Security Concepts

travis+security@subspacefield.org

January 26, 2015

Abstract

This is an online book about computer, network, technical, physical,
information and cryptographic security. It is a labor of love, incomplete
until the day I am finished.

Contents

11
12
12
12
13
13
13
14

14
15
15
16
16
16

16

[9 Hardware Security 38
0.1 Introductiod 38
0.2 Protection Ringd 39
0.3 Operating Moded 39
DA NXDill . . oo 39
[9.5 Supervisors and Hypervisordo vt vv e e 40
0.6 Trusted Computing . - . « -« v v ot e 40
D7 TntelvPrd . . . oo 41
(9.8 Hardware Vulnerabilities and Exploitd 41

(10 Distributed Systems 41
[10.1 Network Security Overviewl 41
[10.2 Network Access Control 42
[10.3 Network Reconnaissancdo 43
[10.4 Network Intrusion Detection and Prevention 44
5 b s 1ho Sine Ona Non of S Dbl S |
[10.6 Hello, My Name is 192168110 45
[10.7 Source Tapping; The First Hop and Last Mild 45
[10.8 Security Equivalent Things Go Togethed 46
[10.9 Man In The Middld 46
[10.10Network Surveillaned 48
[10.11Push vs. Pull Updatedo 48
L012DNSIssued 48
[10.13Network Topologd v oo 48

1 Tdentificati [Auihontication 49
MLl Tdentitd . . o o o oo oo e e 49
(11.2 Tdentity Managementl 49
[11.3 The Identity Continuund 50
[11.4 Problems Remaining Anonymoud 51
[11.5 Problems with Identifying Peopld 51
[11.6 What Authorityd 51

69
69
70
70
70
71
71
72
74
75
76
77

(44
78
79
83
83
84

85
85
86
86
86
86
86
86
87

[20 Intrusion Response 88

[20.1 Response to Worms and Human Perpetratord 88
[20.2 Response to Malward 89
[21 Network Securityl 89
[21.1 The Current State of Thingd 89
[21.2 Traffic Identificatior 90
[21.3 Brute-Force Defensed 92
[21.4 Federated Defensd 92
[21.5 VLANs Are Not Security Technologied 92
[21.6 Advanced Network Security Technologies 92
[22 Email Security 93
[22.1 Unsolicited Bulk Email 93
22.2 Phishing 96
[22.3 Frameworkd 96
[23 Web Security 96
[23.1 Direct Browser Attackd 96
[23.2 Indirect Browser Attackd 97
[23.3 Web Application Vulnerabilitied 99
[23.4 Relevant Standardd 99
235 Crawler Attackd 99
[23.6 SSL Certificates Made Redundantl 100
[24 Software Security 100
[24.1 Security is a Subset. of Correctness 100
242 Secure Coding 100
[24.3 Malware vs. Data-Directed Attackd 101
[24.4 Language Weaknessed 101
[24.5 Reverse Engineerind 103
[24.6 Application Exploitatiod 104
[24.7_Application Exploitation Defensed 105

[24.9 Failure Moded 107
W 108
e R 108

ili 108
MWMM 108
WW%Q Social Engineeringo 109
[25.3 Security Should Be Q‘ b‘ngus, and the Defaull 109

ity Should Be Easy to Usd o oo oo oo 109
s S BB
[26 Attack Patterns 110
....................... 110

wm 110
Wﬂwﬂlﬁdﬁﬁla e 111
hﬁ&i&mmmdﬂmkﬂaﬁm@numemﬂgn_andﬁlamﬁcamd 112
[27 Trust and Personnel Security 112
[27.1 Trust and Trustworthinesdo oot e e na . 112
[27.2 Who or What Are You Trustingd 113
[27.3 Code Provenancd 114

B d The Tcommetemee Dand . oo 115
[27.5 Limiting Damage Caused by Trusted Peopld 115
[28 Cryptographyl 116
' ing Cryptd 116
Wsz Limits of Cryptography 120
[28.3 Cryptographic Algorithmd 123
[28.4 Cryptographic Algorithm Enhancements 128
[28.5 Cryptographic Combinationd o oo 137
[28.6 Cryptographic Protocold 140
BT Bnommted Stomaad . 144

e D 147
E&B—mlnahlhﬁ&mgdlz&g reanrrerr I 148
%lﬁﬁrxmagnaph&&andmlsl 155

157
158
158
158
159
159
160
162
163
163
164
164
164
165
166
169

172
172
173
174
174
175
177
178

184
185
186
186
188
188
189
189
190
190
191
191

192
192
193
193
194
195

10

“ " Conferencesd 234

B36.12Should You Sell Outd 234
[36.13Anonymity isnot a Crimd 236
[36.14Monitoring Your Employeed 237
[36.15Trust People in Spite of Counterexampled 237
136.16Do What I Mean vs. Do What I Sag 238
[36.17You Are Part of the Problem if You...|. 239
[36.18What Do I Do to Not Get Hackedd 239
[37 Resourced 240
B71 My Other Stuff 240
B7.2 Publicationd 240
B7.3 Conferenced 240
BZABOOKY . . o o oo 241
B75 Periodicald . . -« o o o oo 249
B76 Blogd. . . o o oo 242
B7.7 Mailing Listd 243
[37.8 Computer Security Movied 244
[38 Unsorted 244
[39 Creditsd 246

Metadata

The books that help you most are those which make you think the
most. The hardest way of learning is that of easy reading; but a
great book that comes from a great thinker is a ship of thought,
deep freighted with truth and beauty.

— Theodore Parker

11

1.1 Copyright and Distribution Control

Kindly link a person to it instead of redistributing it, so that people may always
receive the latest version. However, even an outdated copy is better than none.
The PDF version is preferred and more likely to render properly (especially
graphics and special mathematical characters), but the HTML version is simply
too convenient to not have it available. The latest version is always here:

http://www.subspacefield.org/security /security concepts.html

This is a copyrighted work, with some rights reserved. This work is licensed un-

der the/Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States Licensel
This means you may redistribute it for non-commercial purposes, and that you

must attribute me properly (without suggesting I endorse your work). For attri-

bution, please include a prominent link back to this original work and some text

describing the changes. I am comfortable with certain derivative works, such

as translation into other languages, but not sure about others, so have yet not

explicitly granted permission for all derivative uses. If you have any questions,

please email me and I'll be happy to discuss it with you.

1.2 Goals

I wrote this paper to try and examine the typical problems in computer security
and related areas, and attempt to extract from them principles for defending
systems. To this end I attempt to synthesize various fields of knowledge, in-
cluding computer security, network security, cryptology, and intelligence. I also
attempt to extract the principles and implicit assumptions behind cryptogra-
phy and the protection of classified information, as obtained through reverse-
engineering (that is, informed speculation based on existing regulations and stuff
I read in books), where they are relevant to technological security.

1.3 Audience

When I picture a perfect reader, I always picture a monster of
courage and curiosity, also something supple, cunning, cautious, a
born adventurer and discoverer.

— Friedreich Nietzsche

This is not intended to be an introductory text, although a beginner could gain
something from it. The reason behind this is that beginners think in terms of
tactics, rather than strategy, and of details rather than generalities. There are
many fine books on computer and network security tactics (and many more not-
so-fine books), and tactics change quickly, and being unpaid for this work, I am

12

http://www.subspacefield.org/security/security_concepts.html
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

a lazy author. The reason why even a beginner may gain from it is that I have
attempted to extract abstract concepts and strategies which are not necessarily
tied to computer security. And I have attempted to illustrate the points with
interesting and entertaining examples and would love to have more, so if you
can think of an example for one of my points, please send it to me!

I'm writing this for you, noble reader, so your comments are very welcome;
you will be helping me make this better for every future reader. If you send a
contribution or comment, you’ll save me a lot of work if you tell me whether you
wish to be mentioned in the credits (see[39) or not; I want to respect the privacy
of anonymous contributors. If you’re concerned that would be presumptuous,
don’t be; I consider it considerate of you to save me an email exchange. Security
bloggers will find plenty of fodder by looking for new URLs added to this page,
and I encourage you to do it, since I simply don’t have time to comment on
everything I link to. If you link to this paper from your blog entry, all the
better.

1.4 About This Work

I have started this book with some terminology as a way to frame the discussion.
Then I get into the details of the technology. Since this is adequately explained in
other works, these sections are somewhat lean and may merely be a list of links.
Then I get into my primary contribution, which is the fundamental principles
of security which I have extracted from the technological details. Afterwards, I
summarize some common arguments that one sees among security people, and
I finish up with some of my personal observations and opinions.

1.5 On the HTML Version

Since this document is constantly being revised, I suggest that you start with
the table of contents and click on the subject headings so that you can see which
ones you have read already. If I add a section, it will show up as unread. By the
time it has expired from your browser’s history, it is probably time to re-read it
anyway, since the contents have probably been updated.

See the end of this page for the date it was generated (which is also the last
update time). I currently update this about once every two weeks.

Some equations may fail to render in HTML. Thus, you may wish to view the
PDF versionl instead.

1.6 About Writing This

Part of the challenge with writing about this topic is that we are always learning
and it never seems to settle down, nor does one ever seem to get a sense of

13

http://www.subspacefield.org/security/security_concepts/security_concepts.pdf

completion. I consider it more permanent and organized than a blog, more up-
to-date than a book, and more comprehensive and self-contained than most web
pages. I know it’s uneven; in some areas it’s just a heading with a paragraph, or
a few links, in other places it can be as smoothly written as a book. I thought
about breaking it up into multiple documents, so I could release each with much
more fanfare, but that’s just not the way I write, and it makes it difficult to do
as much cross-linking as I'd like.

This is to my knowledge the first attempt to publish a computer security book
on the web before printing it, so I have no idea if it will even be possible to
print it commercially. That’s okay; I’'m not writing for money. I'd like for
the Internet to be the public library of the 215 century, and this is my first
significant donation to the collection. I am reminded of the advice of a staffer in
the computer science department, who said, “do what you love, and the money
will take care of itself”.

That having been said, if you wanted towards the effort, you can help me defray
the costs of maintaining a server and such by visiting our |[donation page. If you
would like to donate but cannot, you may wait until such a time as you can
afford to, and then give something away (i.e. pay it forward).

1.7 Tools Used To Create This Book

I use LyX]| but I'm still a bit of a novice. I have a love/hate relationship with
it and the underlying typesetting language LaTeX.

2 Security Properties

What do we mean by secure? When I say secure, I mean that an adversary can’t
make the system do something that its owner (or designer, or administrator, or
even user) did not intend. Often this involves a violation of a general security
property. Some security properties include:

confidentiality refers to whether the information in question is disclosed or
remains private.

integrity refers to whether the systems (or data) remain uncorrupted. The
opposite of this is malleability, where it is possible to change data with-
out detection, and believe it or not, sometimes this is a desirable security

property.
availability is whether the system is available when you need it or not.

comsistency is whether the system behaves the same each time you use it.

14

http://www.subspacefield.org/donate.html
http://www.lyx.org/
http://en.wikipedia.org/wiki/LaTeX

auditability is whether the system keeps good records of what has happened
so it can be investigated later. Direct-record electronic voting machines
(with no paper trail) are unauditable.

control is whether the system obeys only the authorized users or not.

authentication is whether the system can properly identify users. Sometimes,
it is desirable that the system cannot do so, in which case it is anonymous
or pseudonymous.

non-repudiation is a relatively obscure term meaning that if you take an
action, you won’t be able to deny it later. Sometimes, you want the
opposite, in which case you want repudiability (“plausible deniability”).

Please forgive the slight difference in the way they are named; while English is
partly to blame, these properties are not entirely parallel. For example, confi-
dentiality refers to information (or inferences drawn on such) just as program
refers to an executable stored on the disk, whereas control implies an active
system just as process refers to a running program (as they say, “a process is a
program in motion”). Also, you can compromise my data confidentiality with a
completely passive attack such as reading my backup tapes, whereas controlling
my system is inherently detectable since it involves interacting with it in some
way.

2.1 Information Security is a PAIN

You can remember the security properties of information as PAIN; Privacy,
Authenticity, Integrity, Non-repudiation.

2.2 Parkerian Hexad

There is something similar known as the “Parkerian Hexad”, defined by Donn
B. Parker, which is six fundamental, atomic, non-overlapping attributes of in-
formation that are protected by information security measures:

1. confidentiality
2. possession
integrity
authenticity

availability

SR AN R

utility

15

2.3 Pentagon of Trust

1. Admissibility (is the remote node trustworthy?)

o

Authentication (who are you?)
Authorization (what are you allowed to do?)

Availability (is the data accessible?)

AN

Authenticity (is the data intact?)

2.4 Security Equivalency

I consider two objects to be security equivalent if they are identical with re-
spect to the security properties under discussion; for precision, I may refer to
confidentiality-equivalent pieces of information if the sets of parties to which
they may be disclosed (without violating security) are exactly the same (and
conversely, so are the sets of parties to which they may not be disclosed). In
this case, 'm discussing objects which, if treated improperly, could lead to a
compromise of the security goal of confidentiality. Or I could say that two cryp-
tosystems are confidentiality-equivalent, in which case the objects help achieve
the security goal. To be perverse, these last two examples could be combined;
if the information in the first example was actually the keys for the cryptosys-
tem in the second example, then disclosure of the first could impact the confi-
dentiality of the keys and thus the confidentiality of anything handled by the
cryptosystems. Alternately, I could refer to access-control equivalence between
two firewall implementations; in this case, I am discussing objects which imple-
ment a security mechanism which helps us achieve the security goal, such as
confidentiality of something.

2.5 Other Questions

1. Secure to whom? A web site may be secure (to its owners) against unau-
thorized control, but may employ no encryption when collecting informa-
tion from customers.

2. Secure from whom? A site may be secure against outsiders, but not in-
siders.

3 Security Models

I intend to expand this section when I have some time.

o [Computer Security Models

16

http://en.wikipedia.org/wiki/Category:Computer_security_models

o |Bell-LaPadula Model

e Biba Integrity Model

o |Brewer-Nash Model

e |Graham-Denning Model

o [Take-Grant Model

o (Clark-Wilson Model

o |Harrison-Ruzzo-Ullman Model

e [Non-interference Model

Related information in Operating System Access Control (I2.3)).

4 Security Concepts

There is no security on this earth, there is only opportunity.
— General Douglas MacArthur (1880-1964)

These are important concepts which appear to apply across multiple security
domains.

4.1 The Classification Problem

Many times in security you wish to distinguish between classes of data. This
occurs in firewalls, where you want to allow certain traffic but not all, and
in intrusion detection where you want to allow benign traffic but not allow
malicious traffic, and in operating system security, we wish to allow the user
to run their programs but not malware (see [[6.17). In doing so, we run into a
number of limitations in various domains that deserve mention together.

4.1.1 Classification Errors

False Positives vs. False Negatives, also called Type I and Type II errors.
Discuss equal error rate (EER) and its use in biometrics.

A more sophisticated measure is its Receiver Operating Characteristic curve,
see:

o Information Awareness: A Prospective Technical Assessment

17

http://en.wikipedia.org/wiki/Bell-LaPadula
http://en.wikipedia.org/wiki/Biba_Integrity_Model
http://en.wikipedia.org/wiki/Brewer_and_Nash_model
http://en.wikipedia.org/wiki/Graham-Denning_Model
http://en.wikipedia.org/wiki/Take-Grant_Model
http://en.wikipedia.org/wiki/The_Clark-Wilson_Integrity_Model
http://en.wikipedia.org/wiki/HRU_(security)
http://en.wikipedia.org/wiki/Non-interference_%28security%29
http://kdl.cs.umass.edu/papers/jensen-et-al-kdd2003.pdf

4.1.2 The Base-Rate Fallacy

In The Base Rate Fallacy and its Implications for Intrusion Detection, the au-
thor essentially points out that there’s a lot of benign traffic for every attack,
and so even a small chance of a false positive will quickly overwhelm any true
positives. Put another way, if one out of every 10,001 connections is malicious,
and the test has a 1% false positive error rate, then for every 1 real malicious
connection there 10,000 benign connections, and hence 100 false positives.

4.1.3 Test Efficiency

In other cases, you are perfectly capable of performing an accurate test, but not
on all the traffic. You may want to apply a cheap test with some errors on one
side before applying a second, more expensive test on the side with errors to
weed them out. In medicine, this is done with a “screening” test which has low
false negatives, and then having concentrated the high risk population, you now
diagnose with a more complex procedure with a low false positive rate because
you’re now diagnosing a high-prevalence population. This is done in BSD Unix
with packet capturing via tcpdump, which uploads a coarse filter into the kernel,
and then applies a more expensive but finer-grained test in userland which only
operates on the packets which pass the first test.

4.1.4 Incompletely-Defined Sets

As far as the laws of mathematics refer to reality, they are not cer-
tain; and as far as they are certain, they do not refer to reality.

— Albert Einstein

Stop for a moment and think about the difficulty of trying to list all the undesir-
able things that your computer shouldn’t do. If you find yourself finished, then
ask yourself; did you include that it shouldn’t attack other computers? Did you
include that it shouldn’t transfer $1000 to a mafia-run web site when you really
intended to transfer $100 to your mother? Did you include that it shouldn’t
send spam to your address book? The list goes on and on.

Thus, if we had a complete list of everything that was bad, we’d block it and
never have to worry about it again. However, often we either don’t know, or
the set is infinite.

In some cases, it may be possible to define a list of good things (see[34.1); for ex-
ample, the list of programs you might need to use in your job may be small, and
so they could be enumerated. However, it is easy to imagine where whitelisting
would be impossible; for example, it would be impractical to enumerate all the
possible “good” network packets, because there’s just so many of them.

It is probably true that computer security is interesting because it is open-ended;
we simply don’t know ahead of time whether something is good or bad.

18

http://www.raid-symposium.org/raid99/PAPERS/Axelsson.pdf

4.1.5 The Guessing Hazard

So often we can’t enumerate all the things we would want to do, nor all the things
that we would not want to do. Because of this, intrusion detection systems (see
[I6) often simply guess; they try to detect attacks unknown to them by looking
for features that are likely to be present in exploits but not in normal traffic.
At the current moment, you can find out if your traffic is passing through an
IPS by trying to send a long string of 0x90 octets (x86 NOPs) in a session. This
isn’t malicious by itself, but is a common letter with which people pad exploits
(see 24.6). In this case, it’s a great example of a false positive, or collateral
damage, generated through guilt-by-association; there’s nothing inherently bad
about NOPs, it’s just that exploit writers use them a lot, and IPS vendors
decided that made them suspicious. I’'m not a big fan of these because I feel
that it breaks functionality that doesn’t threaten the system, and that it could
be used as evidence of malfeasance against someone by someone who doesn’t
really understand the technology. I'm already irritated by the false-positives
or excessive warnings about security tools from anti-virus software; it seems to
alert to “potentially-unwanted programs” an absurd amount of the time; most
novices don’t understand that the anti-virus software reads the disk even though
I'm not running the programs, and that you have nothing to fear if you don’t
run the programs. I fear that one day my Internet Service Provider will start
filtering them out of my email or network streams, but fortunately they just
don’t care that much.

4.2 Security Layers

I like to think of security as a hierarchy. At the base, you have physical security.
On top of that is OS security, and on top of that is application security, and on
top of that, network security. The width of each layer of the hierarchy can be
thought of as the level of security assurance, so that it forms a pyramid.

You may have an unbeatable firewall, but if your OS doesn’t require a password
and your adversary has physical access to the system, you lose. So each layer of
the pyramid can not be more secure (in an absolute sense) as the layer below it.
Ideally, each layer should be available to fewer adversaries than the layer above
it, so that one has a sort of balance or risk equivalency.

1. network security
2. application/database security
OS security

hardware security

ook w

physical security

19

In network security, we concern ourselves with nodes in networks (that is, in-
dividual computers), and do not distinguish between users of each system. In
some sense, we are assigning rights to computers and not people. We are defin-
ing which computers may talk to which other computers, or perhaps even to
which applications. This is often justified since it is usually easier to leverage
one user’s access to gain another’s within the same system than to gain access
to another system (but this is not a truism).

In application or database security, we are concerned about how software ap-
plications handle security. For example, most databases have notions of users,
and one may allow certain users to access certain databases, tables, or rows and
not others. It is assumed that the adversary is one of the users of the system,
and the discussion centers around what that user can or cannot do within the
application, assuming that the user cannot

In operating system security, we distinguish between users of the system, and
perhaps the roles they are fulfilling, and only concern ourselves with activities
within that computer. It is assumed that the adversary has some access, but
less than full privileges on the system.

Hardware security receives little discussion in security circles, but as processors
and chipsets get more complex, there are more vulnerabilities being found within
them. In hardware security, we assume that the adversary has root-level access
on the system, and discuss what that enables the adversary to do.

When we discuss physical security, we assume that the adversary may physically
approach the campus, building, room, or computer. We tend to create concen-
tric security zones around the system, and try to keep adversaries as far away
from it as possible. This is because if an adversary gains physical, unmonitored
access to the computer system, it is virtually impossible to maintain the security
of the system. This kind of discussion is particularly interesting to designers of
tamper-resistant systems, such as digital satellite TV receivers.

4.3 Privilege Levels
Here’s a taxonomy of some commonly-useful privilege levels.

1. Anonymous, remote systems

2. Authenticated remote systems
Local unprivileged user (UID > 0)
Administrator (UID 0)

ouok w

Kernel (privileged mode, ring 0)

6. Hardware (TPM, ring -1, hypervisors, trojaned hardware)

20

Actual systems may vary, levels may not be strictly hierarchical, etc. Basically
the higher the privilege level you get, the harder you can be to detect. The
gateways between the levels are access control devices, analogous with firewalls.

4.4 What is a Vulnerability?

Now that you know what a security property is, what constitutes (or should
constitute) a vulnerability? On the arguable end of the scale we have “loss of
availability”, or susceptibility to denial of service (DoS). On the inarguable end
of the scale, we have “loss of control”, which usually arbitrary code execution,
which often means that the adversary can do whatever he wants with the system,
and therefore can violate any other security property.

In an ideal world, every piece of software would state its assumptions about its
environment, and then state the security properties it attempts to guarantee;
this would be a security policy. Any violation of these explicitly-stated security
properties would then be a vulnerability, and any other security properties would
simply be “outside the design goals”. However, I only know of one piece of
commonly-available software which does this, and that’s OpenSSL (http://
oss-institute.org/FIPS_733/SecurityPolicy-1.1.1_733.pdf).

A vulnerability is a hole or a weakness in the application, which can
be a design flaw or an implementation bug, that allows an attacker
to cause harm to the stakeholders of an application. Stakeholders
include the application owner, application users, and other entities
that rely on the application. The term “vulnerability” is often used
very loosely. However, here we need to distinguish threats, attacks,
and countermeasures.

— OWASP Vulnerabilities Category (http://www.owasp.org/index.
php/Category:Vulnerability)

Vulnerabilities can be divided roughly into two categories, implementation bugs
and design flaws. Gary McGraw (http://www.cigital.com/~gem/), the host of
the Silver Bullet Security Podcast (http://www.cigital.com/silverbullet/),
reports that the vulnerabilities he finds are split into these two categories roughly
evenly.

4.5 Vulnerability Databases

4.5.1 National Vulnerability Database

NVD is the U.S. government repository of standards based vulnera-
bility management data represented using the Security Content Au-
tomation Protocol (SCAP). This data enables automation of vulner-
ability management, security measurement, and compliance. NVD

21

http://oss-institute.org/FIPS_733/SecurityPolicy-1.1.1_733.pdf
http://oss-institute.org/FIPS_733/SecurityPolicy-1.1.1_733.pdf
http://www.owasp.org/index.php/Category:Vulnerability
http://www.owasp.org/index.php/Category:Vulnerability
http://www.cigital.com/~gem/
http://www.cigital.com/silverbullet/

includes databases of security checklists, security related software
flaws, misconfigurations, product names, and impact metrics.

— NVD Home Page

e National Vulnerability Database (http://nvd.nist.gov/)

4.5.2 Common Vulnerabilities and Exposures

International in scope and free for public use, CVE is a dictionary of
publicly known information security vulnerabilities and exposures.
CVE’s common identifiers enable data exchange between security
products and provide a baseline index point for evaluating coverage
of tools and services.

— CVE Home Page

e Common Vulnerabilities and Ezxposures (http://cve.mitre.org/)

4.5.3 Common Weakness Enumeration

The Common Weakness Enumeration Specification (CWE) provides
a common language of discourse for discussing, finding and dealing
with the causes of software security vulnerabilities as they are found
in code, design, or system architecture. Each individual CWE rep-
resents a single vulnerability type. CWE is currently maintained by
the MITRE Corporation with support from the National Cyber Se-
curity Division (DHS). A detailed CWE list is currently available at
the MITRE website; this list provides a detailed definition for each
individual CWE.

— CWE Home Page

o Common Weakness Enumeration (http://cwe.mitre.org/)

4.5.4 Open Source Vulnerability Database

OSVDB is an independent and open source database created by
and for the community. Our goal is to provide accurate, detailed,
current, and unbiased technical information.

— OSVDB Home Page

o The Open Source Vulnerability Database (http://osvdb.org/)

22

http://nvd.nist.gov/
http://cve.mitre.org/
http://cwe.mitre.org/
http://osvdb.org/

4.6 Accuracy Limitations in Making Decisions That Im-
pact Security

On two occasions I have been asked, “Pray, Mr. Babbage, if you put
into the machine wrong figures, will the right answers come out?” In
one case a member of the Upper, and in the other a member of the
Lower, House put this question. I am not able rightly to apprehend
the kind of confusion of ideas that could provoke such a question.

— Charles Babbage

This is sometimes called the GIGO rule (Garbage In, Garbage Out). Stated
this way, this seems self-evident. However, you should realize that this applies
to systems as well as programs. For example, if your system depends on DNS to
locate a host, then the correctness of your system’s operation depends on DNS.
Whether or not this is exploitable (beyond a simple denial of service) depends
a great deal on the details of the procedures. This is a parallel to the question
of whether it is possible to exploit a program via an unsanitized input.

You can never be more accurate than the data you used for your input. Try to be
neither precisely inaccurate, nor imprecisely accurate. Learn to use footnotes.

4.7 Rice’s Theorem

This appears to relate to the undecidability of certain problems related to ar-
bitrary programs, of certain issues related to program correctness, and has im-
portant consequences like “no modern general-purpose computer can solve the
general problem of determining whether or not a program is virus free”. A friend
pointed out to me that the entire anti-virus industry depends on the public not
realizing that this is proven to be an unsolvable (not just a difficult) problem.
The anti-virus industry, when it attempts to generate signatures or “enumerate
badness” (see B4.1)), is playing a constant game of catch-up, usually a step or
two behind their adversaries.

Unfortunately, really understanding and (even moreso) explaining decidability
problems requires a lot of thinking, and I'm not quite up to the task at the
moment, so I'll punt.

o Wikipedia article on Rice’s Theorem (http://en.wikipedia.org/wiki/
Rice)27s_theorem)

5 Economics of Security

5.1 How Expensive are Security Failures?

Here are some of the examples I could dig up.

23

http://en.wikipedia.org/wiki/Rice%27s_theorem
http://en.wikipedia.org/wiki/Rice%27s_theorem

5.1.1 TJ Maxx

TJ Maxx was using WEP at their stores and suffered a major loss of data, and
large fines:

e WEP Security + Pringles-Can = $1B TJX Loss?
o TJX’s failure to secure Wi-Fi could cost $§1B

o |Report of an Investigation into the Security, Collection and Retention of Personal Information

5.1.2 Greek Cell Tapping Incident

The Greek telephone tapping case of 2004-2005, also referred to as Greek Wa-
tergate, involved the illegal tapping of more than 100 mobile phones on the
Vodafone Greece network belonging mostly to members of the Greek govern-
ment and top-ranking civil servants.

On October 19, 2007, Vodafone Greece was again fined €19 million by EETT,
the national telecommunications regulator, for alleged breach of privacy rules.

o Wikipedia article
o |“Greek Watergate” scandal sends political shockwaves

e [The Athens Affair

5.1.3 VAServ/LxLabs

The discovery of 24 security vulnerabilities may have contributed to the death
of the chief of LxLabs. A flaw in the company’s HyperVM software allowed
data on 100,000 sites, all hosted by VAserv, to be destroyed. The HyperVM
solution is popular with cheap web hosting services and the attacks are easy to
reproduce, which could lead to further incidents.

o Slashdot article (http://it.slashdot.org/story/09/06/09/1422200/
Security-Flaw-Hits-VAserv-Head-of-LxLabs-Found-Hanged)

o LxLabs boss found hanged after vuln wipes websites (http://www.theregister.
co.uk/2009/06/09/1x1abs_funder_death/)

o Webhost hack wipes out data for 100,000 sites (http://www.theregister.
co.uk/2009/06/08/webhost_attack/)

5.1.4 CardSystems

o CardSystems Solutions Settles FTC Charges (http://www.ftc.gov/opa/
2006/02/cardsystems_r.shtm)

24

http://msmvps.com/blogs/harrywaldron/archive/2007/05/09/wep-security-pringles-can-1-billion-tjx-loss.aspx
http://blogs.zdnet.com/Ou/?p=485
http://www.oipc.ab.ca/ims/client/upload/Investigation%20Report%20P2007_IR_0061.pdf
http://en.wikipedia.org/wiki/Greek_telephone_tapping_case_2004-2005
http://www.tiscali.co.uk/news/newswire.php/news/reuters/2006/02/03/odd/34greekwatergate34scandalsendspoliticalshockwaves.html
http://www.spectrum.ieee.org/telecom/security/the-athens-affair
http://it.slashdot.org/story/09/06/09/1422200/Security-Flaw-Hits-VAserv-Head-of-LxLabs-Found-Hanged
http://it.slashdot.org/story/09/06/09/1422200/Security-Flaw-Hits-VAserv-Head-of-LxLabs-Found-Hanged
http://www.theregister.co.uk/2009/06/09/lxlabs_funder_death/
http://www.theregister.co.uk/2009/06/09/lxlabs_funder_death/
http://www.theregister.co.uk/2009/06/08/webhost_attack/
http://www.theregister.co.uk/2009/06/08/webhost_attack/
http://www.ftc.gov/opa/2006/02/cardsystems_r.shtm
http://www.ftc.gov/opa/2006/02/cardsystems_r.shtm

5.1.5 Egghead Software

Egghead was hurt by a December 2000 revelation that hackers had
accessed its systems and potentially compromised customer credit
card data. The company filed for bankruptcy in August 2001. After
a deal to sell the company to Fry’s Electronics for $10 million fell
through, its assets were acquired by Amazon.com for $6.1 million.

In December 2000, the company’s IIS-based servers were compro-
mised, potentially releasing credit card data of over 3.6 million peo-
ple. In addition to poor timing near the Christmas season, the han-
dling of the breach by publicly denying that there was a problem,
then notifying Visa, who in turn notified banks, who notified con-
sumers, caused the breach to escalate into a full blown scandal.

— Wikipedia

o Wikipedia article on Egghead Software (http://en.wikipedia.org/wiki/
Egghead_Software)

5.1.6 Heartland Payment Systems

e Heartland sued over data breach (http://news.cnet.com/8301-1009_
3-10151961-83.html)

5.1.7 Verizon Data Breach Study

Note that Verizon conducted the study, and one should not construe this section
to mean that they had any data breaches themselves.

e Verizon Business 2009 Data Breach Study Finds Significant Rise in Tar-
geted Attacks, Organized Crime Involvement (http://newscenter.verizon.
com/press-releases/verizon/2009/verizon-business-2009-data.html)

5.1.8 Web Hacking Incidents Database

e Old Site (http://www.webappsec.org/projects/whid/)

e New Site (http://www.xiom.com/whidf)

5.1.9 DATALOSSdb

e Web Site (http://datalossdb.org/)

25

http://en.wikipedia.org/wiki/Egghead_Software
http://en.wikipedia.org/wiki/Egghead_Software
http://news.cnet.com/8301-1009_3-10151961-83.html
http://news.cnet.com/8301-1009_3-10151961-83.html
http://newscenter.verizon.com/press-releases/verizon/2009/verizon-business-2009-data.html
http://newscenter.verizon.com/press-releases/verizon/2009/verizon-business-2009-data.html
http://www.webappsec.org/projects/whid/
http://www.xiom.com/whidf
http://datalossdb.org/

5.1.10 Data Breach Investigations Report

e http://securityblog.verizonbusiness.com/2009/04/15/2009-dbir/

5.2 Abuse Detection and Response: A Cost-Benefit Per-
spective

As I mentioned earlier, abuse detection is a kind of classification problem (see
[£1), which will forever be an imprecise science.

In general, you want to balance the costs of false positives and false negatives.
If we assume “rate” means “per unit of time”, or “per number of interactions
with the outside world”, then the equation would be:

fprate x fpcost = fnrate x fncost

Note that the definitions are very important to the equation! The ratio of abuse
or intrusion attempts to legitimate traffic is usually rather low, and so naively
substituting “the chance of failing to recognize a valid abuse attempt” as the
fprate above will give an incorrect result. This is related to the base-rate fallacy
described above (see[d1.2). What you probably want then is to define the abuse
ratio (abrat) as the number of abuse attempts per incoming requests, and you
get:

fprate = abrat = fpchance

frnrate = (1 — abrat) * fnchance

Thus, if we wish to avoid the term “rate” as being misleading, then the equation
should really be:

abrat * fpchance x fpcost = (1 — abrat) x fnchance * fncost

Abuse detection (see[I6) is all about the failure chances (and thus, rates as de-
fined above). Abuse response choices (see [I7)) determine the cost. For example,
anomaly detection will give a higher false positive rate (and lower false negative
rate) than misuse detection (see [[6.2)).

If your response to abuse causes an alert (see[I7.1)) to be generated, and a human
must investigate it, then the false positive cost will be high, so you might want
to (for example) do some further validation of the detection event to lower the
false positive rate. For example, if your IDS detected a Win32 attack against a
Linux system, you might want to avoid generating an alert.

26

http://securityblog.verizonbusiness.com/2009/04/15/2009-dbir/

On the other hand, if you can cheaply block an abuser, and suffer no ill effects
from doing so even if it was a false positive, then you can take a liberal definition
of what you consider abusive. To use the above example, one might wish to taint
the source (see[I7.2.2)) and shun him, even if the Win32 attack he launched could
not have worked against the Linux box.

Intrusion detection is merely a subset of abuse detection, since an intrusion is
only one kind of abuse of a system.

See also [35.7], B5.8

6 Adversary Modeling

If you know the enemy and know yourself, you need not fear the
result of a hundred battles.

If you know yourself but not the enemy, for every victory gained you
will also suffer a defeat.

If you know neither the enemy nor yourself, you will succumb in
every battle.

—Sun Tzu, The Art of War (http://en.wikipedia.org/wiki/The_
Art_of _War)

After deciding what you need to protect (your assets), you need to know about
the threats you wish to protect it against, or the adversaries (sometimes called
threat agents) which may threaten it. Generally intelligence units have threat
shops, where they monitor and keep track of the people who may threaten their
operations. This is natural, since it is easier to get an idea of who will try and
do something than how some unspecified person may try to do it, and can help
by hardening systems in enemy territory more than those in safer areas, leading
to more efficient use of resources. I shall call this adversary modeling.

In adversary modeling, the implicit assumptions are that you have a limited
budget and the number of threats is so large that you cannot defend against all
of them. So you now need to decide where to allocate your resources. Part of this
involves trying to figure out who your adversaries are and what their capabilities
and intentions are, and thus how much to worry about particular domains of
knowledge or technology. You don’t have to know their name, location and
social security number; it can be as simple as “some high school student on the
Internet somewhere who doesn’t like us”, “a disgruntled employee” (as opposed
to a gruntled employee), or “some sexually frustrated script-kiddie on IRC who
doesn’t like the fact that he is a jerk who enjoys abusing people and therefore
his only friends are other dysfunctional jerks like him”. People in charge of
doing attacker-centric threat modeling must understand their adversaries and
be willing to take chances by allocating resources against an adversary which
hasn’t actually attacked them yet, or else they will always be defending against
yesterday’s adversary, and get caught flat-footed by a new one.

27

http://en.wikipedia.org/wiki/The_Art_of_War
http://en.wikipedia.org/wiki/The_Art_of_War

6.1 Common Psychological Errors

The excellent but poorly titled] book Stumbling on Happiness tells us that we
make two common kinds of errors when reasoning about other humans:

1. Overly different; if you looked at grapes all day, you’d know a hundred dif-
ferent kinds, and naturally think them very different. But they all squish
when you step on them, they are all fruits and frankly, not terribly differ-
ent at all. So too we are conditioned to see people as different because the
things that matter most to us, like finding an appropriate mate or trusting
people, cannot be discerned with questions like “do you like breathing?”.
An interesting experiment showed that a description of how they felt by
people who had gone through a process is more accurate in predicting
how a person will feel after the process than a description of the process
itself. Put another way, people assume that the experience of others is
too dependent on the minor differences between humans that we mentally
exaggerate.

2. Overly similar; people assume that others are motivated by the same
things they are motivated by; we project onto them a reflection of our
self. If a financier or accountant has ever climbed mount Everest, I am
not aware of it. Surely it is a cost center, yes?

6.2 Cost-Benefit

Often, the lower layers of the security hierarchy cost more to build out than the
higher levels. Physical security requires guards, locks, iron bars, shatterproof
windows, shielding, and various other things which, being physical, cost real
money. On the other hand, network security may only need a free software
firewall. However, what an adversary could cost you during a physical attack
(e.g. a burglar looting your home) may be greater than an adversary could cost
you by defacing your web site.

6.3 Risk Tolerance

We may assume that the distribution of risk tolerance among adversaries is
monotonically decreasing; that is, the number of adversaries who are willing to
try a low-risk attack is greater than the number of adversaries who are willing
to attempt a high-risk attack to get the same result. Beware of risk evaluation
though; while a hacker may be taking a great risk to gain access to your home,
local law enforcement with a valid warrant is not going to be risking as much.

L Stumbling on Happiness is actually a book of psychological illusions, ways that our mind
tends to trick us, and not a self-help book.

28

So, if you are concerned about a whole spectrum of adversaries, known and
unknown, you may wish to have greater network security than physical security,
simply because there are going to be more remote attacks.

6.4 Capabilities

You only have to worry about things to the extent they may lie within the
capabilities of your adversaries. It is rare that adversaries use outside help when
it comes to critical intelligence; it could, for all they know, be disinformation,
or the outsider could be an agent-provocateur.

6.5 Sophistication Distribution

If they were capable, honest, and hard-working, they wouldn’t need
to steal.

Along similar lines, one can assume a monotonically decreasing number of ad-
versaries with a certain level of sophistication. My rule of thumb is that for every
person who knows how to perform a technique, there are z people who know
about it, where z is a small number, perhaps 3 to 10. The same rule applies to
people with the ability to write an exploit versus those able to download and
use it (the so-called script kiddies). Once an exploit is coded into a worm, the
chance of a compromised host having been compromised by the worm (instead
of a human who targets it specifically) approaches 100%.

6.6 Goals

We’ve all met or know about people who would like nothing more than to break
things, just for the heck of it; schoolyard bullies who feel hurt and want to hurt
others, or their overgrown sadist kin. Vandals who merely want to write their
name on your storefront. A street thug who will steal a cell phone just to throw
it through a window. I’'m sure the sort of person reading this isn’t like that,
but unfortunately some people are. What exactly are your adversary’s goals?
Are they to maximize ROI (Return On Investment) for themselves, or are they
out to maximize pain (tax your resources) for you? Are they monetarily or
ideologically motivated? What do they consider investment? What do they
consider a reward? Put another way, you can’t just assign a dollar value on
assets, you must consider their value to the adversary.

7 Threat Modeling

Men of sense often learn from their enemies. It is from their foes,
not their friends, that cities learn the lesson of building high walls

29

and ships of war.

— Aristophanes

In technology, people tend to focus on how rather than who, which seems to
work better when anyone can potentially attack any system (like with publicly-
facing systems on the Internet) and when protection mechanisms have low or no
incremental cost (like with free and open-source software). I shall call modeling
these threat modeling (http://en.wikipedia.org/wiki/Threat_model).

7.1 Common Platform Enumeration

CPE is a structured naming scheme for information technology sys-
tems, software, and packages. Based upon the generic syntax for
Uniform Resource Identifiers (URI), CPE includes a formal name
format, a method for checking names against a system, and a de-
scription format for binding text and tests to a name.

— CPE Home Page

The first part of threat modelling should be, what is it I want to protect? And
once you start to compile a list of things you wish to protect, you might want
a consistent naming system for your computer assets. The CPE may help you
here.

e Common Platform Enumeration (http://cpe.mitre.org/)

7.2 A Taxonomy of Privacy Breaches

o A Tazxonomy of Privacy (http://www.concurringopinions.com/archives/
2006/03/a_taxonomy_of _p.html)

In the above article, Daniel Solove suggests that breaches of privacy are not of
a single type, but can mean a variety of things:

e surveillance
e interrogation
e aggregation
e identification
e insecurity

e secondary use

30

http://en.wikipedia.org/wiki/Threat_model
http://cpe.mitre.org/
http://www.concurringopinions.com/archives/2006/03/a_taxonomy_of_p.html
http://www.concurringopinions.com/archives/2006/03/a_taxonomy_of_p.html

e exclusion

e breach of confidentiality
o disclosure

e exposure

e increased accessibility

e blackmail

e appropriation

o distortion

e intrusion

e decisional interference

7.3 Threats to Security Properties

An important mnemonic for remembering the threats to security properties,
originally introduced when threat modeling, is STRIDE:

e Spoofing

e Tampering

¢ Repudiation

e Information disclosure
e Denial of service

e Elevation of privilege
Related links:

o Wikipedia on STRIDE (http://en.wikipedia.org/wiki/STRIDE_(security))

e Uncover Security Design Flaws Using The STRIDE Approach (http://
msdn.microsoft.com/en-us/magazine/cc163519.aspx)

31

http://en.wikipedia.org/wiki/STRIDE_(security)
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx

7.4 Quantifying Risk

Microsoft has a rating system for calculating risks (http://msdn.microsoft.
com/en-us/library/f£648644.aspx). Its mnemonic is DREAD:

e Damage potential
e Reproducibility
e Exploitability

o Affected users

e Discoverability

7.5 Attack Surface

Gnothi Seauton (“Know Thyself”)

— ancient Greek aphorism (http://en.wikipedia.org/wiki/Know_
thyself)

When discussing security, it’s often useful to analyze the part which may interact
with a particular adversary (or set of adversaries). For example, let’s assume
you are only worried about remote adversaries. If your system or network is
only connected to outside world via the Internet, then the attack surface is the
parts of your system that interact with things on the Internet, or the parts of
your system which accept input from the Internet. A firewall, then, limits the
attack surface to a smaller portion of your systems by filtering some of your
network traffic. Often, the firewall blocks all incoming connections.

Sometimes the attack surface is pervasive. For example, if you have a network-
enabled embedded device like a web cam on your network that has a vulnera-
bility in its networking stack, then anything which can send it packets may be
able to exploit it. Since you probably can’t fix the software in it, you must then
use a firewall to attempt to limit what can trigger the bug. Similarly, there was
a bug in Sendmail that could be exploited by sending a carefully-crafted email
through a vulnerable server. The interesting bit here is that it might be an in-
ternal server that wasn’t exposed to the Internet; the exploit was data-directed
and so could be passed through your infrastructure until it hit a vulnerable im-
plementation. That’s why I consistently use one implementation (not Sendmail)
throughout my network now.

If plugging a USB drive into your system causes it to automatically run things
like a standard Microsoft Windows XP installation, then any plugged-in device
is part of the attack surface. But even if it does not, then by plugging a USB
device in you could potentially overflow the code which handles the USB or the
driver for the particular device which is loaded; thus, the USB networking code

32

http://msdn.microsoft.com/en-us/library/ff648644.aspx
http://msdn.microsoft.com/en-us/library/ff648644.aspx
http://en.wikipedia.org/wiki/Know_thyself
http://en.wikipedia.org/wiki/Know_thyself

and all drivers are part of the attack surface if you can control what is plugged
into the system.

e Malware Distribution through Physical Media a Growing Concern (http://
it.slashdot.org/article.pl?sid=08/01/13/1533243)

e usbroken, a USB fuzzer based on Arduino (http://code.google.com/p/
usbroken/)

e Schneier Hacking Computers over USB (http://www.schneier.com/blog/
archives/2006/06/hacking_compute.html)

e USB Devices can Crack Windows (http://www.eweek.com/c/a/Security/
USB-Devices-Can-Crack-Windows/)

e psgroove, a jailbreak exploit for PS3 (http://github.com/psgroove/
psgroove)

Moreover, a recent vulnerability (http://it.slashdot.org/it/08/01/14/1319256.
shtml) illustrates that when you have something which inspects network traffic,

such as uPNP devices or port knocking daemons, then their code forms part of

the attack surface.

Sometimes you will hear people talk about the anonymous attack surface; this is
the attack surface available to everyone (on the Internet). Since this number of
people is so large, and you usually can’t identify them or punish them, you want
to be really sure that the anonymous attack surface is limited and doesn’t have
any so-called “pre-auth” vulnerabilities, because those can be exploited prior to
identification and authentication.

7.6 Attack Trees

The next logical step is to move from defining the attack surface to modeling
attacks and quantify risk levels.

e Wikipedia on Attack Tree (http://en.wikipedia.org/wiki/Attack_tree)

e Schneier on Attack Trees (http://www.schneier.com/paper-attacktrees-ddj-ft.
html)

e https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/
requirements/236.html

e Microsoft on Attack Trees (http://msdn.microsoft.com/en-us/library/
648644 .aspx)

33

http://it.slashdot.org/article.pl?sid=08/01/13/1533243
http://it.slashdot.org/article.pl?sid=08/01/13/1533243
http://code.google.com/p/usbroken/
http://code.google.com/p/usbroken/
http://www.schneier.com/blog/archives/2006/06/hacking_compute.html
http://www.schneier.com/blog/archives/2006/06/hacking_compute.html
http://www.eweek.com/c/a/Security/USB-Devices-Can-Crack-Windows/
http://www.eweek.com/c/a/Security/USB-Devices-Can-Crack-Windows/
http://github.com/psgroove/psgroove
http://github.com/psgroove/psgroove
http://it.slashdot.org/it/08/01/14/1319256.shtml
http://it.slashdot.org/it/08/01/14/1319256.shtml
http://en.wikipedia.org/wiki/Attack_tree
http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.schneier.com/paper-attacktrees-ddj-ft.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/236.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/236.html
http://msdn.microsoft.com/en-us/library/ff648644.aspx
http://msdn.microsoft.com/en-us/library/ff648644.aspx

7.7 The Weakest Link

Amdahl’s law, also known as Amdahl’s argument, is named after
computer architect Gene Amdahl, and is used to find the maximum
expected improvement to an overall system when only part of the
system is improved.

— Wikipedia (http://en.wikipedia.org/wiki/Amdahl’,27s_law)
You are the weakest link, goodbye!
— The Weakest Link (TV series)

Let us think of our security posture for whatever we’re protecting as being
composed of a number of systems (or groups of systems possibly offering defense-
in-depth). The strength of these systems to attack may vary. You may wish to
pour all your resources into one, but the security will likely be broken at the
weakest point, either by chance or by an intelligent adversary.

This is an analogy to Amdahl’s law, stated above, in that we can only increase
our overall security posture by maintaining a delicate balance between the dif-
ferent defenses to attack vectors. Most of the time, your resources are best spent
on the weakest area, which for some institutions (financial, military) is usually
personnel.

The reasons you might not balance all security systems may include:

Economics matter here; it may be much cheaper and reliable to buy a fire-
wall than put your employees through security training. Software security
measures sometimes have zero marginal cost, but hardware almost always
has a marginal cost.

Exposure affects your risk calculations; an Internet attack is much more likely
than a physical attack, so you may put more effort into Internet defense
than physical defense.

Capability implies in that organizations have varying abilities. For example,
the military may simply make carrying a thumb drive into the facility
a punishable offense, but a commercial organization may find that too
difficult or unpopular to enforce. An Internet company, by contrast, may
have a strong technical capability, and so might choose to write software
to prevent the use of thumb drives.

8 Physical Security

When people think of physical security, these often are the limit on the strength
of access control devices; I recall a story of a cat burglar who used a chainsaw
to cut through victim’s walls, bypassing any access control devices. I remember

34

http://en.wikipedia.org/wiki/Amdahl%27s_law

reading someone saying that a deep space probe is the ultimate in physical
security.

o Wikipedia article on Physical Security (http://en.wikipedia.org/wiki/
Physical_security)

8.1 No Physical Security Means No Security

While the locks are getting tougher, the door and frame are getting
weaker. A well-placed kick usually does the trick.

— a burglar

A couple of limitations come up without physical security for a system. For
confidentiality, all of the sensitive data needs to be encrypted. But even if you
encrypt the data, an adversary with physical access could trojan the OS and
capture the data (this is a control attack now, not just confidentiality breach; go
this far and you’ve protected against overt seizure, theft, improper disposal and
such). So you'll need to you protect the confidentiality and integrity of the OS,
he trojans the kernel. If you protect the kernel, he trojans the boot loader. If
you protect the boot loader (say by putting on a removable medium), he trojans
the BIOS. If you protect the BIOS, he trojans the CPU. So you put a tamper-
evident label on it, with your signature on it, and check it every time. But he
can install a keyboard logger. So suppose you make a sealed box with everything
in it, and connectors on the front. Now he gets measurements and photos of
your machine, spends a fortune replicating it, replaces your system with an
outwardly identical one of his design (the trojan box), which communicates
(say, via encrypted spread-spectrum radio) to your real box. When you type
plaintext, it goes through his system, gets logged, and relayed to your system
as keystrokes. Since you talk plaintext, neither of you are the wiser.

The physical layer is a common place to facilitate a side-channel attack (see

BLI).

8.2 Data Remanence

I know what your computer did last summer.

Data remanence is the the residual physical representation of your informa-
tion on media after you believe that you have removed it (definition thanks to
Wikipedia, http://en.wikipedia.org/wiki/Data_remanence). This is a dis-
puted region of technology, with a great deal of speculation, self-styled experts,
but very little hard science.

35

http://en.wikipedia.org/wiki/Physical_security
http://en.wikipedia.org/wiki/Physical_security
http://en.wikipedia.org/wiki/Data_remanence

e A Guide to Understanding Data Remanence in Automated Information
Systems (Ver.2 09/91) (http://www.fas.org/irp/nsa/rainbow/tg025-2.
htm)

e National Security Agency/CSS Degausser Products List 25 Sep 2001 (http://
www.fas.org/irp/nsa/degausse.pdf)

Last time I looked most of the degaussers require 220V power and may not work
on hard drives, due to their high coercivity.

As of 2006, the most definitive study seems to be the NIST Computer Secu-
rity Division paper Guidelines for Media Sanitization (http://csrc.nist.gov/
publications/nistpubs/800-88/NISTSP800-88_revl.pdf). NIST is known
to work with the NSA on some topics, and this may be one of them. It intro-
duces some useful terminology:

disposing is the act of discarding media with no other considerations

clearing is a level of media sanitization that resists anything you could do at
the keyboard or remotely, and usually involves overwriting the data at
least once

purging is a process that protects against a laboratory attack (signal process-
ing equipment and specially trained personnel)

destroying is the ultimate form of sanitization, and means that the medium
can no longer be used as originally intended

8.2.1 Magnetic Storage Media (Disks)

The seminal paper on this is Peter Gutmann’s Secure Deletion of Data from
Magnetic and Solid-State Memory (http://www.cs.auckland.ac.nz/ pgut001/
pubs/secure_del.html). In early versions of his paper, he speculated that one
could extract data due to hysteresis effects even after a single overwrite, but
on subsequent revisions he stated that there was no evidence a single overwrite
was insufficient. Simson Garfinkel wrote about it recently in his blog (https://
www.techreview.com/blog/garfinkel/17567/).

The NIST paper has some interesting tidbits in it. Obviously, disposal can-
not protect confidentiality of unencrypted media. Clearing is probably suffi-
cient security for 99% of all data; I highly recommend Darik’s Boot and Nuke
(http://dban.sourceforge.net/), which is a bootable floppy or CD based
on Linux. However, it cannot work if the storage device stops working prop-
erly, and it does not overwrite sectors or tracks marked bad and transparently
relocated by the drive firmware. With all ATA drives over 15GB, there is
a “secure delete” ATA command which can be accessed from hdparm within
Linux, and Gordon Hughes has some interesting documents and a Microsoft-
based utility (http://cmrr.ucsd.edu/people/Hughes/SecureErase.shtml).

36

http://www.fas.org/irp/nsa/rainbow/tg025-2.htm
http://www.fas.org/irp/nsa/rainbow/tg025-2.htm
http://www.fas.org/irp/nsa/degausse.pdf
http://www.fas.org/irp/nsa/degausse.pdf
http://csrc.nist.gov/publications/nistpubs/800-88/NISTSP800-88_rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-88/NISTSP800-88_rev1.pdf
http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
https://www.techreview.com/blog/garfinkel/17567/
https://www.techreview.com/blog/garfinkel/17567/
http://dban.sourceforge.net/
http://cmrr.ucsd.edu/people/Hughes/SecureErase.shtml

There’s a useful blog entry about it (http://storagemojo.com/2007/05/02/
secure-erase-data-security-you-already-own/). In the case of very dam-
aged disks, you may have to resort to physical destruction. However, with disk
densities being what they are, even 1/125” of a disk platter may hold a full
sector, and someone with absurd amounts of money could theoretically extract
small quantities of data. Fortunately, nobody cares this much about your data.

Now, you may wonder what you can do about very damaged disks, or what to do
if the media isn’t online (for example, you buried it in an underground bunker),
or if you have to get rid of the data fast. I would suggest that encrypted storage
(see 28.17) would almost always be a good idea. If you use it, you merely have
to protect the confidentiality of the key, and if you can properly sanitize the
media, all the better. Recently Simson Garfinkel re-discovered a technique for
getting the data off broken drives; freezing them. Another technique that I have
used is to replace the logic board with one from a working drive.

e Hard drive’s data survives shuttle explosion (http://blocksandfiles.
com/article/5056)

o German firm probes final World Trade Center deals (http://www.prisonplanet.
com/german_firm_probes_final_world_trade_center_deals.htm)

e Wikipedia entry on Data Recovery (http://en.wikipedia.org/wiki/
Data_recovery)

o 200 ways to recover your data (http://btjunkie.org/torrent/200-Ways-To-Recover-Revive-Your-}
4358cd270831£53a0d4dc3a7ec8354d22b61574534c96)

e Data Recovery blog (http://datarecovery-hddrecovery.blogspot.com/)

8.2.2 Semiconductor Storage (RAM)

Peter Gutmann’s Data Remanence in Semiconductor Devices (http://www.
cypherpunks.to/~peter/usenix01.pdf) shows that if a particular value is
held in RAM for extended periods of time, various processes such as electro-
migration make permanent changes to the semiconductor’s structure. In some
cases, it is possible for the value to be “burned in” to the cell, such that it cannot
hold another value.

Cold Boot Attack Recently a Princeton team (http://citp.princeton.
edu/memory/) found that the values held in DRAM decay in predictable ways
after power is removed, such that one can merely reboot the system and recover
keys for most encrypted storage systems (http://citp.princeton.edu/pub/
coldboot .pdf). By cooling the chip first, this data remains longer. This gen-
erated much talk in the industry. This prompted an interesting overview of at-
tacks against encrypted storage systems (http://www.news.com/8301-13578_
3-9876060-38.html).

37

http://storagemojo.com/2007/05/02/secure-erase-data-security-you-already-own/
http://storagemojo.com/2007/05/02/secure-erase-data-security-you-already-own/
http://blocksandfiles.com/article/5056
http://blocksandfiles.com/article/5056
http://www.prisonplanet.com/german_firm_probes_final_world_trade_center_deals.htm
http://www.prisonplanet.com/german_firm_probes_final_world_trade_center_deals.htm
http://en.wikipedia.org/wiki/Data_recovery
http://en.wikipedia.org/wiki/Data_recovery
http://btjunkie.org/torrent/200-Ways-To-Recover-Revive-Your-Hard-Drive/4358cd27083f53a0d4dc3a7ec8354d22b61574534c96
http://btjunkie.org/torrent/200-Ways-To-Recover-Revive-Your-Hard-Drive/4358cd27083f53a0d4dc3a7ec8354d22b61574534c96
http://datarecovery-hddrecovery.blogspot.com/
http://www.cypherpunks.to/~peter/usenix01.pdf
http://www.cypherpunks.to/~peter/usenix01.pdf
http://citp.princeton.edu/memory/
http://citp.princeton.edu/memory/
http://citp.princeton.edu/pub/coldboot.pdf
http://citp.princeton.edu/pub/coldboot.pdf
http://www.news.com/8301-13578_3-9876060-38.html
http://www.news.com/8301-13578_3-9876060-38.html

e BoingBoing video demonstration (http://www.boingboing.net/2008/05/
12/bbtv-hacker-howto-co.html)

Direct Memory Access It turns out that certain peripheral devices, notably
Firewire, have direct memory access.

This means that you can plug something into the computer and read data
directly out of RAM.

That means you can read passwords directly out of memory:

e http://storm.net.nz/projects/16

Reading RAM With A Laser

e On A New Way to Read Data from Memory (http://www.cl.cam.ac.
uk/"rjal4/Papers/SISW02.pdf)

8.3 Smart Card Attacks

This section deserves great expansion.

Instead I’ll punt and point you at the latest USENIX conference on this:

o Usenizx CARDIS02 (http://www.usenix.org/publications/library/
proceedings/cardis02/tech.html)

9 Hardware Security

9.1 Introduction

Hardware security is a term I invented to describe the security models provided
by a CPU (http://en.wikipedia.org/wiki/Central_processing_unit), as-
sociated chipset (http://en.wikipedia.org/wiki/Chipset) and peripheral hard-
ware. The assumption here is that the adversary can create and execute program
code of his own choosing, possibly as an administrator (root). As computer
hardware and firmware (http://en.wikipedia.org/wiki/Firmware) becomes
more complex, there will be more and more vulnerabilities found in it, so this
section is likely to grow over time.

Each computer hardware architecture is going to have its own security mod-
els, so this discussion is going to be specific to the hardware platform under
consideration.

38

http://www.boingboing.net/2008/05/12/bbtv-hacker-howto-co.html
http://www.boingboing.net/2008/05/12/bbtv-hacker-howto-co.html
http://storm.net.nz/projects/16
http://www.cl.cam.ac.uk/~rja14/Papers/SISW02.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/SISW02.pdf
http://www.usenix.org/publications/library/proceedings/cardis02/tech.html
http://www.usenix.org/publications/library/proceedings/cardis02/tech.html
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Chipset
http://en.wikipedia.org/wiki/Firmware

9.2 Protection Rings

Most modern computer systems have at least two modes of operation; normal
operation and privileged mode. The vast majority of software runs in normal
mode, and the operating system, or more accurately the kernel, runs in priv-
ileged mode. Similarly, most of the functionality of the CPU is available in
normal mode, whereas a small but significant portion, such as that related to
memory management and communicating with hardware, is restricted to that
operating in privileged mode.

Some CPU architectures, go farther and define a series of hierarchical protection
domains that are often called protection rings (http://en.wikipedia.org/
wiki/Ring_(computer_security)). This is a simple extrapolation of the two-
level normal/privileged mode into multiple levels, or rings.

9.3 Operating Modes

The Intel architectures in particular has several operating modes. These are not
privilege rings, but rather represent the state that the CPU is in, which affects
how various instructions are interpreted

e Real-address mode (http://en.wikipedia.org/wiki/Real_mode)
e Protected Mode (http://en.wikipedia.org/wiki/Protected_mode)

e System Management Mode (http://en.wikipedia.org/wiki/System_
Management_Mode)

o Virtual 8086 Mode (http://en.wikipedia.org/wiki/Virtual_8086_mode)

9.4 NX bit

The NX bit, which stands for No eXecute, is a technology used
in CPUs to segregate areas of memory for use by either storage of
processor instructions (or code) or for storage of data, a feature
normally only found in Harvard architecture processors. However,
the NX bit is being increasingly used in conventional von Neumann
architecture processors, for security reasons.

An operating system with support for the NX bit may mark certain
areas of memory as non-executable. The processor will then refuse
to execute any code residing in these areas of memory. The general
technique, known as executable space protection, is used to prevent
certain types of malicious software from taking over computers by
inserting their code into another program’s data storage area and
running their own code from within this section; this is known as a
buffer overflow attack.

39

http://en.wikipedia.org/wiki/Ring_(computer_security)
http://en.wikipedia.org/wiki/Ring_(computer_security)
http://en.wikipedia.org/wiki/Real_mode
http://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/System_Management_Mode
http://en.wikipedia.org/wiki/System_Management_Mode
http://en.wikipedia.org/wiki/Virtual_8086_mode

9.5

9.6

— Wikipedia

Wikipedia entry on NX bit (http://en.wikipedia.org/wiki/NX_bit)

Supervisors and Hypervisors
Supervisory Program (http://en.wikipedia.org/wiki/Supervisory_program)

Hypervisor (http://en.wikipedia.org/wiki/Hypervisor)

Trusted Computing

Trusted Platform Module (http://en.wikipedia.org/wiki/Trusted_Platform
Module)

Trusted Computing: The Mother(board) of All Big Brothers (http://www.
cypherpunks.to/TCPA_DEFCON_10.pdf)

Trusted Computing Group (http://en.wikipedia.org/wiki/Trusted_
Computing_Group)

Intel TCPA Owverview (http://yuan.ecom.cmu.edu/trust/cd/Presentations/
Intel%20TCPA%200verview.ppt)

Trusted Computing Group homepage (http://www.trustedcomputinggroup.
org/)

EFF: Trusted Computing: Promise and Risk (http://www.eff.org/wp/
trusted-computing-promise-and-risk)

Ross Anderson’s TCPA FAQ (http://www.cl.cam.ac.uk/"rjal4/tcpa-faq.
html)

FSF: Can You Trust Trusted Computing (http://www.gnu.org/philosophy/
can-you-trust.html)

OpenTC project (http://www.opentc.net/)
IBM TCPA Group (http://www.research.ibm.com/gsal/tcpa/)

Infineon TPM chip hacked (http://www.flylogic.net/blog/7tag=infineon)

40

http://en.wikipedia.org/wiki/NX_bit
http://en.wikipedia.org/wiki/Supervisory_program
http://en.wikipedia.org/wiki/Hypervisor
http://en.wikipedia.org/wiki/Trusted_Platform_Module
http://en.wikipedia.org/wiki/Trusted_Platform_Module
http://www.cypherpunks.to/TCPA_DEFCON_10.pdf
http://www.cypherpunks.to/TCPA_DEFCON_10.pdf
http://en.wikipedia.org/wiki/Trusted_Computing_Group
http://en.wikipedia.org/wiki/Trusted_Computing_Group
http://yuan.ecom.cmu.edu/trust/cd/Presentations/Intel%20TCPA%20Overview.ppt
http://yuan.ecom.cmu.edu/trust/cd/Presentations/Intel%20TCPA%20Overview.ppt
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
http://www.eff.org/wp/trusted-computing-promise-and-risk
http://www.eff.org/wp/trusted-computing-promise-and-risk
http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
http://www.gnu.org/philosophy/can-you-trust.html
http://www.gnu.org/philosophy/can-you-trust.html
http://www.opentc.net/
http://www.research.ibm.com/gsal/tcpa/
http://www.flylogic.net/blog/?tag=infineon

9.7 Intel vPro

Not really a backdoor, but the wake-on-lan and remote management facilities
could be used by an attacker.
e Intel vPro (http://en.wikipedia.org/wiki/Intel_vPro)

e Big Brother Potentially Exists Right Now (http://www.tgdaily.com/
hardware-opinion/39455-big-brother-potentially-exists-right-now-in-our-pcs-compliment:
(note: he is wrong about what ECHELON is)

9.8 Hardware Vulnerabilities and Exploits

e f00f bug (http://en.wikipedia.org/wiki/FO0£)
e Cyriz Coma Bug (http://en.wikipedia.org/wiki/Cyrix_coma_bug)

e Using CPU System Management Mode to Circumvent Operating System
Security Functions (http://www.ssi.gouv.fr/fr/sciences/fichiers/
1ti/cansecwest2006-duflot-paper.pdf)

o Attacking SMM Memory via Intel CPU Cache Poisoning (http: // theinvisiblethings.
blogspot. com/ 2009/ 03/ attacking-smm-memory-via-intel-cpu. html)

o Attacking Intel Trusted Ezxecution Technology (http://www. blackhat.
com/presentations/bh-dc-09/Hojtczuk_ Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Int

pdf)
e Blue Pill (http://en.wikipedia.org/wiki/Blue_Pill_(malware))

e SMM Rootkits: A New Breed of OS Independent Malware (http://wuw.
eecs.ucf.edu//7Eczou/research/SMM-Rootkits-Securecom08.pdf)

o Subverting the Xen Hypervisor (http://invisiblethingslab.com/resources/
bh08/)

o TPM Reset Attack (http://www.cs.dartmouth.edu/ ~pkilab/sparks/)

10 Distributed Systems

10.1 Network Security Overview

The things involved in network security are called nodes. One can talk about
networks composed of humans (social networks), but that’s not the kind of net-
work we're talking about here; I always mean a computer unless I say otherwise.
Often in network security the adversary is assumed to control the network in

41

http://en.wikipedia.org/wiki/Intel_vPro
http://www.tgdaily.com/hardware-opinion/39455-big-brother-potentially-exists-right-now-in-our-pcs-compliments-of-intels-vpr
http://www.tgdaily.com/hardware-opinion/39455-big-brother-potentially-exists-right-now-in-our-pcs-compliments-of-intels-vpr
http://en.wikipedia.org/wiki/F00f
http://en.wikipedia.org/wiki/Cyrix_coma_bug
http://www.ssi.gouv.fr/fr/sciences/fichiers/lti/cansecwest2006-duflot-paper.pdf
http://www.ssi.gouv.fr/fr/sciences/fichiers/lti/cansecwest2006-duflot-paper.pdf
http://theinvisiblethings.blogspot.com/2009/03/attacking-smm-memory-via-intel-cpu.html
http://theinvisiblethings.blogspot.com/2009/03/attacking-smm-memory-via-intel-cpu.html
http://www.blackhat.com/presentations/bh-dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf
http://www.blackhat.com/presentations/bh-dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf
http://www.blackhat.com/presentations/bh-dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf
http://en.wikipedia.org/wiki/Blue_Pill_(malware)
http://www.eecs.ucf.edu/%7Eczou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/%7Eczou/research/SMM-Rootkits-Securecom08.pdf
http://invisiblethingslab.com/resources/bh08/
http://invisiblethingslab.com/resources/bh08/
http://www.cs.dartmouth.edu/~pkilab/sparks/

whole or part; this is a bit of a holdover from the days when the network was
radio, or when the node was an embassy in a country controlled by the adver-
sary. In modern practice, this doesn’t seem to usually be the case, but it’d be
hard to know for sure. In the application of network security to the Internet,
we almost always assume the adversary controls at least one of the nodes on the
network.

In network security, we can lure an adversary to a system, tempt them with
something inviting; such a system is called a honeypot, and a network of such
systems is sometimes called a honeynet. A honeypot may or may not be instru-
mented for careful monitoring; sometimes systems so instrumented are called
fishbowls, to emphasize the transparent nature of activity within them. Often
one doesn’t want to allow a honeypot to be used as a launch point for attacks,
so outbound network traffic is sanitized or scrubbed; if traffic to other hosts is
blocked completely, some people call it a jail, but that is also the name of an
operating system security technology used by FreeBSD, so I consider it confus-
ing.

To reduce a distributed system problem to a physical security (see [§)) problem,
you can use an air gap, or sneakernet between one system and another. However,
the data you transport between them may be capable of exploiting the offline
system. One could keep a machine offline except during certain windows; this
could be as simple as a cron job which turns on or off the network interface
via ifconfig. However, an offline system may be difficult to administer, or keep
up-to-date with security patches.

10.2 Network Access Control: Packet Filters, Firewalls,
Security Zones

Most network applications use TCP, a connection-oriented protocol, and they
use a client/server model. The client initiates a handshake with the server, and
then they have a conversation. Sometimes people use the terms client and server
to mean the application programs, and other times they mean the node itself.
Other names for server applications include services and daemons. Obviously if
you can’t speak with the server at all, or (less obviously) if you can’t properly
complete a handshake, you will find it difficult to attack the server application.
This is what a packet filter does; it allows or prevents communication between
a pair of sockets. A packet filter does not generally do more than a simple
all-or-nothing filtering. Now, every computer can potentially have a network
access control device, or packet filter, on it. For security, this would be the
ideal; each machine defends itself, opening up the minimum number of ports
to external traffic. However, tuning a firewall for minimum exposure can be a
difficult, time-consuming process and so does not scale well. It would be better
for network daemons to not accept connections from across the network, and
there definitely has been a move this direction. In some cases, a packet filter

42

would merely be redundant to a system which does not have any extraneous
open ports.

The firewall was originally defined as a device between different networks that
had different security characteristics; it was named after the barrier between a
automobile interior and the engine, which is designed to prevent a engine fire
from spreading to the passenger cabin. Nowadays, they could be installed on
every system, protecting it from all other systems.

As our understanding of network security improved, people started to define
various parts of their network. The canonical types of networks are:

o Trusted networks were internal to your corporation.

e An untrusted network may be the Internet, or a wifi network, or any
network with open, public access.

e Demilitarized zones (DMZs) were originally defined as an area for placing
machines that must talk to nodes on both trusted and untrusted networks.
At first they were placed outside the firewall but inside a border router,
then as a separate leg of the firewall, and now in are defined and protected
in a variety of ways.

What these definitions all have in common is that they end up defining security
zones (this term thanks to the authors of Eztreme Ezploits). All the nodes
inside a security zone have roughly equivalent access to or from other security
zones. I believe this is the most important and fundamental way of thinking of
network security. Do not confuse this with the idea that all the systems in the
zone have the same relevance to the network’s security, or that the systems have
the same impact if compromised; that is a complication and more of a matter of
operating system security than network security. In other words, two systems
(a desktop and your DNS server) may not be security equivalent, but they may
be in the same security zone.

10.3 Network Reconnaissance: Ping Sweeps, Port Scan-
ning

Typically an adversary needs to know what he can attack before he can attack
it. This is called reconnaissance, and involves gathering information about the
target and identifying ways in which he can attack the target. In network
security, the adversary may want to know what systems are available for attack,
and a technique such as a ping sweep of your network block may facilitate this.
Then, he may choose to enumerate (get a list of) all the services available via a
technique such as a port scan. A port scan may be a horizontal scan (one port,
many IP addresses) or vertical scan (one IP address, multiple ports), or some
combination thereof. You can sometimes determine what service (and possibly
what implementation) it is by banner grabbing or fingerprinting the service.

43

In an ideal world, knowing that you can talk to a service does not matter. Thus,
a port scan should only reveal what you already assumed your adversary already
knew. However, it is considered very rude, even antisocial, like walking down
the street and trying to open the front door of every house or business that you
pass; people will assume you are trying to trespass, and possibly illicitly copy
their data.

Typical tools used for network reconnaissance include:

e nmap (http://www.nmap.org/)
e GNU netcat (http://netcat.sourceforge.net/)

o firewalk (http://www.packetfactory.net/projects/firewalk/)

10.4 Network Intrusion Detection and Prevention

Most security-conscious organizations are capable of detecting most scans us-
ing [network] intrusion detection systems (IDS) or intrusion prevention systems
(IPS); see

e IDS (http://en.wikipedia.org/wiki/Intrusion-detection_system)

e Snort IDS (http://www.snort.org/)

10.5 Cryptography is the Sine Qua Non of Secure Dis-
tributed Systems

All cryptography lets you do is create trust relationships across un-
trustworthy media; the problem is still trust between endpoints and
transitive trust.

— Marcus Ranum

Put simply, you can’t have a secure distributed system (with the normal as-
sumptions of untrusted nodes and network links potentially controlled by the
adversary) without using cryptography somewhere (“sine qua non” is Latin for
“without which it could not be”). If the adversary can read communications,
then to protect the confidentiality of the network traffic, it must be encrypted.
If the adversary can modify network communication, then it must have its in-
tegrity protected and be authenticated (that is, to have the source identified).
Even physical layer communication security technologies, like the KLJN cipher,
quantum cryptography, and spread-spectrum communication, use cryptography
in one way or another.

I would go farther and say that performing network security decisions on any-
thing other than cryptographic keys is never going to be as strong as if it

44

http://www.nmap.org/
http://netcat.sourceforge.net/
http://www.packetfactory.net/projects/firewalk/
http://en.wikipedia.org/wiki/Intrusion-detection_system
http://www.snort.org/

depended on cryptography. Very few Internet adversaries currently have the
capability to arbitrarily route data around. Most cannot jump between VLANs
on a tagged port. Some don’t even have the capability to sniff on their LAN.
But none of the mechanisms preventing this are stronger than strong cryptogra-
phy, and often they are much weaker, possibly only security through obscurity.
Let me put it to you this way; to support a general argument otherwise, think
about how much assurance a firewall has that a packet claiming to be from a
given IP address is actually from the system the firewall maintainer believes it
to be. Often these things are complex, and way beyond his control. However,
it would be totally reasonable to filter on IP address first, and only then allow
a cryptographic check; this makes it resistant to resource consumption attacks
from anyone who cannot spoof a legitimate IP address (see [L1.T]).

10.6 Hello, My Name is 192.168.1.1

Humans are incapable of securely storing high-quality cryptographic
keys, and they have unacceptable speed and accuracy when per-
forming cryptographic operations. (They are also large, expensive
to maintain, difficult to manage, and they pollute the environment.
It is astonishing that these devices continue to be manufactured and
deployed. But they are sufficiently pervasive that we must design
our protocols around their limitations).

— Network Security / PRIVATE Communication in a PUBLIC World
by Charlie Kaufman, Radia Perlman, & Mike Speciner (Prentice Hall
2002; p.237)

Because humans communicate in slowly, in plaintext, and don’t plug into a
network, we consider the nodes within the network to be computing devices. The
system a person interacts with has equivalency with them; break into the system
administrator’s console, and you have access to anything he or she accesses. In
some cases, you may have access to anything he or she can access. You may
think that the your LDAP or Kerberos server is the most important, but isn’t
the node of the guy who administers it just as critical? This is especially true if
OS security is weak and any user can control the system, or if the administrator
is not trusted, but it is also convenient because packets do not have user names,
just source IPs. When some remote system connects to a server, unless both
are under the control of the same entity, the server has no reason to trust the
remote system’s claim about who is using it, nor does it have any reason to
treat one user on the remote system different than any other.

10.7 Source Tapping; The First Hop and Last Mile

One can learn a lot more about a target by observing the first link from them
than from some more remote place. That is, the best vantage point is one

45

closest to the target. For this reason, the first hop is far more critical than any
other. An exception may involve a target that is more network-mobile than the
eavesdropper. The more common exception is tunneling/encryption (to include
tor and VPN technologies); these relocate the first hop somewhere else which
is not physically proximate to the target’s meat space coordinates, which may
make it more difficult to locate.

Things to consider here involve the difficulty of interception, which is a sec-
ondary concern (it is never all that difficult). For example, it is probably less
confidential from the ISP to use an ISP’s caching proxy than to access the ser-
vice directly, since most proxy software makes it trivial to log the connection
and content; however, one should not assume that one is safe by not using the
proxy (especially now that many do transparent proxying). However, it is less
anonymous from the remote site to access the remote site directly; using the
ISP’s proxy affords some anonymity (unless the remote site colludes with the
ISP).

10.8 Security Equivalent Things Go Together

One issue that always seems to come up is availability versus other goals. For
example, suppose you install a new biometric voice recognition system. Then
you have a cold and can’t get in. Did you prioritize correctly? Which is more
important? Similar issues come up in almost every place with regard to security.
For example, your system may authenticate users versus a global server, or it
may have a local database for authentication. The former means that one can
revoke a user’s credentials globally immediately, but also means that if the
global server is down, nobody can authenticate. Attempts to get the best of
both worlds (“authenticate locally if global server is unreachable”) often reduce
to availability (adversary just DOSes link between system and global server to
force local authentication).

My philosophy on this is simple; put like things together. That is, I think
authentication information for a system should be on the system. That way,
the system is essentially a self-contained unit. By spreading the data out, one
multiplies potential attack targets, and reduces availability. If someone can
hack the local system, then being able to alter a local authentication database
is relatively insignificant.

10.9 Man In The Middle

How do we detect MITM or impersonation in web, PGP/GPG, SSH contexts?

The typical process for creating an Internet connection involves a DNS resolution
at the application layer (unless you use IP addresses), then sending packets to
the IP address (at the network layer), which have to be routed; at the link
layer, ARP typically is used to find the next hop at each stage, and then bits

46

are marshalled between devices at the physical layer. Each of these steps creates
the opportunity for a man-in-the-middle attack.

10.9.1 DNS MITM Issues

o Wikipedia article on DNS cache poisoning (http://en.wikipedia.org/
wiki/DNS_cache_poisoning)

e Spoofing replies - transaction ID predictability (http://www.net-security.
org/dl/articles/Attacking_the_DNS_Protocol.pdf, http://www.securityfocus.
com/bid/30131)

e Maybe you are querying a DNS server the adversary controls (i.e. your
ISP)

10.9.2 IP Routing MITM Issues

The adversary could announce bogus BGP routes (http://tools.ietf.org/
html/rfc4272).

The adversary could naturally sit between you and the remote system.

10.9.3 Link Layer MITM Issues

The adversary could use ARP spoofing or poisoning, such as with these tools:

e dsniff (http://www.monkey.org/ dugsong/dsniff/)

e ettercap (http://ettercap.sourceforge.net/)

10.9.4 Physical Layer MITM Issues

Tapping the wire (or listening to wireless)

There is something used by the military called an identification friend or foe
(IFF) device. You can read about it on the Wikipedia page (http://en.
wikipedia.org/wiki/Identification_friend_or_foe). What is interesting
is that it can be defeated using a MITM attack; the challenger sends his chal-
lenge towards the adversary, and the adversary relays the challenge to a system
friendly to the challenger, and relays the response back. What is interesting
here is that, in this case, the IFF device can enforce a reasonable time limit, so
that a MITM attack fails due to speed-of-light constraints. In this case, it could
be considered a kind of “somewhere you are” authentication factor (see ITT.8).

47

http://en.wikipedia.org/wiki/DNS_cache_poisoning
http://en.wikipedia.org/wiki/DNS_cache_poisoning
http://www.net-security.org/dl/articles/Attacking_the_DNS_Protocol.pdf
http://www.net-security.org/dl/articles/Attacking_the_DNS_Protocol.pdf
http://www.securityfocus.com/bid/30131
http://www.securityfocus.com/bid/30131
http://tools.ietf.org/html/rfc4272
http://tools.ietf.org/html/rfc4272
http://www.monkey.org/~dugsong/dsniff/
http://ettercap.sourceforge.net/
http://en.wikipedia.org/wiki/Identification_friend_or_foe
http://en.wikipedia.org/wiki/Identification_friend_or_foe

10.9.5 Cryptographic Methods

There are cryptographic mechanisms that may be used to detect MITM attacks;
see [28.9)

10.10 Network Surveillance

o ATET Invents Programming Language for Mass Surveillance (http://
blog.wired.com/27bstroke6/2007/10/att-invents-pro.html)

10.11 Push vs. Pull Updates

When moving data between systems on a regular basis, I find myself wondering
whether it is better to push data or to have the system pull it. In a push model,
the pushing system connects to an open port on the destination, which implies
that there is the possibility that the destination system could have data pushed
to it from another machine. In a pull model, the machine asks for the data it
wants, and the sender of the data must have an open port. This is a complex
subject. Sometimes push models are inadequate because one of the recipient
machines may be unreachable when you are doing the push. Sometimes pull
models are inadequate because the pull may come too late for an important
security update. Sometimes you need both, where you push to a class of systems
and any which are down automagically request the data when they come back
up. With SSH, rsync, and proper key management, this is not really a significant
security issue, but with other systems implementing their own file distribution
protocols, this could be a major security hole. Be careful that any file transfer
you establish is a secure one.

10.12 DNS Issues

DNS is perhaps the most widely deployed distributed system, and it can be
abused in many ways. The main investigator of DNS abuse is Dan Kaminsky;
he can tunnel SSH sessions over DNS, store data in DNS like a very fast FTP
server, use it to distribute real-time audio data, and snoop on caches to see if

you’ve requested a certain DNS name.

e Dan Kaminski’s web site (http://www.doxpara.com/)

10.13 Network Topology

Organizational systems prone to intrusion, or with porous perimeters, should
make liberal use of internal firewalls. This applies to organizational structures

48

http://blog.wired.com/27bstroke6/2007/10/att-invents-pro.html
http://blog.wired.com/27bstroke6/2007/10/att-invents-pro.html
http://www.doxpara.com/

as well, so that organizations prone to personnel infiltration, should make use
of the revolutionary cell structure for their communication topology.

It is possible to triangulate the location of a system using ping times from three
locations. Note that it’s not the physical locations that you use to triangulate,
but the network locations; it’s no good if all three share the same long pipe
to the target. You need separate paths that converge as close to the target as
possible.

11 Identification and Authentication

Identification is necessary before making any sort of access control decisions.
Often it can reduce abuse, because an identified individual knows that if they do
something there can be consequences or sanctions. For example, if an employee
abuses the corporate network, they may find themselves on the receiving end
of the sysadmin’s luser attitude readjustment tool (LART). I tend to think of
authentication as a process you perform on objects (like paintings, antiques,
and digitally signed documents), and identification as a process that subjects
(people) perform, but in network security you're really looking at data created
by a person for the purpose of identifying them, so I use them interchangeably.

11.1 Identity

Sometimes I suspect I'm not who I think I am.
— Ghost in the Shell

An identity, for our purposes, is an abstract concept; it does not map to a person,
it maps to a persona. Some people call this a digital ID, but since this paper
doesn’t talk about non-digital identities, I'm dropping the qualifier. Identities
are different from authenticators, which are something you use to prove your
identity. An identifier is shorthand, a handle; like a pointer to the full identity.

To make this concrete, let us take the Unix operating system as an example.
Your identity corresponds to a row in the /etc/passwd file. Your identifier is
your username, which is used to look up your identity, and your password is an
authenticator.

11.2 Identity Management

In relational database design, it is considered a good practice for the primary key
(http://en.wikipedia.org/wiki/Primary_key) of a table to be an integer,
perhaps a row number, that is not used for anything else. That is because
the primary key is used as an identifier for the row; it allows us to modify the

49

http://en.wikipedia.org/wiki/Primary_key

object itself, so that the modification occurs in all use cases simultaneously (for a
normalized database). Most competent DBAs realize that people change names,
phone numbers, locations, and so on; they may even change social security
numbers. They also realize that people may share any of these things (even
social security numbers are not necessarily unique, especially if they lie about
it). So to be able to identify a person across any of these changes, you need to
use a row number. The exact same principle applies with security systems; you
should always keep the identifiers separate from identities and authenticators.

This is good, because the authenticator (password) may be changed without
losing the idea of the identity of the person. However, there are subtle gotchas.
In Unix, the username is mapped to a user ID (UID), which is the real way that
Unix keeps track of identity. It isn’t necessarily a one-to-one mapping. Also, a
poor system administer may reassign an unused user ID without going through
the file system and looking for files owned by the old user, in which case their
ownership is silently reassigned.

PGP /GPG made the mistake of using a cryptographic key as an identifier. If one
has to revoke that key, one basically loses anything (such as signatures) which
applied to that key, and the trust that other people have indicated towards that
key. And if you have multiple keys, friends of yours who have all of them cannot
treat them all as equivalent, since GPG can’t be told that they are associated to
the same identity, because the keys are the identity. Instead, they must manage
statements about you (such as how much they trust you to act as an introducer)
on each key independently.

Some web sites are using email addresses as identities, which makes life difficult
when it changes; in some cases, you are effectively a different person if you
change email addresses. In my opinion, identifiers like email addresses should
only serve to look up an identity; it should not be the identity.

For an excellent paper on identity in an Internet context, see:
e Kim Cameron’s “The Laws of Identity” (http://www.identityblog.com/?
p=354)

e Ben Laurie’s “Selective Disclosure” (http://www.links.org/files/selective-disclosure.
pdf)

11.3 The Identity Continuum

Identification can range from fully anonymous to pseudonymous, to full identi-
fication. Ensuring identity can be expensive, and is never perfect. Think about
what you are trying to accomplish. Applies to cookies from web sites, email
addresses, “real names”, and so on.

30

http://www.identityblog.com/?p=354
http://www.identityblog.com/?p=354
http://www.links.org/files/selective-disclosure.pdf
http://www.links.org/files/selective-disclosure.pdf

11.4 Problems Remaining Anonymous

In cyberspace everyone will be anonymous for 15 minutes.

— Graham Greenleaf

What can we learn from anonymizer, mixmaster, tor, and so on? Often one can
de-anonymize. Some people have de-anonymized search queries this way, and
census data, and many more data sets that are supposed to be anonymous.

11.5 Problems with Identifying People

e Randomly-Chosen Identity
e Fictitious Identity

e Stolen Identity

11.6 What Authority?

Does it follow that I reject all authority? Far from me such a
thought. In the matter of boots, I refer to the authority of the
bootmaker; concerning houses, canals, or railroads, I consult that of
the architect or the engineer.

— Mikhail Bakunin, What is Authority? 1882 (http://www.panarchy.
org/bakunin/authority.1871.html)

When we are attempting to identify someone, we are relying upon some author-
ity, usually the state government. When you register a domain name with a
registrar, they record your personal information in the WHOIS database; this
is the system of record (http://en.wikipedia.org/wiki/System_of_record).
No matter how careful we are, we can never have a higher level of assurance
than this authority has. If the government gave that person a false identity, or
the person bribed a DMV clerk to do so, we can do absolutely nothing about
it. This is an important implication of the limitations of accuracy (see [.6).

11.7 Goals of Authentication

Authentication serves two related goals; it is designed to allow us in while keep-
ing other people out. These goals are two sides of the same coin, but have
different requirements. The goal to allow us in requires that authentication be
convenient, while the goal of keeping others out requires that authentication be
secure. These goals are often in direct conflict with each other and an example
of a more general trade-off between convenience and security.

o1

http://www.panarchy.org/bakunin/authority.1871.html
http://www.panarchy.org/bakunin/authority.1871.html
http://en.wikipedia.org/wiki/System_of_record

11.8 Authentication Factors

There are many ways you can prove your identity to a system. They may include
one or more authentication factors such as:

something you are like biometric signatures such as the pattern of capillaries
on your retina, your fingerprints, etc.

something you have like a token, physical key, or thumb drive
something you know like a passphrase or password

somewhere you are if you put a GPS device in a computer, or did direction-
finding on transmissions, or simply require a person to be physically
present somewhere to operate the system

somewhere you can be reached like a mailing address, network address,
email address, or phone number

At the risk of self-promotion, I want to point out that, to my knowledge, the last
factor has not been explicitly stated in computer security literature, although it
is demonstrated every time a web site emails you your password, or every time
a financial company mails something to your home.

11.9 Authenticators

My voice is my passport; verify me.

— Sneakers, the motion picture

The oldest and still most common method for authenticating individuals consists
of using passwords. However, there are many problems with using passwords,
and I humbly suggest that people start to design systems with the goal of
minimizing the use of passwords, passphrases, and other reusable authenticators.

e Strong Passwords Not As Good As You Think (http://it.slashdot.
org/article.pl?sid=09/07/13/1336235)

o Strong Web Passwords (http://www.schneier.com/blog/archives/2009/
07/strong_web_pass.html)

e Do Strong Web Passwords Accomplish Anything? (http://www.usenix.
org/event/hotsec07/tech/full_papers/florencio/florencio.pdf)

92

http://it.slashdot.org/article.pl?sid=09/07/13/1336235
http://it.slashdot.org/article.pl?sid=09/07/13/1336235
http://www.schneier.com/blog/archives/2009/07/strong_web_pass.html
http://www.schneier.com/blog/archives/2009/07/strong_web_pass.html
http://www.usenix.org/event/hotsec07/tech/full_papers/florencio/florencio.pdf
http://www.usenix.org/event/hotsec07/tech/full_papers/florencio/florencio.pdf

11.9.1 People Pick Lousy Passwords

The first and most important issue is that people pick lousy passwords.

o Real World Passwords (http://www.schneier.com/blog/archives/2006/
12/realworld_passw.html)

A current plague of security problems stems from rampant password guessing
for remote services (specifically, ssh). There have been a number of suggestions
for dealing with this, as we shall see.

11.9.2 Picking Secure Passwords

One thing that most people could do to improve their security is to pick better
passwords:

o Choosing Secure Passwords (http://www.schneier.com/blog/archives/
2007/01/choosing_secure.html)

11.9.3 Preventing Weak Passwords

One invaluable tool for dealing with password guessing involves weeding out
weak passwords. No password lockouts will help you when your users pick
passwords such as “password” and an adversary guesses that on the first try.

There are two ways of doing this; in the older post facto method, one tries to
crack the password hashes. However, it is desirable to store passwords only
after they have been passed through a one-way function, or hash. In this case,
it’s often much more efficient to check them before hashing than to try to crack
them post-facto; however, you must locate and guard all the places passwords
can be set.

11.9.4 Remembering Passwords
The problem with preventing weak passwords is that if the passwords are hard
to guess, they are hard to remember, and users may write them down on post-it

notes or simply forget them more often. More sophisticated users may store
them in their wallets, or in a password database program like Password Safe:

e http://www.schneier.com/passsafe.html

93

http://www.schneier.com/blog/archives/2006/12/realworld_passw.html
http://www.schneier.com/blog/archives/2006/12/realworld_passw.html
http://www.schneier.com/blog/archives/2007/01/choosing_secure.html
http://www.schneier.com/blog/archives/2007/01/choosing_secure.html
http://www.schneier.com/passsafe.html

11.9.5 Password Guessing Lockouts

Most systems employ some sort of abuse detection (lockout) to prevent guessing
passwords. In the naive model, this checks for multiple guesses on a single user-
name. For example, the Unix console login has you enter a username, and then
prompts for a password; if you get the password wrong three times, it freezes
the terminal for a period of time. Guessing multiple passwords for one username
is sometimes called the forward hack. Some network login programs like SSH
do the same thing, with the sshd _config entry MaxAuthTries determining how
many guesses are possible. As a result, some SSH brute-forcing programs try
the same password on multiple accounts, the so-called reverse hack.

It also opens up the door for a denial-of-service attack; the adversary can try
various passwords until the account gets locked, denying the legitimate owner
in.

One other problem with this is that unless one can centralize all authentication
in something like PAM (pluggable authentication modules), then an adversary
may simply multiplex guesses over different services which all consult the same
authentication information. One such example is THC’s Hyda:

e http://freeworld.thc.org/thc-hydra/

11.9.6 Limited Password Lifetimes

Some systems require you to change your password frequently, minimizing the
amount of time it is good for if it is guessed, ostensibly making it less valuable.
The problem with this is that once a password is guessed, the adversary is
likely to use it right away, and perhaps set up a back door for later entry into
the system. It’s very difficult to detect a well-placed back door. This is also
extremely inconvenient to users, and they often end up varying their passwords
by some predictable mechanism.

There is another advantage to limited password lifetimes; if the passwords take a
long time to guess or crack, then rotating them with a shorter time frame means
that a cracked password is no longer valuable. This was more appropriate when
any user could read the hashed passwords from the file /etc/passwd; modern
systems keep them in another file and don’t make it readable to anyone but root,
meaning that cracking password hashes would have to occur after cracking the
root account, for later access to the same system or to other systems where the
users might have the same passwords.

11.9.7 Password Reset Procedure

Enforcing difficult-to-guess passwords and limited password lifetimes increases
the chance that users will forget their passwords. This means more users having

o4

http://freeworld.thc.org/thc-hydra/

to reset their passwords, resulting in increased administrative burden and in-
convenience to users. In the most secure case, the procedure to reset passwords
should be as secure as the mechanism to create accounts; I have worked in places
where this required a physical visit and presentation of ID. In most cases, the
password reset procedure is as simple as a phone call.

11.9.8 Security Questions

In many cases, this burden is too high or impractical, particularly for web sites.
In these situations, the user is often asked to select certain security questions
which will allow them to reset their password. The traditional method was
to require their mother’s maiden name, but nowadays there are wide variety of
questions, many of which are (unfortunately) easy to guess, especially for people
who know the user in question personally.

11.9.9 Disabling Root Logins

Some security pundits have suggested that you disable logins for root to avoid
someone getting in as the administrator; then one must guess the user name of
a specific administrator as well, but this really isn’t all that hard, and makes it
impossible to, say, rsync an entire file system over ssh (since one cannot log in
directly as root, one cannot directly access files as root).

I find it simpler and safer to disallow password-based authentication altogether,
wherever possible.

For remote administration, let’s compare the scenario they are suggesting (reusable
passphrases but no direct root logins), with my scenario (cryptographic logins,
direct root access). My scenario has the following obvious attack vectors:

e The adversary takes control of the system you’re sitting at, where your
ssh key is stored, in which case he could impersonate you anyway (he
may have to wait for you to log in to sniff the reusable passphrase, or to
hijack an existing connection, but I think it’s not worth worrying about
the details; if they have root on your console, you're hosed).

e The adversary guesses your 4096-bit private RSA key, possibly without
access to the public key. In this case, he could probably use the same
technique against the encryption used to protect the SSH or IPsec ses-
sions you're using to communicate over anyway (host keys are often much
smaller than 4096-bit), and in the alternate scenario (no direct root lo-
gins, but allowing reusable passphrases) he would get access to the reusable
passphrases (and all other communication).

By contrast, their scenario has the same vulnerabilities, plus:

39

e Someone guesses the login and password. Login names are not secrets,
and never have been treated as secrets (e.g. they’re often in your email
address). They may not even be encrypted in the SSH login procedure.
Passwords may be something guessable to your adversary but not you; for
example, a word in a dictionary you don’t have, an “alternative spelling”
that you didn’t think of, or perhaps the user uses the same passphrase to
access a web site (perhaps even via unencrypted HTTP).

11.9.10 Eliminating Reusable Authenticators

Thus, it is undesirable to use re-usable authentication over the network. How-
ever, these other kinds of authentication present difficulties:

e Encrypted storage; this is like using encryption to communicate with your
future self. Obviously, you must reuse the same key, or somehow re-
encrypt the disk. One could, theoretically, disallow direct access to the key
used to encrypt the storage, and re-encrypt it each time with a different
passphrase, but to protect it from the administrator you’d need to use
some sort of hardware decryption device, and to protect it against someone
with physical access you’d need tamper-resistant hardware (e.g. TPM).

e Authenticating to the system you’re sitting at; even then, one could use
S/Key or another system for one-time authenticators written down and
stored in your wallet, combined with a memorized passphrase.

11.10 Biometrics

Entire books have been written about biometrics, and I am not an expert in the
field. Thus, this section is just a stub, waiting for me to flesh it out.

o Authenticating People By Their Typing Patterns (http://www.schneier.
com/blog/archives/2005/11/authenticating.html)

e PSYLock: a typing behavior based psychometrical authentication method
(http://pcb0461.uni-regensburg.de/ibi/de/leistungen/research/projekte/
risk/psylock_english.htm)

11.11 Authentication Issues: When, What

In Unix, a console login or remote login (via e.g., SSH) requires authentication
only once, and then all commands issued in the session are executed without
additional authentication. This is the traditional authentication scheme used
by most multi-user systems today.

96

http://www.schneier.com/blog/archives/2005/11/authenticating.html
http://www.schneier.com/blog/archives/2005/11/authenticating.html
http://pc50461.uni-regensburg.de/ibi/de/leistungen/research/projekte/risk/psylock_english.htm
http://pc50461.uni-regensburg.de/ibi/de/leistungen/research/projekte/risk/psylock_english.htm

There historically was a system whereby rsh (and later, SSH) could be configured
to trust other systems; the current system trusted the other system to only
make such a request on behalf of a duly authorized user, and presumably both
systems were in the same administrative domain. However, this turned out to be
problematic; the adversary or his software could easily exploit these transitive
trust relationships to seize control of multiple, sometimes all, systems in the
administrative domain. For this reason, this system authentication method is
rarely used, however, it is implicitly the model used in network security. A
somewhat weaker model is used by firewalls, which only use the IP address
(somewhere you claim to be reachable) as the authenticator.

Changing a user’s password is a significant change; it can lock someone out of
their account unless and until the person can convince an administrator to reset
it. For this reason, the passwd command (and it alone) required entering the
old password before you could change it; this prevented someone from sitting
down at a logged-in terminal and locking the person out of their own account
(and potentially allowing the adversary in from another, safer, location).

As another example, there is also a relatively standard way to perform actions
as the root, or most privileged user called sudo. The sudo program allows ad-
ministrators to operate as normal users most of the time, which reduces the
risk of accidentally issuing a privileged command, which is a good thing. In
this sense, it is similar to role-based access control (see [2.3). However, the
relevant point here is that it started by requiring your account password with
each command issued through it. In this way, it prevented accidental issuance
of commands by oneself, but also prevented someone from using an adminis-
trator’s console to issue a command. This is authentication of an individual
transaction or command. Later this was found to be too inconvenient, and so
the authentication was cached for a short period of time so that one could issue
multiple commands at once while only being prompted for a password once.

This suggests that Unix has evolved a rather hybrid authentication scheme over
the years; it authenticates the session only for most things, but in certain cases
it authenticates individual commands.

So when designing a system, it seems useful to ask ourselves when we want to
authenticate; per session, or per transaction. It is also worth asking what is
being authenticated; remote systems, transactions, or people.

11.12 Remote Attestation

A concept in network security involves knowing that the remote system is a
particular program or piece of hardware is called remote attestation. When I
connect securely over the network to a machine I believe I have full privileges
on, how do I know I'm actually talking to the machine, and not a similar system
controlled by the adversary? This is usually attempted by hiding an encryption
key in some tamper-proof part of the system, but is vulnerable to all kinds of

o7

disclosure and side-channel attacks, especially if the owner of the remote system
s the adversary.

The most successful example seems to be the satellite television industry, where
they embed cryptographic and software secrets in an inexpensive smart card
with restricted availability, and change them frequently enough that the re-
sources required to reverse engineer each new card exceeds the cost of the data
it is protecting. In the satellite TV industry, there’s something they call ECMs
(electronic counter-measures), which are program updates of the form “look at
memory location 0xFC, and if it’s not 0xFA, then HCF” (Halt and Catch Fire).
The obvious crack is to simply remove that part of the code, but then you will
trigger another check that looks at the code for the first check, and so on.

The sorts of non-cryptographic self-checks they request the card to do, such
as computing a checksum (such as a CRC) over some memory locations, are
similar to the sorts of protections against reverse engineering, where the program
computes a checksum to detect modifications to itself.

11.13 Advanced Authentication Tools

e Simple Authentication and Security Layer (http://en.wikipedia.org/
wiki/Simple_Authentication_and_Security_Layer) is a three-layer li-
brary (interface, mechanism, method) that supports multiple authentica-
tion methods for various systems; LDAP, SMTP AUTH, etc.

12 Authorization - Access Control

12.1 Privilege Escalation

Ideally, all services would be impossible to abuse. Since this is difficult or impos-
sible, we often restrict access to them, to limit the potential pool of adversaries.
Of course, if some users can do some things and others can’t, this creates the op-
portunity for the adversary to perform an unauthorized action, but that’s often
unavoidable. For example, you probably want to be able to do things to your
computer, like reformat it and install a new operating system, that you wouldn’t
want others to do. You will want your employees to do things an anonymous
Internet user cannot (see 3)). Thus, many adversaries want to escalate their
privileges to that of some more powerful user, possibly you. Generally, privilege
escalation attacks refer to techniques that require some level of access above
that of an anonymous remote system, but grant an even higher level of access,
bypassing access controls.

They can come in horizontal (user becomes another user) or vertical (normal
user becomes root or Administrator) escalations.

98

http://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer
http://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer

12.2 Physical Access Control

These include locks. Ilike Medeco, but none are perfect. It’s easy to find guides
to lock picking:

o Guide to Lock Picking http://www.lysator.liu.se/mit-guide/mit-guide.
html

o Free Lock Picking Guide http://www.free-lock-picking-guide.com/

12.3 Operating System Access Control
12.3.1 Discretionary Access Control

Discretionary Access Control, or DAC (http://en.wikipedia.org/wiki/Discretionary_
access_control) is up to the end-user. They can choose to let other people

write (or read, etc.) to their files, if they wish, and the defaults tend to be

global. This is how file permissions on classic Unix and Windows work.

12.3.2 Mandatory Access Control

A potentially more secure system often involves Mandatory Access Control, or
MAC (http://en.wikipedia.org/wiki/Mandatory_access_control), where
the security administrator sets up the permissions globally. Some examples of
MAC types are Type Enforcement and Domain Type Enforcement. Often they
are combined, where the access request has to pass both tests, meaning that the
effective permission set is the intersection of the MAC and DAC permissions.
Another way of looking at this configuration is that MAC sets the maximum
permissions that can be given away by a user with DAC.

o Security Modes of Operation in MAC systems (http://en.wikipedia.
org/wiki/Security_Modes)

o Security Enhanced Linux (http://en.wikipedia.org/wiki/Security-Enhanced_
Linux, http://www.nsa.gov/research/selinux/index.shtml)

o AppArmor (http://en.wikipedia.org/wiki/AppArmor)
e Tomoyo Linuzx (http://en.wikipedia.org/wiki/TOMOY0O_Linux)

o Simplified Mandatory Access Control Kernel (http://en.wikipedia.org/
wiki/Simplified_Mandatory_Access_Control_Kernel)

o Linux Intrusion Detection System (http://en.wikipedia.org/wiki/Linux_
Intrusion_Detection_System)

e TrustedBSD (http://www.trustedbsd.org/)

99

http://www.lysator.liu.se/mit-guide/mit-guide.html
http://www.lysator.liu.se/mit-guide/mit-guide.html
http://www.free-lock-picking-guide.com/
http://en.wikipedia.org/wiki/Discretionary_access_control
http://en.wikipedia.org/wiki/Discretionary_access_control
http://en.wikipedia.org/wiki/Mandatory_access_control
http://en.wikipedia.org/wiki/Security_Modes
http://en.wikipedia.org/wiki/Security_Modes
http://en.wikipedia.org/wiki/Security-Enhanced_Linux
http://en.wikipedia.org/wiki/Security-Enhanced_Linux
http://www.nsa.gov/research/selinux/index.shtml
http://en.wikipedia.org/wiki/AppArmor
http://en.wikipedia.org/wiki/TOMOYO_Linux
http://en.wikipedia.org/wiki/Simplified_Mandatory_Access_Control_Kernel
http://en.wikipedia.org/wiki/Simplified_Mandatory_Access_Control_Kernel
http://en.wikipedia.org/wiki/Linux_Intrusion_Detection_System
http://en.wikipedia.org/wiki/Linux_Intrusion_Detection_System
http://www.trustedbsd.org/

o Solaris Trusted Extensions (http://en.wikipedia.org/wiki/Solaris_
Trusted_Extensions)

e Dan Walsh’s blog (http://danwalsh.livejournal.com/)

12.3.3 Role-Based Access Control

Role-Based Access Control,or RBAC (http://en.wikipedia.org/wiki/Role-based_
access_control) could be considered a form of MAC. In RBAC, there are roles

to whom permissions are assigned, and one switches roles to change permission

sets. For example, you might have a security administrator role, but you don’t

need that to read email or surf the web, so you only switch to it when doing
security administrator stuff. This prevents you from accidentally running mal-

ware (see [16.7)) with full permissions. Unix emulates this with pseudo-users and

sudo.

Note that it may not be possible to prevent a user from giving his own access
away; as a trivial example, on most operating systems, it is possible for a user
to grant shell access with his permissions by creating a listening socket that
forwards commands to a shell (often via netcat). It is also very easy for a user
to install a listening service that, unbeknownst to him, has a vulnerability that
allows remote code execution, or fails to do proper authentication /authorization.

12.3.4 Other OS Access Control Techniques

e Systrace (http://en.wikipedia.org/wiki/Systrace)
e Grsecurity (http://en.wikipedia.org/wiki/Grsecurity)
e Rule Set Based Access Control (http://en.wikipedia.org/wiki/RSBAC)

Multilevel Security (http://en.wikipedia.org/wiki/Multilevel_security)

12.4 Application Authorization Decisions

There are many applications which have tried to allow some users to perform
some functions, but not others. Let’s forget what we’re trying to authorize, and
focus on information about the requester.

For example, network-based authorization may depend on (in descending order
of value):

e cryptographic key
e MAC address
e IP address

60

http://en.wikipedia.org/wiki/Solaris_Trusted_Extensions
http://en.wikipedia.org/wiki/Solaris_Trusted_Extensions
http://danwalsh.livejournal.com/
http://en.wikipedia.org/wiki/Role-based_access_control
http://en.wikipedia.org/wiki/Role-based_access_control
http://en.wikipedia.org/wiki/Systrace
http://en.wikipedia.org/wiki/Grsecurity
http://en.wikipedia.org/wiki/RSBAC
http://en.wikipedia.org/wiki/Multilevel_security

e port number
An operating system authorization usually depends on:

e Being root or Administrator (uid=0 in Unix)
e The identity of the user, this being the effective UID (or EUID in Unix)
e The group(s) in which that user participates

e Tags, labels, and other things related to advanced topics (see [12.3])

There are other factors involved in authorization decisions but these are just
examples. Instead of tying things to one system, let’s keep it simple and pretend
we're allowing or denying natural numbers, rather than usernames or things of
that nature. Let’s also define some access control matching primitives such as:

e odd
e even
e prime

less than x

greater than y

In a well-designed system these primitive functions would be rather complete
and not the few we have here. Further, there should be some easy way to
compose these tests to achieve the desired access control:

e AND
¢ OR
e NOT

Systems which do not do this kind of authorization are necessarily incomplete,
and cannot express all desired combinations of sets.

12.4.1 Standard Whitelist and Blacklist

In this configuration, there’s a blacklist of bad guys, and a whitelist of guys we
know (or must assume) to be good, and the whitelist always takes precedence.
The rule is “you may communicate with us unless you're on the blacklist, unless
you're also on the whitelist”. Anything whitelisted can always communicate
with us, no matter what.

61

In the context of IPs and firewalls, this allows us to blacklist people trying to
exploit us using UDP attacks, which area easily forged, but keep our default
gateway and root DNS servers, which we really do want to be able to commu-
nicate with, even if forged attacks appear to come from them.

In the context of domains, for example in a web proxy filter, we may whitelist
example.com, but be unable to blacklist badguy.example.com, because whitelists
always take precedence over blacklists, and both match. Similar issues come up
when we want to blacklist CIDR blocks instead of individual IP addresses. In
these cases, it seems you want a more complex access control mechanism to
capture the complexity of the sets you are describing.

And remember, blacklisting is always playing catch-up. It’s a good example of
starting off by giving people too much privilege (seeB4.1]), but may be necessary
in today’s web world, where everyone is a desired customer.

12.4.2 Apache Access Control

Apache has three access control directives

Allow specifies who can use the resource
Deny specifies who can not use the resource

Order specifies the ordering of evaluation of those directives as either ’deny,
allow’, ’allow, deny’, or mutual-failure.

e deny, allow means that the deny directives are evaluated first, and is
the default. This basically is an example of enumerating badness (B4.1]).
This may make sense for a public webserver where anyone on the Internet
should be able to browse, but blacklisting is not an effective way to run a
secure operation.

e allow, deny is the more secure option, only allowing those who pass the
allow operation to continue, but it still processes the deny section and
anyone who was allowed in and then later denied is still rejected.

¢ mutual-failure means hosts that appear on the allow list but not appear
on the deny list are granted access. This seems to be redundant with
“allow, deny”.

This is unfortunately quite confusing, and it’s hard to know where to start. By
having an allow list and a deny list, we have four sets of objects defined:

1. Those that are neither allowed nor denied

2. Those that are allowed

62

3. Those that are denied

4. Those that are both allowed and denied

The truth table for this is as follows (D means default, O means open, X means
denied):

L [1]2[3[4]

DA|D|O|X]|O

AD | D |O | X | X
MF DO |X]|X

Do you see what I mean? AD and MF are essentially the same, unless I misread
this section in the O’Reilly book.

Now, suppose we wish to allow in everyone except the naughty prime numbers.
We would write:

e deny primes

e allow all

e order deny, allow

So far so good, right? Now let’s say that we want to deny the large primes
but allow the number 2 in. Unless our combiners for access-control primitives
were powerful enough to express “primes greater than two”, we might be stuck
already. Apache has no way to combine primitives, so is unable to offer such
access control. But given that it’s the web, we can’t rail on it too harshly.

What we really want is a list of directives that express the set we wish very
easily. For example, imagine that we didn’t have an order directive, but we
could simply specify what deny and allow rules we have in such a way that
earlier takes precedence (the so-called “short circuit” evaluation)

1. allow 2
2. deny primes

3. allow all
However, we’re unable to do that in Apache. Put simply, one can’t easily treat
subsets of sets created by access control matching in a different manner than

the set they reside in. We couldn’t allow in “2” while denying primes, unless the
access control matching functions were more sophisticated.

12.4.3 Squid

Squid has one of the more powerful access control systems in use.

63

Primitives
e HTTP response header matches
e HTTP username (a la HTTP basic authentication)
e external
e IP address and netmask (source or destination)
e range of IP addresses and netmask (source or destination)
o MAC address
e domain name (source or destination)
e regular expression on domain name (source or destination)
e time
e URL regex
e URL path regex
e ports (destination)
e protocol (FTP or HTTP)
e HTTP method (GET or POST)
e User-Agent header
e HTTP Referer header regex
e IDENT service match
o IDENT service regex
e AS numbers (source or destination)
e proxy username match or regex
e SNMP community string
e number of HT'TP connections over threshhold
e number of source IPs for one user over threshhold
e MIME-type of request or response
e external
e urlgroup

e client certificate or CA

They may then be allowed or denied to certain resources.

64

12.5 IPTables, IPChains, Netfilter

Aside from the bad user interface of having numbers, netfilter has a number of
problems when compared to pf that have always bothered me. I'm going to try
and describe some things you just can’t do with netfilter’s rule set when I get
the time.

12.6 PF

My main complaint with pf is that it rearranges the order of your rules such that
certain types all get processed before others. It supports the “quick” modifier
to any rule which means that if the rule matches, that is the final answer. By
leaving off quick rules, one gets the default of “last matched rule applies”, but
with the inefficiency of going through all the rules. I have not yet seen a case
where the config file couldn’t be written using quick rules, and presumably at
much higher efficiency. Still, it is my favorite language for explaining firewall
rules.

12.7 Keynote

Keynote, or something like it, is definitely the best authorization (trust manage-
ment) framework I have found. OpenBSD has incorporated it into their IPsec
keying daemon, isakmpd. If your program makes complicated access decisions,
or you want it to be able to do so, you should check it out.

e http://wwwl.cs.columbia.edu/~angelos/keynote.html

13 Secure System Administration

13.1 Backups

I should expand this section some day, but I really can’t add anything valuable
over this book:

e Backup & Recovery (http://oreilly.com/catalog/9780596102463)

e Backup Central (http://www.backupcentral.com/)

Apart from basic prevention steps (i.e. use a firewall), good backups are likely
to be the most important thing you can do to improve your security.

65

http://www1.cs.columbia.edu/~angelos/keynote.html
http://oreilly.com/catalog/9780596102463
http://www.backupcentral.com/

13.1.1 Secure Backup Solutions

e Hard Drive Backup (http://www.subspacefield.org/security/hdb/)
o Tarsnap (http://www.tarsnap.com/)

o duplicity (http://www.nongnu.org/duplicity/)

13.2 Monitoring

You should monitor your systems to help plan your security strategy and become
aware of problems, security-related and otherwise. A good system administrator
recognizes when something is wrong with his system. I used to have a computer
in my bedroom, and could tell what it was doing by the way the disk sounded.

e OpenNMS (http://www.opennms.org/)

e Nagios (http://www.nagios.org/)

e Smokeping (http://oss.oetiker.ch/smokeping/)
e Net-SNMP (http://net-snmp.sourceforge.net/)

o Wikipedia: Network Monitoring Systems (http://en.wikipedia.org/
wiki/Network_monitoring_system)

o Wikipedia: Comparison of Network Monitoring Systems (http://en.
wikipedia.org/wiki/Comparison_of_network_monitoring_systems)

13.3 Visualization

e Cacti (http://www.cacti.net/)
e RRDTool (http://oss.oetiker.ch/rrdtool/)

e ifgraph (http://ifgraph.sourceforge.net/)

13.4 Change Management

Change management is the combination of both pro-active declaring and ap-
proving of intended changes, and retroactively monitoring the system for changes,
comparing them to the approved changes, and altering and escalating any unap-
proved changes. Change management is based on the theory that unapproved
changes are potentially bad, and therefore related to anomaly detection (see
[[6.2). It is normally applied to files and databases.

66

http://www.subspacefield.org/security/hdb/
http://www.tarsnap.com/
http://www.nongnu.org/duplicity/
http://www.opennms.org/
http://www.nagios.org/
http://oss.oetiker.ch/smokeping/
http://net-snmp.sourceforge.net/
http://en.wikipedia.org/wiki/Network_monitoring_system
http://en.wikipedia.org/wiki/Network_monitoring_system
http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems
http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems
http://www.cacti.net/
http://oss.oetiker.ch/rrdtool/
http://ifgraph.sourceforge.net/

13.5 Self-Healing Systems

There is a system administration tool called cfengine (http://www.cfengine.
org/) which implements a concept called “self-healing systems”, whereby any
changes made on a given machine are automatically reverted to the (ostensibly
correct and secure) state periodically. Any change to these parameters made
on a given system but not in the central configuration file are considered to be
accidents or attacks, and so if you really want to make a change it has to be
done on the centrally-managed and ostensibly monitored configuration file. You
can also implement similar concepts by using a tool like rsync to manage the
contents of part of the file system.

13.6 Heterogeneous vs. Homogeneous Defenses

Often homogeneous solutions are easier to administer. Having different systems
requires more resources, in training yourself, learning to use them properly, keep-
ing up with vulnerabilities, and increases the risk of misconfiguration (assuming
you aren’t as good at N systems as you would be at one). But there are cases
where heterogeneity is easier, or where homogeneity is impossible. Maybe a par-
ticular OS you're installing comes with Sendmail as the default, and changing
it leads to headaches (or the one you want just isn’t available on it, because it
is a proprietary platform). Embedded devices often have a fixed TCP/IP stack
that can’t be changed, so if you are to guard against things like such things,
you must either run only one kind of software on all Internet-enabled systems,
denying yourself the convenience of all the new network-enabled devices, or you
must break Internet-level connectivity with a firewall and admit impotency to
defend against internal threats (and anyone who can bypass the perimeter).

See the principle of uniform fronts (84.8) and defense-in-depth (84.7) for more
information.

14 Logging

e Loganalysis.org (http://www.loganalysis.org/)

14.1 Synchronized Time

It is absolutely vital that your systems have consistent timestamps. Consis-
tency is more important than accuracy, because you are primarily going to be
comparing logs between your systems. There are a number of problems com-
paring timestamps with other systems, including time zones and the fact that
their clocks may be skewed. However, ideally, you’d want both, so that you
could compare if the other systems are accurate, and so you can make it easier

67

http://www.cfengine.org/
http://www.cfengine.org/
http://www.loganalysis.org/

for others to compare their logs with yours. Thus, the Network Time Protocol
(NTP) is vital. My suggestion is to have one system at every physical location
that act as NTP servers for the location, so that if the network connections go
down, the site remains consistent. They should all feed into one server for your
administrative domain, and that should connect with numerous time servers.
This also minimizes network traffic and having a nearby server is almost always
better for reducing jitter.

14.2 Syslog

See the SAGE booklet on “Building a Logging Infrastructure”.

14.3 Cryptographically Untamperable Logs

Bruce Schneier has a paper on cryptographically secure logs, whereby a system’s
logs cannot be altered without being noticed (merely erased). The basic premise
is that they form a hash chain, where each line includes a hash of the last line.
These systems can be linked together, where one periodically sends its hash to
another, which makes the receiving system within the detection envelope. They
can even cross-link, where they form a lattice, mutually supporting one another.

o Cryptographic Support for Secure Logs on Untrusted Machines (http://
www.schneier.com/paper-secure-logs.html)

15 Reporting

15.1 Change Reporting

I spend a lot of time reading the same things over and over in security reports.
I’d like to be able to filter things that I decided were okay last time without
tweaking every single security reporting script. What I want is something that
will let me see the changes from day to day. Ideally, I'd be able to review the
complete data, but normally I read the reports every day and only want to know
what has changed from one day to the next.

15.2 Artificial Ignorance

To be able to specify things that I want to ignore in reports is what perhaps
Marcus Ranum termed “artificial ignorance” back around 1994 (described here:
http://www.ranum.com/security/computer_security/papers/ai/index.html).
Instead of specifying what I want to see, which is akin to misuse detection, I

68

http://www.schneier.com/paper-secure-logs.html
http://www.schneier.com/paper-secure-logs.html
http://www.ranum.com/security/computer_security/papers/ai/index.html

want to see anything I haven’t already said was okay, which is anomaly detec-
tion. Put another way, what you don’t know can hurt you (see B2.7), which is
why “default deny” is usually a safer access control strategy (see B4.1]).

15.3 Dead Man’s Switch

In some movies, a character has a switch which goes off if they die, which
is known as a dead man’s switch, which can be applied to software (http://
en.wikipedia.org/wiki/Dead_man’s_switch#Software_uses) I want to see
if some subsystem has not reported in. If an adversary overtly disables our sys-
tem, we are aware that it has been disabled, and we can assume that something
security-relevant occurred during that time. But if through some oversight on
our side, we allow a system to stop monitoring something, we do not know if
anything has occurred during that time. Therefore, we must be vigilant that
our systems are always monitoring, to avoid that sort of ambiguity. Therefore,
we want to know if they are not reporting because of a misconfiguration or fail-
ure. Therefore, we need a periodic heartbeat or system test, and a dead man’s
switch.

16 Abuse Detection

Doveriai, no proveriai (“trust, but verify”)

— Russian Proverb (http://en.wikipedia.org/wiki/Trust, _but_
Verify)

It is becoming apparent that there’s more to computers than shell access nowa-
days. One wants to allow benign email, and stop unsolicited bulk email. For
wikis and blogs, one wants to allow collaboration, but doesn’t want “comment
spam”. Some still want to read topical USENET messages, and not read spam
(I feel that’s a lost cause now). If you’re an ISP, you want to allow customers to
do some things but don’t want them spamming or hacking. If you have a public
wifi hot-spot, you’d like people to use it but not abuse it. So I generalized IDS,
anti-virus, and anti-spam as abuse detection.

16.1 Physical Intrusion Detection

Trust not in fences, but neighbors.

— old saying

e Burglar Alarms (http://en.wikipedia.org/wiki/Burglar_alarm)

69

http://en.wikipedia.org/wiki/Dead_man's_switch#Software_uses
http://en.wikipedia.org/wiki/Dead_man's_switch#Software_uses
http://en.wikipedia.org/wiki/Trust,_but_Verify
http://en.wikipedia.org/wiki/Trust,_but_Verify
http://en.wikipedia.org/wiki/Burglar_alarm

16.2 Misuse Detection vs. Anomaly Detection

Most intrusion detection systems categorize behavior, making it an instance of
the classification problem (see[L). Generally, there are two kinds of intrusion
detection systems, commonly called misuse detection and anomaly detection.
Misuse detection involves products with signature databases which indicate bad
behavior. By analogy, this is like a cop who is told to look for guys in white-and-
black striped jumpsuits with burlap sacks with dollar signs printed on them.
This is how physical alarm sensors work; they detect the separation of two
objects, or the breaking of a piece of glass, or some specific thing. The second
is called anomaly detection, which is like a cop who is told to look for “anything
out of the ordinary”. The first has more false negatives and fewer false positives
than the second. The first (theoretically) only finds security-relevant events,
whereas the second (theoretically) notes any major changes. This can play out
in operating system security (as anti-virus and other anti-malware products)
or in network security (as NIDS/IPS). The first is great for vendors; they get
to sell you a subscription to the signature database. The second is virtually
non-existent and probably rather limited in practice (you have to decide what
to measure/quantify in the first place).

In misuse detection, you need to have a good idea of what the adversary is
after, or how they may operate. If you get this guess wrong, your signature
may be completely ineffective; it may minimize false positives at the risk of
false negatives, particularly if the adversary is actually a script that isn’t smart
enough to take the bait. In this sense, misuse detection is a kind of enumerating
badness, which means anything not specifically listed is allowed, and therefore
violates the principle of least privilege (see B4.).

16.3 Computer Immune Systems

This is an interesting research direction which draws inspiration from biological
systems which distinguish self from non-self and destroy non-self objects.

University of New Mexico (http://www.cs.unm.edu/~immsec/)

IBM (http://www.research.ibm.com/massive/)

Oslo College (http://www.iu.hio.no/ "mark/research/immune/immune.
html)

slashdot (http://www.slashdot.org/articles/00/01/06/2337240.shtml)

16.4 Behavior-Based Detection

Most anti-virus software looks for certain signatures present in virii. Instead,
they could look at what the virii is attempting to do, by simulating running

70

http://www.cs.unm.edu/~immsec/
http://www.research.ibm.com/massive/
http://www.iu.hio.no/~mark/research/immune/immune.html
http://www.iu.hio.no/~mark/research/immune/immune.html
http://www.slashdot.org/articles/00/01/06/2337240.shtml

it. This would be called “behavior-based detection”, and it is slow to emulate
running something. Perhaps virtual machines may help to run a quarantined
virus at nearly real speed.

16.5 Honey Traps

Tart words make no friends; a spoonful of honey will catch more
flies than a gallon of vinegar.
— Benjamin Franklin

Noted security expert Marcus Ranum gave a talk on burglar alarms once at
Usenix Security, and had a lesson that applies to computer security. He said that
when a customer of theirs had an alarm sensor that was disguised as a jewelry
container or a gun cabinet, it was almost always sure to trick the burglar,
and trigger the alarm. Criminals, by and large, are opportunistic, and when
something valuable is offered to them, they rarely look a gift horse in the mouth.
I also recall a sting operation where a law enforcement agency had a list of
criminals they wanted to locate but who never seemed to be home. They sent
winning sweepstakes tickets to wanted criminals who dutifully showed up to
claim their “prize”. So a honey trap may well be the cheapest and most effective
misuse detection mechanism you can employ.

One of the ways to detect spam is to have an email address which should never
receive any email; if any email is received, then it is from a spammer. These are
called spamtraps. Unix systems may have user accounts which may have guess-
able passwords and no actual owners, so they should never have any legitimate
logins. I've also heard of banks which have trap accounts; these tend to be large
accounts which should never have a legitimate transaction; they exist on paper
only. Any transaction on such an account is, by definition, fraudulent and a
sign of a compromised system. One could even go farther and define a profile of
transactions, possibly pseudo-random, any deviation from which is considered
very important to investigate. The advantage of these types of traps are the
extremely low false-positive rate, and as a deterrent to potential adversaries who
fear being caught and punished. Similarly, databases may have honey tokens, or
a row of some unique data that shouldn’t normally be pulled out of the database
system.

e kojoney, a honey pot that emulates sshd (http://kojoney.sourceforge.
net/)

e shark, a spy honey pot with advanced redirection kit (http://www.laas.
fr/MonAM2007/Ion_Alberdi.pdf)

16.6 Tripwires and Booby Traps

Other misuse detection methods involve detecting some common activity after
the intrusion, such as fetching additional tools (outbound TFTP connections

71

http://kojoney.sourceforge.net/
http://kojoney.sourceforge.net/
http://www.laas.fr/MonAM2007/Ion_Alberdi.pdf
http://www.laas.fr/MonAM2007/Ion_Alberdi.pdf

to servers in Eastern Europe are not usually authorized) or connecting back to
the adversary’s system to bypass ingress rules on the firewall (e.g. shoveling
application output to a remote X server). Marcus Ranum once recompiled “Is”
to shut down the system if it was run as root, and he learned to habitually use
“echo *” instead. One may wish to check that it has a controlling tty as well,
so that root-owned scripts do not set it off. In fact, having a root-owned shell
with no controlling tty may be an event worth logging.

16.7 Malware and Anti-Malware

16.7.1 Terminology

malware is a general term for software that does something that the user did
not wish to have done. See Wikipedia (http://en.wikipedia.org/wiki/
Malware) for more details.

virus is a term for a program that replicates itself by infecting objects (e.g.
executable files, or possibly computers). See Wikipedia (http://en.
wikipedia.org/wiki/Computer_virus) for more details.

worm is a term for a program which propagates between computers on its own,
locating and infecting victim computers (see http://en.wikipedia.org/
wiki/Computer_worm for more details).

rootkit is a term for a program which is installed at the same level as the
operating system, such that it can hide itself (or other malware) from
detection. See the Wikipedia entry (http://en.wikipedia.org/wiki/
Rootkit) for more details.

trojan is a term for a program which appears to do one thing that the user
desires, but covertly performs some action that the user does not de-
sire (e.g. infect their system with a virus). For more information, read
the Wikipedia entry (http://en.wikipedia.org/wiki/Trojan_horse_
(computing)).

spyware is a term for software that invades your privacy and collects what
should be private information (for more details, read http://en.wikipedia.
org/wiki/Spyware)

These terms are not mutually exclusive; a given piece of malware may be a
trojan which installs a rootkit and then spies on the user.

If you find malware on your system, there are few good responses (see 20.2).

72

http://en.wikipedia.org/wiki/Malware
http://en.wikipedia.org/wiki/Malware
http://en.wikipedia.org/wiki/Computer_virus
http://en.wikipedia.org/wiki/Computer_virus
http://en.wikipedia.org/wiki/Computer_worm
http://en.wikipedia.org/wiki/Computer_worm
http://en.wikipedia.org/wiki/Rootkit
http://en.wikipedia.org/wiki/Rootkit
http://en.wikipedia.org/wiki/Trojan_horse_(computing)
http://en.wikipedia.org/wiki/Trojan_horse_(computing)
http://en.wikipedia.org/wiki/Spyware
http://en.wikipedia.org/wiki/Spyware

16.7.2 Anti-Virus

There are a wide variety of anti-virus products out there, and it’s hard for
consumers to evaluate them. Unfortunately, it seems that virus authors test
their viruses against the more popular scanners and tweak them until they
don’t get caught any more. Therefore, it may be wise to avoid the big names.
Here are some tools that I find particularly good.

o Kaspersky Anti-Virus (http://wuw.kaspersky.com/kaspersky_anti-virus)
regularly gets better detection rates than any other.

o Vewira Anti-Virus (http://wuw.centralcommand.com/) is available for
nearly every operating system (including many flavors of Unix!)

e Avira (http://www.avira.com/en/products/index.php) produces a num-
ber of anti-virus products, and appears to offer them for Linux as well as
Microsoft Windows.

e AVG Free (http://free.avg.com/us-en/download-avg-anti-virus-free-edition)
is a free anti-virus tool you can use on Windows computers. It’s not as ef-
fective as the for-pay products, but it is pretty good compared to nothing,
and it costs nothing!

e Clam AV (http://www.clamav.net/) is an open source (GPL) anti-virus
toolkit for UNIX, designed especially for e-mail scanning on mail gateways.

16.7.3 Anti-Spyware

e Spybot Search & Destroy (http://wuw.safer-networking.org/) is a free
tool for detecting spyware and other privacy-invalidating tools.

e BHOCop (http://www.pcmag.com/article2/0,2817,270,00.asp) helps
with those annoying browser hijacking via Browser Helper Objects (http://
en.wikipedia.org/wiki/Browser_Helper_Object) that interact with Mi-
crosoft’s Internet Explorer.

16.7.4 Anti-Worm

Automated Worm Fingerprinting

e Singh, Estan, Varghese, Savage - Automated Worm Fingerprinting (http://
cseweb.ucsd.edu/"savage/papers/0SDI04.pdf)

Reference 20 & 32 are the cool things.

73

http://www.kaspersky.com/kaspersky_anti-virus
http://www.centralcommand.com/
http://www.avira.com/en/products/index.php
http://free.avg.com/us-en/download-avg-anti-virus-free-edition
http://www.clamav.net/
http://www.safer-networking.org/
http://www.pcmag.com/article2/0,2817,270,00.asp
http://en.wikipedia.org/wiki/Browser_Helper_Object
http://en.wikipedia.org/wiki/Browser_Helper_Object
http://cseweb.ucsd.edu/~savage/papers/OSDI04.pdf
http://cseweb.ucsd.edu/~savage/papers/OSDI04.pdf

16.8 Detecting Automated Peers

People who abuse things for money want to do a lot of it, so frequently you’ll
want to try to detect them. You could be doing this for any of a number of
reasons:

1. To prevent people from harvesting email addresses for spamming
2. To prevent bots from defacing your wiki with links to unrelated sites

3. To prevent password-guessing
Related links:

o Detecting SSH password-guessing bots (http://www.semicomplete.com/
blog/geekery/tracking-ssh-bots.html)

16.8.1 CAPTCHA

A CAPTCHA is a Completely Automated Turing test to tell Computers and Hu-
mans Apart (http://en.wikipedia.org/wiki/Captcha). Basically they are
problems whose answers are known and which are difficult for computers to
answer directly.

http://www.captcha.net/

http://www.codinghorror.com/blog/archives/001001.html

Recaptcha allows you to use CAPTCHA to do OCR (http://recaptcha.
net/)

e 3-D CAPTCHAS (http://ocr-research.org.ua/)

Breaking CAPTCHASs

e PWNtcha (http://sam.zoy.org/pwntcha/)
e http://www.seas.upenn.edu/”cse400/CSE400_2004_2005/32poster.pdf
e http://www.puremango.co.uk/cm_breaking captcha_115.php

e http://www.itoc.usma.edu/workshop/2006/Program/Presentations/
TAW2006-16-1.pdf

e http://blackwidows.co.uk/blog/2007/10/06/breaking-captchas/

e http://www.cs.sfu.ca/“mori/research/gimpy/

74

http://www.semicomplete.com/blog/geekery/tracking-ssh-bots.html
http://www.semicomplete.com/blog/geekery/tracking-ssh-bots.html
http://en.wikipedia.org/wiki/Captcha
http://www.captcha.net/
http://www.codinghorror.com/blog/archives/001001.html
http://recaptcha.net/
http://recaptcha.net/
http://ocr-research.org.ua/
http://sam.zoy.org/pwntcha/
http://www.seas.upenn.edu/~cse400/CSE400_2004_2005/32poster.pdf
http://www.puremango.co.uk/cm_breaking_captcha_115.php
http://www.itoc.usma.edu/workshop/2006/Program/Presentations/IAW2006-16-1.pdf
http://www.itoc.usma.edu/workshop/2006/Program/Presentations/IAW2006-16-1.pdf
http://blackwidows.co.uk/blog/2007/10/06/breaking-captchas/
http://www.cs.sfu.ca/~mori/research/gimpy/

e Amazon’s “Mechanical Turk” (http://www.mturk.com/mturk/welcome)
involves letting a computer call upon a human to do a task

o A Chinese site that sells software designed to beat CAPTCHAs and ad-
vertises success rates (http://www.lafdc.com/captcha/)

16.8.2 Bot Traps

If you want to stop people from spidering your web site, you may use something
called a “bot trap”. This is similar to a CAPTCHA in that it tries to lure bots
into identifying themselves by exploiting a behavior difference from humans.

e Bot-trap software (http://danielwebb.us/software/bot-trap/)

e Stopping bots with hashes and honeypots (http://nedbatchelder.com/
text/stopbots.html)

16.8.3 Velocity Checks

This is an application of anomaly detection to differentiate computers and hu-
mans, or to differentiate between use and abuse. You simply look at how many
transactions they are doing. You can take a baseline of what you think a hu-
man can do, and trigger any time an entity exceeds this. Or, you can profile
each entity and trigger if they exceed their normal statistical profile, possibly
applying machine learning algorithms to adjust expectations over time.

16.8.4 Typing Mistakes

The kojoney honey pot (http://kojoney.sourceforge.net/) emulates an SSH
server in order to gather intelligence against adversaries. Regarding how it
separates bots from humans, it says:

We, the humans, are clumsy. The script seeks for SUPR and BACKSPACE
characters in the executed commands.

The script also checks if the intruder tried to change the window size
or tried to forward X11 requests.

16.9 Host-Based Intrusion Detection

That’s it man, game over man, game over!
— Aliens, the motion picture

75

http://www.mturk.com/mturk/welcome
http://www.lafdc.com/captcha/
http://danielwebb.us/software/bot-trap/
http://nedbatchelder.com/text/stopbots.html
http://nedbatchelder.com/text/stopbots.html
http://kojoney.sourceforge.net/

One important thing is that you really can’t defend against an intruder with
full privileges. First discussed in Ken Thompson’s 1984 classic, Reflections
on Trusting Trust (http://cm.bell-labs.com/who/ken/trust.html), these
stealthy backdoors became known as rootkits, which were installed on a com-
promised system (requiring root privileges) and hid the existence of various
things which would give away the adversary’s presence. These evolved from
simple log cleaners to trojan system programs, and have now burrowed deeper
into the system as LKMs (loadable kernel modules). I have heard rumors of
some which reside in flash memory on graphics cards, and run on the GPU
(which has DMA, direct memory access), completely bypassing the main CPU.
Notice I say “full privileges” instead of “administrator rights” or ‘root access”,
because various people are experimenting with limiting these levels of access in

various ways (including BSD securelevel, MAC, and tamper-proof hardware like
the TPM).

Some HIDS (host-based intrusion detection) systems that detect corruption, like
tripwire, compare cryptographic hashes (checksums, or more generally “finger-
prints”) against saved values to detect modification of system files. However,
this strategy has a number of limitations:

e Some files (e.g. log files) change all the time.

e You may update your system frequently, and so must distinguish expected
changes from unexpected.

e The place where the hashes are stored might be modifiable (if not, how
do you update the baseline to ignore expected changes?) and if so, the
intruder could update the stored hashes so that they match the corrupted
(trojaned) files.

e The attacker could simply alter the HIDS system itself.

The first two problems are soluble in fairly obvious ways. The advice experts
give on the third problem is to store the hashes on another system, or on remov-
able media. However, if the intruder has full privileges and knows how you get
the hashes onto the system (i.e. what programs are used), they could alter the
programs (or kernel routines) used to alter the hashes on the way in, and you’d
have no way of knowing. They could also alter them on the way back out, so
that printing them on another system and comparing wouldn’t help. Similarly,
if you detect the intrusion, you shouldn’t simply log it to a file, or send it to a
local email address, since the intruder could simply erase it. This brings up a
couple of interesting issues that led me to the following principles.

16.10 Intrusion Detection Principles
Intrusions present a slightly more difficult issue than other abuse detection,

because the intruder is has got control of the system, and thus may attempt to
interfere with alerting and response.

76

http://cm.bell-labs.com/who/ken/trust.html

1. You should keep your detection mechanism(s) a secret, just like a crypto-
graphic key.

2. The intrusion creates changes in data (unprocessed logs as well as intrusion
alerts per se) that move away from the intruder, creating what I call a
detection envelope. The intruder tries to acquire privileges to expand his
reach. It is not enough to detect and report an intrusion; you must get
that information to a place where the adversary cannot be alter it to hide
his tracks, which I call out-of-reach (OOR) or the point of no revocation.

3. You have a window of time I call the detection window where the adversary
has not yet figured out how you are going to detect his presence and
pass the alert beyond his reach. You can think of the detection envelope
expanding, and the adversary attempting to catch up with it. Often he
need not compromise every system along the way, merely the one at the
edge of the envelope, to stop the propagation.

4. Offline is usually out of reach, but may not be when the facility is not
physically secure or if the adversaries include an insider.

16.11 Intrusion Information Collection

So when you detect an intrusion, you usually have a single datum; an IP address,
or a UID, something like that. This might be a good time to collect more data
about the intrusion for later analysis. For example, you might pull DNS records
and WHOIS associated with that IP, because the databases might be under the
control of the adversary, or they may change for other reasons before you collect
the information. This may tip off a very clever opponent that you have detected
them, but chances are that they are more worried about being detected than
you need to worry about them detecting you detecting them, since conducting
an intrusion is frowned upon, if not outright illegal.

17 Abuse Response

Suppose you've detected attempted abuse; now what? If you didn’t intend to
do something about it, then why did you bother to detect it in the first place?
Suppose further that you detect someone doing a network scan, or worse, trying
to exploit your code. This is an obvious example of I&Ws (see B3.1]), and if you
detect this kind of behavior, but fail to do anything to prevent exploitation,
you may not be lucky enough to detect a successful attempt, leading to a silent
failure. Thus, because the set of successful attacks is incompletely-defined (see
EI4), you cannot guarantee detection, so it is often desirable to attempt to
thwart the attack by identifying and shunning the adversary (as opposed to
blocking the individual attempts themselves).

Related work:

7

e OpenSIMS (http://opensims.sourceforge.net/)

e Symbiot (http://www.symbiot.com/)

17.1 Abuse Alerting

All alerting systems are vulnerable to flooding, whereby the adversary causes
many to be generated, and analyzing them consumes resources and takes time.
In theory, this could buy the adversary some time (expanding the detection
window), whereby he can get access to a system without generating an alert,
and cover his tracks, so that when all the alerts are handled, he’s still left with
covert control of a system.

It is often easier to flood once you have control of a system, which would suggest
a preference for a system which never overwrites alerts (until read or passed on).
However, it should be checked, read, and emptied on a regular basis.

Alerting systems tend to be less vulnerable to running out of space since they
are less voluminous than logs, and also because the intruder gives up surprise.

You can see an obvious problem if your false positives (failed attacks) or in-
formational alerts (attacks which are blocked at the border) are mixed in with
alerts about successful attacks (actual penetrations into the network). While I
can see the value in determining adversary intentions, when the bullets start to
fly, the intent is obvious and you want to focus on real threats, not diversions.

All alert recording systems may run out of space. If you overwrite old data (a
circular buffer), you know the last system(s) compromised, where the adversary
may not have had time to cover his tracks. A system which does not overwrite
will show the original entry point into your systems. A system which does
overwrite will show the last few systems intruded upon.

17.1.1 Possible Abuse Alerting Solutions

Tsutomu Shimomura emailed his logs to another system, which means that
in order to hide his tracks the adversary must compromise that other system.
Thus the detection envelope expanded to include that remote system. Ideally, it
should be as different a system as possible (i.e. different OS, so the combination
requires more skills by the adversary to compromise), and should be as protected
as possible (in this case, it should only allow email access, but if we were using
syslog then only syslog access). Similarly, he had his sniffer send alerts to a
pager, which is effectively irrevocable.

Others have suggested printing logs on a printer (logs until it runs out of paper),
or over a serial port connection to a MS-DOS system running a terminal program
with a scrollback buffer enabled (logs are preserved until they are overwritten,
and it’s better than paper since “you can’t grep dead trees”).

78

http://opensims.sourceforge.net/
http://www.symbiot.com/

One method I thought of would be to export the file system via read-only NFS,
and check it from another system. Another method involves a removable hard
drive which is analyzed periodically on another system.

Also see [[43

17.1.2 Confidentiality vs Availability Tradeoffs

Abuse alerting is an interesting case where the tradeoffs between privacy and
reliability aren’t clear. What good is alerting if it doesn’t alert you when you
need it?

I have heard of one company that uses IRC internally to do their security alert-
ing. While not the most confidential of systems, it has been designed in a very
hostile network environment subject to lots of availability attacks.

17.2 How to Respond to Abuse
17.2.1 On Observable Responses

A side-effect of taking an observable response to an adversary’s stimulus is that
they know that you are monitoring it, and based on attempts and responses,
can map out your detection signatures, allowing them to form a feedback loop.
They can spew random data at your system and detect when you terminate
the connection, and the signature is then known to be in the last few packets.
They also know when that their successes have bypassed the reactive mechanism,
since the connection is not terminated. Of course, the same is true of a “passive”
firewall; they simply try connecting to every possible port, and any attempts
that succeed obviously imply one has bypassed the access control.

One amusing anecdote I heard was of someone in Ireland who was organizing
political rallies; he suspected his phone was tapped, so he called a co-conspirator
and let him know about a big rally at a local pub; they went to the pub at the
appropriate time and found a large number of police in the area, which confirmed
his suspicion about the tapping. In this case, he was observing a reaction of
people observing his communication, and was thus able to determine the line
was tapped indirectly. This is an example of inference (see [I8.8).

17.2.2 Tainted Sources

An adversary usually starts an attack by enumerating the attack surface (see
[[H). During this stage, some of his probes may be indistinguishable from al-
lowed traffic, and some may be identifiable as abusive, simply by the fact that
such probes or requests are not normally allowed (see [I6). Once one has iden-
tified that a given source is tainted as abusive, one can decide to thwart his

79

enumeration by engaging in a sticky defense; that is, every probe/query /request
from that source address is considered abusive. This is very effective at making
network scans expensive; they will have to figure out where the probe responses
ceased being legitimate and started being abuse responses in order to get an
accurate enumeration.

I happen to like automated responses, because I'm lazy. For example, my dy-
namic firewall daemon (http://www.subspacefield.org/ travis/dfd/) is an
example of me trying to automate some parts of this problem.

17.2.3 Possible Responses to Network Abuse

There are a couple of strategies one can take with regard to responding to
stimuli:

Honest Rejection Most systems may respond to abuse attempts with an
honest rejection message, which may optionally be offensive if a human reads it.
The down side of this is that it gives the intruder a feedback loop, and they may
become more interested in your site than if you remained silent. For example,
if someone sends a SYN packet to a TCP port which isn’t open, the OS usually
sends back a TCP RST (reset).

The Silent Treatment Silence is the obvious response. In network security,
dropping all unauthorized packets without any response is known as the black
hole strategy, and prevents the adversary from even knowing if you are listening
to that IP address. Permanently ignoring the host is called shunning, though
terms vary. The adversary must at this point go back to the last successful
response and start over again from a different source address.

Faux Positives A false positive is when a person makes an error in classifica-
tion. Fauz positives involve intentionally giving the adversary what they were
hoping to hear, instead of the correct answer. For example, a network scan
could receive a SYN-ACK for every SYN it sends, making it look like every port
is open. This technique means that the adversary must do a more extensive
test to determine which ports are really open or not; effectively this negates the
value of the original test by forcing it to return positive all the time.

Random Response Random responses may confuse the adversary; he may
try something abusive (like connecting to a port he isn’t supposed to, or (in a
more advanced system) attempting an exploit, and it only appears to succeed
some of the time. What is nasty about this is that he doesn’t get “all yes” or
“all no”, but rather a more complicated result.

80

http://www.subspacefield.org/~travis/dfd/

When a game of chance pays out on a random schedule, this is known as “random
reinforcement” and has been demonstrated to increase the number of times that
a person plays the game. It may even make them do it compulsively, trying to
figure out what the pattern is. It may also lead to “magical ideation”, whereby
the person makes up a fanciful reason to explain the results (“I always roll seven
after rolling five”). This is misinformation (see BZ1T]).

When one does this in a “sticky” manner - that is, once you detect an adver-
sary, you always return a random response, even to non-abusive queries (like
connecting to port 80 on a public web server), you can cause the opponent to
enter a very strange and frustrating scenario, and even if they figure out what
is going on, they do not know exactly when it started, so have to verify their
scan results - but attempting the same scan will generally get them detected in
the same place!

Resource Consumption Defenses In these, one attempts to make the ad-
versary spend as many resources as possible. Most frequently, this involves time,
so this is a delaying tactic.

o Tarpit / Teergrube (http://en.wikipedia.org/wiki/Tarpit_%28networking
h29)

The Simulation Defense Simulation is the most sophisticated and subtle
technique; you allow the target to think that they have done something they
have not. If you determine that someone has infiltrated your organization, you
can assign them to tasks that give your adversary a misleading view of your
organization. This is disinformation (see B2.1T]).

In an authentication system which re-uses guessable passwords (see IT.9), you
could strengthen it by connecting them not to the real system, but to a honeypot
system. Similarly, a web site could fake a successful login and give the adversary
a GUI which appears to work but actually does nothing. One of the implications
of the base-rate fallacy (see[I2)) is that if you give a false positive at a very low
rate (say .1%), then someone who has a small chance of succeeding (say .01%)
is going to have 10 false positives for every correct password. However, a user
who gets their password correct 50% of the time (a very poor typist) has only
one false positive for every 1000 correct password entries. Thus, adversaries are
much more likely to be redirected to the simulation than real users. The purpose
of this could be to confuse, delay, trace, or feed disinformation (see BZII) to
the adversary. For example, if the person is using your system to steal money,
you may have some plausible-sounding reason why you cannot get it to them in
the way they expected, and by catching them off-guard, get them to give you
some identifying information which could allow you to have them arrested.

e http://www.hackosis.com/index.php/2007/12/15/concept-security-by-deception-with-emulat

81

http://en.wikipedia.org/wiki/Tarpit_%28networking%29
http://en.wikipedia.org/wiki/Tarpit_%28networking%29
http://www.hackosis.com/index.php/2007/12/15/concept-security-by-deception-with-emulation/

e http://ha.ckers.org/blog/20060703/the-matrix-as-a-security-model/

e http://ha.ckers.org/blog/20071216/matrix-re-loaded/

Fishbowls If you prevent an attack, you learn very little about the goals
and intentions of the adversary. IDS systems alert you to an adversary, and
so you can monitor and learn about them. By contrast, an IPS terminates the
connection and possibly blocks the adversary, so you prevent the attack but learn
very little about their intentions. Transparently redirecting them to a fishbow!
seems to get the both of best worlds; they interact with a simulated system, and
you monitor them to gain intelligence about their motives, and possibly about
their identity. The earliest example of this kind of virtualized monitoring I
know of is recounted in An Evening with Berferd (http://www.all.net/books/
berferd/berferd.html). Usually people refer to these systems as honeypots
(see[I6.3), but I call them fishbowls here to make a distinction between drawing
in the adversary and covertly monitoring them.

Hack-Back First, let me say don’t do this, since it is probably illegal. I
include it only for completeness.

Reverse-Hack If they try guessing accounts and passwords on you, simply
try them against the remote peer.

Mirror Defense Marcus Ranum suggested simply swapping the destination
and source IPs, and send the packet back out. That way, they end up scanning
or hacking themselves. This could be a bit tricky to get the return traffic back
to them though.

Counterhack

Who knows what evil lurks in the hearts of men?
The Shadow knows!

— The Shadow radio drama (http://en.wikipedia.org/wiki/The_
Shadow)

Counterhacking is using hacking techniques against hackers. It is possible to
exploit vulnerabilities in malware and exploit code (http://blog.wired.com/
27bstroke6/2008/04/researcher-demo.html). In fact, many PoC exploits
are written in C and have buffer overflows in them, and it would be relatively
trivial to exploit the exploit. One can imagine systems that listen for network
attacks generated by vulnerable exploit code and automatically respond in kind,
which despite usually being illegal, has a certain symmetry and poetic justice
to it. Do such systems exist? Only the shadow knows.

82

http://ha.ckers.org/blog/20060703/the-matrix-as-a-security-model/
http://ha.ckers.org/blog/20071216/matrix-re-loaded/
http://www.all.net/books/berferd/berferd.html
http://www.all.net/books/berferd/berferd.html
http://en.wikipedia.org/wiki/The_Shadow
http://en.wikipedia.org/wiki/The_Shadow
http://blog.wired.com/27bstroke6/2008/04/researcher-demo.html
http://blog.wired.com/27bstroke6/2008/04/researcher-demo.html

17.3 Identification Issues

So when someone is abusing your system, you may be limited in your ability to
identify the principal involved. It may be malware on a user’s machine, someone
using a sniffed or stolen password, someone at an Internet café, someone on a
shared system, etc. Also, people who abuse your system tend to take measures
to anonymize themselves. Therefore, your identification will run a spectrum like
this:

[a—y

. A network address

2. A user on a remote host

3. A particular account within your system (via key, passphrase, etc.)
4

. A person (via biometrics)

Thus, when you detect abuse, one or more of these identities may accumulates
“negative karma”. For example, a particular IP may hammer your system. You
could block that particular IP, but you may also wish to see which accounts
have logged in from that IP recently and apply some sort of mild punishment
there as well, like rate-limiting or something like that.

17.4 Resource Consumption Defenses

A resource consumption attack is often called Denial of Service or DoS. In
this case, the adversary tries to deprive the rightful users of some system some
critical resource.

The best way to defend against these is to set a limit or quota to some entity that
you can identify (see[I7.3)). Often times you can’t identify people or groups, but
merely some address, like an email address or an IP address. If any anonymous
user can access your service, for example because it is a public web site, then
the adversary may be able to respond to quotas by simply using more identities
(e.g. coming from multiple IPs by using a botnet). Therefore, you want your
site to be scalable.

Basically, DoS is a numbers game. What you want to do is identify malicious
requests from legitimate ones via some signature, and do as little work as possi-
ble on the malicious ones before deciding to ignore them. So ideally, you do the
cheap tests first; there are a number of little tricks that fall into this category:

e Before letting a packet in, your firewall decides if the IP address is allowed
in, otherwise it blocks it

e Before letting a packet in, your firewall might be able to tell if the packet
is from an IP address that you can respond to, otherwise (e.g. bogon list,
http://www.cymru.com/Documents/bogon-1list.html) you reject it.

83

http://www.cymru.com/Documents/bogon-list.html

e Digital signatures are expensive, so before computing one, see if the key

used to sign it is one that you trust; otherwise, why check the digital
signature? Of course, this means an API where you can tell it what keys
are trusted before any operations take place.

If you have a list of authorized users, do as little work as you can before
identifying them. For example, the secure networking protocol Photuris
(http://tools.ietf.org/html/rfc2522) sends an “anti-clogging token”,
or cookie, to the remote peer and waits for the peer to send it back be-
fore doing any more work. Of course this can add a round-trip to some
protocols, but if it prevents doing an expensive operation it may be worth
it.

17.5 Proportional Response

Due to the risk of false positives in detection, the difficulty of identification,
legal ramifications, and the possibility of collateral damage, you want to have a
flexible response. Responding with “overwhelming force”;, while tempting, may
hurt more than it helps:

e You may lose the “moral high ground”, and the public may turn against

you.

You may lose the sympathy of a jury, or judge, or someone whose opinion
you cherish.

You may cause your adversaries to hate you, at which point they may de-
cide that instead of wanting to maximize their gain, they want to maximiz-
ing your pain. They may even decide that they would give up everything
in order to harm you, in which case they will almost certainly succeed.
Even if they don’t, you will spend more resources defending yourself than
if you had merely thwarted their plans in a way that didn’t arouse such
enmity.

Here is a sample spectrum of responses, ranging from trivial to emphatic:

SR AN S

. Log the event for manual audit but take no other action

Temporarily lock the account

Shun their IP at the firewall for the web server only
Shun their IP at the firewall for all ports

Take your system completely offline

Shut down your system

84

http://tools.ietf.org/html/rfc2522

7. Cut power to the data center

8. Send a team of ventilation engineers to the adversary’s geographical loca-
tion to aspirate them

9. Launch an anti-radiation missile (http://en.wikipedia.org/wiki/Anti-radiation_
missile) in the general direction of their signal as indicated by the direction-
finding (http://en.wikipedia.org/wiki/Direction_finding) equipmen

Not all detection events are created equal! You may want to respond to some
in one way, and others in another way.

Perhaps someone should apply a scoring mechanism (like those of spam signa-
tures) to network events to decide when to shun or do other things.

18 Forensics

e http://wuw.forensicswiki.org/

18.1 Forensic Limitations

Absence of evidence is not evidence of absence.

—Scientific Adage (http://en.wikipedia.org/wiki/Argument_from_
ignorance)

Forensics has limits. For example, it’s not uncommon when dealing with skilled
intruders to find that they’ve symlinked a shell history file to /dev/null, or that
the last line of a log file is something like rm /var/log/sudo or bash -i. It is even
possible that a very skilled and disciplined adversary would leave the system in
a state that the forensics indicate one thing, but is disinformation; I’ve never
heard of anything that subtle in practice, but then again, what are the chances I
would? When you’re compromised, you don’t know when it originally happened,
and so backups are of little use; one can’t be sure if the backups contain back
doors. Thus, it seems like the only way to be sure of extermination is to wipe
the state of any machines that might be compromised or corrupted, and start
from scratch. However, before doing so, you should do your best to make a full
backup of the compromised system for forensic analysis. You’d like to identify
any possible intrusion vectors and make sure the new system doesn’t have the
same vulnerabilities, lest the situation repeat itself.

2This is the standard response to people who set up jammers in military engagements.
Don’t try that at home.

85

http://en.wikipedia.org/wiki/Anti-radiation_missile
http://en.wikipedia.org/wiki/Anti-radiation_missile
http://en.wikipedia.org/wiki/Direction_finding
http://www.forensicswiki.org/
http://en.wikipedia.org/wiki/Argument_from_ignorance
http://en.wikipedia.org/wiki/Argument_from_ignorance

18.2 Remnant Data

“Deleted” but not overwritten.

o IzzySoft ext3undel (http://projects.izzysoft.de/trac/ext3undel)

18.3 Ephemeral Data

Such as the data in a page file. It’s valuable because people usually don’t realize
it’s there, and so fail to wipe it.

18.4 Remnant Data

Such as the recently-deleted data in Word documents. Apparently it’s just a
memory dump, eww. It’s interesting because it’s not normally visible.

18.5 Hidden Data
Such as UUIDs embedded in any MS Office document. It is even possible to

identify computers remotely by their TCP clock skew (http://www.caida.org/
publications/papers/2005/fingerprinting/).

18.6 Metadata

Such as access times. Shimomura used access times to figure out what Mitnick
compiled.

o The Coroner’s Toolkit (http://www.porcupine.org/forensics/tct.html)

o The Sleuth Kit (http://www.sleuthkit.org/)
18.7 Locating Encryption Keys and Encrypted Data

e Playing Hide and Seek with Stored Keys (http://www.cs.jhu.edu/~astubble/
600.412/s-c-papers/keys2.pdf)

86

http://projects.izzysoft.de/trac/ext3undel
http://www.caida.org/publications/papers/2005/fingerprinting/
http://www.caida.org/publications/papers/2005/fingerprinting/
http://www.porcupine.org/forensics/tct.html
http://www.sleuthkit.org/
http://www.cs.jhu.edu/~astubble/600.412/s-c-papers/keys2.pdf
http://www.cs.jhu.edu/~astubble/600.412/s-c-papers/keys2.pdf

18.8 Forensic Inference

Often, what qualifies as proof in a courtroom isn’t the same thing a mathemati-
cian considers proof. Further, in civil cases in the US you don’t need proof,
just a preponderance of evidence. And intelligence (or now, terrorism) investi-
gations usually have far less of a burden of proof. And even if you are going for
solid proof, you hardly ever begin an investigation with it; that’s why it’s called
investigation. Thus, hunches are quite valuable.

If you believe that a person murdered someone in his kitchen, and there’s a
spot of bleach residue on the floor but in a blood spatter pattern, then you can
reasonably assume that he did not spatter bleach on his kitchen floor, although
that is possible in theory. Thus, if doing thing A implies B, and one is unlikely
to do B alone, then if B is indicated, one may infer a likelihood of A.

19 Privacy

“You have zero privacy anyway. Get over it.”
— Scott McNealy, CEO of Sun Microsystems, 21 Jan 1999

19.1 Mix-Based Systems

Mix-based systems essentially rely on a node having multiple inputs and outputs,
and an outside observer cannot tell which maps to which because they are
encrypted on one or (ideally) both sides, and there may be a random delay
between input and output. Sometimes mixes operate with one output coincident
with one input, so a certain amount of traffic is required to keep it “alive”. The
job of the mix is to hide the correlation between input of a message and its
output. Generally the communication exits the mix system unencrypted, which
means the exit nodes have more privilege to see traffic than other nodes in the
“cloud”.

19.1.1 Anonymous Remailers

Anonymous remailers attempted to mail things through a confusing network in
an attempt to hide who originally sent an email.

e http://en.wikipedia.org/wiki/Remailer

19.1.2 Crowds

Crowds attempted to hide individual web browsing action in the hub-bub of a
crowd of users.

87

http://en.wikipedia.org/wiki/Remailer

e http://en.wikipedia.org/wiki/Crowds

19.1.3 Tor

The Onion Router (TOR) was originally a military project that routed web
traffic around in a confusing way.

e http://www.torproject.org/

19.2 Distros

e Tin Foil Hat Linuz (http://tinfoilhat.shmoo.com/)

e Anonym.OS (http://sourceforge.net/projects/anonym-os/)

20 Intrusion Response

I say we take off and nuke the entire site from orbit. It’s the only
way to be sure.
— Aliens, the motion picture

20.1 Response to Worms and Human Perpetrators

Due to the limitations of forensics and our ability to know what a particularly
clever intruder did while in our network, and the possibility of the intruder
leaving back doors or covert channels, my philosophy favors the extreme method
of reinstalling every system which you believe may have been affected by the
intruder. This is one reason why I favor prevention over detection.

Even that may be insufficient, in certain cases.

Nevertheless, that is far too extreme for many people, and the vast majority of
intruders are “script kiddies”, whose modus operandi are obvious, especially if
you can acquire their script. The trend now seems to be low-level intrusion with
no privilege escalation, because acquiring root tends to draw the attention of the
system administrators, whereas non-root users are sufficient for sending spam,
performing DoS, and logging into IRC. Thus, in some ways, the evolution of
intrusions mirrors that of infections diseases, in that things which elicit a lethal
response from the host are evolutionary disadvantages.

88

http://en.wikipedia.org/wiki/Crowds
http://www.torproject.org/
http://tinfoilhat.shmoo.com/
http://sourceforge.net/projects/anonym-os/

20.2 Response to Malware

Back in the early days of virii, it was possible to find out what the virus did
and cure the computer of the infection by undoing whatever it did.

However, now the trend seems to be that an initial malware installation is a
“bot” that acquires a communication channel to the “botmaster”, who can then
direct the malware to download other programs, possibly rootkits, so it becomes
difficult to know what exactly has happened to the computer.

Furthermore, some malware will download and install some easily-found mal-
ware, which is there to give the system administrator something to find, while
the real bot and malware remain hidden.

Another trend is the development of targeted malware to infect certain systems.
This malware may not have been seen by the anti-virus vendor, and therefore
is unlikely to be caught.

Thus, the recommended solution is to recover an uninfected system from back-
ups. One can not simply rely on anti-malware tools to do the job.

There are also web pages out there that purport to tell you how to remove a
virus, but in doing so, you install another virus. Caveat emptor!

21 Network Security

21.1 The Current State of Things

At this point, I have just read the intrusion detection section of Extreme Ezploits
and find myself unable to add anything to it. What follows is what I wrote prior
to reading that, and rather than paraphrase their excellent work, I’'m going to
punt and just refer you to it. I hope readers understand that I want to focus on
adding value, not just repeating what has already been said, and so my time is
better spent on other topics until I have something novel to say. What follows
is a rough outline I wrote earlier.

The current state of network security detection tools breaks down as follows;
network intrusion detection systems (NIDS) sit at choke points and look at
traffic and alert for what it thinks are intrusions. If they take steps to tear
down the connection, it is called a reactive NIDS. If it sits in-line and stops
passing data for connections deemed to be malicious, it is called an intrusion
prevention device (IPS).

Network security access control devices break down as follows. Firewalls are
the most familiar and come as packet filters or proxy-based firewalls. They are
starting to get more and more complex, going from stateless (e.g. assumes a
TCP ACK corresponds to a valid connection, has difficulty telling valid UDP
responses from unsolicited UDP packets) to stateful (tracks valid connections,

89

can firewall UDP effectively) and now the new buzzword is deep packet inspec-
tion. That just means it’s looking at layer 7 (application layer) data and making
access control decisions on that, so it can block certain kinds of HTTP traffic
but not others; this is a natural evolution for packet filters and provides them
with most of the benefits of proxy-based firewalls. Virtual Private Network
Concentrators (VPN endpoints) basically handle the encryption and decryption
for remote systems with VPN connections.

I can’t think of a good reason why these all need to be separate hardware devices,
and suspect that as general-purpose computer performance increases the low
end of the market will be increasingly converting to software-based solutions
running on commodity hardware. One argument is that dedicated hardware
is more reliable, but it will inevitably be cheaper and more effective to ensure
reliability and availability with redundancy than with premium hardware. The
general belief is that Google’s secret to financial success is “smart software, cheap
hardware”. Hardware costs don’t amortize the way software development costs
do.

21.2 Traffic Identification: RPC, Dynamic Ports, User-
Specified Ports and Encapsulation

21.2.1 RPC

Back in the day, a number of network services used remote procedure calls
(RPC). When these services start up, they bind to a port (often in a certain
range but not always the same port). They then register themselves with a
program called the portmapper. To talk to an RPC service, you first ask the
portmapper (on port 111) what port that RPC service is listening on, then you
talk to the RPC service. Needless to say, this is extremely difficult to firewall,
and even if you could do it right, an internal machine might reboot, and when
it comes back up the RPC service might be on a different port. So the normal
policy is to simply not allow access to these ports through the firewall, which is
easy when the policy is default deny; you just ignore them.

21.2.2 Dynamic Port Numbers

Other protocols, like SIP and FTP, use dynamic port numbers. Some fancy
packet filters do layer-7 inspection to respond to these, which has the following
problem. A user connects to a web site, and the web site has a java applet which
connects back to the web site, but on port 20 (FTP control channel). This is
allowed because the java applet security model assumes it’s okay for an applet
to phone home. The applet then emulates a real FTP connection, but sends
an interesting port number as the data channel (say, port 22). The firewall
then allows the web site to make another connection back to the internal node’s

90

port 22, thinking that it is part of an FTP transfer. The solution is to use
application-layer proxies.

Now some network administrators would like to give low priority (QoS, DSCP)
values to certain traffic (especially bittorrent), or block it entirely. Normally
this would be done by classifying the traffic on the canonical port numbers as
bittorrent, and assigning it to the bulk queue. However, the end user may not
desire that, and so may configure bittorrent to talk on a different port. This
is a perfect example of an “insider threat”, though not a particularly malicious
one.

21.2.3 Encapsulation

A similar issue exists with encapsulation within another protocol, especially
HTTP/HTTPS. Although normal HTTP requests for HTML documents are
considered essential to business and not a significant network security threat,
there are other data transfers done through HTTP, such as WebDAYV or stream-
ing media or especially skype, which may have significantly different or unknown
security implications. Or the system may be too new to know to the admin-
istrator’s satisfaction; security is a process of breaking systems and learning
about the flaws we find. Thus “new” means we’re just starting to learn about
it, but it does not mean that the security is worse, or that we know less about
it than some older system. Take care that you don’t get so lazy that new be-
comes synonymous with risk, or that risk means undesirable; it may well be that
the upside potential is greater than the downside, or that the goodwill it earns
you with the users is worth the risk of more security incidents; it all depends
on your resources, risk tolerance, consequences of a security breach, and other
non-technical factors.

21.2.4 Possible Solutions

I suspect that the solution to this mess is twofold; first, we do our network data
inspection prior to encryption, which means on the sending machine, where that
is possible. It is logical (or at least common) to trust such systems more than
systems without such a host-based agent, and to trust those more than systems
belonging to other parties (e.g. an ISP’s customers or a business partner), and
to trust those less than systems belonging to unidentified parties (wifi, Internet).

The second prong would be network security systems which look at network
traffic and classify the protocol in use based on the data it contains (like fin-
gerprinting a network service, or like using file(1) to identify what kind of data
a file contains). It is not necessary to narrow it down to one protocol; if we
say that a certain network flow has permission to pass through the firewall to
host X Y or Z, then the stream can be treated as though it had the intersec-
tion of the permissions for all possible protocols. For example, if FTP should

91

never pass to anything but port 21, and HTTP can pass only to hosts X and
Z, then a stream which may be either may only pass to port 21 on hosts X and
Z; this convention prevents violation of any network flow security policy. If our
classification is only guesswork, then we need not be so strict, because we can’t
end up with more certainty than we started, and it may be reasonable to allow
the union of all permissions (so as to avoid stopping legitimate traffic), or some
other combination.

21.3 Brute-Force Defenses

Brute-force attacks simply try common passwords and other identifiers. They
are a major nuisance on the net right now. They are primarily focused at SSH
and email services, where users may choose their own passwords. Brute-forcing
is usually ineffective at systems which use cryptographic keys to protect a service

(see II9).

e DenyHosts (http://denyhosts.sourceforge.net/)
e Fail2Ban (http://www.fail2ban.org/wiki/index.php/Main_Page)

e Ish (http://www.lysator.liu.se/ “nisse/1lsh/)

21.4 Federated Defense

If the same intruder tried something malicious against one machine, and you
control two of them, wouldn’t it be prudent to block access to both machines
instead of just the one? The same goes with sites, or corporations. DenyHosts

(http://denyhosts.sourceforge.net/) can be used in this mode, but I don’t
know of any other federated defense systems.

21.5 VLANSs Are Not Security Technologies

e http://www.spirit.com/Network/net0103.html

21.6 Advanced Network Security Technologies

Very cool, but not for the novice. I will annotate these links later.

e Port Scan Auto Detector (http://www.cipherdyne.com/psad/) is a Linux
tool that allows you to detect port scans and block them, even if the fire-
wall blocked all of the packets in the scan.

92

http://denyhosts.sourceforge.net/
http://www.fail2ban.org/wiki/index.php/Main_Page
http://www.lysator.liu.se/~nisse/lsh/
http://denyhosts.sourceforge.net/
http://www.spirit.com/Network/net0103.html
http://www.cipherdyne.com/psad/

e The fwsnort program (http://www.cipherdyne.com/fwsnort/) takes snort
rules and generates iptables log file patterns which would detect the same
things as snort would, but works whether or not iptables blocks the pack-
ets.

e The fwknop program (http://www.cipherdyne.com/fwknop/) allows you
to do single-packet authentication (SPA), which is like port knocking, on
Linux-based systems.

e The Dynamic Firewall Daemon (http://www.subspacefield.org/~travis/
dfd/) allows you to programmatically access and change firewall rules.

e The grok project (http://www.semicomplete.com/projects/grok/) parses
files and automagically blocks malicious hosts.

e http://tumbler.sourceforge.net/

e http://shimmer.sourceforge.net/

22 Email Security

22.1 Unsolicited Bulk Email: Email Spam

Spamming is the abuse of electronic messaging systems to indiscrim-
inately send unsolicited bulk messages. While the most widely rec-
ognized form of spam is e-mail spam, the term is applied to similar
abuses in other media: instant messaging spam, Usenet newsgroup
spam, Web search engine spam, spam in blogs, wiki spam, mobile
phone messaging spam, Internet forum spam and junk fax transmis-
sions.

— Wikipedia (http://en.wikipedia.org/wiki/Spam_)

Every program attempts to expand until it can read mail. Those
programs which cannot so expand are replaced by ones which can.

— Zawinski’s Law (http://wuw.catb.org/jargon/html/Z/Zawinskis-Law.
html)

22.1.1 Content filtering

Filtering happens as or after the message has been accepted. There are many
kinds of filtering.

o How to Beat an Adaptive Spam Filter (http://www.jgc.org/SpamConference011604.
PPps)

93

http://www.cipherdyne.com/fwsnort/
http://www.cipherdyne.com/fwknop/
http://www.subspacefield.org/~travis/dfd/
http://www.subspacefield.org/~travis/dfd/
http://www.semicomplete.com/projects/grok/
http://tumbler.sourceforge.net/
http://shimmer.sourceforge.net/
http://en.wikipedia.org/wiki/Spam_
http://www.catb.org/jargon/html/Z/Zawinskis-Law.html
http://www.catb.org/jargon/html/Z/Zawinskis-Law.html
http://www.jgc.org/SpamConference011604.pps
http://www.jgc.org/SpamConference011604.pps

Signature Matching Looks for certain signatures of spam and filters them
out.

Bayesian Filtering This has to do with deciding what words, phrases, etc.
suggest spam, and which suggest ham.

dspam (http://dspam.nuclearelephant.com/)

crml114 (http://crmll4.sourceforge.net/)

Limitations Once you've accepted an email, it’s on your system. If you now
decide it’s spam, you can either choose to drop it silently (incurring the possibil-
ity of silent failures for false positives) or bounce it possibly causing backscatter
(http://en.wikipedia.org/wiki/Backscatter_}28e-mail%29).

With Bayesian filtering, spammers increasingly just add a bunch of non-spammy
words to their email. It looks like gibberish.

22.1.2 Throttling and Delays
e Greylisting is my favorite anti-spam technique (http://en.wikipedia.

org/wiki/Greylisting)

Limitations Spammers just wait a while and retry from the same IP address.
Hopefully by that time, they’re blacklisted.

There are incompatible senders - for example, they may try delivery once and
that’s it, or many systems may work from the same queue and thus the same
IP will never retry the send.

22.1.3 Blocking Known Offenders

e DNS blacklisting (http://en.wikipedia.org/wiki/DNSBL)

Limitations Where’s the money in keeping such lists up to date, and defend-
ing against spammer lawsuits?

22.1.4 Authentication for Sending Email

e SMTP-AUTH email authentication (http://en.wikipedia.org/wiki/
SMTP- AUTH)

This makes people prove who they are before they are allowed to send mail via
SMTP.

94

http://dspam.nuclearelephant.com/
http://crm114.sourceforge.net/
http://en.wikipedia.org/wiki/Backscatter_%28e-mail%29
http://en.wikipedia.org/wiki/Greylisting
http://en.wikipedia.org/wiki/Greylisting
http://en.wikipedia.org/wiki/DNSBL
http://en.wikipedia.org/wiki/SMTP-AUTH
http://en.wikipedia.org/wiki/SMTP-AUTH

22.1.5 Network-Level Authentication Techniques

e Sender Policy Framework (http://www.openspf.org/)

e Domain Keys Identified Mail (http://www.dkim.org/) helped to knock
E-Bay and Paypal down from being the number one phishing target

These are designed to prove that one’s email is legitimately from your organi-
zation, but do not actually say anything about whether it is spam or not.
22.1.6 Message-Level Authentication Techniques

e OpenPGP (http://www.openpgp.org/)

e S/MIME (http://en.wikipedia.org/wiki/S/MIME)

These prove that an email is from an individual, but do not actually say anything
about whether it is spam or not.
22.1.7 Micropayment Systems

e Micropayments (http://en.wikipedia.org/wiki/Micropayment)

If people paid for the privilege of sending email, perhaps they wouldn’t spam.

Limitations Nobody will send you any email.
People you want to talk to won’t send you as much email.

It won’t stop spam, any more than paying the cost of stamps stops unsolicited
bulk physical mail.

22.1.8 Insolubility

e You Might Be an Anti-Spam Kook If... (http://www.rhyolite.com/
anti-spam/you-might-be.html)

e Response to Final Ultimate Solution to the Spam Problem (http://
claws2.nfshost.com/fussp.html)

95

http://www.openspf.org/
http://www.dkim.org/
http://www.openpgp.org/
http://en.wikipedia.org/wiki/S/MIME
http://en.wikipedia.org/wiki/Micropayment
http://www.rhyolite.com/anti-spam/you-might-be.html
http://www.rhyolite.com/anti-spam/you-might-be.html
http://claws2.nfshost.com/fussp.html
http://claws2.nfshost.com/fussp.html

22.2 Phishing

In computing, phishing is the criminally fraudulent process of at-
tempting to acquire sensitive information such as usernames, pass-
words and credit card details, by masquerading as a trustworthy
entity in an electronic communication. Communications purporting
to be from PayPal, eBay, Youtube or online banks are commonly
used to lure the unsuspecting. Phishing is typically carried out by
e-mail or instant messaging, and it often directs users to enter details
at a website.

— Wikipedia (http://en.wikipedia.org/wiki/Phishing)

22.3 Frameworks

22.3.1 spamassassin

e Spamassassin (http://spamassassin.apache.org/)

The most popular framework that implements “signature filters”, as well as
bayesian and other tools (like p0Of), and uses them all in a large scoring system.

23 Web Security

This section covers the security of web browsers and (server-side) applications.
The main organizations which deals with these issues are:

e OWASP (http://www.owasp.org/)
o WASC (http://www.webappsec.org/)
o Web User Interaction: Threat Trees (http://www.w3.org/TR/wsc-threats/)

o Web Security Wiki (http://www.w3.org/Security/wiki/Main_Page)

Also, the subject of web security also is intimately tied with Certification Au-

thorities (see 28.9.3)).

23.1 Direct Browser Attacks

People treat web browsers as though they were safe to use, but I do not consider
them to be so. It is my opinion that most web browsers are far too complex to
consider HTML completely passive. If you need some convincing, you can read
up on browser security at the following sites:

96

http://en.wikipedia.org/wiki/Phishing
http://spamassassin.apache.org/
http://www.owasp.org/
http://www.webappsec.org/
http://www.w3.org/TR/wsc-threats/
http://www.w3.org/Security/wiki/Main_Page

e Uninformed Journal (http://www.uninformed.org/)
e Rsnake’s Vulnerability Lab (http://ha.ckers.org/weird/)
o Rsnake’s blog, ha.ckers.org (http://ha.ckers.org/blog/)

o GreyMagic Internet Ezplorer Security Research (http://www.greymagic.
com/security/advisories/)

e Digicrime (ironic site): http://www.digicrime.com/

e Scott Schnoll’s Internet Explorer Security Center (http://www.nwnetworks.
com/iesc.html)

o Assorted Browser Vulnerabilities (http://seclists.org/fulldisclosure/
2007/Jun/0026 .html)

e Jeremiah Grossman’s blog (http://jeremiahgrossman.blogspot.com/)

o Zalweski’s Browser Security Handbook (http://code.google.com/p/browsersec/)

23.2 Indirect Browser Attacks

There are many attacks which don’t try to execute arbitrary code in the browser,
but instead attack the logic in the browser in order to get the browser to do
something for the user which the user didn’t intend. This is a specific instance
of something called the confused deputy problem (http://en.wikipedia.org/
wiki/Confused_deputy_problem), first described by Norm Hardy.

23.2.1 Cross-Site Request Forgery (CSRF)

A good example of the confused deputy problem is cross-site request forgery,
also known as CSRF (http://en.wikipedia.org/wiki/CSRF), where the user’s
browser is tricked into visiting a URL for a site, and if the user’s cookies are
sufficient to authorize the request (i.e. they are logged in at that moment), then
the user has actually authorized something without knowing it.

23.2.2 Cross-Site Scripting (XSS)

A similar attack is Cross-Site Scripting (http://en.wikipedia.org/wiki/Cross_
site_scripting), also known as XSS. In this, the adversary tricks a web site
that you trust into displaying some malicious HTML. That is, it exploits your
trust for the website, by getting his attack code to appear on the trusted website.
This is a good example of a possible vulnerability in giving some subjects more
privileges than others; the adversary may be able to masquerade as the privi-
leged entity (i.e. by doing DNS hijacking and presenting a fake SSL certificate),
or in this case trick it into doing his bidding.

97

http://www.uninformed.org/
http://ha.ckers.org/weird/
http://ha.ckers.org/blog/
http://www.greymagic.com/security/advisories/
http://www.greymagic.com/security/advisories/
http://www.digicrime.com/
http://www.nwnetworks.com/iesc.html
http://www.nwnetworks.com/iesc.html
http://seclists.org/fulldisclosure/2007/Jun/0026.html
http://seclists.org/fulldisclosure/2007/Jun/0026.html
http://jeremiahgrossman.blogspot.com/
http://code.google.com/p/browsersec/
http://en.wikipedia.org/wiki/Confused_deputy_problem
http://en.wikipedia.org/wiki/Confused_deputy_problem
http://en.wikipedia.org/wiki/CSRF
http://en.wikipedia.org/wiki/Cross_site_scripting
http://en.wikipedia.org/wiki/Cross_site_scripting

This attack is particularly devastating due to the same origin policy (http://
en.wikipedia.org/wiki/Same_origin_policy), which states that code dis-
played from omne origin can do whatever it wants to the HTML that comes
from the same origin. In effect, it gives an attacker near-total control of what
happens on that site in the user’s browser, allowing him to steal cookies, cap-
ture login credentials, and so on. In fact, it completely neutralizes any CSRF
countermeasures the site may deploy.

This attack is often used for credential theft.

e Stay Ahead of Web 2.0 Worms - XSS Marks the Spot (http://www.
regdeveloper.co.uk/2008/01/07/xss_tactics_strategy/)

e Rsnake’s XSS filter evasion (http://ha.ckers.org/xss.html)

e XSS FAQ (http://www.cgisecurity.com/articles/xss-faq.shtml)

23.2.3 Session Fixation

o Wikipedia article on Session Fization (http://en.wikipedia.org/wiki/
Session_fixation)

Rsnake points out that session fixation could be its own class of attack, as I have
indicated here, but that it usually occurs in the context of a cross-site scripting
attack.

23.2.4 UI Attacks

These attacks focus on tricking the user by manipulating what he or she sees
on the screen.

e Clickjacking (http://www.sectheory.com/clickjacking.htm), another
instance of confused deputy problem (http://en.wikipedia.org/wiki/
Confused_deputy_problem)

e Phishing (http://en.wikipedia.org/wiki/Phishing)
e Drag and Drop Exploits (TODO: URL needed)

23.2.5 Less Important Attacks

o CSS History Stealing (http://jeremiahgrossman.blogspot.com/2006/
08/i-know-where-youve-been.html)

o Intranet Hacking (http://jeremiahgrossman.blogspot.com/2006/07/
my-black-hat-usa-2006-presentation.html)

98

http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Same_origin_policy
http://www.regdeveloper.co.uk/2008/01/07/xss_tactics_strategy/
http://www.regdeveloper.co.uk/2008/01/07/xss_tactics_strategy/
http://ha.ckers.org/xss.html
http://www.cgisecurity.com/articles/xss-faq.shtml
http://en.wikipedia.org/wiki/Session_fixation
http://en.wikipedia.org/wiki/Session_fixation
http://www.sectheory.com/clickjacking.htm
http://en.wikipedia.org/wiki/Confused_deputy_problem
http://en.wikipedia.org/wiki/Confused_deputy_problem
http://en.wikipedia.org/wiki/Phishing
http://jeremiahgrossman.blogspot.com/2006/08/i-know-where-youve-been.html
http://jeremiahgrossman.blogspot.com/2006/08/i-know-where-youve-been.html
http://jeremiahgrossman.blogspot.com/2006/07/my-black-hat-usa-2006-presentation.html
http://jeremiahgrossman.blogspot.com/2006/07/my-black-hat-usa-2006-presentation.html

o Cross-Zone Scripting (http://en.wikipedia.org/wiki/Cross-zone_scripting)
o Cross-Site Cooking (http://en.wikipedia.org/wiki/Cross-site_cooking)

e Session Poisoning (http://en.wikipedia.org/wiki/Session_poisoning)

e Pharming (http://en.wikipedia.org/wiki/Pharming)

e Page Hijacking (http://en.wikipedia.org/wiki/Page_hijacking)

e Grossman’s 2006 Javascript Port-Scanning Malware (http://root.yscx.
net/documents/bhusa2006/033_Grossman.pdf)

e SPI Dynamics 2006 Javascript Port-Scanning Malware (http://www.spidynamics.
com/assets/documents/JSportscan.pdf)

e DNS Rebinding (http://crypto.stanford.edu/dns/, http://en.wikipedia.
org/wiki/DNS_rebinding)

These all involve not bugs in the browser or web application, but rather unex-
pected consequences of the way the web works. I need to think hard about how
to categorize these when I get some time and make sure they belong here.
23.3 Web Application Vulnerabilities
o OWASP Top Ten (http://www.owasp.org/index.php/Category:0WASP_
Top_Ten_Project)
23.3.1 Remote File Inclusion

o Wikipedia: Remote File Inclusion (http://en.wikipedia.org/wiki/Remote_
File_Inclusion)

e Remote File Inclusion (http://projects.webappsec.org/Remote-File-Inclusion)

e Large List of RFIs (http://ha.ckers.org/blog/20100129/1large-1list-of-rfis-1000/)

23.4 Relevant Standards
e Payment Card Industry (PCI) Standard (http://usa.visa.com/download/

business/accepting_visa/ops_risk_management/cisp_PCI_Data_Security_
Standard.pdf)

23.5 Crawler Attacks

Crawlers and indexers can be vulnerable to parsing and codec overflows. And
if they follow links, they can be tricked into executing some web-based attacks.

99

http://en.wikipedia.org/wiki/Cross-zone_scripting
http://en.wikipedia.org/wiki/Cross-site_cooking
http://en.wikipedia.org/wiki/Session_poisoning
http://en.wikipedia.org/wiki/Pharming
http://en.wikipedia.org/wiki/Page_hijacking
http://root.yscx.net/documents/bhusa2006/033_Grossman.pdf
http://root.yscx.net/documents/bhusa2006/033_Grossman.pdf
http://www.spidynamics.com/assets/documents/JSportscan.pdf
http://www.spidynamics.com/assets/documents/JSportscan.pdf
http://crypto.stanford.edu/dns/
http://en.wikipedia.org/wiki/DNS_rebinding
http://en.wikipedia.org/wiki/DNS_rebinding
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://en.wikipedia.org/wiki/Remote_File_Inclusion
http://en.wikipedia.org/wiki/Remote_File_Inclusion
http://projects.webappsec.org/Remote-File-Inclusion
http://ha.ckers.org/blog/20100129/large-list-of-rfis-1000/
http://usa.visa.com/download/business/accepting_visa/ops_risk_management/cisp_PCI_Data_Security_Standard.pdf
http://usa.visa.com/download/business/accepting_visa/ops_risk_management/cisp_PCI_Data_Security_Standard.pdf
http://usa.visa.com/download/business/accepting_visa/ops_risk_management/cisp_PCI_Data_Security_Standard.pdf

23.6 SSL Certificates Made Redundant

We just certified our x.509 SSL certs with the Department of Re-
dundancy Department’s CA certificate.

When you pay a Certification Authorityﬁ a large sum of money to certify you
(and issue a certificate as a by-product of that certification process), they check
your information against the system of record to make sure you are the person
who owns the domain. Therefore, unless they check something else, they can
never give higher assurance than the registrar, which makes you wonder why
they even exist; you could just get a certificate from the registrar, and that
would, in theory, give us more security. As Lynn Wheeler puts it, these are
basically offline checks, derived from letters of credit (http://en.wikipedia.
org/wiki/Letters_of _credit) in the sailing ship days. They are significantly
less secure than an online system. To allow for revocation, all clients must check
them against a certificate revocation list (CRL). To allow for instant revocation,
you have to be online with the source of the CRL. Of course, if you're already
doing that, why use certificates at all? Just ask the person who would have
issued the certificate for the appropriate public key (see [[1.4]).

24 Software Security

24.1 Security is a Subset of Correctness

If we make the (rather large) assumption that the design is secure, then one is left
with implementation vulnerabilities. These are exploitable bugs. Correct code
has no bugs. Thus, we should shoot for correct code, and we will get secure code
as a happy side-effect. It is possible to design code so that you can formally ver-
ify correctness (http://en.wikipedia.org/wiki/Formal_verification), but
you cannot generally prove correctness for arbitrarily-structured programs.

Any software system which has not been proven correct may have implementa-
tion vulnerabilities. Put another way, any system which processes data which
may be controlled or affected by the adversary could be compromised. This
includes security monitoring systems; there have been a number of bugs in tcp-
dump’s decoding routines. If the system can be compromised non-interactively,
then even a system which passively records data, and analyzes it offline, could
be vulnerable.

24.2 Secure Coding

e CERT Secure Coding Standards (http://www.securecoding.cert.org/)

3They are a certification authority; not a certificate authority. They are not selling certifi-
cates, they are selling the certification process. Anyone can make a certificate.

100

http://en.wikipedia.org/wiki/Letters_of_credit
http://en.wikipedia.org/wiki/Letters_of_credit
http://en.wikipedia.org/wiki/Formal_verification
http://www.securecoding.cert.org/

24.3 Malware vs. Data-Directed Attacks

Even though any software could have an implementation bug that causes it to be
controlled remotely, a surprising amount of software can be controlled remotely
by design. Files and data that are meant to be interpreted by such software
are called active content, but it doesn’t mean that it has to be interpreted;
one can still view it with a hex editor and do no interpretation whatsoever.
Examples of active content include executable files, javascript, flash, Microsoft
Office documents, and so forth. Many of these started with the assumption that
the authors of such files would always be trustworthy, which eroded over time,
until now people routinely download these things and run them without even
realizing they are giving control of that software to an anonymous person.

When active content is malicious, it is called malware. When someone ex-
ploits software that doesn’t normally allow the data to control it, it is called
a data-directed attack. Computer security experts typically have a very good
understanding of the difference, and so don’t bother to check documents with
anti-virus software unless they use a program which offers control to the doc-
ument. People act like working with computer virii is risky, but it’s a bit like
working with E. Coli; you simply make sure never to ingest it, and you’re fine.
And computers only do the things we tell them to, so there’s no risk of acciden-
tally ingesting it if you know what you’re doing.

e PDF considered unsafe (http://feeds.feedburner.com/~r/CeriasCombinedFeed/
~3/194625641/)

24.4 Language Weaknesses
24.4.1 C

C is one the most difficult language in which to write secure code. The primary
culprits in this language are:

e The lack of standard buffer management routines leads to buffer overflows
(see http://en.wikipedia.org/wiki/Buffer_overflow).

e There are also format string attacks (see http://en.wikipedia.org/
wiki/Format_string_attack) which deal with being able to control the
format string to sprintf and the fact that it can do some weird things when
used in bad ways.

e The string handling routines are notoriously tricky to get right (not to
mention not being 8-bit clean, since they treat \0 as a sentinel value).
There is an explanation of the gotchas and an attempt to deal with
the trickiness problem by writing easier-to-use routines such as strlcat
and strlcpy (see http://www.usenix.org/events/usenix99/millert.

101

http://feeds.feedburner.com/~r/CeriasCombinedFeed/~3/194625641/
http://feeds.feedburner.com/~r/CeriasCombinedFeed/~3/194625641/
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Format_string_attack
http://en.wikipedia.org/wiki/Format_string_attack
http://www.usenix.org/events/usenix99/millert.html

html). Please, every C programmer go read that. Also you may wish
to take advantage of the astring library (see http://www.mibsoftware.
com/libmib/astring/).

I would argue that unless there’s a good reason for you to use C, you should
use C++ instead.

24.4.2 CH+

C—++ is definitely a step up from C. Strings are no longer character arrays, but
now first-class objects, making their handling significantly better. Most flaws
in C++ code that are dependent on the language tend to be:

e Dynamic memory allocation and deallocation problems, leading to heap
mismanagement, double-free, and possibly heap overflows
e Pointer mismanagement

I would argue that unless there’s a good reason for you to use C++, you should
use Java or Python instead.

24.4.3 Perl

Perl is a pretty good tool, but it has some shortcomings as well:

e The file open call lets you specify a mode in the same parameter as the
filename. In most cases, if an attacker can control which file was intended
to be opened, he can also start a shell pipeline. This is what happens
when you mix control and data together.

e The system command and backticks provide an easy way for the adversary
to do shell injection.

24.4.4 PHP

PHP is incredibly difficult to write securely and yet very popular. There have
been many security-relevant bugs found in the language itself, and every day
seems to be a new vulnerability in PHP code.

I won’t go into details here right now but let’s just say that you should start with
register _globals and allow _wurl_fopen turned off in your configuration files.

102

http://www.usenix.org/events/usenix99/millert.html
http://www.mibsoftware.com/libmib/astring/
http://www.mibsoftware.com/libmib/astring/

24.5 Reverse Engineering

Reverse engineering is similar to forensics, except that in forensics you're looking
for evidence, usually data left over by a person, whereas a reverse engineer seeks
to understand a system or program in question.

24.5.1 Tutorials

So far, all I’ve read is Fravia’s tutorials (You can find an archive of Fravia’s tuto-
rials here: http://web.archive.org/web/20041119084104/http://fravia.
anticrack.de/).

24.5.2 Analyses

Silver Needle in the Skype (http://www.secdev.org/conf/skype_BHEUO6.pdf)
is an awesome paper that shows what a talented reverse engineer can do.

24.5.3 Tools
Certainly a lot of people like these tools, among others:

e IDA Pro (http://www.datarescue.com/idabase/)
e SoftICE (http://en.wikipedia.org/wiki/SoftICE)

e PaiMei (http://pedram.redhive.com/PaiMei/, esp. PyDbg: http://
pedram.redhive.com/PaiMei/docs/PyDbg)

e Ollydbg (http://wuw.ollydbg.de/)

e zzuf (http://libcaca.zoy.org/wiki/zzuf)

e hachoir (http://hachoir.org/)

o fuzzbox (http://www.isecpartners.com/fuzzbox.html)

e mutagen (http://www.sacredchao.net/quodlibet/wiki/Development/
Mutagen)

e vbindiff (http://www.cjmweb.net/vbindiff/)

e bvi (http://bvi.sourceforge.net/)

e rtpinject (http://www.isecpartners.com/rtpinject.html)

e Zynamics binnavi (http://www.zynamics.com/index.php?page=binnavi)

e Zynamics bindiff (http://www.zynamics.com/index.php?page=bindiff)

103

http://web.archive.org/web/20041119084104/http://fravia.anticrack.de/
http://web.archive.org/web/20041119084104/http://fravia.anticrack.de/
http://www.secdev.org/conf/skype_BHEU06.pdf
http://www.datarescue.com/idabase/
http://en.wikipedia.org/wiki/SoftICE
http://pedram.redhive.com/PaiMei/
http://pedram.redhive.com/PaiMei/docs/PyDbg
http://pedram.redhive.com/PaiMei/docs/PyDbg
http://www.ollydbg.de/
http://libcaca.zoy.org/wiki/zzuf
http://hachoir.org/
http://www.isecpartners.com/fuzzbox.html
http://www.sacredchao.net/quodlibet/wiki/Development/Mutagen
http://www.sacredchao.net/quodlibet/wiki/Development/Mutagen
http://www.cjmweb.net/vbindiff/
http://bvi.sourceforge.net/
http://www.isecpartners.com/rtpinject.html
http://www.zynamics.com/index.php?page=binnavi
http://www.zynamics.com/index.php?page=bindiff

24.5.4 Anti-Anti-Reverse Engineering

e http://www.steike.com/code/debugging-itunes-with-gdb/

24.6 Application Exploitation

For arbitrary code execution (the worst kind of vulnerability), one method is
to get executable code, such as shellcode (http://en.wikipedia.org/wiki/
Shellcode) into the memory space of the process. This is called code in-
jection (http://en.wikipedia.org/wiki/Code_injection). This can happen
through a buffer overflow or a similar technique, such as passing it in an envi-
ronment variable. Then, transfer control to it by overwriting a function pointer,
GOT entry, or return address on the stack. That’s it.

There are other forms of vulnerabilities; in some cases, the attacker controls the
instructions but not the data (see 24.6.2 below), and in other cases, the data
but not the instructions (see.

24.6.1 Buffer Overflows

e Buffer overflow (http://en.wikipedia.org/wiki/Buffer_overflow)

o Stack buffer overflow (http://en.wikipedia.org/wiki/Stack_buffer_
overflow)

e Heap (buffer) overflow (http://en.wikipedia.org/wiki/Heap_overflow)

24.6.2 Return-oriented Programming

There is another class of attacks that involves overwriting memory locations,
typically the return address on the stack, with a value controlled by the attacker,
typically something in libc. This technique avoids the need for code injection
while allowing the attacker to control the instructions, but generally not the
data.

o Return-to-libc attack (http://en.wikipedia.org/wiki/Return-to-libc_
attack)

Return to libc attacks are a specific example of return-oriented programming:

o Return-oriented programming (http://en.wikipedia.org/wiki/Return-oriented_
programming)

104

http://www.steike.com/code/debugging-itunes-with-gdb/
http://en.wikipedia.org/wiki/Shellcode
http://en.wikipedia.org/wiki/Shellcode
http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Stack_buffer_overflow
http://en.wikipedia.org/wiki/Stack_buffer_overflow
http://en.wikipedia.org/wiki/Heap_overflow
http://en.wikipedia.org/wiki/Return-to-libc_attack
http://en.wikipedia.org/wiki/Return-to-libc_attack
http://en.wikipedia.org/wiki/Return-oriented_programming
http://en.wikipedia.org/wiki/Return-oriented_programming

24.6.3 Data Corruption

A potential example of this class of vulnerability includes “double-free”. This
vulnerability allows the attacker to control the data, but not the instructions
executed. It appears that it can be leveraged to give arbitrary code execution,
though, via the “write-what-where” aspect. I need to review this section and
get it a little more clear in my head. Until then, here are the links.

e http://www.owasp.org/index.php/Double_Free
e http://www.cert.org/advisories/CA-2002-07.html

24.6.4 SQL Injection

This is a slightly different class of attack, in that it doesn’t involve arbitrary
code execution, but it is remarkably common at the moment (early 2010).

e http://en.wikipedia.org/wiki/SQL_injection

e http://projects.webappsec.org/SQL-Injection

24.7 Application Exploitation Defenses

There are a few systems for stopping exploitation without fixing the underlying
problems, but obviously each has limitations.

24.7.1 Stack-Smashing Protection

Stack-smashing protection is described pretty well on the Wikipedia page (http://
en.wikipedia.org/wiki/Stack-smashing_protection) and its most obvious
limitation is that it only works against stack buffer overflows. Particular de-
fenses may have other drawbacks. I’ll expand on this later.

24.7.2 Address-Space Layout Randomization (ASLR)

In the ASLR technique (http://en.wikipedia.org/wiki/ASLR), the system
lays out the regions of memory in an unpredictable way. This is usually done
by loading different contiguous sections into different areas of address space at
load time, and the loader fixes up the executable (usually via some kind of offset
table that maps symbols to addresses) such that it can find other parts of itself.
This means that an adversary may overflow a buffer, but they do not know a
priori where it resides in memory, so can’t easily transfer control to it. The
advantage to this is that you can often do it with a simple recompilation. The
disadvantage is that the adversary can sometimes run the program over and over
until he lucks out, or he may be able to use a memory disclosure vulnerability
to figure out the correct address.

105

http://www.owasp.org/index.php/Double_Free
http://www.cert.org/advisories/CA-2002-07.html
http://en.wikipedia.org/wiki/SQL_injection
http://projects.webappsec.org/SQL-Injection
http://en.wikipedia.org/wiki/Stack-smashing_protection
http://en.wikipedia.org/wiki/Stack-smashing_protection
http://en.wikipedia.org/wiki/ASLR

24.7.3 Write XOR Execute

In some processor architectures, memory pages may have access control flags
such as “writable” or “executable”. An operating system like OpenBSD may
enforce W @ X (http://en.wikipedia.org/wiki/W~X) which means that only
one of the two flags may be set, so that an adversary may either be able to
overflow a buffer, or execute its contents, but not both. The limitation is that
the adversary may be able to find a way to write to the buffer and then change
the flag to be executable, or that he may not need to run arbitrary code, merely
to pass data under his control to an existing routine.

24.7.4 PaX

PaX flags data memory as non-executable, program memory as non-
writable and randomly arranges the program memory. This effec-
tively prevents many security exploits, such as some kinds of buffer
overflows. The former prevents direct code execution absolutely,
while the latter makes so-called return-to-libc (ret2libc) attacks dif-
ficult to exploit, relying on luck to succeed, but doesn’t prevent
variables and pointers overwriting.

— Wikipedia

o Wikipedia page on PaX (http://en.wikipedia.org/wiki/PaX)

e PaX homepage (http://pax.grsecurity.net/)

24.8 Software Complexity
24.8.1 Complexity of Network Protocols

When evaluating the security of a network application, a good question is how
likely is the software to lead to a remotely exploitable compromise? How much
code is devoted to interpreting it, and how much other stuff does it interact
with? For example, the reason why packet filters are valuable is that it doesn’t
take much code to check that a packet isn’t allowed in. This basically is a
question designed to evaluate design vulnerabilities. Protocol-level design vul-
nerabilities are often more obvious than implementation vulnerabilities because
simple protocols have less to understand than the source code of the programs
that speak them, but only if the protocol is documented. If you have to extract
it from source code alone (or worse, reverse-engineer it from executables), then
this is more difficult. Of course, if the designers hadn’t thought of the protocol
design before writing code, then it probably has plenty of holes. A fellow with
the handle “Hobbit” wrote a paper Common Insecurities Fail Scrutiny (http://
insecure.org/stf/cifs.txt) that details a number of flaws he found in the

106

http://en.wikipedia.org/wiki/W^X
http://en.wikipedia.org/wiki/PaX
http://pax.grsecurity.net/
http://insecure.org/stf/cifs.txt
http://insecure.org/stf/cifs.txt

Microsoft NetBIOS file sharing protocols. Later, a Microsoft representative
asked (in mild awe) how he found them, and his response was effectively that
he didn’t use their toolset. He reverse-engineered the whole thing from scratch,
and that allowed him to see the protocol as it really was, and not as their soft-
ware intended it to be. This illustrates an interesting point in that software
or incomplete descriptions of things can color one’s view of it, and prevent you
from seeing something that someone with a lower-level view can see. But really
the problem seems to be that the protocol had grown organically and was with-
out coherent design and only appeared secure due to obscurity. To this day, it
is considered unsafe to allow an adversary to talk to NetBIOS services.

The only solution seems to be to design the protocol independent of the software,
because it represents an attack surface (see [[H]) that requires analysis. Just
because your software doesn’t generate a particular message sequence doesn’t
mean an adversary will not! Adversaries are not kind enough to always use our
tools.

24.8.2 Polymorphism and Complexity

In order to allow any computer to access things on the web, it was decided to
allow a restricted character set in HT'TP. For example, if your computer could
not properly transmit a tilde, or store a file with a tilde in the name, it could
use what is called “URI escaping”. In URI escaping, the tilde is %7F, and the
space character is %20. This seemed like a good idea for interoperability, but
has actually made intrusion detection more complex and less reliable, and it has
also become a security problem in a number of cases. The basic problem is that
there’s more than one representation (syntaz, or encoding) for some meanings
(semantics), so it is called polymorphic. So if some piece of software wants to
make sure a string that will be URI-decoded doesn’t contain a character (such
as a space), it also has to make sure it doesn’t contain the URI-escaped version
of it (%20). These sorts of checks end up all over the place, and sooner or later
a programmer is going to forget about it, and you’ll end up with a security hole.

The only solution seems to be to either avoid polymorphism, avoid having special
characters which will need to be checked for, or to come up with a software design
that makes sure that you always work with the canonical representation of your
data.

24.9 Failure Modes

A piece of software, subsystem, or component may fail to do its job properly
for various reasons. Its failure mode is the implication of that failure. Some-
times we may classify these failures as erring on the side of safety or security,
which is known as fail-safe or fail-secure (http://en.wikipedia.org/wiki/
Fail-safe). Sometimes the result is safe but not secure, like a door held closed

107

http://en.wikipedia.org/wiki/Fail-safe
http://en.wikipedia.org/wiki/Fail-safe

by electromagnetism; in the event of a power failure, it becomes unlocked, which
is safe (to people) but not secure (to whatever the door protects)E

24.10 Fault Tolerance

o Wikipedia article on Fault-tolerant systems (http://en.wikipedia.org/
wiki/Fault-tolerant_system)

24.10.1 Multipath Security

Different teams, in isolation, create code based on the same specification. For
all inputs, they should produce the same output. If two do not produce the
same output, an alarm is raised; one is in error. The correct answer may be
determined by a majority in a “vote” by three or more systems.

24.11 Implications of Incorrectness

http://cryptome.org/bug-attack.htm

25 Human Factors and Usability

We have secured all but the last two feet of the communication
channel.

25.1 The Psychology of Security

Men are disturbed not by things, but by the views they take of
things.

— Epictetus
o Usenixz Usability, Psychology, and Security Conference (http://www.usenix.
org/event/byname/upsec.html)

e Andrew Patrick, Human Factors of Security Systems: A Brief Review
(http://www.andrewpatrick.ca/passwords/passwords.pdf)

e Beyond Fear (book) http://www.schneier.com/book-beyondfear.html
e Bruce Schneier’s Essays http://www.schneier.com/essays.html

e Bruce Schneier’s Log http://www.schneier.com/blog/

4For some wonderful information on safety engineering, see the Wikipedia article: http://
en.wikipedia.org/wiki/Safety_engineering

108

http://en.wikipedia.org/wiki/Fault-tolerant_system
http://en.wikipedia.org/wiki/Fault-tolerant_system
http://cryptome.org/bug-attack.htm
http://www.usenix.org/event/byname/upsec.html
http://www.usenix.org/event/byname/upsec.html
http://www.andrewpatrick.ca/passwords/passwords.pdf
http://www.schneier.com/book-beyondfear.html
http://www.schneier.com/essays.html
http://www.schneier.com/blog/
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Safety_engineering

25.2 Social Engineering

“There is no limit to stupidity.”
— Dario V. Forte

e Understanding Scam Victims: Seven Principles for Systems Security (http://
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-754.pdf)

25.3 Security Should Be Obvious, and the Default
By several of the security design principles described later (see [34):

o If code compiles, the programmer assumes he is done. So design security
APIs that you can’t successfully compile unless you get it right.

o If the end user might want something to not be secure, make that harder
than normal secure configuration. For example, don’t turn NFS or any
other service on by default.

e Make security obvious to the end user; the padlock icons and things of
that nature are a good idea. Make the not-secure state as obvious as the
secure state, so the user knows which he is in.

25.4 Security Should Be Easy to Use

e Alma Whitten, Why Johnny Can’t Encrypt: A Usability FEvaluation of
PGP 5.0 (http://www.cs.berkeley.edu/ tygar/papers/Why_Johnny_
Cant_Encrypt/OReilly.pdf, http://gaudior.net/alma/johnny.pdf)

25.5 No Hidden Data

In tar files, they store the user and group IDs. When system administrator
untars these, they remain owned by those UIDs even when the machines making
and using the tarfile were not the same. For widespread file distribution, one
should not use a format that retains metadata that will not be useful between
machines. At least one case of this being a security hole has been documented
in a very silly way here:

e http://attrition.org/security/advisory/gobbles/GOBBLES-16.txt
Furthermore, the lists of Iranians who helped the US in depose the Shah was
revealed by a NY Times reporter who made the PDF available. He had blocked

out the names, but on a different layer. On some slow computers, you could
read the names before the layer with the blocks loaded:

109

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-754.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-754.pdf
http://www.cs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/OReilly.pdf
http://www.cs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/OReilly.pdf
http://gaudior.net/alma/johnny.pdf
http://attrition.org/security/advisory/gobbles/GOBBLES-16.txt

e http://cryptome.sabotage.org/cia-iran.htm

Word documents also hold remnant deleted data; not long ago, an official Mi-
crosoft document was revealed to have been created on a Macintosh.

26 Attack Patterns

26.1 Attack Taxonomy

logic level attacks are usually against applications. For example, a banking
application may allow you to transfer a negative amount of money to
someone without getting their permission (this is not a made-up example).

application protocol level attacks are against the daemon itself, by doing
things in an unexpected order, or by in some way violating the intent of
the protocol. For example, a daemon may be vulnerable if a string in the
attack is too long. Protocol fuzzing helps find these kinds of attacks.

network protocol level attacks are against the network software (usually the
TCP/IP stack), which may or may not be part of the operation system
itself. Long ago, some TCP/IP stacks would stop working if you sent it a
packet with the same source and destination IP address (this was called
the “land” attack).

identity spoofing attacks simply try to get access as a legitimate user

authorization attacks try to do more with a legitimate user’s privileges than
was intended by the owner

man in the middle attacks involve interposing between two parties that are
communicating normally (see [10.9)

26.2 Attack Properties

All attacks are not created equal. They may sometimes be grouped together
in various ways, though, and so that leads us to ask whether there are any
dimensions, or characteristics, by which we may classify known attacks.

access required to execute the attack varies; some attacks require a system
account, while others can be exploited by anyone on the Internet.

detectability usually means that the attack involves a non-standard interac-
tion with us, and therefore involves something which we could (in theory)
look for and recognize. Passive attacks, typically eavesdropping, are very
difficult or impossible to detect.

110

http://cryptome.sabotage.org/cia-iran.htm

recoverability refers to whether we may, after detecting or suspecting an at-
tack, restore the state of the system to a secure one. Usually once an
adversary has complete control of a system, we cannot return it to a se-
cure state without some unusual actions, because they may have tampered
with any tools we may be using to inspect or fix the system.

preventability refers to whether there exists a defense which allows us to
prevent it, or whether we must be content with detecting it. We can
sometimes prevent attacks we cannot detect; for example, we can pre-
vent someone from reading our wireless transmissions by encrypting them
properly, but we can’t usually detect whether or not any third party is
receiving them.

scalability means the same attack will probably work against many systems,
and does not require human effort to develop or customize for each system.

offline exploitability means that the attack may be conducted once but ex-
ploited several times, as when you steal a cryptographic key.

sophistication refers to the property of requiring a great deal of skill, versus
an unsophisticated attack like guessing a password to a known system
account.

Much of this list is thanks to the Everest voting machine report (http://www.
sos.state.oh.us/sos/info/EVEREST/14-AcademicFinalEVERESTReport .pdf).

Putting a key in a smart card or TPM or HSM prevents it from being copied
and reused later, offline, but it doesn’t prevent it from being abused by the
adversary while he has control of its inputs. For example, a trojan can submit
bogus documents to a smart card to have them signed, and the user has no way
of knowing. Similarly, sometimes techniques like putting passphrases on SSH
keys can prevent them from being stolen right away, requiring a second visit
(or at least an exfiltration at a later date). However, each interaction with the
system by the adversary risks detection, so he wants to do so once only, instead
of multiple times.

For example, your adversary could pilfer your SSL cert, and then use it to create
a phishing site (see 22.2) elsewhere. This is a single loss of confidentiality, then
an authentication attack (forgery) not against you, but against your customers
(third parties). Or he could pilfer your GPG key, then use it to forge messages
from you (a similar detectable attack) or read your email (passive attack, un-
detectable). Or he might break in, wanting to copy your SSH key, find that
it’s encrypted with a passphrase, install a key logger, and come back later to
retrieve the passphrase (two active attacks). Alternately, the key logger could
send the data out automatically (exfiltration).

26.3 Attack Cycle

This is well discussed in the canonical system-cracking book, Hacking Exposed.

111

http://www.sos.state.oh.us/sos/info/EVEREST/14-AcademicFinalEVERESTReport.pdf
http://www.sos.state.oh.us/sos/info/EVEREST/14-AcademicFinalEVERESTReport.pdf

1. Footprint - gather information about the target without touching the tar-
get

2. Scan - identify live targets and services
Enumerate - obtain as much information as you can from the system

Exploit - crack into the system

ook w

Escalate Privileges - if you aren’t already all-powerful, try and become
root or Administrator (or whatever)

6. Pilfering - using your maximum privileges, look for things of value, like
saved passwords or access codes

After all that, you’ll probably be able to use that system as an attack platform
(this is sometimes called pivoting off the host), repeating steps 2-6 on another
target.

26.4 Common Attack Pattern Enumeration and Classifi-
cation

o Mitre’s CAPAC (http://capec.mitre.org/)

27 Trust and Personnel Security

27.1 Trust and Trustworthiness

In my view, to have real trust, there must be consequences for be-
trayal. The extent of the consequences defines the extent of trust.

— Terry Ritter (personal correspondence)

Terry and I disagree on our definition of the word “trust”, but there is some
truth in what he says. A trusted person is one upon whom our security depends.
A trusted part of a system is one which must operate properly to ensure the
security of the system. A trustworthy person will look out for your interests
even though there would be no consequences if they did not do so (apart from
the effect it would have on their conscience and your relationship); in fact, a
completely trustworthy person would never betray your interests regardless of
the consequences to himself. In any case, trust depends on free will; a person
may be trustworthy or untrustworthy, but a business or organization cannot,
because they do not make decisions; people within them do. Executives of a
publicly-owned corporation are legally liable if they make decisions that they
know will not maximize shareholder profit, which generally means that they

112

http://capec.mitre.org/

usually act in the corporation’s financial self-interest, which may diverge from
yours. Unfortunately, some people are also like this.

As a consequence of this, corporations routinely breach the privacy of customers
and third parties by discarding hard drives with their data on it (A Remem-
brance of Data Past, http://www.computer.org/portal/cms_docs_security/
security/vinl/garfinkel.pdf). They almost never take the time to encrypt
laptop hard drives, even though that software is totally free (see B&7.3). Thus,
it is often desirable to use take measures to ensure that the other party’s interest
and your own overlap as much as possible, and to minimize your dependence
on them when your interests diverge. Now would be a good time to re-evaluate
anywhere your security relies on a publicly-held corporation, especially when it
is a free service.

Some people would think that paying money is enough, but it may not be;
that kind of reasoning (that you can buy security) may work in practice but is
not the kind of argument that an “absolute security” person would make (see
B5.2). Would you trust your life to someone merely because you paid them?
You would probably want to know if they are qualified, if they are a sociopath,
and a number of other things.

27.2 'Who or What Are You Trusting?

I may know a person who is trustworthy; my grandmother, my friend, or some-
one else. But in network security, our trust decisions are based on their agents,
specifically their computer. In that case, to trust the computer, not only must
the person be trustworthy, but they must also be competent enough that their
computer does only what they desire it to do. That is simply not often the
case except among computer security experts. When someone emails me an
executable program to run, I do not run it unless I am expecting it, because
too many people’s computers get infected with email viruses that use email to
propagate themselves. Again, the person’s computer is not doing what the per-
son wanted in this case. I may receive a cryptographically-signed email from a
person, but there are a number of ways that they might not have authorized
the signature on the contents:

e They failed to protect the confidentiality of their private key
e They lost control of their system when someone hacked in

e Their system’s integrity was lost when someone modified their message
after composition but prior to signing

e They made a mistake operating the crypto software

e They failed to maintain physical security of their system, and someone
installed a keylogger (and procured a copy of their passphrase-protected
private key)

113

http://www.computer.org/portal/cms_docs_security/security/v1n1/garfinkel.pdf
http://www.computer.org/portal/cms_docs_security/security/v1n1/garfinkel.pdf

27.3 Code Provenance: Signed Programs and Trusted Au-
thors

No signature? No execute!
— Mike Acker

Most people who aren’t as well-versed in security as we are often mistakenly be-
lieve that one can ensure security by only running a small, fixed list of programs
that are presumed to be safe, or only visiting certain well-known web sites. You
should first remember that the mere fact that something is dangerous to pro-
cess suggests that our systems may not be properly designed in the first place,
but operating systems which don’t allow us to run new programs are pretty
boring, so let’s discuss the limitations of author policies. Even a well-known
web site can be vulnerable to cross-site scripting (see 23.2), where they display
potentially-malicious content which they did not create. What, exactly, is the
criteria to determine if an author, program, or web site is safe or unsafe (see
Z1)K¢

Microsoft has developed several signed ActiveX controls which turned out to
be exploitable (http://www.kb.cert.org/vuls/id/753044, http://www.kb.
cert.org/vuls/id/71377%ttp://wuw.securityfocus.com/bid/999), so if you
indicated that you trusted anything signed by Microsoft, any other programs
could call these controls to violate your security. IBM was discovered recently
by eEye to have a similarly buggy ActiveX control (http://osdir.com/ml/
security.vulnerabilities.watch.announce/2006-08/msg00005.html). So
clearly, even if the author is trustworthy, we cannot be sure the program cannot
violate our security. Nor can we be sure that everyone in a given organization is
trustworthy; surely in a company that size, someone is untrustworthy! Knowing
who the author is helps, because it increases the likelihood of punishment or
retaliation in the case of misbehavior, but can’t prevent incompetence. Signing
code does not make it secure; even with signed code, we still have to learn to
create and maintain secure systems.

In fact, it’s even worse than that. Some SSL certificates were issued in Mi-
crosoft’s name and authorized by VeriSign to an individual not associated with
Microsoft (http://www.csl.sri.com/users/neumann/insiderisks.html#132).
So now, when you trust things signed by Microsoft, you’re also trusting things
signed by some talented third party who isn’t afraid of committing some fraud.

Since many commercial products link against libraries provided by other com-
panies, simply having a signature doesn’t mean that company really wrote a
particular piece of code. Similarly, many web sites use content derived from
other sources, so the domain may tell us nothing about who created a partic-
ular image, or even web page. Did Youtube create all the video content on its
site? If not, why should we trust (the motives of) the authors of that content
as much as we trust (the motives of) the company that owns the servers and
domain name?

114

http://www.kb.cert.org/vuls/id/753044
http://www.kb.cert.org/vuls/id/713779
http://www.kb.cert.org/vuls/id/713779
http://www.securityfocus.com/bid/999
http://osdir.com/ml/security.vulnerabilities.watch.announce/2006-08/msg00005.html
http://osdir.com/ml/security.vulnerabilities.watch.announce/2006-08/msg00005.html
http://www.csl.sri.com/users/neumann/insiderisks.html#132

Limiting our list of acceptable software authors to a single company may help
that company’s profits, but it won’t necessarily make us secure. One unasked
question of signed code is “how do you know who to trust?”’, and the answer to
that is “those who are trustworthy and write secure code”. The more important
unasked question is “given that our software may be vulnerable, how do we know
what is safe?”, but the answer is “until you enumerate all the vulnerabilities, you

don’t” (see [A1)).

27.4 The Incompetence Defense

Never attribute to malice that which can be adequately explained
by stupidity.

— Hanlon’s Razor (http://en.wikipedia.org/wiki/Hanlon)

Any sufficiently advanced incompetence is indistinguishable from
malice.

— Grey’s Law (http://en.wikipedia.org/wiki/Grey)

So suppose that due to a flaw in a vendor’s product, you suffered a serious
intrusion. Since most pieces of commercial software come with end-user licensing
agreements (EULA) that specifically disclaim any liability, what are you going
to do? Even if you knew it was malice, you probably couldn’t prove it. This
is an example where you are unable to apply the principle of removing excuses

(B4.13).

27.5 Limiting Damage Caused by Trusted People

At first glance, it would seem that you could simply replace trusted people with
computers. In fact, that often merely increases the number of trusted people;
now you must trust the designers, implementers, programmers, installers, and
administrators of the hardware, software, and network. There are however a
few steps you can take to limit damage caused by trusted people:

e Limit how many people have access. This is the Principle of Minimal
Assumptions (see B4.3]).

e Limit how much access each person has according to the Principle of Least
Privilege (see B4T).

e Split the security operation between two or more people. This is the
Principle of Split Control (see B4.9).

e Try to establish whether the trusted people are trustworthy. This includes
various kinds of background checks. This is the Principle of Personality

(see B4.10).

115

http://en.wikipedia.org/wiki/Hanlon
http://en.wikipedia.org/wiki/Grey

e Detect breaches of trust and prosecute offenders. This is the Principle of

Retaining Control (see B4LIH).

e Pay key people well; try to make all employees happy and loyal. Make sure
that the trusted few have fates that are tied in with that of the company,
perhaps by generous stock options. Avoid making people disgruntled.
Have a sensible Human Resources policy.

28 Cryptography
Crypto ergo sum.

If you have any questions about cryptologic terms, first check Terry Ritter’s
excellent glossary: http://www.ciphersbyritter.com/GLOSSARY.HTM

You may also wish to view Peter Gutmann’s “Godzilla Crypto Tutorial”: http://
www.cs.auckland.ac.nz/"pgut001/tutorial/

o A Survey of the Mathematics of Cryptography (http://crypto.cs.mcgill.
ca/~gsavvil/b647/gebbie.pdf)

28.1 Things To Know Before Doing Crypto

The ratio of unique Greek symbols to numerical constants in any
scientific equation is inversely proportional to the comprehensibility.

— Dolan’s Law

And, directly proportional to the strength of the argument of the
said scientific equation.

— Klofa’s Corollary

28.1.1 Dramatis Personae
For the purposes of cryptologic discussions, Alice, Bob, and Charlie are the
canonical names of the usual, friendly, players.

By convention, when an imaginary cryptographic adversary is only capable of
passive attacks (eavesdropping), the adversary is named Eve. When the imagi-
nary adversary is capable of modifying data, the adversary is named Mallory.

Now that we’re naming imaginary adversaries, you can see how this may lead
to paranoid delusions.

116

http://www.ciphersbyritter.com/GLOSSARY.HTM
http://www.cs.auckland.ac.nz/~pgut001/tutorial/
http://www.cs.auckland.ac.nz/~pgut001/tutorial/
http://crypto.cs.mcgill.ca/~gsavvi1/547/gebbie.pdf
http://crypto.cs.mcgill.ca/~gsavvi1/547/gebbie.pdf

28.1.2 Cryptologic Jargon

A computationally-bounded adversary has limits to the amount of computation
he or she can perform. There is no hard limit defined for this, but for right now
(2007) perhaps something on the order of 232 or 25 cryptographic operations
might be reasonable. Basically we usually assume this so that we can talk about
systems without having to worry about brute-force attacks.

Thus, for most systems, we talk about a computationally-secure level of security,
which would be useful against a computationally-bounded adversary. There is
a “perfect” security, which is the information-theoretic level of security, but it
doesn’t get much discussion because it’s trivial and usually impractical, since
the key for each message must be as long as the message you wanted to send.

An oracle is something which can perform a cryptographic operation on your
behalf, when you cannot do so yourself.

An interrogative adversary may ask your system for answers, using it as an
oracle.

Semantic security applies to asymmetric crypto systems, and holds true when a
computationally-bounded adversary cannot obtain any information when given
an encrypted message and the public key it was encrypted with.

An ephemeral key is one that you intend to use for a short period of time. For
example, it could be the symmetric key used to encrypt a packet of data, or a
single message. In security protocols, these are often negotiated, or derived by
consensus between the endpoints.

Forward Secrecy (or security) means that a compromise of a private key today
won’t reveal the negotiated message keys of prior communications; as soon as
the conversation is done and the ephemeral keys are wiped, nobody can decrypt
the old conversation. Though the term is controversial, in one case Perfect
Forward Secrecy (PFS) goes a step further and says this holds true if an older
negotiated key will not be compromised even if the negotiated keys are derived
from the same long-term keying material. These are sometimes refered to as
time-compartmentalized protocols. This can also apply to cryptographically-
strong pseudo-random number generators, where compromise of the seed at a
given time will not allow the adversary to know the previous values it contained.

28.1.3 Historical Use of Cryptography

Historically, if one physically controlled the communication lines (linesec - see
B21), one generally didn’t worry about cryptography. The historical practical
use of cryptography was in messages to embassies, which might be intercepted.
Then it was used in telegraphic communication where the lines may be subject
to eavesdropping. Then it was used in radio communication. Now it is used in
wifi networks.

117

There was a time when people thought that switches would control security
sufficiently that they didn’t have to encrypt data on their LAN; however, tools
like dsniff (see I0.9.3)) have demonstrated that to have been ignorance on the
part of network engineers.

However, this is changing. Now, powerful cryptographic systems are available
for many kinds of computer-to-computer communication. In fact, most secure
distributed systems for use over the Internet involve cryptographic protocols.
The ubiquity of the software is demonstrating a trend towards encrypting ev-
erything. For example, most system administrators use SSH to control remote
systems, even if they are located on a local LAN.

28.1.4 How Strong Should My Cryptography Be?

As always, I think the right rule is “encrypt until it hurts, then
back off until it stops hurting”.
— Perry Metzger (correspondence to cryptography mailing list)

Nobody knows for sure how much is enough. What seemed good enough yester-
day is not today, and might not actually have been yesterday. How much can
you afford? How much would it cost you if it were broken?

If you don’t have linesec (see B2.1), then a common assumption is that the
adversary may eavesdrop on your communication. And if the adversary can
eavesdrop, they can record encrypted conversations. Then, if your cryptography
turns out to be weak, or your random number generation turns out to be weak
(see B0E), your communications are disclosed retroactively.

In other words, you can’t just fix your cryptography when it is found to be
broken; a prudent designer will build in more cryptographic strength than he
needs to prevent against future developments in cryptography.

28.1.5 Key Lengths

Key lengths between different algorithms are not directly comparable. Definitely
not between public-key and secret-key; they tend to be orders of magnitude
different.

e http://www.keylength.com

28.1.6 Eight Bit Clean Handling

Cryptographic keys, encrypted messages, and many other crypto products are
binary data. This means that they may contain characters such as 0x00, which
means that you can’t store them in normal C strings. What you really need is
an eight-bit clean data path. That means no sentinels; instead, you need buffers
with associated size fields in order to handle this.

118

http://www.keylength.com

28.1.7 Encoding Binary Data

There are tricks such as using hexadecimal or base64, but please don’t do this in
your code because you’ll waste time encoding and decoding every time the data
is handled. On the other hand, encoding in hex or base64 is great for giving
to humans or pasting into email or any other mostly-text channel, since that
channel is likely to NOT be 8-bit clean. I personally prefer hex when giving
keys to people, and base64 when giving a computer big blobs of encrypted data
(i.e. via XML or HTTP).

28.1.8 Avoiding Ambiguity

Another potential problem comes when we try to combine cryptographic data
with other data, or combine datums prior to feeding it to a cryptographic algo-
rithm. In either case, to remain secure, we want an unambiguous representation
of the combined data. For example, if we want to digitally sign two datums,
“12” and “3”, we can’t just concatenate them; otherwise, the code doesn’t know
whether we signed “12” and “3” or “1” and “23”. This sounds obvious but perhaps
a real-world example will illustrate the trickiness.

There was a Wordpress 2.5 vulnerability lately where they took the user’s name,
appended a timestamp in seconds since the epoch, and then encrypted it to cre-
ate a login authenticator. Unfortunately, this means you could create an account
named “admin(”, and you get an authenticator. Next, you try to be admin, pro-
vide the same authenticator, and after removing the prospective user’s name,
the extra zero becomes part of the timestamp. So here the parser could not tell
between the two cases.

o Wordpress 2.5 cookie integrity protection vulnerability (http://www.lightbluetouchpaper.
org/2008/04/25/wordpress-25-cookie-integrity-protection-vulnerability/)

Furthermore, most cryptographic data can hold any value, making it tricky to
combine it (see 2Z&I.7). Thus, you can’t just stick a weird character like NUL
(0x00) between two cryptographic results and be sure that it will decode prop-
erly, because any character might be valid inside the results of a cryptographic
operation. There are ways of encoding data unambiguously, however, and we
will cover that in a later section (see 28.5.7).

28.1.9 End-to-End vs. Hop-by-Hop

In courses or books about networking, they often study the ISO OSI modefl.
This model shows that it is possible to think about networking between two en-
tities at multiple levels. This is relevant to cryptography as well. For example,

Shttp://en.wikipedia.org/wiki/0SI_model

119

http://www.lightbluetouchpaper.org/2008/04/25/wordpress-25-cookie-integrity-protection-vulnerability/
http://www.lightbluetouchpaper.org/2008/04/25/wordpress-25-cookie-integrity-protection-vulnerability/
http://en.wikipedia.org/wiki/OSI_model

wireless networks (so-called wifi or WLAN networks) are sometimes secured
with cryptography in the form of WEPE or WPA[. These encrypt the network
data at the link layer, or the radio link between a wifi client and the wifi access
point. In networking parlance, only the first hop is protected. When the crypto-
graphic protections are strong enough, this secures the data between these two
nodes, but it does not protect the application-layer data if it travels beyond the
WLAN. That is, if you sit in a coffee shop and use your laptop to access a web
site on another continent, your data is not protected once it passes the access
point and goes across the Internet at large. To do that, you need encryption at
a higher level. A common way to protect this data is using TL@, historically
called SSL. In this case, the data is protected from your browser to the secure
web site.

However, even this can sometimes be seen as hop-by-hop security. For example,
if that web site passes the data to another web site, that link would need to be
secured. Also, if it communicates that data to another server, for example a
credit card payment gateway, it is not protected by TLS (that was the point of
protocols such as SETEl) If using only TLS, one would desire the second link to
be secured as well. In fact, if the web server stores your credit card information
in a database, one could consider the database, and not the web server, as the
true endpoint of the communication.

That is not the only case where layers of software and hardware come into the
equation. For example, if one wanted to encrypt data on disk, you could do
your encryption in the operating system right before data is written to disk (see
287), in the database software, or in the application (for example, in GPGY).
Encrypting at the database or operating system level allows the data to be inter-
cepted on the way down the stack towards these lower levels; encrypting in the
application leaves the smallest attack surface (see[l3]) available to the adversary.
However, one should remember that it often requires administrator-level privi-
leges to intercept this data, and in this case the adversary with administrator
privileges could, in theory, peek at the data inside the application.

In general, end-to-end encryption is to be preferred to hop-by-hop encryption,
because in hop-by-hop encryption one relies on more systems to be secure than
in end-to-end encryption, and often, there are different opinions on what con-
stitutes the endpoint of the communication.

28.2 Limits of Cryptography

Secure web servers are the equivalent of heavy armored cars. The
problem is, they are being used to transfer rolls of coins and checks

Shttp://en.wikipedia.org/wiki/Wired_Equivalent_Privacy
"http://en.wikipedia.org/wiki/Wi-Fi_Protected_Access
8http://en.wikipedia.org/wiki/Transport_Layer_Security
9nttp://en.wikipedia.org/wiki/Secure_electronic_transaction
Onttp://en.wikipedia.org/wiki/GNU_Privacy_Guard

120

http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy
http://en.wikipedia.org/wiki/Wi-Fi_Protected_Access
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Secure_electronic_transaction
http://en.wikipedia.org/wiki/GNU_Privacy_Guard

written in crayon by people on park benches to merchants doing
business in cardboard boxes from beneath highway bridges. Further,
the roads are subject to random detours, anyone with a screwdriver
can control the traffic lights, and there are no police.

— Eugene Spafford (http://homes.cerias.purdue.edu/~spaf/quotes.
html)

28.2.1 The Last Foot of the Communication

Humans are limited at cryptography and thus read and type plaintext to their
computers (see [0.6). Thus, the protection stops where the encryption stops.
We would normally want complete end-to-end encryption, so that it is protected
the entire way; however, the endpoints are usually people, so we compromise
by doing the encryption on a computer and decryption on another computer,
leaving the last “hop” unprotected.

If you wish to be able to effectively monitor what a computer user does, there
isn’t a much better way than by being the administrator of the machine at
which he sits, and relegating him to the role of “simple user”. This means that
he is effectively unable to determine what activities are being monitored, and
hampers his ability to communicate confidentially with a remote system (to
include exfiltrating data). Even if it is impossible to prevent him from recog-
nizing that he is being monitored, sudden changes in furtive activity correlated
with other events may be very instructive. This is also one of the reasons why
physical-layer side channel attacks (see BI.2.T)) can be so devastating.

This brings up an interesting point regarding personnel security, and that is
that it is difficult (and very risky to attempt) to conspire with an anonymous
monitor that you have never met. By having groups unknown to one another
watch each other, you effectively inhibit their ability to conspire. By adding
an element of doubt - for example, by making it known that you occasionally
test the trustworthiness of personnel - you make it very risky to accept any
conspiratorial proposals.

28.2.2 Limitations Regarding Endpoint Security

Another issue is that if we are using cryptography to protect data communica-
tions, then we must consider strongly the endpoint security. Perhaps the most
secure communication would be protected offline using a non-interactive cryp-
tosystem (i.e. GPG), and transferred via sneakernet to a network-connected
machine, and then transmitted. It could potentially be transmitted using an
interactive protocol to prevent replay and such.

Of course, a person can be considered an endpoint as well, and untrustworthy
people or rubber hoses may compromise the security of the messages.

121

http://homes.cerias.purdue.edu/~spaf/quotes.html
http://homes.cerias.purdue.edu/~spaf/quotes.html

28.2.3 The Secure Bootstrapping Problem

Suppose for a moment that you wanted to set up a computer to perform some
cryptographic operation. You must purchase the computer hardware, download
and install an operating system, and download and install the cryptographic
software. You should be aware that each step in this process is susceptible to
attack. For example, the motherboard could have a transmitter covertly placed
in it, the operating system or cryptographic software could have a backdoor in
it, etc. In some cases, the product of one step can be used to verify the integrity
of the next step; for example, you may install Ubuntu as the operating system
and Ubuntu can verify the integrity of a packaged OpenSSH binary to make
sure it was not tampered with. However, it is difficult be sure that the original,
untampered version of the software does not have a backdoor or security flaw.
In general, it is difficult to determine whether a given component can be trusted
unless you created it yourself.

28.2.4 Keys Must Be Exchanged

Imagine that Alice wants to talk securely over the Internet to Bob. How can
she verify Bob’s identity? If they don’t share any common information about
themselves, Alice can’t identify Bob from some random person Charlie.

If they pick a simple question about Bob’s life, someone might already know it
(or be able to find it out), and they could only use it once before eavesdropper
Eve learns the correct answer. Of course Bob would need to ask Alice something
only she would know too, so it destroys two shared secrets in the process of being
used.

Generally, in order to be effective, they must share a secret (key), and they must
not reveal that key to anyone else. Establishing this secret is the Achilles Heel
of cryptography, and is discussed later (see 28.9.2).

28.2.5 In Practice
Ross Anderson has an excellent paper called Why Cryptosystems Fail (http://

www.cl.cam.ac.uk/"rjal4/wcf.html). The main point is that it’s not usually
the cryptography that is broken, but rather some other part of the system.

28.2.6 The Complexity Trap

Security’s worst enemy is complexity.

— The Complexity Trap, (http://www.schneier.com/paper-IPsec.
pdf)

122

http://www.cl.cam.ac.uk/~rja14/wcf.html
http://www.cl.cam.ac.uk/~rja14/wcf.html
http://www.schneier.com/paper-IPsec.pdf
http://www.schneier.com/paper-IPsec.pdf

Ferguson and Schneier’s A Cryptographic Evaluation of IPsec (http://www.
schneier.com/paper-ipsec.pdf)captures the main argument against IPsec,
which is that it is too complex. Alas, this may well be true of any protocol
involving cryptography.

28.3 Cryptographic Algorithms

The multiple human needs and desires that demand privacy among
two or more people in the midst of social life must inevitably lead
to cryptology wherever men thrive and wherever they write.

— David Kahn

Their proper use; what they guarantee, what they don’t. These are your building
blocks. Already covered elsewhere (esp. Ritter’s crypto glossary, http://www.
ciphersbyritter.com/GLOSSARY .HTM).

28.3.1 Ciphers

These are what most people think of when they think of cryptography. The
cipher maps any single input (plaintezt) to a single output (ciphertext) in a one-
to-one manner. Ciphers are usually keyed, meaning the mapping is dependent
on the key. The same key must be supplied to encrypt and decrypt in order to
give the correct results. Except in very rare cases, the input and output must be
of the same cardinality (number of possible values), and the cipher is one-to-one,
so that you can encrypt anything and then decrypt it unambiguously.

Another way of stating things which may appeal to the mathematicians out
there is that a cipher defines a set of permutations, and each key selects one
from that family. Thus, if we assume the key is fixed, the encryption function
is a permutation of the inputs. For example, the input set may be the four
possible symbols “A B C D”. One key could those symbols to “D A C B”, and
another key might map them to “B D A C”. This means that ciphers are keyed
permutations. You'll often see something like Ex (plaintext) which means that
the author is considering the key K to be fixed.

Now, if we think of all possible permutations of a set consisting of even 256
elements (input values), the number is the factorial of 256, which is very, very
large:

857817775342842654119082271681232625157781520279485619
859655650377269452553147589377440291360451408450375885
342336584306157196834693696475322289288497426025679637
332563368786442675207626794560187968867971521143307702
077526646451464709187326100832876325702818980773671781

123

http://www.schneier.com/paper-ipsec.pdf
http://www.schneier.com/paper-ipsec.pdf
http://www.ciphersbyritter.com/GLOSSARY.HTM
http://www.ciphersbyritter.com/GLOSSARY.HTM

Block Cipher
Encryption

Figure 1: Block Cipher Encryption

454170250523018608495319068138257481070252817559459476
987034665712738139286205234756808218860701203611083152
093501947437109101726968262861606263662435022840944191
40842461593600
000000000000000000000

Obviously, we’d need a huge key to be able to select from all those permutations;
a key with 256 bits in it will have many fewer values:

2256 = 115792089237316195423570985008687907853269984665640564039457584007913129639936

Since modern block ciphers have block sizes in the 128-bit range, not 8 as above,
you’ll see that the number of permutations for a modern-sized cipher input block
will be so large that they exceed the number of atoms in the universe. Thus, a
cipher defines a very small subset of all possible permutations.

e http://en.wikipedia.org/wiki/Cipher

28.3.2 Block Cipher vs. Stream Cipher

Block ciphers operate on a block of text at once. In order to use one, you need
to figure out a padding scheme to pad out to the next block boundary. Stream
ciphers operate by generating a keystream of arbitrary length which is combined
with the plaintext, usually by something simple like XOR.

28.3.3 Public-Key vs. Private-Key

Up until the 1970s, the only encryption algorithms publicly known were what we
now call private key algorithms, which are also known as secret key or symmetric
algorithms, because the same key is used to encrypt and decrypt.

124

http://en.wikipedia.org/wiki/Cipher

Input Hash sum

Hash DFCD3454 BBEA788A

Fox function 751A696C 24D97009
CA992D17

The red fox Hash 52ED879E 70F71D92

runs across function 6EB69570 08E03CE4
the ice CA6945D3

The red fox e 46042841 935C7FB0

walks across 9158585A B94AE214
the ice UIEIED 26EB3CEA

Figure 2: Hash Functions

Then, at several places within the same decade, various parties stumbled on
public-key cryptography, also known as asymmetric algorithms. These allow
encryption to be performed with one key, and decryption to be performed with
a different, but related key. In public-key cryptosystems, numerical methods
are used to create a key pair; one of the keys is (perhaps confusingly) known as
the private key, because you keep it private, and the other key is known as the
public key. They are similar to what a chemist would call enantiomers (optical
isomers), in that they are a structurally related, but not identical, pair. Others
have compared them to a key and the lock which it opens.

A fairly important but subtle distinction between asymmetric algorithms and
their symmetric counterparts is that it is always possible to derive a private
key from a public key using numerical methods, but (barring any cryptanalytic
shortcuts) a symmetric algorithm must be attacked by trying every possible key.
Also, asymmetric algorithms are much, much slower than symmetric ones, so
for practical key lengths, the asymmetric key algorithms tend to be weaker than
symmetric ones.

There is much to be said about the mathematical structures of public-key algo-
rithms, and entire books have been written on single public-key cryptosystems.
For that reason, I'm going to punt and refer you to other books for the deep
math.

e http://en.wikipedia.org/wiki/Public-key_cryptography

28.3.4 Cryptographic Hashes

Cryptographic hashes (http://en.wikipedia.org/wiki/Cryptographic_hash_
function) basically model a random function. That is, each input, or pre-image,
is mapped to an output value (known as the image) of some fixed length, and
there is no apparent structure to this mapping. Note that they are very unlikely
to be a one-to-one function; they are usually many-to-one. When two inputs
map to the same output, that is called a collision. All hashes I am aware of have

125

http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function

‘bﬁock! biosk.z ""‘b(ockn
v v ¥

‘btocki|b£ock2
T
@+l

Figure 3: Merkle-Damgard Construction

Length
padding

’ block n

a fixed size, and so many are of the Merkle-Damgard construction (http://en.
wikipedia.org/wiki/Merkle-Damgard).

You use hashes where you want to represent a large thing with a fixed-size
thing. For example a Cyclic Redundancy Check (http://en.wikipedia.org/
wiki/Cyclic_redundancy_check) may suffice.

You use a cryptographic hash function when you want one of the following
properties:

collision resistance You cannot find two pre-images with the same image.
That is, you cannot easily find = # y such that h(z) = h(y).

preimage resistance Given the image, you cannot compute the pre-image.
This is sometimes called the one-way property. That is, given hash z, you
cannot find z such that h(z) = 2.

second preimage resistance Given a pre-image, you cannot find another
pre-image with the same image. You can call this the chosen-collision
attack. Stated formally, given x, you cannot find x # y such that h(y) =
h(z).

In practice, the first two properties are usually what you care about. At first I
thought collision resistance implied second preimage resistance, but that’s not
the case.

You Can’t Hash Small Input Spaces Suppose someone wanted to pick
between two values, zero and one. Trying to put them through a one-way
function, or hash, because the adversary can just try hashing all the possible
values himself. Using a fixed, known IV doesn’t help, either, except to make
most non-customized rainbow tables useless; the adversary can still hash each
guess once and compare it to all the hash values. By varying the IVs, you make
the adversary have to hash each unique IV with his guess, and compare against
the hash values with the same IV.

126

http://en.wikipedia.org/wiki/Merkle-Damgard
http://en.wikipedia.org/wiki/Merkle-Damgard
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Cyclic_redundancy_check

28.3.5 Message Integrity Checks

When you send a message, sometimes you want to make sure that it arrived
without alteration. This is called a Message Integrity Check, or MIC. Often-
times, this is a simple cryptographic hash function (see 283.4). However, if
you don’t need the security properties of cryptographic hashes - for example
if you are not trying to protect against malicious tampering by an intelligent
adversary, this can be wasteful. In those cases, you can use something as simple
as a Cyclic Redundancy Checld™ or a Universal Hash Function 2.

e http://en.wikipedia.org/wiki/Message_Integrity_Check

28.3.6 Message Authentication Codes

Note that if you want to transmit or store data and are concerned about ma-
licious adversaries, you can’t just transmit or store a message integrity check
in the same way you transmitted or stored the data itself; Mallory could just
substitute her own data and calculate her own message integrity check. Or, she
could flip some bits in a way that she knows doesn’t alter the checksum. What
you're really looking for is some kind of keyed checksum. We call this a Message
Authentication Code, or MAC. They typically use a hash algorithm as a basis,
and a secret key to compute the hash. This is almost like a digital signature, but
we use the same key to create and verify the message, so it’s like the symmetric
counterpart to the public-key digital signature, which uses different keys at each
end.

HMAC Many people have tried to construct these in the obvious ways, such
as prepending a secret to the message, or appending it, or doing both, before
hashing, and they’ve all been broken. What we’re left with was HMAC (see
Figure 1):

HMACk = h((K Q@ opad)||h(K @ ipad)||m), where
opad = 0x5chbche...5chHe
ipad = 02363636...3636

28.3.7 Digital Signatures

While some lawmakers define a digital signature to mean any electronic means of
saying “okay” to a document, cryptographers always mean a public-key signing
algorithm. This is a way of using the private key of a key pair to sign data such
that the public key can verify the signature.

'http://en.wikipedia.org/wiki/Cyclic_redundancy_check
I2http://en.wikipedia.org/wiki/Universal_hashing

127

http://en.wikipedia.org/wiki/Message_Integrity_Check
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Universal_hashing

' HMAC(k,m) |

k
Y
694— ipad
m
Y Y
>)
%
A
B A v opad

output |« h -

Figure 4: HMAC

What Does A Digital Signature Mean? With data structures, one must
decide what to sign; if there is more than one way to represent the data, which
one will you choose? Generally you need some kind of canonicalization and
serialization and encoding (see ER.5.5)).

What does it mean to sign some data in an application? What does it mean to
sign data going between two points in a network? Should you protect the data
in the application or at a lower level (see 2&T.9)?

Generally, a signature or HMAC attests to the integrity of the data between
the point where it is signed to where it is verified. It usually does not mean
that a person sent it to you; that is a mistake humans make that leads to the

sign-then-encrypt problem (see 285.2).

28.4 Cryptographic Algorithm Enhancements

These are basically slight changes to basic algorithms that are not cryptographic
in themselves, but act as a defense against an analytical attack.

28.4.1 Block Cipher Modes

o Wikipedia on Block Cipher Modes of Operation (http://en.wikipedia.
org/wiki/Block_cipher_modes_of_operation)

In these sections, C' is the ciphertext, P is the plaintext, K is the key, and ¢ is

the index of the block you are working on; by convention, we start numbering
them with 1.

128

http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

Regarding the block cipher block size, if you have a n bit block size, then you
can only safely encrypt 2% blocks with the same key (this does not apply to
ECB mode of course, which is weak after one block).

Electronic Code Book (ECB) This is the simplest mode; it is the mode
most people think of when first doing encryption, and it is the only non-chained
mode. In ECB, you simply encrypt each block of the plaintext with the key,
and that forms the plaintext block. The trouble with ECB is that macroscopic
patterns in the plaintext remain undisturbed in the ciphertext:

Plaintext image of Tux

ECB-encrypted image of Tux

Image of Tux encrypted in other (chained) modes
Encryption:

129

o ;= Ex(P)
Decryption:

o P, =Dg(C;)

Output Feedback (OFB) Output feedback mode generates a keystream O
that is independent of the plaintext. It is then XORed with the plaintext. This
makes a block cipher into a synchronous stream cipher, because your keystream
can be truncated to the exact length of the plaintext and then XORed in.

Encryption:

e Oy =1V
e O, =FEk(0;_1)

e C;=PF®0;
Decryption:
o P,=C;® O

Ciphertext Feedback (CFB)
synchronizing stream cipher.

Encryption:

e Cog=1V
o (i =FEx(Ci1)® P,

Decryption:

o P=FEr(Ci1)®C;

In CFB, you make a block cipher into a self-

Cipher Block Chaining (CBC) Encryption:

o CQ =1V
e C;=FEx(P,®Ci_1)

Decryption:

o P, = DK(CZ') e Ci1

130

Propagating Cipher Block Chaining (PCBC) Encryption:

e P Cy=1V
e C;=FEx(P,®P_1®Ci_1)

Decryption:

o P = DK(CZ') O P11 @ Ci—l)

Counter (CTR) CTR mode turns a block cipher into a stream cipher. This
is a very fast, easy to use block cipher mode that allows you to encrypt blocks
in parallel, or (equivalently) to encrypt/decrypt blocks at random offsets within
the stream, which might be useful for things like encrypted storage (however,
there are better modes for that, since encrypted storage has different threat
models than most encryption use cases; see 28.7).

Encryption:

e cis an arbitrary constant
Decryption
o P = ClEBDK(C-i-Z)

In the case of ¢ = 0, we are using the block number as a counter. It is, however,
possible to chose any constant c. In some texts you will see them using a nonce
concatenated with a counter, but this is equivalent to picking a non-zero c.

Cipher Block Chaining Message Authentication Code (CBC-MAC)
Provides authentication (not encryption) for a message. To perform CBC-MAC,
you encrypt a message in CBC mode and take the last ciphertext block as your
MAC.

o Wikipedia on CBC-MAC (http://en.wikipedia.org/wiki/CBC-MAC)

e ISO/IEC 9797-2:2002 (http://www.iso.org/iso/en/CatalogueDetailPage.
CatalogueDetail?CSNUMBER=31136&ICS1=35&I1CS2=40&ICS3=)

o The Security of the Cipher Block Chaining Message Authentication Code
(http://www.cs.ucdavis.edu/research/tech-reports/1997/CSE-97-15.

pdf)

131

http://en.wikipedia.org/wiki/CBC-MAC
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31136&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31136&ICS1=35&ICS2=40&ICS3=
http://www.cs.ucdavis.edu/research/tech-reports/1997/CSE-97-15.pdf
http://www.cs.ucdavis.edu/research/tech-reports/1997/CSE-97-15.pdf

Cipher-Based MAC (CMAC) This algorithm also uses block ciphers to
create a MAC.
o Wikipedia on CMAC (http://en.wikipedia.org/wiki/CMAC)

o RFC 4493: AES-CMAC (http://tools.ietf.org/html/rfc4493)

One-key MAC (OMAC) This algorithm also uses block ciphers to create a
MAC. Patent-free.
o Wikipedia on OMAC (http://en.wikipedia.org/wiki/One-key_MAC)

o OMAC Homepage (http://wuw.nuee.nagoya-u.ac.jp/labs/tiwata/omac/
omac.html)

Parallelizable MAC (PMAC) This algorithm takes a block cipher and
produces a MAC. Patent pending.

o Wikipedia on PMAC (http://en.wikipedia.org/wiki/PMAC_(cryptography))

e PMAC Homepage (http://www.cs.ucdavis.edu/ rogaway/ocb/pmac.
htm)

Counter With CBC-MAC (CCM) This is an “authenticated encryption
with associated data” mode, because it provides both authentication and en-
cryption. It combines the CTR mode encryption with CBC-MAC to accomplish
these goals. The third link below is the proof of security, based on the security
of the underlying block cipher. It requires two block cipher operations per block
of plaintext.

o Wikipedia on CCM (http://en.wikipedia.org/wiki/CCM_mode)
e RFC 3610 on CCM with AES (http://tools.ietf.org/html/rfc3610)

e On the Security of CTR + CBC-MAC (http://csrc.nist.gov/groups/
ST/toolkit/BCM/documents/proposedmodes/ccm/ccm-adl.pdf)

o A Critique of CCM (http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/comments/800-38_Series-Drafts/CCM/RW_CCM_comments.pdf)

o NIST Special Publication 800-38C (http://csrc.nist.gov/publications/
nistpubs/800-38C/SP800-38C_updated-July20_2007 .pdf)

132

http://en.wikipedia.org/wiki/CMAC
http://tools.ietf.org/html/rfc4493
http://en.wikipedia.org/wiki/One-key_MAC
http://www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html
http://www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html
http://en.wikipedia.org/wiki/PMAC_(cryptography)
http://www.cs.ucdavis.edu/~rogaway/ocb/pmac.htm
http://www.cs.ucdavis.edu/~rogaway/ocb/pmac.htm
http://en.wikipedia.org/wiki/CCM_mode
http://tools.ietf.org/html/rfc3610
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm-ad1.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm-ad1.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/CCM/RW_CCM_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/CCM/RW_CCM_comments.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf

CWC Mode This algorithm is also an authenticated encryption mode. The
homepage claims is patent-free, parallelizable, and provably secure and claims
it unique among its kind.

o Wikipedia on CWC (http://en.wikipedia.org/wiki/CWC_mode)
o CWC Mode Homepage (http://www.zork.org/cuc/)

o CWC: A high-performance conventional authenticated encryption mode
(http://eprint.iacr.org/2003/106)

Galois/Counter Mode (GCM) This mode uses CTR mode and the Galois
method of authentication to create an authenticated encryption algorithm. It
was designed as an improvement to the CWC mode. It requires one block cipher
encryption and one 128-bit multiplication in the Galois field per 128-bit block
of plaintext. Patent-free.

o Wikipedia on GCM (http://en.wikipedia.org/wiki/Galois/Counter_
Mode)

e NIST Special Publication 800-38D (November, 2007) (http://csrc.nist.
gov/publications/nistpubs/800-38D/SP-800-38D.pdf)

EAX Mode This mode is an authenticated encryption with associated data
(AEAD) algorithm. It was designed as a replacement to CCM. It requires two
passes over the data. It is public-domain, patent free.

o Wikipedia on EAX (http://en.wikipedia.org/wiki/EAX_mode)

o NIST: proposed modes of operation (http://csrc.nist.gov/CryptoToolkit/

modes/proposedmodes/index.html)

o FAX: A Conventional Authenticated-Encryption Mode (http://eprint.
iacr.org/2003/069)

o The EAX Mode of Operation (http://www.cs.ucdavis.edu/ rogaway/
papers/eax.html)

e ANSI C12 22 site (http://www.c1222.net/)

Offset Codebook (OCB) This mode provides authenticated encryption as
well. It is patented, but the patent has a special exemption for code released
under the GNU General Public License.

e Wikipedia on OCB (http://en.wikipedia.org/wiki/0CB_mode)
e OCB Homepage (http://www.cs.ucdavis.edu/ rogaway/ocb/)
e OCB FAQ (http://www.cs.ucdavis.edu/ rogaway/ocb/ocb-faq.htm)

133

http://en.wikipedia.org/wiki/CWC_mode
http://www.zork.org/cwc/
http://eprint.iacr.org/2003/106
http://en.wikipedia.org/wiki/Galois/Counter_Mode
http://en.wikipedia.org/wiki/Galois/Counter_Mode
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://en.wikipedia.org/wiki/EAX_mode
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/index.html
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/index.html
http://eprint.iacr.org/2003/069
http://eprint.iacr.org/2003/069
http://www.cs.ucdavis.edu/~rogaway/papers/eax.html
http://www.cs.ucdavis.edu/~rogaway/papers/eax.html
http://www.c1222.net/
http://en.wikipedia.org/wiki/OCB_mode
http://www.cs.ucdavis.edu/~rogaway/ocb/
http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm

LRW This is a mode for disk encryption.

o Wikipedia on LRW (http://en.wikipedia.org/wiki/Disk_encryption_
theory#LRW)

XEX This is a mode for disk encryption.

o Wikipedia on XEX (http://en.wikipedia.org/wiki/Disk_encryption_
theory#XEX)

CMC This is a mode for disk encryption.

o Wikipedia on CMC (http://en.wikipedia.org/wiki/Disk_encryption_
theory#CMC_and_EME)

EME This is a mode for disk encryption.

o Wikipedia on EME (http://en.wikipedia.org/wiki/Disk_encryption_
theory#CMC_and_EME)

ESSIV This is a mode for disk encryption.

o Wikipedia on ESSIV (http://en.wikipedia.org/wiki/Disk_encryption_
theory#ESSIV)

XTS This is a mode for disk encryption.

o Wikipedia on XTS (http://en.wikipedia.org/wiki/Disk_encryption_
theory#XTS)

28.4.2 Speed of Algorithms and the Hybrid Encryption Scheme

A hash routine with a given output size is usually much slower than an en-
cryption routine with the same block size. However, public-key operations are
almost always much more expensive (slower) than symmetric operations. Even
the fast ECC encryption routines may take several hundred times (200-400x)
longer than symmetric operations such as AES-256.

Therefore, a good engineer may do more symmetric operations and fewer PK
operations, and some CSPRNGs such as Yarrow use block ciphers rather than
hashes. In fact, every major asymmetric cryptosystem that the author is aware
of uses asymmetric algorithms to either encrypt a symmetric key, or digitally
sign a hash of a message, rather than operate on the message itself.

134

http://en.wikipedia.org/wiki/Disk_encryption_theory#LRW
http://en.wikipedia.org/wiki/Disk_encryption_theory#LRW
http://en.wikipedia.org/wiki/Disk_encryption_theory#XEX
http://en.wikipedia.org/wiki/Disk_encryption_theory#XEX
http://en.wikipedia.org/wiki/Disk_encryption_theory#CMC_and_EME
http://en.wikipedia.org/wiki/Disk_encryption_theory#CMC_and_EME
http://en.wikipedia.org/wiki/Disk_encryption_theory#CMC_and_EME
http://en.wikipedia.org/wiki/Disk_encryption_theory#CMC_and_EME
http://en.wikipedia.org/wiki/Disk_encryption_theory#ESSIV
http://en.wikipedia.org/wiki/Disk_encryption_theory#ESSIV
http://en.wikipedia.org/wiki/Disk_encryption_theory#XTS
http://en.wikipedia.org/wiki/Disk_encryption_theory#XTS

28.4.3 Hashing Stored Authentication Data

When storing authentication data such as a password or passphrase, it usually is
neither desirable nor necessary to store it in the clear, because then an intruder
who pilfered the list could use it to authenticate himself directly. It is better
to store the result of an application of a one-way-function (OWF) on the data,
which people frequently refer to as hashing. Since I lack a verb for “apply a
OWF t0” I will sometimes call it hashing as well. The input is called the pre-
image, and the result is called the image. To authenticate the person, you apply
a OWF to the input they send and compare it to the image. That way, they
will find it difficult to generate the input which generates the correct output.
This property is called pre-image resistance.

This also has the nice side effect of not giving the adversary in this case the
ability to use that authentication string (passphrase) on other systems, which
enhances the user’s privacy, which is a good example of storing only what you
need. Note however that if the adversary gets control of the system, they can
record all the authentication data. Thus this technique only protects the end
user against loss of confidentiality, not all attacks.

Note that this does not help prevent eavesdropping attacks on network protocols;
if the protocol sends the authentication string in the clear, then the adversary
sees the pre-image, and can simply replay it to generate the appropriate image.
If you apply the OWF on the client side prior to sending, then it is the image
that authenticates a person, and he sees the image, and can merely replay it
over the network. If you apply the OWF on both the client side and the server
side, the adversary can still replay the network data (the results of the first
OWF) and when run through the second OWF it would generate the desired
value. In summary, applying a OWF to provided authentication data does not
help if the adversary can see the input to the system (violating confidentiality),
and replay it. Ideally you should never send reusable authentication data across
the network (see [T1.9).

28.4.4 Offine Dictionary Attacks and Iterated Hashes

If you are storing the hash of data which was supplied by a human, it may be
somewhat predictable in the sense that it is chosen from the set of all possible
passphrases non-uniformly. For example, people tend to pick easy-to-remember
things, like dictionary words. Thus, the offline dictionary attack involves ob-
taining the hashes and hashing each dictionary word, and comparing them to
see if any match. This is annoying because it can be done without interact-
ing with the system, and is therefore undetectable. This also works against
when someone sends hashes of authentication data sent over the network; the
adversary captures them, and then attacks them offline.

One countermeasure is to iterate the hash a number of times, to make attempt-
ing possible inputs take longer. If your iterated algorithm uses only the output

135

from the last round as the input to the next round, then by storing the iteration
count as part of the hash you can increase it in the future as computers get
faster, without having the original input (just hash N more times, and add N
to the iteration count).

Ideal hashes are modeled as random functions; that is, they have no discernible
pattern, and you can think of them as a giant lookup table, where the input
is used as an index, and whose contents were randomly-generated. This means
that they are not likely to be one-to-one, and so repeated hashing will cause
you to enter a cycle of some kind, but this is unlikely to be a problem (consult
the Handbook of Applied Cryptography, http://www.cacr.math.uwaterloo.
ca/hac/, for more details). The traditional Unix crypt(3) function used the
input as a key to DES, and encrypted a constant (the null vector) as its “hash”.
I believe OpenBSD may do something similar for its password encryption, but
using Blowfish. In either case, block ciphers are believed to be stronger than
hashes, because the community has had more time to analyze them, and they
are definitely faster, but it seems like the design criteria of a hash is a more
natural fit for this problem.

28.4.5 Salts vs. Offline Dictionary Attacks and Rainbow Tables

Another problem is that an adversary may go through the hashing process once
for a given word, and compare it to multiple hashes. A rainbow table (http://
en.wikipedia.org/wiki/Rainbow_tables) is essentially a clever way to store
a bunch of hashes of a certain dictionary (or character set). It still takes the
same amount of time to create as a full table, but is smaller, at a small run-time
expense.

To prevent these kind of attacks, we make each hash a slightly different oper-
ation, which means that each must be attacked independently. This is easily
done by incorporating an individuating datum known as a salt, so named due
to the analogy with adding salt to a food product when cooking it. This datum
should be (relatively) unique to different entries, but it can’t remain confiden-
tial, since it must be known in order to perform the authentication function.
Using a counter is easy, but if an adversary gets lists from different computers,
there will be a significant overlap between the salts, so he may attack the lists
in parallel. An easy way to prevent this is to simply use random data for the
salt. This has a very small chance of a collision; due to the birthday paradoz,
if you have n? possible salts, you will statistically have a duplicate 50% of the
time after n entries. Another method is to a block cipher in CTR (“counter”)
mode, which simply involves encrypting a counter. This will not repeat until
the counter repeats. You should obviously use a different key on each system, or
they will generate the same sequence. With different keys, the sequences should
be statistically unrelated to each other.

136

http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/
http://en.wikipedia.org/wiki/Rainbow_tables
http://en.wikipedia.org/wiki/Rainbow_tables

28.4.6 OfHine Dictionary Attacks with Partial Confidentiality

Even if you do all of this, an adversary may still try common choices against each
hash. Since an authentication system is a deterministic system which generates
a simple yes or no to a given input, there’s nothing you can do to increase the
unpredictability of the input. However, if it were possible to keep a certain
amount of data away from an adversary (for example, by storing it separately
from the hashes, perhaps in a hardware security module), then you could use
that data as the key for HMAC instead of using a hash. Since the adversary has
no idea which of the n values you’ve chosen, you’ve multiplied the work factor
by n.

28.4.7 Passphrase Handling

Human beings are very poor at picking high-entropy values. If you use passphrases
(or worse, passwords), you need to hash them before using them as keys because
otherwise you will have a very small keyspace; you’ve probably already reduced
it to the printable subset of the keyspace. You should think of keys as needing
to have a nearly perfect Shannon entropy (see 29.6), and a simple way to do
that is to hash a long passphrase down to a small hash image.

But there are substantially better ways of doing this. RSA has a nice standard
on how to deal with passwords in cryptographic applications:

e PKCS #5 v2.1 Password Based Cryptography Standard (ftp://ftp.rsasecurity.
com/pub/pkcs/pkcs-5v2/pkcsbv2_1.pdf)

o PBKDF2 - Password-Based Key Derivation Function (http://en.wikipedia.
org/wiki/PBKDF2)

e scrypt (http://www.tarsnap.com/scrypt.html)

28.4.8 Run Algorithm Inputs through OWF

If the adversary discovers that a given algorithm input can break the security
of the system, you can prevent him from controlling inputs directly. If you
run everything through a one-way function (OWF), the adversary cannot feed
that number to the system directly; he must first invert the one-way function
to figure out what to give it. So a cheap way of adding security would be to
hash all inputs from untrusted sources before use, since a hash is an available
one-way function.

28.5 Cryptographic Combinations

These are how the algorithms are combined. Their proper construction from
algorithms, rules of thumb, pitfalls to avoid. This is where you stack the blocks

137

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2_1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2_1.pdf
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/PBKDF2
http://www.tarsnap.com/scrypt.html

together to accomplish some higher-level task. This should not be an experi-
mental science; the rules of combination should be clear and unambiguous; it
should be as simple as building a machine with Legos, or simplifying a logic
expression. Unfortunately, it’s not... yet.

28.5.1 Combiners

Combine two eight bit chunks of data and have eight bits of data as output,
but the combination is still in there. Pull one out and the other is what’s left.
Look at how Feistel networks work, it’s a trip! Of course it’s not just XOR that
can do it; XOR is just addition (without carry) modulo 2, and you could do it
with any other modulus, like 28 (add octets without carry) or 232, Latin squares
can be used too, as can some other finite field operations (see network coding
http://en.wikipedia.org/wiki/Network_coding/). They are the simplest
element of an encryption scheme and may be used inside certain ciphers.

28.5.2 The Sign then Encrypt Problem

Basically, if you (Alice) sign then encrypt something to Bob, he can strip off
the encryption (like an “envelope”), then re-encrypt the still-signed message
to Charlie, making it look like you sent it (see http://world.std.com/~dtd/
sign_encrypt/sign_encrypt7.html). Really, the problem is not a technical
one, but interpretation; we assume that the entity which encrypted it to us is
the same as the entity who signed it, when that is not necessarily the case.

28.5.3 Encrypt-then-MAC

e Colin Percival’s blog post on Encrypt-then-MAC (http://www.daemonology.
net/blog/2009-06-24-encrypt-then-mac.html)

Using HMAC to authenticate prior to decryption also neatly avoids the PKCS#7
Padding Oracle attack (see BOH).

28.5.4 Key Derivation Functions

Key derivation functions (KDFs) involve taking a single datum and deriving
several independent keys from it. Typically you might use one for signing and
one for encryption, or you might use them for different data streams. Many
people get this wrong, since there aren’t any standards for it. They are typi-
cally very similar to computationally-strong pseudo-random number generators
(CSPRNGS), in that you need both sides to generate the same values given the
initial seed, and you don’t want a person who gets access to one to be able to
determine anything about any other key that was derived from the same source.
Simple answers involve using the datum as a key for CTR mode encryption, or
using it as a MAC key on some fixed strings.

138

http://en.wikipedia.org/wiki/Network_coding/
http://world.std.com/~dtd/sign_encrypt/sign_encrypt7.html
http://world.std.com/~dtd/sign_encrypt/sign_encrypt7.html
http://www.daemonology.net/blog/2009-06-24-encrypt-then-mac.html
http://www.daemonology.net/blog/2009-06-24-encrypt-then-mac.html

28.5.5 Serialization, Record Layers and Encoding

Whenever you protect the integrity of data (using MIC, MAC, or digital signa-
tures), you will have data about the data, or metadata (data about the data).
This extra information is distinct from the data. They are fundamentally dif-
ferent things, and if you want to put them together in a single stream, you’ll
have to chop it up and use a record (data structure, message, etc.) with at least
two fields; the data and the metadata. Since most cryptographic systems care
about the integrity of the data, they also have to perform operations on records
of data, instead of streams. That means that if you’re using streams of data,
like a file or a TCP connection, you’ll have to implement a record layer on top
of it.

And if you have a record with at least two types of data in it, and you want to
put it in a stream, you’ll need to figure out how to serialize it, or decide which
field goes first. When there are just two kinds of data, this is simple. However,
when you’re dealing with large data structures, perhaps with data related to
data related to data, this can get tricky.

For example, you may want to use an asymmetric algorithm to encrypt a sym-
metric key for the message, and then use that symmetric key for encrypting
the message (see 2R4.2), and then you may want a MAC (see 28.3.6). Now
you’ll need to start thinking about mixing different kinds of data. If you're
never going to change the data format or protocol, then you can just pick an
order to serialize them in, and stick with that. However, most forward-thinking
cryptographers know that they may want to change the format of the data, so
you need a way to encode the data so that your software knows whether it is
looking at a MAC, or a symmetric key, or so on.

A common way to mix different kinds of data is with type-length-value (see
http://en.wikipedia.org/wiki/Type-length-value), and it has the nice
feature that you can add optional sections later that earlier implementations
may skip. Other methods include KLV, or key-length-value (http://en.wikipedia.
org/wiki/KLV).

ASN.1 (http://en.wikipedia.org/wiki/ASN.1) is a common but very com-
plex system for serializing and encoding data. It is an abstract notation, meaning
that it specifies that certain objects are encoded as sequences of other kinds of
objects, but it doesn’t give a way to encode these primitive objects. That is
the job of the encoding rules such as BER and DER. Two of its encoding rules
are TLV-based and two are not. Cryptographers tend to use DER, because
it gives an unambiguous way to encode data. It is used in everything from
SNMP to X.509 certificates. It has the advantage of being very compact, and
the disadvantage of not being human-readable. If you wish to become versed in
the arcana of ASN.1, it may help to start with this (give yourself two readings
before you give up):

e A Layman’s Guide to a Subset of ASN.1, BER, and DER (http://luca.
ntop.org/Teaching/Appunti/asnil.html)

139

http://en.wikipedia.org/wiki/Type-length-value
http://en.wikipedia.org/wiki/KLV
http://en.wikipedia.org/wiki/KLV
http://en.wikipedia.org/wiki/ASN.1
http://luca.ntop.org/Teaching/Appunti/asn1.html
http://luca.ntop.org/Teaching/Appunti/asn1.html

XML (http://en.wikipedia.org/wiki/XML), particularly the XML Signature
(http://en.wikipedia.org/wiki/XML_Signature), seems like a good contender
to displace ASN.1 but it is still too complicated. Its original job was to mark
up text, but it’s much easier to debug since it’s all printable, but it is by no
means compact.

28.5.6 Polymorphic Data and Ambiguity

Just as an image may be represented in a bitmap, a GIF, or a JPEG, so too may
data appear in many forms. It may be necessary, for example, to use printable
encoding techniques a la base64 to pass in an HTTP request. Such polymorphic
data schemes produce two problems; one, it is necessary to specify (and convert
to) a canonical form for authentication (see 286.7) and another in that some
choices of encoding may be ambiguous.

Some very fascinating work is being done on this right now in the XML Signature
group (http://www.w3.org/Signature/), but canonicalization is turning out
to be full of pre-authentication complexity, which provides a large anonymous
attack surface (see [(3]).

28.6 Cryptographic Protocols

This is an evolution of the former section to cover freshness and other commu-
nication security concepts.

28.6.1 DoS and Anti-Clogging Tokens

So most of the time, one of the first things a protocol will do is a public-key cryp-
tographic operation of some kind, which is expensive. So this opens up a DoS
vector; the client connects to the server, costing little or nothing, and the server
has to do a PK operation. The same is possible the other way, but it’s usually
more difficult to force a client to connect to you. Regardless, the answer to this
is to force the peer to have to receive and respond to a packet, which Photuris
(http://en.wikipedia.org/wiki/Photuris_%,28protocol’29) called an anti-
clogging cookie; this requires that the first packet to the peer be unpredictable
(see 29). A normal TCP/IP handshake may often fill this purpose since the
sequence number should be unpredictable, but it is not required to be so, nor
may it be relied upon to be so, and so a very cautious designer would avoid
using it as such.

28.6.2 The Problem with Authenticating within an Encrypted Chan-
nel

Suppose you use Diffie-Hellman to encrypt a channel. Trillian does just this,
which is fine against a passive eavesdropper but doesn’t prevent MITM (see

140

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML_Signature
http://www.w3.org/Signature/
http://en.wikipedia.org/wiki/Photuris_%28protocol%29

[[0.9) since you have no idea to whom you’re encrypting your messages. The
naive countermeasure is to authenticate within the channel, but again this does
not prevent a MITM; the adversary simply establishes an encrypted channel
with you and the remote end, then passes your authentication messages back
and forth like the messages themselves. So the authentication messages must
also be tied to the parameters of the encrypted tunnel. This is isomorphic to
the sign-then-encrypt problem (see 28.5.2).

28.6.3 How to Protect the Integrity of a Session

In his excellent book Practical Cryptography (http://www.schneier.com/book-practical.
html), Bruce Schneier suggests that the sender should send a hash of everything

it has sent so far with every message. With most hash constructions (i.e. Merkle-

Damgéard) this is easy, since you can maintain a fixed-size context, and send a

finalization every message. The receiver should check the hash every time it re-

ceives a message. You do this regardless of whether or not you have negotiated

a secure session already. This very simple design principle allows you to detect

tampering at the earliest opportunity.

28.6.4 Freshness and Replay Attacks

Suppose you had a protocol which allowed for certain operations, like “transfer
$1000 from my account to paypal@subspacefield.org”. If Mallory was able to
record this message, she could send it a second time to perform what is called
a replay attack, even if she wasn’t able to read the message. This may be just
an annoyance, but imagine that the messages were actually tactical directives
sent to military units; the confusion they caused would be dramatic indeed. If
the messages have less context, like “yes”, or “transaction authorized”, then the
potential for mischief goes up significantly. What we want to do is ensure fresh-
ness, or liveness, of the connection. All of the methods involve a nonce (short
for “number used once”), and require that the recipient be able to determine if
the number has been used before. All of them also detect re-ordering. Further,
the nonces must be combined with the message such that the integrity of both
is protected, or else the adversary could simply attach a new nonce to an old
message.

global timestamps The obvious method used on military directives is to
include a timestamp in each one. You generally want to include a timestamp
that is unambiguous, so human-readable dates generally don’t work due to leap
years, daylight savings time and time zone differences; I prefer to use a normal
Unix timestamp, which is measured in seconds since the epoch This is the

13The epoch is the beginning of Jan 1, 1970, universal coordinated time (UTC), and is the
de facto standard for Unix timekeeping.

141

http://www.schneier.com/book-practical.html
http://www.schneier.com/book-practical.html

only method which does not require keeping state about the peer between mes-
sages, but it does require everyone to have an accurate clock. This is also the
only method which can detect a delayed message, but if you care about this
usually you’d solve this by putting a timestamp in the message itself, and not
doing it in the protocol.

local timestamps In this method, you don’t need everyone to have an ac-
curate clock, but merely have one that never goes backwards, which is called
monotonically increasing. In this case, each node has to keep the last timestamp
from each peer to make sure that each new timestamp is greater to the last,
and you need enough resolution to make sure that you don’t send two messages
with the same stamp.

serial numbers This is basically a derivative of local timestamps, but instead
of using a clock you just use a counter. It seems preferable to local timestamps
in every way.

chaining Each message includes some piece of information derived from prior
messages that varies unpredictably. For example, you could use the hash of all
previous messages.

challenge-response In this method, the peer challenges you with a nonce,
and you send it back with the message. This does not require any persistent
storage, but does require an interactive protocol (instead of “store and forward”),
and a source of unpredictable numbers, and requires an extra half round-trip
(which I call a half-trip) in the exchange. This latency may be masked sometimes
by overlapping this handshake with another stage of the protocol.

28.6.5 Preventing Feedback
In order to prevent feedback from one part of the protocol to another, the input

to each hash function, PRF function, KDF function and signature operation
should be extended with a field that uniquely identifies that stage of the protocol.

28.6.6 Identification

For a regular client-server opening, all mutual “authentication” protocols involve
at least three half-trips. A simultaneous-open between two peers can occur in
two half trips (i.e., a single round trip), but these are rare.

142

28.6.7 Authentication

The protocol should authenticate what is meant, not what is said.

— The Horton Principle (http://www.schneier.com/paper-ssl.
html)

This quote suggests that you should authenticate plaintext, not ciphertext. In
fact, if the plaintext has more than one encoding (see 2853, you should pick
one to be canonical and authenticate that. Having to convert the data to canon-
ical form before authentication is unfortunate but one of the consequences of
multiple encodings.

Mutual Authentication Protocols I once took all the mutual authentica-
tion protocols in Schneier’s Applied Cryptography and factored out the trusted
third party to create simple two-party mutual authentication protocols (ap-
parently those are so trivial he didn’t bother to mention them). It was an
interesting exercise, and I noticed that all of the results had three half-trips (1.5
RTTs). Except in the case of a mutual open, it seems like this is the minimum,
and probably not coincidentally is the number of half trips needed in the TCP
three-way handshake. It seems pretty intuitive to me, but I haven’t seen a proof
that this is indeed the minimum.

Simplest MAP: A->B Chl, B->A R1Ch2, A->B R2.

28.6.8 Eschew Multiple Encoding Schemes Unless Necessary

Polymorphic data (data having multiple encoding schemes) is quite difficult
to filter properly; this came up when people learned you could use HTML
entity encoding to bypass filters for detecting “bad” things on web servers.
Anything, especially middle-boxes like NIDS, have trouble when the number
of encodings is too high, and inevitably the false positive goes up. This is
also what Ptacek described in Insertion, Evasion, and Denial of Service: Elud-
ing Network Intrusion Detection (http://cerberus.sourcefire.com/~jeff/
papers/Ptacek_and_Newsham/idspaper.html).

28.6.9 Key Exchange and Hybrid Encryption Schemes

Typically at some point the peers will do some public key operations in a key
exchange order to get some session keys. By analogy, in data formats such
as OpenPGP, they use a hybrid encryption scheme which does a single PK
operation to encrypt or decrypt a symmetric message key. One engineering trick
is that if you use a KDF to generate two independent keys for each direction
during your key exchange, you can use one for MAC and one for encryption,
which means that you can do cheap symmetric MAC operations instead of digital
signatures, which are expensive public-key operations.

143

http://www.schneier.com/paper-ssl.html
http://www.schneier.com/paper-ssl.html
http://cerberus.sourcefire.com/~jeff/papers/Ptacek_and_Newsham/idspaper.html
http://cerberus.sourcefire.com/~jeff/papers/Ptacek_and_Newsham/idspaper.html

28.7 Encrypted Storage

I think it’s a good idea, so you don’t have to worry about someone copying or
tampering with your data as they sit on the storage media. If you take this
step before using media, apart from the inconvenience of entering a passphrase
(possibly as infrequently as once every time you reboot, which can be as little
as once a year on Unix), you won’t ever have to worry about “secure deletion”,
or losing physical possession of it due to any of the following reasons:

e Theft, loss, or confiscation (see http://www.schneier.com/blog/archives/
2007/12/how_to_secure_y.html)

e Drive failure and disposal or returning it under warrantee
e Fire, hurricane, flood, or any other disaster

e Owner runs short on funds and wants to liquidate some assets quickly

In this case, the confidentiality guarantee is the greater of the confidentiality
levels on the key and the media. A randomly-generated key is useless, and the
media alone gives a confidentiality guarantee equal to that of the cipher used.
Just think of the peace of mind you’ll have not having to worry about loss of
physical possession of your storage devices!

If you want more information on how to actually set this up, I have given
a presentation on it (http://www.subspacefield.org/security/encrypted_
storage_slides.pdf).

Note that while network encryption protects the data between to positions in
space, encrypted storage is protecting the data between two positions in time;
in essence, you are encrypting it to your future self.

28.7.1 Key Escrow for Encrypted Storage

In corporate environments it’s often a requirement that you be able to recover
the data if the employee forgets their passphrase, leaves the company, and so on.
Even with individuals, the idea of losing all your data can be intimidating. The
naive and error-prone way of handling this is to simply ask them to submit the
passphrase to an escrow account of some kind, and make a policy against not
doing so; this makes reminding them to do so sound less like being the security
Nazi and more like you are protecting them. However, there is a clever method
for avoiding having to do this that uses key indirection (see[28:0.7). In this case
the data encryption key is randomly generated, and it is encrypted with the
user’s passphrase. However, the tool also encrypts it with a public key for the
organization and stores the result of that computation as well. An individual
could use the same technique and simply store the private half of the recovery
key in a secure second location, like a safety deposit box. This worries some
people, but it’s definitely better than not using encryption at all.

144

http://www.schneier.com/blog/archives/2007/12/how_to_secure_y.html
http://www.schneier.com/blog/archives/2007/12/how_to_secure_y.html
http://www.subspacefield.org/security/encrypted_storage_slides.pdf
http://www.subspacefield.org/security/encrypted_storage_slides.pdf

28.7.2 Evolution of Cryptographic Storage Technologies

1. Userland applications which require user to manually run them, which are
tedious to use and prone to human error.

2. File systems which encrypt files and directories individually and automat-
ically, which turn out to be overly complex due to the complex filesystem
APIs in most operating systems.

3. Block devices which encrypt blocks of data, which allow you to put any
filesystem on them.

28.7.3 Filesystem Crypto Layers

These basically encrypt the data before storing it on the disk. They are often
created as layers over a regular filesystem. If layered over a network file system
like NFS, you can store stuff on a remote system without having to trust the
confidentiality of the remote system.

e CFS
e TCFS

One advantage of this kind of design is that you can build secure delete into the
system, as in Radia Perlman’s paper File System Design with Assured Delete
(http://ieeeia.org/sisw/2005/PreProceedings/09.pdf).

28.7.4 File Systems with Optional Encryption

e Microsoft’s Encrypting File System (EFS) is a bit of a black box; the only
analysis I have seen of it is in a Black Hat presentation (http://www.
blackhat.com/presentations/bh-europe-03/bh-europe-03-malyshev.
pdf)

e ZFS will have some optional encryption
28.7.5 Block Device Crypto
Not long ago the US had a SIGINT plane which was forced down in China.

They tried to destroy the data they had collected, but were unable to. If only
they had used one of these free alternatives, they wouldn’t have had to worry:

e TrueCrypt (highly recommended) (http://www.truecrypt.org/)

o FreeOTFE (http://www.freeotfe.org/)

145

http://ieeeia.org/sisw/2005/PreProceedings/09.pdf
http://www.blackhat.com/presentations/bh-europe-03/bh-europe-03-malyshev.pdf
http://www.blackhat.com/presentations/bh-europe-03/bh-europe-03-malyshev.pdf
http://www.blackhat.com/presentations/bh-europe-03/bh-europe-03-malyshev.pdf
http://www.truecrypt.org/
http://www.freeotfe.org/

The Debian installer (and Ubuntu alternate install CD) now let you encrypt the
root partition, so only /boot is left in the clear.

For more discussion, please read these articles:

o Marcus Ranum reviews TrueCrypt (http://www.ranum.com/security/
computer_security/editorials/diskcrypt/index.html)

e Bruce Schneier recommends PGP Disk (http://wuw.schneier.com/blog/
archives/2007/12/how_to_secure_y.html)

o US Government to require full disk encryption (http://www.full-disk-encryption.
net/fde_govt.html)

o Wikipedia on Disk Encryption Theory (http://en.wikipedia.org/wiki/
Disk_encryption_theory)

28.7.6 The Cryptographically-Strong Pseudo-random Quick Fill

Many places tell you to pre-fill the lower layer of your encrypted disk device with
pseudo-random (/dev/urandom) output before mounting the upper layer, but
this is VERY slow, since SHA-1 only generates 160 bits of output per iteration.
It’s much faster and almost as good in this context to mount with a random key,
write zeroes (/dev/zero) to the upper layer, unmount, remount with another key,
then use that as your file system, because then you’re using a cipher to generate
your data, and ciphers are quite fast.

28.7.7 Backups

Why don’t you just pipe your backups through something like gpg or any other
encryption filter before writing them to tape? Then you could store them
anywhere, even a public FTP site. You could also use the program duplicity
(http://www.nongnu.org/duplicity/) for secure remote backups.

28.7.8 Threat Models Against Encrypted Storage

Remote Access While Mounted The adversary cracks the system’s secu-
rity while the drive is mounted and thus available in unencrypted form.

Physical Seizure The adversary seizes or steals the system, but has to power
it off to do so. This is equivalent to one-time physical access.

Physical Access While Mounted The adversary gains physical access to
the computer while the encrypted storage is mounted (or shortly there-
after) and performs a cold boot attack or direct memory access to recover

the encryption keys (see B2.2] R2:7).

146

http://www.ranum.com/security/computer_security/editorials/diskcrypt/index.html
http://www.ranum.com/security/computer_security/editorials/diskcrypt/index.html
http://www.schneier.com/blog/archives/2007/12/how_to_secure_y.html
http://www.schneier.com/blog/archives/2007/12/how_to_secure_y.html
http://www.full-disk-encryption.net/fde_govt.html
http://www.full-disk-encryption.net/fde_govt.html
http://en.wikipedia.org/wiki/Disk_encryption_theory
http://en.wikipedia.org/wiki/Disk_encryption_theory
http://www.nongnu.org/duplicity/

Watermarking The adversary gets your system to store a specific chunk of
plaintext on your encrypted disk, and then can prove from the encrypted
image that you have that data stored.

28.8 Deniable Storage

Deniable storage is a system for hiding the fact that certain data exists. This is
similar to, but different from, encrypted storage which merely makes the data
unintelligible. This encompasses deniable encryption and steganographic file
systems.

28.8.1 Deniable Encryption

In cryptography and steganography, deniable encryption is encryp-
tion that allows its users to convincingly deny the fact that the data
is encrypted or, assuming that the data is obviously encrypted, its
users can convincingly deny that they are able to decrypt it. Such
convincing denials may or may not be genuine, e.g., although suspi-
cions might exist that the data is encrypted, it may be impossible
to prove it without the cooperation of the users. In any case, even
if the data is encrypted then the users genuinely may not have the
ability to decrypt it. Deniable encryption serves to undermine an
attacker’s confidence either that data is encrypted, or that the per-
son in possession of it can decrypt it and provide the associated
plaintext.

— Wikipedia

o Wikipedia article on Deniable Encryption (http://en.wikipedia.org/
wiki/Deniable_encryption)

e Ran Canetti, Cynthia Dwork, Moni Naor, Rafail Ostrovsky - Deniable
Encryption (http://eprint.iacr.org/1996/002)

28.8.2 Plausibly Deniable Storage

o TrueCrypt Plausible Deniability (http://www.truecrypt.org/docs/7s=plausible-deniability)

28.8.3 Steganographic File Systems

o Wikipedia article on Steganographic File Systems (http://en.wikipedia.
org/wiki/Steganographic_file_system)

o StegF§S - A Steganographic File System for Linuz (http://www.mcdonald.
org.uk/StegFS/)

147

http://en.wikipedia.org/wiki/Deniable_encryption
http://en.wikipedia.org/wiki/Deniable_encryption
http://eprint.iacr.org/1996/002
http://www.truecrypt.org/docs/?s=plausible-deniability
http://en.wikipedia.org/wiki/Steganographic_file_system
http://en.wikipedia.org/wiki/Steganographic_file_system
http://www.mcdonald.org.uk/StegFS/
http://www.mcdonald.org.uk/StegFS/

o Wikipedia article on StegF'S (http://en.wikipedia.org/wiki/StegFS)

o Rubberhose (http://en.wikipedia.org/wiki/Rubberhose_}28file_system

%29)

28.8.4 Threats Models Against Deniable Storage

These are taken from Bruce Schneier’s paper titled Defeating Encrypted and
Deniable File Systems: TrueCrypt v5.1a and the Case of the Tattling OS and
Applications (http://www.schneier.com/paper-truecrypt-dfs.html).

One-Time Access The adversary gets a single image of the disk. This might
happen if the adversary seizes or steals the computer.

Intermittent Access The adversary gets multiple snapshots of the disk at
different times. This can happen if you cross a border and the border
guards are adversaries who take images of the disk each time.

Regular Access The adversary gets many images of the disk taken at short
intervals. This may happen if the adversary gets repeated access to the
drive; for example, the secret police may break into someone’s residence
and take a drive image each time.

28.9 Key Management

Three Rings for the Elven-kings under the sky,

Seven for the Dwarf-lords in their halls of stone,

Nine for Mortal Men doomed to die,

One for the Dark Lord on his dark throne

In the Land of Mordor where the Shadows lie.

One Ring to rule them all, One Ring to find them,

One Ring to bring them all and in the darkness bind them
In the Land of Mordor where the Shadows lie.

—J.R.R. Tolkien, The Fellowship of the Ring (http://en.wikipedia.
org/wiki/One_Ring)

Key management is a term that encompasses a wide variety of problems and
solutions:

o Key generation

o Key distribution or exchange

148

http://en.wikipedia.org/wiki/StegFS
http://en.wikipedia.org/wiki/Rubberhose_%28file_system%29
http://en.wikipedia.org/wiki/Rubberhose_%28file_system%29
http://www.schneier.com/paper-truecrypt-dfs.html
http://en.wikipedia.org/wiki/One_Ring
http://en.wikipedia.org/wiki/One_Ring

Key verification

Key storage & protection

Key validity checks
e Key escrow (sometimes)

e Key recovery (sometimes)

Key destruction
For more information, see:

o Peter Gutmann’s Tutorial on Key Management (http://www.cypherpunks.
to/"peter/T2_Key_Management .pdf)

e OASIS Enterprise Key Management Infrastructure (EKMI) Technical Com-
mittee (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ekmi)

28.9.1 Key Generation

For symmetric keys, key generation usually amounts to the random generation of
a fixed number of bits. You could use a password for a key, since all bitstrings are
valid symmetric keys, but you want these bits to be completely unpredictable
to an adversary (see 29)). Therefore, I recommend using randomly-generated
keys unless a human must enter them. For example, it may require a human to
enter a key to decrypt an encrypted storage device (see 287). In that case you
should use a cryptographic hash of suitable size (equal to or greater than the
key size) to hash a user-supplied passphrase, and then use (as many as possible
of) those bits as a key. In many cases where passphrases are used, it may be
wise to use a level of key indirection (see 28.9.7) to allow for the passphrase to
be changed without changing the underlying key.

For asymmetric keys, the process is more involved, usually involving much larger
quantities of random numbers in number-theoretic algorithms.

28.9.2 Key Distribution

Once you have generated keys, you need to share them, in whole (symmetric)
or part (asymmetric) with anyone you wish to communicate with. This has
always been the part of cryptography which involves the most handwaving and
impractical solutions.

149

http://www.cypherpunks.to/~peter/T2_Key_Management.pdf
http://www.cypherpunks.to/~peter/T2_Key_Management.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ekmi

Distributing Symmetric Keys In symmetric cryptography, you have to
share the key with any intended recipients while not disclosing the key to any-
one else (i.e. confidentially). Once you have done this, you will be able to
communicate with them securely. Unfortunately, this suffers from a bootstrap-
ping problem; you need a confidential channel in order to distribute the keys.

One thing you could do is send them the key and simply hope nobody eavesdrops
on it. You could do this via an out-of-band communication channel such as the
phone. One could also trade keys on a portable storage medium via the postal
service, trusted couriers, or in person. Fortunately, portable data storage devices
have such large capacity now that one need only do a physical exchange of keys
once.

In theory, one could give multiple parties the same key material. Also, since
more than one system has the credential, this violates the Principle of Least
Privilege (84), and now one system may impersonate another, which violates
the Principle of Unique Identifiers (see B4.5). Thus, you will usually want to
share a separate key with every party with which you wish to communicate.
This means that for n parties, there must be n? keys.

Distributing Asymmetric Keys Enter asymmetric cryptography. In asym-
metric cryptography, you have to share the public key with your intended re-
cipients; by design, you can share the same key with all parties. In this case,
you do not need the key exchange to be confidential; your public key may be
disclosed to the world; only your private key need be kept confidential. In some
cases, people may post a GPG key on their web page. It is also possible to
publish those keys into global key servers, which can store and retrieve keys as
needed. However, these systems have a flaw; how does one know that the key
one retrieved from a web page or key server is the correct key? An adversary
could conduct a MITM attack (see[I0.9) by substituting his own key for the one
you intended to download. That would set up the preconditions for conducting
other MITM attacks against encrypted communications later on. Note that this
is a detectable attack, since it is not passive.

Duckling Model In this model, keys are exchanged upon the first commu-
nication, much like a duckling imprints on the first object it sees as its mother
(i.e. trusted). It is hoped by the parties involved that the adversary is not con-
ducting a MITM attack during this first communication. This model is often
used with key continuity checks (see 28.9.3]).

e http://www.cl.cam.ac.uk/~fms27/papers/2001-Stajano-duckling.pdf

On-Air Keying (OAK) On-Air Keying is a method for key exchange that
involves signalling the next key to use during a secure transmission. This allows
for key exchange without a separate, secure key distribution channel. Needless

150

http://www.cl.cam.ac.uk/~fms27/papers/2001-Stajano-duckling.pdf

to say, if the adversary has that signal and can find the current key, the next
one can be decrypted. It also means that one must get positive verification that
the other end got the transmission, lest you lose them forever.

Normally on-air keying is considered unsafe, because it uses the communication
channel as a key exchange channel. However, these conditions may make it
acceptable:

e Integrity protected: Double-check that other side got information properly

e Tactical information: information may be valuable for an amount of time
smaller than the time it takes to guess the key

e Enemy may not be receiving the information at the key exchange time
(mostly for radio nets)

e Key exchange times are laid out in advance with initial, secure key ex-
change time (mostly for radio nets)

e There is nothing else available

The Broadcast Channel One method for doing this is to publish the key
(or its fingerprint) as widely as possible. For example, you could put your GPG
fingerprint in your email headers or .signature file, so that anyone can check
the key they retrieved against any email they may have received from you. The
theory here is that any adversary wishing to conduct a MITM attack (see [10.9)
would have to have started such an attack before you sent the email containing
the fingerprint to the recipient.

If the recipient has never received an email from you, they could in theory
retrieve one from the web, under the theory that an adversary would not be
conducting MITM attacks against the recipient by substituting his own finger-
prints for yours while he is doing this.

Web of Trust

e http://www.gnupg.org/gph/en/manual .html

e http://en.wikipedia.org/wiki/Web_of _trust

28.9.3 Key Verification

This term refers to the process of ascertaining whether a given (public) key
corresponds to the person we believe it to.

151

http://www.gnupg.org/gph/en/manual.html
http://en.wikipedia.org/wiki/Web_of_trust

Key Continuity In this case, the cryptographic protocol caches the keys
(usually public) from a remote system between uses, and informs the user if
they ever change, since that is indicative of a man-in-the-middle attack (either
in progress or up until now). This is usually done when using the Duckling
model of key distribution (see 28.9.2).

Certification Authorities Software like web browsers often come with a
cache of certificates (which include public keys) from various CAs (http://en.
wikipedia.org/wiki/Certificate_authority). Upon connecting to an SSL-
secured web server, the web server’s certificate is sent to the browser. The CA
keys bundled with the browser can then be used to check signatures on the web
server’s certificate. This is just a form of key indirection (see 289.7); instead of
having to securely obtain keys from all possible endpoints, you merely have to
securely obtain the CA’s key which signed the keys of the endpoints.

It turns out that CAs and PKI are very complex subjects, and I cannot do them
justice here.

It’s worth noting that anyone can generate a certificate; what CAs are really
doing is selling the process of certification, so I've chosen to call them this rather
than “certificate authorities”; be warned that I am in the minority.

Out-of-Band Comparison Oune can compare fingerprints of keys over a dif-
ferent, low-bandwidth communication medium (i.e. the phone, postal mail).
CAs are basically this but done through middlemen.

Parallel Paths OOB comparison is really an example of creating two disjoint
paths between two entities and making sure that they give the same results. This
can occur in multiple contexts. For example, it can be used for the bootstrapping
problem; how can I trust the first connection? By creating two paths I can
compare the identities of the peer both places. I once used this to check the
integrity of my PGP downloads by downloading it from home and from another
location, and comparing the results.

Formatting Imagine that the adversary is conducting a MITM against, say,
an SSH session, so instead of A<->B it is A<->0O<->B. Your countermeasure
as A may be to check the IP addresses of the peer at B, so that the adversary
would have to spoof IPs in both directions (this is often printed automatically
at login). Another technique is to check the host key fingerprint as part of
your login sequence, sending the fingerprint through the tunneled connection.
The adversary may modify the data at the application layer automatically, to
change the fingerprint on the way through. But what if you transformed (e.g.
encrypted) the fingerprint using a command-line tool, and represented it as
printable characters, and printed them through the tunnel, and inverted the

152

http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/Certificate_authority

transformation at the local end? Then he’d have a very difficult time writing
a program to detect this, especially if you kept the exact mechanism a secret.
You could run the program automatically through ssh, so it isn’t stored on the
remote system.

28.9.4 Key Management and Scalability

Key management is a scalability issue. In a single-person organization, you can
trust yourself with all the data. As the organization grows, your risk increases
proportionally, and so you want to enforce need-to-know. Then you encrypt
data and only give the keys out to those who need them, and tightly control the
keys.

A key server centralizes and hands out keys. A cryptologic server holds the
keys and performs encryption or authentication on data provided by other sys-
tems. There are hardware security devices like this and they call them hardware
security modules, or HSMs.

If N participants had to use symmetric cryptography, each person would have
to have a key for talking to every other person, or O(N?) keys. Asymmetric
cryptosystems let us bring this under control and have only N keys again.

28.9.5 One Key, One Purpose

Reusing keys in different algorithms may lead to weaknesses. For example, if
an encryption algorithm is so weak that (e.g.) a known-plaintext attack could
recover the key, then it could compromise every other security property ensured
by that key.

Alternately, a person may be able to use one part of a protocol to act as an
oracle to perform cryptographic operations using a key, and then use the result
in another part of the algorithm. There is an attack known as the mirror attack
where the server takes a challenge, encrypts it with a key, and sends the result
back as a response (to prove it knows the key without actually showing it), with
its own challenge. The client then creates a second connection, and sends the
server’s challenge as its own challenge, and take the response and use it in the
original connection. If the same key is used in both directions, you lose. Similar
problems exist when the keys are strongly related (i.e. only one bit different),
or other trivial modifications.

In general, if you are using the same key in two different cryptographic algo-
rithms, that is usually a mistake. You should probably be using a KDF (see
285.4) to derive multiple keys from the datum you’re currently using directly.

Furthermore, by using different keys in different places, you limit the value of
obtaining one key, so that the amount of resources required to recover it exceed
its value. If this is known, then it will reduce the total number of attacks on

153

the system and thus the amount you have to spend defending it (or analyzing
the intrusions).

Finally, key should be used in as few places as possible to allow for easy revo-
cation or rotation.

This is similar to the principle of unique identifiers (see B4.3).

28.9.6 Time Compartmentalization

Forward security in symmetric cipher by running keys through a OWF period-
ically, and destroying old value. For asymmetric, renegotiate encryption keys
in a way that cannot be reconstructed later, even with the authentication keys
(e.g. anonymous Diffie-Hellman session key negotiation).

28.9.7 Key Indirection

A common problem has to do with key revocation; how do we revoke a key which
must be used by many people? I am told that in one part of Fort Meade, each
day employees swipe their badges through a sort of vending machine which dis-
penses physical keys. The physical keys are used by many people, and re-keying
a physical lock is hard, so this system allows them to revoke the authorization
on the badge without re-keying the locks. By analogy, if the end-user enters one
key which unlocks a (secret) encryption key which can decrypt the data (which
could be done with a hardware security module), then we can change or revoke
the first key without having to change the second. This first key is called a
key-encrypting-key (KEK). It is particularly useful in storage crypto, where it
may be difficult or impossible to re-encrypt all the encrypted data in a timely
manner.

The same thing occurs in most public key systems because PK algorithms are
so slow. Public key is too slow to perform on all but very small messages; thus,
they encrypt a message key with the public-key algorithms, and then use the
message key to encrypt the bulk of the data using a fast symmetric cipher. This
is called a hybrid crypto system. Almost all network protocols do the same
thing, only there the symmetric key is called a session key.

You can imagine attacking a KEK system like this; there are two locked doors
made of different substances, arranged in parallel (see B48). Behind the first
door is a key that unlocks the second. The prize is behind the second door.
Obviously, you can either attack the first door or the second and get the prize.
However, since PK is usually weaker than symmetric encryption, and since users
generally pick poor passwords, the first door is usually easier. Also, since there
will be other pairs of doors with the same lock on the first door, finding the key
for the first door is more valuable than the second. However, if the first door is
made of adamantine and the second door is made of wood, then you might be
able to smash through all the second doors without keys, in which case you need

154

never bother with the adamantine doors. If the doors are arranged vice-versa,
you can always smash through the first door and get the key to the second.

28.9.8 Secret Sharing

Secret sharing (http://en.wikipedia.org/wiki/Secret_sharing) involves re-
quiring a certain number of shares to be combined to reconstruct any of the
information. The easiest way to do this is with one-time pads. However, if you
wish to do this more than once, you usually have to have a dealer which recon-
structs the secret out of the reach of any of the participants (a well-protected
system, or perhaps a hardware security module).

28.9.9 Threshhold Cryptography

o Wikipedia Threshhold Cryptosystem (http://en.wikipedia.org/wiki/
Threshold_cryptosystem)

o Intrusion Tolerance via Threshhold Cryptography (http://www.stanford.
edu/"~dabo/ITTC/)

There are, however, schemes similar to secret sharing that do not require trusted
dealers; these are called threshhold cryptosystems.

28.10 Cryptographic Standards
28.10.1 RSA Security Public Key Cryptography Standards

More commonly known as PKCS, these standards are the most important to
anyone implementing public key cryptographic systems.

e http://en.wikipedia.org/wiki/PKCS
e http://www.rsa.com/rsalabs/pkcs/

e PKCS #1: RSA Cryptography Standard (http://www.rsa.com/rsalabs/
node.asp?id=2125)

e PKCS #38: Diffie-Hellman Key Agreement Standard (http://www.rsa.
com/rsalabs/node.asp?id=2126)

o PKCS #15: Password-Based Cryptography Standard (http://www.rsa.
com/rsalabs/node.asp?id=2127)

o PKCS #6: Extended-Certificate Syntax Standard (http://www.rsa.com/
rsalabs/node.asp?id=2128)

155

http://en.wikipedia.org/wiki/Secret_sharing
http://en.wikipedia.org/wiki/Threshold_cryptosystem
http://en.wikipedia.org/wiki/Threshold_cryptosystem
http://www.stanford.edu/~dabo/ITTC/
http://www.stanford.edu/~dabo/ITTC/
http://en.wikipedia.org/wiki/PKCS
http://www.rsa.com/rsalabs/pkcs/
http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2126
http://www.rsa.com/rsalabs/node.asp?id=2126
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2128
http://www.rsa.com/rsalabs/node.asp?id=2128

e PKCS #7: Cryptographic Message Syntax Standard (http://www.rsa.
com/rsalabs/node.asp?id=2129)

e PKCS #8: Private-Key Information Syntaz Standard (http://www.rsa.
com/rsalabs/node.asp?id=2130)

o PKCS #9: Selected Attribute Types (http://www.rsa.com/rsalabs/node.
asp?id=2131)

o PKCS #10: Certification Request Syntax Standard (http://www.rsa.
com/rsalabs/node.asp?id=2132)

o PKCS #11: Cryptographic Token Interface Standard (http://www.rsa.
com/rsalabs/node.asp?id=2133)

o PKCS #12: Personal Information Exchange Syntax Standard (http://

www.rsa.com/rsalabs/node.asp?id=2138)

e PKCS #183: Elliptic Curve Cryptography Standard (http://www.rsa.
com/rsalabs/node.asp?id=2139)

e PKCS #15: Cryptographic Token Information Format Standard (http://
www.rsa.com/rsalabs/node.asp?id=2141)

28.10.2 Federal Information Processing Standards

More commonly known as FIPS, these are government standards, some of which
cover security-relevant material.

o Wikipedia entry on FIPS (http://en.wikipedia.org/wiki/Federal_
Information_Processing_Standard)

o Wikipedia entry on FIPS-140 (http://en.wikipedia.org/wiki/FIPS_
140)

o Federal Information Processing Standards Publications (http://www.itl.
nist.gov/fipspubs/)

o FIPS 140-2 Security Requirements for Cryptographic Modules (http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf)

e FIPS 180-8 Secure Hash Standard (SHA) (http://csrc.nist.gov/publications/
fips/fips180-3/fips180-3_final.pdf)

e FIPS 181 Automated Password Generator (APG) (http://www.itl.nist.
gov/fipspubs/fip181.htm)

e FIPS 185 Escrowed Encryption Standard (EES) (http://www.itl.nist.
gov/fipspubs/fip185.htm)

156

http://www.rsa.com/rsalabs/node.asp?id=2129
http://www.rsa.com/rsalabs/node.asp?id=2129
http://www.rsa.com/rsalabs/node.asp?id=2130
http://www.rsa.com/rsalabs/node.asp?id=2130
http://www.rsa.com/rsalabs/node.asp?id=2131
http://www.rsa.com/rsalabs/node.asp?id=2131
http://www.rsa.com/rsalabs/node.asp?id=2132
http://www.rsa.com/rsalabs/node.asp?id=2132
http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/rsalabs/node.asp?id=2138
http://www.rsa.com/rsalabs/node.asp?id=2138
http://www.rsa.com/rsalabs/node.asp?id=2139
http://www.rsa.com/rsalabs/node.asp?id=2139
http://www.rsa.com/rsalabs/node.asp?id=2141
http://www.rsa.com/rsalabs/node.asp?id=2141
http://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
http://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
http://en.wikipedia.org/wiki/FIPS_140
http://en.wikipedia.org/wiki/FIPS_140
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://www.itl.nist.gov/fipspubs/fip181.htm
http://www.itl.nist.gov/fipspubs/fip181.htm
http://www.itl.nist.gov/fipspubs/fip185.htm
http://www.itl.nist.gov/fipspubs/fip185.htm

e FIPS 186-2 Digital Signature Standard (DSS) (http://csrc.nist.gov/
publications/fips/fips186-2/fips186-2-changel.pdf)

e FIPS 196 Entity Authentication Using Public Key Cryptography (http://
csrc.nist.gov/publications/fips/fips196/fips196.pdf)

e FIPS 197 Advanced Encryption Standard (AES) (http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf)

e FIPS 198-2 The Keyed-Hash Message Authentication Code (HMAC) (http://
csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf)

28.10.3 National Institute of Standards Special Publications

This includes the NIST 800 series. There are too many to list individually, so
here is the link:

e NIST Special Publications (800 series) (http://csrc.nist.gov/publications/
PubsSPs.html)

28.10.4 PGP and GPG

e PGP Attack FAQ (http://axion.physics.ubc.ca/pgp-attack.html)
e TODO - add relevant RFCs, etc. here

29 Randomness and Unpredictability

“The generation of random numbers is too important to be left to
chance.”

— Robert R. Coveyou of Oak Ridge National Laboratory

e http://en.wikipedia.org/wiki/Random_number_generator

o Cryptographic Random Numbers (http://www.std.com/~cme/P1363/ranno.
html)

o The Efficient Generation of Cryptographic Confusion Sequences (http://
www.ciphersbyritter.com/ARTS/CRNG2ART .HTM)

e RFC 4086: Randomness Recommendations for Security (http://www.
ietf.org/rfc/rfc4086.txt)

e David Wagner’s Randomness for Crypto (http://www.cs.berkeley.edu/
“daw/rnd/)

157

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips196/fips196.pdf
http://csrc.nist.gov/publications/fips/fips196/fips196.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
http://axion.physics.ubc.ca/pgp-attack.html
http://en.wikipedia.org/wiki/Random_number_generator
http://www.std.com/~cme/P1363/ranno.html
http://www.std.com/~cme/P1363/ranno.html
http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM
http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
http://www.cs.berkeley.edu/~daw/rnd/
http://www.cs.berkeley.edu/~daw/rnd/

29.1 Types of Random Number Generators

A pseudo-random number generator (PRNG) is an algorithm that starts with
a “seed” of unpredictable bits and generates a stream of bits using a determin-
istic algorithm. These can come in varying strengths, so those meant for use
in cryptography are sometimes called cryptographically strong pseudo-random
number generators (CSPRNG)

PRNGs are opposed to “true” random number generators (TRNG), which is
one that creates bits via some (analog) noise source. These are sometimes
called hardware random number generators (HWRNG), since they usually exist
as hardware to be attached to a regular, deterministic computer system.

o Wikipedia article on PRNGs (http://en.wikipedia.org/wiki/Pseudo-random_
number_generator)

o Wikipedia article on CSPRNGSs (http://en.wikipedia.org/wiki/Cryptographically_
secure_pseudorandom_number_generator)

o Wikipedia article on HWRNGSs (http://en.wikipedia.org/wiki/Hardware_
random_number_generator)

29.2 Pseudo-Random Number Generators

One day TI'll expand this section significantly to cover many pseudo-random
number generator designs.

29.2.1 Yarrow

Yarrow is a pretty neat CSPRNG because it uses a block cipher to “stretch” a
seed significantly. This introduces some slight predictability, but is very fast.

e Yarrow: A secure pseudorandom number generator (http://wuw.schneier.
com/yarrow.html)

29.3 An Ideal Random Number Generator

Periodically, some event happens within an ideal random number generator
(IRNG); for example, a photon is shot at a half-silvered mirror. The outcome
of each event is one of a finite number of states n; in this example, it is reflected
or transmitted through the mirror. The RNG represents measures the outcome,
and then encodes it for use by a discrete-logic computer.

In an ideal random number generator, the outputs are independent and uni-
formly distributed among the states. Furthermore, it is unpredictable. Just
what constitutes unpredictability? That is the subject we shall now cover.

158

http://en.wikipedia.org/wiki/Pseudo-random_number_generator
http://en.wikipedia.org/wiki/Pseudo-random_number_generator
http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://en.wikipedia.org/wiki/Hardware_random_number_generator
http://en.wikipedia.org/wiki/Hardware_random_number_generator
http://www.schneier.com/yarrow.html
http://www.schneier.com/yarrow.html

29.4 Definitions of Unpredictability

[W]e will be able to interpret the laws of probability and quantum
physics as being the statistical results of the development of com-
pletely determined values of variables which are at present hidden
from us ... The idea of chance ... comes in at each stage in the
progress of our knowledge, when we are not aware that we are on
the brink of a deeper level of reality which still eludes us.

—De Broglie (http://www.eequalsmcsquared.auckland.ac.nz/sites/
emc2/t1l/philosophy/dice.cfm)

Assume there is no information that is available to help anyone predict the
outcome of an event prior to the event’s occurrence, and the event outcomes are
independent and uniformly distributed. Then if there are n states, then anyone’s
chance of guessing the outcome prior to the event is exactly % It obviously must
not be more, but neither can it be less, because if the probability of one guess
being correct were worse than that, then another must necessarily be greater.
This is what I call ideally unpredictable.

In cryptography, we really only care if the adversary can predict the outcomes.
If it is impossible for the adversary to improve his odds at guessing the outcome
over pure chance, then the RNG is effectively unpredictable, even if it were
possible for us to guess the state (perhaps by observing some physical process
hidden from the adversary).

The famous physicist De Broglie suggests in the quote above that unpredictabil-
ity and chance are illusions caused by our ignorance (epistemology), and not
related to the nature of the universe itself (ontology). When two people can
finish each other’s sentences but someone else cannot, we have proof that what
is unpredictable to one person may not be unpredictable to another. Similarly,
a randomly-generated number may be stored, as in the RAND corporation’s
famous book “A Million Random Digits with 100,000 Normal Deviates”. The
transmission of random outcomes may be delayed as in the motion picture The
Sting (http://en.wikipedia.org/wiki/The_Sting), and anyone with access
to the generated value may know it whereas it remains unpredictable to everyone
else.

29.5 Definitions of Randomness

There are many definitions of randomness, but the only one that matters is the
definition of effective unpredictability given above. Other fields of thought, such
as physics or philosophy, may deal with issues such as determinism (http://en.
wikipedia.org/wiki/Determinism). There are multiple kinds of determinism,
such as causal determinism (an ontological argument that “what comes before
causes what comes after”), and predictive determinism (the universe is causally
deterministic, and furthermore we can use our knowledge about the universe

159

http://www.eequalsmcsquared.auckland.ac.nz/sites/emc2/tl/philosophy/dice.cfm
http://www.eequalsmcsquared.auckland.ac.nz/sites/emc2/tl/philosophy/dice.cfm
http://en.wikipedia.org/wiki/The_Sting
http://en.wikipedia.org/wiki/Determinism
http://en.wikipedia.org/wiki/Determinism

and its present state to predict the future). Thus, we can have an IRNG if
the universe is causally deterministic, but not if it is predictively deterministic.
However, we can have effective unpredictability even if the universe is predic-
tively deterministic.

o The Several Types of Random (http://www.ciphersbyritter.com/NEWS3/
GLOSRAND .HTM)

29.6 Types of Entropy

If you’re an aspiring cryptologist, the measures of entropy are worth studying,
because they are appropriate in different situations and analyses.

It’s worth noting that information theoretic calculations of entropy are based
on “ensembles” (infinite numbers of streams) of infinite length, for mathematical
reasons. This makes reading the works somewhat intimidating for those without
adequate mathematical training, and leads to minor problems when applying
them to single streams of symbols (especially those of finite length). They also
require a priori knowledge about “the source” - one cannot strictly derive a
model for a source based on the output (see ZO.10).

o Entropy vs Work (http://www.cs.berkeley.edu/~daw/my-posts/entropy-measures)

29.6.1 Shannon Entropy

When most computer scientists or cryptologists talk about entropy, they nor-
mally are referring to the so-called Shannon Entropy (http://en.wikipedia.
org/wiki/Information_entropy). It is useful for discussing one-time pads,
secret sharing, compression, and some other aspects of computer science.

It is calculated by the following formula:

n

H(X) ==Y p(z:)lgp(x:)

i=1
Where p is the probability mass function (see http://en.wikipedia.org/
wiki/Probability_mass_function) for random variable X.

More links about Shannon and Entropy:

o A Mathematical Theory of Communication by Claude E. Shannon (http://
cm.bell-labs.com/cm/ms/what/shannonday/paper.html)

o The Many Faces of Entropy (http://cm.bell-labs.com/cm/ms/what/
shannonday/talks/JZ.ps.gz)

o Shannon Theory and Contemporary Cryptology (http://cm.bell-labs.
com/cm/ms/what/shannonday/talks/JLM.ps.gz)

160

http://www.ciphersbyritter.com/NEWS3/GLOSRAND.HTM
http://www.ciphersbyritter.com/NEWS3/GLOSRAND.HTM
http://www.cs.berkeley.edu/~daw/my-posts/entropy-measures
http://en.wikipedia.org/wiki/Information_entropy
http://en.wikipedia.org/wiki/Information_entropy
http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Probability_mass_function
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
http://cm.bell-labs.com/cm/ms/what/shannonday/talks/JZ.ps.gz
http://cm.bell-labs.com/cm/ms/what/shannonday/talks/JZ.ps.gz
http://cm.bell-labs.com/cm/ms/what/shannonday/talks/JLM.ps.gz
http://cm.bell-labs.com/cm/ms/what/shannonday/talks/JLM.ps.gz

29.6.2 Min-entropy
There is another type of entropy measurement called min-entropy (http://

en.wikipedia.org/wiki/Min-entropy). This is useful for analyzing random
number generators. This entropy measure has the following formula:

Hiny(X) = —lgmazip;

29.6.3 Rényi Entropy

Rényi entropy (http://en.wikipedia.org/wiki/R%C3%A9nyi_entropy) is yet
another way to measure entropy. It has the following formula:

11—«

Ha(X) = ——1g(3_ p0)
=1

The Rényi entropy is a generalized form of the Shannon (o = 1) and Min-
entropy (« = infinity). This measure of entropy (with a = 2) is useful when
analyzing the possibility of hash collisions.

The Rényi entropy is a non-increasing function of a, so min-entropy is always
the most conservative measure of entropy and usually the best to use for cryp-
tographic evaluation.

o Luby, M., “Pseudorandomness and Cryptographic Applications”, Prince-
ton University Press, ISBN 0691025460, 8 Jan 1996 (http://press.
princeton.edu/titles/5154.html)

29.6.4 Guessing Entropy

The “guessing entropy” is the work required by an adversary who knows the
distribution of your keys to guess the correct key. It is assumed that the prob-
abilities are summed from largest (i = 0) to smallest (¢ = n). It is useful when
figuring out the amount of work necessary when the keys are non-uniformly
distributed.

Hao(X) =1lg Zip(i)

o Christian Cachin, Entropy Measures and Unconditional Security in Cryp-
tography, PhD thesis, ETH Zurich, May 1997 (ftp://ftp.inf.ethz.ch/
pub/publications/dissertations/th12187.ps.gz)

161

http://en.wikipedia.org/wiki/Min-entropy
http://en.wikipedia.org/wiki/Min-entropy
http://en.wikipedia.org/wiki/R%C3%A9nyi_entropy
http://press.princeton.edu/titles/5154.html
http://press.princeton.edu/titles/5154.html
ftp://ftp.inf.ethz.ch/pub/publications/dissertations/th12187.ps.gz
ftp://ftp.inf.ethz.ch/pub/publications/dissertations/th12187.ps.gz

29.7 Why Entropy and Unpredictability Are Not the Same

Sometimes people use the term entropy to mean unpredictability (information,
the amount of surprise we have at seeing the symbol), and it is nice that it is
quantitative, however it is not really the best term to use. There are several
problems with using this term to mean unpredictability:

1. The term is widely used in physics and is overloaded with a a number of
associations that are rather confusing (see http://en.wikipedia.org/
wiki/Entropy). There is strong debate as to whether the concepts are
related in any useful way.

2. Most computer scientists use the term in the same sense as Claude Shan-
non (http://en.wikipedia.org/wiki/Information_entropy), but there
are several other measures of entropy in information theory (see 29.6]).

3. It takes precise and quantifiable terminology (that is, jargon), and uses it
in a general, unquantified, imprecise way.

4. See next section.

29.7.1 An Argument Against Entropy as Unpredictability

What is the information content of source generating an alternating series of
two symbols?

If one uses the Shannon entropy formula, one uses a probability mass function
(PMF), and the way this is tallied in many cases is to simply count the propor-
tion of events that have a given outcome (the other entropy measurements give
identical answers in this case).

Thus, if the random number generator had a binary event (n = 2), and it
always came up alternating ones and zeroes (i.e. it is completely correlated),
the probability mass function would still be uniform, and entropy would be
maximized (H = 1).

If, on the other hand, we define a symbol to be represented by “01”, then we
can do a simple change of symbols (or binning) and come up with a completely
different measurement (H = 0). Thus, the measurement is not stable across a
simple substitution of symbols; equating the two would imply changing symbols
drastically affects the amount of information in the sequence, which goes against
my intuition about the meaning of “information”.

In other words, probability mass function is generally ignorant of the adversary’s
ability to predict the outcome beyond simple unigram frequencies. Even ama-
teur cryptanalysts use bigrams (Markov models) or higher-powered predictive
models to solve the cryptograms in newspapers.

162

http://en.wikipedia.org/wiki/Entropy
http://en.wikipedia.org/wiki/Entropy
http://en.wikipedia.org/wiki/Information_entropy

Even Shannon uses the term loosely; in one study he measures the entropy
of English to be about 1-2 bits per character, because humans can guess the
letter 25-50% of the time. However, this is not the result of application of strict
application of his formula using the PMF, but instead he is using the human
as an oracle to estimate a tighter lower bound on the entropy. This suggests
that the measure of entropy is not a completely objective measure, but rather
depends on the ability of something to predict the next symbol. He did note
that it varies with the intelligence of the person making the predictions (and,
presumably, the similarity of the person to the author, in terms of writing style
and knowledge of the subject).

For another example, the digits (decimal or binary) of 7 are easily computable in
non-sequential order (see the BBP formula, http://crd.1bl.gov/~dhbailey/
pi/), and thus totally predictable, but would also have maximal entropy. In-
deed, mathematicians believed the digits not to have a pattern for a very long
time.

29.8 Unpredictability is the Sine Qua Non of Cryptogra-
phy

If you can’t pick crypto keys your adversary can’t guess, there’s little point in
using cryptography.

29.9 Predictability is Provable, Unpredictability is Not

There is no such thing as a random number, only a randomly-
generated number.

For an adversary who only has access to the output of the random number
generator (RNG), one assumes that predictability takes the form of a pattern
in the output. Any pattern at all means that it is somewhat predictable; for
example, if it generates slightly more ones than zeroes, the “DC bias” is off and
it is not entirely predictable. But how can we prove there are no patterns, when
the number of patterns is infinite? We cannot do this through testing any finite
number of patterns at a time.

This is what lawyers mean by not being able to prove a negative, but it’s easy
to prove some negatives; to prove that there aren’t any pennies in my hand, you
can look. It’s negations of claims of existence (it’s not the case that there exists
an x such that x is a unicorn) that are hard to prove, because they are universal
claims (for all things x, x is not a unicorn). It’s just as difficult to prove a simple
positive universal claim, such as “bodies in motion stay in motion”, or that the
normal physical laws hold the same everywhere and in all situations.

This quandary was summed up in a pithy way in a Dilbert comic (http://web.
archive.org/web/20011027002011/http://dilbert.com/comics/dilbert/archive/
images/dilbert2001182781025.gif).

163

http://crd.lbl.gov/~dhbailey/pi/
http://crd.lbl.gov/~dhbailey/pi/
http://web.archive.org/web/20011027002011/http://dilbert.com/comics/dilbert/archive/images/dilbert2001182781025.gif
http://web.archive.org/web/20011027002011/http://dilbert.com/comics/dilbert/archive/images/dilbert2001182781025.gif
http://web.archive.org/web/20011027002011/http://dilbert.com/comics/dilbert/archive/images/dilbert2001182781025.gif

29.10 Randomly-Generated Samples Are No Different Than
Any Other Sample

A monkey hitting keys at random on a typewriter keyboard for an
infinite amount of time will almost surely type the complete works
of William Shakespeare.

— Infinite Monkeys Theorem (http://en.wikipedia.org/wiki/Infinite_
monkey_theorem)

Suppose the output is 01110011; is that more or less random than 000000007
Each sequence is just as likely if the source is random (1 in 256). Looking at
either, can we tell whether the source is random? No, we cannot. The output
alone says nothing definitive about the source. However, if we have a model of
the source, and an output, we can say how likely the source would be to generate
that output, but we cannot say how likely an output was to be generated by a
particular model of a source, since the number of potential models is infinite.

XKCD did a funny comic about this (http://xkcd.org/221/).

29.11 Testing Samples For Predictability

So we’ve established that you can’t prove something is randomly-generated, nor
can you prove that something is not randomly-generated. However, you can test
to see if it is unlikely to be randomly-generated. A good suggestion to test your
own random numbers is to upload them to the random number testing service
(http://www.cacert.at/random/) and see how they compare to other RNGs
(http://www.cacert.at/cgi-bin/rngresults).

o Randomness Tests: A Literature Survey (http://www.ciphersbyritter.
com/RES/RANDTEST .HTM)

29.12 Testing Noise Sources

o Allan Variance and Deviation (http://www.ciphersbyritter.com/NEWS6/
ALLANVAR .HTM)

o Ezxperimental Characterization of Recorded Noise (http://www.ciphersbyritter.
com/NOISE/NOISCHAR .HTM)

o Measuring Junction Noise (http://www.ciphersbyritter.com/RADELECT/
MEASNOIS/MEASNOIS .HTM)

e Junction Noise Measurements I (http://www.ciphersbyritter.com/RADELECT/
MEASNOIS/NOISMEA1.HTM)

164

http://en.wikipedia.org/wiki/Infinite_monkey_theorem
http://en.wikipedia.org/wiki/Infinite_monkey_theorem
http://xkcd.org/221/
http://www.cacert.at/random/
http://www.cacert.at/cgi-bin/rngresults
http://www.ciphersbyritter.com/RES/RANDTEST.HTM
http://www.ciphersbyritter.com/RES/RANDTEST.HTM
http://www.ciphersbyritter.com/NEWS6/ALLANVAR.HTM
http://www.ciphersbyritter.com/NEWS6/ALLANVAR.HTM
http://www.ciphersbyritter.com/NOISE/NOISCHAR.HTM
http://www.ciphersbyritter.com/NOISE/NOISCHAR.HTM
http://www.ciphersbyritter.com/RADELECT/MEASNOIS/MEASNOIS.HTM
http://www.ciphersbyritter.com/RADELECT/MEASNOIS/MEASNOIS.HTM
http://www.ciphersbyritter.com/RADELECT/MEASNOIS/NOISMEA1.HTM
http://www.ciphersbyritter.com/RADELECT/MEASNOIS/NOISMEA1.HTM

29.13 Ways to Fail
29.13.1 Letting Humans Pick Things

Humans are awful at picking things unpredictably. If they didn’t, password
guessing and dictionary attacks wouldn’t work. Here are some links on how bad
people are at producing random data:

e http://scienceblogs.com/cognitivedaily/2007/02/is_17_the_most_
random_number.php

e http://www.schneier.com/blog/archives/2007/04/more_random_num.
html

e http://query.nytimes.com/gst/fullpage.html?res=9406E4D61F38F937A3575BCOA96E958260

29.13.2 Looking Only at 0/1 Bias

How you count the values matters. For example, if the RNG always generates
one of the octets (“bytes”) 00000000 or 11111111 with equal probability, then
the bit distribution is uniform, but the distribution of octets is not. A number
of things may be happening here:

1. The RNG is performing some event and sampling an analog result with
eight (or more) bits of precision. However, the distribution is not uniform
(flat), so there’s only two observed outcomes, each with 50% probability.
This may happen if the analog portion has the gain set too high on the
amplifier, or there is some other problem sampling the analog event.

2. The RNG is performing some binary event and the outcomes are corre-
lated, meaning that they are not independent of each other. This may
happen if there is a resonance or cycle inside the analog portion, if the
analog portion is picking up an external signal (i.e. a radio station), or
if the outputs of the generator are being incorrectly processed (for exam-
ple, they may have been transferred as text files between machines with
different end-of-line conventions).

3. Nothing is wrong, it is just a coincidence, and if you wait long enough, it
may stop happening. Or maybe not.

29.13.3 Trying to Correct Bias or Correlation

These two things are related and I really need to research this again so I can
remember all the issues.

One method is to combine (e.g., via XOR) the HWRNG with a PRNG, such as
the Mersenne Twister (http://en.wikipedia.org/wiki/Mersenne_twister).

165

http://scienceblogs.com/cognitivedaily/2007/02/is_17_the_most_random_number.php
http://scienceblogs.com/cognitivedaily/2007/02/is_17_the_most_random_number.php
http://www.schneier.com/blog/archives/2007/04/more_random_num.html
http://www.schneier.com/blog/archives/2007/04/more_random_num.html
http://query.nytimes.com/gst/fullpage.html?res=9406E4D61F38F937A3575BC0A96E958260
http://en.wikipedia.org/wiki/Mersenne_twister

This is sometimes called whitening. However, in that case, you need to keep
the other source unpredictable to the adversary, or else he can cancel out the
effects. I advise anyone creating a HWRNG not to do this in a way that is
hidden from the end user, lest the biases be hidden from the user but not an
intelligent adversary.

See also 29.15.5]

29.14 Sources of Unpredictability

The secret to creativity is hiding your sources.
— Albert Einstein

So what do we do? We try to understand the source of the output. We model
it, theorize about it, quantify it.

o Really Random Number Generators (http://www.ciphersbyritter.com/
GLOSSARY .HTM#ReallyRandom)

e Really Random Generators (http://wuw.ciphersbyritter.com/REALRAND/
REALRAND .HTM#RandGen)

o FEssential Randomness (http://wuw.ciphersbyritter.com/REALRAND/REALRAND.
HTM#EssenRand)

o Random Number Machines: A Literature Survey (http://www.ciphersbyritter.
com/RES/RNGMACH.HTNM)

o The Hardware Random Number Generator (http://www.ciphersbyritter.
com/NEWS4/HARDRAND .HTM)

o The Pentium III RNG (http://www.ciphersbyritter.com/NEWS4/PENTRAND.
HTM)

e Random Numbers From A Sound Card (http://www.ciphersbyritter.
com/NEWS4/RANDSND . HTM)

e FM Radio Noise (http://www.ciphersbyritter.com/NEWS5/FMRNG.HTM)

29.14.1 Random Numbers From Deterministic Machine Measure-
ments

Anyone who attempts to generate random numbers by deterministic
means is, of course, living in a state of sin.

— John von Neumann

166

http://www.ciphersbyritter.com/GLOSSARY.HTM#ReallyRandom
http://www.ciphersbyritter.com/GLOSSARY.HTM#ReallyRandom
http://www.ciphersbyritter.com/REALRAND/REALRAND.HTM#RandGen
http://www.ciphersbyritter.com/REALRAND/REALRAND.HTM#RandGen
http://www.ciphersbyritter.com/REALRAND/REALRAND.HTM#EssenRand
http://www.ciphersbyritter.com/REALRAND/REALRAND.HTM#EssenRand
http://www.ciphersbyritter.com/RES/RNGMACH.HTM
http://www.ciphersbyritter.com/RES/RNGMACH.HTM
http://www.ciphersbyritter.com/NEWS4/HARDRAND.HTM
http://www.ciphersbyritter.com/NEWS4/HARDRAND.HTM
http://www.ciphersbyritter.com/NEWS4/PENTRAND.HTM
http://www.ciphersbyritter.com/NEWS4/PENTRAND.HTM
http://www.ciphersbyritter.com/NEWS4/RANDSND.HTM
http://www.ciphersbyritter.com/NEWS4/RANDSND.HTM
http://www.ciphersbyritter.com/NEWS5/FMRNG.HTM

Since hardware random number generators are expensive, most people do with-
out them. There are a few ways of doing this, involving making measurements of
internal state of the system that should be difficult or impossible for the adver-
sary to guess. There is some controversy over the practice (hence my inclusion
of the quote above), as the adversary may have some insight into some of these
sources, and we don’t know how random they really are.

e Software Generation of Practically Strong Random Numbers (http://
www.cs.auckland.ac.nz/"pgut001/pubs/usenix98.pdf)

Unix /dev/random Most Unix systems have something similar to /dev/random.

o Wikipedia on /dev/random (http://en.wikipedia.org/wiki//dev/random)

Linux /dev/random The Linux /dev/random driver manages an area of
kernel memory known as the entropy pool. It gathers measurements of low-
level system functions such as the amount of time between interrupts and other
difficult-to-predict events. It mixes these measurements into the pool in a non-
destructive way. It also maintains an estimate of the amount of entropy in the
pool. When a program reads from /dev/random, it gets a one-way hash of part
of the pool’s contents, and the estimate of the amount of entropy left is reduced
by the number of bits read. If the estimated entropy in the pool does not allow
for a full hash of data to be read, it blocks until it can gather more information.
This is designed to be used as a true random number generator (TRNG).

The /dev/random device has a counterpart, called /dev/urandom. This device
will not block; instead, if the entropy of the pool runs low, it degrades into a
pseudo-random number generator.

o Wikipedia article on Linuxz /dev/random (http://en.wikipedia.org/
wiki//dev/random#Linux)

e /dev/random (http://everything2.com/title/%252Fdev)252Frandom)

Linux /dev/erandom This is a provably secure PRNG currently for Linux.
As part of improving the PRNG, Seth Hardy is also rewriting the PRNG frame-
work to make it separate from the entropy harvester and to allow for it to be
much more extensible and flexible.
o Source code link (http://www.aculei.net/~shardy/projects/erandom-0.
1.tgz)

Linux /dev/frandom

e frandom (http://www.billauer.co.il/frandom.html)

167

http://www.cs.auckland.ac.nz/~pgut001/pubs/usenix98.pdf
http://www.cs.auckland.ac.nz/~pgut001/pubs/usenix98.pdf
http://en.wikipedia.org/wiki//dev/random
http://en.wikipedia.org/wiki//dev/random#Linux
http://en.wikipedia.org/wiki//dev/random#Linux
http://everything2.com/title/%252Fdev%252Frandom
http://www.aculei.net/~shardy/projects/erandom-0.1.tgz
http://www.aculei.net/~shardy/projects/erandom-0.1.tgz
http://www.billauer.co.il/frandom.html

FreeBSD /dev/random

The FreeBSD operating system implements a 256-bit variant of the
Yarrow algorithm to provide a pseudorandom stream — this re-
placed a previous Linux style random device. Unlike the Linux
/dev/random, the FreeBSD /dev/random never blocks. It is similar
to the Linux /dev/urandom, intended to serve as a cryptographi-
cally secure pseudorandom number generator rather than based on
a pool of entropy (FreeBSD links urandom to random).

— Wikipedia (http://en.wikipedia.org/wiki//dev/random#FreeBSD)

For more information on Yarrow, see This is not a TRNG, but rather a
CSPRNG.

Entropy Gathering Daemon EGD is used on systems that don’t have a
convenient source of random bits. It is a user-space program that runs programs
like vmstat, w, and last to gather information which may not be knowable by
an adversary. It stirs the information it gathers into a pool of entropy, much
like the Linux /dev/random, and allows other programs to read out of this pool.
It is meant to be used with GPG, but can be used with other programs. It is
written in Perl.

e EGD: The Entropy Gathering Daemon (http://egd.sourceforge.net/)

Pseudo Random Number Generation Daemon This piece of software
(PRNGD) offers the same interface as EGD and is designed to be used as a
randomly-generated number source for other programs, especially OpenSSL.
Like EGD, it calls system programs to collect unpredictable information. Un-
like EGD, it does not create a pool of random bits that can be tapped by
other software. Instead, it feeds the unpredictable bits directly to OpenSSL’s
PRNG which other tools can call to get randomly-generated bits. This way,
the PRNGD is never drained and can never block, so it is also suitable to seed
inetd-started applications. It saves its state across reboots so that it can start
up fully active on reboot.

o PRNGD - Pseudo Random Number Generator Daemon (http://prngd.
sourceforge.net/)

29.14.2 CCD Noise

LavaRND is a cryptographically strong random number generator. It appears
to use a CCD with the gain all the way up in a darkened chamber they call
the “LavaCan”. The name is a holdover from the original model which used a
camera pointed at a lava lamp.

o LavaRND (http://wuw.lavarnd.org/what/index.html)

168

http://en.wikipedia.org/wiki//dev/random#FreeBSD
http://egd.sourceforge.net/
http://prngd.sourceforge.net/
http://prngd.sourceforge.net/
http://www.lavarnd.org/what/index.html

29.14.3 Electrical Noise

o Random Electrical Noise: A Literature Survey (http://www.ciphersbyritter.
com/RES/NOISE.HTM)

o Random Noise Sources (http://www.ciphersbyritter.com/NOISE/NOISRC.
HTM)

o Junction Noise Experiments (http://www.ciphersbyritter.com/NEWS3/
RANDOM . HTM)

e Turbid (http://www.av8n.com/turbid/paper/turbid.htm)

29.14.4 Quantum Mechanical Random Number Generators

Perhaps the cleanest solution is to use a single quantum event to create your
bits. That is what these HWRNGs do:

e Quantis (http://www.idquantique.com/products/quantis.htm)

e QRBGI121 (http://qrbg.irb.hr/)

29.15 The Laws of Unpredictability

Shannon’s entropy experiments showed that the entropy of English was about
one bit per letter, but it varies depending on the intelligence of the speaker.
So the entropy is defined relative to a predictive model (in the person’s head).
What most people call Shannon entropy is the entropy relative to a memory-less
predictive model, or zero-order Markov model. Essentially this means that each
symbol is treated as the outcome of an independent trial, with no context based
on prior symbols. By using bigram or trigram frequencies, or word lists, one can
get much better. An intelligent person is the best predictor that we have so far,
but that doesn’t prove it is the best. Let me put it to you another way; unless
I tell you the algorithm and key, you will probably not be able to distinguish a
strongly-encrypted version of the Holy Bible from a random data stream. That
is, if you don’t know the hidden pattern, it seems completely unpredictable
to you, but that doesn’t mean it’s randomly-generated, nor does it mean it’s
unpredictable to someone who is intelligent enough to see the pattern.

I will call the lowest limit the absolute entropy, and I will measure it in unbits,
which are absolutely unpredictable bits. The absolute entropy never changes,
no matter what you do to the output of your RNG; if your unpredictability
source can only pick n of m states, then encrypting its output (or hashing, or
any other deterministic operation) can’t increase the number of states it could
be in.

169

http://www.ciphersbyritter.com/RES/NOISE.HTM
http://www.ciphersbyritter.com/RES/NOISE.HTM
http://www.ciphersbyritter.com/NOISE/NOISRC.HTM
http://www.ciphersbyritter.com/NOISE/NOISRC.HTM
http://www.ciphersbyritter.com/NEWS3/RANDOM.HTM
http://www.ciphersbyritter.com/NEWS3/RANDOM.HTM
http://www.av8n.com/turbid/paper/turbid.htm
http://www.idquantique.com/products/quantis.htm
http://qrbg.irb.hr/

Let me illustrate this point by an example. Suppose I have a very poor random
number generator; it gets into one of two states upon power-up with equal
probability; in one state, it always generates ones, and in the other, it always
generates zeroes. Since there are two equally-probable states, then it produces
one unbit. Regardless of how many bits I have it generate, they must all be
either ones or zeroes. If I then encrypt or hash that data, it can still be in only
one of two states, though I no longer know what states those are. Thus, it is
unpredictable to someone who does not know the transformation, but it still
has only one unbit. In a sense, the encryption or hashing obscures the initial
state (by making it confidential with a computational level of security), but it
does not increase the number of streams the random number could produce.
That is because encryption and hashing are deterministic operations, and that
deterministic operations cannot introduce unpredictability.

29.15.1 The First Law of Unpredictability

In a closed, deterministic system, unpredictability never increases.

Thus, my first law of unpredictability (by analogy with the second law of ther-
modynamics) states that in a deterministic system, unpredictability never in-
creases. Put another way, the unpredictability of a completely deterministic
system tends to decrease over time; if my pseudo-random number generator is
seeded with a certain amount of unpredictability, unless it is carefully designed,
it may lose unpredictability over time by mapping n states at time ¢ to the
same state at time ¢+1. For example, if you repeatedly hash a value, since hash
functions are designed to be indistinguishable from random functions, and since
random functions tend to not to be one-to-one, this system will tend degrade
in unpredictability over time and eventually enter a cycle; see The Handbook
of Applied Cryptography for an analysis. The analogy we may use here is that
mapping n states to a smaller number in a random number generation system
is a wasteful operation, analogous to friction, and should be avoided.

29.15.2 Landauer’s Principle

Any logically irreversible manipulation of information, such as the
erasure of a bit or the merging of two computation paths, must be
accompanied by a corresponding entropy increase in non-information
bearing degrees of freedom of the information processing apparatus
or its environment.

— Landauer’s Principle (http://en.wikipedia.org/wiki/Landauer
%27s_principle)

It is probably no accident that only reversible computations (http://en.wikipedia.

org/wiki/Reversible_computing) maintain the unpredictability of the sys-
tem, and any time we destroy unpredictability (information) by reducing the

170

http://en.wikipedia.org/wiki/Landauer%27s_principle
http://en.wikipedia.org/wiki/Landauer%27s_principle
http://en.wikipedia.org/wiki/Reversible_computing
http://en.wikipedia.org/wiki/Reversible_computing

number of states of the system, we must dissipate energy (in the literal physics
sense). This does imply some kind of fundamental connection between entropy
and unpredictability (but see 29:71).

29.15.3 The Second Law of Unpredictability

Unpredictability may rise in a deterministic system, but by no more
than the amount added, nor may it exceed the state capacity of the
deterministic system to which it is added.

By extension, when we feed unbits into a deterministic system, we may increase
the unbits of the output, but only up to the number of bits total. That is,
if I have a sample which has z unbits and y bits total (where z < y) then I
may encrypt it using a key of k unbits, and the output may still have y bits,
but the number of unbits z’ may have increased by up to &k unbits (that is,
x < ' < x4k <y). Thus, the second law of unpredictability is that an
increase in the unpredictability of a deterministic system is less than or equal
to the amount of unpredictability added. It is certainly possible to throw away
unpredictability by mapping two input states onto a single output state, but if
we choose our operations carefully, we may retain most of it.

29.15.4 Mixing Unpredictability

Common ways to mix the unpredictability of multiple inputs into a single output
involve using:
e hash functions

e a combiner like XOR (or addition modulo some other convenient power of
two)

e a cipher, because encryption is one-to-one (making it conserve unpre-
dictability better than a hash), which has an avalanche effect (making
it better than simple XOR)

I am contemplating doing something like this in a configurable userland daemon.

The Linux /dev/random (29.14.1) does an interesting thing; it mixes unpre-
dictability by XORing into the “entropy pool” at multiple locations (called taps)
whose position within the pool changes irregularly.

29.15.5 Extracting Unpredictability

It is also possible to extract the randomness from weakly-random sources. This
is sometimes referred to as compression. There are a few ways to do this:

171

Compression Algorithm You can compress a large sample of the randomly-
generated numbers using a compression algorithm. However, if you do this,
make sure that your compression routine is not adding some non-random headers
or “magic numbers” to the output (many compression tools do this to identify
the compression scheme in use, or identify the stream as a compressed stream).

Cryptographic Hashing You can take a large pool of weakly-random num-
bers and run a hash algorithm over it; this is what most Unixes do for their
/dev/random and related RNG “devices”. This works but cryptographic hashes
are relatively slow in terms of CPU time for the amount of output they create.

Von Neumann’s Corrector In Von Neumann’s approach, you take two bits
from the RNG at a time. If they match, no output is generated. If they are
different, the first bit is used. This produces a uniform output even if the
distribution of the input bits is not uniform so long as they have the same
chance of being 1 and there is no correlation between them. However, those are
important conditions; if there is correlation between the bits, you will magnify
the correlation.

o Von Neumman Corrector (http://everything2.com/title/von+Neumann+corrector)

o RFC 4086 Section 4.2 (http://www.ietf.org/rfc/rfc4086.txt)

Other Randomness Extractors You can take many weakly-random bits
and some strongly-random bits and produce more strongly-random bits. This
is done through the use of extractors:

e Wikipedia article on extractors (http://en.wikipedia.org/wiki/Extractor)

e Wikipedia article on randomness extractors (http://en.wikipedia.org/
wiki/Randomness_extractor)

e David Zuckerman’s papers on extractors (http://www.cs.utexas.edu/
users/diz/pubs/#extractor)

30 Cryptanalysis

30.1 Cryptographic Attack Patterns

1. Known ciphertext attacks assume only that the adversary can obtain (en-
crypted) ciphertext. All cryptographic systems must prevent these at-
tacks.

172

http://everything2.com/title/von+Neumann+corrector
http://www.ietf.org/rfc/rfc4086.txt
http://en.wikipedia.org/wiki/Extractor
http://en.wikipedia.org/wiki/Randomness_extractor
http://en.wikipedia.org/wiki/Randomness_extractor
http://www.cs.utexas.edu/users/diz/pubs/#extractor
http://www.cs.utexas.edu/users/diz/pubs/#extractor

2. Known plaintext attacks assume that the adversary knows that the en-
crypted data corresponds to a known piece of plaintext. All cryptographic
systems should prevent these attacks.

3. Chosen plaintext attacks assume the adversary can choose plaintext; this
may happen if he can manage to send data over an encrypted link, or
give a statement to a diplomat who will necessarily transmit it back to his
home country verbatim.

4. Adaptive chosen plaintext attacks assume the adversary can choose plain-
texts at will in an attempt to break the security of the system; such attacks
are present in smart cards or any omcl, where the oracle will respond
with the ciphertext associated with any plaintext.

30.2 A Priori Knowledge

The more you know about the plaintext, the less you have to guess. For example
the entropy (29.6) of the data might be a clue as to the source; key material
generated by computers, encrypted, hashed, and compressed data have a Shan-
non entropy (H) nearly equal to one, whereas spoken languages and compiled
programs have different ranges.

In classic cryptanalysis, a knowledge of the language gives you symbol frequen-
cies of various kinds, and certain patterns that may be useful for breaking classic
ciphers. Alan Turing once imagined that one would be able to have a computer
“make guesses” about the ciphertext and go on until it reached a contradic-
tion, at which point it would stop and alter one of the guesses. That would be
worthless for a modern cipher, but it is essentially still how people solve sim-
ple substitution cryptograms like you find in the newspaper. Where do those
guesses come from? They come from a priori knowledge. The more of it you
have, the better your guesses are.

A few laws may help.

Zipf’s Law (http://en.wikipedia.org/wiki/Zipf’s_law) states that many
types of data studied in the physical and social sciences can be approxi-
mated with a Zipfian distribution, one of a family of related discrete power
law probability distributions. For cryptanalysis in particular, it suggests
that the frequency distribution of words in a language may be approxi-
mated with one of these curves.

Benford’s Law (http://en.wikipedia.org/wiki/Benfords_law) states that
in a table of statistics, a given statistic has a 30% chance of starting with
a 1, which is a great way to decrypt encrypted betting records made by
bookies using simple substitution. It also says that you should drop off the

141n computer security circles, an oracle is an entity that can perform a computation that
the adversary cannot.

173

http://en.wikipedia.org/wiki/Zipf's_law
http://en.wikipedia.org/wiki/Benfords_law

first digit if you want to get really random data, but that will be discussed
in the section on Randomness (see 29).

30.3 Length Extension Attacks

Many modern hash functions have a weakness against something known as the
length-extension attack. For cryptographic hashes with this weakness, if you
are given the hash (h(m)) and length of the message, but not the message m
itself, it is possible to select another message m’ and compute h(m|m’).

This attack can be used to break many naive authentication schemes based on
hashes, such as those that attempt to use h(S|m) as an unforgeable value:

e Thai Duong, Juliano Rizzo - Flickr API Signature Vulnerability (http://
netifera.com/research/flickr_api_signature_forgery.pdf)

e Travis H. - Web 2.0 Cryptography (http://www.subspacefield.org/security/
web_20_crypto/web_20_crypto.pdf)

These occur because Merkle-Damgard hashes typically have a “finalization” of
just appending some known padding and a 64-bit length to the block before
running it through the compression function.

Other schemes have been proposed, such as h(m|S) and even h(S|m|S), but
those are overly malleable; one can often substitute either partner to a hash
collision (see BO.)) with each other.

The HMAC function (see 283.6) works around these problems.

Bruce Schneier suggests always using h?(z) = h(h(z)) instead of a regular hash
function; it essentially says “hash it again” as part of the finalization.

30.4 Hash Collisions

As discussed in the section on cryptographic hash functions (see 2&34), one
of the properties of cryptographic hash functions is collision-resistance, namely
that it is difficult to find two inputs that have the same hash value. This section
includes links to work that finds or applies hash collisions.

30.4.1 Misc

e HashClash (http://www.win.tue.nl/hashclash/)

174

http://netifera.com/research/flickr_api_signature_forgery.pdf
http://netifera.com/research/flickr_api_signature_forgery.pdf
http://www.subspacefield.org/security/web_20_crypto/web_20_crypto.pdf
http://www.subspacefield.org/security/web_20_crypto/web_20_crypto.pdf
http://www.win.tue.nl/hashclash/

30.4.2 MD5

e How to Break MD5 and Other Hashing Functions (http://www.infosec.
sdu.edu.cn/uploadfile/papers/How’,20t0%20Break’,20MD5%20and},200ther
%20Hash%20Functions.pdf)

e MD5 To Be Considered Harmful Someday (http://www.doxpara.com/
md5_someday .pdf)

e Chosen Prefiz Collisions (http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/)

e Herding hash functions and the Nostradamus attack (http://www.cs.
washington.edu/homes/yoshi/papers/EC06/herding.pdf)

o Vulnerability of software integrity and code signing applications to chosen-
prefix collisions for MD5 (http://www.win.tue.nl/hashclash/SoftIntCodeSign/)

o Colliding X.509 Certificates for different Identities (http://wuw.win.tue.
nl/hashclash/TargetCollidingCertificates/)

e Predicting the winner of the 2008 US Presidential Elections using a Sony
PlayStation 3 (http://www.win.tue.nl/hashclash/Nostradamus/)

e Creating a Rogue CA Certificate (http://www.win.tue.nl/hashclash/
rogue-ca/)

o Colliding X.509 Certificates based on MD¥5-collisions (http://www.win.
tue.nl/"bdeweger/CollidingCertificates/)

30.4.3 SHA-1

e SHA-1 Collision Search (http://www.iaik.tugraz.at/content/research/
krypto/shal/)

30.5 PKCS Padding Oracle Attack

e Vaudenay - Security Flaws Induced by CBC Padding Applications to SSL,
IPsec, WTLS... (http://www.iacr.org/archive/eurocrypt2002/23320530/
cbc02_e02d.pdf)

e Black, Urtubia - Side-Channel Attacks on Symmetric Encryption Schemes:
The Case for Authenticated Encryption (http://www.cs.colorado.edu/
~jrblack/papers/padding.pdf)

e V. Klima and T. Rosa - Side Channel Attacks on CBC Encrypted Messages
in the PKCS#7 Format (http://eprint.iacr.org/2003/098.pdf)

175

http://www.infosec.sdu.edu.cn/uploadfile/papers/How%20to%20Break%20MD5%20and%20Other%20Hash%20Functions.pdf
http://www.infosec.sdu.edu.cn/uploadfile/papers/How%20to%20Break%20MD5%20and%20Other%20Hash%20Functions.pdf
http://www.infosec.sdu.edu.cn/uploadfile/papers/How%20to%20Break%20MD5%20and%20Other%20Hash%20Functions.pdf
http://www.doxpara.com/md5_someday.pdf
http://www.doxpara.com/md5_someday.pdf
http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/
http://www.cs.washington.edu/homes/yoshi/papers/EC06/herding.pdf
http://www.cs.washington.edu/homes/yoshi/papers/EC06/herding.pdf
http://www.win.tue.nl/hashclash/SoftIntCodeSign/
http://www.win.tue.nl/hashclash/TargetCollidingCertificates/
http://www.win.tue.nl/hashclash/TargetCollidingCertificates/
http://www.win.tue.nl/hashclash/Nostradamus/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/~bdeweger/CollidingCertificates/
http://www.win.tue.nl/~bdeweger/CollidingCertificates/
http://www.iaik.tugraz.at/content/research/krypto/sha1/
http://www.iaik.tugraz.at/content/research/krypto/sha1/
http://www.iacr.org/archive/eurocrypt2002/23320530/cbc02_e02d.pdf
http://www.iacr.org/archive/eurocrypt2002/23320530/cbc02_e02d.pdf
http://www.cs.colorado.edu/~jrblack/papers/padding.pdf
http://www.cs.colorado.edu/~jrblack/papers/padding.pdf
http://eprint.iacr.org/2003/098.pdf

e Rizzo - ekoparty 2010 slides - Padding Oracles FEverywhere - The ASP.NET
Vulnerability (http://netifera.com/research/poet/PaddingOraclesEverywhereEkoparty2010.

pdf)

e Rizzo - WOOT 2010 (http://usenix.org/events/woot10/tech/full_
papers/Rizzo.pdf)

e Rizzo - Blackhat 2010 (http://netifera.com/research/poet/PaddingOracleBHEU10.
pdf)

e Slashdot - New Crypto Attack Affects Millions of ASP.NET Apps (http://
it.slashdot.org/story/10/09/13/167239/New-Crypto-Attack-Affects-Millions-of-ASPNET-App

e Threatpost - New Crypto Attack Affects Millions of ASP.NET Apps (http://
threatpost.com/en_us/blogs/new-crypto-attack-affects-millions-aspnet-apps-091310)

The root cause of the problem, like Netifira’s earlier Flickr API Signature
Forgery vulnerability (see B0.3), is web developers used encryption when they
should have used MAC.

MAC prevents a client from forging a valid value. You can think of it like a
digital signature, except that it’s much faster and the same key creates and
verifies the data. Given an oracle, this vulnerability does make decrypting a
token - and thus getting the plaintext - O(n), instead of O(2™) as brute force
would dictate. It doesn’t require plaintext, just a ciphertext, and the attack
finds the plaintext a byte at a time, from the end. Their paper doesn’t actually
describe the attack (it refers to Vaudenay), but rather just describes how to test
for the presence of the vulnerability.

Anyway, the oracle condition typically occurs when you hand something to
the client and check it later, which is really a sign you should be using MAC
(specifically HMAC). You can also use encryption if you want to hide the value,
but for random nonces and session IDs, it doesn’t usually matter (doesn’t hurt,
either). You’ll want to encrypt-then-MAC if you do both.

PKCS#5 Padding If your input is a multiple of the block length, add a
full block of padding. Otherwise, add enough octets to pad to a block length.
Each octet of the pad always has the number of octets of padding used. So for
example, the plaintext ALWAYS ends with either 01, 02 02, 03 03 03, and so
on.

In CBC mode Flipping bits in the previous ciphertext block flips the same
bits in the next plaintext block after decryption (see http://www.subspacefield.
org/security/web_20_crypto/web_20_crypto.pdf for a good picture).

176

http://netifera.com/research/poet/PaddingOraclesEverywhereEkoparty2010.pdf
http://netifera.com/research/poet/PaddingOraclesEverywhereEkoparty2010.pdf
http://usenix.org/events/woot10/tech/full_papers/Rizzo.pdf
http://usenix.org/events/woot10/tech/full_papers/Rizzo.pdf
http://netifera.com/research/poet/PaddingOracleBHEU10.pdf
http://netifera.com/research/poet/PaddingOracleBHEU10.pdf
http://it.slashdot.org/story/10/09/13/167239/New-Crypto-Attack-Affects-Millions-of-ASPNET-Apps
http://it.slashdot.org/story/10/09/13/167239/New-Crypto-Attack-Affects-Millions-of-ASPNET-Apps
http://threatpost.com/en_us/blogs/new-crypto-attack-affects-millions-aspnet-apps-091310
http://threatpost.com/en_us/blogs/new-crypto-attack-affects-millions-aspnet-apps-091310
http://www.subspacefield.org/security/web_20_crypto/web_20_crypto.pdf
http://www.subspacefield.org/security/web_20_crypto/web_20_crypto.pdf

PKCS#5 Oracle Attack Suppose your plaintext ends in 04 04 04 04. If
I twiddle the last octet of the (previous block of) ciphertext, only one value
will give valid padding in the plaintext (01). Now I fix the last octet to 02 (by
flipping the two least significant bits), and go to work on the previous octet,
trying to make the plaintext end in 02 02. As a side effect, if I know what bits
I had to flip to get the valid padding values, I know that your plaintext differs
from the valid padding value in exactly those bits. This discloses your plaintext
to me, but as a side-effect of being able to forge ciphertexts that will be accepted
as valid.

Optimization Once you learn one padding octet, you know them all (and
their value).

For Fun If the padding was not 01, then there are two final octets which are
valid, but if it was 01, then there is only one. For fun, try and specify the above
algorithm formally, then compare to Vaudenay.

30.6 Cryptanalysis of Random Number Generators

Wikipedia article on Random Number Generator Attacks (http://en.
wikipedia.org/wiki/Random_number_generator_attack)

Cryptanalytic Attacks on Pseudorandom Number Generators (http://
www.schneier.com/paper-prngs.html)

30.6.1 Netscape SSL flaw (1995)

Randomness and the Netscape Browser (http://www.eecs.berkeley.
edu/~daw/papers/ddj-netscape.html)

30.6.2 MS CryptGenRandom (Nov 2007)

Wikipedia article (http://en.wikipedia.org/wiki/CryptGenRandom#Hebrew_
University_Cryptanalysis)

Cryptanalysis of the Random Number Generator of the Windows Operat-
ing System (http://eprint.iacr.org/2007/419.pdf)

30.6.3 Dual EC_ DRBG (Aug 2007)

Wikipedia article (http://en.wikipedia.org/wiki/Dual_EC_DRBG

Cryptanalysis of the Dual Elliptic Curve Pseudorandom Generator (http://
eprint.iacr.org/2006/190)

177

http://en.wikipedia.org/wiki/Random_number_generator_attack
http://en.wikipedia.org/wiki/Random_number_generator_attack
http://www.schneier.com/paper-prngs.html
http://www.schneier.com/paper-prngs.html
http://www.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
http://www.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
http://en.wikipedia.org/wiki/CryptGenRandom#Hebrew_University_Cryptanalysis
http://en.wikipedia.org/wiki/CryptGenRandom#Hebrew_University_Cryptanalysis
http://eprint.iacr.org/2007/419.pdf
http://en.wikipedia.org/wiki/Dual_EC_DRBG
http://eprint.iacr.org/2006/190
http://eprint.iacr.org/2006/190

e Did NSA Put a Secret Backdoor in New Encryption Standard? (http://
www.wired.com/politics/security/commentary/securitymatters/2007/
11/securitymatters_1115)

e On the Possibility of a Back Door in the NIST SP800-90 Dual Ec Prng
(http://rump2007.cr.yp.to/15-shumow.pdf)

30.6.4 Debian OpenSSL (May 2008)

o Debian Security Advisory DSA-1571-1 (http://lists.debian.org/debian-security-announce/
2008/msg00152.html)

e HD Moore’s page on the bug (http://metasploit.com/users/hdm/tools/
debian-openssl/)

30.6.5 Linux /dev/random

o Analysis of the Linux Random Number Generator (http://www.pinkas.
net/PAPERS/gpr06.pdf)

30.7 Cryptanalysis of Wireless Protocols
30.7.1 Wired Equivalent Privacy

I know there are a number of papers on WEP cracking. I need to fill this section
out one day.

30.7.2 Wireless Keyboards

e Researchers hack and crack Microsoft wireless keyboards (http://www.
computerworld.com/s/article/9051480/Researchers_hack_and_crack_
Microsoft_wireless_keyboards_)

o 27MHz Wireless Keyboard Analysis Report aka “We know what you typed
last summer” (http://www.dreamlab.net/download/articles/27_Mhz_
keyboard_insecurities.pdf)

31 Lateral Thinking

An optimist sees the glass as half full.
A pessimist sees the glass as half empty.
An engineer sees the glass as twice as big as it needs to be.

— Scott Adams, creator of Dilbert comic strip

178

http://www.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115
http://www.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115
http://www.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115
http://rump2007.cr.yp.to/15-shumow.pdf
http://lists.debian.org/debian-security-announce/2008/msg00152.html
http://lists.debian.org/debian-security-announce/2008/msg00152.html
http://metasploit.com/users/hdm/tools/debian-openssl/
http://metasploit.com/users/hdm/tools/debian-openssl/
http://www.pinkas.net/PAPERS/gpr06.pdf
http://www.pinkas.net/PAPERS/gpr06.pdf
http://www.computerworld.com/s/article/9051480/Researchers_hack_and_crack_Microsoft_wireless_keyboards_
http://www.computerworld.com/s/article/9051480/Researchers_hack_and_crack_Microsoft_wireless_keyboards_
http://www.computerworld.com/s/article/9051480/Researchers_hack_and_crack_Microsoft_wireless_keyboards_
http://www.dreamlab.net/download/articles/27_Mhz_keyboard_insecurities.pdf
http://www.dreamlab.net/download/articles/27_Mhz_keyboard_insecurities.pdf

One of the signs of genius is when a person can look at a previously-intractable
problem in a new and profitable way. There is a legend that an oracle prophesied
that the person who could untie an especially knot (http://en.wikipedia.
org/wiki/Gordian_Knot) would become king of all of Asia Minor. It is said
that Alexander the Great, unable to find the ends of the rope, pulled out his
sword and cut the knot, producing the required ends.

31.1 Traffic Analysis

The field of traffic analysis (http://en.wikipedia.org/wiki/Traffic_analysis)
concerns itself with everything except the content of the communication. If you
just take a regular human-readable protocol and encrypt it, the length of the
messages could give it away (“yes” and “no” are of different length). This has
been done to fingerprint encrypted web connections:

o Fingerprinting Web Sites with Traffic Analysis (http://guh.nu/projects/
ta/safeweb/safeweb.html)

Here are a couple of ideas:

e Many people use tor (http://en.wikipedia.org/wiki/Tor_(anonymity_
network)) for anonymity.

e Posting encrypted messages to Usenet (provides for receiver anonymity)
e Sending messages disguised as spam (see spam mimic)
e Broadcasting them on a numbers station, for recipient anonymity.

e Keeping a constant encrypted stream flowing at maximum bandwidth all
the time to prevent analysis.

e Time correlation; if Alice sends a message every Sunday at 4-5pm, and
Bob receives one every Sunday evening, they might just be related!

o Timing Analysis of Keystrokes and Timing Attacks on SSH (http://wuw.
cs.berkeley.edu/~daw/papers/ssh-use01.pdf)

31.2 Side Channels

Sometimes an adversary may have a method to obtain information from your
system which you did not anticipate, which allows him to infer things about the
system. These are called side-channel attacks in that they differ from the ex-
pected methods of communication that an adversary would have with a system.
In essence, they create an unexpected channel of communication to the adver-
sary from your monitor, your modem, your power line, or some other component
of your system.

179

http://en.wikipedia.org/wiki/Gordian_Knot
http://en.wikipedia.org/wiki/Gordian_Knot
http://en.wikipedia.org/wiki/Traffic_analysis
http://guh.nu/projects/ta/safeweb/safeweb.html
http://guh.nu/projects/ta/safeweb/safeweb.html
http://en.wikipedia.org/wiki/Tor_(anonymity_network)
http://en.wikipedia.org/wiki/Tor_(anonymity_network)
http://www.cs.berkeley.edu/~daw/papers/ssh-use01.pdf
http://www.cs.berkeley.edu/~daw/papers/ssh-use01.pdf

31.2.1 Physical Information-Gathering Attacks and Defenses
Miscellaneous

e Reading RAM with Firewire (http://md.hudora.de/presentations/#
firewire-pacsec, http://www.storm.net.nz/projects/16)

Electrical Emanations

o Sniffing Keystrokes with Lasers/Voltmeters (http://cansecwest.com/csw09/
csw09-barisani-bianco.pdf)

o Differential Power Analysis (http://en.wikipedia.org/wiki/Differential _
power_analysis)

Optical Emanations

o Information Leakage from Optical Emanations (http://applied-math.
org/optical_tempest.pdf)

e Optical time-domain eavesdropping risks of CRT displays via diffuse re-
flections (http://www.cl.cam.ac.uk/ mgk25/ieee02-optical .pdf)

Radio Frequency Electromagnetic Emanations

e FElectromagnetic Eavesdropping Risks of Flat-Panel Displays (http://www.
cl.cam.ac.uk/"mgk25/pet2004-fpd.pdf)

e Protective Measures Against Compromising Electromagnetic Radiation Emit-
ted by Video Display Terminals (http://www.phrack.org/phrack/44/
P44-10)

e Soft Tempest (http://www.cl.cam.ac.uk/ " mgk25/ih98-tempest.pdf)

e Van Eck style eavesdropping on CRTs (http://cryptome.org/emr.pdf,
http://cryptome.org/bits.pdf)

e RS-232 remote interception (http://jya.com/rs232.pdf)
o Tempest for Eliza (http://wuw.erikyyy.de/tempest/)

e Real Live TEMPEST-certified Equipment (http://www.hetrasecure.com/)

180

http://md.hudora.de/presentations/#firewire-pacsec
http://md.hudora.de/presentations/#firewire-pacsec
http://www.storm.net.nz/projects/16
http://cansecwest.com/csw09/csw09-barisani-bianco.pdf
http://cansecwest.com/csw09/csw09-barisani-bianco.pdf
http://en.wikipedia.org/wiki/Differential_power_analysis
http://en.wikipedia.org/wiki/Differential_power_analysis
http://applied-math.org/optical_tempest.pdf
http://applied-math.org/optical_tempest.pdf
http://www.cl.cam.ac.uk/~mgk25/ieee02-optical.pdf
http://www.cl.cam.ac.uk/~mgk25/pet2004-fpd.pdf
http://www.cl.cam.ac.uk/~mgk25/pet2004-fpd.pdf
http://www.phrack.org/phrack/44/P44-10
http://www.phrack.org/phrack/44/P44-10
http://www.cl.cam.ac.uk/~mgk25/ih98-tempest.pdf
http://cryptome.org/emr.pdf
http://cryptome.org/bits.pdf
http://jya.com/rs232.pdf
http://www.erikyyy.de/tempest/
http://www.hetrasecure.com/

Acoustic Emanations

e Researchers recover typed text using audio recording of keystrokes (http://
www.berkeley.edu/news/media/releases/2005/09/14_key.shtml)

o Keyboard Sound Aids Password Cracking (http://it.slashdot.org/article.
pl7sid=05/09/13/1644259)

o Keyboard Acoustic Emanations (http://rakesh.agrawal-family.com/
papers/ssp04kba.pdf)

e Snooping on Text by Listening to the Keyboard (http://www.schneier.
com/blog/archives/2005/09/snooping_on_tex.html)

o Keyboard Acoustic Emanations Revisited (http://www.cs.berkeley.edu/
~zf /papers/keyboard-ccs05.pdf)

o Acoustic Cryptanalysis (http://en.wikipedia.org/wiki/Acoustic_cryptanalysis)
of general computer noise (http://people.csail.mit.edu/tromer/acoustic/)

¢ Room audio modulated onto A/C power via incandescent lights (http://
en.wikipedia.org/wiki/Microphonics)

e Acoustic analysis of dot-matrix printers: R. Briol, Emanation: How to
keep your data confidential, In Symposium on FElectromagnetic Security
for Information Protection, SEPI’91, Rome, Italy, Nov 1991

31.2.2 Signal Injection Attacks and Defenses

This does not have to be a read-only channel; many smart card attacks are
based on modifying these parameters to affect the system adversely. Glitching
the power to a smart card, or putting it in the microwave...

o Tamper Resistance: A Cautionary Note (http://www.cl.cam.ac.uk/ " mgk25/
tamper .pdf)

o Tamper Resistance (http://en.wikipedia.org/wiki/Tamper_resistance)

o Differential Fault Analysis of Secret-Key Cryptosystems (http://www.cs.
technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?1997/CS/CS0910)

e On the Importance of Checking Cryptographic Protocols for Faults (http://
crypto.stanford.edu/~dabo/abstracts/faults.html)

181

http://www.berkeley.edu/news/media/releases/2005/09/14_key.shtml
http://www.berkeley.edu/news/media/releases/2005/09/14_key.shtml
http://it.slashdot.org/article.pl?sid=05/09/13/1644259
http://it.slashdot.org/article.pl?sid=05/09/13/1644259
http://rakesh.agrawal-family.com/papers/ssp04kba.pdf
http://rakesh.agrawal-family.com/papers/ssp04kba.pdf
http://www.schneier.com/blog/archives/2005/09/snooping_on_tex.html
http://www.schneier.com/blog/archives/2005/09/snooping_on_tex.html
http://www.cs.berkeley.edu/~zf/papers/keyboard-ccs05.pdf
http://www.cs.berkeley.edu/~zf/papers/keyboard-ccs05.pdf
http://en.wikipedia.org/wiki/Acoustic_cryptanalysis
http://people.csail.mit.edu/tromer/acoustic/
http://en.wikipedia.org/wiki/Microphonics
http://en.wikipedia.org/wiki/Microphonics
http://www.cl.cam.ac.uk/~mgk25/tamper.pdf
http://www.cl.cam.ac.uk/~mgk25/tamper.pdf
http://en.wikipedia.org/wiki/Tamper_resistance
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?1997/CS/CS0910
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?1997/CS/CS0910
http://crypto.stanford.edu/~dabo/abstracts/faults.html
http://crypto.stanford.edu/~dabo/abstracts/faults.html

31.2.3 System-Local Side-Channel Attacks

o Hyperthreading Considered Harmful (http://www.daemonology.net/hyperthreading-considered-har

e Percival, Cache Missing for Fun and Profit (http://www.daemonology .
net/papers/htt.pdf)

o Bernstein’s 2004 Cache-Timing Attacks on AES (http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf)

31.2.4 Timing Side-Channels

Often can be done remotely. Timing attacks don’t necessarily have to be related
to cryptography. Back in the 1970s, some hackers on the TENEX system noticed
that one could tell if the system paged in something from disk by measuring the
amount of time it took to access a page; by arranging a password to cross a page
boundary and then calling the system command which checked the password
(with a linear scan of the characters), they could tell if the password was correct
up until the page boundary (http://www.securitytechnique.com/2003/11/
passwords.html, http://www.st.cs.uni-sb.de/edu/secdesign/coding.pdf).
In a modern context, a database lookup or cryptographic operation may be suf-
ficiently time-consuming as to provide a “tell”, so one could determine if a given
web application had performed such an operation or not; such things could tell
you if a username or password (but not both) were correct, despite getting an
unhelpful error message.

e TENEX Password Timing Attack Hack (see Practical Uniz and Internet
Security)

e Execution Path Timing Analysis (of Unix Daemons) (http://ouah.org/
epta.pdf)

e CAN-2003-0190 OpenSSH timing flaw with PAM (http://lab.mediaservice.
net/advisory/2003-01-openssh.txt)

e CAN-2003-0078 OpenSSL timing vulnerabilities in CBC mode (http://
www.openssl.org/news/secadv_20030219.txt)

e Side Channel Cryptanalysis of Product Ciphers (http://www.schneier.
com/paper-side-channel.html)

¢ Recent timing attack versus AES (see AES timing attack: http://cr.yp.
to/antiforgery/cachetiming-20050414.pdf, AES timing attack dis-
cussion: http://www.schneier.com/blog/archives/2005/05/aes_timing_
atta_1.html, AES timing variability at a glance: http://cr.yp.to/mac/
variabilityl.html)

182

http://www.daemonology.net/hyperthreading-considered-harmful/
http://www.daemonology.net/papers/htt.pdf
http://www.daemonology.net/papers/htt.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://www.securitytechnique.com/2003/11/passwords.html
http://www.securitytechnique.com/2003/11/passwords.html
http://www.st.cs.uni-sb.de/edu/secdesign/coding.pdf
http://ouah.org/epta.pdf
http://ouah.org/epta.pdf
 http://lab.mediaservice.net/advisory/2003-01-openssh.txt
 http://lab.mediaservice.net/advisory/2003-01-openssh.txt
http://www.openssl.org/news/secadv_20030219.txt
http://www.openssl.org/news/secadv_20030219.txt
http://www.schneier.com/paper-side-channel.html
http://www.schneier.com/paper-side-channel.html
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://www.schneier.com/blog/archives/2005/05/aes_timing_atta_1.html
http://www.schneier.com/blog/archives/2005/05/aes_timing_atta_1.html
http://cr.yp.to/mac/variability1.html
http://cr.yp.to/mac/variability1.html

e Kocher’s 1996 Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS and Other Systems (http://www.cryptography.com/timingattack/
paper.html)

e Felten & Schneider (2000) Timing Attacks on Web Privacy (http://www.
cs.princeton.edu/sip/pub/webtiming.pdf)

e Brumley & Boneh (2003) Remote Timing Attacks are Practical (http://
crypto.stanford.edu/~dabo/abstracts/ssl-timing.html)

e Chris Karlof , David Wagner , Chris Karlof , David Wagner (2003) Hidden
Markov Model Cryptanalysis (http://citeseer.ist.psu.edu/696493.
html)

e Bortz (2007) XSRT (Cross-Site Request Timing)

e Bortz, Boneh, Nandy (2007) Ezposing Private Information by Timing Web
Applications (http://crypto.stanford.edu/ abortz/papers/timingweb.

pdf)

e Lawson 2009, Timing Attack in Google Keyczar Library (http://rdist.
root.org/2009/05/28/timing-attack-in-google-keyczar-library/)

How do we avoid leaking information?

fixed time implementations are invulnerable to timing side channels, but
very hard to do, depending on the resolution of the measurement and the
control over the computing environment that the adversary has. The most
important part of this is to write branch-free code (note that comparisons
for equality are almost always implemented as branches).

Dan Bernstein’s AES timing attacks show that table lookups are not constant-
time, and with sufficient number and accuracy of measurements and powerful
statistical tools in the hands of the adversary, it would be hard to really know
that one has actually performed this task sufficiently well. Therefore, here are
some ideas that may or may not be good, but attempt to address this difficulty
at the risk of adding complexity:

add randomly generated delays which, unfortunately, the adversary can
average out over time. This increases number of samples necessary, mak-
ing attack take longer.

quantize delay makes the amount of time a multiple of some value, reducing
the amount of information gained with each measurement. This is the
general case of “wait after computation so that everything takes the same
amount of time”. This is hard since precise measurements are hard, sleep-
ing a precise amount of time is hard, and knowing how long is the longest
it could take is hard.

183

http://www.cryptography.com/timingattack/paper.html
http://www.cryptography.com/timingattack/paper.html
http://www.cs.princeton.edu/sip/pub/webtiming.pdf
http://www.cs.princeton.edu/sip/pub/webtiming.pdf
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html
http://citeseer.ist.psu.edu/696493.html
http://citeseer.ist.psu.edu/696493.html
http://crypto.stanford.edu/~abortz/papers/timingweb.pdf
http://crypto.stanford.edu/~abortz/papers/timingweb.pdf
http://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
http://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/

add unpredictable delays by adding to the delay a cryptographic function
of the guess made by an adversary which must be constant over time,
yet unpredictable by the adversary (for example, t4 = g(x, k), where per-
haps g(x, k) = HMAC(z,k)/c). This is the logical improvement over a
randomly-generated value, since it cannot be averaged out by repeated
measurements with the same guess. If we represent the delay seen as
t =ty + tg@k) + ta, then it seems clear that the adversary has two,
possibly three unknowns in one linear equation. This might be soluble if
the computed delay has a high enough granularity or low enough range
(it is a discrete variable) that it could be separated from the other delays.

blinding involves not operating on the data, but instead a function of the
data, then computing some sort of inverse on the results. Similar to un-
predictable delays. Tends to be done with RSA due to the multiplicative
identity; unclear if it could be done with other algorithms (possibly Diffie-
Hellman).

hashing involves never operating on user data directly, but instead taking the
hash of it before, say, a comparison to a known value (which is also hashed
first). Similar to blinding.

It’s worth noting that many of the obvious ideas, such as adding delay, are
somewhat difficult to do accurately (due to timer availability and scheduling).
It also presents problems when the distribution has a long tail (for example, 1%
of the time, it takes 100x longer than average); that is why I suggest quantizing
the delay rather than waiting for the maximum possible time. Also many of the
long output times would be in cases where the machine is in a strange state,
such as overloaded by a surge of requests, or in the process of crashing, etc. It
is often hard to reproduce these states in testing.

31.2.5 Other

o Constructive Use of Side Channels (http://crypto.stanford.edu/seclab/
sem-09-10/becker.html)

32 Information and Intelligence

One gathers data in a process called collection, and significant data is called
information (“information is a difference that makes a difference”, as the saying
goes). That may further be processed or refined into stuff you can use called in-
telligence, or more generally product. Confusingly, intelligence has also come to
mean the entire lifecycle (http://en.wikipedia.org/wiki/Intelligence (information_
gathering)), from gathering to distributing the product. Sometimes intelli-
gence is referred to as “the great game”, but this should be taken in the sense of

184

http://crypto.stanford.edu/seclab/sem-09-10/becker.html
http://crypto.stanford.edu/seclab/sem-09-10/becker.html
http://en.wikipedia.org/wiki/Intelligence(information_gathering)
http://en.wikipedia.org/wiki/Intelligence(information_gathering)

game theory (http://en.wikipedia.org/wiki/Game_theory), and not trivi-
ality. In wartime, intelligence can equate to tens of thousands of deaths, pos-
sibly more. Spies, saboteurs, terrorists and other criminals can look forward
to lifetime imprisonment or execution if caught. In the excellent book Between
Silk and Cyanide (http://books.google.com/books?id=I14zP8hSxIFIC&dq=&
pg=PP1&ots=Jisjo9wtgmésig=tJ1aJ770qyz3r2Th8QNeKoOCNi0), Marks of the
UK’s SOE states that during WWII the average operational lifetime of a spy in
occupied Europe was approximately two weeks.

Some people see a natural synergy between computer security and warfare,

or between computer security and terrorism. The general definitions of in-

formation warfare (http://en.wikipedia.org/wiki/Information_warfare)

and cyberterrorism (http://en.wikipedia.org/wiki/Cyberterrorism) denote
the fact that a network intrusions are almost incidental to the actual goal.

However, the combination of computer security and espionage (http://en.

wikipedia.org/wiki/Cyber-warfare) is a perfect fit, since one may directly

attain the goal (collecting intelligence) remotely with a computer.

In the classified world, spy is a dirty word, virtually synonymous with traitor.
People like James Bond, were they to exist, would be referred to as agents,
whereas someone on the other side who works for you is called an asset. When
something happens in secret, it is clandestine. When appears to happen for one
reason (the cover) but actually happens for a secret (“covert”) reason, it is a
covert operation. The apparent (“overt”) reason is referred to as the cover story,
or simply the cover. Not using the proper euphemisms is considered insensitive,
like referring to killing an enemy soldier as murdering or killing him rather than
“neutralizing” him [

32.1 Intelligence Jargon

intel is short for intelligence, obviously

opsec is operational security, a five step process described at Wikipedia (http://
en.wikipedia.org/wiki/Operations_security)

infosec is information technology security (http://en.wikipedia.org/wiki/
INFOSEC)

comsec is communication security, covering all non-IT forms of communication
(http://en.wikipedia.org/wiki/COMSEC)

transec is transmission security, a subclass of comsec, focused on keeping trans-
missions from being intercepted by the adversary (http://en.wikipedia.
org/wiki/TRANSEC)

151 have often wondered why people consider “liquidation” a euphemism, as it sounds rather
unpleasant to me.

185

http://en.wikipedia.org/wiki/Game_theory
http://books.google.com/books?id=I4zP8hSxIFIC&dq=&pg=PP1&ots=Jisjo9wtgm&sig=tJlaJ77oqyz3r2Th8QNeKo0CNi0
http://books.google.com/books?id=I4zP8hSxIFIC&dq=&pg=PP1&ots=Jisjo9wtgm&sig=tJlaJ77oqyz3r2Th8QNeKo0CNi0
http://en.wikipedia.org/wiki/Information_warfare
http://en.wikipedia.org/wiki/Cyberterrorism
http://en.wikipedia.org/wiki/Cyber-warfare
http://en.wikipedia.org/wiki/Cyber-warfare
http://en.wikipedia.org/wiki/Operations_security
http://en.wikipedia.org/wiki/Operations_security
http://en.wikipedia.org/wiki/INFOSEC
http://en.wikipedia.org/wiki/INFOSEC
http://en.wikipedia.org/wiki/COMSEC
http://en.wikipedia.org/wiki/TRANSEC
http://en.wikipedia.org/wiki/TRANSEC

linesec is line security, making sure that your communication lines go where
you want and don’t cause crosstalk or become unintentional radiators

electronic warfare is use of the E/M spectrum to improve your own use of the
spectrum and deny the adversary use of it (http://en.wikipedia.org/
wiki/Electronic_warfare, http://en.wikipedia.org/wiki/Association_
of _01d_Crows)

sigsec is signal security, a generic term that includes both communications
security and electronics security

EEFT are the essential elements of friendly information; the things you don’t
want to give away to the enemy

32.2 Controlling Information Flow

The only truly secure system is one that is powered off, cast in a
block of concrete and sealed in a lead-lined room with armed guards
- and even then I have my doubts.

—Eugene Spafford (http://homes.cerias.purdue.edu/"spaf/quotes.
html)

If we can prevent an adversary from sending any information to a system (in-
filtration), then it becomes clear that this is the ultimate security from active
attacks. If we can prevent an adversary from getting any information out of
a system (ezfiltration), then it prevents all passive attacks. Combined, this
amounts to Marcus Ranum’s Ultimate Firewall (see http://www.ranum.com/
security/computer_security/papers/al-firewall/), which is also sold un-
der the more common name “scissors” (http://www.dumbentia.com/pdflib/
scissors.pdf). Similarly, with communication, if you can keep the commu-
nication out of reach of the adversary (for example by using wires instead of
radio, or a trustworthy courier to hand-deliver it), then they can’t do a darn
thing to break the confidentiality. Once he has a copy, you have only passive
information defenses such as cryptography to protect it. Note that passive de-
fenses like cryptography cannot alert you to attempts to defeat them, so the
attacks against them are also passive, and thus their failures are silent. Also,
once encrypted information falls into the adversary’s hands, you cannot perform
key rotations, or meaningfully revoke the key used to encrypt it, or anything
along those lines.

32.3 Labeling and Regulations

In certain environments, you may find that documents, or even IP packets, are
YR 14

classified as “proprietary”, “confidential”, “secret”, or something like that (for
an example of what those terms mean to the US government, see http://en.

186

http://en.wikipedia.org/wiki/Electronic_warfare
http://en.wikipedia.org/wiki/Electronic_warfare
http://en.wikipedia.org/wiki/Association_of_Old_Crows
http://en.wikipedia.org/wiki/Association_of_Old_Crows
http://homes.cerias.purdue.edu/~spaf/quotes.html
http://homes.cerias.purdue.edu/~spaf/quotes.html
http://www.ranum.com/security/computer_security/papers/a1-firewall/
http://www.ranum.com/security/computer_security/papers/a1-firewall/
http://www.dumbentia.com/pdflib/scissors.pdf
http://www.dumbentia.com/pdflib/scissors.pdf
http://en.wikipedia.org/wiki/Classified_information_in_the_United_States

wikipedia.org/wiki/Classified_information_in_the_United_States). My
first reaction is to wonder why people would clearly mark this data, because it
makes it easy for an adversaries to identify and collect something that has ob-
vious value. That is a drawback, but there are other, less obvious advantages
that dramatically outweigh it.

The first advantage of properly labeling information is that it enables a con-
scientious employee to know the information shouldn’t be casually discarded,
and thereby end up in the adversary’s possession. One cannot overstate the
importance of this; if the adversary can get ahold of unencrypted information
in the first place, you have lost your ability to protect it. Simply hoping that
he won’t recognize the importance of it is a very weak defense; it’s essentially
security through obscurity.

The second advantage of properly labeling information and having well-understood
regulations regarding the disposal of classified information, they will not be able
to ignore them under the defense that they didn’t know it was sensitive; this is
an example of the principle of removing excuses (see B4I3). Ideally, everyone
who handles the information should have as much interest in protecting it as
anyone else who has an interest in it. If not, they may decide it’s too much
trouble to handle properly, lose control of it, and someone else winds up paying
the consequences. Training should also include examples of bad things which
happened to a person because an employee failed to follow the regulations. Here
you want to make an impact on the person’s conscience, because it is far better
to have an employee who truly wants to protect the organization’s information
(and other people) than one who merely wants to not get caught failing to
protect it.

The third advantage of properly labeling information is that it deprives a ma-
licious insider of the ability to improperly dispose of the information with the
intention of giving it to the adversary, and then claiming that he didn’t know
that it was sensitive. This is sometimes called the “accidentally on-purpose”
threat. For this to be effective, the threat of punishment must be credible, and
that means making it known that you monitor for leaks. In this case, it is de-
sirable that at least some of your monitoring be done in such a way that the
employees do not know when it is happening. The education about the regula-
tions should include examples of punishments given to malicious insiders who
deliberately failed to follow regulations; pictures of unhappy-looking traitors
in stark cells, prison gear, shackles, and leg irons are usually more effective at
influencing a person than repeating the number of years of the sentence. In-
tentionally removing the label from information without going through proper
procedures is obviously a willful violation, puts the person in the “malicious
insider” category automatically. I'm not sure why Daniel Ellsberg did this with
the Pentagon papers, because removing the label doesn’t make it unclassified.

Finally, with properly labeled information, it makes it easy to check for acciden-
tal leaks; you merely look for the labels in any outbound data. The adversary
no better at finding this data than you are, so proper labeling helps you find it

187

http://en.wikipedia.org/wiki/Classified_information_in_the_United_States

at least as much as it helps him.

32.4 Knowledge is Power

Scientia potentia est.

— Sir Francis Bacon, Meditationes Sacrae, 1597 (http://en.wikipedia.
org/wiki/Scientia_potentia_est)

Understand that information is always on the side of the investigator. One of
the national labs used to record every packet that came over their WAN link. It
can also help in unexpected ways; for example, if someone calls you up on your
VoIP phone, and you record all your VoIP calls to hard disk (only one side needs
to be informed in some states), you could happen to record a threatening phone
call or someone who defrauds you, and use it as evidence against them later.
Note that the person storing the information and the investigator need not be
on the same side; during Microsoft’s anti-trust trial, Bill Gates was impugned
by emails he sent stored on his own company’s system that contradicted what
his sworn testimony.

32.5 Secrecy is Power

Occultia potentia est.

There is a purported NSA employee security manual on the web@, and if it is
correct, the very first thing you learn is to remain anonymous. Why? It’s hard
for an adversary to target you for anything if he doesn’t know you exist, or if
what he knows about you (for example, the name and purpose of your organi-
zation) can’t be translated into something he can attack (often an address, like
the geographic location of your underground command center, or the netblock
for your corporate LAN).

By way of example, if you had a secret FEMA bunker (for use in a national
emergency) whose location remains unknown to any adversary, you need only
worry about people stumbling across it either through curiosity or accident.
Thus, if the address of something you are trying to defend remains secret, then
you only need to worry about casual (untargeted) attacks. You can reduce the
change of accidental intrusion by placing it in a remote location and giving it
defenses appropriate to discouraging the passer-by (for example, barbed wire
fences). You can prevent people from becoming curious about it by giving it a
mundane cover. The rumor is that the new aircraft test location now that Area
51 has closed down is located on a testing range for biological and chemical
weapons, which would be a good way of discouraging curious explorers.

16The NSA manual may be found here: http://www.tscm.com/NSAsecmanuall. html or here:
http://www.cl.cam.ac.uk/"rjal4/Papers/nsaman.pdf

188

http://en.wikipedia.org/wiki/Scientia_potentia_est
http://en.wikipedia.org/wiki/Scientia_potentia_est
http://www.tscm.com/NSAsecmanual1.html
http://www.cl.cam.ac.uk/~rja14/Papers/nsaman.pdf

Does secrecy therefore imply that you are doing something you shouldn’t? That
depends; are you the sort of person who plays poker with his cards face up on the
table? Given the choice between asking people to keep quiet and asking them
to lie, I would prefer they simply keep quiet; having to lie is an unreasonable
request to demand of an ethical person, lying undermines your credibility, and
the more a person lies, cheats and steals, the more inured they are to the feelings
they provoke and the more likely they are to do so in the future. It is a slippery
moral slope that ends in disaster. Many revolutionary organizations have self-
destructed because the participants go from stealing to fund the cause to stealing
and killing for personal gain.

So, here are a few questions to consider:

e Why do you keep passphrases secret?

e Why do you keep your credit card number a secret?

e Why do you seal letters in envelopes?

e Why do you wear clothes?

e What is your social security number, full name, and address?

e Why are many security cameras in “domes of wine-dark opacity” or com-
pletely hidden?

e Why are the locations of data centers, or government offices, often not
published?

e Why do soldiers wear camouflage?

32.6 Never Confirm Guesses

People will make speculation about secret information, and publish them. It’s
generally a policy to never confirm any of them, because the adversary reads the
same papers, and probably was already aware of the speculation. Intelligence
agencies may well pay people to publish incorrect speculation. Also, it’s possible
the person who published the speculation is an adversary, and is attempting to
bait you into a public admission!

32.7 What You Don’t Know Can Hurt You

You only get nasty surprises if you don’t expect them.
— Thomas Ptacek

189

Now that we have established that secrecy is not immoral, let’s discuss practical
issues. Prior to the advent of the web, there was a world-wide bulletin board
system called Usenet. They had various forums, called news groups, which
numbered in the tens of thousands, depending on how you counted them. Now,
imagine that you posted under your real name to a support group for dealing
with homosexuality, or recovering from mental illness; you had every reason to
believe that (by and large) only people dealing with those issues would ever see
that article for the week or so it stayed on the news server. Flash forward ten
years, and now an Internet search engine like Deja News or Google Groups has
indexed it by your real name, making it trivially accessible to a potential em-
ployer or anyone with a grudge against you. I avoid using personally-identifying
information unless necessary, not because I’'m ashamed of anything I do, but
because I simply don’t know what the unintended consequences of information
disclosure will be. It may be taken out of context. Once disseminated, informa-
tion cannot effectively be revoked, so it’s always safer to say nothing than to say
something. Thus, NSA is sometimes said to stand for “Never Say Anything”.

If your opponent knows you know, they can take action to remediate it (see
BZ42). Conversely, if they don’t know you know, they can’t do anything about
it. Therefore, silent security failures are the most dangerous kind. Therefore,
secret attacks are the most dangerous. Therefore, passive attacks are worrisome.
Thus do we find policies such as “need to know”, “default deny”, and so on (see

B4.1).

32.8 How Secrecy is Lost

Here I should discuss the bit in The Wizard War (http://www.vectorsite.
net/ttwiz.html) where the author describes how classified information ends
up in unauthorized hands.

32.9 Costs of Disclosure

Imagine the consequences of leaking a classified document containing the name
of an active spy or mole within a foreign government. Alternately, imagine the
disclosure of details regarding a clandestine tunnel full of monitoring equipment
under the Kremlin; it would be almost impossible to compensate for the disclo-
sure; apart from millions of dollars in sunk costs, people probably risked their
freedom and possibly lives to make it possible. And the presence of the tun-
nel would not have to be disclosed directly; it may merely be that intelligence
gained from the tunnel intercepts is used in a careless manner, and that they
search for and find the tunnel.

190

http://www.vectorsite.net/ttwiz.html
http://www.vectorsite.net/ttwiz.html

32.10 Dissemination

Be careful about leaks and dissemination. In the intelligence business, one does
not redistribute information to a third party without explicit permission of the
sender; this is called second-sourcing, is considered extremely unprofessional and
downright rude. If the source would not give it to the third party, and you do,
you're basically taking a present from them and slapping them with it; it’s a
betrayal of trust, it seriously damages the relationship, and you may never get
anything from them again. If you were an employee of an intelligence agency
and did this without orders to do so, you would likely be fired, and possibly
charged with treason.

Suppose you offer information to customers. It’s virtually impossible to stop a
competitor from using an account or front and acquiring your information and
using it in some way you didn’t desire. The only leverage you have is being
able to be able to terminate the account, which isn’t much leverage if it’s free.
One possible countermeasure involves watermarking, or otherwise altering the
data imperceptibly so that you can perform traitor-tracing if you get a copy of
a leaked document to determine who leaked it.

32.11 Information, Misinformation, Disinformation

I don’t let things slip, Hank... I place information.
— Dale, King of the Hill (television series)

Your adversary seeks information. Someone who gives him the wrong answers to
his questions is merely spreading misinformation (http://en.wikipedia.org/
wiki/Misinformation), while someone who is actively thwarting him is feeding
him disinformation (http://en.wikipedia.org/wiki/Disinformation). If
your adversary seeks confidential information, placing some disinformation will
make them unsure of anything they get through espionage. It is said (http://
en.wikipedia.org/wiki/James_Jesus_Angleton#Increasing_paranoia) that
James Angleton was so shaken by the revelation that Kim Philby (a childhood
friend) was a Soviet agent that he became convinced that every defector from
the Soviet Union was a plant, and that it essentially prevented the CIA from
making use of anything they could learn from the defectors, and made many
of his subordinates wonder what they should be doing instead. It is also said
(reference needed) that Einstein spent some time coming up with disinformation
(equations/theory and research results) about atomic energy that were subtly
designed so that they would waste many resources before they were revealed
to be bogus. These were then printed in international physics journals. It is
also said that the CIA spends half its budget on disinformation and deception,
but if that is true, then it is only 50% likely to be true. The only thing I can
say about it is that 50% seems the ideal ratio for an adversary to believe, since
their gut reaction is that any yes/no question is much cheaper to “answer” just

191

http://en.wikipedia.org/wiki/Misinformation
http://en.wikipedia.org/wiki/Misinformation
http://en.wikipedia.org/wiki/Disinformation
http://en.wikipedia.org/wiki/James_Jesus_Angleton#Increasing_paranoia
http://en.wikipedia.org/wiki/James_Jesus_Angleton#Increasing_paranoia

as reliably with a coin toss. However, I suspect that a deception operation is
usually much cheaper than a real operation, because you don’t have to really do
something, you just have to appear to do it, so the ratio should be lower. My
suspicion is that the reported interest in psychic phenomena, mind control, and
remote viewing are likely to be like Einstein’s equations; fruitless time sinks for
foreign consumption

33 Conflict and Combat

Never interrupt your enemy when he is making a mistake.
— Napoleon Bonaparte (1769-1821)

o FAS: Information Warfare and Information Security on the Web (http://
www.fas.org/irp/wwwinfo.html)

33.1 Indicators and Warnings

Once is happenstance. Twice is coincidence. Three times is enemy
action.

— lan L. Fleming, Goldfinger

Suppose you’re the secret service, chartered to protect a president. You could
do nothing except saturate the area with snipers and hope to notice someone
pulling a gun and shoot them, but that’s not likely to be a safe and effective
policy. Now suppose that someone belonging to a militant anti-government
organization lives in a town the president will visit, buys a hunting rifle shortly
before the visit, rents a room along the parade route, and so on. These are
not necessarily hard evidence that they will go through with it, but they are
indicators and warnings (I6W) of foul intentions, and you’d be remiss in your
duties if you didn’t investigate this a little further, and make some preparations
to stop this particular event from reaching a point where you might be faced
with only undesirable choices. This line of reasoning may apply just as well to
network security scans or other forms of reconnaissance (see [I7).

The same thing happens in security all the time. Our firewalls are being pounded
on, and we do nothing about it.

L71f you doubt this, check out The Amazing Randi’s $1M prize for anyone capable of proving
a supernatural ability; he is an extremely clever fellow when it comes to uncovering deception.
And as for psychic channeling, how come none of these presumably very advanced entities can
provide a proof or disproof of, say, Goldbach’s Conjecture http://en.wikipedia.org/wiki/
Goldbach’s_conjecture?

192

http://www.fas.org/irp/wwwinfo.html
http://www.fas.org/irp/wwwinfo.html
http://en.wikipedia.org/wiki/Goldbach's_conjecture
http://en.wikipedia.org/wiki/Goldbach's_conjecture

33.2 Attacker’s Advantage in Network Warfare

But know this, that if the master of the house had known in what
part of the night the thief was coming, he would have stayed awake
and would not have let his house be broken into.

— Matthew 24:43 (English Standard Version)

In network warfare, there is only one defender (organization), and potentially
a billion independent attackers (for an Internet-facing system). The defender
is assumed to be known (e.g. we know who owns Microsoft.com), but not the
attacker. The attacker knows, or can trivially enumerate, the attack surface
(see [[H) on which he must make his attack. The attacker need only make one
successful attack to accomplish his objective, whereas the defender successfully
thwart all attacks. I call this the attacker’s advantage.

Bruce Schneier points out that cryptography is the exception to the general rule,
in that adding a single bit to your key size doubles the adversary’s work factor,
while only increasing your work slightly. Thus, absent any new cryptanalytic
attacks or advances such as quantum computers (see http://en.wikipedia.
org/wiki/Shor), the defenders may simply pick algorithms with sufficiently
large key sizes that a direct attack is infeasible. However, on the Internet they
may still often attack the end point directly, or use side channel attacks (B1.2).

33.3 Defender’s Advantage in Network Warfare

Suspicion always haunts the guilty mind.

— William Shakespeare

The defenders have an advantage in that they are not breaking the law, and
can thus organize openly. To date, I am not aware of commercial corporations
federating in any way to protect themselves, but it could be a very powerful
strategy. For example, several organizations could agree that an attack on
any of them will trigger all of them to shun that network address globally.
Or, they could share information related to intrusion, perhaps my having a
security monitoring company which monitors network traffic for all of them.
Such an organization could become aware of new attacks very early and take
measures to reduce or eliminate the vulnerability of all participants before the
attack hits them individually. The defenders also have an advantage in that the
attackers may organize openly and share ideas and information. This means
that defenders may receive the same information at the same time (see B6.10).
Then, we are in a race to see who can fix it or exploit it first (see B34).

More generally, if you cannot defend everywhere, all the time, you probably want
to defend where and when your adversary attacks. He doesn’t want you to know,
and if you want to catch him in the act, you don’t want him to know that you

193

http://en.wikipedia.org/wiki/Shor
http://en.wikipedia.org/wiki/Shor

know. Thus, the attacker wants to keep his targets unknown, and the defender
wants to keep his collection efforts unknown. This may have implications when
deciding between prevention and monitoring (see B5.7]).

33.4 OODA Loops

Sun Tzu discussed the importance of recognizing opportunities in battle and
exploiting them quickly, but John Boyd performed a detailed analysis of feed-
back loops, breaking them down into four stages; observe, orient, decide, and
act. They are called Boyd loops, or OODA loops (http://en.wikipedia.org/
wiki/00DA), and the basic premise was that if you can make this cycle shorter
than your opponent’s, you can react to unfolding events faster than they can,
like a person balancing an upright stick on top of their finger.

At first, this may not seem to have any application to computer security. How-
ever, it has a great deal more relevance than one might think. For example,
consider that you are head of computer security at an online financial institu-
tion, and your adversaries are everybody who wants to steal money from it.
Now, you would be incredibly foolish to simply stick your head in the sand
and hope that nobody hacks you, right? Anybody with two neurons connected
together can tell that it would be a good idea to know what the adversaries are
doing so that you could take countermeasures.

Also, it should be clear that you want to know as soon as possible; so, you
will want abuse detection systems (see [I6), and it would be ever better for
you to monitor computer security web sites, even the gray-hat and black-hat
sources, and possibly phishing and fraud-related forums primarily populated by
criminals. The fact of the matter is that respectable groups like CERT often
don’t tell you the information as quickly as you would like, because they don’t
want it getting in the wrong hands. But you are the right hands, and you want
to get it as quickly as possible, so it’s in your best interest to do so. The people
who will succeed in this endeavor are the ones who are the most connected.

Finally, you want to be able to evaluate the information and react quickly to
limit the exposure or damage; thus, this is related to the principle of agility (see
B42). Combined, this forms your OODA loop. In an ideal world, you would be
so tapped into your adversary’s thinking process, and so agile, that you could
deploy a countermeasure before he was able to field the attack. You can’t do
that with your eyes closed. You aren’t going to be able to do that if all you
know about your adversary is that they hate freedom, or that they are evil,
or similar slogans that subtly imply good people stop thinking at this point.
Understanding is not the problem; understanding is the solution (see the quote
in[6). Ideally you would like to avoid conflict, to win without fighting, but most
conflicts arise because of lack of understanding or simple callousness.

194

http://en.wikipedia.org/wiki/OODA
http://en.wikipedia.org/wiki/OODA

33.5 Courses of Action

A standard military procedure is to develop Courses of Action (CoA) for per-
sonnel. This aids in making sure that they take appropriate action in response
to stimuli.

o Course of Action Development and Analysis (http://www.globalsecurity.
org/military/library/report/call/call_93-3_ch4.htm)

34 Security Principles

Obey the principles without being bound by them.

— Bruce Lee

Now that we have an understanding of the issues “in the wild”, I can attempt
to extract from them some common lessons, and reformulate them as general
principles which may help you build more secure systems.

o OWASP Application Security Principles (http://www.owasp.org/index.
php/Category:Principle)

e Saltzer & Schroeder’s The Protection of Information in Computer Sys-
tems (http://web.mit.edu/Saltzer/www/publications/protection/,
http://www.ece.rutgers.edu/ parashar/Classes/03-04/eceb72/papers/
protection.pdf) Section 1A3

34.1 The Principle of Least Privilege

One basic and obvious tenet is to give every part of the system just enough
privileges to get its job done, but no more. It takes a number of forms:

least privilege is where you authorize a program or system to do only what
it needs to do to accomplish its objectives (http://en.wikipedia.org/
wiki/Principle_of _least_privilege)

need-to-know (NTK) is the personnel security principle to protect confiden-
tiality where you only tell people what they need to know to get their job
done

default deny is the access-control principle which states “anything which is
not explicitly allowed is denied”

anomaly detection is when you alert whenever something is out of the ordi-

nary (see [6.2)

195

http://www.globalsecurity.org/military/library/report/call/call_93-3_ch4.htm
http://www.globalsecurity.org/military/library/report/call/call_93-3_ch4.htm
http://www.owasp.org/index.php/Category:Principle
http://www.owasp.org/index.php/Category:Principle
http://web.mit.edu/Saltzer/www/publications/protection/
http://www.ece.rutgers.edu/~parashar/Classes/03-04/ece572/papers/protection.pdf
http://www.ece.rutgers.edu/~parashar/Classes/03-04/ece572/papers/protection.pdf
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege

artificial ignorance is when you remove things you know to be alright from
your log files and only look at what doesn’t match (see [15.2)

The best illustration of this principle that I have found is in Marcus Ranum’s The
Siz Dumbest Ideas in Computer Security (http://www.ranum.com/security/
computer_security/editorials/dumb/). It’s also quite amusing, so you should
read it now. He says calls the opposite of this principle “enumerating badness”,
because you have to pay someone to sit around and guess or research what bad
guys are doing, and you thus always caught flat-footed by a new kind of bad
thing. This was described as a bad idea in computer security as early as 1965,
by E. Glaser. Saltzer & Schroeder call this principle “fail-safe defaults” or “least
privilege”.

However, there are many problems with implementing such a design. First,
many systems allow only a certain granularity of privileges. For example, most
OSes give each user a privilege set, and any program run as that user inherits
that privilege set. To get finer-grained permissions, you usually need a change
to the OS, such as MAC (see[I2.3]). This requires a much deeper level of knowl-
edge than you would need otherwise. Similarly, most firewalls block on individ-
ual ports; blocking on the kind of traffic depends on deeper understanding of
the network data (the buzzwords for this change, but may include “layer 7 fire-
walling” and “deep packet inspection”). But even that may not be enough; some
operations within the protocol may be safe, and others not; for example, you
may wish to allow someone to read a file with FTP, but not to write. With an
undocumented protocol like Microsoft’s SMB/CIFS, you generally must block
it entirely because it’s a black box and therefore you can’t know that it is safe.
With programs, you must currently grant privileges to the entire program at
once, or not at all; if one part of the code can do it, so can another. This means
that to remain secure, the program must often be split into multiple pieces (this
is the strategy used by the secure mailer Postfix, and it has worked rather well).

Nobody has yet done any work on automatically determining the privileges
software needs automatically, because it’s a code coverage (for application se-
curity) and generalization problem. For example, the code read “/tmp/aaa”,
and “/tmp/aab”; I can create rules which allow this, but it won’t be able to
read “/tmp/aac”. But how far do I generalize? Does it need to be able to read
“/tmp/bar’?

34.2 The Principle of Agility

The best system is to use a simple, well understood algorithm which
relies on the security of a key rather than the algorithm itself. This
means if anybody steals a key, you could just roll another and they
have to start all over.

— Andrew Carol

196

http://www.ranum.com/security/computer_security/editorials/dumb/
http://www.ranum.com/security/computer_security/editorials/dumb/

My friend does penetration testing, and tells me that having zero-day exploits
(or any exploit with no vendor patch) does him no good because if he reports
the customer as being vulnerable, the customer can’t do anything about it.
Technically, they could, but they’d probably need to switch technologies, like
operating systems. Unfortunately, most are too wed to the relevant technologies
to be able to do that.

Also, recently some companies have tried to make media only playable on certain
devices, and they call this Digital Rights Management (DRM). This usually
involves having a secret embedded in the device. Of course consumers wanted
to be able to play media they purchased with whatever player they wanted,
which is totally reasonable, and so a war ensued. In the first few iterations
of this, people extracted the secrets from players and then were able to play
the media on whatever they wanted, and the media companies were unable to
respond because all the players had secrets in them which could not be changed.

In both of these cases, the subjects were unable to deal with a piece of informa-
tion because they were not agile; they could not react to the new information.

To be agile, you want to avoid lock-in to a vulnerable technology. It can happen
when a component you depend on has a design vulnerability, or the implementa-
tion of that component has a vulnerability but you depend on implementation-
specific additions. It seems the key here is to write portable code that adheres
to open, well-defined standards, so that you can switch implementations any
time you wish. It also militates against “package deals”, or “bundles”, where you
can’t change one component without changing the entire bundle.

Of course, greedy vendors hate this, because having low switching costs means
they can’t charge you nearly as much. That may well be the drive behind
the Unix workstation fragmentation and Microsoft’s “embrace, extend and ex-
tinguish” principle (http://en.wikipedia.org/wiki/Embrace, _extend_and_
extinguish). But by being able to switch to a competing product any time
you want, you are financially secure. It’s not the smart customer that made
them self an enemy; it’s the fact that the vendor’s interest diverged from that
of the customer, and so it made the customer their enemy. When companies
stop trying to take advantage of their customers by locking them in, and just
focus on giving the customer the best value for their money, they will no longer
see their customers, smart or otherwise, as enemies.

Similarly, it would be nice to identify assumptions about the security environ-
ment that may be subject to change, and pick a solution that is not require this
assumption to be true to give the desired result. Put another way, one should
prefer flexible solutions over brittle ones. In practice, security systems that were
properly designed but failed in practice often depend on an assumption that was
erroneously believed to be true, or was true initially but ceased to be true over
time. So using flexible solutions is also a way to stay agile.

In the ancient board game the Japanese call Go (http://en.wikipedia.org/
wiki/Go_(board_game)), there is a strategic concept called aji, which literally

197

http://en.wikipedia.org/wiki/Embrace,_extend_and_extinguish
http://en.wikipedia.org/wiki/Embrace,_extend_and_extinguish
http://en.wikipedia.org/wiki/Go_(board_game)
http://en.wikipedia.org/wiki/Go_(board_game)

means “taste”, but is best translated as “latent potential” One can imagine it
being similar to an army you hold in reserve in the rear which may be quickly
deployed at any location along the front line. Because it stays back there, the
adversary cannot easily commit all his troops to a certain part of the front line
without you then being able to deploy yours to a weak point along the front
line. Similar concepts can exist within security systems; you may not be able
to audit all events within the system, but you may choose to audit a set which
you believe to be relevant. If you learn information that causes you to change
that set, perhaps because of information gathered by forensic examinations of
adversary actions, it would be desirable to be agile enough to change it with
minimal effort.

By way of example, consider if you had standardized on a Windows 1.0 mul-
timedia program. How would you run it? You laugh, but I’ve seen companies
with obsolete systems who continue to pay exorbitant costs because the cost of
switching to (rewriting for) another system is too prohibitive. As long as the
costs increase gradually, there is never sufficient immediate cause to invest in
the fix that would provide best long-term gains. Database vendors have long
known the vendor lock-in principle, and if you think it’s unimportant, look at
IBM, or Oracle (who, as of this writing, recently acquired Sun Microsystems).

34.3 The Principle of Minimal Assumptions

Perfection is reached, not when there is no longer anything to add,
but when there is no longer anything to take away.

— Antoine de Saint-Exupery

Roughly speaking, the stronger the defense is, the less assumptions are neces-
sary for it to be effective. It would be nice to minimize the secrecy requirements
to keep the defense effective. In cryptography, we want to have the system re-
main secure when only the key is unknown; this is Kerckhoff’s Second Principle
(http://en.wikipedia.org/wiki/Kerckhoffs’ principle), described in la
cryptographie militaire (http://petitcolas.net/fabien/kerckhoffs/), and
it’s valuable because confidentiality is difficult to maintain, or assure, and loss
of it is often undetectable, and if someone did compromise the design of the sys-
tem, it would be difficult or impossible to change. One can also design a system
starting with the assumption that the system is known to the adversary, and
when stated that way it is known as Shannon’s mazim, but was also discussed
in Saltzer and Schroeder as the principle of open design. In actuality, the real
thrust behind Kerckhoff’s Principle is that of agility (see B4.2); the users can
react to disclosure merely by changing keys, and don’t have to redesign the sys-
tem. Of course if your keys are buried in offline devices and you can’t securely
update the keys, then you’re still pretty hosed. Security or strength built on

8For more Go terms, see the Wikipedia entry: http://en.wikipedia.org/wiki/Go_terms

198

http://en.wikipedia.org/wiki/Kerckhoffs'_principle
http://petitcolas.net/fabien/kerckhoffs/
http://en.wikipedia.org/wiki/Go_terms

openness are more durable, because there is no secret which may be lost which
may compromise that strength.

Put another way, security which depends on too many things is built on a shaky
foundation, because your adversary may target the weakest of those things.
Another formulation of this could be called the principle of small numbers,
which states that no sufficiently large thing is uniformly good. It basically states
that it is difficult to ensure consistency across large numbers of people or other
complex systems, and that when the security relies on all of them, then it is
best to minimize the number of them involved. My friends who are penetration
testers tell me that the larger the organization, the easier it is to find a single
weak link in the perimeter. This ties into the principle of uniform fronts (see
BL3).

There is a significant analogy in cryptographic and mathematical proofs; that
the more (and stronger) assumptions on which a proof rests, the less impor-
tant /valuable the result (note that a stronger assumption is one less likely to be
true). It is actually very, very common to base proofs on unproven postulates;
a common one is that P is not equal to NP. It is often valuable to revisit those
parts of the system and see if we can reduce the strength of those assumptions.
It is also valuable to ask if we can design a system which is no worse than the
current system, but which performs better under additional conditions; one can
say that such a system weakly dominates (http://en.wikipedia.org/wiki/
Strategic_dominance) the current system.

34.4 The Principle of Fail-Secure Design

It is sometimes suggested that mechanisms that reliably record that
a compromise of information has occurred can be used in place of
more elaborate mechanisms that completely prevent loss. For exam-
ple, if a tactical plan is known to have been compromised, it may
be possible to construct a different one, rendering the compromised
version worthless. An unbreakable padlock on a flimsy file cabinet is
an example of such a mechanism. Although the information stored
inside may be easy to obtain, the cabinet will inevitably be damaged
in the process and the next legitimate user will detect the loss. For
another example, many computer systems record the date and time
of the most recent use of each file. If this record is tamper-proof and
reported to the owner, it may help discover unauthorized use. In
computer systems, this approach is used rarely, since it is difficult
to guarantee discovery once security is broken. Physical damage
usually is not involved, and logical damage (and internally stored
records of tampering) can be undone by a clever attacker.

— Saltzer & Schroeder

If you system can, fail secure; if you can’t, fail obviously.

199

http://en.wikipedia.org/wiki/Strategic_dominance
http://en.wikipedia.org/wiki/Strategic_dominance

In A First Tour Like No Other (https://www.cia.gov/library/center-for-the-study-of-intelligence/
kent-csi/docs/v41i5a0lp.htm), CIA agent William J. Daugherty recounts

what happened when the US Embassy was overrun in Iran. They were under

orders not to retain more classified documents than could be destroyed in 30

minutes, which was the rating against forced entry of the vault. However, the

document shredder /incinerator was a finicky beast, and shut down within a few

minutes, and many documents were disclosed™.

Thus, the general design principle is that a system should fail in such a way
that the desired security properties remain intact. For example, if one wants to
preserve confidentiality, one should keep the data encrypted whenever practical.
That way, if the system fails in foreseeable ways (power loss, theft, etc.) min-
imal amounts of plaintext are disclosed. This is also a wise thing to do given
that emergency procedures hardly ever work as designed. In a crisis, there is
confusion, and people act unpredictably (or may be dead). Thus, if one can do
a little more work in non-crisis situations to reduce the amount of work required
in crisis situations, as you can with encrypted storage (see 28.7), that is often
an excellent trade-off.

The converse of this principle is that when it can’t give security, it fails in a
glaringly obvious way. Most programmers work on their code until it works, and
then stop. Often people assume that if they don’t see an indication of failure,
then it must be safe. You should at least give obvious warnings when something
is unsecure (repeated warnings are annoying, which is why most browsers allow
you to accept a certificate which cannot be guaranteed to be safe for one reason

or another; see B4T4).

More generally, if we cannot guarantee fail-secure, we should strive to have a
“tamper evident” design; if it fails, the failure is recorded in some way (see [I6]).

34.5 The Principle of Unique Identifiers

Suppose you are setting up a Unix system, and you set up the root account,
and you give out the password to six people. One day you find out that root
logged in and ran something which compromised security. You can’t figure out
which user did it unless you have some auxiliary information; if they logged in
over the network, you can check the logs and see if you can identify who was
logged in there at the time, but you may find the same problem there, or that
the account credentials were stolen. If they logged in on the console, you can
check badge records for the facility and see who was in the area at the time.
But ultimately, your ability to know what you want to know depends on factors
outside of your control, which is always a bad state of affairs.

Similarly, if you have shared accounts on a web server, if someone starts mir-
roring your server (or otherwise causing mischief), you don’t know who is doing

19The documents seem rather uninteresting to me, but can be found in the series of
books called Documents From the US Espionage Den: http://www.thememoryhole.com/
espionage_den/index.htm

200

https://www.cia.gov/library/center-for-the-study-of-intelligence/kent-csi/docs/v41i5a01p.htm
https://www.cia.gov/library/center-for-the-study-of-intelligence/kent-csi/docs/v41i5a01p.htm
http://www.thememoryhole.com/espionage_den/index.htm
http://www.thememoryhole.com/espionage_den/index.htm

it, or if someone shared (or failed to protect) their account information. Thus,
shared accounts are always bad for audit and accountability. You really want
each unique identifier (email address, username, etc.) to map to one subject
(although it’s okay for a single subject to have multiple identifiers).

With cryptography, it gets even more interesting. Suppose you have a network
with a shared key, like WEP. Now, everyone who is a member of that network
is essentially equal, in the sense that any of them may impersonate the others.
If Alice and Bob and Mallory are on the network, Alice can’t know she’s talking
to Bob without additional information, because Mallory has the same privileges
that Bob does (she could spoof Bob’s IP and MAC address, for example). This is
the technique used by airpwn (http://sourceforge.net/projects/airpwn),
which is capable of doing some amusing things with unencrypted web traffic
(http://www.evilscheme.org/defcon/).

Thus, the set of all subjects (active parties which wish to do things with or to
our system) who may obtain a specific identity should be as small as possible;
ideally, such sets will always be singletons (http://en.wikipedia.org/wiki/
Singleton_); that is, only one subject will be able to obtain the identity (see

L)

34.6 The Principles of Simplicity

Everything should be as simple as it can be, but no simpler.
— Albert Einstein

If one looks around at other engineering disciplines, none has the complexity of
computer science. If you told a mechanical engineer that you wanted to have
a reliable, safe car with a billion moving parts, he’d think that you were nuts,
and yet our CPUs alone have that many transistors. In particular, the brake
column on a car is made of a single, solid piece of metal. Thus, for reliability
you want as simple a system as possible.

I have heard that in the US embassy in Moscow, they have a conference room
made of plexiglass called “the bubble” inside one of the rooms, and they have
their most sensitive discussions there. People who make a living sweeping for
bugs, despite all the fancy gadgets, acknowledge that the physical search is the
foundation of their craft. If you think about this, it makes perfect sense; it is
trivially to visually identify any listening devices placed within such a room.
Nobody who goes in there can leave anything without it being easily detected.
So they can inspect it constantly, and trivially, without any fancy procedures.
Thus, you want a system whose security is as easy to verify as possible.

There was a television show about the NSA recently, and one of the employees
was discussing a possible use of virtual machines to enforce multi-level security.
He said they were trying to come up with a way to make sure that any commu-
nication between systems only happened in very carefully-controlled ways. He

201

http://sourceforge.net/projects/airpwn
http://www.evilscheme.org/defcon/
http://en.wikipedia.org/wiki/Singleton_
http://en.wikipedia.org/wiki/Singleton_

said, “we have a saying; the more complex the problem we have, the simpler a
solution we need.” If you think of the US government as the largest corpora-
tion on Earth, then you understand that in order to keep it secure, you need
security mechanisms that can be understood by the average eighteen-year-old.
If you have a security device that’s complicated to understand, it won’t be used
properly or consistently. Thus, you want security mechanisms that are as easy
to understand and operate as possible.

The earliest description of this principle I have found in this application is
Saltzer & Schroeder, where they call it “economy of mechanism”.

34.7 The Principle of Defense in Depth

In the middle ages, a castle might have a large set of walls around it, and then
a central keep inside the outer walls; the adversaries needed to breach the outer
wall, then the walls of the central keep. Thus, different parts of a security system
may be arranged in series, meaning that you have to defeat all of them to defeat
the system; this is called defense in depth (http://en.wikipedia.org/wiki/
Defence_in_depth). If the security of a given resource R is protected by two
security systems A and B arranged in series, then an adversary must defeat A
and B in order to defeat the system; thus R = AzB. If we’d like to analyze
how often this combination of systems fail due to random chance, we simply
multiply the probabilities.

However, against an intelligent adversary, we’d like to ensure that a given type of
attack does not bypass both systems, which we do by making them structurally
different. For example, you may use a normal key to pass through an outer
layer of access control, and then use a biometric of some kind to pass through
an inner layer of access control; this prevents someone who can pick locks from
being able to pass through both using the same skill. A similar principle is
used by those who employ both humans and dogs in combination as guards;
the senses of dogs neatly complement those of humans, so the combination will
likely be better than either humans or dogs alone.

You might consider defense-in-depth (a/k/a “layered defense”) of the security-
critical systems; if one were able to, say, bypass Kerberos security, one might
not want the Kerberos server to depend upon the security of Kerberos, because
that’s a little like begging the question (assuming something is true and using
that assumption to prove that it is true). So perhaps only allow people to
SSH into the Kerberos server from one host, and then protect that host with
Kerberos. So now, the adversary must compromise the Kerberos-protected host,
then compromise the Kerberos server over SSH.

34.8 The Principle of Uniform Fronts

A risk accepted by one is shared by all.

202

http://en.wikipedia.org/wiki/Defence_in_depth
http://en.wikipedia.org/wiki/Defence_in_depth

— USAF IA slogan

Alternately, a castle may have two gates which grant access to the inside of a
restricted area, then you have two access control devices arranged in parallel.
In this case, either gate is a single point of failure for the protected area; the
adversary need only defeat one to defeat either, thus R = A + B. If we’d like
to know the rate of failure due to random chance, we simply add the rates of
failure for each system together.

An intelligent adversary will analyze each security system and pick the one
with which they will have the most success. You’d like to make sure that no
particular system in this combination is weaker to them than any other, so the
easiest way to do this is to make them homogeneous. I call this the principle of
wniform fronts.

If you think this is all too simple, ask yourself what principles are being followed
with the DNS root name servers. The DNS root name servers are heterogeneous,
and all exposed to the public. Are they violating good design principles by
applying heterogeneity in parallel?

If you think about it (or even if you don’t), the DNS root name servers aren’t
defeated by a DoS attack unless the whole system becomes unavailable; in this
respect we see that they are actually in a series arrangement, and that they are
applying defense-in-depth. They are not worried about confidentiality, because
they are providing information to the public. Instead, they want availability,
and the system as a whole is still available as long as a sufficient number of the
root servers are functioning properly. So again it is important to have in mind
what our security goals are, as they affect our analysis and our definitions.

This is a slight tightening of “the principle of complete mediation” proposed
by Saltzer and Schroeder, who suggest that all accesses be mediated, and that
any remembered access decision must be updated systematically if a change in
authority (authorization) occurs.

34.9 The Principle of Split Control

One of the principles of creating highly reliable systems is that you shouldn’t
allow for a single point of failure (SPOF) in your design. For example, if a disk
drive fails, you want enough redundancy (from, e.g. RAID) that the system con-
tinues functioning properly. When you're developing code, you generally copy
the code to a second location periodically (such as a version-control repository
like subversion) so that you don’t accidentally lose some of it. I believe that this
general pattern can be usefully applied to some security systems as well in a way
that I call split control. Saltzer and Schroeder called it separation of privilege
though according to the folks over at CERIAS (http://www.cerias.purdue.
edu/weblogs/pmeunier/infosec-education/post-139/confusion-of-separation-of-privilege-and- le

203

http://www.cerias.purdue.edu/weblogs/pmeunier/infosec-education/post-139/confusion-of-separation-of-privilege-and-least-privilege/
http://www.cerias.purdue.edu/weblogs/pmeunier/infosec-education/post-139/confusion-of-separation-of-privilege-and-least-privilege/

people tend to confuse it with least privilege (see B4, so I try to avoid that
term.

One of my friends performs security audits and he had a customer who had a
data center with a red button near the exit which was the emergency cut-off
switch for the power. One of the people leaving the data center thought it was
to open the door and pressed it, causing untold losses to their customers. Back
in the days of mainframes, a programmer’s toddler daughter named Molly hit
the big red switch (BRS) on an IBM 4341 mainframe twice in one day, so they
created plexiglass covers for the switch, which is called a “molly guard” to this
day. An investment of a few dollars may save many thousands. So by requiring
two changes to implement one change, you reduce the chance of it happening
accidentally.

You are probably also familiar with this principle when you’ve had to wait on
a checker to call another person with a special key to authorize a transaction,
usually removing an item from your purchase. The idea there is that a checker
cannot void off items and pocket the cash without getting the attention of the
second person. Similarly, you may have seen movies of missile silos where two
keys must be turned simultaneously to launch a missile. Banks often require
a manager to authorize transactions over a certain amount. So by requiring
two people to implement one change, you reduce the chance of it happening
fraudulently.

If you had no packet filters or firewalls, than any program which anybody started
which listened on a socket would become immediately vulnerable to anyone on
the Internet. And when you first installed a computer on your network, it
would be similarly vulnerable until you had installed all your patches, turned
off services, and otherwise hardened it. So by applying defense in depth (see
B47), you decrease the chance that someone may get unintended access to a
network service.

When authenticating to an online system, they sometimes require more than
one way of verifying the identity of a person (called two-factor authentication).
If identifying yourself to the system involves something you have and something
you know, then the adversary must get both in order to authenticate himself as
you. Thus, by splitting the identity information into two pieces, you reduce the
chance of the adversary getting both pieces.

The cryptographic technique called secret sharing (see 28.0.8) involves split-
ting a secret into multiple pieces and storing them in different places, perhaps
controlled by different people. When encrypting financial data for storage, in-
stitutions are encouraged to store the encryption keys separately from the infor-
mation itself (even if the keys themselves are encrypted with a master key), so
that loss of one will not compromise the other. So by splitting the secret infor-
mation into multiple pieces, the chances of an adversary getting the protected
information are reduced.

The obvious drawback that any controlled change requires manipulating things
in two places, and so it increases the amount of effort required to make the

204

change. Since this is integral to the way it protects the system against accidents,
this is unavoidable. As a result, you usually wouldn’t want to use this principle
on things you will have to change often.

34.10 The Principle of Minimal Changes

So suppose you decide to give a DNS slave a new IP address temporarily. You
also have to change your DNS master server’s config file to allow the new IP
address to request zone transfers. Now suppose you change the IP address back
on the slave, but forget to change the name server configuration file. You've
now got a hole in your security; if another system gets that IP address, it will
be able to do zone transfers.

This is a relatively minor example where your security information has to be
updated separately from what you intend to be changing. Also it’s an example
where the access control is in each individual application, which is a bad design,
as you can’t easily audit your access control policies without examining every
possible application.

This principle may appear superficially to conflict with the principle of split
control (see BL9), but there is an important but subtle difference. In split
control, both places have to be changed to allow the adversary to compromise
security. In these examples, only one of the change points needs to allow the
adversary access. Thus, there is a similar distinction between split control and
minimal change points as between defense in depth and the principle of uniform
fronts (seeB4.8); when the systems are arranged in series, you want split control,
and when the systems are arranged in parallel you want minimal change points.

This is essentially the DRY principle:

o Wikipedia on Don’t Repeat Yourself (http://en.wikipedia.org/wiki/
Don%27t_repeat_yourself)

34.11 The Principle of Centralized Management

When you only have to administer one system, you may think that keeping up
with it in the available amount of time is easy. However, as you start to manage
more and more systems, you will have proportionally less time to spend on
understanding and controlling any given system’s state. To maintain the same
level of security, you need tools that allow you to understand it faster and control
it with less effort. Thus, you will probably want to centralize management of
the systems in some way.

One of the challenges you face in system administration is making sure people
don’t accidentally change the state of things. For example, you may have a

205

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

publicly-writable directory available via NFS where developers can install li-
braries and other important data, but sooner or later someone will delete some-
thing that another person needs. One strategy is to make the NFS-exported
directory world-readable, and only allow writes to the filesystem from a single
machine, possibly via a different path name. That way, the chances of someone
accidentally deleting it are slim, and if it is deleted, you will more easily be able
to determine who did so (and thus, why).

There are a number of systems for centralizing control of user accounts, such
as NIS and LDAP. Systems like Kerberos do this and also allow you to perform
centralized key management for network traffic.

34.12 The Principle of Least Surprise

The principle of least surprise states that the system should do what you in-
tended it to do. If you were to turn off “file sharing”, you wouldn’t expect it to
also turn off your firewall; that would be an unpleasant surprise. An implication
of this is that the system should have a degree of transparency to the end-user,
such that they can verify that the effect of their actions is what they intended. A
certain software vendor in Redmond keeps adding complexity to their operating
system, despite no customer demand for it, with the sole intention of using this
occult knowledge to drive their competitors out of business. As a side effect of
this, there are many nooks and crannies in which spyware can hide, and many
ways a user can unknowingly reduce their security. Also, it means that devel-
opers must continue to buy libraries and development tools from that vendor
to make the complexity manageable. However, at least one of their employees
has a clue; in Kim Kameron’s Laws of Identity (http://www.identityblog.
com/7p=354), he suggests that we “thingify” digital identities, and make them
“things” on the desktop that the user can add and delete, select and share.
That’s an excellent idea; the user should be able to see at a glance what she is
doing with her identity. I say that we should go further and make all security-
relevant information easily visible and intelligible to the end-user. That ven-
dor recently acquired “sysinternals” (http://technet.microsoft.com/en-us/
sysinternals/default.aspx), a company which was able to develop better
tools for understanding their operating system than they were able to de-
velop themselves. One tool in particular, called autoruns (http://technet.
microsoft.com/en-us/sysinternals/bb963902.aspx), is able to find all the
programs which are automatically run when you start the system. If I recall
correctly, there’s more than ten ways in which a program can set itself to be
run automatically at start-up, and if you’ve ever wondered why it takes so long
for your system to boot, it’s because you have at least a dozen programs start-
ing automatically that don’t need to. As a general rule, when your system
is so complex you need specialized tools to understand it, that’s a sign that
you’ve screwed up, and you need to go back and refactor your system to make
it simpler.

206

http://www.identityblog.com/?p=354
http://www.identityblog.com/?p=354
http://technet.microsoft.com/en-us/sysinternals/default.aspx
http://technet.microsoft.com/en-us/sysinternals/default.aspx
http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx
http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

34.13 The Principle of Removing Excuses

If you wanted to run a secure facility, you’d want to put restrooms and perhaps
a conference room up in the front, before the security checkpoint. If you didn’t
do this, then there may come a time where the security guard must either tell
a person they can’t use the restroom, or allow someone to violate the desired
physical security properties. It’s a good idea to anticipate any needs like this
and allow for them in the design of the system, and therefore avoid any conflict
between the desire to be secure and the desire to be a likeable and decent person.
By putting the restrooms up front, you’ve also eliminated a possible excuse for
someone who was found in the secure area without the proper credentials that
they were merely lost and looking for the restroom. Proper application of this
technique has two advantages; it prevents violation of the security properties
whether the person is an adversary who seeks a cover, or not.

Similarly, if you are concerned that someone may do something heinous and
then deny responsibility, you'd like to take away that excuse. For example, if
you use an access card or other device to protect something very sensitive, then
an employee may use it but claim that it was stolen, and it would be difficult to
prove otherwise. You’d want to have a camera on the location or use biometrics
to verify his identity to remove his ability to use this excuse.

34.14 The Principle of Usability

It is essential that the human interface be designed for ease of use, so
that users routinely and automatically apply the protection mecha-
nisms correctly. Also, to the extent that the user’s mental image of
his protection goals matches the mechanisms he must use, mistakes
will be minimized. If he must translate his image of his protection
needs into a radically different specification language, he will make
€rrors.

— Saltzer & Schroeder

If the system involves human beings at all, whether as direct users, adminis-
trators, implementors, and so on, one should involve a model of a person into
the design. That is, if it relies on a human being to use it, is it usable? There
is a field of human-computer interaction called security usability which deals
with this very issue (see[28). Also, will the humans who have control over it be
tempted to bypass it? It is important to consider the procedural and adminis-
trative controls over this part of the process. Saltzer & Schroeder called it the
principle of psychological acceptability.

34.15 The Principle of Retaining Control

The government can have my crypto key when it pries it from my
cold, dead neurons.

207

— John Perry Barlow, ca. 1991

This principle states that any decisions affecting the security of the system
should remain in your hands. For example, if your home has no locks on the
door, and you buy a lot of expensive electronic equipment from a store, and that
store decides to publish customer purchasing history and home address, then
you’ve lost your physical security. If you rely on another entity to protect your
security, but you have no ability to make sure they do so, you’ve lost control
(see 2TI). As a refinement, let me discuss the hierarchy of assurance by which
one may retain control of the security of a system:

1. Absolutely impossible - compromise of the system requires breaking laws of
physics or mathematics that are currently considered impossible to break,
even in theory. Examples of this level of security include information-
theoretic security in cryptographic systems, and trying to hack into a
computer on a deep-space probe travelling away from you at nearly the
speed of light.

2. Technically infeasible - compromise of the system is possible in theory but
requires resources which are considered well outside the realm of feasibil-
ity. Examples of this level of security include computational security in
cryptographic systems, and conquering all of Asia with ground forces in a
land war.

3. Practically unbreakable - compromise of the system is possible but the
chances of it are remote. Examples include infiltrating and destroying
NORAD headquarters in Cheyenne mountain, launching a direct attack
against OpenSSH, and penetrating a very secure network.

4. Punitively secure - compromise of the system is possible, but you could
detect the person responsible and punish them, either militarily, physically
or legally. Examples include any system which uses law to enforce it, such
as Digital Rights Management (DRM). Classified information has this
kind of protection, as does anything involving international law. This
system costs money to investigate and punish offenders, so unless the
punishment is sufficiently harsh to deter the crime (“punish one, teach a
thousand”), it may not be cost-effective. Also, it may be that the person
in question was just careless with their computer, and the real offender
remains untraceable. Most bank robbers use stolen cars for a reason, you
know.

5. Speculatively secure - compromise of the system is possible, but you don’t
think anyone would want to break it and you rely on the good will of
people to protect it. Examples include anything which relies on security
through obscurity (see B5.4).

208

Now, a few points about retaining control. Basically, anything which occurs
independently of you is outside your control. Offline abuses (i.e. passive attacks)
are undetectable, and thus you cannot react to them, which violates the principle
of agility (see B4Z). Thus, the principle of retaining control implies that you
should prefer systems which minimize passive attacks.

Also, this principle also implies that since users have varying security needs
(since what they are protecting varies in value to them), then users should not be
“stuck” with a “one size fits all” security mechanism; instead, they should choose
vendors who allow them to retain control over the decisions of mechanisms (see

BAID).

34.16 The Principle of Personality

I'm finding it difficult to establish a good name for this principle, but it ties
together a lot of observations about how bad things occur in clusters, and about
how the past can sometimes be used predict the future.

e People who commit criminal acts tend to have criminal records. This
is why companies perform background checks on employees before hiring
them.

e People with poor secure programming skills, or companies with poor se-
curity awareness, tend to create software with more vulnerabilities than
those with a more security-conscious attitude. For example, compare the
security history of a randomly-selected program against one written by
Dan Bernstein, Wietse Venema, or the OpenBSD project.

e Software that has had a poor security history tends to have more vulner-
abilities discovered over time. I tend to search the National Vulnerability
Database (http://nvd.nist.gov/) before I expose any piece of software
to potentially hostile input. If a vulnerability was found every week for
the last month, chances are that there are many more that lay dormant.

That is, to a certain extent, you can have some insight into future behavior
based on the past. This is certainly not a hard and fast rule, and potentially
unfair, but it is an easy one that gives pretty good results.

34.17 The Principle of Least Common Mechanism

Minimize the amount of mechanism common to more than one user
and depended on by all users. Every shared mechanism (especially
one involving shared variables) represents a potential information
path between users and must be designed with great care to be
sure it does not unintentionally compromise security. Further, any

209

http://nvd.nist.gov/

mechanism serving all users must be certified to the satisfaction of
every user, a job presumably harder than satisfying only one or a
few users. For example, given the choice of implementing a new
function as a supervisor procedure shared by all users or as a library
procedure that can be handled as though it were the user’s own,
choose the latter course. Then, if one or a few users are not satisfied
with the level of certification of the function, they can provide a
substitute or not use it at all. Either way, they can avoid being
harmed by a mistake in it.

— Saltzer & Schroeder, The Protection of Information in Computer
Systems, http://web.mit.edu/Saltzer/www/publications/protection/

That pretty much says it clearly. The first point has to do with covert channels,
and the second has to do with allowing the users to retain control.

34.18 The Principle of Practice

Any part of the security design which is not exercised on a regular
basis is not actually part of the security system.

If you’ve ever been in an emergency situation, you’ll know that things don’t work
the way you expect; the batteries in the flashlight haven’t been changed, the
door sticks and won’t open, the script which is supposed to work has succumbed
to bit rot, security alerts don’t go out, and so on. This is why people hold fire
drills.

So, for any technical security feature, it must be exercised periodically, and
ideally in conditions as similar to those as the situation you’re trying to test
as possible. This is most important in abuse detection, response, and alerting
(see [I6] M7, M71). It is also relevant in access control; generally, consider any
code path which isn’t taken often, and make sure it gets tested - that it gets
taken, and functions properly. This exercise plan should be considered part of
the security design.

For any security feature involving people, they should be forced to do perform
the required tasks periodically. In some cases, you don’t tell them when, but
you probably do want to tell them that it’s a drill when it happens. You should
make their compensation dependent on proper execution of their emergency
duties, but always apply common sense.

34.19 Work Factor Calculation

Compare the cost of circumventing the mechanism with the resources
of a potential attacker. The cost of circumventing, commonly known

210

http://web.mit.edu/Saltzer/www/publications/protection/

as the "work factor," in some cases can be easily calculated. For ex-
ample, the number of experiments needed to try all possible four
letter alphabetic passwords is 264 = 456 976. If the potential at-
tacker must enter each experimental password at a terminal, one
might consider a four-letter password to be adequate. On the other
hand, if the attacker could use a large computer capable of trying a
million passwords per second, as might be the case where industrial
espionage or military security is being considered, a four-letter pass-
word would be a minor barrier for a potential intruder. The trouble
with the work factor principle is that many computer protection
mechanisms are not susceptible to direct work factor calculation,
since defeating them by systematic attack may be logically impossi-
ble. Defeat can be accomplished only by indirect strategies, such as
waiting for an accidental hardware failure or searching for an error
in implementation. Reliable estimates of the length of such a wait
or search are very difficult to make.

— Saltzer & Schroeder

34.20 Availability Principles

Obviously, you want to minimize complexity, which is good for security gen-
erally, because as humans our brains are very limited in their ability to do
combinatorial testing. This could be minimizing the number of moving parts,
minimizing the amount of software, minimizing the amount of activity on it.
Secondly, you want to minimize changes to that system. Basically, try to sep-
arate the things that require changes to other systems. Unfortunately, this
means you can’t patch the system very frequently, which may leave it vulnera-
ble. When you do change, you want to test the change on another system, and
then do it to the live system. Virtual machines are very handy for this. This
can be summarized as “test twice, change once”.

35 Common Arguments

I'm starting to summarize common arguments here so that we can just agree,
or agree to disagree, and get on with more interesting discussion.

35.1 Disclosure: Full, Partial, or None?

This is such a common debate, and it has been going on since at least the 1850s.
The goal here is not to take a position, but to summarize the arguments thus
far so that we can avoid fruitless rehashing of old positions.

211

e Full Disclosure Debate Bibliography, by date (http://www.wildernesscoast.
org/bib/disclosure-by-date.html)

o Schneier: Full Disclosure and the Window of Exposure (http://www.
schneier.com/crypto-gram-0009.html#1)

o Schneier: Full Disclosure (http://www.schneier.com/crypto-gram-0111.
html#1)

o Schneier: Publicizing Vulnerabilities (http://www.schneier.com/crypto-gram-0002.
html#PublicizingVulnerabilities)

o Parkinson’s Law of Triviality (http://en.wikipedia.org/wiki/Parkinson
%27s_Law_of _Triviality)

35.1.1 Terminology

full when you find a vulnerability, talk openly about it, even publish exploits
(http://en.wikipedia.org/wiki/Full_disclosure)

limited when you find a vulnerability, talk only about the vulnerability and
attempt to help people protect themselves, but try to avoid giving out
details that would help people exploit it (http://en.wikipedia.org/
wiki/Full_disclosure#Various_interpretations)

none never talk about vulnerabilities; discussing them helps the adversaries

security through obscurity hoping that nobody knows about, finds out about,
or discusses vulnerabilities (see 35.4)

time-bounded contact the vendor, give them a finite amount of time to fix it
(my term)

time-unbounded contact the vendor, give them as long as they need to fix it
(my term)

responsible can mean a variety of things, meaning “limited” for some, and
“time-bounded” for others (http://en.wikipedia.org/wiki/Responsible_
disclosure). Controversial because it suggests that other methods are
irresponsible.

coordinated vulnerability disclosure full disclosure after attacks start, no
disclosure prior to attacks (http://blogs.technet.com/b/ecostrat/).
Seems likely to shift the debate towards what is being exploited.

35.1.2 Disclosure Policies

These are simply formal descriptions of what people think are good ideas when
considering disclosure.

e RFPolicy (http://en.wikipedia.org/wiki/RFPolicy)

212

http://www.wildernesscoast.org/bib/disclosure-by-date.html
http://www.wildernesscoast.org/bib/disclosure-by-date.html
http://www.schneier.com/crypto-gram-0009.html#1
http://www.schneier.com/crypto-gram-0009.html#1
http://www.schneier.com/crypto-gram-0111.html#1
http://www.schneier.com/crypto-gram-0111.html#1
http://www.schneier.com/crypto-gram-0002.html#PublicizingVulnerabilities
http://www.schneier.com/crypto-gram-0002.html#PublicizingVulnerabilities
http://en.wikipedia.org/wiki/Parkinson%27s_Law_of_Triviality
http://en.wikipedia.org/wiki/Parkinson%27s_Law_of_Triviality
http://en.wikipedia.org/wiki/Full_disclosure
http://en.wikipedia.org/wiki/Full_disclosure#Various_interpretations
http://en.wikipedia.org/wiki/Full_disclosure#Various_interpretations
http://en.wikipedia.org/wiki/Responsible_disclosure
http://en.wikipedia.org/wiki/Responsible_disclosure
http://blogs.technet.com/b/ecostrat/
http://en.wikipedia.org/wiki/RFPolicy

35.1.3 Arguments For Disclosure

A commercial, and in some respects a social doubt has been started
within the last year or two, whether or not it is right to discuss
so openly the security or insecurity of locks. Many well-meaning
persons suppose that the discussion respecting the means for baffling
the supposed safety of locks offers a premium for dishonesty, by
showing others how to be dishonest. This is a fallacy. Rogues are
very keen in their profession, and know already much more than we
can teach them respecting their several kinds of roguery.

Rogues knew a good deal about lock-picking long before locksmiths
discussed it among themselves, as they have lately done. If a lock,
let it have been made in whatever country, or by whatever maker,
is not so inviolable as it has hitherto been deemed to be, surely it
is to the interest of honest persons to know this fact, because the
dishonest are tolerably certain to apply the knowledge practically;
and the spread of the knowledge is necessary to give fair play to
those who might suffer by ignorance.

It cannot be too earnestly urged that an acquaintance with real
facts will, in the end, be better for all parties. Some time ago, when
the reading public was alarmed at being told how London milk is
adulterated, timid persons deprecated the exposure, on the plea that
it would give instructions in the art of adulterating milk; a vain fear,
milkmen knew all about it before, whether they practiced it or not;
and the exposure only taught purchasers the necessity of a little
scrutiny and caution, leaving them to obey this necessity or not, as
they pleased.

— Locks and Safes: The Construction of Locks (1853), http://www.
crypto.com/hobbs.html

1. http://www.schneier.com/essay-012.html

2. On Responsible Disclosure: Stripping the Veil From Corporate Censorship
(http://blogs.securiteam.com/index.php/archives/133)

3. A Model for When Disclosure Helps Security: What is Different About
Computer and Network Security? (http://papers.ssrn.com/sol3/papers.
cfm?abstract_id=531782)

Security Experts

If this lock is of any value, it should be known; if it has weak points,
let them be pointed out, and they may admit of a remedy; for we
ought not to be led to believe a lock is safe which is not so.

213

http://www.crypto.com/hobbs.html
http://www.crypto.com/hobbs.html
http://www.schneier.com/essay-012.html
http://blogs.securiteam.com/index.php/archives/133
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=531782
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=531782

— A treatise on fire and thief-proof depositories, and locks and keys,
George Price

1. If nobody ever disclosed, vendors would never put in the effort to make
secure software. Look at the state of security before the Morris worm, or
perhaps before about 1997, when stack overflows and the dot-com boom
converged. Like physical exercise, it may hurt in the short term, but in
the long term it helps.

2. It keeps life interesting. Without (discussion of) vulnerabilities, there
would be nothing to study in security; there would be no industry, no
science, no magazines or blogs.

3. It keeps us in business.

4. If it exists, then it’s possible someone else already knows about it, or
will find it. Whether it has been publicly-discussed or not is irrelevant.
Attacks are meant to be stealthy, so whether it has been detected in the
wild or not is irrelevant. If it’s possible, it is an unnecessary risk.

5. The number of implementation errors in a finite-sized program is finite,
so every one we fix will reduce the amount left.

6. If we don’t know about threats, we can’t devise protection schemes and
countermeasures.

7. If we don’t know about threats, we can’t devise a way to detect it.

8. I'd rather everyone know than just a select few, with vested interests one
way or another; putting everyone on the same footing is more civic-minded.

Economists

1. Without disclosure, there would be no financial reason for them to put any
effort into security, and much reason against it. Officers of publicly-traded
companies in the US must act to maximize profit, or else they can be held
personally liable, so if you want secure software, you must make it in their
(vendors and officers) financial best interest to write secure software.

2. Without perfect information, the market is inherently inefficient.

End Users

1. If we don’t know about threats, we can’t avoid the vulnerable software.

2. If we don’t know about threats, we can’t do a proper risk assessment.
Having an inaccurate view of risks can only hurt us, our customers, and
shareholders.

214

3. I’d rather know it’s not secure than mistakenly think it is (similar to risk
assessment argument).

4. In other industries, companies are liable if they put out a defective prod-
uct. A car company can’t simply stick an EULA on your car and say
whatever happens is not their fault.

35.1.4 Arguments Against Disclosure

It is extremely important that the information contained in this book
be faithfully guarded so as not to fall into the hands of undesirables.

We also suggest after you become proficient in the art of manipula-
tion to destroy this book completely, so as to protect yourself and
our craft.

— From Clyde Lentz and Bill Kenton, The Art of Manipulation, (pri-
vately published in 1953), http://www.crypto.com/hobbs.html

o Matt Mecham: Why Full Disclosure is Bad (http://ips2.blogs.com/
matts_blog/2004/09/why_full_disclo.html)

Vendor

1. While we both know our product was defective, thanks to you everyone
knows about it and so we have to fix it.

2. You didn’t give us time to fix it in our normal release cycle, so now we
have to ship something fast and can’t test it properly.

Vendor’s Employees

1. T didn’t write this code and would rather not have had to cancel my plans
for the weekend so that I can figure it out. I'm salaried, so I don’t get
paid overtime, so there’s no upside to this for me.

2. I can’t stop programmers from writing vulnerable code, but I end up
having to fix it.

3. I didn’t make the decision to use this library/code/program, but 'm stuck
with the vulnerabilities in it.

Economists

1. Writing secure software is (impractical, hard, expensive). If you make
vendors do it, you'd (pay more, have less software).

2. Resources spent defending are not spent on more constructive pursuits.

215

http://www.crypto.com/hobbs.html
http://ips2.blogs.com/matts_blog/2004/09/why_full_disclo.html
http://ips2.blogs.com/matts_blog/2004/09/why_full_disclo.html

End User

1. We now have to patch our systems but I wanted to sleep tonight. I'm
salaried and don’t get paid overtime.

2. The vendor has no solution.

3. The vendor’s solution can’t be tested thoroughly and may cause our op-
erations to grind to a halt.

4. T didn’t choose these systems, but I have to maintain them and keep them
as secure as I can.

5. I would prefer that nobody know these things. Since that’s impossible,
I want to squash discussion of them. Discussion of these things puts
everyone at risk.

35.2 Absolute vs. Effective Security

In theory there is no difference between theory and practice. In
practice there is.

- Yogi Berra (or Jan L. A. van de Snepscheut)

In the design of cryptosystems, we must design something now for
use in the future. We have only the published facts of the past to
stand against all the secret research of the past and future for as long
as a cipher is used. It is therefore necessary to speculate on future
capabilities. It is not acceptable to wait for a published attack before
a weakness is considered in cipher design. It is instead necessary to
try to perceive weaknesses which have not yet contributed to full
attacks, and close them off.

— Terry Ritter

When discussing security, I find two, usually exclusive schools of thought:

theorists or absolute security types, believe that we should secure the systems
by proving their correctness, and reviewing their design goals and such,
and that anything else is doomed to failure, or a waste of time, or a never-
ending arms race. They believe that we should only run that which we
know to be safe, and nothing else. They are at home with the “default
deny ” policy (see[34.1)). They prefer to focus on what is possible, not what
is probable. When you say “adversary” they think NSA or KGB (or both).
They defend this line of reasoning by pointing out that if you prepare for
the most skilled adversaries, the less skilled are doubly thwarted. They

20For some humor on theory versus practice, see: http://www.kettering.edu/~jhuggins/
humor/theory.html

216

http://www.kettering.edu/~jhuggins/humor/theory.html
http://www.kettering.edu/~jhuggins/humor/theory.html

worry about worst-case scenarios. This school is popular among academi-
cians, intelligence agents, cryptographers, and people suffering from para-
noid delusions (there is significant overlap between these groups). They
sometimes earn nicknames like “Dr. No”, or “the security Nazi”, because
their favorite answer for everything is “no”. They believe that which is
not proven (or tested) may not be assumed to be true. They prefer open-
source software. Often they are very intelligent or knowledgeable about
security, and rarely have an incident, because they’re very careful. They
are prone to false positives, because they want to err on the side of safety.

pragmatists or effective security adherents, believe that the theorists will
never run anything but toy programs, and that we should identify the ma-
jor threats or threat agents and deal with them. This school endorses the
misuse-detection technologies like signature-based NIDS and anti-virus.
When you say adversary, they think of a sixteen-year-old script kiddie.
They worry about only the most likely scenarios. They defend this line
of reasoning by pointing out that the NSA and KGB have no (additional)
reason to spy on them, and that they couldn’t stop them anyway, so there’s
no point in worrying about it. They believe that which hasn’t been broken
in practice may be assumed to be secure. They are comfortable with com-
mercial software. They are often successful with people and in business,
because they’re concerned with helping other people do what they want
to do.

The problem that theorists should understand is that there may not be a per-
fectly secure solution. It’s almost impossible to defend a web site against abuse
or DoS, for example, especially when the adversary may have thousands of zom-
bie computers at his disposal. The only way to not be vulnerable to DoS would
be to not have a site on the Internet. The only way to be sure you never receive
unwanted email would be to never receive any email at all. If you cut off all
external communication, then you’d have an extremely secure but completely
useless system.

And provably secure systems aren’t perfect either; most mathematical proofs
start with assumptions, and then how do you prove the proof is correct? Tomor-
row may bring a threat you couldn’t have predicted, and which wasn’t a design
goal or security property for the system. So, now that we’ve established that
there’s no way to know for sure whether there’s a perfect solution or not, it’s
out of the black-and-white realm and into gray scale. Don’t worry; if you could
predict everything in advance, and thus there was no risk, you’d be astoundingly
bored. To eliminate risk entirely, you’d have to start out knowing everything,
so that you never received a surprise, and thus you could never learn anything,
which would make awfully boring, wouldn’t it?

Finally, security may simply not be the most important factor; you may care
more about security than anyone else. If you’re in business, you're there to
provide for other people, whether they be your boss or customers. If you have

217

to decide between using an AJAX-based but possibly unsecure web site, and
not using javascript but having some users experience delays of ten seconds or
longer, your users and boss may prefer the latter. After all, if you care more
about security than anything else, why turn the computers on at all?

The pragmatists often don’t understand that what is merely possible today
may become ubiquitous tomorrow. Perhaps it just isn’t being exploited today
because nobody is aware of it. Maybe it’s being exploited but nobody knows it.
And maybe people don’t have the expertise, but all it takes is an expert to use
information technology to encapsulate some of their expertise in a program that
anyone can run, or to write a simple “how-to”, and this can happen overnight,
without warning. A bit of study of the history of computer security will show
that this happens all the time. What’s worse is that it could have already
happened, and you don’t know it. They should read about the principle of
retaining control (see BATIH]).

If you only plan on defending against today’s common attacks, you will always
be fighting the last war, instead of the current one. Every new trend and
attack will catch you unaware, merely because it’s new. Sometimes an ounce of
prevention is worth a pound of remediation. Plus, you will usually not be able
to get good statistics on intrusions, because many go undetected, and most go
unreported.

35.3 Quantification and Metrics vs. Intuition

Everything that can be counted doesn’t necessarily count; everything
that counts can’t necessarily be counted.

— Albert Einstein

There’s no sense in being precise when you don’t even know what
you’re talking about.

— John von Neumann

Probability is difficult to apply to security. Sometimes people misuse the no-
tion of probability, by asking things like, “what is the probability of that this
system has been compromised?”. This is a nonsense question; it is either true
or not. Probability refers to a group of similar events. The correct question
would be “knowing nothing else, what is the probability that any given system
on the Internet has been compromised?”. The implicit assumption here is that
these systems are similar enough that this question is meaningful. Often having
knowledge about the systems helps; for example, we may ask what the proba-
bility that a given object in the sky will appear again will be, and the answer
depends heavily on whether that object is a celestial object, a migratory bird,
or a baseball. Collecting statistics on all objects in the sky as a group wouldn’t
be nearly as useful as classifying them correctly.

218

But what is the chance that someone is covertly monitoring your traffic? The
very nature of the event is that it is supposed to remain secret. How can you
get good metrics on something like that? You can’t quantify most of the risks
you face, and you probably can’t even measure the some that matter (especially
passive attacks), and in many cases quantification is slower and costs more than
prevention. On the other hand, intuition is highly vulnerable to sampling bias
and various cognitive biases; for example I think about security vulnerabilities
and intrusions a lot, so I probably think they are more common than they really
are.

There is a fundamental problem with quantification; we don’t know about the
intrusions we don’t know about (see I8, so we always will err on the side
of underestimating the risks. On the other hand, as security experts, we are
likely to presume a higher level of “interesting” attacks than there actually are,
because that’s what we think about all day. That all having been said, if you
can get good metrics, then by all means use them; otherwise you are likely to be
operating on prejudice. After you do that, put some energy into understanding
their limitations, which usually means a thorough understanding of how they
are collected and counted.

e Security Metrics Mailing List (http://www.securitymetrics.org/)

35.4 Security Through Obscurity

Note to amateur cryptographers: simple analysis is a good thing, if
it doesn’t weaken the cipher ... It’s better to be able to prove that
an attack won’t work than to have to guess that it won’t because
it’s too much work.

— Colin Plumb

Most arguments involving security through obscurity seems to center around
different definitions of what the term means. I believe the meaning intended by
most security experts is that the information necessary for the security of the
system does not have its confidentiality protected other than by being obscure
(that is, not impossible to find, but merely difficult, perhaps because few people
know it). What this means is that anyone with the interest will probably be
able to figure it out if they get lucky. It could be that someone posts the
previously-obscure design to the Internet, or it is published in a trade journal,
that it’s similar enough to another related system that the adversary figures it
out, or that they merely experiment with the system until they figure it out, etc.
This does not refer to systems whose strength is protected with some sort of
technical measure, such as a cryptographic key, port knock sequence (http://
en.wikipedia.org/wiki/Port_knocking), or passphrase (see the discussion of
Kerckhoft’s Principle in B4.3). Nor does it refer to the key or passphrase itself,
which is protected from disclosure as part of the design. It does refer to a system
whose security depends on adversaries being unlucky or unmotivated.

219

http://www.securitymetrics.org/
http://en.wikipedia.org/wiki/Port_knocking
http://en.wikipedia.org/wiki/Port_knocking

o Wikipedia on STO (http://en.wikipedia.org/wiki/Security_through_
obscurity)

35.5 Security of Open Source vs. Closed Source

In God we trust; from all others, we need source code.

Open source means defenders and users (who may be customers) can all look for
vulnerabilities in the software. Open-source is to closed-source what transparent
boxes are to black boxes. Closed source implicitly means that you must trust
the vendor that it is secure, but since you can’t hold them liable if it isn’t,
so this is what I call “faith-based security”. Only in open-source does an end-
user have the ability, if only theoretical, to make an informed decision on the
quality of the product before deciding to let his security depend on it. Of
course, adversaries may also look at the source, and have more incentive to do
so, but properly designed and implemented code does not have exploitable bugs
(see[24-1). Cryptographers have long advocated Kerckhoft’s (second) principle,
which is to not rely on the secrecy of the design for the security of the system

(see B4.3).

Given the choice between a system I can inspect to be secure, or one I can’t tell,
I’ll usually choose the one I can inspect, even if I don’t personally inspect it,
because of the psychological impact; the vendor knows he can’t hide any flaws,
and so he generally won’t make it open-source unless he’s pretty confident he
won’t be embarrassed. I feel that withholding source code may be slightly
effective in practice, like all security through obscurity (see B5.4), but that it’s
not as reliable a strategy as looking for and fixing all the problems. Given
the choice between an open and closed format, the open format or open-source
provides you more security. It’s like having a guarantee if the author gets hit
by a bus, or stops making the product, or decides you’re locked in and jacks up

rates (see 34.2).

The other side says that adversaries may have more motivation to look for vul-
nerabilities than a typical end-user. This means the faster bugs are found, the
fewer will remain, so highly-inspected code matures more quickly. Code that
isn’t inspected much may have dormant bugs which lurk for a long time before
being publicized, or they may never become publicly known, but this does not
change the fact that they were vulnerable the whole time. Nevertheless, ven-
dors of security software seem to be pretty keen to vulnerabilities, and so their
products are usually solid. It’s the vendors who do not know anything about
security, or who designed and coded their systems before they learned about
security, that are suspect. And most of the time, the kinds of vulnerabilities
that worry security agencies and privacy advocates (namely back doors and
trojans) don’t appear in commercial software. The other side also says that if
you use commercial software, often the vulnerabilities are found internally, and
corrected quietly without public disclosure.

220

http://en.wikipedia.org/wiki/Security_through_obscurity
http://en.wikipedia.org/wiki/Security_through_obscurity

Ross Anderson has a paper on this topic (http://www.cl.cam.ac.uk/“rjal4d/
Papers/toulouse.pdf), and he concludes open-source and closed-source have
the same security assurance. I haven’t read the paper yet but I figured I'd
include it here for balance. In an interesting quantification, the US Department
of Homeland Security (DHS) has commissioned coverity to perform a study
which found that both open-source software and commercial software have about
1 security bug for every 1000 lines of code (http://scan.coverity.com/).

35.6 Insider Threat vs. Outsider Threat

Essentially, perimeter defenses protect against most adversaries, whereas dis-
tributed defenses on each host protect against all adversaries (that is, remote
systems; local users are the domain of OS security). The idea of pointing out-
ward versus pointing inward is a well-known one in alarm systems. Your typical
door and window sensors are perimeter defenses, and the typical motion detec-
tor or pressure mat an internal defense. As with alarm systems, the internally-
focused defenses are prone to triggering on authorized activity, whereas the
perimeter defenses are less so.

A hardware security module (HSM) basically makes everyone but the vendor
an outsider; insurance companies love this because they defend against insider
threats as well as outsiders. Financial institutions and the military also focus
on insiders, primarily because if they can protect against insiders they can also
usually protect against outsiders. However, such environments are no fun to
work in. Everyone trusts themselves implicitly, and so when employees are told
to implement defenses against themselves, not only does it send the message
that management doesn’t trust them, they usually do so with little enthusiasm.

Dave G. of Matasano has published an interesting piece on the insider threat
(http://www.matasano.com/log/984/the-insidious-insider-threat/). So

does Richard Bejtlich (http://taosecurity.blogspot.com/2009/05/insider-threat-myth-documentatio:
html).

35.6.1 In Favor of Perimeter Defenses

Most organizations consider the unauthenticated and unauthorized people on
the Internet to be the largest threat (see the definition of anonymous attack
surface in [C3). Despite hype to the contrary, I believe this is correct. Most
people are trustworthy for the sorts of things we trust them for, and if they
weren’t, society would probably collapse. The difference is that on the Internet,
the pool of potential adversaries is much larger, and while a person can only hold
one job, they can easily hack into many different organizations. The veterans
(and critics) of Usenet and IRC are well aware of this, where the unbalanced
tend to be most vocal and most annoying. Some of them seem to have no goal
other than to irritate others.

221

http://www.cl.cam.ac.uk/~rja14/Papers/toulouse.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/toulouse.pdf
http://scan.coverity.com/
http://www.matasano.com/log/984/the-insidious-insider-threat/
http://taosecurity.blogspot.com/2009/05/insider-threat-myth-documentation.html
http://taosecurity.blogspot.com/2009/05/insider-threat-myth-documentation.html

In the real world, people learn to avoid these sorts, and employers choose not to
hire them, but on the Internet, it’s a bit more difficult to filter out the chaff, so
to speak. Also, if we detect a misbehaving insider, we can usually identify and
therefore punish them; by contrast, it is difficult to take a simple IP address
and end up with a successful lawsuit or criminal case, particularly if the IP is
in another country. Furthermore, most people feel some loyalty towards their
employer, and it is easier for an outsider to avoid humanizing the people who
work there.

35.6.2 What Perimeter?

The perimeter is not here nor there, but it is inside you, and among
you.

An interesting point is that when a user on a client machine inside our network
accesses a malicious web page, or loads a malicious file, and the system gets
compromised, and now that internal node becomes an attacker.

Another important issue to consider is series versus parallel defenses (see BL.R).
Suppose the gateway, firewall, and VPN endpoint for your organization’s main
office uses the pf firewall (IMHO, the best open-source firewall out there). Now,
suppose a remote office wants to connect in from Linux, so they use iptables.
Now, should there be an exploitable weakness in iptables, then they might be
able to penetrate the remote office, making them inside the perimeter. Courtesy
of the VPN tunnel, they are now inside the perimeter of the main office as
well, and your perimeter security is worthless. Given the trend towards a more
complex and convoluted perimeter, I think this suggests moving away from
perimeter defenses and towards distributed defenses; we can start by creating
concentric perimeters, or firewalls between internal networks, and move towards
(the ideal but probably unreachable goal of) a packet filter on every machine,
implementing least privilege on every system.

Specifically, the notion of a security perimeter is challenged by the following
developments in our computing environments:

e Client-side attacks by malicious servers
e Data-driven attacks by malicious files or web pages

e Running untrustworthy code

Tunnelling protocols (Skype)

Web services all offered over port 80

Encryption (SSL, IPsec)

Wireless networks

222

e Mobile computing (i.e. your laptop got infected at home, and you brought
it into work)

e VPNs

35.6.3 Performance Issues

I am beginning to think that perimeter defenses are insufficient. As we become
more networked, we will have more borders with more systems. End-to-end pro-
tocol encryption and VPNs prevent any sort of application-layer data inspection
by NIDS devices located at choke points and gateways. High-speed networks,
particularly fiber to the desktop, challenge our ability to centralize, inspect, and
filter traffic, and requires expensive, high-performance equipment. Encryption
(SSL) and firewall-penetrating technologies like skype create tunnels (some may
say covert channels) through the firewall. Put simply, the perimeter is every-
where, and the forward-looking should consider how to distribute our security
over our assets. For example, everything that is done by a NIDS can be done
on the endpoint, and it doesn’t suffer from many of the typical problems that
a separate device does (including evasion techniques and interpretation ambi-
guities). Also, this means each internal node pays for its own security; if I am
downloading 1Gbps, I am also inspecting it, whereas an idle system isn’t spend-
ing any cycles inspecting traffic. With the proper design, no packets get lost,
dropped, or ignored, nor is it necessary to limit bandwidth because of limited
inspection capacity at the perimeter. And we can use commodity hardware (the
hardware we already have) to do the work.

35.7 Prevention vs. Detection

See also

35.7.1 Prevention over Detection

An ounce of prevention is worth a pound of cure.
— Henry de Braxton

Those who emphasize monitoring and intrusion detection make the point that no
matter how much effort you put into prevention, some (fraction of the) attacks
will succeed, and so you should put some effort into detection. I agree with
the premise. I would go farther with the argument, and say that no matter
how much you put into detection, some successful intrusion will go undetected,
especially if the detection system involves human judgment (see the motion
picture Andromeda Strain as a good example). So let me use a very contrived
numerical example to show that putting resources into detection may not always
improve your security. Consider two cases:

223

1. I prevent 99% of the intrusions, and detect 0% of the remainder. For every
100 attempts, one is successful and it always remains undetected.

2. I prevent 50% of the intrusions, and detect 50% of the remainder. For
every 100 attempts, 50 are successful and 25 remain undetected.

In this case, had you chosen the allocation which favors prevention, you do no
incident response and you got 25 times fewer undetected intrusions, even though
you did no detection. This is an application of the base-rate fallacy (see [4.1.2)).
So it’s not clear what is the right mix.

I would say that the relative value of monitoring depends in part on how effective
your prevention mechanisms are. If you are not in the business of providing net-
work services then you should spend almost all of your resources on prevention,
and a very little on monitoring (but make sure you monitor those systems very
closely). On the other hand, if there are a number of services with bad security
histories that you are not able to turn off for business reasons, or you run an
intelligence agency, then perhaps the allocation should be reversed. I find this
position to be undesirable, though, because if you only detect intrusions, you're
going to spend a lot of resources cleaning up after them, and second-guessing
yourself about what they may have done. On the other hand, preventative sys-
tems like a packet filter require almost no resources to maintain (in reality you
have to adjust them from time to time, but the resources necessary are small
by comparison).

Additionally, in operating system security, all bets are off once the adversary
gets full privileges. At that point, any local logs and tools are suspect. I believe
there are often machines which can be similarly critical to network security,
such as authentication servers and file servers, but they are less clearly so. My
contention is that you should do your best to keep the adversary out, as once
they’re in you’re on even terms and thus have lost the most important advantage
you have - namely, having more privilege than they.

35.7.2 Detection over Prevention

The more of these are true in your particular situation, the more you’ll want to
emphasize detection over prevention.

e Prevention is hard, expensive, or impossible
e Detection is easy
e Cleanup is relatively easy (i.e. reimage the system)

e Losses are minimal or limited (i.e. you have no interesting assets or secrets
to protect)

224

35.7.3 Impact on Intelligence Collection

If you are a typical business, you probably want to prevent attacks and intru-
sions, because you aren’t interested in the motivations of your adversaries, or if
you were, you wouldn’t have time to do forensics and analyze their intentions,
so you’ll almost always want to block first and ask questions later. But if you
were an intelligence agency with lots of resources and were very interested in
adversary intentions, you might allow an attack against a non-critical system
to occur just to analyze their collection goals and intentions. For example, if
India were to allow an intrusion to happen, and learned that the adversary was
after force deployments in the disputed region of Kashmir, they could reason-
ably conclude that Pakistan might have some sort of intention to move into the
region, and thus could ready themselves for a rapid response. It is not likely to
be important who the actual intruder was, if the information they are after is
only useful to one entity. In this case, knowing the adversary’s intentions could
be much more valuable than the information the intruder would obtain.

35.8 Audit vs. Monitoring

If you have leverage, even after a security breach takes place, you could sub-
stitute audit for monitoring. Banks, the IRS, and other financial institutions
may decide to do audits rather than monitoring, because auditing samples takes
much less effort than continual monitoring. For example, the IRS requires forms
for cash transactions over a few thousand dollars, which is one reason why you
can’t pay cash for a new car. Even if you monitor everything, you probably
don’t have the human resources to review it all, so you necessarily decide what
samples to check. If your adversary knows what rules you use to sample, he
will probably try to not be in your sample, so you should probably do a little
random sampling too, looking for people trying to fly under the RADAR.

It also works with physical security; if I know that I can see whatever went on
in a facility at any later time, I may only do spot-checks.

If you do want a human to monitor or audit something, it’s a good idea to
make sure they know what to look for. I recall a story by a security guru
who once saw a terminal with a US Marine guarding it. He wondered if the
Marine knew what to look for. However, I think the Marine was there to prevent
physical tampering with the computer and not tasked with understanding what
the person was doing when typing. In any case, if you’re paying someone to
monitor something, it would help if they knew what they’re looking for.

35.9 Early vs. Late Adopters

It seems that different cryptographers have different risk thermostats, especially
when it comes to how early to adopt. For example, suppose a new cipher XYZ

225

comes out to replace cipher ABC. The best attacks against it are much less
successful than the best attacks against the old cipher. However, there is a
discrepancy here; the old cipher has probably had much more study. The early
adopters are essentially hopeful that the new cipher will prove to be stronger,
often due to alarger key size, due to the fact that it is designed against the known
attacks, or simply due to the fact that it’s less well-studied, though the latter
is a form of security through obscurity (see B5.4]). The late adopters let other
people take the risk that the new cipher will be discovered to be weak, knowing
that it is much less likely to have a new, devastating attack discovered against it
such as the one discovered against Shamir’s knapsack algorithm demonstrated
at CRYPTO ’83 (http://www.ics.uci.edu/"mingl/knapsack.html). No one
will argue that the uncertainty is often greater in the new cipher than the old,
especially when they are structurally different.

35.10 Sending HTML Email

I’'m sorry, you sent me a web page instead of an email. I don’t use
a browser to read email. Please re-submit.

The people who don’t understand security (see[23) see no problem with sending
HTML email. “Get in the right century”, they say. The people who understand
security hate it, but they also tend to appreciate aesthetics less. Certainly it
causes a problem with phishing (see 22:2).

36 Editorials, Predictions, Polemics, and Personal
Opinions

This is basically where I put all the stuff that’s not quite as objective as every-
thing else.

36.1 So You Think You’re Old School?

Computer crime has become the “glamor crime” of the 1970s - and
experts agree most facilities are unprepared to stop it. Reviewing
more than 100 major cases, John M. Carroll concludes that known
computer crime is only the tip of the iceberg. And he adds, “There
is no computer system in existence that has not been penetrated.”

— book flap for Computer Security, John M. Carroll, 1977

226

http://www.ics.uci.edu/~mingl/knapsack.html

36.2 Security is for Polymaths

When hackers are hacking, they don’t mess around with the superfi-
cial world of Metaverses and avatars. They descend below this sur-
face layer and into the netherworld of code and tangled nam-shubs
that support it, where everything that you see in the Metaverse, no
matter how lifelike and beautiful and three-dimensional, reduces to
a simple text file: a series of letters on an electronic page. It is a
throwback to the days when people programmed computers through
primitive teletypes and IBM punch cards.

— Neal Stephenson, Snow Crash

A human being should be able to change a diaper, plan an invasion,
butcher a hog, conn a ship, design a building, write a sonnet, balance
accounts, build a wall, set a bone, comfort the dying, take orders,
give orders, cooperate, act alone, solve equations, analyze a new
problem, pitch manure, program a computer, cook a tasty meal,
fight efficiently, die gallantly. Specialization is for insects.

— Robert A. Heinlein

The best fighter is not a Boxer, Karate or Judo man. The best
fighter is someone who can adapt on any style. He kicks too good
for a Boxer, throws too good for a Karate man, and punches too
good for a Judo man.

— Bruce Lee (http://en.wikiquote.org/wiki/Bruce_Lee)
o Wikipedia article on polymaths (http://en.wikipedia.org/wiki/Polymath)

If you’ve read up until here, you will likely notice the breadth of topics covered,
and it’s far from comprehensive. This started as a paper, but wound up a
book; if you include all the papers and pages it references, it would probably
end up being a library. Almost every technology has a security component to
it, and so if you are to be a master of security you must master all of the
fields in which you practice. To be able to write shellcode, you need to know
assembly language, even machine language, which is extremely rare knowledge,
even among professional programmers. To master cryptology, you will have to
understand discrete mathematics. To find bugs, you will need to be an extremely
careful programmer. To reverse engineer, you will have to understand compilers.
To be able to grok an application, you need to be able to look through the GUI
that most people recognize and imagine the code behind it, like the characters in
The Matriz. A true hacker realizes that the GUI is a side-effect of the code, and
not vice-versa, and that therefore, a GUI can deceive. Thus, it is an excellent
place for people who like to learn and truly understand.

Just as water seeks its own level, system crackers (that is, “black hats”) often
seek the easiest way to compromise a system, organization, network, etc. To

227

http://en.wikiquote.org/wiki/Bruce_Lee
http://en.wikipedia.org/wiki/Polymath

specialize in one subfield of security is akin to being able to just build moats,
walls, arrow slits, or murder-holes. To focus on one area of security to the
exclusion of others is akin to building a tall fencepost, rather than a wall.

36.3 A Proposed Perimeter Defense

I believe the following design would be a useful design for perimeter defenses
for most organizations and individuals.

First, there would be an outer layer of reactive prevention that performs de-
tection of abuse ([I6) with a very liberal definition of “abuse” (anything that
could be abuse is considered one), and then marks the source tainted (IT722]).
Second, there is an inner layer of prevention and detection that acts as a fail-
safe mechanism; if the outer preventative defense should fail for some reason
(hardware, software, configuration) then incoming connections will be stopped
(prevented) by the inner layer and the detection system will alert us (see [7.1])
that something is very wrong.

This way, the outer layer may taint the source if it looks slightly hostile. We only
get notified if the outer layer failed in some unexpected way; we do not have to
worry about the outer layer blocking or detecting adversaries. In other words, it
doesn’t require having a human monitor traffic blocked by the outer layer, and
therefore the outer layer does not have to put any effort into validating that it
is a valid attack.

The idea of a dual layer of firewalling is already becoming popular with finan-
cial institutions and military networks, but really derives itself from the lessons
learned trying to guarantee high availability and specifically the goal of elim-
inating single points of failure. However, if the outer layer were not reactive,
then we would effectively be discarding any useful intelligence that is gained by
detecting probes (that is, a failed connection/query/probe/attack is still valu-
able in determining intent). With a reactive firewall as the outer layer, when an
adversary probes our defenses looking for holes or weak spots, we take appropri-
ate action, usually shunning that network address, and this makes enumeration
a much more difficult process. With a little imagination, we can construct more
deceptive defensive measures, like returning random responses, or redirection to
a honey-net (which is essentially just a consistent set of bogus responses, plus
monitoring). Since enumeration is strictly an information-gathering activity,
the obvious countermeasure is deception. The range of deceptive responses runs
from none (that is, complete silence, or lack of information) through random
responses (misinformation) to consistent, strategic deception (disinformation).
Stronger responses are out of proportion to the provocation (network scans are
legal in most countries), and often illegal in any circumstances.

228

36.4 Linear Order Please!

I personally think that directives should be processed in the order they are listed
in cases like Apache’s config file, and that would eliminate a need for the order
directive at all. Certainly there is room for confusion if it is not near the allow
and deny directives that it so explicitly controls, and I suspect it might be easy
to pay attention to the first order directive in a stanza, and not a second one
which appeared later in the stanza. Already we have an ordering issue, that
either defaults to “earlier takes precedence” vs. “later takes precedence”. Let’s
not make interpreting the rule sets more complex than that.

36.5 Computers are Transcending our Limitations

A human being should be able to change a diaper, plan an invasion,
butcher a hog, conn a ship, design a building, write a sonnet, balance
accounts, build a wall, set a bone, comfort the dying, take orders,
give orders, cooperate, act alone, solve equations, analyze a new
problem, pitch manure, program a computer, cook a tasty meal,
fight efficiently, die gallantly. Specialization is for insects.

— Robert Heinlein

The future masters of technology will have to be lighthearted and
intelligent. The machine quickly masters the grim and the dumb.

— Marshall McLuhan

At one time, a single person could know all of the code in the Unix kernel.
Now, operating systems may have several million lines of code. At one time, a
human could perform encryption; now it is too time-consuming to do anything
of significance. At one time, people memorized IP addresses, but with IPv6,
they will be too long to remember, or even type comfortably. At one time,
a password could be something simple. Now, you need a passphrase. Soon,
anything that a human can imagine and remember is going to be too predictable;
it will be possible to simply enumerate most, if not all, of the possibilities. Our
symmetric ciphers have 256-bit keys, which would require (on average) a 256-
character English passphrase to be hashed to give enough unpredictability to
max out the input space. Our hashes are so long that it takes at least 40 hex
digits to represent the smallest one considered secure, and we're already using
512-bit hashes which will take 128 hex digits. And some algorithms like RSA
use keys which are 8192 bits long, which would take 2048 hex digits to represent.

My point in all this is that if a human can reliably do it, remember it, generate
it, enter it without a mistake, or tell it to someone else, it is probably not secure.
Furthermore, though no single thing is incomprehensible, the whole system is
probably already too complex for one person to understand it all. This doesn’t
mean that we don’t control them, or that we will inevitably lose control, any

229

more than a manager who cannot lift heavy objects will be replaced by a worker
who can. It simply means that you need to stop thinking of people as being
participants in the system, and think more of the participant as a computer and
a human being forming a symbiotic relationship, each complementing the other.
Stop practicing arithmetic and start studying mathematics. If a computer can
do it, it’s not an effective use of your time, and it’s probably boring. Further-
more, you need to stop thinking of typing security data to a computer, since it
will be too long.

36.6 Password Length Limits Considered Harmful

Your password must be seven characters in length, include an prime
number greater than three of the following character classes; digits,
uppercase letters, lowercase letters, white space, and unprintable
characters. It must not begin with a digit, end with a letter, have
an even number of letters, have a prime number of digits greater
than the sum of the number of white space and unprintable charac-
ters, or have a non-decreasing number of elements from the classes
mentioned before, were they to be listed in reverse alphabetical or-
der.

Look, if you hash your darn passphrases, I can pick a normal English sentence
which will have plenty of unpredictability (one unbit per letter), and you can
stop complaining that it’s too long because hashes can be stored in fixed-size
fields, and if the password database is stolen it won’t compromise my passphrase.

36.7 Everything Will Be Encrypted Soon

When cryptography is outlawed, bayl bhgynjf jvyy unir cevinpl.

— Anonymous, courtesy of Cryptography Quotes (http://www.amk.
ca/quotations/cryptography/)

Accidents happen, and data is leaked. You're going to want that to be encrypted.
Already this is required in many places, but I predict that encryption will be
ubiquitous very soon. Right now most storage devices are unencrypted; that will
be a thing of the past. Data will be encrypted on the disk, and the documents
or emails themselves may be encrypted, with the applications merely requesting
keys temporarily. Even bus lines will be encrypted, if the Trusted Computing
folks have their way; this may worry reverse-engineers, but it also means that
you have less to worry about some compromising emanations. I suspect even
data in memory will be encrypted soon. Plaintext will be the exception, not the
norm. I suggest you learn to be your own key master.

230

http://www.amk.ca/quotations/cryptography/
http://www.amk.ca/quotations/cryptography/

36.8 How Universal Digital Signing Will Affect Things

Everything will be digitally signed, but what do those signatures mean? I
propose that we think of objects as having lifetimes, and that they are born
unsigned, and get signed with one of several kinds of signatures

provenance signatures mean that the signator is the author

transmission signatures mean that the signature assures us that the object
hasn’t been manipulated by later-acting forces

certification signatures bind a key to some other kind of identity (for example,
a company name, domain name, email address, legal name)

Each signature is made at a certain time. Provenance signatures would tend
to not include other signatures, whereas transmission signatures would tend to
include other signatures. Note that a signature can only include another one if
it is made after the first one.

36.9 Error Propagation Characteristics Usually Don’t Mat-
ter

Discussion of block cipher modes often includes an analysis of error propagation
properties. Who cares? On the Internet and most modern networks, error
detection and correction is done at another layer, even if it’s a very weak 16-bit
checksum. If you care about your data, you should do a real integrity check, and
not rely on half-baked measures like trying to decrypt something and hoping
that a corrupted ciphertext will not decrypt to a valid plaintext.

Usually, it’s safer for computers to discard corrupted messages than to try
to guess about what they’re supposed to say. Only if the cost of transmis-
sions is so high that you would rather deal with partial plaintext than retrans-
mit do you want to process incomplete messages. In that case you’d prob-
ably want some forward-error correction (http://en.wikipedia.org/wiki/
Forward_error_correction), so that you’d have some redundancy and be able
to correct errors.

I recommend you think of integrity protection, error correction, and encryption
as completely separate operations, and don’t mix them all together in your head.
If you can’t identify these three things as having different goals, you shouldn’t
be designing cryptographic systems. However, I won’t leave you hanging in
suspense.

integrity protection involves detecting any corruption, however minor, by an
intelligent adversary

231

http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Forward_error_correction

error correction attempts to correct any changes caused by a noisy channel,
and is almost the opposite of integrity protection

encryption attempts to keep your adversary from understanding the meaning
of what he intercepts

36.10 Keep it Legal, Stupid

In the days when Sussman was a novice, Minsky once came to him
as he sat hacking at the PDP-6.

“What are you doing?” asked Minsky.

“l am training a randomly wired neural net to play Tic-tac-toe,"
Sussman replied.

“Why is the net wired randomly?", asked Minsky.

“I do not want it to have any preconceptions of how to play," Sussman
said.

Minsky then shut his eyes.

“Why do you close your eyes?" Sussman asked his teacher.
“So that the room will be empty."

At that moment, Sussman was enlightened.

— Al koan in The Jargon File (http://www.catb.org/~esr/jargon/
html/index.html)

I have held what many would consider to be respectable jobs doing computer
security in the defense, financial, and information technology industries, yet at-
tended DEF CON (http://www.defcon.org/) frequently, and still read 2600
(http://www.2600.com/), and I don’t find it anything to be ashamed of. I have
been reading about computer security since Qut of the Inner Circle (http://
en.wikipedia.org/wiki/Out_of_the_Inner_Circle) was published in 1985
(by Microsoft Press, if you can believe that), I know people who were convicted
of felonies and banned from using the Internet, and yet I've never broken a
computer crime law, nor have I ever victimized anyone. Technology and in-
formation, like skill with martial arts, or duct tape (http://theory.lcs.mit.
edu/"rivest/ducttape.txt), is a tool that can be used for good or evil.

Fortunately I'm in a position that I can reasonably and ethically justify seeking
and having this information, but I fear that cynical fear-mongers, the ignorant
and easily-scared fools which follow them, and the minions of greed are already
attempting to quash open discussion of security topics. The list of examples
is growing long, but includes the MPAA’s suppression of DeCSS (http://en.
wikipedia.org/wiki/DeCSS), the DMCA (http://en.wikipedia.org/wiki/
DMCA), the AACS key controversy (http://en.wikipedia.org/wiki/AACS_encryption_
key_controversy), and so on. In some cases it’s illegal to put a URL to certain

232

http://www.catb.org/~esr/jargon/html/index.html
http://www.catb.org/~esr/jargon/html/index.html
http://www.defcon.org/
http://www.2600.com/
http://en.wikipedia.org/wiki/Out_of_the_Inner_Circle
http://en.wikipedia.org/wiki/Out_of_the_Inner_Circle
http://theory.lcs.mit.edu/~rivest/ducttape.txt
http://theory.lcs.mit.edu/~rivest/ducttape.txt
http://en.wikipedia.org/wiki/DeCSS
http://en.wikipedia.org/wiki/DeCSS
http://en.wikipedia.org/wiki/DMCA
http://en.wikipedia.org/wiki/DMCA
http://en.wikipedia.org/wiki/AACS_encryption_key_controversy
http://en.wikipedia.org/wiki/AACS_encryption_key_controversy

information on your web site, even though you have no control the information
at the other end of the URL. It is only a short step away to making it illegal to
discuss these things outside of certain tightly-regulated areas, and countries with
a history as police states seem to be fond of this kind of this speech suppression.

It’s a sign of insecurity, and by that I mean psychologically and not in the tech-
nical sense. The irony is that further suppression will only make it more difficult
to secure the systems, which will make the adversary even more threatening,
and thus justify more draconian laws, and take away more freedoms, earn the
enmity of more people, and we end up with a very polarized situation that
should be familiar to most people. Not trusting your fellow human beings, and
seeking to coerce them is a very contagious attitude, and it will not make you
more secure in the long run. Tyrants live with a sword of Damocles (http://
en.wikipedia.org/wiki/Damocles) hanging over their head. Where will this
madness end? I think the combination of the DMCA and Trusted Comput-
ing may end up something like the movie Brazil (http://en.wikipedia.org/
wiki/Brazil_(f£ilm)), where the government strictly regulates air condition-
ing repairmen, all of whom are incompetent, and unlicensed HVAC workers who
simply want to fix the things are labeled and treated as terrorists.

How do you think we learn what the threats are that we need to defend against?
How do we learn any lessons from past failures if we can’t openly discuss them?
How do you think anyone gains the information, education, and skill to get their
first job defending against crime in the first place? How can we test our systems
to see if they are vulnerable to something if we can’t get a copy of it?

The problem is not information; information is the solution. That’s why I'm
publishing this paper. If we know that the systems are not secure, we can pos-
sibly fix them. If they can’t be made secure, we can stay educated about those
risks to manage them properly. Democracy can’t function if the people voting
aren’t allowed to have make informed choices. Capitalism can’t function effi-
ciently unless the parties involved have full information about their purchasing
decision. Information is on the side of the people making decisions; when you
vote to withhold information, you are depriving people of the ability to make
informed decisions, which is a way to take power away from them. It actually
behooves the defenders to know exactly what the adversaries are doing; it allows
us to get inside their OODA loop (see B3.4).

Note that I'm not saying anything about punishing or not punishing pickpockets
and leg-breakers, but when it’s merely a matter of discussing something without
directly victimizing anyone, I think you should appeal to their conscience and
not to a judge. On the other hand, if you’re thinking about publishing detailed
plans that could be used to victimize someone, just stop and think about how
bad you’ll feel if it really is used to victimize someone. You don’t want that
on your conscience. What exactly constitutes “detailed plans” isn’t so much the
question as how you would feel about it.

233

http://en.wikipedia.org/wiki/Damocles
http://en.wikipedia.org/wiki/Damocles
http://en.wikipedia.org/wiki/Brazil_(film)
http://en.wikipedia.org/wiki/Brazil_(film)

36.11 Should My Employees Attend “Hacker” Conferences?

Well first off you should know that these are not criminal events. Penetration
testing is a legitimate career, and the talks are typically given by people who
do that for a living. Generally speaking, there are not many crimes being
committed there; intelligent criminals are too paranoid of being busted, and
so tend to remain quiet. Unintelligent criminals don’t attend conferences. Law
enforcement is usually fully aware of the conferences, is often present, and would
never allow chaos to reign. They have the power to shut them down at a
moment’s notice, or arrest people on the spot. There is some allure there of
being able to discuss normally-forbidden topics, but that’s about it. This allure
often brings the media as well. There’s plenty of openness about it.

So if you care about securing your systems, the answer is yes. What, exactly,
are you afraid of?

The people who attend these events fully expect the defenders to be there. They
have a vested interest in keeping apprised of their adversaries. I have made a
point of using the term “adversary” instead of “enemy”, because that’s the way
you should think about them. If you have no presence there, it makes your
organization look ignorant, and if you do have people there, it makes you look
savvy. Many of them have no intention of stealing from anyone, and one day
aspire (perhaps secretly) to work at savvy companies. The rest are typically no
more malicious than your typical “merry prankster”. If there are no people there
to provide positive role-models, no “upgrade path” for them, they may become
frustrated. It’s no coincidence that a lot of the adversaries on the Internet seem
to be coming from Eastern European countries, and seem to have a lot of time
on their hands.

36.12 I’'m a Young Hacker, Should I Sell Out and Do Se-
curity for a Corporation?

I recall hearing someone say, “if you’re twenty and you work for a corporation,
you’re a loser, but if you’re thirty and you don’t work for a corporation, you're a
loser”. I’'m not sure I'd put it quite like that, but let me spell out some common
concerns and trade offs for you.

Firstly, if it’s what you love, then you’re going to want to spend time on it.
Who would want to spend eight hours a day doing telemarketing if they could
spend it doing something they loved? And if you don’t like what you’re doing
for a living, you’re not going to be good at it, and so you will find yourself
saying “would you like fries with that?” far more than anyone should have to.
Secondly, a person who wants to get good at something and can do it at work
and home will be much better at it than someone who does it only at home.
I recall hearing of someone working for an Allied spy agency who had to get
fake documents made to move around in Europe during WWII, his forger was a

234

document examiner prior to the war, and his documents were superb, absolutely
flawless. In most contexts, professionals usually beat amateurs.

Sometimes the person is paranoid that one day he’ll pull off the ultimate heist
and he’s concerned that the prosecution would be able to prove he knew some-
thing about security. In most cases, all it would take to establish that you
knew something about security would be for some casual acquaintance to say
that you were really good with computers. It would be difficult to make the
case that you actually knew nothing about computers when there’d be so much
circumstantial evidence supporting it; you’d have to show it was misleading,
and would likely involve a lot of lying. But really, if there’s evidence against
you, pretending to not understand computers is unlikely to help. But what you
need to do most is stop worrying. In theory, the ultimate heist wouldn’t have a
suspect. It wouldn’t have evidence.

Furthermore, most hacker fantasies about ultimate heists avoid thinking about
victims. A good ultimate heist fantasy has some evil, faceless organization as the
enemy who has the valuable object. It’s important to the fantasy that you not
be stealing a Rembrandt from a feeble but kind senior citizen who has had it in
his family for three generations, or a valuable heirloom from a person’s deceased
parent, because humanizing the victim allows you to actually feel about it.

Generally, if a person did something like that, it’s either for the money, or for
the challenge of it. In 1978, a computer programmer named Stanley Rifkin who
worked for Security Pacific Bank (http://en.wikipedia.org/wiki/Security_
Pacific_Bank) managed to transfer $10,200,000 out of the bank and use it to
buy Russian diamonds. In the version of the story I heard, he contacted a close
friend and told him about the crime, but the friend turned him in Y

The crux of the story was that he had apparently done it more for bragging rights
than for the money, and by not knowing why he was doing it, he managed to
get himself caught. It’s typical for system crackers to get convicted by their
own statements (“loose lips sink ships”, as the wartime OPSEC poster says). So
either you are contemplating the ultimate heist for the challenge and bragging
rights, in which case you should pick something legal, or you’re doing it for the
filthy lucre. And if you’re doing the ultimate heist for the money, then what
exactly is your objection to getting a job doing security in the first place?

Trust me, you're better off staying legit, and if you plan on staying legit, then
you should get a job and some respect. Not just any job, but one for a company
that appreciates your talents. If you can’t find one, you may have to start it
yourself, but there are many security companies out there these days. Computer
security is a pretty high-demand talent.

21 That’s not the version described here, though: http://www.bookrags.com/biography/
stanley-mark-rifkin-wcs/

235

http://en.wikipedia.org/wiki/Security_Pacific_Bank
http://en.wikipedia.org/wiki/Security_Pacific_Bank
http://www.bookrags.com/biography/stanley-mark-rifkin-wcs/
http://www.bookrags.com/biography/stanley-mark-rifkin-wcs/

36.13 Anonymity is not a Crime

It’s people like that who give anonymity a bad name.

Almost every criminal wants to remain anonymous, but so should non-criminals.
Would you publish the name of your eight-year-old daughter, which school she
attends, when it gets out, and what her favorite candy is? I could put my
full name, social security number, home phone number and address on my
emails and web pages, but the world is full of spammers, stalkers, scammers
and sick people who really don’t need to have it. Simson Garfinkel tells me
he gets death threats for writing books on computer security not unlike this
one. Many of the people who write about a certain Internet worm are having
their web sites DoSed in retaliation (http://www.networkworld.com/news/
2007/102407-storm-worm-security.html). I know that ultimately they will
see judgment, but I’d still rather not be one of their victims. I understand
your connotation of anonymity with criminality, but I don’t think it applies
in all cases. Nevertheless, the Supreme Court has ruled numerous times that
anonymous speech is constitutionally protected, and for security reasons I give
out personally-identifying information on a need-to-know basis (see BZ41]
and BZ1). If you have a lawful need for it, you’ll be able to get it.

36.13.1 Example: Sears Makes Customer Purchase Information Avail-
able Online, Provides Spyware to Customers

Why should you care? Well, in a recent case, it turns out that Sears made
its customer purchase information available to anyone online who can obtain
your name and address (http://www.managemyhome.com/). Aside from the
simple invasion of privacy, in one blog’s comments (http://reddit.com/goto?
rss=true&id=t3_64jye), a poster claiming to be a professional burglar states
that he finds it rather handy as a way of finding homes with all the latest
appliances (and gives name and address information for a person who has such).

This is a well-known example of the fact that you can’t trust other parties to
protect your security (see 27.1). What can you do about it? Well, one person
mentioned that you can pay cash, or simply not shop at Sears. This is an
example of controlling information flow (see B2.2); if you never give out your
home address, nobody can disseminate it. However, if you give it out to even
one party, such as Sears, or your credit card company, then they can disseminate
it to third parties (see B2.I0) and such dissemination is done “offline” relative
to you, in that you can’t approve or disapprove. You could potentially rely on
legal remedies to punish someone who got caught violating an agreement, but
most of the time you wouldn’t know about it, and most of the remainder you
wouldn’t be able to quantify damages.

236

http://www.networkworld.com/news/2007/102407-storm-worm-security.html
http://www.networkworld.com/news/2007/102407-storm-worm-security.html
http://www.managemyhome.com/
http://reddit.com/goto?rss=true&id=t3_64jye
http://reddit.com/goto?rss=true&id=t3_64jye

36.14 Monitoring Your Employees

Of all the possible defenses, the cheapest and most effective is to
be loved. The best way to be loved is to vanquish your own fear of
trusting people.

The most effective monitoring involves only hiring people you trust, and who
you feel are willing to understand and internalize company policies. Usually, the
feeling that your employees might be doing something nefarious online says more
about the work environment and the manager than the employee. The manager
is insecure because he does not know how his employees spend their time, and
he feels that there is a certain amount of hostility between management and
employee, and he probably feels like he doesn’t pay them enough to make them
want to work there. He feels that the employees, left to themselves, would rob
the company, and that he must keep them in fear to keep them in line. This
is a self-fulfilling attitude; if you treat them that way, you will find your fears
justified. Do managers keep track of what their subordinates spend their time
on, and do they get it done, and do they spend enough time them to make
sure they aren’t goofing off? Is the environment one where peer pressure would
prevent someone from goofing off extensively? Apart from your fears, have there
been no incidents where online activity has hurt the company in any significant
way? Then do some spot checks, maybe review the web proxy logs occasionally,
and otherwise spend your energy on more important things, like making money.
Why create a problem where there isn’t one?

36.15 Trust People in Spite of Counterexamples

If, while building a house, a carpenter strikes a nail and it proves
faulty by bending, does the carpenter lose faith in all nails and stop
building his house?

— The Kung Fu Book of Wisdom

Throughout most of this book, I'm sure I’ve given the impression that I don’t
trust anyone. Were you to try to not trust anyone, you would never be able
to do anything; it’s as futile as trying to completely eliminate risk. There
are significant but non-obvious advantages to trust. Humanity as a whole,
corporations, and individuals have a limited amount of resources available to
them. Lack of trust is like friction, or antagonistic tension in a muscle; it forces
us to spend resources protecting ourselves from others, instead of what we’d
really like to be doing. Thus, the logical strategy is to strive to be trustworthy,
and to promote and otherwise help those that demonstrate themselves to be so.
To the extent that an organization is composed of trustworthy people who look
out for each other, the people within it may expend their full resources on the
tasks at hand. In short, the benefits of trust vastly outweighs the risks.

237

36.16 Do What I Mean vs. Do What I Say

One Sabbath he was going through the grainfields, and as they made
their way, his disciples began to pluck heads of grain. And the
Pharisees were saying to him, “Look, why are they doing what is
not lawful on the Sabbath?” And he said to them, “Have you never
read what David did, when he was in need and was hungry, he and
those who were with him: how he entered the house of God, in the
time of Abiathar the high priest, and ate the bread of the Presence,
which it is not lawful for any but the priests to eat, and also gave it
to those who were with him?” And he said to them, “The Sabbath
was made for man, not man for the Sabbath.”

— Mark 2:23-27

Most of the security people I know are people who try to understand the reason-
ing behind things, and spend most of their time trying to figure out how doing
what a programmer said (in the form of software) differs from doing what the
programmer meant for it it do. Thus, I believe that it is natural for them to
assume that everyone thinks the same way. A recent conversation I overheard
illustrates the opposite viewpoint.

The conversation occurred between two US military personnel, who shall go
nameless. One of them was explaining that he had called the troops under him
together for a readiness inspection; apparently in this drill, they were to pretend
that they were preparing to go into the field and rapidly put together all of their
gear and present it for inspection. He explained that one of the people under
him shaved his head, and that during this inspection he had failed to include his
comb and shampoo, and that he (the speaker) had punished him for this. The
other speaker asked the obvious question as to why he would punish a person
for failing to bring something he obviously didn’t need, and the speaker stated
that, “it’s a test to see if you can follow simple instructions, and he did not”.

There may be good reasons why the “do what I say, not what I mean” attitude
prevails; it may be that the officers don’t give the enlisted people enough infor-
mation to understand the meaning, or they may not be mature or intelligent
enough, or it may be that the officers don’t trust the people under them enough
to give them any “wiggle room”. However, I think the reason is simpler; the
speaker simply wanted people below him to obey him. My view is that if you
teach people that trying to understand and optimize is a punishable offense, you
will end up with people who will never try to understand or improve anything,
and the entirety of the organization will suffer.

From my experience, the US military and government is dominated by these
kinds of thinkers. I have been told that not all militaries are like this; in par-
ticular, the Israeli Defense Forces are said to teach their recruits to try to un-
derstand and observe the spirit of their instructions, where they differ from the
letter, and they seem to be able to improve upon any military hardware that
the US sells them, perhaps for just that reason.

238

36.17 You Are Part of the Problem if You...

If you’re not part of the solution, you’re part of the precipitate.

—Henry J. Tillman (http://www.quotationspage.com/quote/1141.
html)

You are part of the problem if you:

Use a mail client that can’t read cryptographically signed email (look Out
for a common one) because this prevents people from doing sensible things
like using S/MIME to securely sign their emails. This goes double if you
receive email for a company.

Don’t sign emails. This encourages phishing; it would be easy to link into
the chrome to show if a message from, say, E-Bay is legit or not. If you
don’t sign your emails, people do not expect signatures, and so they fall
for phishing. This can be done with S/MIME or Domain Keys, which is
probably best if you want all emails signed.

Let your system stay hacked. This allows system crackers to send SPAM
and host malware on your system, so that other people get affected. Clean
up your act and get unhacked. Saying “it doesn’t hurt me so I don’t care”
is not a valid response here. You are part of the problem.

Make software that isn’t secure. Doing things like allowing executables
in too many places makes it difficult to give security advice. Security
should be a simple ritual, but if you’ve ever seen a highly-infected Windows
machine you’ll know that’s not true.

Don’t have a webmaster or postmaster email address. You are required to
have a postmaster address.

Send executables to friends. Don’t inure them to the danger of running
programs.

Many of these have to do with network effects (http://en.wikipedia.org/
wiki/Network_externality)

36.18 What Do I Do to Not Get Hacked?

36.18.1 For Computer Users Running Microsoft Windows

Everyone who uses a Microsoft Windows computer should probably read this.
It is quite thoughtful, although I’'m not sure it is described at a basic enough
level for everyone.

Terry Ritter’s Basic PC Security (http://www.ciphersbyritter.com/
COMPSEC/BASPCSEC.HTM)

239

http://www.quotationspage.com/quote/1141.html
http://www.quotationspage.com/quote/1141.html
http://en.wikipedia.org/wiki/Network_externality
http://en.wikipedia.org/wiki/Network_externality
http://www.ciphersbyritter.com/COMPSEC/BASPCSEC.HTM
http://www.ciphersbyritter.com/COMPSEC/BASPCSEC.HTM

36.18.2 For System Administrators and Advanced Users

Before you start running software, look it up in the National Vulnerability
Database (http://nvd.nist.gov/). Look up a few competing solutions. Filter
out any which don’t have all the features you need. Pick the one with the lowest
rate of vulnerability discovery. If it has none, it is either written by a security
guru, or it simply hasn’t had enough attention yet. You can tell how popular
they are by searching for them on Google and seeing how many hits there are.
You might also look at CVE (http://cve.mitre.org/).

37 Resources

I make no attempt to be fair or comprehensive here; these reflect my personal
biases as to what I think is interesting, useful, comprehensive, or simply the
first that come to mind. If you want a comprehensive list, you can just search
the web and read every link or book you find; it should only take a century or
two.

37.1 My Other Stuff

http://www.subspacefield.org/security/

37.2 Publications

Here’s an outstanding list of important publications:

o Wikipedia’s List of Important Publications in Networks and Security (http://
en.wikipedia.org/wiki/List_of_important_publications_in_networks_
and_security)

37.3 Conferences

Even if you can’t go, you can learn a lot by searching the web for proceedings
from these conferences. You should try to go though, they’re fun. Seriously,
the first security conference I went to, I was so intellectually stimulated, I was
buzzing the whole time.

e DEF CON (http://www.defcon.org/) is best when you want to get the
low-down on how to defeat security systems. You can view some of them
on Google video or youtube. In my opinion, the best presentation I've
ever seen is “No-tech Hacking” by Johnny Long (http://video.google.

240

http://nvd.nist.gov/
http://cve.mitre.org/
http://www.subspacefield.org/security/
http://en.wikipedia.org/wiki/List_of_important_publications_in_networks_and_security
http://en.wikipedia.org/wiki/List_of_important_publications_in_networks_and_security
http://en.wikipedia.org/wiki/List_of_important_publications_in_networks_and_security
http://www.defcon.org/
http://video.google.com/videoplay?docid=-2160824376898701015

com/videoplay?docid=-2160824376898701015), and the wonderful part
of it is that even someone who knows nothing about computer security
can enjoy it.

e USENIX Symposium on Security (http://www.usenix.org/events/bytopic/
security.html) is best when you want to know about cutting-edge com-
puter security defense research. All their proceedings are free online, so
definitely check those out.

e USENIX Symposium on Hot Topics in Security (http://www.usenix.
org/events/bytopic/hotsec.html) is a forum for lively discussion of
aggressively innovative and potentially disruptive ideas in all aspects of
systems security.

e USENIX Workshop on Offensive Technologies (http://www.usenix.org/
events/bytopic/woot.html) aims to bring together researchers and prac-
titioners in system security to present research advancing the understand-
ing of attacks on operating systems, networks, and applications.

e Black Hat (http://www.blackhat.com/) which is the commercial version
of DEF CON, which makes it more appealing to employers.

37.4 Books

When I get a little money, I buy books. And if there is any left over,
I buy food.

— Deciderius Erasmus
I cannot live without books.

— Thomas Jefferson

Books are fairly common, and have a lot of useful information, but can’t be
shared, are hard to grep, can’t easily be referred to, and take up space. If
you're a younger reader, they’re like PDFs, but printed onto flattened pieces of
dead trees. Nevertheless, I find them indispensable.

o Free Computer Security Books (http://freecomputerbooks.com/compscspecialSecurityBooks.
html)

37.4.1 Publishers

You can’t judge a book by it’s cover, but you can often get a good approximation
from its publisher.

SAMS and QUE waste of money/space/trees/time

241

http://video.google.com/videoplay?docid=-2160824376898701015
http://www.usenix.org/events/bytopic/security.html
http://www.usenix.org/events/bytopic/security.html
http://www.usenix.org/events/bytopic/hotsec.html
http://www.usenix.org/events/bytopic/hotsec.html
http://www.usenix.org/events/bytopic/woot.html
http://www.usenix.org/events/bytopic/woot.html
http://www.blackhat.com/
http://freecomputerbooks.com/compscspecialSecurityBooks.html
http://freecomputerbooks.com/compscspecialSecurityBooks.html

O’Reilly my favorite for in-depth coverage of practical stuff

Addison-Wesley and Prentice-Hall Technical Reference good for theory
or technical material

Springer-Verlag the prestige publisher among academics

No Starch Press a recent entrant which is now publishing some excellent se-
curity titles

37.4.2 Titles

I should probably start a webpage on this, since I have so many (http://wuw.
subspacefield.org/ travis/recommended_books.jpg).

One day TI’ll link to places to buy these, but until then I will assume you know
how to locate and purchase books.

e Practical Unix and Internet Security - the de facto standard for defensive
operations

e Silence on the Wire - the most novel book on security, covering infor-
mation disclosure and network forensics (http://lcamtuf .coredump.cx/
silence.shtml)

e Hacking Exposed - the de facto standard for penetration testing
e Practical Cryptography - this should be your first book on cryptography

e Applied Cryptography - the de facto standard on cryptology; the section
on protocols and block cipher modes are outstanding

e Handbook of Applied Cryptography - arguably more useful than AC, and
available free online (http://www.cacr.math.uwaterloo.ca/hac/)

37.5 Periodicals

Oddly, the only one I read regularly is 2600 (http://www.2600.com/), though
Hackin9 (http://hakin9.org/) shows some promise.

37.6 Blogs

These are often where experts read of stuff first.

e Uninformed Journal (http://www.uninformed.org/) has got a lot of stuff
about reverse engineering

242

http://www.subspacefield.org/~travis/recommended_books.jpg
http://www.subspacefield.org/~travis/recommended_books.jpg
http://lcamtuf.coredump.cx/silence.shtml
http://lcamtuf.coredump.cx/silence.shtml
http://www.cacr.math.uwaterloo.ca/hac/
http://www.2600.com/
http://hakin9.org/
http://www.uninformed.org/

e Matasano Chargen (http://www.matasano.com/log/) is a good all-around
technical blog on security

e Schneier on Security (http://www.schneier.com/blog/) is about the in-
tersection of technology and security, especially “Homeland Security”

e Matt Blaze’s Exhausive Search (http://www.crypto.com/blog/)

e My security blog list (http://www.subspacefield.org/security/security_
feeds.opml) in OPML format suitable for import into akregator

37.7 Mailing Lists

Do not meddle in the affairs of wizards, for they are subtle and quick
to anger.

—J. R. R. Tolkien

This is where experts discuss and develop things. Lurk, but if I were you I
wouldn’t speak unless you’re spoken to.

e BUGTRAQ (http://www.securityfocus.com/archive/1/description)

e Full-Disclosure (https://lists.grok.org.uk/mailman/listinfo/full-disclosure)
e dailydave (http://lists.immunitysec.com/mailman/listinfo/dailydave)

e cryptography@metzdowd.com

e cryptography@randombit.net

e cypherpunks (does this list still exist?)

e coderpunks (ditto)
I've created a few mailing lists for special topics:

Random Number Generation http://lists.bitrot.info/mailman/listinfo/
rng

One Time Pads http://lists.bitrot.info/mailman/listinfo/otp

243

http://www.matasano.com/log/
http://www.schneier.com/blog/
http://www.crypto.com/blog/
http://www.subspacefield.org/security/security_feeds.opml
http://www.subspacefield.org/security/security_feeds.opml
http://www.securityfocus.com/archive/1/description
https://lists.grok.org.uk/mailman/listinfo/full-disclosure
http://lists.immunitysec.com/mailman/listinfo/dailydave
http://lists.bitrot.info/mailman/listinfo/rng
http://lists.bitrot.info/mailman/listinfo/rng
http://lists.bitrot.info/mailman/listinfo/otp

37.8 Computer Security Movies
I thought about creating a list, but Google already had several answers:

e http://netforbeginners.about.com/od/hackingl01/a/hackermovies.
htm

e http://www.betaversion.net/movies.html
e http://techspotting.org/top-geek-films-hacking-movies/
e http://www.linuxhaxor.net/7p=432

e http://www.shoutmeloud.com/top-10-hollywood-movies-on-hacking.
html

e http://en.wikipedia.org/wiki/List_of_films_about_computers

And, if you figure out the right search term, you can find some more technical
videos.

38 Unsorted

Here is where I keep all my links that I haven’t figured out how to organize yet.
I thought they might be useful for further reading.

o Chaffing & Winnowing (http://en.wikipedia.org/wiki/Chaffing_and_
winnowing)

e Information Leakage (http://en.wikipedia.org/wiki/Information_leakage)
e Traffic Analysis (http://en.wikipedia.org/wiki/Traffic_analysis)

o Communication Security (http://en.wikipedia.org/wiki/Communications_
security)

e SIGINT (http://en.wikipedia.org/wiki/SIGINT)

o Intelligence Collection Management (http://en.wikipedia.org/wiki/
Intelligence_collection_management)

o Intelligence Cycle Management (http://en.wikipedia.org/wiki/Intelligence_
cycle_management)

o ACOUSTINT - Acoustic Intelligence (http://en.wikipedia.org/wiki/
ACOUSTINT)

e Hidden Markov Model (http://en.wikipedia.org/wiki/Hidden_Markov_
model)

244

http://netforbeginners.about.com/od/hacking101/a/hackermovies.htm
http://netforbeginners.about.com/od/hacking101/a/hackermovies.htm
http://www.betaversion.net/movies.html
http://techspotting.org/top-geek-films-hacking-movies/
http://www.linuxhaxor.net/?p=432
http://www.shoutmeloud.com/top-10-hollywood-movies-on-hacking.html
http://www.shoutmeloud.com/top-10-hollywood-movies-on-hacking.html
http://en.wikipedia.org/wiki/List_of_films_about_computers
http://en.wikipedia.org/wiki/Chaffing_and_winnowing
http://en.wikipedia.org/wiki/Chaffing_and_winnowing
http://en.wikipedia.org/wiki/Information_leakage
http://en.wikipedia.org/wiki/Traffic_analysis
http://en.wikipedia.org/wiki/Communications_security
http://en.wikipedia.org/wiki/Communications_security
http://en.wikipedia.org/wiki/SIGINT
http://en.wikipedia.org/wiki/Intelligence_collection_management
http://en.wikipedia.org/wiki/Intelligence_collection_management
http://en.wikipedia.org/wiki/Intelligence_cycle_management
http://en.wikipedia.org/wiki/Intelligence_cycle_management
http://en.wikipedia.org/wiki/ACOUSTINT
http://en.wikipedia.org/wiki/ACOUSTINT
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model

Military Cryptanalytics (http://en.wikipedia.org/wiki/Military_Cryptanalytics)
Zendian Problem (http://en.wikipedia.org/wiki/Zendian_Problem)

Social Network Analysis (http://en.wikipedia.org/wiki/Social_network#
Social_network_analysis)

Social Network Analysis Software (http://en.wikipedia.org/wiki/Social_
network_analysis_software)

OPSEC - Operations Security (http://en.wikipedia.org/wiki/Operations
security)

TRANSEC - Transmission Security (http://en.wikipedia.org/wiki/
TRANSEC)

Electronic Counter-measures (http://en.wikipedia.org/wiki/Electronic_
counter-countermeasures)

Electronic Warfare (http://en.wikipedia.org/wiki/Electronic_warfare)
Cyber Operations (http://en.wikipedia.org/wiki/Cyber_Operations)

Cyber Electronic Warfare (http://en.wikipedia.org/wiki/Cyber_electronic_
warfare)

Electronic Warfare Support Measures (http://en.wikipedia.org/wiki/
Electronic_warfare_support_measures)

Tarpit (http://en.wikipedia.org/wiki/Tarpit_(networking))

Anti-spam Techniques (http://en.wikipedia.org/wiki/Anti-spam_techniques_
(e-mail))

Perfect Forward Secrecy (http://en.wikipedia.org/wiki/Perfect_forward_
secrecy)

Forward Anonymity (http://en.wikipedia.org/wiki/Forward_anonymity)
Malleability (http://en.wikipedia.org/wiki/Malleability_(cryptography))
Deniable Authentication (http://en.wikipedia.org/wiki/Deniable_authentication)
Prisoner’s Dillema (http://en.wikipedia.org/wiki/Prisoner%27s_dilemma)
Superrational (http://en.wikipedia.org/wiki/Superrational)

Nash Equilibrium (http://en.wikipedia.org/wiki/Nash_equilibrium)

Perfect Rationality (http://en.wikipedia.org/wiki/Perfect_rationality)

Dominant Strategy (bhttp://en.wikipedia.org/wiki/Dominant_strategy)

245

http://en.wikipedia.org/wiki/Military_Cryptanalytics
http://en.wikipedia.org/wiki/Zendian_Problem
http://en.wikipedia.org/wiki/Social_network#Social_network_analysis
http://en.wikipedia.org/wiki/Social_network#Social_network_analysis
http://en.wikipedia.org/wiki/Social_network_analysis_software
http://en.wikipedia.org/wiki/Social_network_analysis_software
http://en.wikipedia.org/wiki/Operations_security
http://en.wikipedia.org/wiki/Operations_security
http://en.wikipedia.org/wiki/TRANSEC
http://en.wikipedia.org/wiki/TRANSEC
http://en.wikipedia.org/wiki/Electronic_counter-countermeasures
http://en.wikipedia.org/wiki/Electronic_counter-countermeasures
http://en.wikipedia.org/wiki/Electronic_warfare
http://en.wikipedia.org/wiki/Cyber_Operations
http://en.wikipedia.org/wiki/Cyber_electronic_warfare
http://en.wikipedia.org/wiki/Cyber_electronic_warfare
http://en.wikipedia.org/wiki/Electronic_warfare_support_measures
http://en.wikipedia.org/wiki/Electronic_warfare_support_measures
http://en.wikipedia.org/wiki/Tarpit_(networking)
http://en.wikipedia.org/wiki/Anti-spam_techniques_(e-mail)
http://en.wikipedia.org/wiki/Anti-spam_techniques_(e-mail)
http://en.wikipedia.org/wiki/Perfect_forward_secrecy
http://en.wikipedia.org/wiki/Perfect_forward_secrecy
http://en.wikipedia.org/wiki/Forward_anonymity
http://en.wikipedia.org/wiki/Malleability_(cryptography)
http://en.wikipedia.org/wiki/Deniable_authentication
http://en.wikipedia.org/wiki/Prisoner%27s_dilemma
http://en.wikipedia.org/wiki/Superrational
http://en.wikipedia.org/wiki/Nash_equilibrium
http://en.wikipedia.org/wiki/Perfect_rationality
http://en.wikipedia.org/wiki/Dominant_strategy

o Transient-Key Cryptography (http://en.wikipedia.org/wiki/Transient-key_
cryptography)

o Trusted Timestamping (http://en.wikipedia.org/wiki/Trusted_timestamping)
e Location Privacy

e anomos (http://anomos.info/)

39 Credits

I often quote myself. It adds spice to my conversation.

— George Bernard Shaw

I would like to single out the following people for making a large number of
contributions and comments:

e Jens Kubieziel
e Philipp Guehring

e Terry Ritter, who has a really neat cryptography website (http://wuw.
ciphersbyritter.com)

Additionally, I would like to thank the following people for reviewing pre-
publication versions of this paper:

e Marcus Ranum
e H D Moore

e Doug Bagley

I have tried to properly attribute every source and quote that I could. Where
an indented quote at the beginning of a section has no author specified, I am
that author.

246

http://en.wikipedia.org/wiki/Transient-key_cryptography
http://en.wikipedia.org/wiki/Transient-key_cryptography
http://en.wikipedia.org/wiki/Trusted_timestamping
http://anomos.info/
http://www.ciphersbyritter.com
http://www.ciphersbyritter.com

	Metadata
	Copyright and Distribution Control
	Goals
	Audience
	About This Work
	On the HTML Version
	About Writing This
	Tools Used To Create This Book

	Security Properties
	Information Security is a PAIN
	Parkerian Hexad
	Pentagon of Trust
	Security Equivalency
	Other Questions

	Security Models
	Security Concepts
	The Classification Problem
	Security Layers
	Privilege Levels
	What is a Vulnerability?
	Vulnerability Databases
	Accuracy Limitations
	Rice's Theorem

	Economics of Security
	How Expensive are Security Failures?
	Abuse Detection and Response: A Cost-Benefit Perspective

	Adversary Modeling
	Common Psychological Errors
	Cost-Benefit
	Risk Tolerance
	Capabilities
	Sophistication Distribution
	Goals

	Threat Modeling
	Common Platform Enumeration
	A Taxonomy of Privacy Breaches
	Threats to Security Properties
	Quantifying Risk
	Attack Surface
	Attack Trees
	The Weakest Link

	Physical Security
	No Physical Security Means No Security
	Data Remanence
	Smart Card Attacks

	Hardware Security
	Introduction
	Protection Rings
	Operating Modes
	NX bit
	Supervisors and Hypervisors
	Trusted Computing
	Intel vPro
	Hardware Vulnerabilities and Exploits

	Distributed Systems
	Network Security Overview
	Network Access Control
	Network Reconnaissance
	Network Intrusion Detection and Prevention
	Cryptography is the Sine Qua Non of Secure Distributed Systems
	Hello, My Name is 192.168.1.1
	Source Tapping; The First Hop and Last Mile
	Security Equivalent Things Go Together
	Man In The Middle
	Network Surveillance
	Push vs. Pull Updates
	DNS Issues
	Network Topology

	Identification and Authentication
	Identity
	Identity Management
	The Identity Continuum
	Problems Remaining Anonymous
	Problems with Identifying People
	What Authority?
	Goals of Authentication
	Authentication Factors
	Authenticators
	Biometrics
	Authentication Issues: When, What
	Remote Attestation
	Advanced Authentication Tools

	Authorization - Access Control
	Privilege Escalation
	Physical Access Control
	Operating System Access Control
	Application Authorization Decisions
	IPTables, IPChains, Netfilter
	PF
	Keynote

	Secure System Administration
	Backups
	Monitoring
	Visualization
	Change Management
	Self-Healing Systems
	Heterogeneous vs. Homogeneous Defenses

	Logging
	Synchronized Time
	Syslog
	Cryptographically Untamperable Logs

	Reporting
	Change Reporting
	Artificial Ignorance
	Dead Man's Switch

	Abuse Detection
	Physical Intrusion Detection
	Misuse Detection vs. Anomaly Detection
	Computer Immune Systems
	Behavior-Based Detection
	Honey Traps
	Tripwires and Booby Traps
	Malware and Anti-Malware
	Detecting Automated Peers
	Host-Based Intrusion Detection
	Intrusion Detection Principles
	Intrusion Information Collection

	Abuse Response
	Abuse Alerting
	How to Respond to Abuse
	Identification Issues
	Resource Consumption Defenses
	Proportional Response

	Forensics
	Forensic Limitations
	Remnant Data
	Ephemeral Data
	Remnant Data
	Hidden Data
	Metadata
	Locating Encryption Keys and Encrypted Data
	Forensic Inference

	Privacy
	Mix-Based Systems
	Distros

	Intrusion Response
	Response to Worms and Human Perpetrators
	Response to Malware

	Network Security
	The Current State of Things
	Traffic Identification
	Brute-Force Defenses
	Federated Defense
	VLANs Are Not Security Technologies
	Advanced Network Security Technologies

	Email Security
	Unsolicited Bulk Email
	Phishing
	Frameworks

	Web Security
	Direct Browser Attacks
	Indirect Browser Attacks
	Web Application Vulnerabilities
	Relevant Standards
	Crawler Attacks
	SSL Certificates Made Redundant

	Software Security
	Security is a Subset of Correctness
	Secure Coding
	Malware vs. Data-Directed Attacks
	Language Weaknesses
	Reverse Engineering
	Application Exploitation
	Application Exploitation Defenses
	Software Complexity
	Failure Modes
	Fault Tolerance
	Implications of Incorrectness

	Human Factors and Usability
	The Psychology of Security
	Social Engineering
	Security Should Be Obvious, and the Default
	Security Should Be Easy to Use
	No Hidden Data

	Attack Patterns
	Attack Taxonomy
	Attack Properties
	Attack Cycle
	Common Attack Pattern Enumeration and Classification

	Trust and Personnel Security
	Trust and Trustworthiness
	Who or What Are You Trusting?
	Code Provenance
	The Incompetence Defense
	Limiting Damage Caused by Trusted People

	Cryptography
	Things To Know Before Doing Crypto
	Limits of Cryptography
	Cryptographic Algorithms
	Cryptographic Algorithm Enhancements
	Cryptographic Combinations
	Cryptographic Protocols
	Encrypted Storage
	Deniable Storage
	Key Management
	Cryptographic Standards

	Randomness and Unpredictability
	Types of Random Number Generators
	Pseudo-Random Number Generators
	An Ideal Random Number Generator
	Definitions of Unpredictability
	Definitions of Randomness
	Types of Entropy
	Why Entropy and Unpredictability Are Not the Same
	Unpredictability is the Sine Qua Non of Cryptography
	Unpredictability is Not Provable
	Randomly Generated Samples
	Testing Samples For Predictability
	Testing Noise Sources
	Ways to Fail
	Sources of Unpredictability
	The Laws of Unpredictability

	Cryptanalysis
	Cryptographic Attack Patterns
	A Priori Knowledge
	Length Extension Attacks
	Hash Collisions
	PKCS Padding Oracle Attack
	Cryptanalysis of Random Number Generators
	Cryptanalysis of Wireless Protocols

	Lateral Thinking
	Traffic Analysis
	Side Channels

	Information and Intelligence
	Intelligence Jargon
	Controlling Information Flow
	Labeling and Regulations
	Knowledge is Power
	Secrecy is Power
	Never Confirm Guesses
	What You Don't Know Can Hurt You
	How Secrecy is Lost
	Costs of Disclosure
	Dissemination
	Information, Misinformation, Disinformation

	Conflict and Combat
	Indicators and Warnings
	Attacker's Advantage in Network Warfare
	Defender's Advantage in Network Warfare
	OODA Loops
	Courses of Action

	Security Principles
	The Principle of Least Privilege
	The Principle of Agility
	The Principle of Minimal Assumptions
	The Principle of Fail-Secure Design
	The Principle of Unique Identifiers
	The Principles of Simplicity
	The Principle of Defense in Depth
	The Principle of Uniform Fronts
	The Principle of Split Control
	The Principle of Minimal Changes
	The Principle of Centralized Management
	The Principle of Least Surprise
	The Principle of Removing Excuses
	The Principle of Usability
	The Principle of Retaining Control
	The Principle of Personality
	The Principle of Least Common Mechanism
	The Principle of Practice
	Work Factor Calculation
	Availability Principles

	Common Arguments
	Disclosure: Full, Partial, or None?
	Absolute vs. Effective Security
	Quantification and Metrics vs. Intuition
	Security Through Obscurity
	Security of Open Source vs. Closed Source
	Insider Threat vs. Outsider Threat
	Prevention vs. Detection
	Audit vs. Monitoring
	Early vs. Late Adopters
	Sending HTML Email

	Editorials, Predictions, Polemics, and Personal Opinions
	So You Think You're Old School?
	Security is for Polymaths
	A Proposed Perimeter Defense
	Linear Order Please!
	Computers are Transcending our Limitations
	Password Length Limits Considered Harmful
	Everything Will Be Encrypted Soon
	How Universal Digital Signing Will Affect Things
	Error Propagation Characteristics Usually Don't Matter
	Keep it Legal, Stupid
	Should My Employees Attend ``Hacker'' Conferences?
	Should You Sell Out?
	Anonymity is not a Crime
	Monitoring Your Employees
	Trust People in Spite of Counterexamples
	Do What I Mean vs. Do What I Say
	You Are Part of the Problem if You…
	What Do I Do to Not Get Hacked?

	Resources
	My Other Stuff
	Publications
	Conferences
	Books
	Periodicals
	Blogs
	Mailing Lists
	Computer Security Movies

	Unsorted
	Credits

