems support entering only
127-character passwords.

0 through 255

msDS-
MinimumPasswordAge

The minimum age that a password
must be before it can be changed
again. Setting this to some
reasonable value, such as a day or
two, ensures that a user cannot cycle
through the password history
automatically and change the
password back to the one that she
just had. This value (and all other
time values), is entered in
DAYS:HOURS:MINUTES:SECONDS
format. Hence 02:00:00:00 is

two days.

(None)

00:00:00:00 through
msDS-Maximum
PasswordAge value

msDS-
MaximumPasswordAge

How old a password can be before it
must be changed. To have
passwords that never expire, use the
value (Never). Otherwise, set a date
in the standard time value format,

such as 180:00:00:00.

(Never)

msDS-Minimum
PasswordAge value
through (Never)

msDS-Maximum

PasswordAge cannot be

set to zero

52 Part I: Windows Security Fundamentals
Table 2-5 Fine-Grained Password Policy Values
Acceptable Value
Attribute Name Description Range
msDS-LockoutThreshold How many tries a user gets at the 0 through 65535
password before it is locked out. To
disable account lockout, set this to O.
msDS- The time interval used to calculate (None)
LockoutObservationWindow th_e number of in_correct pa.ssvx./or.d 00:00:00:01 through
tries. If this value is set to 00:00:30:00, msDS-LockoutDuration
for example, the user gets. . value
msDS-LockoutThreshold tries in
30 minutes and then the counter is
reset.
msDS-LockoutDuration How long the account remains (None)
locked out before .it is autgmaticglly (Never)
unlocked. To require administrative
unlock set it to (Never). mSDS'LOFkOUt.
ObservationWindow
value through (Never)
zl

To complete the creation of this object, click Finish.

To set more attiibutes, click More Attibutes.

< Back, | Finish |

Cancel |

Help |

Figure 2-17 When you get to this screen, configure who the object applies to.

Windows Server 2008:

Tools to Manage Fine-Grained Password Policies
By now you have probably already figured out that Microsoft kind of ran out of time to
build good tools to manage fine-grained password polices. Fortunately, there are some
options out there. Joeware.net has a command-line tool available at: http://

www.joeware.net/ freetools/tools/ psomgr/index.htm

http://powergui.org/entry.jspa?externallD=882& categorylD=46

A GUI tool is available for PowerGUI, based on the Windows PowerShell feature of

Chapter 2: Authenticators and Authentication Protocols 53

Another free GUI tool is available from Special Operations Software:

http://www.specopssoft.com/wiki/index.php/SpecopsPasswordPolicybasic/
SpecopsPasswordPolicybasic/

cn=Administrative password policy x|

Attributes |

Path:

Clazs: msDS-PasswordSettings

Select which properties ta view: IDpt\onaI j

Select a property ta wiew ImsDS-F‘SDAppI\esTU j

- Attribute Values
Syntaw IDN

Edit Attribute: |EIN =Diomain Adming, CH=Users, D C=jesper-test DC=loc.

Waluelz]: <hot sets

Add | Remave |

Cancel |

Figure 2-18 You use the msDS-PSOAppliesTo attribute to apply the policy to a group or a user.

Precedence and Fine-Grained Password Policies

I mentioned earlier that a precedence value is associated with fine-grained password policies.
This value is for resolving conflicts when two PSOs apply to a single user. The DC does not
merge policies, so there must be some way to resolve the conflict. The resolution works

as follows:

1. If only one PSO is linked to the user object, that PSO is the resultant PSO. If more than
one PSO is linked to the user object, a warning message is logged to the event log and
the one with the lowest precedence value is the resultant PSO.

2. Ifno PSOs are linked to the user object, the system compares the precedence values of
all the PSOs linked to groups the user is a member of. The PSO with the lowest prece-
dence value is the resultant PSO.

3. Ifneither of these methods results in a PSO being the most preferred, the default
domain policy applies.

54 Part I: Windows Security Fundamentals

Summary

Passwords and authentication is a complicated and very interesting area. It underlies so much
of what we do in all other areas of security. While you do not have to be an expert on authen-
tication to manage Windows servers, you must have enough of an understanding of the basic
concepts to make intelligent decisions about authentication. If you have ever dealt with
consultants or auditors you have probably run into one of the few, but far too many, who do
not understand passwords and authentication, but yet make requirements regarding how
they should be managed. More than one network has been either destroyed directly by these
changes, or hacked afterward because the changes were ineffective against the relevant
attacks. Only by understanding enough about how authentication works can you make rea-
soned decisions about how to protect the keys to the kingdom—the authenticators used to
access your network.

Additional Resources

Burnett, M. Perfect Passwords: Selection, Protection, Authentication. (Syngress, 2005).
m Johansson, J. M. Protect Your Windows Network. (Addison-Wesley, 2005).

m Johansson, J. M. “The Most Misunderstood Security Setting of All Time.” TechNet
Magazine.

m Kent, J. “Malaysia Car Thieves Steal Finger,” at http.//news.bbc.co.uk/2/hi/asia-pacific/
4396831.stm.

m Microsoft Corporation. “Server Core Installation Option of Windows Server 2008
Step-by-Step Guide,” at http://technet2.microsoft.com/windowsserver2008/en/library,/
47a23a74-e13c-46de-8d30-ad0afbleaffc1033. mspx?mfr=true.

m Microsoft Corporation. “Step-by-Step Guide for Fine-Grained Password and Account
Lockout Policy Configuration,” at http;//go.microsoft.com/fwlink/?LinkID=91477.

m Wagner, M. “The Password Is: Chocolate,” at http://informationweek.com/story/
showArticle.jhtml?article]D=18902123.

Chapter 3

Objects: The Stuff You Want

— Jesper M. Johansson

In this chapter:

Access Control Terminology.covetuin i it et e eenns 55
Tools to Manage Permissions.ou ittt iiineiiinennnnnn. 79
Major Access Control Changes in Windows Server 2008 81
User Rights and Privileges i 83
RBAC/AZMAN . ..o e e 88
SUMIMIAIY . ¢ .ttt e et e e e e 88
Additional ResoUrces.ttt e 89

I know what you are thinking: We are two chapters into this book and all we have talked about
so far is users! People! Who cares about them? Well, I have good news and bad news. The
good news is that we are about to start delving into abstract and mysterious technical
concepts such as security descriptors. The bad news is that this is all to better serve our
people and provide them with secure data access.

Ignoring the people for a while, which I know we would all very much prefer to do, objects are
what we call the things we want to protect from the users (or provide the user access to—if
you have not worked in security as long as I have). In this chapter we will discuss the
technologies used to control access to objects. This is one of the more technical chapters in
the book. I believe it is important for an administrator to understand the core details of how
these technologies work to be able to effectively manage Windows. We will discuss tools for
managing objects and how access control has changed in Windows Server 2008—and a small
section on Role-Based Access Control appears at the end. Before we get to those, however,

I need to make sure the terminology is clear.

Access Control Terminology

If you have not worked with fundamental Windows security constructs before, you have a lot
of alien terms to learn. Even if you have worked with security infrastructure in other operating
systems, some unique terminology is used in Windows. This section will define the major
concepts used in access control in Windows.

55

56

Part I: Windows Security Fundamentals

Securable Objects

The basic unit of security management in Windows is a securable object. A securable object is
simply some type of object that can have permissions applied to it. The securable object you
probably have worked with the most is a file. In the NTFS file system, files and directories both
can have permissions associated with them. As a practical matter, the permissions are actually
stored in the file system metadata, not with the file itself—but that is a technical detail that really
does not matter to a system administrator. The different types of securable objects include:

Files

Directories

Registry keys

Active Directory objects

Kernel objects (events, semaphores, mutexes)
Services

Threads

Processes

Firewall Ports (new with Windows Vista and Windows Server 2008)

Window stations and desktops

Security Descriptors

All securable objects have one thing in common: they have a security descriptor (SD) associated
with them. The SD is the construct that contains all the security information associated with
the object. A security descriptor is not a particularly complicated construct. Figure 3-1 shows
it in pictorial form.

2 2 2222221111111111
9 8 5432109876543 210987%63543210

Control Reserved Revision

3 3 2 2
10 7 6

Pointer to Owner

Pointer to Group

Pointer to SACL
Pointer to DACL

Figure 3-1 The security descriptor mostly contains pointers to other security objects.

The security descriptor can be viewed as a table containing five rows of 32 bits each. The top row
in Figure 3-1, as with subsequent figures, shows the bit position of each element. Notice that it
seems to count backward. This stems from the endianness of the Intel processors that Windows
runs on. For more information see the sidebar “Why Does Windows Count Backwards?”

Chapter 3: Objects: The Stuff You Want 57

Why Does Windows Count Backwards?

Figure 3-1 and subsequent pictures that show tabular bit structures have a row at the top
with numbers that go in what appears to be reverse order. Those are the bit positions for
the objects in structure. For example, the revision of an SD is 8 bits, contained in bits 0-7
of an SD. The pointer to the owner starts at bit position 32, and so on.

The columns appear to go backward because Windows is what is called a little-endian
operating system. All memory structures are stored in such a way that the bits are counted
from right to left. This is actually an artifact of the processor architecture and, in the case of
Windows, the endianness is driven by the x86 architecture that was until recently the
predominant architecture on Windows. The x64 architecture also uses little-endian.

Endianness has led to significant religious debates among those who like to debate such
things. Both methods have advantages, and in reality you rarely need to deal with this
issue unless you are a developer.

The final four rows in the SD are all pointers to something else. The second row in Figure 3-1
is a pointer to a Security Identifier (SID) representing the owner of the object. The third row is
a pointer to a SID representing the primary group of the owner. The primary group concept is
used only for POSIX compliance, not for native Windows operations. In POSIX, permissions
are granted to only three entities: the owner, the owner’s group, and world (Everyone). To have
a group to grant permission to, Windows includes a concept of a primary group, and this is
where it shows up in an SD. The final two rows have pointers to the system access control list
(SACL) and discretionary access control list (DACL), respectively.

The first row contains a version number that currently is always 1, 8 reserved bits, and a control
field. The control field contains a number of flags that describe the nature of the security
descriptor. The field can take on a combination of different values, most of which are shown in
Table 3-1, which also shows the Security Descriptor Definition Language (SDDL) flag for the
value, if one is available. That flag’s use will be explained in greater detail later in this

chapter. For the moment, you may ignore it.

Table 3-1 Security Descriptor Control Flags

Flag Name SDDL Flag Flag Value Description

SE_OWNER_DEFAULTED 0x0001 The Security identifier (SID) pointed to by
the Owner field was provided by a
defaulting mechanism.

SE_GROUP_DEFAULTED 0x0002 The SID pointed to by the Group field
was provided by a defaulting
mechanism.

SE_DACL_PRESENT 0x0004 This SD points to a DACL. If this flag is not

set, this SD has a NULL DACL.

58 Part I: Windows Security Fundamentals

Table 3-1 Security Descriptor Control Flags

Flag Name SDDL Flag Flag Value Description

SE_DACL_DEFAULTED 0x0008 The DACL was set by some defaulting
mechanism as opposed to explicitly. This
is common for system objects, but not
for things like file system objects, registry
keys, and so on.

SE_SACL_PRESENT 0x0010 This SD has a pointer to a SACL.

SE_SACL_DEFAULTED 0x0020 The SACL was set by some defaulting
mechanism.

SE_DACL_AUTO_INHERIT_REQ AR 0x0100 The DACL must be inherited by child

objects. If this flag is set on a directory,
for example, the DACL is inherited by
subdirectories and files. This flag
specifies an old inheritance mechanism
used primarily in Windows NT 4.0 and
earlier. The flag is ignored by most
utilities today. Newer versions of
Windows suppport inheritance of
individual entries in the ACL.

SE_SACL_AUTO_INHERIT_REQ 0x0200 The SACL must be inherited by child
objects. As with the equivalent DACL
flag, this mechanism is no longer used.

SE_DACL_AUTO_INHERITED Al 0x0400 The DACL was inherited from a parent
object, such as a directory.
SE_SACL_AUTO_INHERITED 0x0800 The SACL was inherited from a
parent object.
SE_DACL_PROTECTED P 0x1000 The DACL is protected from inheritance.

This means that a parent’s DACL will not
override the child’s DACL.

SE_SACL_PROTECTED 0x2000 The SACL is protected.

Access Control List

The fourth pointer in the security descriptor points to a discretionary access control list
(DACL). A DACL is one of three different types of access control lists (ACLs), of which
Windows supports two.

The three types of ACLs are used for different purposes. An ACL is typically used to record
permissions on an object. Discretionary and mandatory access control lists (MACLs) serve
that purpose.

ADACL is what we normally mean when we discuss ACLs in Windows. A DACL is discretionary
because it can be managed by the administrator or object owner. The administrator can, for
example, grant some other user permission to write to an object, and the system enforcing the
permissions will honor that request. When the administrator believes that the other user no

Chapter 3: Objects: The Stuff You Want 59

longer needs access to the object, she can modify the permissions. The system’s only
responsibility is to enforce the permissions set by the administrator or the owner, or any other
user with permission to change permissions. The permissions, meanwhile, are at the discretion
of some user.

AMACL, on the other hand, is not managed by any given user. All data receives a label specifying
its sensitivity. Based on that sensitivity, the system will enforce access control over the object.
The big difference here is that the actual operations any given user is permitted to take on the
object are not at the discretion of any user in the system. The permissions are entirely enforced
by the system. This is what makes the ACL mandatory. If you have taken the CISSP exam, or
studied theoretical security models, you will probably have heard about the Bell-LaPadula
model of security. That model describes a mandatory access control (MAC) system. Windows
does not support MACLs.

Finally, there are system ACLs (SACLs). SACLs are identical to DACLs in structure.
However, where DACLs control who can do what with the object, SACLs control which
access attempts get audited. For example, let us say we have an ACL that applies write
access for Administrators. If that ACL is a DACL, it grants Administrators permission to
write to the object. If that ACL is a SACL, it causes an audit event to be generated upon any
attempt to write to the object by any member of Administrators. More information on
SACLs and auditing is available in Chapter 8, “Auditing.”

ACL Structure

Like a security descriptor, an ACL has a structure that can be visualized in tabular form, the
header of which is shown in Figure 3-2. However, unlike a security descriptor, where

the variable-sized contents—such as the DACL and SACL—are defined as pointers, giving the
security descriptor itself a fixed size, this structure does not fit an ACL because it can be of
almost arbitrary length.

33222222%22221111111111
1 0987654321098 7654321098760%543210
ACL Size Reserved 1 ACL Revision
Reserved 2 ACE Count

Figure 3-2 The ACL header holds metadata of the ACL.

The first portion of an ACL, reading left to right as at least Westerners are used to, is a 16-bit value
holding the size of the ACL in bytes. This means that an ACL can be up to 64 kilobytes (KB).
Apart from the revision, the only other interesting aspect is the ACL Entry (ACE) count. The
ACEs are attached to the ACL but are usually thought of as a separate structure.

Access Control List Entry

The ACE is essentially where the rubber meets the road in access control. The ACE defines the
subject and what permissions that subject has to the object. The ACE structure is shown
in Figure 3-3.

60

Part I: Windows Security Fundamentals

3322222222221111111111
1098765432109876543210987%6543210

ACE Size ACE Flags ACE Type

Access Mask

SID

Figure 3-3 The ACE is variable-sized because it contains a SID, which is variable-sized.

The first part of an ACE is the size attribute. It also is a 16-bit value, but obviously an ACE
cannot be that large because that would make it too large to hold in an ACL. However, the ACE
is variable-sized because it contains a SID, which is variable-sized. The SID defines which
subject the ACE applies to. The ACE also has a set of 8 flags, as well as 8 bits defining the ACE
type. The flags define how the ACE was created or processed. Some of the more interesting
flags are shown in Table 3-2, which also shows the Security Descriptor Definition Language
(SDDL) shortcuts. These will be discussed in more detail in the section “Security Descriptor
Definition Language” later in the chapter.

Table 3-2 Important ACE Flags

Flags SDDL Shortcut Interpretation

OBJECT_INHERIT_ACE Ol This ACE should be inherited by children that
are objects.

CONTAINER_INHERIT_ACE Cl This ACE should be inherited by children that
are containers.

NO_PROPAGATE_INHERIT_ACE NP This ACE will be inherited by children, but only

one level deep. After the ACE is inherited, the
system clears the Ol and/or Cl flags.

INHERIT_ONLY_ACE 10 This ACE is only inherited. It does not control
access to the object where the ACE was
originally defined.

INHERITED_ACE ID This ACE was inherited from a parent.

SUCCESSFUL_ACCESS _ACE_FLAG SA This ACE belongs in a SACL and causes audit
events on successful access attempts.

FAILED_ACCESS_ACE_FLAG FA This ACE belongs in a SACL and causes audit

events on failed access attempts.

As you can tell from Table 3-2, the ACE flags are primarily used to govern the inheritance
behavior of the ACE. However, they also are used to define the behavior of an ACE in a SACL.

As mentioned earlier, 8 bits are used for ACE types. Table 3-3 shows the more interesting of
the ACE types.

Table 3-3 ACE Types

Chapter 3: Objects: The Stuff You Want 61

Type

SDDL

Shortcut Description

ACCESS_ALLOWED_ACE_TYPE

A

The permissions defined in this ACE define
the access the subject specified in the SID has
to the object. These types of ACEs are
commonly referred to as access allowed
ACEs.

ACCESS_DENIED_ACE_TYPE

This ACE is used to deny access to the object.
The permissions defined in the ACE will be
compared to the access attempt, and if it
contains any of them, the access attempt is
denied. These types of ACEs are commonly
referred to as access denied ACEs.

SYSTEM_AUDIT_ACE_TYPE

AU

This ACE belongs in a SACL.

ACCESS_ALLOWED_OBJECT_ACE_TYPE

OA

This ACE type is identical to the A type
above, but applies to an Active Directory
object as opposed to a file system object.

ACCESS_DENIED_OBJECT_ACE_TYPE

oD

This ACE type is identical to the D type, but
applies to an Active Directory object as
opposed to a file system object.

SYSTEM_AUDIT_OBJECT_ACE_TYPE

ou

This is an audit ACE in a SACL on an Active
Directory object.

SYSTEM_MANDATORY_LABEL_ACE_TYPE

This ACE is not used for either access
control or auditing, but instead defines the
integrity level of the object the ACE applies
to. For more on integrity labels, see “Integrity
Labels” later in the chapter.

These flags and types may seem esoteric at this point. However, by the time we get to
discussing SDDL later in the chapter, it will become clear that it is important to know what all
these types and flags mean to both interpret permissions and to create permissions.

The last part of the ACE that we have not discussed yet is the access mask. The access mask
actually defines the permissions or audit settings on the object.

Access Masks

An access mask is simply a 32-bit structure. It is divided into three main sections, as shown

in Figure 3-4.

3322222222221111111111
10987654321098765432109876543210
G|G|G|G A . . e o

rIwlela Reserved S Standard Rights Object-Specific Rights

Figure 3-4 An access mask defines the actual permissions using a 32-bit structure.

62

Part I: Windows Security Fundamentals

Each of the bits in the access mask can be either on or off (1 or 0). If a bitis set to 1, the
permission it represents is granted. If it is 0, the permission is not granted. If the access mask
belongs in an access allowed ACE and permission is not explicitly granted, it is implicitly denied.

The four high-order bits in the access mask define what are known as generic permissions.
They are essentially collections of permissions that match what you might find in
operating systems with simpler access control models. GR means generic read and would,
in an access allowed ACE, grant the subject read access to the object, regardless of the
object type. This permission can also defined as FR for FILE_GENERIC_READ and KR for
KEY_GENERIC_READ, applying generic read permissions to files or registry keys respec-
tively. Likewise, GW is generic write and GX is generic execute. GA is a shortcut for a com-
bination of all three of the others. The exact meaning of these settings differs depending on
the object. For example, if you set GX permission on a directory, you just gave the subject
the right to traverse through the directory to a subdirectory or file that the subject has
access to.

This brings up a very important point about access masks. The actual shortcut name of the
permission, such as GR and FR, is only important insofar as it defines which bit in the access
mask is turned on. If an access mask is created using FR but applied to a registry key, the
permission granted is KEY_GENERIC_READ because bit 31 will be set. This may not sound
like a logical thing to do, but when you start investigating permissions in the form of SDDL
strings you will very often find file generic permissions applied to registry keys, object
permissions applied to files, and so on. It is important to remember that all those permissions
define bitmasks. The actual meaning of that bitmask is analyzed according to the object type
when the access check happens.

The 8 bits shown for standard rights in Figure 3-4 are used similarly, although only the
low-order 5 bits are actually used. The standard rights are:

m DELETE - The ability to delete the object. This permission is defined as 0x10000, or
bit 16 in Figure 3-4 set to 1.

m READ_CONTROL - The ability to read the object’s security descriptor, excluding the
SACL. This permission is defined as 0x20000, or bit 17 in Figure 3-4 set to 1.

m WRITE_DAC - The ability to change permissions on this object (write DACL). This
permission is defined as 0x40000, or bit 18 in Figure 3-4 set to 1.

m WRITE_OWNER - The ability to change the owner of an object. This permission is
defined as 0x80000, or bit 19 in Figure 3-4 set to 1.

m SYNCHRONIZE - The right to use the object for synchronization. For example, if a
process needs to be informed when an object changes state it creates a synchronization
handle on the object. It will then be notified when the object changes state. This
permission is defined as 0x100000, or bit 20 in Figure 3-4 set to 1.

Chapter 3: Objects: The Stuff You Want

There are also combinations of the standard rights, but they are primarily of interest to
programmers, and you will not see them unless you read developer documentation.
Therefore, we will ignore those for the moment.

Finally, we have 16 bits of object-specific rights in the access mask. The object-specific rights

allow you to configure permissions that are valid only on some objects. Table 3-4 lists and
explains the object-specific rights for file system objects. Note that only 8 of the bits are
actually used for file system objects. If you are interested in object-specific rights for other

types of objects, please consult the developer documentation on http://msdn.microsoft.com.

Search for object-specific rights and whatever object type you wish to learn more about.

Table 3-4 File System Object-Specific Rights

Definition Value Bit Description

FILE_READ_DATA 0x1 0 On a directory this grants the right to list the
contents of the directory.

FILE_LIST_DIRECTORY 0x1 0 Read permission. On a file this grants the right
to read the file.

FILE_WRITE_DATA 0x2 1 File write permission. On a file this right grants
permission to write to the file.

FILE_ADD_FILE 0x2 1 This right is used on a directory and permits a
grantee to create a file in the directory.

FILE_APPEND_DATA Ox4 2 On a file this permits a user to append data to
the file.

FILE_ADD_SUBDIRECTORY Ox4 2 On a directory this permits a grantee to create
a new subdirectory.

FILE_ READ_EA 0x8 3 On a file this grants permission to read the
extended file attributes. Extended file
attributes are not normally used on Windows
today. They were originally included to provide
compatibility with applications written
for OS/2.

FILE_WRITE_EA 0x10 4 On a file this grants permission to
write extended attributes.

FILE_EXECUTE 0x20 5 Execute permission. On a binary executable,
this grants the right to execute the file.

FILE_TRAVERSE 0x20 5 Directory traversal permission. This permission

allows the grantee to traverse through a
directory that it does not have access to in
order to get to a subdirectory that it is granted
access to. However, all subjects on Windows
have the Bypass Traverse Checking
(SeChangeNotify) privilege, which will give
them this right regardless of whether the
permission is granted.

64 Part I: Windows Security Fundamentals

Table 3-4 File System Object-Specific Rights

Definition Value Bit Description

FILE_DELETE_CHILD 0x40 6 On a directory this permits a grantee to delete
the directory and everything it contains.

FILE_READ _ATTRIBUTES 0x80 7 On afile this grants the right to read the normal
file attributes.

FILE_WRITE_ATTRIBUTES 0x100 8 On a file this grants the right to write

file attributes.

By now you are probably wondering whether you really have to know about all these details to
administer Windows. The answer is no, you do not. Many administrators do not know these
details and manage to quite successfully make services available to their users. However, if you
care to manage permissions you really ought to know how all these structures interrelate. And
if you plan on managing permissions on Server Core installations, or interpreting permissions
set on directories, you will almost certainly need to know these details. The same is true if
you wish to delegate permissions management on any object to a user who is not supposed to
be a full administrator.

The definitions in the tables are listed in a particular format—namely, the one used by
developers and defined in the Software Development Kit (SDK). Rather than reinventing new
definitions, it is reasonable to use those to refer to the various permissions throughout the
remainder of this chapter and the rest of the book.

You can of course read the permissions in the graphical user interface ACL editor (known as
ACL Ul), and then you can see friendly versions of this data. However, that is a very inefficient
way to do it, and it does not help you interpret security templates, for instance, nor
troubleshoot a permissions dump in SDDL format. To do that, you need to understand how
these permissions are formed. You may, for instance, come across a permission such as
0x120029. You can probably figure out by now that it represents some combination of the bits
in the preceding tables. 0x1200a9 is equivalent to 100100000000010101001. If we paste that
into Figure 3-4, we get something like Figure 3-5.

Figure 3-5 demonstrates the process we must use to analyze a permissions grant such as
0x1200a9. That grant consists of several of the bits from the access mask. To know what it
means, we must convert that hexadecimal (base 16) value to binary, which you can do with
the Windows Calculator if you set it to scientific mode. Then we map it against the access
mask, as shown in Figure 3-5. The bits that are set correspond to permissions granted.

Lest you now think this is a contrived example of a DACL that does not exist, Figure 3-6
shows the ACL Ul representation of the ACE in question.

As you can tell from Figure 3-6, 0x1200a9 is very much a real permission. It is, in fact, what
gives standard users the ability to read files and list directories on an entire volume. In
addition, you may notice that the ACL Ul in Figure 3-6 is not entirely correct. It is missing the
Synchronize permission. You cannot, in fact, grant that permission with the GUL

65

Chapter 3: Objects: The Stuff You Want

“SJSew ssadde 3y} 0} anjeA [ewdapexay ay3 dew jsnw noA juelb suoissiwiad piepuelsuou e 9zAjeue o] G-¢ ainbl4

S3LNGIYLLY 3LIEIM I T
S3LNgGIYLLY avay 314 T
d1IHD 313713a 3114 1
31nd3x3 314 T
ISYIAVYEL T4 !
VI 3LEM TS T
vi avayd i I
A40LDMIdaNs aadv 31 T
V1va dN3iddv 314 T
3714-aav 314 T
VLvVa 3LIM 314 T
AdOLDIYIA ISITIIE T
viva avay 3id T
11V SLHDIY DI41D3dS

TIVSLHOI Q¥VANVLS I 11711
QIYINOIY SLHON QUVANVLS T 111
IZINOYHINAS 1
YINMO ILINM 1
VA ILIMM 1
104LNOD av3y -
ETEREL 1
6v002TX0 T 0 0 T 0 T 0 T 0 00000 O0O0O0TOO0 T
SyBry oYypads-199(q0 s1yB1y piepuels @ panJasay M w\% w
0 T ¢ €E v S 9. 860TCcETVSO9I L8 60T1CEVSO9I L8601
11111111 ITTccccceieiececeeaeeese

66 Part I: Windows Security Fundamentals

l Permission Entry for Local Disk {C:)

Ix

Object |

Marme: TH-PRIZHS40SPZ sers)| Change...

Apply to: ITh\s Falder, subfolders and Files

I;_

Permissions: Allow
Traverse folder | execute filz O ;I
List folder | read data O
Read attributes O
Read extended attributes O
Create files [write data a O
Create folders | append data a O
Write attributes a O
wirite extended attributes a O
Delete subfolders and files a O
Delete a O
Read permissions O LI

r Apply these permissions ko objects andfor Clear all |

containers within this container only

Managing permissions

coes |

Figure 3-6 0x1200a9 is actually one of the
ACEs on the root of a drive.

Relationship Between Access Control Structures

Before we leave the various access control structures behind and move on with other
terminology in the world of object security, it may be useful to just revisit for a moment the
way the structures relate to each other. Figure 3-7 shows this relationship.

A security descriptor has two pointers to SIDs—the owner and group SIDs. In addition, it has
pointers to the two ACLs. In practice, it is not uncommon for one or more of these pointers to
be set to null (all zeros). In this case, the object is lacking one or more of the structures. We
shall discuss this in more detail later. It is most common with the SACL to have a null pointer
because many objects do not have a SACL. If one of the other pointers is null, some interesting
bugs can occur. For example, even built-in tools can fail spectacularly if the DACL pointer

is null.

Note also in Figure 3-7 that, while it only shows one ACE in each ACL, additional ACEs can be
attached and would just extend the length of the ACL.

Inheritance

ACLs can be inherited from parent objects to child objects. For example, a directory can
contain an ACL that applies to the directory, but also applies to files and subdirectories. These
days, however, it is more correct to say that it is the ACEs that get inherited, not the ACL.

Security Descriptor

Chapter 3: Objects: The Stuff You Want

Control, Reserved,

. Owner SID Group SID SACL DACL
Revision
[] [] p []
> >
7552|3395 2| 5353 | 7863
2vrS595|2r585| 2yl [2y P
- = - =
< <
£8 £8 O»= O»=m
oJ3 o3) A®
CRE: 8% | MY ame
=B 22
Zao Zzo . .
=2 = 0 ACE1 Size, ACE1 Size,
=3 = =3 =
= 2= Flags, Type Flags, Type
E = o
< = < =
Zo Zo
S o S o
NI vg 2 Access Mask | Access Mask
=, =h =S, =
Y 22
) I
?redElggezs
S¥59c|<¥58¢c
Sub Sub
Authority[] | Authority[]

saynuap| [1ounusp] [1eynuspy [Auoyiny

T
Ayoyiny | Aioyiny | Ayoyiny

Jaynuap| | seynuapy | 1eynuspy | Auoyiny

T
Awoyiny|Ayoyiny | Auoyiny

Sub
Authority[]

Sub
Authority[]

- SID

67

~ ACE

Figure 3-7 The various access control structures are related in very structured ways.

Prior to Windows 2000, it was actually the ACL that got inherited. The security descriptor
control flags, such as SE_DACL_AUTO_INHERIT_REQ (often seen in an SDDL string as AR),
are a leftover from that period. Since Windows 2000 however, the *AUTO_INHERIT_REQ
flags are essentially ignored. Likewise, the Al flag (SE_DACL_AUTO_INHERITED) is
essentially ignored. Rather, the inheritance flags are now set on individual ACEs, greatly
increasing the expressive power of inheritance, but also complicating matters for the system

administrator.

68

Part I: Windows Security Fundamentals

The inheritance flags were shown previously in Table 3-2. These are the flags you would need
to know to parse an SDDL string, or if you write software that needs to do this. If you work
only in the GUI, you would see them in the form of Figure 3-8 instead.

. Advanced Security Settings for RemotePackages x|

Permissions |

Ta view or edit details For a permission entry, select the entry and then click Edit.

Chiject name: il windows\RemotePackages

Petmission enkries:

Permission Inhetited From

<not inheribed:=

Iministrators (WIN-PR... Special This Falder and subfalders
Allow Authenticated Users Read & execute <not inherited= This folder, subfolders and files
Allow TrustedInstaller Special Cilwindows! This Folder and subfolders

Allow S¥YSTEM Full control Cilwindows! This Folder, subfolders and files
Al Administrators (WIN-PR... Full contral Ciiwindows) This Folder, subfolders and files
Allrwa |zrrs (W TH-PROFHS4NS Reard & exeribe O Windrwsh This Falder . siibfalders and files LI

Add... Edit... Remove

¥ Include inheritable permissions from this ohisct's parent

™ Replace all existing inheritable permissions on all descendants with inheritable permissions From this object

Manaaging petmission entries

oK I Cancel | Apply |

Figure 3-8 ACL Ul surfaces the inheritance flags using several mechanisms.

In Figure 3-8 you can see a directory that has both inherited ACEs and noninherited ones. The
Inherited From column shows where they came from. The Apply To column shows how they
are propagated further. The first ACE, for SYSTEM, is apparently only for folders. There is a
Full Control ACE for SYSTEM that is also inherited further. This apparent redundancy is quite
common in ACLs.

In addition, you see two check boxes at the bottom of Figure 3-8. Those can be thought of as
dynamic representations of ACL flags from Table 3-1. Include Inheritable Permissions From
This Object’s Parent causes all inheritable permissions to be propagated to this object. If this
flag is not checked, it is equivalent to setting the P flag in the security descriptor. The second
check box, Replace All Existing Inheritable Permissions, does not represent any flag. It simply
causes permissions to be re-inherited. Some tools interpret use of the Al flag from Table 3-1
the same way, notably the Security Configuration Editor (SCE). Therefore, if you need to use
Group Policy to trigger inheritance propagation on some object or container, you can use the
Al flag, with no other ACEs specified in a security template.

Figure 3-9 shows another way ACL Ul surfaces the inheritance behavior.

The inheritance behavior of the ACE is set at creation time. The drop-down menu for Apply
To in Figure 3-9 represents combinations of the inheritance flags we have seen before, as
shown in Table 3-5.

Chapter 3: Objects: The Stuff You Want 69

l Permission Entry for RemotePackages x|
Object |
Mame: | SYSTEM Change... |
Apply ki | This Falder and subfolders j

X This Folder only
Bermissions: | 1hjs folder, subfolders and files

Full conkr

This Folder and files
Traverse | Subfolders and files only
List Folder|Subfolders only

Files onl

[

Read attr
Read extended attributes
Create files | write data
Create folders | append data
Wirite attributes

Wirite extended attributes
Delete subfolders and files
Delete

-

r Apply these permissions ko objects andfor Clear Al |

containers within this container only

| KI S—

IHEEEEEEE
IOO00000O0og

Managing permissions

co_|

Figure 3-9 When you create or modify an ACE you get to pick its inheritance behavior.

Table 3-5 ACL Ul Inheritance to Flag Mapping

ACL Ul Term

Flags

This folder only

<none>

This folder, subfolders, and files

Ol CI (object inherit, container inherit)

This folder and subfolders

cl

This folder and files Ol

Subfolder and files only OI CI 1O (inherit only)
Subfolders only clio

Files only ol1o

Apply these permissions to objects and/or containers
within this container only

NP (no propagation inherit ACE)

Inheritance takes some getting used to, but once you understand the major concepts it
becomes quite clear and the major complication is understanding how it impacts large
hierarchies. You need to know the following main concepts:

m Container inheritance causes ACEs to be inherited by containers, while object
inheritance causes ACEs to be inherited by objects. You also need to understand what
the definition of a container and an object is for a particular object type.

m A protected ACL overrides all inheritance from its parents.

® An inherit-only ACE is not used to control access on the container where it is defined.

® A no-propagation ACE applies only to the container where it is defined.

70

Part I: Windows Security Fundamentals

Next, however, to truly appreciate inheritance, you need to understand how the actual ACEs
are evaluated in an access check, so we now turn to that. To start out we need to
understand the concept of a security token.

Security Tokens

When a user logs on to a Windows computer, the operating system creates a token for the
user. This token contains a statement of who the user—the subject—is, what groups it is a
member of, and what privileges it has. In some cases, under User Account Control (UAC),
the operating system actually creates two tokens for the subject. You can read more about
that in Chapter 4, “Understanding UAC.”

You can view the tokens using Microsoft’s Process Explorer tool, which is available at http;//
www.microsoft.com/technet/sysinternals/ProcessesAnd Threads,/ ProcessExplorer.mspx. Figure 3-10
shows the filtered standard user token for an administrator under UAC. Figure 3-11 shows the
full administrative token for the same user.

[Mexplorer.exe:3116 Properties =] 3]
| Image I Performance | Performance Graph I Threads |
TCRIIP Security | Enwironment I Strings

User: WIN-PROZHS405PZ) Jesper
SID: 5-1-5-21-1932787 146- 180742031 5-12351 651 97-1000

Session: 1 Virbualized: No

Group | Flags
BUILTIM\&dministrators Deny
BUILTIMNWsers tdandatary
Everyone tdandatary
LOCAL tdandatory
Logon 510 [5-1-5-5-0-308468) tdandatory

Mandatary Label\Medium Mandatory Level Integrity
NT AUTHORITY \Authenticated Users Mandatory

NT AUTHORITYMMTERACTIVE Mandatary
NT AUTHORITYWMTLM Authentication tandatory
NT AUTHORITYAT hiz Organization tandatory
WiM-PRIZHS A05FE NN one fdandatary

Group SID: nfa

g'.}; Frivilege | Flags

S SeChangeN otifyPiivilege Default Enabled
SelncreaseworkingS etPrivilege Disabled
SeShutdownPrivilege Dizabled
SeTimeZonePrivilege Dizabled
SellndockPrivilege Dizabled

Permissions |

oK Cancel |

&

Figure 3-10 A filtered token has almost all the privileges removed
and has the Administrators group set to Deny.

Figures 3-10 and 3-11 demonstrate several important points. First, notice that in the filtered

token the Administrators SID is set to Deny. This means that it can only ever be used to deny
access to something. In other words, if an ACL contains an allow ACE for Administrators, the
filtered token would not match. Only if the ACE were a deny ACE would there be a match.

Chapter 3: Objects: The Stuff You Want 71

[=+-]cmd.exe:3608 Properties =] 3]
Image I Performance | Performance Graph I Threads |
TCRITP Security | Environment I Strings

Lser: WIN-PRSZHI40SPE) Jesper
SID: 5-1-5-21-1932787 146- 180742031 8-1235168197-1000

Session: 1 Yitbualized: No
Group | Flags
EUILTINAAdministrators Owner
BUILTIMNYsers td andatory
Evemnone td andatory
LOCAL td andatory
Logon 51D [5-1-5-5-0-308468) t andatary

 andatary Label\High Mandatory Level Integrity

NT AUTHORITY\Autherticated Users Mandatary
NT AUTHORITYMMTERACTIVE M andatory
NT AUTHORITYSMTLM Authentication Mandatary
NT AUTHORITYT his Diganization td andatory
WiM-PRIZHS405FZ M one td andatory

Group 5100 nfa

g'._{; Privilege | Flags -
= SeBackupPrivilege Dizabled
SeChangeM atifyPrivilege Default Enabled
SelCreatellobalPriviege Diefault Enabled —
SelreatePagefilePrivilege Dizabled
SeCreateSymbolicLinkPriviege Disabled
SeDebugPrivilege Dizabled
SelmpersonatePrivilege Default Enabled
SelncreaseBasePriorityPrivilege Disabled j
Permissions |
Ok I Cancel |

4
Figure 3-11 In the full administrative token the user’s full complement of privileges is listed.

Second, notice that many of the privileges in both tokens are disabled. This does not mean the
user cannot use those privileges. All it means is that a process that needs them needs to first
enable them, which can be as simple as a single function call. Disabling the privileges serves to
protect the user only from accidental privilege use. It provides no security benefit.

Third, notice the sheer number of SIDs in the token. Although you may only see two
groups when you inspect the user’s group membership (Users and Administrators in this
case), a lot of other SIDs indicate how the user logged on, among other things. All subjects,
except anonymous users, have the Everyone SID in their token by default. All subjects who
authenticated—in other words, not anonymous users or guests—also have the Authenti-
cated Users SID in their token. This means that because the Guest account is disabled by
default, Everyone and Authenticated Users are functionally equivalent. This has been the
case since Windows Server 2003 and Windows XP.

The tokens in Figures 3-10 and 3-11 also have several SIDs denoting the log-on type. First,
there is the LOCAL SID, which means the user logged on to a terminal physically connected
to the computer. We also see the Logon SID, which is an identifier for the log-on session
assigned to this user. Most of the windows in a user’s session are protected to the Logon SID.
Then we have the INTERACTIVE SID, which states that this user is logged on interactively to
the computer, as opposed to over the network. The difference between this SID and the
LOCAL SID is that terminal server users have the INTERACTIVE SID but not the LOCAL SID.

72

Part I: Windows Security Fundamentals

There is also a SID, NTLM Authentication, which defines that the user logged on using NTLM,
as opposed to Kerberos. We also have the This Organization SID, which means the user is
defined in the same organization as the computer account. Obviously this SID will always be
present on a stand-alone computer. Finally, we see the None SID. This is not actually a SID
that is being used. Its Relative Identifier (RID) is 513, which makes it Domain Users. It shows
up on non-domain-joined computers (as in this example) as a kind of place holder for the
Domain Users SID.

Access Check Process

When a process attempts to access a securable object, the operating system compares the
access token to first the DACL and then (if it is present) the SACL on the object. The
comparison with the DACL focuses on three factors:

m The requested access (for example, read, write, execute, delete)
m The SIDs in the token
m The ACEs in the object’s DACL

The comparison process starts by evaluating any SIDs set to Deny in the token. If any of those
match a SID in a deny ACE, the operating system compares the requested access to the access
mask in the ACE. If any bits show up as set to 1 in both, the access attempt is denied at that
point with no further comparison.

If there are no matches on Deny SIDs, the process continues by evaluating each ACE in turn.
Three possible stopping conditions will cause the evaluation to cease. First, the evaluation
stops as soon as any ACE or combination of ACEs grants any combination of SIDs in the token
all the requested access. If this happens, the access is granted.

Second, if any deny ACE is encountered that denies any SID in the token any of the requested
access rights, the evaluation stops and the access attempt is denied.

Finally, if the end of the ACL is encountered, the evaluation stops. If it reaches this point without
having all the requested access rights granted by some ACE, the access attempt is denied.

Regardless of how the access check turns out, the operating system then evaluates the SACL,
if present, to see if an audit even should be generated.

As you can probably tell from what we just said about the access check, the order in which the
ACEs are evaluated is critical. If you have a deny ACE that denies the user access to the object,
but an ACE matching some SID in the user’s token grants all the requested access rights is
encountered first, the evaluation will stop and the access attempt is granted. For this reason
ACEs should be stored in an ACL in a defined order:

1. Noninherited deny ACEs
2. Noninherited allow ACEs

Chapter 3: Objects: The Stuff You Want 73

3. Inherited deny ACEs
4. Inherited allow ACEs

Various tools, such as ACL UI, will correctly put the ACEs in this order. They will also fix an
out-of-order ACL when they open it. In addition, the icacls.exe command-line tool contains a
/verify option that you can use to verify that ACLs are in the right canonical form. However,
the operating system contains no automatic enforcement of this order, and it is disturbingly
common for developers to create ACLs that have ACEs in the wrong order. This can cause
access attempts that should be denied to be granted.

You should also note that if explicitly defined allow ACEs grant a user access, those will take
precedence over inherited deny ACEs. This has caused confusion among administrators in
the past.

Restricted Tokens

The standard access check can be modified in a few ways. One is if the user has a privilege that
permits overriding the access check. For example, a user with the right to back up files can
bypass any ACL for read purposes, while a user with the right to restore files can bypass any
ACL for write purposes. Another method, which is used quite a bit more in Windows Vista
and Server 2008 than in the past, is using restricted tokens.

A restricted token is created using the CreateRestrictedToken application programming
interface (API). If a process presents an access token that is restricted, the operating system
performs two separate access checks. The first access check is the normal one and ensures
that the ACL on the object grants all the access methods requested to some combination of
the SIDs in the token. The second access check works exactly the same way, but checks the
ACL only against the restricting SIDs. To understand how this works, assume an access token
has Administrators as a regular SID, and Users as a restricted SID. Further, assume we have an
object that grants Administrators: Full and Users: Read. If a process with such a token tries to
open the object for Read and Execute, the access attempt will fail because the access check
must pass against the restricting SID—the Users SID. In this case, Users only has Read, and the
access attempt was for Read and Execute.

Restricted tokens include a special SID: S-1-5-12 if it is a normal restricted token and S-1-5-33 if
itis a write-restricted token, as shown in Figure 3-12. Normal restricted tokens have been around
for a long time. In Windows Vista and Windows Server 2008, a new variant called the write-
restricted token was introduced. With a write-restricted access token, the second access check is
performed only for write access checks. Let us assume that the token in our previous example
was write-restricted, not just restricted. In that case the access would still pass, because the
second access check would not be performed (the access attempt was not for a write operation).
Now assume the access attempt was for Read and Write instead. In that case a write-restricted
access token would cause the access attempt to fail because now the second access check fails
because Users is write-restricted, and Users only have Read permission on the object.

74 Part I: Windows Security Fundamentals

B svchost.exe:1264 Properties =] 3]
Image I Performance | Performance Graph I Services |
Threads I TCRJIP Security I Enviranment I Strings

Lser: NT AUTHORITY|LOCAL SERVICE
SID: 5-1-5-19

Session: 0 Yitbualized: No
Group | Flags -
BUILTIMN\Uzers I andatary
Everone Mandatary, Restricted
Evervone andatom
LOCAL td andatom
Logon 510 [5-1-5-5-0-61051) I andatory, Restricted
Lagan 510 [5-1-5-5-0-61051) Owner
M andatary Label\System Mandatory Level Integrity —

NT AUTHORITY \Authenticated Users I andatary
NT AUTHORITYWSERVICE Mandatory
NT AUTHORITYT his Diganization b andatom

NT ALUTHORIT® ITE RESTRICTED Mandaton, Restricte
NT AUTHORITY"RITE RESTRICTED Mandatary
<

Group SID: 5-1-5-33

-4 | Frivilege | Flags [
ig‘ SedssignPrimaryT okenPrivilege Disabled
SetuditPrivilege Enabled
SeChangeM atifyPrivilege Diefault Enabled
SelreatellobalPriviege Default Enabled
SelmpersonateFrivilege Default Enabled
SelncreaseluotaPrivilege Disabled

Permissions |
oK I Cancel |

Figure 3-12 A process with a restricted token is subject to a modified access check.

A

Write-restricted tokens are primarily used with services, as well as when you select the Protect
My Computer And Data From Unauthorized Program Activity check box when using Run As
on earlier versions of Windows. In Windows Vista and Windows Server 2008, however, a few
services, such as the Svchost.exe process that hosts the firewall-related services and the base
filtering engine, have write-restricted tokens. Such a token will include the write-restricted
SID, S-1-5-33 (NT AUTHORITY\WRITE RESTRICTED). The actual restricting SIDs are the
service SID or SIDs (in the case of an Svchost.exe process where all service SIDs would be
write-restricted), the log-on session SID, and the Everyone SID. In other words, a write-
restricted service can only write to objects that Everyone can write to, or that were explicitly
made available for it to write to.

Integrity Labels

You probably noticed the integrity label in Figures 3-10, 3-11, and 3-12. Every process now has
a label that defines its integrity level. Integrity labeling is typically a component of mandatory
access control. However, it defines the integrity associated with the process. A process at a
particular integrity level can write to objects at its own integrity level or lower, and read
objects at its own integrity level or higher.

Table 3-6 shows the integrity labels available in Windows Server 2008 (and Windows Vista).
Most objects in the operating system are set to medium integrity by default. A standard user

Chapter 3: Objects: The Stuff You Want 75

token is also set to medium integrity. Therefore, there is no difference in most functionality
from prior versions of Windows. However, Internet Explorer in Protected mode runs with a
low integrity label. This means that Internet Explorer cannot write to most parts of the
operating system by default. Note that this security benefit is lost if UAC is disabled!

Table 3-6 Integrity Labels in Windows Server 2008
Integrity Level SID Name

S-1-16-0 Untrusted process. Used for anonymous processes in some configurations.

S-1-16-4096 Mandatory Label\Low Mandatory Level. This level is used for Internet
Explorer in Protected mode by default.

S-1-16-8192 Mandatory Label\Medium Mandatory Level. This is the default for standard
users and the limited token for administrators in Admin Approval mode.

S-1-16-12288 Mandatory Label\High Mandatory Level. This is used for the full token for

administrators in Admin Approval mode.

S-1-16-16384 Mandatory Label\System Mandatory Level. This is used for system processes
and services.

S-1-16-20480 Protected process. Used for certain protected processes, such as Digital Rights
Management processes.

The integrity labels are stored as an ACE for the SID shown in Table 3-6 in the SACL on the
object. This means that to modify the labels the user has to have permission to modify the
SACL. The owner and administrators can do this.

Empty and NULL DACLs

As mentioned earlier, if a process does not have a DACL, it is said to have a NULL DACL.
ANULL DACL is a very important construct in that it means no access control has been defined
on the object. Consequently, it is equivalent to allowing every subject full control over the object.

Typically, NULL DACLs are a result of programmer error. For example, the updater program
for some Microsoft games was broken and would create files with a NULL DACL. NULL
DACLs also were quite common on system objects in the Windows NT 4.0 time frame before
the behavior was changed for those objects to apply a default DACL at create time.

An empty DACL is not the same as a NULL DACL. In the latter case, the object has no access
control defined. In the former, with an empty DACL, it does have access control defined, but
nobody has been granted access to the object. Consequently, it is equivalent to saying that
nobody gets to access the object in any way. Fortunately, the owner of the object can typically
override the permissions and change them.

Security Descriptor Definition Language

Earlier in the chapter we referred to SDDL, the security descriptor definition language. SDDL
was originally conceived as a way for developers to create permissions in string format. It
ended up also being used in many tools, notably command-line tools and the Security

76

Part I: Windows Security Fundamentals

Contfiguration Editor, which is used in Group Policy to set permissions. Therefore, it is
reasonable to expect that a system administrator on Windows is familiar with the language.

SDDL maps very closely to the format of a security descriptor. It has the following format:
Owner SID
Group SID

DACL flags and all DACL ACE:s in string format
SACL flags and all SACL ACEs in string format

It is also not uncommon to see a shortened version that does not include the owner and
group SIDs. This is the case with the SDDL strings produced by the cacls and icacls
command-line tools. To see the entire SDDL string you need a tool such as subinacl, which is
available for download from http;//download.microsoft.com. Figure 3-13 shows the SDDL
string that defines the permissions on the root of the C: drive.

[&| Adm rator: Command Prompk
Microsoft Windows [Uersion 6.08.68811]
Copyright (¢ 2886 Microsoft Corporation. A1l rights v pued .

C:sWindows\system32>"c :\Program Files“Windows Reszource Kits“Tools‘suhinacl™ /fil
e c:is sdisplay=sddl

+File c:=\
/sdd1=0:5-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464G:5-1-5-88|

—956333335 3418522649 1831338344 18532926 271478464D: P CA;OICI;FA;;58Y> H

gégl sFASSSBAXCAS0ICT ;Bx1288a% 55 5BUXCASCIS H H H BU)(H OICIIO;GAS

Elapsed Time: A:88

Done = - ied B, Failed B, Syntax errors
Last Done = c:in

C:sWindowsssysten32»sc shouwsid TrustedInstaller

HAME: TrustedInstaller
SERVICE SID: $-1-5- BB 956558885 3418522649-18310386844-1853292631-2271478464

IC:sWindows\system32>

Figure 3-13 The complete SDDL string on any object can be displayed using the subinacl tool.

Figure 3-13 shows that the owner is a SID: S-1-5-80-956008885-3418522649-1831038044-
1853292631-2271478464. This is the SID for the TrustedInstaller service, Windows Modules
Installer. It owns all operating system-related objects in the file system. TrustedInstaller is
also configured as the primary group on these objects.

You may also see the SDDL string in Figure 3-13, shown as O:TIG:TL Tl is a shortcut name for
TrustedInstaller, the entity represented by the SID in Figure 3-13. Because that version is a
little easier to read, we will analyze that. Notice that it contains two tokens: O:TI and G:T1. The
parameters are concatenated without any spacing, making the SDDL string somewhat
complicated to read. This is bound to cause confusion, so to parse these strings you need to
remember that O: prefixes the owner and G: prefixes the group.

Also notice the start of the DACL in Figure 3-13, which begins with “D:PARAT”. The “D:” is the
prefix for DACL, even though it appears connected with the TI SID. “P” means the DACL is

Chapter 3: Objects: The Stuff You Want 77

protected against inherited ACEs from parent objects (even though there are no parent objects
here). “AR” is the old-style inheritance required flag, which is no longer used but very often
present in a security descriptor. And “Al” means the DACL was inherited. Because it obviously
was not, it must have been written programmatically to have these flags all set. You should
never see all of those set, particularly not P in conjunction with AI, unless the ACL has been
manually modified.

The remainder of the security descriptor is far easier to read if we reformatit. It may be instructive
to go through and analyze it.

Interpreting an SDDL String
Broken out into its components, the DACL on the root of the C: drive is:

(A;0ICI;FA;;;SY)
(A;0ICI;FA;;;BA)
(A;0ICI;0x1200a9;;;BU)
(A;CI;LC;;;BU)
(A;CIIO0;DC;;;BU)
(A;0ICIIO;GA;;;CO)

o v A WN R

The first ACE applies to LocalSystem (SY). It is an object inherit and container inherit ACE
granting full control (FA).

ACE number two is identical to the first but applies to the built-in Administrators group (BA).

ACE three is the first of three user ACEs. We analyzed that one earlier and concluded that it
amounted to read and execute plus READ_CONTROL and SYNCHRONIZE.

ACE four is another user ACE. It is inherited by folders (CI) but uses an unknown permissions
specification: LC. LC s actually a shortcut used on Active Directory that means List Children.
This much we can tell from the ACE Strings explanation at http;//msdn2.microsoft.com/en-us/
library/aa374928.aspx. However, to understand what permissions are granted by it when used
on a file we need to convert it to a bitmask. To do that we need to know what the constant
ADS_RIGHT_ACTRL_DS_LIST that LC is a shortcut for represents. For that we turn to

the ADS_RIGHTS_ENUM enumeration at http://msdn2.microsoft.com/en-us/library/
aa772285.aspx. It tells us that ADS_RIGHT_ACTRL_DS_LIST means 0x4. 0x4 corresponds to
bit 3 in Figure 3-5. That bit, when set on a directory as we have here, gives the subject the right
to create a subdirectory.

SDDL shows directory-specific shortcuts when you view permissions on a file because the
engine that generates the SDDL does not understand the object types. It simply reads the access
mask and matches that as best as it can to an enumeration of permissions. The directory-specific
permissions simply happen to show up first and therefore are what you see.

The same happened in ACE five. There we see DC, which is short for ADS_RIGHT_DS
_DELETE_CHILD. It means 0x2, or bit 2 being set. On an Active Directory object, that would

78

Part I: Windows Security Fundamentals

give you the right to delete a child object. On a directory, however, bit 2 gives you the right to
create a file in the directory. Taken together, these two ACEs give users the right to create new
subdirectories and to create files in subdirectories.

Finally, we have an ACE for the creator/owner (CO). This is another inherit-only ACE which
applies to all child objects. It grants whoever creates a child-object full control (GA) of the
child object.

Taken together, these ACEs have the visual definition shown in Figure 3-14.

I Advanced Security Settings for Local Disk {C:) 1[

Permissions |

To wiew or edit details For a permission entry, select the entry and then click Edit.

CObject name: [}

Petmission entries:

Type | [Mame | Permission | Inhetited From | Apply To |
Al SYSTEM Full control <not inherited > This Folder, subfolders and Files
Allow Administrators (WIN-PR... Full contral <not inhetited> This folder, subfolders and files
Allow Users (WIN-PRIZHS405... Read & execute <not inhetited> This folder, subfolders and files
05... Create folders [ap... <notinherited= This folder and subfolders

Allow Users (WIN-PRIZHS405.,. Special <not inherited> Subfolders only
Allow CREATOR OWNER Special <not inherited > Subfolders and files only

Add... Edit... Remove

I Replace all existing inheritable permissions on all descendants with inheritable permissions From this object

Managing permission entries

oK I Cancel | Apply |

Figure 3-14 The ACL Ul can be used to verify that you interpreted the SDDL
string correctly while you are learning.

At this point you should have a better understanding than most of how access control works
in Windows. You have even seen a number of tools used to manage permissions. In the next
section we will provide a slightly deeper look, focusing on the tools.

Direct from the Source: Modifying ACLs Can Be Hazardous to
Your Network Health, and Your Career

When you are trying to secure a computer, ACLs can be a friend or foe. I am part of the
Solution Accelerator Team inside of Microsoft. Among other things, my team builds the
security guides for many Microsoft products. ACLs are an aspect of security we always
consider but rarely use on a large scale. Numerous third-party recommendations change
the default ACLs on a system—some with small tweaks; others include large numbers of
changes. A few years ago we released KB885409 to document the issues that can result
from these changes.

Chapter 3: Objects: The Stuff You Want 79

One of the biggest challenges with changing ACLs for system files and utilities is the
unknown (but often significant) impact on application compatibility. Several years ago
we had a customer modify the ACLs on the root of the C:\ drive and propagate these
changes to all subfolders. This configuration was then rolled out to all of their
environments, resulting in thousands of unusable computers. Unknowingly, they had
reduced the level of security and broken dozens of utilities and applications.

Changes to the ACLs of individual files may reduce this risk and often provide the desired
results. The utilities that come with any operating system or product can provide huge
benefits for administrators. Often an attacker can also use these utilities to enumerate
details about the environment, perform nefarious deeds, or cover his own tracks. Limiting
use of these resources should be carefully considered. While they may reduce additional
system threats, they can also cause significant pain when managing the system or
troubleshooting issues in the middle of the night.

Over the years, Microsoft has paid particular attention to this detail, and our team has
seen a significant decrease in the need for changes to the default ACLs. That said, these
changes are always a factor to consider as part of the risk analysis of a system, especially
for areas and applications that contain critical data.

Chase Carpenter, Product Unit Manager
Solution Accelerators - Security and Compliance

Tools to Manage Permissions

There are three large classes of tools to manage permissions: built-in GUI tools such as ACL
UL built-in command-line interface (CLI) tools such as icacls, and other tools such as
subinacl. In this section we will very briefly introduce the major ones. The ACL Ul is relatively
self-explanatory, and we have already discussed it earlier. Therefore, this section focuses on
the other two categories.

cacls and icacls

Change ACLs (cacls) has been built into Windows for many years. It is a command-line tool
that was not entirely updated in Windows 2000 when the inheritance model changed.
Consequently, Microsoft introduced improved cacls (icacls) in Windows Vista and
Windows Server 2008. Although a far more powerful tool than cacls, icacls suffers from
some first-generation bugs, as well as from one notable shortcoming: it has no way to
simply print an ACL as an SDDL string. Hopefully this will be resolved soon, because cacls
is in the process of being deprecated and will likely disappear from the operating system at
some point.

80

Windows Security Fundamentals

In addition to basic functionality, icacls includes some advanced features that were previously
not available in built-in tools:

Saving and restoring ACLs. Using the /save and /restore options, icacls can save an ACL.
You can save the ACL to a file and even view that file. However, contrary to its
appearance, the file is not a text file. It is, in fact, in a binary format that is identical to a
Unicode text file except that it is missing a two-byte marking designating it as such at the
beginning of the file. Consequently, if you open the file in Notepad, Notepad will insert
that marking. This causes the file to be unusable to restore your ACLs from. You may
want to append a .bin extension to your save files just to mark them as binary.

Substituting SIDs. The ability to move permissions granted to one SID to another SID is
a very useful feature in icacls. You do this with the /substitute option on the /restore
command when you restore an ACL

Changing owner. Using the /setowner switch, icacls can change the owner of an object.

Find all permissions for a particular user. It is not uncommon to need to produce a list
of all permissions for a particular user. You can easily do that using the /findsid option.
This could be very useful in an audit situation.

Resetting ACLs. If an ACL has been destroyed for some reason, you can reset it to the
inherited ACL using the /reset option. Keep in mind, however, that this does not help
you restore permissions to their defaults if you destroy the permissions on critical
operating system files. Those normally do not use inherited permissions. Thete is, in fact,
no way to restore the default permissions. This is why it is unsupported to change
permissions on critical operating system files. See KB 885409 for more details.

Grant/Deny/Remove. You can, of course, grant, deny, and remove permissions for any SID.

Set integrity level. The functionality to manage the integrity level is also included in icacls.
A few times [have seen users unable to delete objects because they were running with
medium integrity (the default) and the object had a high label. The /setintegritylevel
switch can fix that.

View SDDL. As mentioned earlier, icacls does not have a way to view the SDDL string,
but cacls does. Use cacls <object>/s.

Remove inherited permissions. Nor does icacls have a way to remove inherited
permissions. To do that you need to use cacls without the /E switch.

Warning There is a bug in the underlying component used by cacls, icacls, and external
tools such as subinacl that can cause serious confusion. To see the bug, open a command
prompt at %systemroot%\system32\ and run icacls c:. Then run icacls c:\ and compare the
results. They will be different. C: is not a valid directory. This causes the component that
retrieves the ACL to fail and instead retrieves the ACL from the current directory. Do not forget
that you always need to end all paths in all three of these command-line tools with a
backslash (\).

Chapter 3: Objects: The Stuff You Want 81

SC

SC, the command-line service configuration utility, can show and manage ACLs on services.
It only shows them in SDDL, however. To see this, run sc sdshow <servicename>. You can set
the ACL on a service using sc sdset <servicename> <SD in SDDL format>.

subinacl

Earlier you saw subinacl used to show a security descriptor. More powerful than all the
built-in CLI tools combined, subinacl is also correspondingly more complicated. However,
it is the only tool that can manage permissions on all these objects:

Services

Files

Cluster shares

Printers

Shares

Registry keys

SAM objects

The IIS metabase (which is no longer used in IIS 7)

Processes

Kernel objects

Clearly, subinacl is primarily for very advanced administrators. However, it can be invaluable
when you need to do some advanced ACL work.

Major Access Control Changes in Windows Server 2008

Windows Server 2008, and Windows Vista, introduce a few changes to access control over
prior versions of Windows. A couple of these changes are quite subtle, but two will be very
important to many administrators. Let us start by looking at the subtle ones.

TrustedInstaller Permissions

Many objects in Windows, as you saw earlier, are now owned by the TrustedInstaller service. This
means that even administrators will find plenty of objects that they cannot modify without first
changing the permissions on them. As an administrator, you are never quite completely locked
out, of course, but you will almost certainly at some point run into a situation where you try to
modify an object and get an access denied. This should be a trigger to question whether you really
should be changing this object. The purpose of these restrictions is to maintain stability.

82

Part I: Windows Security Fundamentals

Network Location SIDs

As you saw in Figures 3-10 and 3-11, network location SIDs are present in security tokens.
Including SIDs for INTERACTIVE, NETWORK, and so on in an ACL permits an administrator
to control access to a particular object based on the access method. In Windows Server 2008
and Windows Vista, two new network location SIDs were added: DIALUP and INTERNET.
The former applies to users connecting via a dial-up connection, while the latter applies to
anyone connecting over a network connection that is not considered to be the local site.

File System Name Space Changes

It is hard not to notice that the Documents And Settings directory that we have known since
Windows 2000 is now renamed to %systemdrive%\Users, with significant portions moving
into %systemdrive%\ProgramData. Microsoft did this to simplify the file system namespace.
However, many legacy applications use the full paths to the old directories instead of relying
on environment variables. To avoid breaking such applications, Microsoft created junction
points and symlinks from the old namespace to the new one. As a migration step, all those
junctions and symlinks were outfitted with a Deny ACE to prevent listing the directory. In
other words, you can specify a file in the old Documents And Settings directory, but you cannot
open that directory in Windows Explorer. If you try to open it you will get an access denied
error. Many people have grumbled about this since Windows Vista first came out. It is worth
knowing how this happened.

Power User Permissions Removed

One of the more significant changes is that the permissions for Power Users have been all but
stripped. A few remnants may still exist, but for all practical purposes, Power Users are no
longer any more powerful than Standard Users. This is a transitional step toward the eventual
deprecation of the Power Users group altogether. The original intent behind the Power Users
group was for it to be a group that would be able to do some sensitive things, but would not be
outright administrators. However, by the time all the various permissions were added to make
the group meaningful, they were a hairsbreadth from being administrators. In reality, making
a user a Power User was tantamount to making her an administrator. Because it provided no
value and was potentially misleading, Microsoft embarked on disabling the group. UAC now
fills the purpose that Power Users failed to fill.

OWNER_RIGHT and Owner Rights

The final change is perhaps the most interesting. Prior versions of Windows have always had the
Creator/Owner SID. Creator/Owner is typically used in inheritable ACEs to grant permission
to whoever creates a child object. It is replaced at create time with the SID for the actual creator.

In Windows Vista and Windows Server 2008 there is a new, related SID: OWNER_RIGHT.
While Creator/Owner is replaced at object create time, OWNER_RIGHT is not.
OWNER_RIGHT was created because there is now a change in permissions for owners.

User

Chapter 3: Objects: The Stuff You Want 83

In prior versions, the owner of an object always had implicit permission to change the DACL
on an object. Many administrators requested the ability to change this behavior so that users
could not change permissions on their own files. This functionality is provided in Windows
Vista and Windows Server 2008 through the OWNER_RIGHTS SID. If the OWNER_RIGHTS
SID is applied to the object, it will supersede the implicit rights of owners. Therefore, placing
an OWNER_RIGHTS ACE for modify permissions on an object effectively means the owner
cannot change the permissions on the object.

If the owner is replaced on the object, the OWNER_RIGHTS ACE is set to inherit-only, even if
it is on a file. This effectively disables the ACE until the administrator can make sure that
the permissions do not block everyone out.

Rights and Privileges

We have alluded to one final aspect of access control several times, but never fully explained
it: user rights and privileges. User rights and privileges are often used interchangeably. However,
they are in fact very different constructs. User rights only govern the methods by which a user
can log on. Privileges, however, determine what users can do after they have logged on. You
saw privileges in a token in Figures 3-10 and 3-11. Privileges are managed in Group Policy
under the User Rights Assignment node, shown in Figure 3-15.

B Local Group Policy Editor =100x]
File Action Yiew Help

&= Hm|=]H

= Local Computer Policy Policy = | Security Setting =

[l ¢l Computer Configuration
~| Software Settings

Access Credential Manager as atr...

Access this computer From the net... Evervone, Administrators, Users, Backup Operators

=]

4 Account Policies
4 Local Policies
A Audt Palicy
7 User Rights Assignment
& Security Options
~| Windaws Firewall with Advanced 5
~| Metwork List Manager Palicies
~| Public Key Policies
~| Software Restriction Policies
‘g IP Security Policies on Local Compl
ully Policy-based QoS
| Administrative Templates
=1 4%, User Canfiguration
| Software Settings
| Windows Settings
| Administrative Templakes

< |

<]

Bl [Windows Settings | Ack as part of the operating systerm
| Scripts {Startup/Shutdawn) | &dd workstations o domain
= 3 Security Settings

| Adjust memory quotas for a process
| Allow log on locally

| Allow log on through Terminal Ser...
|Back up files and directories

| Bypass traverse checking

| Change the system time

| Change the time zone

| Create a pagefile

| Create a token object

Create global objects
Create permanent shared objects

| Create symbaolic links

| Debug programs

|Deny access to this computer fro...
|Deny log on as a batch job

|Deny log on as a service

|Deny log on locally

|Deny log on through Terminal Ser...
|Enable computer and user accoun...

Ervca chbdomn from a vamoka o

LOCAL SERYICE, NETWORK SERVICE, Administratars
Administrators, Users,Backup Operators
Administrators,Remate Deskkop Users
Administrators,Backup Operatars

Everyone, LOCAL SERVICE, METWORK SERVICE, Adminis
LOCAL SERVICE, Administrators
LOCAL SERVICE, Administrators
Administratars

LOCAL SERVICE, NETWORK SERVICE, Administratars, SE

Adrniniskrators
Administrators

i drninickrabore

s

Figure 3-15 You can manage privileges in Group Policy.

In many tools—such as the tokens shown in Process Explorer—privileges show up in a
different format than they do in Group Policy. Table 3-7 shows both strings for all privileges,

84

Part I:

Windows Security Fundamentals

along with an explanation of what the privilege means. Bolded privileges in Table 3-7 are
extremely sensitive privileges that give the holder very advanced rights on the computer.

Table 3-7 Privileges in Windows Server 2008

Constant/value

Friendly Name

Description

SeAssignPrimaryTokenPrivilege

Replace a process
level token

Permits the holder to assign a new token to
any process. This privilege can be quite
sensitive if held in conjunction with a
privilege that permits the holder to obtain
a process token.

SeAuditPrivilege Generate security ~ Permits the holder to create arbitrary
audits security event log events. An attacker can
use this to insert arbitrary data into the
event log.
SeBackupPrivilege Back up files and Permits the holder to access all parts of

directories

any file or object, regardless of the ACL
on the object. In other words, it grants
read access to any object.

SeChangeNotifyPrivilege

Bypass traverse
checking

This privilege is enabled for all users. It
causes the system to permit traversal
through directory hierarchies that the user
does not have access to. As the name
implies, it also permits the user to receive
notifications of changes to a securable
object.

SeCreateGlobalPrivilege

Create global
objects

Permits the holder to create objects such as
symbolic links in an object manager
namespace assigned to a different session.

SeCreatePagefilePrivilege

Create a pagefile

Grants the holder the right to create a
pagefile.

SeCreatePermanentPrivilege

Create permanent
shared objects

A permanent object is not deallocated
when it is no longer needed by anyone. This
privilege is somewhat sensitive in that it
could permit a malicious user to consume
resources on the computer, as well as
pre-create objects on which more sensitive
processes rely.

SeCreateSymbolicLinkPrivilege

Create symbolic
links

The ability to create symbolic links has long
been a source of vulnerabilities in
Unix-based operating systems. A malicious
user can create a symbolic link with the
same name as an operating system binary,
but that points to a malicious program. If
an administrator executes the symbolic link
the malicious code would run, not the
intended operating system binary. To
mitigate that risk Windows includes this
privilege.

Chapter 3: Objects: The Stuff You Want 85

Table 3-7 Privileges in Windows Server 2008

Constant/value

Friendly Name

Description

SeCreateTokenPrivilege

Create a token
object

This is a highly sensitive privilege that
permits the user to create security
tokens for arbitrary users with
arbitrary group membership. A subject
holding this privilege can become any
other user on the computer.

SeDebugPrivilege

Debug programs

This is one of the most sensitive
privileges in the operating system. It
permits the holder to debug any
process, including those belonging to
other users. Using this privilege the
holder can inject code into another
process and have it execute in the
context of the subject that started that
process. This is, for example, how all the
programs that dump password

hashes work.

SeEnableDelegationPrivilege

Enable computer
and user accounts
to be trusted for
delegation

This is another very sensitive privilege,
but only in a domain environment. It
enables the holder to configure
accounts that are trusted for delegation.
Accounts that are trusted for delegation
can create security tokens.

SelmpersonatePrivilege

Impersonate a
client after
authentication

Permits the holder to create an
impersonation token for a user. A few years
ago a common attack was to set up a
named pipe with a name similar to a
common share. When a user is connected
to the pipe the malicious program that
created it could impersonate the user and
take any action the user could. In Windows
Server 2008 only a subject holding the
SelmpersonatePrivilege can carry out the
impersonation step.

SeincreaseBasePriorityPrivilege

Increase scheduling
priority

Permits the holder to change the priority
for a process. A subject that holds this
privilege could starve the system of
resources by making a single process
consume all processor cycles.

SelncreaseQuotaPrivilege

Adjust memory
quotas for a
process

Permits the holder to change how much
memory is allocated to a process.

Part I: Windows Security Fundamentals

Table 3-7 Privileges in Windows Server 2008

Constant/value

Friendly Name

Description

SelncreaseWorkingSetPrivilege

Increase a process
working set

This privilege is relatively new. Previously,
this behavior was governed by the
SelncreaseQuotaPrivilege.
SeincreaseWorkingSetPrivilege permits a
holder to change the working set for its
own processes and is therefore less
sensitive.

SeLoadDriverPrivilege

Load and unload
device drivers

Permits the holder to load a device
driver. This is an extremely sensitive
privilege because it permits the holder
to load code that executes in the kernel,
with no security restrictions whatsoever.

SeLockMemoryPrivilege

Lock pages in

Permits the holder to lock pages in memory

memory so they do not get paged to disk.
SeMachineAccountPrivilege Add workstations Permits the holder to add computers in a
to domain domain. This privilege has no effect on a

stand-alone computer.

SeManageVolumePrivilege

Perform volume
maintenance tasks

Permits the holder to perform certain tasks
directly on a disk volume, such as
defragmenting the volume.

SeProfileSingleProcessPrivilege

Profile single
process

Permits the holder to gather certain
performance data related to file
prefetching on a process.

SeRelabelPrivilege

Modify an object
label

Permits a user to modify the label on any
object, even ones the user cannot modify
the SACL on.

SeRemoteShutdownPrivilege

Force shutdown
from a remote
system

As the name implies, this privilege permits
the holder to shut down the computer
remotely.

SeRestorePrivilege Restore files and A very sensitive privilege that permits
directories the holder to write to any file or
registry key.
SeSecurityPrivilege Manage auditing ~ Permits the holder to manage the security
and security log event log, such as changing the size,
emptying the log, and viewing the events
in it.
SeShutdownPrivilege Shut down the Permits the holder to perform a graceful
system shutdown of the computer.
SeSyncAgentPrivilege Synchronize Permits the holder to read all objects

directory service
data

and properties in Active Directory.

Chapter 3: Objects: The Stuff You Want 87

Table 3-7 Privileges in Windows Server 2008

Constant/value

Friendly Name

Description

SeSystemEnvironmentPrivilege

Modify firmware
environment values

Some computers use nonvolatile RAM to
store system configuration parameters. This
privilege permits the holder to modify
those parameters.

SeSystemProfilePrivilege

Profile system
performance

Permits the holder to get performance data
on the entire system.

SeSystemtimePrivilege

Change the system
time

Permits the holder to modify the system
clock. This is considered a sensitive
operation because if a user can modify the
system clock, he can make audit event
appear out of order.

SeTakeOwnershipPrivilege

Take ownership
of files or other
objects

Permits the holder to take ownership of
any object, regardless of the DACL on
the object.

SeTcbPrivilege

Act as part of the
operating system

A holder of this privilege can perform
some very sensitive operations, such a
creating process tokens with arbitrary
SIDs in them.

SeTimeZonePrivilege

Change the time
zone

New privilege in Windows Vista and
Windows Server 2008. This privilege was
added to permit standard users to change
the time zone on the operating system
without having to have permission to
modify the system clock.

SeTrustedCredMan
AccessPrivilege

Access Credential
Manager as a
trusted caller

Permits the holder advanced access to
the credential manager subsystem,
primarily for the purpose of back up. It
allows the holder to back up and restore
all entries in the credential manager.
This privilege is not normally granted to
any user, although some processes, such
as WinLogon and the local security
authority subsystem (LSASS) have it by
default.

SeUndockPrivilege

Remove computer
from docking
station

Permits the holder to perform a graceful
undocking of a laptop from a docking
station. Note that lacking this privilege, the
user can still simply push the eject button
on the dock, or steal both the dock and the
computer.

88

Part I: Windows Security Fundamentals

It is important to understand how the privileges in Table 3-7 function. Just as important is
understanding the risk you run by modifying—particularly removing—privileges from groups
that have them by default. Doing so can have a significantly adverse effect on the stability of
your computer—and, as more than one administrator has discovered, on your longevity with
your current employer. If you manage these privileges properly, you can improve the security
of your computer by modifying the assignment of privileges. If you manage them improperly,
you can render one or more computers unbootable at best, and a serious security hazard

at worst.

RBAC/AZMAN

Before we leave the topic of access control behind and move on to other subjects, it is worth
mentioning the Authorization Manager (AZMAN). AZMAN is not new in Windows Server 2008,
but is not very well known. It is used to allow third-party developers to implement their own
access control mechanisms, orthogonal to those provided by the operating system. Notably,
developers can leverage AZMAN to implement a role-based access control (RBAC) system.

What we have described so far is identity-based access control. Instead of basing the access
control on the identity of the subject, RBAC bases it on role membership. In and of itself this
is not incompatible with identity-based access control, but the constructs used in RBAC are
tied to a representation of the real world and roles. For example, a user may be part of the
“expense report approvers” role, permitting the user to approve expense report.

This part of role-based access control can be implemented using the conventional access control
mechanisms. However, RBAC also permits constraints to be placed on the roles a user can be
amember of. A static constraint prevents a user from simultaneously being granted two roles.
An example of a static constraint would be if a cashier supervisor must never be able to serve as
a cashier. RBAC also supports dynamic constraints, which permit the user to be able to claim
two roles, but not simultaneously. Continuing the previous example, a cashier may also be

a cashier supervisor, but must not be allowed to act in both roles at the same time.

This is a very short introduction to RBAC, and Windows does not support it for managing
Windows itself. However, if you manage or write line-of-business applications on Windows
you may need to know more about RBAC. To learn more, see the white paper at

http:/ /technet2.microsoft.com/windowsservet,/en/library/72b55950-86cc-4c7{-8fbf-
3063276cd0b61033.mspx?mfr=true.

Summary

Access control is a topic that many administrators may not know as well as they should. The
inheritance mechanisms in Windows, for example, are quite complex and very powerful.
Alack of respect for the complexity, as well as misunderstanding how access control works,
has led many administrators, often at the behest of auditors who understand far less about

Chapter 3: Objects: The Stuff You Want 89

how Windows works, to perform wholesale DACL replacement. In the process, they have
completely destroyed one or more computers. At one point [was involved in an incident
where a customer had deployed a Group Policy object to replace Everyone with Authenticated
Users, which, as I mentioned earlier, are functionally equivalent. The result was that the
Administrator’s profile was world-readable, the Recycle Bin did not work, and no users could
log on. If the customer had only done this on a single computer it would have been bad
enough, but the policy was deployed to more than 10,000 computers before it was disabled.
Every single one of those computers needed to be reimaged to restore normal operations fully.
Had the customer understood how DACLs really work, it may have been able to pull that
change off—better still, it would have realized it was unnecessary.

Additional Resources

m Microsoft Knowledge Base Article 885409, “Security Configuration Guidance Support,”
at http://support.microsoft.com/ ?kbid=885409.

Chapter 4

Understanding User Account
Control (UACQ)

— Darren Canavor

In this chapter:

What Is User Account Control? it 92
How Token Filtering Works i it 92
Components of UAC et 94
UAC Group Policy Settings.coiiuiiiiiii ittt 108
What's New in UAC in Windows Server 2008 and Windows Vista SP1........ 111
UAC Best Practices.coiiii i i i i e i e et e it e 112
SUMIMIAIY . . .ttt ettt et e e et e et e 113
Additional Resources.t e e e e 114

With a shift in the way people use computers, such as performing banking transactions,
making online purchases, and sharing and storing personal information, a new set of security
threats emerged. Windows users were largely running with administrative privileges all the
time. If the user accidentally installed malicious software (malware) onto such a computer,
that malware—which had administrator access—could do anything. In Windows Vista and
Windows Server 2008, the new User Account Control (UAC) feature is designed to apply the
principle of “least privilege”: Only give enough access to perform the task with as few
disruptions as possible to the user experience. That includes all interactive users, with the
exception of the built-in Administrator account. This may sound simple, but the challenge
required a solution encompassing extensive changes to the core operating system, changes in
industry perception of the standard user desktop and broad adoption of standard user best
practices by the independent software vendor (ISV) community.

Note Although UAC is available in Windows Server 2008, it is primarily considered a client
feature. To a systems administrator, the impact of UAC on Windows Server 2008 focuses on
using Group Policy to manage Windows Vista client UAC policies.

91

92

Part I: Windows Security Fundamentals

What Is User Account Control?

UAC can help prevent unauthorized changes to a computer by allowing the user to verify
actions before they happen. When a user designated with elevated privilege logs on to
Windows Vista and Windows Server 2008, two access tokens are issued: a full access
token and a filtered standard user access token. The filtering process removes the
administrative privileges, and disables the Administrative group Security Identifiers
(SIDs), resulting in a filtered standard user access token. The standard user token is then
used to start the Windows desktop (explorer.exe) and all subsequent child processes.
Consequently, all applications run with the standard user token by default, and only when
granted permission by an administrator will the application run with a full access token.
Note that because applications inherit the privilege level of the parent process, if the
parent process is running with a full access token, the new child process will inherit and
run without prompting the administrator for permission. For example, if you launch a
command prompt as an administrator, any process you launch from within the command
prompt will run as an administrator.

On the CD Elevating Explorer

By default Explorer.exe is designed not to be elevated. Consequently, if you right-click the
binary and select Run As Administrator it will launch a new window, but in the same context as
the original. On the companion CD, you will find a set of elevation tools, including a tool that
puts an Elevate Explorer Here item on the right-click menu of any folder. Using that tool, you
can launch an elevated Windows Explorer instance anywhere you wish.

How Token Filtering Works

When a user logs on to a Windows Vista or Windows Server 2008 computer, the operating
system examines the Relative IDs (RIDs) and privileges of the user. The user will receive two
tokens (filtered and full) if her account possesses any of the RIDs listed in Table 4-1 or any of
the privileges listed in Table 4-2.

Table 4-1 UAC List of Restricted RIDs

Restricted RIDs Description
DOMAIN_GROUP_RID_ADMINS Administrative domain user account
DOMAIN_GROUP_RID_CONTROLLERS Domain Controllers group
DOMAIN_GROUP_RID_CERT_ADMINS Certificate Publishers group
DOMAIN_GROUP_RID_SCHEMA_ADMINS Schema administrators group
DOMAIN_GROUP_RID_ENTERPRISE_ADMINS Enterprise Administrators group
DOMAIN_GROUP_RID_POLICY_ADMINS Policy Administrators group
DOMAIN_ALIAS_RID_ADMINS Administrative local user account
DOMAIN_ALIAS_RID_POWER_USERS Power Users group

DOMAIN_ALIAS_RID_ACCOUNT_OPS Account Operators group, Server only

Chapter 4: Understanding User Account Control (UAC) 93

Table 4-1 UAC List of Restricted RIDs

Restricted RIDs Description
DOMAIN_ALIAS _RID_SYSTEM_OPS System Operators group, Server only
DOMAIN_ALIAS _RID_PRINT_OPS Print Operators group, Server only
DOMAIN_ALIAS_RID_BACKUP_OPS Backup Operators group
DOMAIN_ALIAS_RID_RAS_SERVERS RAS and IAS servers group
DOMAIN_ALIAS_RID_PREW2KCOMPACCESS Pre-Windows 2000 Compatibility Access
group
DOMAIN_ALIAS_RID_NETWORK_CONFIGURATION_OPS Network Configuration Operators group
DOMAIN_ALIAS_RID_CRYPTO_OPERATORS Cryptographic Operators group

Table 4-2 UAC List of Restricted Windows Privileges

Restricted Windows Privileges Description

SeCreateTokenPrivilege Required to create a primary token

SeTcbPrivilege Identifies holder as part of the trusted computing base

SeTakeOwnershipPrivilege Take object ownership without being granted discretionary
access

SeBackupPrivilege Required to perform system-wide backup tasks

SeRestorePrivilege Required to perform system-wide restore tasks

SeDebugPrivilege Can debug the memory of a process owned by another account

SelmpersonatePrivilege Required to impersonate a client after authentication

SeRelabelPrivilege Required to modify an object’s mandatory integrity level

The filtered standard user token will have all Windows privileges removed except the list of
standard Windows privileges shown in Table 4-3.

Table 4-3 UAC List of Standard Windows Privileges

Standard Windows Privileges Description

SeChangeNotifyPrivilege Required to receive file or folder change notifications
SeShutdownPrivilege Required to shut down a system remotely
SeUndockPrivilege Required to undock a laptop
SeReserveProcessorPrivilege Required to modify user processor privilege
SeTimeZonePrivilege Required to adjust the computer's time zone

The filtered access token has all the RIDs from Table 4-1, if present, marked as
USE_FOR_DENY_ONLY. It also has the privileges listed in Table 4-2 removed. The
unmodified full administrator access token is linked to the filtered access token and is used
when requests are made to launch applications with a full administrator access token.

You can find more information on RIDs in Chapter 1, “Subjects, Users, and Other Actors.” You
can find more information on Windows privileges in Chapter 3, “Objects: The Stuff
You Want.”

94

Part I: Windows Security Fundamentals

Components of UAC

UAC is primarily perceived to be the elevation prompt. However, although that part is the
most visible, it is not the most important part of UAC. UAC, in fact, consists of a number of
components, all of which contribute in some way to enabling more people to run as
nonadministrators, which is the ultimate goal of UAC. This section discusses the various com-
ponents of UAC, starting with the various types of elevation dialogs.

UAC Elevation User Experience

The most salient impact UAC has on user experience will be seen by users who are members of
the local administrator group. Standard users also have the ability to perform administrative
tasks without having to log off. The prompt for standard users is identical to the administrative
prompt, except it requires password entry.

The Credential Prompt

On Windows Vista and Windows Server 2008, with the exception of the built-in administra-
tors account, all users start applications without administrator-level privilege. When a given a
task requires administrator privilege the interactive standard user will be presented with an
elevation credential prompt, shown in Figure 4-1, requiring the entry of a valid user name and
password of a user that is a member of the Local Administrators group.

User Account Contral [‘&J

@ Windows needs your permission to continue

If you started this action, continue,

Date and Time
| Microsoft Windows

To continue, type an administrator password, and then click OK

| “Jzer name |

[

| Password |
Domain: HOSTCOMPUTER

v Details | Cancel

User Account Control helps stop unauthorized changes to your computer.

Figure 4-1 A standard user is presented with a prompt for credentials when attempting
to perform an administrative action.

The Consent Prompt

By default the consent prompt, shown in Figure 4-2, is presented when a user who is a mem-
ber of the local administrators group attempts to perform a task that requires administrator

Chapter 4: Understanding User Account Control (UAC) 95

privilege. This consent prompt is presented only to local administrators running in Admin
Approval Mode.

r b |
User Account Contral L&J

G Windows needs your permission to continue

If you started this action, continue,
Microsoft Management Conscle
Microsoft Windows

| Details Continue |[Cancel

User Account Centrol helps stop unauthorized changes to your computer.

Figure 4-2 An administrator is presented with a prompt for consent when attempting to perform
an administrative action.

To help users make informed decisions, the UAC elevation prompts are color-coded and use
different text to indicate an application’s potential security risk. For example, the color (four-color
shield on blue-green bar) and text of Figure 4-2 indicate a Windows Vista or Windows 2008
application requiring administrative access, such as the Microsoft Management Console.

When an application attempts to run with an administrator’s full access token, Windows
Vista and Windows Server 2008 analyze the executable to determine its publisher and uses
this information to determine the correct user experience.

Various alternative prompts are shown in Figures 4-3 through 4-5 and are distinguished by
different colors and text. For example, in Figure 4-3 the color (yellow shield on gray bar) and
text indicate that the application requiring administrative access is Authenticode signed and
trusted by the local computer, such the Microsoft Firewall Client for ISA Server. In Figure 4-4
the color (yellow shield on yellow bar) and text indicate that the application requiring
administrative access is unidentified and does not have a valid Authenticode signature from
the publisher; therefore, take care before permitting the application to run. And in Figure 4-5
the color (red shield on red bar) and text indicate that the application requiring administra-
tive access is from an explicitly blocked or untrusted publisher. An administrator can place
the Publishers signing certificate in the local computer Untrusted certificate store to block a
given publisher—this can also be set via Group Policy.

Note that UAC dialog boxes also change the displayed executable name and path details
based on the trust level of the publisher’s Authenticode signature. For example, in
Figures 4-3 and 4-5, the user is trying to start the same application. The difference is that
in Figure 4-3, the publisher is trusted, while in Figure 4-5 the publisher is explicitly
blocked. When a publisher is trusted, not only does the dialog box color change, but the
displayed text is also much friendlier.

96

Part I: Windows Security Fundamentals

User Account Control &J
-
\Y

If you started this program, continue,

- Firewall Client for ISA Server
Llj‘l-,-—‘ Micrasoft Corporation
"D\Applications\FirewallClient\Setup.exe”

2 ii_letailsf Continue |[Cancel

User Account Control helps stop unauthorized changes to your computer.

ke

Figure 4-3 UAC prompt indicating that the application requiring administrative
access is Authenticode-signed and trusted by the local computer.

User Account Contral L'é_g-J

= — B
|\U An unidentified program wants access to your computer

Don't run the program unless you know where it's from or you've used it
before,

El dvdburn.exe
l— Unidentified Publisher

+ Cancel
Tdon't know where this program is frem or what it's for.

%> Allow
Itrust this program. I know where it's from or I've used it before.

v | Details

User Account Control helps stop unauthorized changes to your computer.

W

Figure 4-4 UAC prompt indicating that the application requiring administrative access
is unidentified and does not have a valid Authenticode signature from the publisher.

In Windows Vista and Windows Server 2008 the shield icon shown in Figure 4-6 denotes that
when a user clicks a shielded control or program, UAC will prompt for authorization before
continuing.

Some Control Panel components, such as the Date and Time, contain both administrator and
standard user operations. For example, standard users can view the clock and change the
time zone, but a full administrator access token is required to change the local system time, as
shown in Figure 4-7. One reason for this is that a user who changes the system time can
reorder events in the event log or impact the ability for a computer to authenticate to a
Windows domain.

Chapter 4: Understanding User Account Control (UAC) 97

r

-
User Account Contral Iﬁ

@J This program has been blocked

Your administrator set policy to block this program.

Setup.exe
Untrusted Publisher

"D\Applications\FirewallClient\Setup.exe”

Close

User Account Contrel helps stop unauthorized changes to your computer.

o

Figure 4-5 UAC prompt indicating that the application requiring administrative
access is from an explicitly blocked or untrusted publisher.

Figure 4-6 The shield icon denotes an administrative action in Windows Vista and Windows 2008.

.
Date and Time ﬁ

Date and Time: | Additional Clocks

Date:
Sunday, Movember L3, 2007

Time:
$:44:32 PM

| I¢] Change date and time...

Time zane

{GMT-08:00) Pacific Time {US & Canada)

[Change time zane..,

Daylight Saving Time begins an Sunday, March 09, 2008 at 2:00 AM, The
clock is set to ga forward 1 hour at this time.

[7] Bemind me ane week befare this change accurs

How doIset the clock and time zone?

o

-

Figure 4-7 The Date And Time Control Panel utility is used to configure
local computer time and time zone.

98

Part I: Windows Security Fundamentals

Application Information Service

The Application Information Service (ALS) is a new system service in Windows Vista and
Windows Server 2008 that controls the launching of programs that require one or more ele-
vated privileges, restricted rights, or privileged integrity levels to run. AIS is the component that
actually launches these processes and attaches the right token to them. You could say that AIS is
the heart of UAC. Note that AIS is disabled in Safe Mode; therefore, users who are members of
the local administrator’s group log on with their full administrative tokens. Windows took this
approach because of the recovery and maintenance nature of Safe Mode scenarios.

File and Registry Virtualization

Windows Vista and Windows Server 2008 include file and registry virtualization, which is a
new application compatibility technology to address issues encountered by applications that
historically required an administrator’s access token to run. Virtualization helps mitigate
these applications without burdening the ISV to make changes. A large number of legacy
applications that previously failed to run without the administrators access token now work
on Windows Vista and Windows Server 2008, thanks to virtualization.

When a legacy application running with a filtered standard user access token attempts to
write to a protected directory, such as Program Files, the application is given a virtualized view
of the resource it is attempting to change. The virtualized copy is maintained under the user’s
profile (or registry). Each user has a completely separate copy of the virtualized file. This
means that two users playing the same game on the same computer may not see the same list
ot high scores, because each user could have his or her own virtualized vision of the game’s
% PROGRAMFILES %\Game\highscores.txt file. Therefore, IT administrators must
understand file and registry virtualization and may potentially need to implement custom
virtualization settings within the enterprise to overcome application compatibility issues.
The following section examines file and registry virtualization.

File Virtualization

File virtualization addresses the situation in which an application relies on creating or
modifying files, such as a configuration file, in a protected location (%PROGRAMFILES%,
%PROGRAMDATA%, or %SYSTEMROOT%) writeable only by administrators. Running such
a program with a filtered standard user token may result in unexpected failures, or in some
cases might be entirely blocked from running because of insufficient file or registry access.

When a program writes to a protected system location, the file virtualization filter driver
(%SYSTEMROOT %\System32\Drivers\Luafv.sys) “traps” the operation and redirects it to a
per-user location under the Virtual Store directory, located at %LOCALAPPDATA%\
VirtualStore. When the program later reads the file, Luafv.sys traps the operation and again
redirects it to the user’s Virtual Store. If the file is not found in the Virtual Store, Luafv.sys will
query the nonvirtualized location. Because file virtualization happens automatically, the

Chapter 4: Understanding User Account Control (UAC) 929

program believes it was successful in writing to %PROGRAMFILES%\appName. For security
reasons file virtualization by default will not allow the redirection of known executable file
types such as .exe, .dll, .sys, .bat, and .cmd. If, because of application compatibility constraints,
the program needs to virtualize a .bat file, you can reconfigure the file virtualization filter to
support this. The following examples demonstrate how to configure file virtualization.

Configuring file virtualization to improve application compatibility The
FileList registry is not present by default and must be manually created to configure
file virtualization.

Scenario: An enterprise relies on a legacy accounting application that writes a log file back to the
application’s restricted program folder. To enable virtualization on the accounting program’s
folder C:\appNameX, create a new DWORD named Exclude with a value of 0 under the
following registry key:

[HKLM\SYSTEM\CurrentControlsSet\Services\Tuafv\Parameters\FileList\Device\
HarddiskvoTlumel \ appNamex]

Scenario: An enterprise forces all users to save their data to a specific location by locking down
all user-writeable locations except the designated backup location. With virtualization
enabled, a user can potentially store data in any virtualization-enabled location. To disable
virtualization on a specific folder C:\Program Files\appNameY, create a new DWORD named
Exclude with a value of 1 under the following registry key:

[HKLM\SYSTEM\CurrentControlSet\Services\luafv\Parameters\FileList\Device\Harddiskvolumel
\Program Files\appNameY]

Scenario: An enterprise relies on a legacy accounting application that happens to write a .bat
file back to the application’s restricted program folder. To enable virtualization of .bat file
extension types, create a new REG_MULTI_SZ named ExcludedExtensionsRemove with a
value of bat under the following registry key:

[HKLM\SYSTEM\CurrentControlSet\Services\luafv\Parameters]

Note To expose virtual files and folders, browse to the virtualized file location using
Windows Explorer and click Compatibility Files on the Explorer toolbar.

Registry Virtualization

Registry virtualization is similar to file virtualization but applies to registry keys under
HKLM\SOFTWARE. This feature permits applications that rely on the ability to store
configuration information in HKLM\SOFTWARE to continue to operate when running
without administrative privilege. The keys and data are redirected to HKEY_CLASSES _ROOT\

100

Part I: Windows Security Fundamentals

VirtualStore\SOFTWARE. Note that the VirtualStore location is created on demand by the first
application utilizing virtualization. As with file virtualization, each user has a virtualized copy of
values that an application has stored in HKLM. If, because of application compatibility
constraints, a program needs to configure registry virtualization, this is supported. The
following examples demonstrate how to configure registry virtualization.

Configuring Registry Virtualization to Improve
Application Compatibility

Scenario: An enterprise wants to prevent the virtualization of registry values under the key
DontVirtMe. To do so, run the following command from an elevated command prompt:

Reg.exe flags HKLM\Software\pontVirtMe SET DON’T_VIRTUALIZE

Scenario: An enterprise wants to prevent the virtualization of all registry values and subkey
values under the parent registry key DontVirtMe. To do so, run the following command from
an elevated command prompt:

Reg.exe flags HKLM\Software\appnvame RECURSE_FLAG DONT_VIRTUALIZE

Although virtualization allows the overwhelming majority of pre-Windows Vista applications
to run, it is a short-term fix rather than a long-term solution. In addition, some applications
cannot be fixed, including applications that contain specific checks for user privileges. For
example, many process-control applications check whether the user is an administrator, and
exit if the user is not. You can get those applications to run on Windows Vista by attaching an
application manifest that states the application needs to be run with administrative privileges
and redeploy. Developers should modify all applications to comply with the Windows Vista
and Windows Server 2008 Logo Program rather than relying on file and registry virtualization.

Manifests and Requested Execution Levels

Applications running on Windows Vista and Windows Server 2008 can use application
manifests to describe or declare requirements to the operating system at run time.
Administrative applications can declare their privilege requirements in the application
manifest and the system will prompt the user for permission accordingly. Most pre-Windows
Vista administrative applications, however, can run smoothly without modification even
though they lack an entry in the application manifest. This is due to the vast array of
Windows Vista and Windows Server 2008 application compatibility fixes, most of which
depend on UAC being enabled. Application compatibility fixes enable applications to run
that would normally fail if they ran without administrative access. For example, imagine a
game that checks during start-up to see whether the user is a member of the local
administrators group. Running with a filtered standard user access token, this check will
fail—causing the application to fail. Using the application compatibility database, the
operating system can discover that the application must run with a full token and prompt

Chapter 4: Understanding User Account Control (UAC) 101

the user accordingly or discover that the application runs fine without a full token and
makes the application perceive it was started with a full token. These types of application
compatibility fixes are called shims.

All Windows Vista and Windows Server 2008 logo-compliant applications must have a
valid manifest with a defined requested execution level. The application uses the
requestedExecutionLevel attribute to declare its access requirements. If the application
requires administrative access, the application manifest specifies a requested execution
level of requireAdministrator. This will ensure that the system identifies this program as an
administrative application and provide the necessary elevation experience. Note that an
application can also have mixed functionality—administrative and standard user—
depending on the user. For example, the Microsoft Management Console (MMC) is marked
highestAvailable. If a standard user runs the MMC, it will start with standard user privilege
and will not prompt. If the user has a filtered access token, such as a local administrator or
network operator, the operating system will prompt the user to launch MMC with the user’s
highest available privilege, allowing the administrator to have a different level of access than
the network operator and the standard user.

Installer Detection Technology

Installation programs are applications designed to deploy software, and most write to
system directories and machine registry keys. These protected system locations typically
require administrator-level privilege, which means that standard users do not have
sufficient access to install most programs. Windows Vista and Windows Server 2008
heuristically detect installation programs, updaters, and uninstall programs that require
administrator access to run. Installer detection is a key component of the UAC design. It
facilitates the correct elevation experience and prevents installations from being executed
without the user’s knowledge.

Installer detection only applies to the following:

B 32-bit executables
m Applications without a requestedExecutionLevel

B Interactive processes running as a standard user with UAC enabled

The operating system will heuristically determine whether an application is an installer.
Heuristics are based on the following attributes:

m Keywords included in the filename, such as install, setup, update, and other language
equivalents

m Keywords in the following Versioning Resource fields of the executable: Vendor,
Company Name, Product Name, File Description, Original Filename, Internal Name,
and Export Name

102

Part I: Windows Security Fundamentals

m Keywords in the side-by-side manifest that are embedded in the executable
m Keywords in specific StringTable entries that are linked in the executable

m Key attributes in the RC data that are linked in the executable

For example, if you have an application called setup.exe or install.exe, it will be detected as an
installer and will automatically get a prompt. You can find general information and an
overview of the Microsoft Windows Installer at MSDN: http://go.microsoft.com/fwlink/
?LinkId=30197.

User Interface Privilege Isolation

User Interface Privilege Isolation (UIPI) is a new technology in Windows Vista and Windows
Server 2008 to help isolate administrator-level processes from processes running with lower
privileges on the same interactive desktop. UIPI prevents a lower-privilege application from
using Windows messages to send input to a higher-privilege process. Sending input from one
process to another allows a process to “inject” input into another process without the user
providing consent.

UIPI defines a set of permitted Windows messaging interactions controlled by the highest of
the different process levels. Higher privilege levels can send Windows messages to applications
running at lower levels, but lower levels cannot send certain Windows messages to application
windows running at higher levels. UIPI does not interfere or change the behavior of window

messaging between applications at the same privilege level. UIPI comes into play for a user who
is a member of the administrators group and chooses to run both administrator and standard
user privileged applications on the same interactive desktop.

Secure Desktop Elevation Prompts

Credential and consent prompts are displayed on the secure desktop by default in Windows

Vista and Windows Server 2008. Every application must run on a desktop, and each interactive
user receives a desktop upon logon where all her applications run. The Secure Desktop is used
by the operating system for services and sensitive user interfaces such as the log-on interface.

By presenting the elevation prompt on the secure desktop, the operating system guarantees
that the information being presented cannot be tampered with. When an executable requests
elevation, the user is switched from the user’s interactive desktop to the secure desktop. The
secure desktop renders a dimmed background of the user desktop and displays a highlighted
elevation prompt. When the user clicks Continue or Cancel, the desktop automatically
switches back to the user’s interactive desktop. While malware can paint over the interactive
desktop and present an imitation of the secure desktop (spoofing), authorizing consent does
not allow the malware elevation. If UAC is configured to prompt for credentials, malware
imitating the credential prompt may gather the user’s credentials; however, the malware will
be unable to use those credentials remotely to obtain administrator privilege. Somewhat

Chapter 4: Understanding User Account Control (UAC) 103

bizarrely, the malware will gain absolutely nothing from spoofing the admin approval mode
dialog box. Malware cannot enter the user name and password into a valid UAC dialog box

presented on the Secure Desktop, nor can it use runas.exe to invoke a process with elevated
privilege or automate a legitimate UAC dialog box.

Using Remote Assistance

In Windows Vista and Windows Server 2008, a domain user can run as a standard user and
have a centralized IT group provide all administration tasks. Microsoft provides both Remote
Desktop (RD) and Remote Assistance (RA) access to computers for different administration
purposes. RD sessions are useful when an administrator does not require end-user interaction
but does require full control of the remote computer. RA is useful for diagnosing and trouble-
shooting problems when the end user needs to demonstrate the problem to an IT expert.
RA has been impacted by UAC; it is important that you understand how.

IT experts will experience two typical problems using RA. The first is that by default, the UAC
prompts use the secure desktop and consequently are not available to the remote user. The
second is if the UAC enterprise policy Behavior Of The Elevation Prompt For Standard Users
is configured to Automatically Deny Elevation Requests, elevation is blocked entirely.

Windows Vista SP1 has a new UAC policy to address the challenge of the secure desktop
prompting: User Account Control: UTAccess Applications To Prompt For Elevation Without
Using The Secure Desktop. With this policy configured, AIS dynamically disables secure
desktop prompting for UlAcess accessibility applications such as Remote Assistance and
re-enables it once the program exits. For more details, see “What Is New in UAC in Windows
2008 and Windows Vista SP1” later in the chapter.

If the policy Behavior Of The Elevation Prompt For Standard Users is set to Automatically
Deny Elevation Requests, the IT expert who connects using RA will be unable to launch an
application with administrative privilege. To work around this issue, the IT expert can use
runas.exeto launch a Command Prompt window using her own user name and password and
then start a process that requires elevation. UAC will use the IT expert’'s UAC prompt policy.

The following procedure could be used by an IT expert for running the Registry Editor with
administrator privilege:

1. Open a command prompt and type runas /user:domain\ITExpert cmd.exe.
2. Inthe new Command Prompt window that opens up, type regedit.exe.

3. Respond to the UAC elevation prompt.

UAC Remote Administrative Restrictions

When an administrator logs on to a Windows Vista or Windows Server 2008 computer
remotely, using normal Windows networking, he logs on in Admin Approval mode, just as if
he were logging on locally. To augment this behavior, UAC restricts remote administration to

104

Part I: Windows Security Fundamentals

prevent admin loopback attacks and help protect against local malicious software running
remotely with administrative privilege. For example, admin loopback would occur when a
user logs on with a filtered access token and then malware simply performs a net use
\\127.0.0.1\c$ to obtain administrative access to the file system. When UAC remote
restrictions are enabled, the loopback would also obtain a filtered access token and not full
administrative access. This behavior works differently for different types of user accounts, as
described in the following sections.

Local User Accounts

Imagine that a user who is local to the server and a member of the local Administrators group
on the server establishes a remote connection by net use * \\server\share. In this scenario,
the token used for that user on the server will not be a full administrative token as in previous
versions of Windows. The user has no elevation potential on the remote computer and cannot
perform administrative tasks. If the user wants to administer the workstation with a local
account, she must interactively log on to the remote computer by Remote Assistance or
Remote Desktop if available.

Domain User Accounts

When a user with a domain user account logs on to a computer remotely, and he is a member
of the local Administrators group, the domain user will run with a full administrator access
token on the remote computer and UAC will not be in effect.

Managing UAC Remote Restrictions

To disable UAC remote restrictions for local accounts and obtain Windows XP and Windows
2003 parity, create a DWORD named LocalAccountTokenFilterPolicy with a value of 1
under the following registry key:

HKLM\SOFTWARE\M1icrosoft\windows\Currentversion\Policies\system

Mapping Network Drives When Running in Admin Approval Mode

When an administrator in Admin Approval mode maps a network share, that share is only
associated to the current log-on session for the current process access token. This means that
if a user running a command prompt (cmd.exe) with a filtered access token explicitly maps a
network share, that network share would not be exposed to any elevated cmd.exe instances
running with a full administrator access token. Note that only in the case of UNC paths will
the sessions be automatically linked by the system.

You can configure a registry value to share network connections between processes started
with the filtered access token and full access token for a member of the Administrators group
only. When you enable this registry setting, if a network resource is mapped to an access
token, the LSA checks whether another access token is associated with the current user

Chapter 4: Understanding User Account Control (UAC) 105

session. If the LSA determines that there is a linked access token, it adds the network share to
the linked location.

To enable a linked network drive, create a DWORD named EnableLinkedConnections with a
value of 1 under the following registry key:

HKLM\SOFTWARE\M1icrosoft\windows\Currentversion\Policies\System

Direct from the Field: Which Accounts Are Accepted for Elevation

Recently I was asked to troubleshoot some elevation problems for a friend of mine. She
was unable to elevate to change some networking parameters on her laptop. The laptop
was domain-joined, but the DC was unavailable at the time. After a few minutes of trou-
bleshooting, I wrote up the following scenario, which I think helps highlight how UAC
is not always intuitive, as well as how it interoperates with other features of Windows:
The computer is called Denise-PC.

The computer is joined to example.com.

The DC for example.com is offline—in other words, Denise-PC is roaming.

She has only previously logged on to Denise-PC using EXAMPLE\Denise.
EXAMPLE\Denise is a member of BUILTIN\Users.

BUILTIN\Administrators on Denise-PC contains BUILTIN\Administrator and
DENISE-PC\Denise.

m When she attempts an administrative action she gets an elevation prompt asking
for an admin account.

We have several options for how to elevate:

Attempt to elevate to BUILTIN\Administrator.
Attempt to elevate to EXAMPLE\Denise.
Attempt to elevate to EXAMPLE\Administrator.

W N e

Attempt to elevate to EXAMPLE\Foo, where Foo is a member of
EXAMPLE\Domain Admins.

5. Attempt to elevate to DENISE-PC\Denise.

Option 1 will fail because BUILTIN\Administrator is disabled by default in Windows
Vista as long as there is another local admin account. Because DENISE-PC\Denise is a
local admin, and it is enabled, BUILTIN\Administrator is not available for use.

Option 2 will fail as well. EXAMPLE\Denise is only a member of users. It is not an
admin and therefore you cannot elevate to it.

106

Part I: Windows Security Fundamentals

Option 3 will fail because although EXAMPLE\Administrator is a member (indirectly)
of BUILTIN\Administrators, it has never logged on to Denise-PC. Because the computer
is offline, authentication of domain accounts has to happen against the password
verifier. (See Chapter 2, “Authenticators and Authentication Protocols,” for information
on cached credentials.) Cached credentials exist only for accounts that have previously
logged on interactively; therefore, we have nothing to verify EXAMPLE\Administrator
against. It should also be pointed out that elevating to a domain administrator on a
member workstation would be an extraordinarily bad idea. For more information on
why, see Chapter 13, “Securing the Network.”

Option 4 fails for the same reason as Option 3.

Option 5 will succeed. DENISE-PC\Denise is a local account. Therefore, no cached
credentials are necessary. It is a member of BUILTIN\Administrators, so it is legal to
elevate to this account. And it is not disabled, so it can be actively used to log on with.

[have found this write-up very helpful in explaining to people which accounts can be
used for UAC elevation, as well as the relationship between domain accounts, password
verifiers, and UAC.

Jesper M. Johansson
Windows Security MVP

Application Elevations Blocked at Logon

Windows Vista and Windows Server 2008 block administrative applications that try to start in
the user’s log-on path. Many ISVs place programs in the user’s log-on launch path to ensure
that they run each time the user logs on. While this solution may be convenient, it often results
in application compatibility problems when the user logging on is not an administrator but the
application requires him to be. This behavior is also convenient for malware, which can simply
place itself in the user’s log-on launch location. From that point forward, every time the user
logs on the malware runs silently with administrator-level access and without the user’s
consent. To block this behavior, Windows Vista and Windows Server 2008 create a workflow
to help the user manage the blocked list of programs. An elevation balloon notifies the user, as
shown in Figure 4-8, and the tray icon allows the user to run the blocked program or enter the
management Ul as shown in Figure 4-9.

With UAC, applications that require administrator-level privileges to run are blocked when
launched from the following locations:

m Per-User Startup Folder %USERPROFILE%\Start Menu\Programs\Startup.

B Per-Machine Startup Folder %ALLUSERSPROFILE%\Start Menu\Programs\Startup.

Chapter 4: Understanding User Account Control (UAC) 107

% Windows has blocked some startup programs
Windows blocks programs that require permission te run when
Windows starts. Click to view blecked programs.

Figure 4-8 Blocked application balloon: Windows has blocked some
start-up programs.

Shaw ar remove blocked startup pragrams
) Microsoft Firewall Client Installer Bootstrap Run blacked pragram

View help

Ext

=

L bl
9:18 PM
Sunday

11/18/2007

Figure 4-9 Blocked application tray icon: Run Blocked Program/Show Or
Remove Blocked Start-up Programs.

B Per-User RUN Key HKEY_USERS*\Software\Microsoft\Windows
\CurrentVersion\Run

B Per-Machine RUN Key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft
\Windows\CurrentVersion\Run.

Note In the preceding section, the asterisk ("*") denotes all user security identifiers (SIDs)
including the .Default SID.

It is important to note that enterprise Group Policy supports a user log-on script that will use
the currently logged-on user’s highest available access token; if the user is a member of the
local administrators group, the script will elevate without prompting the Administrator in
Admin Approval mode.

Configuring Pre-Windows Vista Applications
for Compatibility with UAC
The final and most important step in configuring UAC is ensuring that your software is either

designed to be UAC compliant by following logo requirements or has been configured to
run with Windows Vista or Windows Server 2008.

108

Part I: Windows Security Fundamentals

For new applications that are Windows Vista and Windows Server 2008 logo-compliant,
the application must either run with a standard user privilege or, in the case of an
administrative application, be marked with an application manifest entry. For more
information, visit the Microsoft Windows logo home page at http://www.microsoft.com/
whdc/winlogo/hwrequirements. mspx.

During the deployment of Windows Vista and Windows Server 2008, IT departments may
discover some existing line-of-business (LOB) applications that will not function properly.
In most cases, the problem is due to application incompatibility with the enhancements
incorporated in the new operating systems. Microsoft provides an Application Compatibility
Toolkit that assists in identifying the compatibility problems and aids in the creation of
application compatibility fixes or shims. Some programs may need to perform administrative
operations. For this to work correctly on Windows Vista and Windows Server 2008 under
UAC, the program needs declare this to the operating system so that users will be prompted
for approval before the application can run with a full administrator access token. The
Application Compatibility Toolkit 5.0 with the Standard User Analyzer provides the means
to test, build, and install the application compatibility database entries, which facilitate the
requested execution level marking mechanism.

For information about application compatibility and the Application Compatibility Toolkit 5.0
featuring the Standard User Analyzer, visit TechNet at http://go.microsoft.com/fwlink
/?LinkId=23302.

UAC Group Policy Settings

The following section explores each of the eleven UAC group policies supported on Windows
Vista and Windows Server 2008. These settings can be applied locally using the Local
Security Policy editor or across an enterprise by using Group Policy.

UAC Policy Settings Found Under Security Options

You can find the following nine UAC settings in the Group Policy Editor or the Local Security
Policy editor under: Local Computer Policy\Computer Configuration\Windows Settings
\Security Settings\Local Policies\Security Options.

User Account Control: Admin Approval Mode for the Built-in
Administrator Account

This security setting controls the behavior of the Built-in Administrator (BA) account. If you
use the BA account for daily administrative tasks, you may consider disabling this setting.
However, if you do so, you also lose Internet Explorer Protected Mode. All applications will
run as a full administrator. By default this policy is enabled.

Chapter 4: Understanding User Account Control (UAC) 109

User Account Control: Behavior of the Elevation Prompt
for Administrators in Admin Approval Mode

If an operation requires administrator privilege to start, this policy will control the UAC
prompt experience for administrators in Admin Approval Mode. Although the default consent
configuration is convenient, enforcing credentials may be desirable. For example, if a parent
and child share the same user account, the child will be unable to perform elevated tasks
without knowledge of the password. Also, in some cases administrators may want to disable
elevation prompting without disabling UAC and therefore can set the elevation prompt to
Silent. This retains Internet Explorer Protected Mode, but removes the elevation prompts. By
default this policy is Prompt For Consent.

User Account Control: Behavior of the Elevation Prompt
for Standard Users

UAC provides an in-context elevation prompt experience, and if the user can provide a valid
administrator user name and password, the elevated operation will succeed. For enterprises
that do not want their users to have the opportunity to elevate, you can set this policy to
automatically deny all elevation requests. By default this setting is Prompt For Credentials.

User Account Control: Detect Application Installations
and Prompt for Elevation

This setting enables or disables application installer detection. It is best to leave this setting
enabled, which is the default.

User Account Control: Only Elevate Executables That
Are Signed and Validated

This setting will enforce Authenticode signature validation on any interactive applications
requesting elevation. If an enterprise runs only Authenticode-signed programs, this setting
can increase security by controlling which application publishers are allowed to run with
elevated privileges. However, most users would experience significant application compatibil-
ity problems if they tried to use this setting, which is why it is disabled by default.

User Account Control: Only Elevate UlAccess Applications
That Are Installed in Secure Locations

UlAccess applications are most often accessibility programs that need to interact directly with
the Windows UAC elevation dialogs. Windows Vista and Windows Server 2008 UAC
elevation dialogs are protected with a high integrity level. For UlAccess applications to
interact they must declare this requirement in the application manifest. When the program

110

Part I: Windows Security Fundamentals

starts, it receives a special integrity level permitting interaction. Because UlAccess applications
are powerful, this setting enforces that such programs be started only from a secure directory
file path. UlAccess applications must also have a valid and trusted Authenticode signature.
By default this setting is enabled.

User Account Control: Run All Users, Including Administrators,
as Standard Users

This is the UAC on/off switch. Don’t disable UAC! If UAC is disabled, all related features also
become disabled. File and registry virtualization no longer function and all virtualized data
appear lost to the user. Users who were running in Admin Approval Mode now log on with
tull administrative rights, and all applications run with administrator privilege, silently!
Application compatibility shims designed to increase compatibility with pre-Windows Vista
applications are also disabled. Internet Explorer’s Protected Mode is disabled, forcing
Internet Explorer to run with administrative privilege. Have we convinced you to leave UAC
on? By default this setting is enabled.

User Account Control: Switch to the Secure Desktop
When Prompting for Elevation

This setting determines whether elevation requests are presented on the interactive user’s
desktop or on the secure desktop. The secure desktop prevents output spoofing, which
means that whatever is presented on the secure desktop cannot be tampered with. UAC
dialog boxes on the interactive user’s desktop can be spoofed and therefore are less secure
than those presented on the secure desktop. By default this setting is enabled.

User Account Control: Virtualize File and Registry Write Failures
to Per-User Locations

This setting enables or disables the redirection of write failures for the file system and registry.
Disable this feature if you use only Windows Vista or Windows Server 2008 logo-compliant
software. If you require custom virtualization settings, see “Configuring Registry
Virtualization to Improve Application Compatibility” earlier in the chapter. By default this
setting is enabled.

Related UAC policies

Windows Vista and Windows 2008 also have two complementary policy settings: the Require
Trusted Path For Credential Entry and Enumerate Local Administrator Accounts On Elevation
settings. You can find both settings in the Group Policy Editor under: Local Computer
Policy\Computer Configuration\Administrative Templates\Windows Components\
Credential User Interface.

Chapter 4: Understanding User Account Control (UAC) 111

Require Trusted Path for Credential Entry

This setting controls whether the user must enter Windows credentials using a trusted path.
The trusted path is a secure key sequence—sometimes referred to as a Secure Attention
Sequence (SAS)—which prevents malware from stealing your Windows credentials. When a
standard user tries to perform a task requiring administrator privilege, the system forces the
user to enter Ctrl+Alt+Delete before being redirected to the secure desktop to enter a valid
administrator user name and password to complete the operation. This trusted path
credential workflow prevents input spoofing and output spoofing, making this the most
secure Windows credential input configuration. By default this setting is disabled.

Enumerate Administrator Accounts on Elevation

This setting enables the automatic enumeration of local administrator accounts in the UAC
credential Ul, as shown in Figure 4-10. Note that in some domain-joined environments that
encounter networking connectivity issues, this setting can cause unexpected delays when
enumerating the local administrator accounts. By default this setting is disabled.

User Account Control ‘_&Jl

@ Windows needs your permission to continue

If you started this action, continue.

Date and Time
Microsoft Windows

To continue, type an administrator password, and then click OK.

Admin

| Password

| DesktopAdmin
J

B

¥ | Details ‘ Cancel

User Account Control helps stop unautheorized changes to your computer.

Figure 4-10 Automatic local administrator account enumeration in the UAC credential dialog box.

What's New in UAC in Windows Server 2008
and Windows Vista SP1

UAC underwent only a few small changes in Windows Server 2008 and Windows Vista SP1
when compared to the original release in Windows Vista. The following sections summarize
the UAC changes.

112 Part I: Windows Security Fundamentals

New Group Policy Setting: UlAccess Applications to Prompt
for Elevation without Using the Secure Desktop

This setting enables UlAccess applications such as Remote Assistance to request the disabling
of secure desktop prompting. When the UlAccess application is complete, the secure desktop
prompting is automatically enabled, thus removing the necessity for the end user to allow the
desktop admin elevation access. (See Figure 4-11.) As discussed earlier in this chapter, this is
a convenient setting for those enterprises that rely on Remote Assistance to provide end user
desktop help desk support. By default this setting is disabled.

Windows Remote Assistance \El
Would you like to allow DeskTopAdmin to share control of your desktop?

To stop sharing contrel, in the Remote Assistance dialog box, click Stop sharing or press ESC.

Allow DeskTopAdmin to respond to User Account Yes | | Mo |
Control prompts

What are the privacy and security concerns?

Figure 4-11 Windows Remote Assistance: Allow Helpdesk To Respond To
User Account Control Prompts.

UAC Prompt Reduction When Performing File Operations
in Windows Explorer

When a user creates a new folder in a protected location, the user will be prompted only once
to create and name the folder. This was a two-prompt scenario in Windows Vista RTM.

More Than 40 Additional UAC-Related Application
Compatibility Shims

The UAC team in conjunction with the Application compatibility team produced over 40 new
application shims to help increase Windows Vista and Windows 2008 compatibility.

UAC Best Practices

Managing UAC is not as hard as it seems. How you deploy in an organization depends largely
on your organization’s security needs and tolerance to implement the required policies to
meet those needs. The following solutions are presented in reverse order of preference
(good, better, best) with respect to security value.

Good Practice

Run users in Admin Approval Mode. If an administrative user requires elevated privileges, the
enterprise UAC policy should enforce that the user enters a valid administrator user name and

Chapter 4: Understanding User Account Control (UAC) 113

password instead of simply clicking the Consent dialog box. This configuration prevents
unauthorized elevations on the off-chance that a user leaves his workstation unattended. To
improve security you could also require the Ctrl+Alt+Delete key sequence for any elevation to
complete. This makes entering administrative credentials far more secure.

Better Practice

Enforce that all users who require administrator privilege have two accounts: one standard
user account for day-to-day activities such as reading e-mail and one for the occasional
administrative operation. The standard user can log on and when needed can elevate using a
UAC credential prompt. This is not the best solution because now the user is running both
standard user and administrator-privileged applications in the same interactive session. To
increase security an enterprise can enforce that the user must use Fast User Switching (FUS)
anytime she needs to perform an elevated operation. Although FUS is more secure, it does
have user experience drawbacks. To improve security you could also require the
Cul+Alt+Delete key sequence as with the previous option.

Best Practice

Run all users as standard users. The IT department must then assume that standard users will
generally not be able to install applications and therefore must deploy software on their
behalf. Windows provides an installation service to do this called the Microsoft Software
Installer (MSI) Service. In addition, the Group Policy Software Installation (GPSI) extension
allows applications to be distributed to a user’s computer without any user interaction
required. See the Group Policy Software Installation Extension documentation at http://
go.microsoft.com/ fwlink/?Linkld=71356 for more information.

Summary

UAC is probably the most talked-about feature in Windows Vista. It is even the subject of
advertisements from rival software vendors. It is hard to say whether to be flattered or
annoyed that Microsoft’s competitors are now advertising their products as more desirable
because Windows is too secure. Regardless, UAC is a critical step for Windows. The status
quo, where users run as administrators to get normal tasks done, is unacceptable and has led
to a malware pandemic. Only by helping users run as nonadministrators can we ever hope to
stem the flood of malware and reduce desktop total cost of ownership (TCO).

The future is one where users only use administrative privileges where necessary. UAC is a step
in that direction, but it will only work if people use it, and if they demand that their ISVs get
software that works as a standard user. You can do your part in protecting the IT ecosystem by
using UAC, and by buying software that works with it and rejecting software that does not.

114 Part I: Windows Security Fundamentals

Additional Resources

® Microsoft Corporation (2006). “The Windows Vista and Windows Server 2008
Developer Story: Windows Vista Development Requirements for User Account Control
(UAC),” at http://msdn2.microsoft.com/en-us/library,/aa905330.aspx.

B Mark Russinovich (2007). “Inside Windows Vista User Account Control,” at
http://www.microsoft.com/technet/technetmag/issues,/2007,/06,/UAC/ .

m Raymond Chen (2006). “An Administrator Is Not the Administrator,” at
http://www.microsoft.com/ technet/ technetmag/issues,/2006,/03,/WindowsConfidential /
?related= /technet/technetmag/issues/2006,/03/WindowsConfidential.

B Wole Moses (2007). “Services Hardening in Windows Vista,” at http://
www.microsoft.com/ technet/technetmag/issues/2007,/01 /SecurityWatch/ ?related=
/technet/technetmag/issues/2007,/01/SecurityWatch.

Chapter 5

Firewall and Network Access
Protection

— Kurt Dillard

In this chapter:

Windows Filtering Platform. 116
Windows Firewall with Advanced Security, 118
Routing and Remote Access Services.ouieiiiiineinnennnennn. 130
Internet Protocol Security i e 133
Network Access Protection oiiiiiiiiiii i, 139
SUMIMIAIY .« ottt et et ittt et ettt ettt et 150
Additional Resources.iiiii i e e e 150

If, like me, you were born back when music was recorded in an analogue format on vinyl, you
might remember using computers without continuous Internet access or even no network
connection at all. As today’s network technologies made their way from labs to your living
room, people started to see the consequences of unauthenticated access and plain-text
communication protocols. It seems like we have been playing an incredibly challenging game
of cat and mouse with the malintentioned ever since. Unfortunately, the good guys are the
mice far too often.

The first firewalls were introduced in the late 1980s in response to security breaches such
as the Morris Worm. Early firewalls were simple compared to what is deployed now: They
allowed or blocked incoming traffic based on information in the packet header such as
source IP address and port number. They did not track the state of a communication
sequence between the trustworthy host on the internal network and the anonymous one on
the outside. Firewalls continued to evolve, however. First, firewalls became stateful—that is,
they understood the normal sequence of packets used to establish and maintain communi-
cations between two hosts. Then, firewalls emerged that understood application layer
protocols: They actually examined the payload within the packet to look for malicious traffic.
For example, a firewall protecting a Web server could look at an HTTP request from a remote
client to determine whether it was a legitimate request for data or an attempt to compromise
the server. Application-layer firewalls have since become very sophisticated; anyone who
understands what Microsoft’s Internet Security and Acceleration Server (ISA Server) is doing
when protecting a server providing Microsoft Office Outlook Web Access will realize how
powerful the capabilities of that technology are.

115

116 Part I: Windows Security Fundamentals

So far, we have been talking about what organizations do to protect their network perimeters
using corporate network firewalls. However with so many mobile devices and complex
network architectures, where critical business data is shared with business partners over the
public Internet, most organizations also deploy host-based firewalls.

Authentication and encryption technologies have also advanced considerably since the days
of Gopher and Veronica. Remote hosts can now establish secure communication channels
using Transport Layer Security (TLS), Internet Key Exchange (IKE), and other protocols; they
can authenticate users in many ways; and they can encrypt the network traffic using Internet
Protocol Security (IPsec), Secure Hypertext Transport Protocol (HTTPS), and many other pro-
tocols. Windows Server 2008 includes support for many of these protocols. This chapter will
focus specifically on Windows Firewall with Advanced Security, I[Psec, Network Access Protec-
tion (NAP), and some new capabilities that have been added to Routing And Remote Access
Service (RRAS).

Ancient Protocols: The Internet Before the Web

This may shock some readers, but millions of people used the Internet for communication
and information retrieval long before Sir Tim Berners-Lee and Robert Cailliau developed
the Hypertext Transport Protocol (HTTP) and Hypertext Markup Language (HTML). Itis
true—people were able to find each other and access useful information online without
using browsers! Electronic mail use predates the Internet and actually helped drive its
development. People also shared information online by publishing documents and other
types of data on File Transfer Protocol (FTP) servers, but if you did not already know
where the location of the file you wanted, finding it was very difficult. Gopher—a
distributed document search and retrieval system—was a predecessor of the World Wide
Web. Veronica, one of the Internet’s earliest search engines, could find information based
on the names of menu items on Gopher sites. Wide Area Information Servers (WAIS) was
an early client-server searching system capable of doing full-text searches on Gopher
servers. Yes, I used all of these technologies and more when I got bored with USENET and
Bulletin Board systems, via a 2400 baud modem. I am a dinosaur.

Windows Filtering Platform

To facilitate the development of network traffic filtering products, Microsoft created the
Windows Filtering Platform (WFP). It is available in both Windows Vista and Windows
Server 2008. WFP is not a firewall but rather a set of system services and Application Program-
ming Interfaces (APIs) for use by Microsoft and third-party developers. WFP enables
unparalleled access to the Transmission Control Protocol/Internet Protocol (TCP/IP) stack so
that inbound and outbound network packets can be examined or changed before allowing
them to proceed. Developers can use WFP to build a variety of diagnostic and security tools,
including firewalls and antivirus software. Figure 5-1 illustrates the WFP architecture and
where third-party tools can plug into it.

Chapter 5: Firewall and Network Access Protection 117

Windows Firewall [[Third-party firewall

with Advanced or other types of
Filtering User filtering

Interface applications

[RPC Interface |

Base Filtering Engine

User Mode
Kernel Mode
1
Stream/ Datagram .
DI Data Layer Third-party IDS callout
E=] . Third-party Parental €
3 Stream Layer Shim & ||Inbound/Outbound|| = Controls callout %
o < Ale Layer < - — —
% ' ALE . ‘g, y § Thlrd—parltly antivirus GE)
g (connection managehmen) 2 [|inbound/Outbound 3 callout K
o Transport Layer Shim o T rt L] a
a ransport Layer
% (TCP/UDP) P Y Third-party NAT callout §
o -
] Network Layer Shim Inbound/Outbound
= (IPv4/IPv6) IP Layer IPsec callout
New TCP/IP Generic Filter Engine
Stack

Figure 5-1 The Windows Filtering Platform architecture.
WEP includes the following architectural components:

m The RPC Interface provides access to the WFP. Firewalls and other applications make
calls to the WFP API, which are then passed to the Base Filtering Engine (BFE).

m The Base Filtering Engine is the user-mode component that arbitrates between applica-
tions making filter request and the Generic Filter Engine, which runs inside the driver
that implements the next-generation TCP/IP stack. The BFE adds and removes filters
from the system, stores filter configuration, and enforces WFP configuration security.

B The Generic Filtering Engine (GFE) is the kernel mode component that receives filter
information from the Base Filtering Engine, interacts with callout drivers, and interacts
with the TCP/IP stack. As packets are processed up and down the new TCP/IP stack
they are evaluated by the Generic Filter Engine to see whether they should be allowed
through. The Generic Filter Engine performs this evaluation by comparing each packet
with the relevant filters and callout modules.

m Callout modules are used when an application wants to perform deep packet inspection
or data modification. For example, an antivirus tool may want to inspect traffic at the
application layer before it is actually forwarded to the target application to ensure that
no malware is present in the data.

118 Part I: Windows Security Fundamentals

Windows Firewall with Advanced Security

Connectivity is ubiquitous. Most computers are not only connected to an internal business
network, but they are also connected to the Internet. High-speed wireless networks and
mobile users are everywhere, often exposed directly to the Internet with its vast botnets
hosting all sorts of viral malware and spewing measureless floods of spam. Even servers sit-
ting on managed corporate networks face risks from returning travelers who plug in their
laptops that became infected while on the road; from visiting consultants and customers who
ask to share your network; and of course from malicious insiders who for whatever reason
believe it is in their best interests to exploit your business systems.

For these reasons it makes sense to consider using the host firewall included with Windows
Server 2008 to provide another layer of protection in your defense-in-depth architecture.
Windows Firewall with Advanced Security provides bidirectional filtering to help keep
unwanted traffic from getting to the services running on the system, and to prevent compro-
mised servers from assaulting the rest of your network. Management of the Windows Firewall
and Internet Protocol Security (IPsec) is integrated into a single Microsoft Management
Console (MMC) console so that the firewall becomes the cornerstone of your network’s
isolation strategy.

Improvements in the Windows Firewall

Before we dive into the details of how to use the new Windows Firewall to protect your
Windows Server 2008 hosts, let us quickly review the major enhancements over
earlier versions.

Better Management Interface

The most significant improvement is a new graphical interface for managing the Windows
Firewall locally and through Active Directory domain-based group policies. The old Control
Panel item, Windows Firewall, still provides access to basic controls. The new user interface is
a Microsoft Management Console (MMC) snap-in. For controlling local settings you can
access Windows Firewall with Advanced Security console in the Administrative Tools folder.
This snap-in is also part of the Group Policy editor console for managing the firewall via Active
Directory domain group policies. Improvements have also been made to netsh.exe, the
command-line tool for managing the firewall and IPsec. The netsh command now has a new
context, advfirewall, which you can use to script configuration of the firewall or to manage it
on a Server Core installation.

Windows Service Hardening

While many steps have been taken to protect the services themselves, an attacker can possi-
bly still find a way to exploit a Windows system service. If a service is compromised,
Windows Service Hardening will help to reduce the impact in several ways: The firewall will

Chapter 5: Firewall and Network Access Protection 119

block abnormal behavior such as a service that does not need to access the network trying to
send out HTTP traffic. Chapter 6, “Services,” covers Windows Service Hardening in
significant detail.

Outbound Filtering

After many years observing hand-wringing, hyperventilation, and multi-page walls of text
from vendors, pundits, and security experts (both genuine and self-proclaimed), I concluded
that in most cases, outbound filtering of network traffic on host firewalls is wasted effort. The
key words in that sentence are most cases; I will address what I believe are legitimate uses of
outbound filtering in a moment. To borrow a well-coined phrase from Bruce Schneier, whom
I consider to be a true expert (even if I disagree with him frequently), outbound filtering is
typically nothing more than “security theater.” Inbound filtering is what will stop malicious
network traffic such as Nimda, Slammer, Sasser, Blaster, or anything else that sends unwanted
network traffic to your server.

A whole lot of bloviating was directed at Microsoft when it released the much-improved fire-
wall in Service Pack 2 for Windows XP because it did not do outbound filtering. I am here to
tell you that most of those complaints came from people who do not have a good grasp (to say
it politely) of what is feasible in computer security or from organizations marketing their own
client firewall products. If an attacker (or a piece of malware) has taken control of your
computer, what will stop them from reconfiguring the firewall to allow traffic from whatever
applications they want to run? The attacker probably does not even have to reconfigure the
firewall—they could simply use whatever ports are already allowed, or take control of an appli-
cation that can already send out traffic. Another really bad aspect of most client firewall
solutions that do outbound filtering is the miserable user experience: After you install the
cursed thing you are barraged by hundreds of pop-up dialog boxes asking if you really want to
let Internet Explorer open a connection to www.microsoft.com or if you are absolutely certain it
is a good idea for MSN Web Messenger to send traffic to msn.com. After a week of seeing
several score of these dialog boxes, users—including paranoid systems administrators and
security experts—tend to either disable the thing completely or become trained to click Yes or
Accept immediately so they can get on with whatever it was they were hoping to accomplish
on the computer!

Microsoft’s newest server operating system makes intelligent use of outbound filtering by
blocking system services from initiating network connections except for what they require to
function properly. If a service is exploited, it is not going to be able to reconfigure the firewall
without alerting the user because it is blocked from modifying the firewall settings. By default,
the new firewall allows all other outbound network packets. You could change the default
behavior to block all outbound traffic, but I do not recommend it because you will spend
many hours, days, and perhaps even weeks trying to figure out every exception you need to
make to allow your server to do everything you need it to do.

120

Part I: Windows Security Fundamentals
Granular Rules

In Windows Server 2008 and Windows Vista the firewall is enabled for both inbound and
outbound connections. The default policies block most inbound traffic and allow most
outbound traffic. The firewall supports filtering any IP protocol number, unlike the
Windows XP firewall that could only filter Transmission Control Protocol (TCP), User
Datagram Protocol (UDP), and Internet Control Message Protocol (ICMP) traffic, as shown
in Figure 5-2. You can configure specific rules for blocking or allowing traffic by using IP
addresses, IP protocol numbers, Active Directory directory service accounts and groups,

system services, UDP and TCP source and destination ports, specific types of interfaces, and
ICMP by type and code.

*' Windows Firewall with Advanced Security =10l x|
e actn ven rie zl
@ $’ | tal ‘ = | Apply this rule to the following Intemet Cortrol Message Protocol (ICMP)
connections: —
@ Windows Firewal with Advanced 5 |
= . o Al ICMP types
-
& Specific ICMP types
General | Programs and Services [Packet Too Big
Users and Computers Protocols and Ports | Scope I Ac [] Destination Unreachable 4
[] Source Quench N
— Protocols and ports [Redirect
- Frotocal type: ICMPv4 g EChD R:Su%t i’
outer Adverisement
Protocol number 1 3 [] Router Solicitation '
[] Time Exceeded
) [] Parameter Problem
Local port: All Ports [Timestamp Request

[[] Address Mask Reguest

Example: 80, 445, 3080 (W] Type 0. Code Any

-

Remoopot: [APon

Bxample: 80, 445, 8080
Intemet Control Message Protocol Customi: This ICMP type:
(ICMP) settings: Toe: — o - _ -
Leam more about ICMP settings
_Concel |
Leam more about protocol and ports
ok | cancel | Apoy | abie ... Core Networking

urati... Core Networking had
¥ T i i T r

| |
Figure 5-2 Some of the granular options for filtering in Windows Firewall with Advanced Security.

Location-Aware Profiles

Windows Firewall takes advantage of the new TCP/IP stack’s ability to automatically track
what network it is connected to. You can configure rules and settings for each of the three
profiles: Domain, Private, and Public. The Domain profile applies when all of the computer’s
networks include Active Directory domain controllers for the domain that the computer
belongs to. The Private profile is used when all active network connections have been
designated by an administrator as a private ones protected by a firewall. The public profile is

