
Tracing Anonymous Packets to
Their Approximate Source

Hal Burch – Carnegie Mellon University
Bill Cheswick – Lumeta Corp.

ABSTRACT

Most denial-of-service attacks are characterized by a flood of packets with random,
apparently valid source addresses. These addresses are spoofed, created by a malicious program
running on an unknown host, and carried by packets that bear no clues that could be used to
determine their originating host. Identifying the source of such an attack requires tracing the
packets back to the source hop by hop. Current approaches for tracing these attacks require the
tedious continued attention and cooperation of each intermediate Internet Service Provider (ISP).
This is not always easy given the world-wide scope of the Internet.

We outline a technique for tracing spoofed packets back to their actual source host without
relying on the cooperation of intervening ISPs. First, we map the paths from the victim to all
possible networks. Next, we locate sources of network load, usually hosts or networks offering the
UDP chargen service [5]. Finally, we work back through the tree, loading lines or router, observing
changes in the rate of invading packets. These observations often allow us to eliminate all but a
handful of networks that could be the source of the attacking packet stream. Our technique
assumes that routes are largely symmetric, can be discovered, are fairly consistent, and the
attacking packet stream arrives from a single source network.

We have run some simple and single-blind tests on Lucent’s intranet, where our technique
usually works, with better chances during busier network time periods; in several tests, we were
able to determine the specific network containing the attacker.

An attacker who is aware of our technique can easily thwart it, either by covering his traces
on the attacking host, initiating a ‘‘whack-a-mole’’ attack from several sources, or using many
sources.

Introduction

One of the major problems on the Internet today
is denial of service (DoS) attacks against machines
and networks. As opposed to other types of attacks,
DoS attacks attempt to limit access to a machine or
service instead of subverting the service itself. DoS
attacks are simple to design and implement, and there
is a plethora of readily available source code which
will perform the task. DoS attacks send a stream of
packets at a victim that swamps his network or pro-
cessing capacity, denying access to his regular clients.

There are two basic targets of DoS attacks:
machines and networks. SYN attacks [11] are an
example of an attack against a machine. In these
attacks, a series of TCP SYN packets are sent to a
host, filling its table of ‘‘half-open’’ TCP connections.
Normal connection attempts are dropped. The basic
problem with a skillfully run SYN attack is that the
clients and the attackers are indistinguishable without
further processing. The server must issue SYN/ACK
packets and wait for the client to respond. This partic-
ular attack can be mitigated with appropriate algo-
rithms in the server [11]. Other machine attacks may
be more difficult to defend against.

The second target type, networks, are much more
difficult to defend. Here, the goal is to overload a
company’s connection to its ISP. The attacker focuses
a large stream of data towards the company’s network,
often from a number of sites. The company’s connec-
tion becomes congested, resulting in packet loss. Since
routers cannot distinguish between attacking packets
and valid client packets, they drop them with equal
probability. If the attacker can send packets fast
enough, the drop rate can become so high that an
insufficient number of a client’s packets get through.
Thus, clients cannot not get reasonable service from
any machine beyond the loaded link. The most com-
mon of this type of attack is the Smurf attack [8],
although recent distributed denial of service attacks
(DDoS) [9] have been of this flavor.

The major advantage of DoS attacks is that it is
quite difficult to determine the actual source of the
attack. Since the attacker can basically put any packet
on the local wire, the attacker creates packets whose
source IP address is invalid and completely random.
Thus, when the victim receives these packets, they are
unable to determine the source. The current technique
for tracing a packet stream back to the source requires
cooperation of all the intervening ISPs. This is some-
thing that is difficult to obtain, since the victim is

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 313



Tracing Anonymous Packets to Their Approximate Source Burch & Cheswick

rarely a customer of all of the ISPs between it and the
attacker. The standard technique will be discussed in
more detail later.

We have developed a method to trace a steady
stream of anonymous Internet packets back towards
their source. The method does not rely on knowledge
or cooperation from intervening ISPs along the path.
In additions, tracing an attacking stream requires only
a few minutes once the system is set up for a victim.

Basic Technique

We begin by creating a map of the routes from
the victim (see Figure 2) to every network, using any
known mapping technology [1, 6, 7]. Then, starting
with the closest router, we apply a brief burst of load
to each link attached to it, using the UDP chargen ser-
vice [5]. If the loaded link is a component of the path
of the attacking stream, our induced load will perturb
the attacking stream. Thus, if the stream is altered
when we load a link, this link is probably along the
path from the source host of the attack to the victim
host. If the intensity of the stream is unperturbed by
the load, it is unlikely that the stream of attacking
packets is utilizing that link, so we do not need to
examine the networks ‘‘behind’’ that link.

A B

R4

R5

R6R7

R3

R2

R1

Victim

Attacker

attacking packets

chargen resp chargen resp

UDP chargen requests

Figure 2: Example of traceback step. Packets are sent
to A and B, spoofed from R2, in order to initiate
packet flows towards the victim. This causes
increases congestion along the R3-R2 link, which,
if sufficient, will induce packet loss.

We continue working back through the network
router by router, pruning branches that do not perturb
the attack, as we try to narrow the attack source to one
network, at which point we can shift to more standard
traceback methods by contacting the entity which con-
trols that network.

Executing a trace effectively does require signifi-
cant preparation in the way of data collection. We
need to collect network data, as well as traceroutes
from the victim to all possible networks. Due to asym-
metric routes, naively, directional data must be col-
lected and maintained by reverse traceroute servers or
other means in order to have perfect data. We collect
outbound paths and assume that the incoming paths
are approximately the reverse of those paths. While
this is not completely accurate, by collecting the paths
to all networks, we can determine what links could be
used on a path from a given network to the victim’s
network, so this assumption does not cause as many
inaccuracy as might otherwise occur.

Because we need to induce isolated load on spe-
cific network segments that are not in our purview, we
must identify sources ‘‘willing to’’ (read: will) per-
form that task. We recognize that ISPs are now quite
regularly turning off the services that we exploit to
induce these loads. Thus, we must identify cooperative
hosts at the right places in our network map in order to
do produce the required load.

This element of the technique is worrisome,
since it constitutes a brief denial-of-service attack on
that network link. Hackers already employ bulk ver-
sions of this approach for denial-of-service attacks.
Our technique, on the other hand, carefully limits load
to segments only long enough to rule them out as a
possible component of the suspected path. The differ-
ence is analogous to that between a sword and a
scalpel.

In any case, we recognize the antisocial aspect of
this technique, and expect that the tool will be used
rarely and only in appropriate situations. Possible
users include law enforcement, the military, ISPs, and
companies policing their own private intranets.

Before attacks or victims are even known, a
trusted machine must develop and maintain a current
database of networks and load generators. The current
version of the tool executes the trace from the victim
(targeted) network, but a sufficient complete map of
the Internet might allow a neutral third party to run the
detecting utility, which would allow flexibility in
where to spread some of the bandwidth cost of the
tool.

In either case, the tracing machine emits packets
that stimulate traffic flow through a desired router or
link. A visual display of various statistics of the
incoming packets on the victim’s network helps deter-
mine if that link is used by the packets.

An operator using a tool to probe links on the
path back to the attacker. The application of load is
done manually (see Figure 1). Though there are algo-
rithms that might automate this process, we require
human intervention to reduce the cost of programming
errors. We try to supply the operator with information
about the amount of load she is inflicting on networks,
and she can chose to stop using packet-source

314 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Burch & Cheswick Tracing Anonymous Packets to Their Approximate Source

networks that have already generated a lot of load.

Figure 1: Screen shot of trace-back program. The left-hand screen gives information about the amount the usage of
different hosts to generate pain. The bottom is a graph showing the number of packets received per second. The
right-top shows the traceback step. The bottom of the traceback shows the path so far, and the top shows the
possible next hops. The horizontal double lines are load-balanced lines, so these two IP addresses are really
equivalent, for traceback purposes.

If the induced load is sufficient to induce drops
of incoming packets, it quickly and dramatically
affects the attacking flow. The discomfort to ISPs and
end users is brief enough that it likely to escape notice.
If the load does not induce loss, it may be necessary to
run the load generators longer and seek more subtle
effects on the workload.

Our technique appears to work better when the
network is already heavily loaded, though one can
imagine more subtle statistical effects that may be
detectable when the Internet is relatively quiet. Our
attempts to discover such effects has met with little
success. We found we were interacting with cache and
other optimizations in various routers. In some cases,
our applied load actually increased the packet attack
rate!

Assumptions

Our technique does rely on several assumptions,
but our experience indicates they are often valid and
the technique can work.

Assumptions About the Internet
We assume that most routes over the Internet are

symmetric. Asymmetric routes confuse our mapping,
traceback and loading. However, the proliferation of
reverse traceroute servers, which has proven quite use-
ful for network diagnosis and debugging, might also
facilitate construction of at least a partial directional
map of routes.

We also assume that we can generate enough
load on a particular Internet link to affect perfor-
mance, in particular loss, statistics of the stream of
attacking packets. We must have access to enough
packet generators beyond the tested link to load it,
which can be challenging across infrastructure with
fast links and slower downstream networks. The tech-
niques for doing this will be discussed below.

Hacking Behavior
We assume that the attack is from a single host,

at a fairly consistent rate, and runs for a reasonably
long time. Denial-of-service attacks are more vexing if
they are ongoing, and we have seen attacks that last
for weeks. We have seen attack rates of 200-500 pack-
ets per second from a single host. We need time to

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 315



Tracing Anonymous Packets to Their Approximate Source Burch & Cheswick

move equipment and programs into place, map routes,
and perform the actual traceback.

Bizarre behavior can occur during the traceback,
so we have to examine clues carefully. For example,
the operator might notice an attacking stream drops by
33% rather than dropping off entirely. Such behavior
would be consistent with two or three concurrent
attacks from separate hosts; it also possible that the
attacking stream is being load-balanced across three
different links. Unfortunately, only one packet stream
can be traced at a time, so being able to distinguish
among the streams would be essential to be able to
perform the trace. The operator might be able to use
the arriving TTL value, assuming packets within each
stream are launched with the same TTL value, and
with each stream from different hop distances away.
tcpdump’s filters provide the tools necessary to isolate
such parameters, so that feature of the tool can be used
if one of these parameters are sufficient to distinguish
between streams.

We assume the attacker does not know that her
packets may be traced. An effective hacker attacks
from co-opted hosts and never returns to the attacking
machine. She hides her trail through a thread of login
sessions across many hosts and networks before
attacking the target. The denial-of-service attack we
target with this tool is a one-way packet flow, which
does not rely on interactive login sessions.

We assume that there is something forensically
interesting at the source of the attack. The effort of
running our tool may not be justified if the result is
just disabling one attacking host or convincing one
community of computers to enforce ingress filtering
[10]. We may be able to catch someone who was not
very cautious because he did not expect his packets to
be traced. The difficulty of the tracing task renders this
a common assumption of hackers.

We also assume that the attacker is unfamiliar
with the techniques we provide here. These techniques
are easily thwarted in several ways, including modify-
ing the attacking program to vary the source of the
attack, altering the frequency of the packets randomly,
and attacking from many different sources (the
‘‘whack-a-mole’’ attack).

Network Load: No Gain, No Pain

Once we have determined the path to each net-
work on the Internet, the traceback is done by walking
backwards through the resulting directed graph. We
load a link and hopefully cause enough packet-loss to
see a noticeable drop in the rate of attacking packets.
If a significant drop occurs, we can be fairly certain
that the tested link is on the path from the attacker to
the victim. Otherwise, either the link is not on the path
or we did not provide enough load, or ‘pain,’ to that
link to incur packet loss. Note that since most links are
full duplex, we need to load the link in the direction
towards the victim.

This traceback requires making a high capacity
link very busy for a short period of time, on the order
of a second. It is difficult to generate a flow of packets
from a single host that will do this: it would have to
come from a fast host on a fast, unloaded link. We
would prefer some leverage, some ‘‘gain,’’ on packets
we emit. If we send out a flow of x bits per second
(bps), we want the resulting flow across the link to be
of k x bps, were k is large enough.

To produce the load, we could send a series of
messages, such as ICMP echo request (ping) packets
[4], from the victim’s network out to distant networks
whose return path we expect to include the link we
wish to load. However, using ICMP echo request
packets gets us only one byte in return for every byte
we send out, which is a gain of only 1. In addition,
the return packets traverse the entire network back to
the victim, which loads the entire set of links from the
assistant network to the victim, which obscures the
data when trying to determine the third link out. Send-
ing ICMP echo requests from a separate network dedi-
cated to this service is also problematic, since the
nature of Internet routing means that it is hard to
assure that their return path traverses the link we are
testing.

Instead of sending packets from the victim’s net-
work, we send spoofed packets from a test host
located elsewhere on the network. When testing a par-
ticular link, we send probe packets to the router on the
far end of the link, using as a return address the router
on the near end of the link. The near router indignantly
discards the unsolicited replies (if using TCP, it actu-
ally may reset; for UDP, it may reply with a ICMP
Port Unreachable).

More Gain
Many routers make special efforts to put rate

limits on handling of ICMP echo requests, since they
are used so often. More importantly, the gain of 1 does
not help us much anyway. Thus, we need to use a dif-
ferent service in order to supply the load.

The most obvious choice of service to employ is
the forgotten tiny service TCP character generator
(chargen) [5]. This service generates continuous data
to anyone who connects to it, exactly what we want.
The rate of data flow is limited in general by the rate
that the data is acknowledged by the client machine.
At the cost of a few TCP ACKs from our side, we can
coax a steady stream of data out of a site supporting
this service. Several of these routed over the target
link will generate substantial load. We could even use
the TCP ACKs to pulse all the transmitters to provide
a fine burst of load by ACK-ing several open chargen
sockets simultaneously. TCP chargen is turned off on
many of the Internet’s hosts and routers, but there are
many that run the service, and they are easy to fine.

We recognized two major problems: the TCP
processing on our local host slows this chargen stream
down more than we would like, and, more

316 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Burch & Cheswick Tracing Anonymous Packets to Their Approximate Source

importantly, the chargen stream still must traverse the
path all the way back to the sender, unless we try TCP
sequence guessing and IP spoofing, which gets very
difficult very quickly. We can circumvent this second
problem by using UDP chargen instead of TCP, and
spoofing the packets, but this method provide little
gain, as we usually get around 102 bytes back for our
40 bytes, a gain of only 2.55. (We include 12 bytes of
data in our packets that give information about the
actual source of them.) The chargen RFC specifies
that the return packet should have between 0 and 512
bytes of data [5] (not counting the 28 bytes for the IP
and UDP headers [2] [3]). We found, however, that
some Windows NT 4.0 hosts violate this standard and
return up to 6,000 bytes in response to a single packet,
a gain of 150!

1

10

100

1000

0 100 200 300 400 500 600 700 800 900

G
ai

n

Host

Figure 3: Distribution of gains seen using the broadcast address for Lucent’s intranet. The network that generated a
gain 43,509 and is excluded from this graph.

A spoofed ICMP echo request to a broadcast
address can yield gain as well. By locating networks
‘beyond’ the link to send directed broadcast ICMP
echo requests to, we get a gain of one for each host on
that network which responds. Unfortunately, many
routers process broadcast ICMP echo requests in such
a way that only the router itself returns a packet. This
is, of course, fortunate for the potential victims of
broadcast ICMP echo request attacks, and is, in fact,
recommended for that reason [8]. However, it limits
broadcast ICMP echo request’s usefulness to us.

Such routers do let other broadcast traffic
through, however, and we found that we could obtain
gains in excess of 200 quite often using broadcast
UDP chargen packets, even on networks without NT
4.0 hosts. Surprisingly, many networks within Lucent
still respond to broadcast address 0 instead of 255, so
we had to check both to determine the correct one for

each network. Figure 3 shows a distribution of net-
works and their gain for Lucent’s intranet. Note that
the networks with a gain of less than 1 have a gain of
0, which means that they did not respond to broadcast
UDP chargen at all.

When we initiate the load, the goal is to load one
line or, maybe one router. We certainly do not want to
load the entire path back to the victim. We prevent this
in two different ways. First, as mentioned above, we
spoof the return address of the UDP chargen packets
to be the address of the router on the victim’s side of
the link. Second, we utilize multiple UDP chargen
hosts. To test a link, we select networks that reside
behind the link, as seen from the victim. In particular,
we select networks that have hosts that respond to
UDP chargen broadcast packets. We select a network
for each outbond link from the far router of the line we
are testing. This strategy focuses the load on the line
under examination; the packets travel to the machine
over different lines, hopefully not affecting each other
significantly (again, Internet routing is not inconsistent
with their having traversed a common link previously
in the path, though it is unusual). The load is limited
by the lines the load must traverse, the speed of the
networks where the load is being generated, or our
ability to emit UDP chargen request packets.

The average gain seen in our experiments is
around 133.8 within Lucent. One misconfigured net-
work had a gain of several tens of thousands due to
oddities in its configuration (see below). We can easily
generate 2,500 40-byte packets per second, or 800
kbps. To flood a 10Mbps Ethernet only requires a gain
of 12.5. Figure 4 shows the necessary gains to load a
variety of line types. In order to flood a backbone link,

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 317



Tracing Anonymous Packets to Their Approximate Source Burch & Cheswick

such as an OC-48 or OC-192, one needs gains in
excess of 3,000, which is larger than all but one of the
gains that we have seen. However, when loading back-
bone links, we have help from the rest of the traffic
that is traversing those links, so the actual amount of
traffic required to start packet loss is much less than
the number in the table. Also, we could increase the
rate of outbound packets greatly by using multiple
computers that connect to the Internet over different
links.

Line Type Gain Required
10Mbps Ethernet 12.5
100Mbps Ethernet 125

T1 1.9
T3 56

OC-12 777
OC-48 3,110
OC-192 12,441

Figure 4: Required gains to load a variety of line
types, assuming 800 kbps of emitted packets.

Note that these numbers are a bit rough, since
some of those 2,500 packets will most likely be
dropped. Also, we could use 28 byte packets instead
of 40 byte ones, but it is not clear that we could trans-
mit them much more quickly.

We have discussed only one possible technique
for loading the actual line; another possibility is to
load the router. Diverting packet flow by sending a
message directly to a router is quite difficult, as Inter-
net backbone routers ignore various ICMP messages
to redirect or stifle packet flow. Most methods to load
a router have to tackle its system configuration to limit
return data flow. Router designs also typically have
almost all forwarding handled by a simple machine
that just delegates difficult tasks to a higher layer. Less
legitimate options, such as hijacking BGP sessions or
breaking into the router itself are much too malicious
to be seriously considered.

There are other possibilities on ways to slow
routers, however. One option is to ping flood the
router, i.e., send it ICMP echo requests as fast as pos-
sible. A similar alternative is to send the router a flood
of packets whose Time to live (TTL) value expires at
the desired hop along the path, or to transmit a stream
of UDP packets to high ports to stimulate responding
UDP port unreachables. Since most routers seem to
rate-limit UDP port unreachable messages, we aban-
doned this idea before testing it extensively. The other
methods do not seem to have a major effect.

Another idea is to spew packets at the router to
try and upset its routing table. That is, find some sort
of packet it responds regularly to (TTL exceeded, echo
request) and send it a bunch of packets with random
return addresses. Coping with the packets will require
enough attention to unsettle the route table cache. In
order to combat the incoming stream, it may be useful

to pick a handful of sources and cycle through them.
This approach has not shown much promise when
used within Lucent, perhaps because many Lucent
routers use only a single default route so forwarding
cache state is not a resource issue.

Results

We obtained logins on various hosts throughout
Lucent’s intranet. We ran a non-privileged program
named sendudp to generate a stream of packets back to
a nonexistent host our local network. In most cases we
could trace the packets back to the ‘‘attacking’’ build-
ing. In many we could traceback to the individual Eth-
ernet.

Some links did not respond to our applied load.
In some cases we had to go a hop beyond the non-
responding links (all the links that are connected to a
machine that are one hop away from where we had
traced back to) in order to find a link which, when
loaded, affected the packet flow. Sometimes, we could
pick up enough of a signal from one of these next
layer links that we could continue. It was a quite man-
ual process, however, which could become difficult on
untestable links with a large number of incident links.

With two exceptions, corporate users appeared to
be ignorant of our tests. If the mapping is subtle, and
the load applied for short periods, users are unlikely to
notice the performance hit, or dismiss it as normal net-
work variability.

Early on, we confined our testing to a few net-
works, and the network administrator received enough
complaints to notice our activities several times. Our
subsequent tests appeared to be unnoticed, though in
neither case did we attempt to hide our activities.

On one network which we used to generate load,
the broadcast UDP chargen packet initiated a broad-
cast storm on their network. This network had a gain
in the tens of thousands. Local users definitely noticed
every time we used it, since it brought the network to
a halt. Of the 2,000 networks in Lucent, only this one
appeared to be unstable in this matter. It is unlikely
that our probe packets would be detected on such a
poorly-run network, which is likely to have frequent
packet storms from other causes. The Internet likely
has an even lower rate of misbehaving networks.

Alternative Strategies

This solution is not the only possible one to DoS
attacks. Since DoS attacks rely on anonymity, a solu-
tion must eliminate some anonymity of hosts. There
are two basic methods to do this: ensure that sufficient
spoofed packets are never transmitted over the Internet
and developing a method for tracing back packets if
necessary. The first two methods discussed below
attempt to stop some of the spoofing, by ensuring that
the at least the source IP address is on the same net-
work as the actual source of the packets. The last three
methods discuss alternative methods of tracing

318 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Burch & Cheswick Tracing Anonymous Packets to Their Approximate Source

packets.

The problem with many of these is that they
require universal deployment in order to work. If a
couple ISPs opt to not follow the method, then the
attacker can just launch the DoS from such a network.

Filter Return Addresses at the Source
There are many ways to solve the problem of

anonymous packets. The most desirable is to enforce
correct source addresses at or near their source via a
method called ingress filtering [10]. A company or
university should block outgoing packets that do not
have appropriate return addresses. ISPs should have
similar filters for each of their customers. Many fire-
walls do this as a matter of course.

This solution is undoubtedly the right one.
Anonymous packets have no place on the Internet.
However, these filters do make life more complicated,
and for large users behind slow routers they can even
degrade performance. For network administrators,
these filters are an additional administrative problem:
one more thing to install, maintain, and get wrong.
Several RFC’s recommend it as essential for any
responsible participant in the global routing system.
Most firewalls have the ability and capacity to per-
form these checks. The source-based filtering may
upset mobile networking methodologies.

Filtering in Backbone Routers
Routers at the core of the Internet, those running

BGP4 and exchanging full Internet routing tables,
inherently enforce proper destination addresses on
packets, since the routing system is built around for-
warding the packet toward the value of this field. The-
oretically, routers could perform a similar check on the
source address, i.e., drop those with source addresses
that are inconsistent with their incoming interface.

Unfortunately, the verification is not nearly so
simple, since a packet may come from more than one
possible incoming interface, so routers would have to
maintain a huge amount of state. Not only do routers
not have spare memory resources to maintain this
state, they do not have spare CPU resources to per-
form the verification. In the midst of sustained for-
warding rates of millions of packets per second, often
operating quite near if not at their maximum capacity,
router designers must optimize for speed. An addi-
tional lookup of the source information would require
similar optimization, and subsequent re-engineering of
many routers, an expensive and unlikely scenario
unless ISPs are willing to pay for it.

One could imagine that legal fallout from a par-
ticularly damaging attack might force this scenario,
and some routers may emerge that support such func-
tionality service without re-engineering. In general,
however, the industry has long resisted source-based
policy routing, and we do not expect a fundamental
change in this mind-set in the short to medium term.

Tracing by Hand
The obvious ad hoc solution to finding a spoof-

ing host is to trace packets back to their physical
source manually. This is done by contacting an ISP
and having them test each link to determine if a large
number of packets are traversing that link destined for
the victim network. This is done is in a tree-like man-
ner similar to ours, or at the access points to their net-
works. There are two basic methods to do this, either
examine the traffic flow across the link, or manually
disconnect a link and see if it alters the packet flow
(essentially what we attempt to do without physical
access).

This method requires significant cooperation and
attention from intervening ISPs, which has proven a
problem in past incidents. They may not have the pol-
icy, inclination, time, expertise, or the instrumentation
to help out. Test equipment may not be available for
some locations or links within their network. For
example, some Cisco routers have been known to
crash if IP DEBUG is used under sufficiently heavy
load.

Further, the traces may be needed off-hours: the
Panix attack started a little after five one Friday after-
noon. It may be hard to find someone at any hour at
the ISP who can handle the technical details. Some-
times attacks are only solved because a victim hap-
pens to be well-connected to admin-able friends at
ISPs that are willing to help them out.

This cooperation is very helpful, but selective,
and slows the process down immensely. A quicker
method would be extremely useful.

Shutting Down a Router
One could imagine sending a message to a router

requesting that it drop all packets for a particular desti-
nation for a second or so. This interruption would be
long enough to detect a break in incoming packets,
without noticeably affecting service. Implementing
this feature would provide an obvious denial-of-ser-
vice attack of its own. The router could require that
requests be strongly authenticated, but there is no
infrastructure present for such validation in the current
Internet. In self-defense, a router would have to do a
similar rate-limiting as it does with UDP responses,
rendering the feature useless for a significant attack.
Given the ease that an attacker can hide her attack, it
probably is not worth deploying such a service.

Marking Packets with IP Addresses
Another alternative is to place the IP address of

all the routers that a packet goes through during its
flight across the Internet. This has two obvious disad-
vantages: it requires CPU time of the routers and it
increases the size of packets, especially in the case of
routing loops. Both of these could be reduced by hav-
ing it mark only every 1 in n packets through a given
interface. If n is small enough, a long enough attack
would give you the complete list of routers along the

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 319



Tracing Anonymous Packets to Their Approximate Source Burch & Cheswick

path, if not their actual order. If n is chosen large
enough, the additional router time and packet size
increase would be negligible. In practice, one might
want to randomly vary N to avoid possible problems
with routers synchronizing. If n is too small, than the
attacker can insert packets into the network that can
‘‘fool’’ your system into misdiagnosing the path. In
practice, you may want to keep only one address in a
packet at a time in order to simplify the header.

Ethics

We acknowledge that our methods to traceback
anonymous packets resemble techniques used by
hackers. There are several questions to deal with in
this area.

1. Does the tracking attempt cause more damage
than the actual packets? Obviously if the
answer is yes, then we should not pursue the
technique. We cannot provide a universal
answer to this question; it really depends on the
situation. If the anonymous packet stream has
shut down the daytime service on your web
server, it is perhaps not costing you enough to
take serious action. If they are crashing your
network and denying your customers access to
the service you sell them, then perhaps stopping
is worth the cost of congesting a few network
links for a few seconds (it almost certainly
seems so to you). The user of this method will
have to make this judgment.

2. Does leaving a service (such as UDP chargen)
enabled on your machine implicitly mean you
have given permission to use it? Our method
does not attempt to gain access to private infor-
mation or crash individual machines, but it does
leverage accessible services from private
machines. However, these machines have left
the UDP chargen enabled (or whatever service
is employed).
The easy answer is yes, but it runs dangerously
close to the hacker’s defense that running a ser-
vice with possible security holes indemnifies
those who intentionally exploit it. On the other
hand, we are not really exploiting a security in
an implementation. Indeed, we are following
the intended protocol specification exactly.
Nonetheless, the essence of our tool is the
imposition of a denial-of-service of the
attacker ’s own denial-of-service attack against
us.

After much consideration, we must conclude that
the appropriate answer to this question comes down to
motivation. While a hacker is generally trying to harm
the machine, gain access to private information, or
journey on an ego trip, our tool is leveraging the
machine for a secondary purpose that is helpful to the
Internet community.

We recognize that this argument may not be suf-
ficient for some organizations that reside on the Inter-
net.

Discussion

This technique is not ideal, either in efficiency,
speed, or impact on other Internet users. We have
shown that it works on an intranet, which tends to be a
more controlled environment than the Internet itself.

It would be preferable to find a better solution
involving ISP coordination and cooperation. Unfortu-
nately, we have to admit that sometimes the perpetra-
tors are at ISPs, so an official mechanism that tips
them off might be completely impotent. We expect
that ISPs will drift toward better solutions as their own
clients demand assistance.

Acknowledgments

Alexis Rosen and Simona Nass were very help-
ful in providing information and access during the
Panix attack. Peter Winkler and Diane Litman helped
us with statistical analysis of perturbed packets. Tom
Limoncelli gave helpful information about Lucent’s
intranet. Andrew Gross, k claffy, Doug Comer, Mike
O’Dell, and Marcus Ranum provided a number of use-
ful insights and comments on the issues and tech-
niques raised here.

Author Information

Hal Burch earned his B.S. in Mathematics, Com-
puter Science, and Physics from University of Mis-
souri-Rolla in 1997 and his M.S. in Computer Science
from Carnegie Mellon University in 2000. He is now
working on his doctorate at Carnegie Mellon while
employed by Lumeta Corporation. He is a coach from
the U.S.A. Computing Olympiad. Reach him at
hburch@cs.cmu.edu or hburch@lumeta.com ; see his
web page at http://www.cs.cmu.edu/˜hburch .

Cheswick has worked on (and against) operating
system security for nearly 30 years. Starting in 1987,
he worked at Bell Laboratories on firewalls, PC
viruses, network mapping, and Internet security. He
co-authored the first full book on firewalls and Inter-
net security with Steve Bellovin. The Internet maps he
has created with Hal Burch have appeared on the
cover of Nature, in Wired, and the National Geo-
graphic. Ches recently left the Labs in a small spinoff,
Lumeta Corp., that is mapping and scanning corporate
intranets. In his spare time he he launches high-power
rockets with his wife, works on exhibits for science
museums, and automates his home.

Introduction

[1] Cheswick, B., Burch, H., and Branigan, S.,
‘‘Mapping and Visualizing the Internet’’, to
appear in Proceedings of USENIX Annual Tech-
nical Conference 2000.

[2] Postel, J., ‘‘RFC 791: Internet Protocol,’’ The

320 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Burch & Cheswick Tracing Anonymous Packets to Their Approximate Source

Internet Society, Sept 1981.
[3] Postel, J., ‘‘RFC 768: User Datagram Protocol,’’

The Internet Society, Aug 1980.
[4] Postel, J., ‘‘RFC 792: Internet Control Message

Protocol,’’ The Internet Society, Sept 1981.
[5] Postel, J., ‘‘RFC 864: Character Generator Proto-

col,’’ The Internet Society, May 1983.
[6] Govindan, R. and Tangmunarunkit, H., ‘‘Heuris-

tics for Internet Map Discovery,’’ Technical
Report 99-717, Computer Science Department,
University of Southern California.

[7] Claffy, K. ‘‘Internet measurement and data anal-
ysis: topology, workload, performance and rout-
ing statistics,’’ NAE ’99 workshop

[8] CERT, ‘‘smurf IP Denial-of-Service Attacks,’’
CERT advisory CA-98.01, Jan, 1998.

[9] CERT, ‘‘Results of the Distributed-Systems
Intruder Tools Workshop’’, The CERT Coordina-
tion Center, Dec, 1999.

[10] Ferguson, P. and Senie, D. ‘‘RFC 2267: Network
Ingress Filtering: Defeating Denial of Service
Attacks which employ IP Source Address Spoof-
ing,’’ The Internet Society, Jan, 1998.

[11] CERT, ‘‘TCP SYN Flooding and IP Spoofing
Attacks,’’ CERT Advisory CA-96.21, Sept,
1996.

[12] CERT, ‘‘IP Spoofing Attacks and Hijacked Ter-
minal Connections,’’ CERT Advisory CA-95.01,
Jan, 1995.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 321



322 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA


