a1

g The Linux Documentation Project (TLDP)

L
| |
www.tldp.org

Become a Bash power user! Machtelt Garrels

]
This book will teach you the tools and techniques that make the Bourne !’Lgain de
Shell the tool of choice of professional system administrators worldwide!

Learn abourt:

v Shell building blocks and common practices
v The grep, awk and sed tools

'l(Loops, conditional tests, functions and traps

¥ Building interactive scripts
v And more!

All chapters come packed with helpful examples and exercises.

About the Author

Linux advocate of the ﬁnr boer, Macheelt Garrels

qd .lﬂj JpINcy UYsedq « SIBJIED'W

uui3a

Pats made mamy contributions to the Open Source

community and bes been working for m-rr_,*r;rn'ru I5BN 97A-1-59LA2-201-0
Open Source products. At the Linux Documenta

years on the wider acceplance of Linux and other “ ' ”]“ Ngﬂn“:ﬂnn

tion Project she nitially fownd a fertile ground for
making ber work read throughout the world. She e AR R

writes whenever sbe bas the time, closing gaps in Published by Fultus Corparation

existing docunsentation and taking the opportunity

™
to simpdify it when necessary, always keeping in Fu'tus

mind that practice is the only way to learn.

(uonrpy pug) s

I-I'H'H-'._.rﬂhﬂi.fﬂﬂ'l

== o= S Li ™ Li . s Lilcach o~
Yﬂllt' A CIFEI' tlSlI'lg B @ %‘F Linbrary” - Linux Documentation Library @

Linbeary Advertising Clob 7 www.linbrary.com Linbrsry Adveriing Ciub

Machtelt Garrels

Bash Guide for Beginners

Second Edition

N/
0’0

=7

Fultus ™ Books

SARIDCA,

Bash Guide for Beginners
Second Edition

by
Machtelt Garrels

Cover design by Fultus Corporation

ISBN-10: 1-59682-201-5
ISBN-13: 978-1-59682-201-6

All rights reserved.
Copyright © 2002-2010 by Machtelt Garrels

[

Published by Fultus Corporation

Corporate Web Site: www.fultus.com
Fultus eLibrary: elibrary.fultus.com
Online Book Superstore: store.fultus.com
email: production@fultus.com

AR,

The text of this book is freely distributable under the terms of the GNU Free Documentation License, which can
be found at http.//www.gnu.org/copyleft/fdl.html. Cover art and layout are copyright Fultus Corporation and may
not be reproduced without permission; violators will be prosecuted to the fullest extent permissible by law.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy of the
information. However, the information contained in this book is offered without warranty, either express or
implied. Neither the author nor the publisher nor any dealer or distributor will be held liable for any damages
caused or alleged to be caused either directly or indirectly by this book.

Linux is a registered trademark of Linus Torvalds. Penguin logo based on artwork by Larry Ewing,.
All product names and services identified throughout this manual are trademarks or registered trademarks of
their respective companies.

Table of Contents

Table of Contents

INtTOAUCHION. ettt sss s s s sssssssssssssssnssesssnanens 12
Chapter 1. Bash and Bash SCIIPtS ...ttt esssnens 17
1.1. Common shell Programs...........cccccoviiiinriirinieeecreee e 17
1.1.1. General shell fUNCHONS...........couviiiiiiiiiiiiiii s 17
1.1.2. ShEll EFPES ..o 17

1.2. Advantages of the Bourne Again SHell.............ccccoiiiiiniiinnniicceeeeeeeeeee 18
1.2.1. Bash is the GNU shell..........ccccccoiiiiiiiiiiiiiiiiii s 18
1.2.2. Features only found in bashcccoiiiiiiis 19

1.3. Executing cOMMANASccocueuiiiiiiiiiiiiiiiicci e 25
1.3.1. General.......cooviiiiiiii s 25
1.3.2. Shell built-in commandsccocoiiiiiiiiiiii 25
1.3.3. Executing programs from a sCriptcccccoeeiiniiiiininiiiiniiciecceececeeeees 26

1.4. BUILAING DIOCKS ..ottt 27
1.4.1. Shell building BIOCKS..........coviiiiiiiiiiiiiiiiicccc s 27

1.5. Developing g00d SCIIPESccviiiiiiiiiiiiiiii e 29
1.5.1. Properties of GO0 SCIIPLScocvruiuiuiiriiiiiiiiciccicce e 29
1.5.2. SEUCHUTE ..o s 30
1.5.3. TeIrmMINOLOZYcucviiiiiiiiiiiiiiiiiic e 30
1.5.4. A word on order and 1OgiC..........coeiiviiiiiininiiiiicc e 31
1.5.5. An example Bash script: mysystem.sh........cccccooeiiniiiiinniiinreceeeeecee 31
1.5.6. EXample it SCIIPL ...veueeireeeeiiiieieeirieieee et ee 33

1.6, 6. SUMIMIATY ...ooviiiiiiiiiiiciicic et sn s s 34
1.7, BX@ICISES ...ouvviuiiiitiiieietcttt ettt 34
Chapter 2 Writing and debugging Scripts........ccveceivnerirnrenisrisenencseisensessisesessenens 36
2.1. Creating and running a SCIIPtcccouviiiiiiiiiiiiiiii e 36
2.1.1. Writing and Naming..........cccceeiiiviiiiiiiiiceceece e 36
202, SCIAPEL.SI. et 37

Machtelt Garrels Bash Guide for Beginners

2.1.3. Executing the SCIiPtcccoiiiiiiiiiicce e 38
2.2, SCIIPE DASICS ..ottt ettt 40
2.2.1. Which shell will run the SCript?cccovevieiriiiniiiicicccceece s 40
2.2.2. Adding COMMENLSccooviiiiiiiiiiiiiiiiiie e 40
2.3. Debugging Bash SCIIPtSsccccciiiiiiiiiiiiiiiiiii e 41
2.3.1. Debugging on the entire SCriptcccoviiiiiiiiiiiiiiiie 41
2.3.2. Debugging on part(s) of the SCript........cccoceoiviviiiiiiiiiiiiiiccce 42
2.4, SUINIMATY ..ottt 44
2.5, EX@ICISES ...ttt 44
Chapter 3. The Bash environment..........ieninineninennneninnneneninnesesnsesenissecss 46
3.1. Shell initialization files.............ccoiiiiiiiiiiii 46
3.1.1. System-wide configuration filesccccccioiiiiiiiiiiiiii 46
3.1.2. Individual user configuration files.............ccccoceveiviniiiinniiiniiiiccece 48
3.1.3. Changing shell configuration files..............ccccevieiiinniiinneiicereeeeeeenee 51
3.2, Variables.........c.cooiiiiiiiiiii e 52
3.2.1. Types of variables ... 52
3.2.2. Creating variables ... 55
3.2.3. EXpOrting variables............ccccviiiiiiiiiiiiieccee e 56
3.2.4. Reserved variables ... 57
3.2.5. Special PATAIMELETSccveuiieiiieiiiciiicertc ettt 61
3.2.6. Script recycling with variables...........ccooiiiiiiiinniiicc e 63
3.3. QUOtINgG CRATACLETS.cocuiiiiiii e 65
B3 L WY ?Z s 65
3.3.2. ESCAPE ChATACLETScveuiiiiiiciiicitce ettt 65
3.3.3. SINGLE QUOLES ...t 65
3.3.4. DOUDIE QUOLES.....c.ocuiiiiiiiiciicc et 65
3.3.5. ANSI-C QUOLINEcooviiiiiiiiiiiiii s 66
B.3.6. LOCALES ... 66
3.4. SHEll EXPANSION.....cvveuiieiereiiireeteitete ettt ettt ene 66
341 GeNeTal ... 66
3.4.2. Brace @XPanSION........cceeuerieieiiiiiieieniiniesietete ettt sttt 67
3.4.3. Tilde eXPaNSIONc..cveuiiiieieirieieiciete ettt ettt et 67
3.4.4. Shell parameter and variable eXpansioncccceceveevieineiineineincecnceeeenes 68
3.4.5. Command substitutionccccoiiiiiiii 69
3.4.6. ArithmetiC @XPanSIONc.ccivirieuiiiiriiieiireee et 70

Table of Contents

3.4.7. Process substitutioncccccccuiiiiiiiiiiii 71
3.4.8. WOTd SPIItHING......cocviviiiiiiiiiiiiicc e 72
3.4.9. File name eXPansionccceiiiiiiiiiiiiiiiiiiiiicc e 72
3.5, ALASES ...ttt s 73
3.5.1. What are aliases?cccceuriiiiiiiiiiiiiiiiiii e 73
3.5.2. Creating and removing aliases............cccccciviviiuiiiiiiiiiniiiicc s 74
3.6. MOTE Bash OPLIONSoviviiiiiiiiiiciiicic ettt 75
3.6.1. Displaying OPHiONSc.cueuiiriiiiiiirieicieeecere e 75
3.6.2. Changing OPHIONScccuiuiiiiiiiiiiiic e 76
3.7, SUIMIMATY ..ottt a s a s 77
3.8, EX@ICISES ...t 77
Chapter 4. Regular eXpreSsionscieciineiininnisinensinnienesnieseniiisisissssissssssses 78
4.1. Regular @XPressiONS ..ot 78
4.1.1. What are regular eXpressions?ccccooveueirnieieenineeeeeseeneeeseeseeeseeseeseeeseneenees 78
4.1.2. Regular expression metacharacters ... 78
4.1.3. Basic versus extended regular @Xpressionscccccceeiviiiiiiiiiiniiinniciees 79
4.2. EXamples USING GIEPccuouiuiiiiiiiiiiiiiiiiieiecceeceee st 79
4.2.1. WRAt IS GTEP7T ...ttt 79
4.2.2. Grep and regular eXPressions...........ccccccucuiuiiiiiiiiciiiiiicicce e 81
4.3. Pattern matching using Bash features.............ccccoiiiiiniiiiiccces 83
4.3.1. Character TANEES........ccerirueueiiireeieieireeeeetee ettt ettt seene 83
4.3.2. Character Classes ... 84
4.4, SUMIMATY ..oviviiiiiiiiiiici e s e st a e sa et 84
4.5, BXEICISEScuevvitiniiiietiicieietc ettt ettt 84
Chapter 5. The GNU sed stream editorcoceeevvenineinencsnisensencsnsenscscssssesscssesessesseens 86
5.1 INErOAUCHON ..o 86
5.1.1. What s Sed? ..o 86
5.1.2. sed COMMEANGSooviiiiiiii e 87
5.2. Interactive editing ..o 87
5.2.1. Printing lines containing a patternccccoccoeoiviiiiiiiiiiniicncccee 87
5.2.2. Deleting lines of input containing a pattern.............ccccoeeivinieiinneiinrecceee. 88
5.2.3. RaNEES Of LINEScocviiiiiiiii e 89
5.2.4. Find and replace wWith sed..........cccceciniiniiiniiiniiiicccc e 89
5.3. Non-interactive editingcccoeiiriiiiiiiiniiiiii e 91

Machtelt Garrels Bash Guide for Beginners

5.3.1. Reading sed commands from a file...........ccccceiiinnniiinicicceceecee 91
5.3.2. Writing output filesccccouiiiiiiiiii 91
5.4, SUIMIMATY ..ottt sa e 93
5.5, EX@ICISES ..ottt 93
Chapter 6. The GNU awk programming languagecccceeveverrcrunesesncrenecscseeessessens 9%
6.1. Getting started with gawk..........ccooiiiii 94
6.1.1. What 18 GaWK? ..ot 94
6.1.2. GAWK COMMANGS ...c.vvviiiiiiiiieicietre ettt e 95
6.2. The Print Program ..o 95
6.2.1. Printing selected fields.............cccciviviiiiiiiiiiiiiiicc e 95
6.2.2. Formatting fields.........coeeiiiiiiiiciccec e 97
6.2.3. The print command and regular eXpressions...............ccceeueeuricuciiiciciccciinncenes 98
6.2.4. SPecial PALLETTISc.eoveuiriiiiiiiicic ettt 98
6.2.5. GAWK SCIIPLES ...t 99
6.3. GAWK VaTTabIes......c.ceiirieieiiiiiciicce ettt 100
6.3.1. The input field SeParatorccccccciviiviriiiiniiiiiiiicnccce e 100
6.3.2. The oUtPUL SEPATALOTSeoveuiriiiiriiiiriiiricietc ettt 101
6.3.3. The NUMDET Of TECOTASveuiiiiiiiiiccic e 102
6.3.4. User defined variables............cccccovieiinnieicinnecieeeeeeeee e 102
6.3.5. MOTE @XAIMNPLES ...ttt ettt ettt 103
6.3.6. The printf PrOGram ...ttt 103
6.4, SUMIMATY ...t 103
6.5, EXETCISES ...t 104
Chapter 7. Conditional Statements..........cuevevvevinenrenisisenesisnsescssisensescsssesessesessesscns 106
7.0 INtrodUCtioN £ f .c.ovieiiicicice e 106
700 GENETAL ...ttt 106
7.1.2. Simple applications Of if........c.ccoeviriiiiniiiniiiniiiccccc e 110
7.2. More advanced if USAGe..........ccccccuiuiuiiiiiiiiiiiiiiiii e 112
7.2.1. if /then/ else CONSIIUCESccveuieieriieieieriieiece ettt aesseeneas 112
7.2.2. if /then/elif / €1Se CONSIIUCES.......cccoieieriiriieieieeecteee ettt ae s neas 115
7.2.3. Nested if Statementscccceeirieiiiiiniicicc e 116
7.2.4. Boolean OPerationscccccuvueiriiiiriiiiiniiiieesiecece e 117
7.2.5. Using the exit statement and ifccoooiiiiiiiii 117
7.3. Using case statemMentscccccviviiiiiiiiiiiiiiiiccc 119

Table of Contents

7.3.1. Simplified CONAILIONS.........coeuiiiiciiiiicccc s 119
7.3.2. INitsCript @Xample........ccoouiiiiiiiiiiii e 121
74 SUININATY ..ottt b e s s a st s s a e s s 121
7.5, EX@ICISES ...t 122
Chapter 8. Writing interactive SCIiptscvceeverienernirenennisenennisnnsenesniesessisnesesseeseanes 124
8.1. Displaying USer MeSSAZESc.ceuririruimiiiiiiiiiiiiiiec it 124
8.1.1. Interactive OF NOt?cooiiiiiiiiiicc s 124
8.1.2. Using the echo built-in command.............ccccccoeuiiiiiiiiiiiiiie, 125
8.2. Catching USer INPULcccouiiiiiiiiiiic e 127
8.2.1. Using the read built-in command............c.ccceeiiiiiiiniiice 127
8.2.2. Prompting fOr USET INPULc.ocvrviiiiiiiiiiiiicere e 129
8.2.3. Redirection and file deSCIiPtorscccovueueriririeieiririeccreeeee e 130
8.2.4. File input and OUtPUL.....c.ccccvvviiiiiiiiiiicccce e 133
8.3, SUIMIMATY ...ttt 138
8.4, EX@ICISES ...t 139
Chapter 9. Repetitive tasks ... 141
9.1. THE fOT LOOP .ttt 141
9.1.1. How does it WOTK?cciuiiiiiiiiiiiiiiii e 141
9.1.2. EXAIMIPLES ...t 142
9.2. The Wil LOOP c..eiiiiiiiiiiiic ettt 143
9.2 1. What I8 12 ... 143
9.2.2. EXAIMPLES ...viiiiiiiiceet e 143
9.3. The UNEIL LOOP ...eiiiuiiciiieiicc ettt 146
9.3. 1. What I8 17 146
9.3.2. EXAIMIPLE ...ttt 146
9.4. 1/0 redirection and IOOPScccoeiriiiiriiiniiiiccctceee e 147
9.4.1. INPULt T@AITECHON. ...ttt ettt 147
9.4.2. OUtPUL TEAITECION ...ttt 147
9.5. Break and cONtINUEccoiiiiiiiiiiiiii s 148
9.5.1. The break built-in..........ccccooiiiiiiiiiiiiiiiiic e 148
9.5.2. The continue built-iN..........ccccccoiiiiiiiii, 150
9.5.3. EXAIMIPLES ...ttt 150
9.6. Making menus with the select built-in............ccccoiiiiiiiiiie 151
9.6.1. GeNETAL......oiiiiiiiic e 151

Machtelt Garrels Bash Guide for Beginners

9.6.2. SUDIMENUS........couiiiiiiiiiiiii s 153
9.7. The shift BUilt-In........ccccciiiiiiiiii e 153
9.7.1. What does it dO?........ccccoviiiiiiiiiiiiiiiiic e 153
9.7 2. EXAIMPLES ...ttt 153
9.8. 8. SUMIMIATY ..o 155
9.9, EX@ICISES ...ttt s 155
Chapter 10. More 0n Variables........eiininninisninincnninininscnsnescssisesesscssssesessessssessesses 157
10.1. Types of Variablescccccciiiiiiiiiiiiiiii e 157
10.1.1. General assignment of Valuescccociviniiiiiininiiiicas 157
10.1.2. Using the declare built-in............ccccceiiiiiiiininiiiiiiiccec s 158
10.1.3. CONSTANES......cviiiiiiicccc e 159
10.2. Array variables............ccoiiiiii e 159
10.2.1. Creating QITAYS......cccceiiiiiiiiiiieiici i 159
10.2.2. Dereferencing the variables in an array...........ccceccceeveeeinnieciinneeerneeceeeeenee 160
10.2.3. Deleting array variables............cccccoiiiiiiiiiiiii 161
10.2.4. Examples Of QITays.........ccccccviiiiiiiiiiiiiiiiiinicece e 161
10.3. Operations 0n Variables ...t 163
10.3.1. Arithmetic on variables............cccccoviiiiiiiiiiiis 163
10.3.2. Length of a variable.............ccccooiiiiiiiiie 163
10.3.3. Transformations of variables.............cccccooeiiviiiiiiniiiiiicees 164
10,4, SUIMIMATY ..ot 166
10.5. EXEICISES ..ottt 167
Chapter T1. FUNCHIONS.....cucoieiinriiiintiniininninnessesnitssessissssessissisessessissssessssssssssssssssssessesss 168
111, INtrodUCHON ... 168
11.1.1. What are functions?cccccciiiiiiiiiiiiiii s 168
11.1.2. FUNCHON SYNEAX c..oviviiiiiiiiiciiccicc e 168
11.1.3. Positional parameters in fUnCtioNS.........c.coeerveirieiineinieinicncrceeeeeeeeeeees 169
11.1.4. Displaying functions ... 170
11.2. Examples of functions in SCIiPts.......cccccuveiriiirieiinieniniiinciecceeeeee s 171
T1.2.1 RECYCHING ...t 171
11.2.2. Setting the path ..o 171
11.2.3. ReMOte DACKUPS ..ottt 172
T1.3. SUMMATY ..o 173
T1.4. EXICISES ...ttt 174

Table of Contents

Chapter 12. Catching signals.........ceeevineeeninininecenininneieeessessssssssesssens 175
12,0 SIGNALS ... 175
12,11 INEPOAUCHON .ttt 175
12.1.2. Usage of signals with Killccccccooiiiiiiiiiiiice, 176
T2.2. TTAPS ettt st 177
12.2. 1. GENETAL.....oiiiiiic s 177
12.2.2. How Bash interprets traps ...ttt 178
12.2.3. MOTE @XAIMPIESeniiiniiiiciiicittctrtcttc ettt sttt 178
12.3. SUIMIMATY ..o 179
12,4, EXEICISES ...ttt 179
Appendix A. Shell FEAturescuveirirnsenireisininnisininsisenissessiesessesssesscssssesessesssses 180
AL COMMON fEALUTES.......oiiiiiiiiiieicce et 180
A.2. Differing features ..o 181
L€ 10T LT 185
INA@X ettt e b e s 202
Linbrary™ Advertising Club (LAQC).......cccuvniennirenisenriesnncsessisessssesnssessssesessssesesens 207
Your Advertising Here.........cccccooiiiiiiiiiiic 213

Machtelt Garrels Bash Guide for Beginners

List of Figures

Figure 2.1. scriptl.sh......ccccioiiiiiiiiiiiiiiicic e 38
Figure 2.2. Overview of set debugging optionscccoeeueiiiiiciiiiinnccicce, 43
Figure 3.1. Different prompts for different users..........c.cccoeeeircviniinnicnciinicinccns 51
Figure 6.1. Fields in @WKccccoiiiiiiiiiiiiiiiiic e 96
Figure 7.1. Testing of a command line argument with ifccooiiinnni. 113
Figure 7.2. Example using Boolean operatorscccccececeviininiiniiinieinnciniccenen, 117

10

List of Tables

List of Tables

Table 1.1. Typographic and usage conventions............c.cccccveoiviiiniiiciinicinicninicinieens 14
Table 1.1. Overview of programming terms............ccccoceeirirurueciinirinicciireeeeeeeeeeenene 30
Table 3.1. Reserved Bourne shell variablesccccccoioiniiiniinniiniiiiiccncees 57
Table 3.2. Reserved Bash variables ..., 61
Table 3.3. Special bash variablescccoevreiniiinnciniiiccececeseceeeeeeaeeen 61
Table 3.4. Arithmetic OPerators........cccoeciviiiiiriiiniiiinccccc e 70
Table 4.1. Regular expression 0perators ... 79
Table 5.1. Sed editing commaNdSscccuiiiriiiiiiiiicc e 87
Table 5.2. Sed OPLIONSc.ccoeuiiriiiiiiiiicc e 87
Table 6.1. Formatting characters for gawkcccccciiiiiiiiiiiiicccccce, 98
Table 7.1. Primary eXpresSiOns..........cccccirieurucuiirinirueueieirieeseesecesesae e essssssesenens 108
Table 7.2. Combining eXPresSSiONsccceveeieieinieinieiieieirieeieeeere e seeneenen 108
Table 8.1. Escape sequences used by the echo commandc..ccecoeeiiiinns 127
Table 8.2. Options to the read bUilt-in.......cccoecevieuiiiniiniiiniiicccccceeees 128
Table 10.1. Options to the declare built-in............cccccccoviiiiiiiiniiniiiiiccs 158
Table 12.1. Control signals in Bash ..o 176
Table 12.2. Common Kill signalsccccoiiiiiiiiiiiccee 177

11

Machtelt Garrels Bash Guide for Beginners

Introduction

Why this guide?

The primary reason for writing this document is that a lot of readers feel the existing
HOWTO?! to be too short and incomplete, while the Bash Scripting? guide is too much
of a reference work. There is nothing in between these two extremes. I also wrote this
guide on the general principal that not enough free basic courses are available,
though they should be.

This is a practical guide which, while not always being too serious, tries to give real-
life instead of theoretical examples. I partly wrote it because I don't get excited with
stripped down and over-simplified examples written by people who know what
they are talking about, showing some really cool Bash feature so much out of its
context that you cannot ever use it in practical circumstances. You can read that sort
of stuff after finishing this book, which contains exercises and examples that will
help you survive in the real world.

From my experience as UNIX/Linux user, system administrator and trainer, I know
that people can have years of daily interaction with their systems, without having
the slightest knowledge of task automation. Thus they often think that UNIX is not
userfriendly, and even worse, they get the impression that it is slow and old-
fashioned. This problem is another one that can be remedied by this guide.

Who should read this book?

Everybody working on a UNIX or UNIX-like system who wants to make life easier
on themselves, power users and sysadmins alike, can benefit from reading this book.
Readers who already have a grasp of working the system using the command line
will learn the ins and outs of shell scripting that ease execution of daily tasks. System
administration relies a great deal on shell scripting; common tasks are often
automated using simple scripts. This document is full of examples that will
encourage you to write your own and that will inspire you to improve on existing
scripts.

L httpy/tidp.org/HOWT O/Bash-Prog-Intro-HOWTO.html
2 httpy//tidp.org/LDP/abs/html/

12

Introduction

Prerequisites/not in this course:

¢ You should be an experienced UNIX or Linux user, familiar with basic
commands, man pages and documentation

e Being able to use a text editor

¢ Understand system boot and shutdown processes, init and initscripts

e Create users and groups, set passwords

e Permissions, special modes

¢ Understand naming conventions for devices, partitioning,
mounting/unmounting file systems

¢ Adding/removing software on your system

See Introduction to Linux? (or your local TLDP mirror4) if you haven't mastered one or
more of these topics. Additional information can be found in your system
documentation (man and info pages), or at the Linux Documentation Project>.

Contributions

Thanks to all the friends who helped (or tried to) and to my husband; your
encouraging words made this work possible. Thanks to all the people who
submitted bug reports, examples and remarks - among many, many others:

e Hans Bol, one of the groupies

e Mike Sim, remarks on style

e Dan Richter, for array examples

e Gerg Ferguson, for ideas on the title

¢ Mendel Leo Cooper, for making room

e #linux.be, for keeping my feet on the ground

e Frank Wang, for his detailed remarks on all the things I did wrong ;-)

Special thanks to Tabatha Marshall, who volunteered to do a complete review and
spell and grammar check. We make a great team: she works when I sleep. And vice
versa ;-)

What do you need?

bash, available from http;//www.gnu.org/directory/GNU/. The Bash shell is available on
nearly every Linux system, and can these days be found on a wide variety of UNIX
systems.

S httpy/tidp.org/LD P/intro-linux/html/
4 httpy/fwww.tldp.org/mirrors.html
5 httpy/tldp.org/

13

Machtelt Garrels

Bash Guide for Beginners

Compiles easily if you need to make your own, tested on a wide variety of UNIX,
Linux, MS Windows and other systems.

Conventions used in this document

The following typographic and usage conventions occur in this text:

Text type ‘Meuning

"Quoted text"

Quotes from people, quoted computer output.

terminal view

Literal computer input and output captured from the terminal,
usually rendered with a light grey background.

command Name of a command that can be entered on the command line.

VARIABLE Name of a variable or pointer to content of a variable, as
INSVARNAME.

option Option to a command, as in "the -a option to thels command".

argument Argument to a command, as in "read man 1s".

prompt User prompt, usually followed by a command that you type in a

terminal window, like in hilda@home>ls -1

command options

Command synopsis or general usage, on a separated line.

arguments

filename Name of a file or directory, for example "Change to
the/usr/bin directory."

Key Keys to hit on the keyboard, such as "type Q to quit".

Button Graphical button to click, like the OK button.

Menu—Choice Choice to select from a graphical menu, for instance:
"SelectHelp— About Mozilla in your browser."

Terminology Important term or concept: "The Linux kernel is the heart of the
system.."

\ The backslash in a terminal view or command synopsis

indicates an unfinished line. In other words, if you see a long
command that is cut into multiple lines, \ means "Don't press
Enter yet!"

See Chapter 1, Bash and
Bash scripts (page 17)

link to related subject within this guide.

The author®

Clickable link to an external web resource.

Table 1.1. Typographic and usage conventions

6 httpy//tille.garrels.be/

14

Introduction

The following images are used:

® 0 @

This is a note

It contains additional information or remarks.

This is a caution

It means be careful.

This is a warning
Be very careful.
This is a tip

Tips and tricks.

Organization of this document

This guide discusses concepts useful in the daily life of the serious Bash user. While
a basic knowledge of the usage of the shell is required, we start with a discussion of
the basic shell components and practices in the first three chapters.

Chapters four to six are discussions of basic tools that are commonly used in shell

scripts.

Chapters eight to twelve discuss the most common constructs in shell scripts.

All chapters come with exercises that will test your preparedness for the next
chapter.

Chapter 1, Bash and Bash scripts (page 17): Bash basics: why Bash is so good,
building blocks, first guidelines on developing good scripts.

Chapter 2, Writing and debugging scripts (page 36): Script basics: writing and
debugging.

Chapter 3, The Bash environment (page 46): The Bash Environment:
initialization files, variables, quoting characters, shell expansion order,
aliases, options.

Chapter 4, Regular expressions (page 78): Regular expressions: an
introduction.

Chapter 5, The GNU sed stream editor (page 86): Sed: an introduction to the
sed line editor.

Chapter 6, The GNU awk programming language (page 94): Awk: introduction
to the awk programming language.

15

Machtelt Garrels Bash Guide for Beginners

Chapter 7, Conditional statements (page 106): Conditional statements:
constructs used in Bash to test conditions.

Chapter 8, Writing interactive scripts (page 124): Interactive scripts: making
scripts user-friendly, catching user input.

Chapter 9, Repetitive tasks (page 141): Executing commands repetitively:
constructs used in Bash to automate command execution.

Chapter 10, More on variables (page 157): Advanced variables: specifying
variable types, introduction to arrays of variables, operations on variables.

Chapter 11, Functions (page 168): Functions: an introduction.

Chapter 12, Catching signals (page 175): Catching signals: introduction to
process signalling, trapping user-sent signals.

16

Chapter 1.

Bash and Bash scripts

Chapter 1.
Bash and Bash scripts

Abstract

In this introduction module we

Describe some common shells

Point out GNU Bash advantages and features
Describe the shell's building blocks

Discuss Bash initialization files

See how the shell executes commands

Look into some simple script examples

1.1. Common shell programs

1.1.1. General shell functions

The UNIX shell program interprets user commands, which are either directly
entered by the user, or which can be read from a file called the shell script or shell
program. Shell scripts are interpreted, not compiled. The shell reads commands from
the script line per line and searches for those commands on the system (see Section
1.2, Advantages of the Bourne Again SHell), while a compiler converts a program into
machine readable form, an executable file - which may then be used in a shell script.

Apart from passing commands to the kernel, the main task of a shell is providing a
user environment, which can be configured individually using shell resource
configuration files.

1.1.2. Shell types

Just like people know different languages and dialects, your UNIX system will
usually offer a variety of shell types:

sh or Bourne Shell: the original shell still used on UNIX systems and in
UNIX-related environments. This is the basic shell, a small program with few

17

Machtelt Garrels Bash Guide for Beginners

features. While this is not the standard shell, it is still available on every
Linux system for compatibility with UNIX programs.

e Dbash or Bourne Again shell: the standard GNU shell, intuitive and flexible.
Probably most advisable for beginning users while being at the same time a
powerful tool for the advanced and professional user. On Linux, bash is the
standard shell for common users. This shell is a so-called superset of the
Bourne shell, a set of add-ons and plug-ins. This means that the Bourne
Again shell is compatible with the Bourne shell: commands that work in sh,
also work in bash. However, the reverse is not always the case. All examples
and exercises in this book use bash.

e csh or C shell: the syntax of this shell resembles that of the C programming
language. Sometimes asked for by programmers.

e tcsh or TENEX C shell: a superset of the common C shell, enhancing user-
friendliness and speed. That is why some also call it the Turbo C shell.

¢ ksh or the Korn shell: sometimes appreciated by people with a UNIX
background. A superset of the Bourne shell; with standard configuration a
nightmare for beginning users.

The file /etc/shells gives an overview of known shells on a Linux system:

mia:~> cat /etc/shells
/bin/bash

/bin/sh

/bin/tcsh

/bin/csh

Your default shell is set in the /etc/passwd file, like this line for user mia:
mia:L2NOfgdlPrHwE:504:504:Mia Maya:/home/mia:/bin/bash

To switch from one shell to another, just enter the name of the new shell in the active
terminal. The system finds the directory where the name occurs using the PATH
settings, and since a shell is an executable file (program), the current shell activates it

and it gets executed. A new prompt is usually shown, because each shell has its
typical appearance:

mia:~> tecsh
[mia@post2l ~1$

1.2. Advantages of the Bourne Again SHell

1.2.1. Bash is the GNU shell

The GNU project (GNU's Not UNIX) provides tools for UNIX-like system
administration which are free software and comply to UNIX standards.

18

Chapter 1. Bash and Bash scripts

Bash is an sh-compatible shell that incorporates useful features from the Korn shell
(ksh) and C shell (csh). It is intended to conform to the IEEE POSIX P1003.2/1SO
9945.2 Shell and Tools standard. It offers functional improvements over sh for both
programming and interactive use; these include command line editing, unlimited
size command history, job control, shell functions and aliases, indexed arrays of
unlimited size, and integer arithmetic in any base from two to sixty-four. Bash can
run most sh scripts without modification.

Like the other GNU projects, the bash initiative was started to preserve, protect and
promote the freedom to use, study, copy, modify and redistribute software. It is
generally known that such conditions stimulate creativity. This was also the case
with the bash program, which has a lot of extra features that other shells can't offer.

1.2.2. Features only found in bash

1.2.2.1. Invocation

In addition to the single-character shell command line options which can generally
be configured using the set shell built-in command, there are several multi-character
options that you can use. We will come across a couple of the more popular options
in this and the following chapters; the complete list can be found in the Bash info
pages, Bash features — Invoking Bash.

1.2.2.2. Bash startup files

Startup files are scripts that are read and executed by Bash when it starts. The
following subsections describe different ways to start the shell, and the startup files
that are read consequently.

1.2.2.2.1. Invoked as an interactive login shell, or with "--login'

Interactive means you can enter commands. The shell is not running because a script
has been activated. A login shell means that you got the shell after authenticating to
the system, usually by giving your user name and password.

Files read:
e /etc/profile

e ~/.bash profile, ~/.bash loginor ~/.profile: first existing readable file
is read

e ~/.bash logout upon logout.

Error messages are printed if configuration files exist but are not readable. If a file
does not exist, bash searches for the next.

19

Machtelt Garrels Bash Guide for Beginners

1.2.2.2.2. Invoked as an interactive non-login shell

A non-login shell means that you did not have to authenticate to the system. For
instance, when you open a terminal using an icon, or a menu item, that is a non-
login shell.

Files read:
e ~/.bashrc

This file is usually referred to in ~/.bash profile:

if [-f ~/.bashrc]; then . ~/.bashrc; fi

See Chapter 7, Conditional statements for more information on the if construct.

1.2.2.2.3. Invoked non-interactively

All scripts use non-interactive shells. They are programmed to do certain tasks and
cannot be instructed to do other jobs than those for which they are programmed.

Files read:

e defined by BASH ENV

PATH is not used to search for this file, so if you want to use it, best refer to it by
giving the full path and file name.

1.2.2.2.4. Invoked with the sh command

Bash tries to behave as the historical Bourne sh program while conforming to the
POSIX standard as well.

Files read:

e /etc/profile
e ~/.profile

When invoked interactively, the ENV variable can point to extra startup information.

1.2.2.2.5. POSIX mode
This option is enabled either using the set built-in:
set -0 posix

or by calling the bash program with the --posix option. Bash will then try to
behave as compliant as possible to the POSIX standard for shells. Setting the
POSIXLY CORRECT variable does the same.

Files read:

e defined by ENV variable.

20

Chapter 1. Bash and Bash scripts

1.2.2.2.6. Invoked remotely
Files read when invoked by rshd:

e ~/.bashrc

<!> Avoid use of r-tools

Be aware of the dangers when using tools such as rlogin, telnet, rsh and rcp.
They are intrinsically insecure because confidential data is sent over the network
unencrypted. If you need tools for remote execution, file transfer and so on, use
an implementation of Secure SHell, generally known as SSH, freely available
from http;//www.openssh.org. Different client programs are available for non-
UNIX systems as well, see your local software mirror.

1.2.2.2.7. Invoked when UID is not equal to EUID

No startup files are read in this case.
1.2.2.3. Interactive shells

1.2.2.3.1. What is an interactive shell?

An interactive shell generally reads from, and writes to, a user's terminal: input and
output are connected to a terminal. Bash interactive behavior is started when the
bash command is called upon without non-option arguments, except when the
option is a string to read from or when the shell is invoked to read from standard
input, which allows for positional parameters to be set (see Chapter 3, The Bash
environment).

1.2.2.3.2. Is this shell interactive?

Test by looking at the content of the special parameter -, it contains an 'i' when the
shell is interactive:

eddy:~> echo $-
himBH

In non-interactive shells, the prompt, PS1, is unset.

1.2.2.3.3. Interactive shell behavior
Differences in interactive mode:
e Bash reads startup files.

e Job control enabled by default.

21

Machtelt Garrels Bash Guide for Beginners

Prompts are set, PS2 is enabled for multi-line commands, it is usually set to
“>"_This is also the prompt you get when the shell thinks you entered an
unfinished command, for instance when you forget quotes, command
structures that cannot be left out, etc.

Commands are by default read from the command line using readline.

Bash interprets the shell option ignoreeof instead of exiting immediately
upon receiving EOF (End Of File).

Command history and history expansion are enabled by default. History is
saved in the file pointed to by HISTFILE when the shell exits. By default,
HISTFILE points to ~/.bash_history.

Alias expansion is enabled.
In the absence of traps, the SIGTERM signal is ignored.

In the absence of traps, SIGINT is caught and handled. Thus, typing Ctrl+C,
for example, will not quit your interactive shell.

Sending SIGHUP signals to all jobs on exit is configured with the huponexit
option.

Commands are executed upon read.
Bash checks for mail periodically.

Bash can be configured to exit when it encounters unreferenced variables. In
interactive mode this behavior is disabled.

When shell built-in commands encounter redirection errors, this will not
cause the shell to exit.

Special built-ins returning errors when used in POSIX mode don't cause the
shell to exit. The built-in commands are listed in Section 1.3.2, Shell built-in
commands.

Failure of exec will not exit the shell.
Parser syntax errors don't cause the shell to exit.
Simple spell check for the arguments to the cd built-in is enabled by default.

Automatic exit after the length of time specified in the TMOUT variable has
passed, is enabled.

More information:

Section 3.2, Variables
Section 3.6, More Bash options

22

Chapter 1. Bash and Bash scripts

e See Chapter 12, Catching signals for more about signals.

e Section 3.4, Shell expansion discusses the various expansions performed upon
entering a command.

1.2.2.4. Conditionals

Conditional expressions are used by the [[compound command and by the test and
[built-in commands.

Expressions may be unary or binary. Unary expressions are often used to examine
the status of a file. You only need one object, for instance a file, to do the operation
on.

There are string operators and numeric comparison operators as well; these are
binary operators, requiring two objects to do the operation on. If the FILE argument
to one of the primaries is in the form /dev/£d/N, then file descriptor N is checked. If
the FILE argument to one of the primaries is one of /dev/stdin, /dev/stdout or
/dev/stderr, then file descriptor 0, 1 or 2 respectively is checked.

Conditionals are discussed in detail in Chapter 7, Conditional statements.

More information about the file descriptors in Section 8.2.3, Redirection and file
descriptors.

1.2.2.5. Shell arithmetic

The shell allows arithmetic expressions to be evaluated, as one of the shell
expansions or by the let built-in.

Evaluation is done in fixed-width integers with no check for overflow, though
division by 0 is trapped and flagged as an error. The operators and their precedence
and associativity are the same as in the C language, see Chapter 3, The Bash
environment.

1.2.2.6. Aliases

Aliases allow a string to be substituted for a word when it is used as the first word of
a simple command. The shell maintains a list of aliases that may be set and unset
with the alias and unalias commands.

Bash always reads at least one complete line of input before executing any of the
commands on that line. Aliases are expanded when a command is read, not when it
is executed. Therefore, an alias definition appearing on the same line as another
command does not take effect until the next line of input is read. The commands
following the alias definition on that line are not affected by the new alias.

23

Machtelt Garrels Bash Guide for Beginners

Aliases are expanded when a function definition is read, not when the function is
executed, because a function definition is itself a compound command. As a
consequence, aliases defined in a function are not available until after that function is
executed.

We will discuss aliases in detail in Section 3.5, Aliases.

1.2.2.7. Arrays

Bash provides one-dimensional array variables. Any variable may be used as an
array; the declare built-in will explicitly declare an array. There is no maximum limit
on the size of an array, nor any requirement that members be indexed or assigned
contiguously. Arrays are zero-based. See Chapter 10, More on variables.

1.2.2.8. Directory stack

The directory stack is a list of recently-visited directories. The pushd built-in adds
directories to the stack as it changes the current directory, and the popd built-in
removes specified directories from the stack and changes the current directory to the
directory removed.

Content can be displayed issuing the dirs command or by checking the content of
the DIRSTACK variable.

More information about the workings of this mechanism can be found in the Bash
info pages.

1.2.2.9. The prompt

Bash makes playing with the prompt even more fun. See the section Controlling the
Prompt in the Bash info pages.

1.2.2.10. The restricted shell

When invoked as rbash or with the --restricted or -r option, the following
happens:

e The cd built-in is disabled.

e Setting or unsetting SHELL, PATH, ENV or BASH ENV is not possible.

¢ Command names can no longer contain slashes.

¢ Filenames containing a slash are not allowed with the . (source) built-in
command.

e The hash built-in does not accept slashes with the -p option.

e Import of functions at startup is disabled.

24

Chapter 1. Bash and Bash scripts

e SHELLOPTS is ignored at startup.

e Output redirection using >, >|, ><, >&, &> and >> is disabled.
¢ The exec built-in is disabled.

e The -f and -d options are disabled for the enable built-in.

e A default PATH cannot be specified with the command built-in.
e Turning off restricted mode is not possible.

When a command that is found to be a shell script is executed, rbash turns off any
restrictions in the shell spawned to execute the script.

More information:

e Section 3.2, Variables
e Section 3.6, More Bash options
e Info Bash — Basic Shell Features — Redirections

e Section 8.2.3, Redirection and file descriptors: advanced redirection
1.3. Executing commands

1.3.1. General

Bash determines the type of program that is to be executed. Normal programs are
system commands that exist in compiled form on your system. When such a
program is executed, a new process is created because Bash makes an exact copy of
itself. This child process has the same environment as its parent, only the process ID
number is different. This procedure is called forking.

After the forking process, the address space of the child process is overwritten with
the new process data. This is done through an exec call to the system.

The fork-and-exec mechanism thus switches an old command with a new, while the
environment in which the new program is executed remains the same, including
configuration of input and output devices, environment variables and priority. This
mechanism is used to create all UNIX processes, so it also applies to the Linux
operating system. Even the first process, init, with process ID 1, is forked during the
boot procedure in the so-called bootstrapping procedure.

1.3.2. Shell built-in commands

Built-in commands are contained within the shell itself. When the name of a built-in
command is used as the first word of a simple command, the shell executes the
command directly, without creating a new process. Built-in commands are necessary

25

Machtelt Garrels Bash Guide for Beginners

to implement functionality impossible or inconvenient to obtain with separate
utilities.

Bash supports 3 types of built-in commands:
¢ Bourne Shell built-ins:

;, ., break, cd, continue, eval, exec, exit, export, getopts, hash, pwd,
readonly, return, set, shift, test, [, times, trap, umask and unset.

e Bash built-in commands:

alias, bind, builtin, command, declare, echo, enable, help, let, local, logout,
printf, read, shopt, type, typeset, ulimit and unalias.

e Special built-in commands:

When Bash is executing in POSIX mode, the special built-ins differ from other
built-in commands in three respects:

1. Special built-ins are found before shell functions during command
lookup.

2. If a special built-in returns an error status, a non-interactive shell
exits.

3. Assignment statements preceding the command stay in effect in the
shell environment after the command completes.

The POSIX special built-ins are :, ., break, continue, eval, exec, exit, export,
readonly, return, set, shift, trap and unset.

Most of these built-ins will be discussed in the next chapters. For those commands
for which this is not the case, we refer to the Info pages.

1.3.3. Executing programs from a script

When the program being executed is a shell script, bash will create a new bash
process using a fork. This subshell reads the lines from the shell script one line at a
time. Commands on each line are read, interpreted and executed as if they would
have come directly from the keyboard.

While the subshell processes each line of the script, the parent shell waits for its child
process to finish. When there are no more lines in the shell script to read, the
subshell terminates. The parent shell awakes and displays a new prompt.

26

Chapter 1. Bash and Bash scripts
1.4. Building blocks

1.4.1. Shell building blocks
1.4.1.1. Shell syntax

If input is not commented, the shell reads it and divides it into words and operators,
employing quoting rules to define the meaning of each character of input. Then these
words and operators are translated into commands and other constructs, which
return an exit status available for inspection or processing. The above fork-and-exec
scheme is only applied after the shell has analyzed input in the following way:

e The shell reads its input from a file, from a string or from the user's terminal.

e Input is broken up into words and operators, obeying the quoting rules, see
Chapter 3, The Bash environment. These tokens are separated by
metacharacters. Alias expansion is performed.

o The shell parses (analyzes and substitutes) the tokens into simple and
compound commands.

e Bash performs various shell expansions, breaking the expanded tokens into
lists of filenames and commands and arguments.

e Redirection is performed if necessary, redirection operators and their
operands are removed from the argument list.

e Commands are executed.

e Optionally the shell waits for the command to complete and collects its exit
status.

1.4.1.2. Shell commands
A simple shell command such as touch filel file2 file3 consists of the command
itself followed by arguments, separated by spaces.

More complex shell commands are composed of simple commands arranged
together in a variety of ways: in a pipeline in which the output of one command
becomes the input of a second, in a loop or conditional construct, or in some other
grouping. A couple of examples:

ls | more

gunzip file.tar.gz | tar xvf -

1.4.1.3. Shell functions

Shell functions are a way to group commands for later execution using a single name
for the group. They are executed just like a “regular” command. When the name of a

27

Machtelt Garrels Bash Guide for Beginners

shell function is used as a simple command name, the list of commands associated
with that function name is executed.

Shell functions are executed in the current shell context; no new process is created to
interpret them.

Functions are explained in Chapter 11, Functions.

1.4.1.4. Shell parameters

A parameter is an entity that stores values. It can be a name, a number or a special
value. For the shell's purpose, a variable is a parameter that stores a name. A
variable has a value and zero or more attributes. Variables are created with the
declare shell built-in command.

If no value is given, a variable is assigned the null string. Variables can only be
removed with the unset built-in.

Assigning variables is discussed in Section 3.2, Variables, advanced use of variables
in Chapter 10, More on variables.

1.4.1.5. Shell expansions

Shell expansion is performed after each command line has been split into tokens.
These are the expansions performed:

e Brace expansion

¢ Tilde expansion

e Parameter and variable expansion

¢ Command substitution

e Arithmetic expansion

e Word splitting

¢ Filename expansion

We'll discuss these expansion types in detail in Section 3.4, Shell expansion.

1.4.1.6. Redirections

Before a command is executed, its input and output may be redirected using a
special notation interpreted by the shell. Redirection may also be used to open and
close files for the current shell execution environment.

1.4.1.7. Executing commands

When executing a command, the words that the parser has marked as variable
assignments (preceding the command name) and redirections are saved for later

28

Chapter 1.

Bash and Bash scripts

reference. Words that are not variable assignments or redirections are expanded; the
first remaining word after expansion is taken to be the name of the command and
the rest are arguments to that command. Then redirections are performed, then
strings assigned to variables are expanded. If no command name results, variables
will affect the current shell environment.

An important part of the tasks of the shell is to search for commands. Bash does this
as follows:

Check whether the command contains slashes. If not, first check with the
function list to see if it contains a command by the name we are looking for.

If command is not a function, check for it in the built-in list.

If command is neither a function nor a built-in, look for it analyzing the
directories listed in PATH. Bash uses a hash table (data storage area in memory)
to remember the full path names of executables so extensive PATH searches
can be avoided.

If the search is unsuccessful, bash prints an error message and returns an exit
status of 127.

If the search was successful or if the command contains slashes, the shell
executes the command in a separate execution environment.

If execution fails because the file is not executable and not a directory, it is
assumed to be a shell script.

If the command was not begun asynchronously, the shell waits for the
command to complete and collects its exit status.

1.4.1.8. Shell scripts

When a file containing shell commands is used as the first non-option argument
when invoking Bash (without -c or -s, this will create a non-interactive shell. This
shell first searches for the script file in the current directory, then looks in PATH if the
file cannot be found there.

1.5. Developing good scripts

1.5.1. Properties of good scripts

This guide is mainly about the last shell building block, scripts. Some general
considerations before we continue:

1. A script should run without errors.

2.

It should perform the task for which it is intended.

29

Machtelt Garrels

Bash Guide for Beginners

3. Program logic is clearly defined and apparent.

4. A script does not do unnecessary work.

5. Scripts should be reusable.

1.5.2. Structure

The structure of a shell script is very flexible. Even though in Bash a lot of freedom is
granted, you must ensure correct logic, flow control and efficiency so that users
executing the script can do so easily and correctly.

When starting on a new script, ask yourself the following questions:

e Will I be needing any information from the user or from the user's
environment?

e How will I store that information?

e Are there any files that need to be created? Where and with which
permissions and ownerships?

e What commands will I use? When using the script on different systems, do
all these systems have these commands in the required versions?

¢ Does the user need any notifications? When and why?

1.5.3. Terminology

The table below gives an overview of programming terms that you need to be

familiar with:

Term What is it?

Command Testing exit status of a command in order to determine whether a portion

control of the program should be executed.

Conditional Logical point in the program when a condition determines what happens

branch next.

Logic flow The overall design of the program. Determines logical sequence of tasks so
that the result is successful and controlled.

Loop Part of the program that is performed zero or more times.

User input Information provided by an external source while the program is running,
can be stored and recalled when needed.

Table 1.1. Overview of programming terms

30

Chapter 1. Bash and Bash scripts

1.5.4. A word on order and logic
In order to speed up the developing process, the logical order of a program should

be thought over in advance. This is your first step when developing a script.

A number of methods can be used; one of the most common is working with lists.
Itemizing the list of tasks involved in a program allows you to describe each process.
Individual tasks can be referenced by their item number.

Using your own spoken language to pin down the tasks to be executed by your
program will help you to create an understandable form of your program. Later, you
can replace the everyday language statements with shell language words and
constructs.

The example below shows such a logic flow design. It describes the rotation of log
files. This example shows a possible repetitive loop, controlled by the number of
base log files you want to rotate:

1. Do you want to rotate logs?

o Ifyes:
e Enter directory name containing the logs to be rotated.
e Enter base name of the log file.
e Enter number of days logs should be kept.
e Make settings permanent in user's crontab file.
e Ifno, go to step 3.
2. Do you want to rotate another set of logs?
e If yes: repeat step 1.
e Ifno: go tostep 3.
3. Exit
The user should provide information for the program to do something. Input from

the user must be obtained and stored. The user should be notified that his crontab
will change.

1.5.5. An example Bash script: mysystem.sh

The mysystem. sh script below executes some well-known commands (date, w,
uname, uptime) to display information about you and your machine.

tom:~> cat -n mysystem.sh
1 #!/bin/bash
2 clear
3 echo "This is inf-tion provided by mysystem.sh. Program starts now."
4

31

Machtelt Garrels Bash Guide for Beginners

5 echo "Hello, SUSER"
6 echo
-
8 echo "Today's date is “date’, this is week “date +"&V" ."
9 echo
10
11 echo "These users are currently connected:"
12 w | cut -d " " -f 1 - | grep -v USER | sort -u
13 echo
14
15 echo "This is ‘uname -s running on a uname -m processor."
16 echo
17
18 echo "This is the uptime information:"
19 uptime
20 echo
21

22 echo "That's all folks!"

A script always starts with the same two characters, “#!”. After that, the shell that
will execute the commands following the first line is defined. This script starts with
clearing the screen on line 2. Line 3 makes it print a message, informing the user
about what is going to happen. Line 5 greets the user. Lines 6, 9, 13, 16 and 20 are
only there for orderly output display purposes. Line 8 prints the current date and the
number of the week. Line 11 is again an informative message, like lines 3, 18 and 22.
Line 12 formats the output of the w; line 15 shows operating system and CPU
information. Line 19 gives the uptime and load information.

Both echo and printf are Bash built-in commands. The first always exits with a 0
status, and simply prints arguments followed by an end of line character on the

standard output, while the latter allows for definition of a formatting string and

gives a non-zero exit status code upon failure.

This is the same script using the printf built-in:

tom:~> cat mysystem.sh

#!/bin/bash

clear

printf "This is information provided by mysystem.sh. Program starts now.\n"
printf "Hello, S$USER.\n\n"

printf "Today's date is ‘date’, this is week “date +"%V" .\n\n"

printf "These users are currently connected:\n"

w | cut -d" " -f 1 - | grep -v USER | sort -u

printf "\n"

printf "This is ‘uname -s° running on a "uname -m processor.\n\n"

printf "This is the uptime information:\n"

32

Chapter 1. Bash and Bash scripts

uptime
printf "\n"

printf "That's all folks!\n"

Creating user friendly scripts by means of inserting messages is treated in Chapter
8, Writing interactive scripts.

Standard location of the Bourne Again shell

This implies that the bash program is installed in /bin.

If stdout is not available

If you execute a script from cron, supply full path names and redirect output and
errors. Since the shell runs in non-interactive mode, any errors will cause the
script to exit prematurely if you don't think about this.

The following chapters will discuss the details of the above scripts.

1.5.6. Example init script

An init script starts system services on UNIX and Linux machines. The system log
daemon, the power management daemon, the name and mail daemons are common
examples. These scripts, also known as startup scripts, are stored in a specific
location on your system, such as /etc/rc.d/init.dor /etc/init.d. Init, the initial
process, reads its configuration files and decides which services to start or stop in
each run level. A run level is a configuration of processes; each system has a single
user run level, for instance, for performing administrative tasks, for which the
system has to be in an unused state as much as possible, such as recovering a critical
file system from a backup. Reboot and shutdown run levels are usually also
configured.

The tasks to be executed upon starting a service or stopping it are listed in the
startup scripts. It is one of the system administrator's tasks to configure init, so that
services are started and stopped at the correct moment. When confronted with this
task, you need a good understanding of the startup and shutdown procedures on
your system. We therefore advise that you read the man pages for init and inittab
before starting on your own initialization scripts.

Here is a very simple example, that will play a sound upon starting and stopping
your machine:

#!/bin/bash

This script is for /etc/rc.d/init.d
Link in rc3.d/S99%audio-greeting and rc0.d/K0laudio-greeting

33

Machtelt Garrels Bash Guide for Beginners

case "$1" in
'start')
cat /usr/share/audio/at your service.au > /dev/audio
'stop')
cat /usr/share/audio/oh no not again.au > /dev/audio
esac
exit O
The case statement often used in this kind of script is described in Section 7.2.5,

Using the exit statement and if.

1.6. 6. Summary

Bash is the GNU shell, compatible with the Bourne shell and incorporating many
useful features from other shells. When the shell is started, it reads its configuration
files. The most important are:

e /etc/profile
e ~/.bash profile
e ~/.bashrc

Bash behaves different when in interactive mode and also has a POSIX compliant
and a restricted mode.

Shell commands can be split up in three groups: the shell functions, shell built-ins
and existing commands in a directory on your system. Bash supports additional
built-ins not found in the plain Bourne shell.

Shell scripts consist of these commands arranged as shell syntax dictates. Scripts are
read and executed line per line and should have a logical structure.

1.7. Exercises
These are some exercises to warm you up for the next chapter:
1. Where is the bash program located on your system?
2. Use the --version option to find out which version you are running.

3. Which shell configuration files are read when you login to your system using the
graphical user interface and then opening a terminal window?

4. Are the following shells interactive shells? Are they login shells?

¢ A shell opened by clicking on the background of your graphical desktop,
selecting “Terminal” or such from a menu.

e A sshell that you get after issuing the command ssh localhost.

34

Chapter 1. Bash and Bash scripts

e A shell that you get when logging in to the console in text mode.
¢ A sshell obtained by the command xterm &.
¢ A shell opened by the mysystem.sh script.

e A sshell that you get on a remote host, for which you didn't have to give the
login and/or password because you use SSH and maybe SSH keys.

5. Can you explain why bash does not exit when you type Ctrl+C on the command
line?

6. Display directory stack content.

7. 1Ifitis not yet the case, set your prompt so that it displays your location in the file
system hierarchy, for instance add this line to ~/ .bashrc:

export PS1="\u@\h \w> "
8. Display hashed commands for your current shell session.

9. How many processes are currently running on your system? Use ps and wc, the
first line of output of ps is not a process!

10. How to display the system hostname? Only the name, nothing more!

35

Glossary

Glossary

Abstract

This section contains an alphabetical overview of common UNIX commands. More
information about the usage can be found in the man or info pages.

a2ps
Format files for printing on a PostScript printer.
acroread
PDF viewer.
adduser
Create a new user or update default new user information.
alias
Create a shell alias for a command.
anacron

Execute commands periodically, does not assume continuously running
machine.

apropos
Search the whatis database for strings.
apt-get
APT package handling utility.
aspell
Spell checker.
at, atq, atrm

Queue, examine or delete jobs for later execution.

185

Machtelt Garrels Bash Guide for Beginners

aumix
Adjust audio mixer.
(g)awk

Pattern scanning and processing language.

bash
Bourne Again SHell.
batch
Queue, examine or delete jobs for later execution.
bg
Run a job in the background.
bitmap
Bitmap editor and converter utilities for the X window System.
bzip2

A block-sorting file compressor.

cat

Concatenate files and print to standard output.
cd

Change directory.
cdp/cdplay

An interactive text-mode program for controlling and playing audio CD Roms
under Linux.

cdparanoia

An audio CD reading utility which includes extra data verification features.
cdrecord

Record a CD-R.
chattr

Change file attributes.

186

Glossary

chgrp
Change group ownership.

chkconfig

Update or query run level information for system services.
chmod

Change file access permissions.
chown

Change file owner and group.
compress

Compress files.
cp

Copy files and directories.
crontab

Maintain crontab files.
csh

Open a C shell.
cut

Remove sections from each line of file(s).

date

Print or set system date and time.
dd

Convert and copy a file (disk dump).
df

Report file system disk usage.
dhcpcd

DHCP client daemon.
diff

Find differences between two files.

187

Machtelt Garrels Bash Guide for Beginners

dig

Send domain name query packets to name servers.
dmesg

Print or control the kernel ring buffer.
du

Estimate file space usage.

E
echo
Display a line of text.
ediff
Diff to English translator.
egrep
Extended grep.
eject
Unmount and eject removable media.
emacs
Start the Emacs editor.
exec
Invoke subprocess(es).
exit
Exit current shell.
export
Add function(s) to the shell environment.
F
fax2ps
Convert a TIFF facsimile to PostScript.
fdformat
Format floppy disk.

188

Glossary

fdisk

Partition table manipulator for Linux.
fetchmail

Fetch mail from a POP, IMAP, ETRN or ODMR-capable server.
fg

Bring a job in the foreground.
file

Determine file type.
find

Find files.
formail

Mail (re)formatter.
fortune

Print a random, hopefully interesting adage.
ftp

Transfer files (unsafe unless anonymous account is used!)services.

galeon

Graphical web browser.
gdm

Gnome Display Manager.
(min/a)getty

Control console devices.
gimp

Image manipulation program.
8rep

Print lines matching a pattern.

grub
The grub shell.

189

Machtelt Garrels

Bash Guide for Beginners

8v
A PostScript and PDF viewer.
gzip

Compress or expand files.

halt
Stop the system.
head
Output the first part of files.
help
Display help on a shell built-in command.
host
DNS lookup utility.
httpd

Apache hypertext transfer protocol server.

id
Print real and effective UIDs and GIDs.

ifconfig

Configure network interface or show configuration.

info
Read Info documents.
init
Process control initialization.
iostat
Display I/O statistics.
ip
Display/change network interface status.

190

Glossary

ipchains
IP firewall administration.
iptables

IP packet filter administration.

jar
Java archive tool.
jobs
List backgrounded tasks.

kdm

Desktop manager for KDE.
kill(all)

Terminate process(es).
ksh

Open a Korn shell.

Idapmodify
Modify an LDAP entry.
Idapsearch
LDAP search tool.
less
more with features.
lilo
Linux boot loader.
links
Text mode WWW browser.

191

Machtelt Garrels Bash Guide for Beginners

In

Make links between files.
loadkeys

Load keyboard translation tables.
locate

Find files.
logout

Close current shell.
Ip

Send requests to the LP print service.
Ipc

Line printer control program.
lpq

Print spool queue examination program.
Ipr

Offline print.
Iprm

Remove print requests.
Is

List directory content.
lynx

Text mode WWW browser.

mail
Send and receive mail.
man
Read man pages.
mcopy
Copy MSDOS files to/from Unix.

192

Glossary

mdir
Display an MSDOS directory.
memusage
Display memory usage.
memusagestat
Display memory usage statistics.
mesg
Control write access to your terminal.
mformat
Add an MSDOS file system to a low-level formatted floppy disk.
mkbootdisk
Creates a stand-alone boot floppy for the running system.
mkdir
Create directory.
mkisofs
Create a hybrid ISO9660 filesystem.
more
Filter for displaying text one screen at the time.
mount
Mount a file system or display information about mounted file systems.
mozilla
Web browser.
mt
Control magnetic tape drive operation.
mtr
Network diagnostic tool.
mv

Rename files.

193

Machtelt Garrels Bash Guide for Beginners

N

named

Internet domain name server.
ncftp

Browser program for ftp services (insecure!).
netstat

Print network connections, routing tables, interface statistics, masquerade
connections, and multi-cast memberships.

nfsstat

Print statistics about networked file systems.
nice

Run a program with modified scheduling priority.
nmap

Network exploration tool and security scanner.
ntsysv

Simple interface for configuring run levels.

passwd

Change password.
pdf2ps

Ghostscript PDF to PostScript translator.
perl

Practical Extraction and Report Language.
P8

Page through text output.
ping

Send echo request to a host.
pr

Convert text files for printing.

194

Glossary

printenv

Print all or part of environment.
procmail

Autonomous mail processor.
ps

Report process status.
pstree

Display a tree of processes.
pwd

Print present working directory.

quota

Display disk usage and limits.

rcp
Remote copy (unsafe!)
rdesktop
Remote Desktop Protocol client.
reboot
Stop and restart the system.
renice
Alter priority of a running process.
rlogin
Remote login (telnet, insecure!).
rm
Remove a file.
rmdir

Remove a directory.

195

Machtelt Garrels Bash Guide for Beginners

rpm
RPM Package Manager.
rsh

Remote shell (insecure!).

scp
Secure remote copy.
screen
Screen manager with VI100 emulation.
set
Display, set or change variable.
setterm
Set terminal attributes.
sftp
Secure (encrypted) ftp.
sh
Open a standard shell.
shutdown
Bring the system down.
sleep
Wait for a given period.
slocate
Security Enhanced version of the GNU Locate.
slrnn
Text mode Usenet client.
snort
Network intrusion detection tool.
sort

Sort lines of text files.

196

Glossary

source
Read commands from file.
ssh
Secure shell.
ssh-keygen
Authentication key generation.
stty
Change and print terminal line settings.
su

Switch user.

tac
Concatenate and print files in reverse.
tail
Output the last part of files.
talk
Talk to a user.
tar
Archiving utility.
tesh
Open a Turbo C shell.
telnet
User interface to the TELNET protocol (insecure!).
tex
Text formatting and typesetting.
time
Time a simple command or give resource usage.
tin

News reading program.

197

Machtelt Garrels

Bash Guide for Beginners

top

Display top CPU processes.
touch

Change file timestamps.
traceroute

Print the route packets take to network host.
tripwire

A file integrity checker for UNIX systems.
twm

Tab Window Manager for the X Window System.

ulimit
Controll resources.
umask
Set user file creation mask.
umount
Unmount a file system.
uncompress
Decompress compressed files.
uniq
Remove duplicate lines from a sorted file.

update

Kernel daemon to flush dirty buffers back to disk.

uptime
Display system uptime and average load.
userdel

Delete a user account and related files.

198

Glossary

vi(m)

Start the vi (improved) editor.
vimtutor

The Vim tutor.
vmstat

Report virtual memory statistics.

Show who is logged on and what they are doing.
wall
Send a message to everybody's terminal.
wc
Print the number of bytes, words and lines in files.
which
Shows the full path of (shell) commands.
who
Show who is logged on.
who am i
Print effective user ID.
whois
Query a whois or nicname database.
write

Send a message to another user.

xauth

X authority file utility.

199

Machtelt Garrels Bash Guide for Beginners

xcdroast

Graphical front end to cdrecord.
xclock

Analog/ digital clock for X.
xconsole

Monitor system console messages with X.
xdm

X Display Manager with support for XDMCP, host chooser.
xdvi

DVI viewer.
xfs

X font server.
xhost

Server access control program for X
xinetd

The extended Internet services daemon.
xload

System load average display for X.
xIsfonts

Server font list displayer for X.
Xmms

Audio player for X.
xpdf

PDF viewer.
xterm

Terminal emulator for X.

zcat

Compress or expand files.

200

Glossary

zgrep
Search possibly compressed files for a regular expression.

zmore

Filter for viewing compressed text.

201

Machtelt Garrels

Bash Guide for Beginners

Index

Jbash_login.......ccccooveeiiniciniciie, 49
Jbash_logoutcccoeeiviniiinnicie 51
Jbash_profile ... 49
DashrC. .o, 50
PIOfile .o 49
/
Jetc/bashrc........ccooivveeciiiiiiciicce, 47
/etc/PasswWd......oocvevieennncceeeees 17
Jetc/profile.........coovviiiiniiinecins 46
Jetc/shellsooooveviieeiiiiece 17
A
AlIASES ... 73
ANSI-C quotingcccocevvviiiiiiiiininne 66
arguments............cocoeeuee 113,125, 141, 153
arithmetic expansion........c.c.ccccceeevvevecnnnes 71
arithmetic operatorsc.coeceeeervereucennne 71
ATTAY e 159
AWK e 94
AWKPIOgramcccoeveueivvnneecineeeceneennes 95
B
DAST oo 17,18
batch editor......ccoeeveiineiieceece 86
boolean operators 117,122, 156
Bourne shell.........cccooveinineininccnn 17
brace expansion............cccceevevecrneercnnnnnen 67

Dreak...oooeeveeeeeeiiiieeeieeeeeeeeeeeeeen 148, 155
built-in commands.........ccceeeveeeeeeveennnn.. 22,25
C
Case SLAteMentsooueeeeuvveeeeeeeeeenns 34,115,117
character classes......ccceveeeeeeeeeevceeeeennne. 81, 84
child process.......ccccoeeeinnecciinccies 25
combined expressions..........c..ccceueenuenenn 107
command substitution 70,117,158, 163
COMMENES ...c.vviieiieeeiee ettt e 40
conditionalscceeeveeereeereeneeeieeee e 106
configuration files...........cccccccvvciinnennne. 46
CONSEANES ..eoovvieeiiicieecee e e 159
CONEINUE.viiieerieeeeeieee et 150
control signalsccccceviiiniiiinnnn 176
creating variables............cccccoiiiinnnn 55
1] o R 17
D
debugging scriptsccccceevveiciniiccnnns 41
declarecooveeveeiieeeeieeeeeeeee 158, 159
double quUOteS......c.cccoveerieiniciiccnn 65
E
€ChO e 31,37,42,52,72,125
[<To 1 (o) TS 36
€ISE e 112
EIMACS ..eeevveeeerieeeireeeeteeeereeeetreeereeesraeeereeenenes 36
BTV et eteeeeree et e eete e e vee et eesreeeree e areeenneas 52
BSMCuuueeeeeeeeeeeeeereeeeeeseesiareeeessennennns 34,115,117

202

Index

escape characters..........cccceueunnee. 65, 97,127
€5CaAPE SEQUETICESc.veuvenrenrnreeererrenrenenne 125
EXEC..uiiiiiiiiiiiiieee s 25,134
execute permissions............cceeeeeeieenuennene 38
EXECULION ..o 38
XTI o 34,115,117
eXIt StAtUS.cooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 110,113
EXPANSION v 23, 28, 66
EXPOTt i 56
extended regular expressions................... 79
F
file descriptors................... 23,25,71,130, 133
file name expansion.........ccceceeeericirnennnn 72
find and replace........c.cccoeireinicinicinennn. 89
FOT i 141
FOTK i 25
fUNCHONS ..o 168
G
AWK .o 94
gawk commandscccceveiininiiinnnn 95
gawk fields...........cocooori 95
gawk formatting...........cccoeviiinnnnnn 97,99
AWK SCTIPLS ..o 99
gawk variables..............cccooeveinininnns 92,100
gedit ..o 36
global variables...........cccccocoeviiiininnnnnnnn. 52
globbing.........cccccccviiiiiiiices 42,52,72
BTEP oo 79
H
here document........coeeeeeeeeeeeeeeeeeeens 137,154
I
if 106
INGt 25,33
initialization files...........ccccoeveiinniniins 46

input field separator-......57, 61, 92, 100, 141
interactive editingccccccceevveiinnnennen. 87
interactive SCripts.........cceevevvecveieencnnennee 124
interactive shellccccccoevvvennnnne. 19, 20, 21
INVOCAION...ccciiiiinieieiieeeeeeeeeeeee e 19
K
S 1 PR 176
KAlTall oo 176
] o SRR 17
L
length of a variableccccocveiinne. 163
[ine anchorsS.......coooveveeiiceeecieceeeeeeee 81
JOCALE ..o 66
LOCALE . 17, 36
10giC fIOW .. 31
login shell ..o, 19
M
10 011 0 10 RS 151
metacharacters........coccocvveeveeveeeeceeeieene 78
N
nested if statementsccoeeeveeveineennn. 116
NOGIOD ... 42,52,72
non-interactive editing..............ccccccceeuee. 91
non-interactive shellcccccovvevnennn. 20
non-login shell............ccccccooiiiiiin. 20
NUNETIC COMPATISONS ... 71,111
O
OPLIONS .. 75
output field separator.........c.ccceveueennnee. 101
output record separatorc...cccceeeeee. 101

203

Machtelt Garrels

Bash Guide for Beginners

P
parameter expansion.............cceceeeeueeeruennne 69
PATH....coiiiiiiiiiiiiicc 37
pattern matching.........ccccoeeceveccnnnnnes 83
positionalparams 61,141, 169
POSIX ..o 18
POSIX modeccocovvvviiiiiiiiiiicciies 20
primary expressions.............cccceeeveuenne. 107
PrINtENV ..o 52
PN, oo 31,103
process substitution.........c.cccceeceennee 72,128
Process substitution.............ccccecunc. 72,128
PIOMPL .o 51
Q
quoting charactersccccccvvccinnennne. 65
R
TDash ...ovevieiiccec e 24
T€Ad .o 127
readonly ..o 159
redirection............. 23,25,28,71,76,130, 147
regular expression operators........ 78, 87,98
regular expressions...........cccccccevevueueinennnnes 78
remote invocation..........cccceeevviiniiinicnne 21
1emoving aliasesccocvveuvvenennne. 48,74
reserved variables.............ccceviiinnnnnn. 57
TEtUIN .o 169
S
SO ..t 86
sed editing commands..........ccceeeeennes 87
sed OPHiONS ..o 87
Sed SCIIPt v 91,103
SeleCt ..o 151
SO v 54, 75,170
SHIft .o 153, 156
SIgNALS ..o, 175

single qUOtes..........cccccvveviiiiiiiiiiiicies 65
SOULCE....uvveeeeerreeeeerireeeeenreeeeeneeeeeessreeeeernens 38
special parameters...........c.cocceueveenee. 61,141
special variables.........c.ccccoecvveinncnnnn 61, 141
standard error......c.ccccooveveviiveiieiiiieeeee 130
standard input.......ccccceeeineininiinienne. 130
standard outputcccoeceniininiinee. 130
string comparisonscccceeueenne. 111, 164
SHEY e 175
SUDMENU.....oviiieiiiieceeeeeeee e 153
subshellccccoooiviiiiieie e, 40
SUDSHEUION «.eeeeeeeeeeeeeeeeeeeeeeeeeee 164, 166
SUDSLIING ..o 165
SYNEAX .. 27, 66
T
ECSH i 17
terminology ... 30
FROIL i 109
tilde expansion........cceecevevvecccneccnnns 68
transformation of variables..................... 164
traps oo 177
BLUC oo e e 144, 146
U
UNALIAS oo 48,73, 74
UNSEL coeviiiiiiiieie 55,161,170
UNEL e 146
user iNPUt......cceeevcivicinicicine 127,129
USET MESSAZESevvvvvveneireneieiareseeienenes 124
V
variable expansion...........c.ccceeeevieenienennee 69
0ariables.....eeeeeeeeeann. 22,25,28,47,52,157
VEIDOSE . 42,52,72
VI(IN) ettt 36

204

Index

W wildcards......ccoeeeerenineeeee 82
] word anchors......c..ccvcceveenceincnncnecenes 81
A= 1 SRR 178 WOI SPIHNG oo 79
WRETEIS ..o 36
WHICH oo 36 X
WHILE oo 143
XELACE ceeeeieeeeeeeeeeeeee e 41,42,52,72

205

Linbrary™ Advertising Club (LAC)

Official Docs as a Real Books
http: //www.linbrary.com

A

Linbrary Advertising Club

Linbrary"3 & Linux Library

Advertising

The
L inux

D ocumentation
Project

Linux Documentation Project - Machtelt Garrels

http://www.tldp.org/

Version |Title Edition ISBN-10 ISBN-13
Introduction to Linux | paperback |1-59682-199-X |978-1-59682-199-6
TLDP (Third Edition) eBook (pdf) [1-59682-200-7 [978-1-59682-200-9
Bash Guide for Beginners|paperback |1-59682-201-5 |978-1-59682-201-6
(Second Edition) eBook (pdf) |1-59682-202-3 |978-1-59682-202-3

httpy/www.linbrary.com/linux-tldy/

s

Linl‘n'ary Advcrtising Club

Advertising

fedora™

&

Fedora Project Official Documentation

http://fedoraproject.org/

Version |Title Edition ISBN- 10 ISBN-13
Fedora 12 | paperback |1-59682-179-5 | 978-1-59682-179-8
Installation Guide eBook (pdf) [1-59682-184-1 [978-1-59682-184-2
Fedora 12| paperback [1-59682-180-9 |978-1-59682-180-4
User Guide eBook (pdf) [1-59682-185-X|978-1-59682-185-9
Fedora |Fedora 12| paperback [1-59682-181-7 |978-1-59682-181-1
12 Security Guide eBook (pdf) [1-59682-186-8 |978-1-59682-186-6
Fedora 12 |paperback [1-59682-182-5 |978-1-59682-182-8
SE Linux User Guide eBook (pdf) [1-59682-187-6 [978-1-59682-187-3
Fedora 12 | paperback |1-59682-183-3 | 978-1-59682-183-5
Virtualization Guide eBook (pdf) [1-59682-188-4 [978-1-59682-188-0
Fedora 12| paperback |1-59682-142-6 | 978-1-59682-142-2
Installation Guide eBook (pdf) [1-59682-146-9 [978-1-59682-146-0
Fedora 12| paperback [1-59682-180-9 |978-1-59682-180-4
Fedora |User Guide eBook (pdf) |1-59682-185-X|978-1-59682-185-9
11 Fedora 12| paperback [1-59682-181-7 |978-1-59682-181-1
Security Guide eBook (pdf) [1-59682-186-8 |978-1-59682-186-6
Fedora 12 |paperback [1-59682-182-5 |978-1-59682-182-8
SE Linux User Guide eBook (pdf) [1-59682-187-6 |978-1-59682-187-3

httpy/www.linbrary.com/fedora/

s

Linbrary Advertising Club

Advertising

el

vbuntu

linux for human beings

Ubuntu Official Documentation

http://www.ubuntu.com/

Version |Title Edition ISBN-10 ISBN-13
Ubuntu 10.04 LTS |paperback |1-59682-203-1 |978-1-59682-203-0
Installation Guide eBook (pdf) [1-59682-207-4 [978-1-59682-207-8
Ubuntu 10.04 LTS |paperback |1-59682-204-X | 978-1-59682-204-7
Ubuntu |Desktop Guide eBook (pdf) [1-59682-208-2 | 978-1-59682-208-5
10.04 LTS |Ubuntu 10.04 LTS |paperback |1-59682-205-8 |978-1-59682-205-4
Server Guide eBook (pdf) [1-59682-209-0 |978-1-59682-209-2
Ubuntu 10.04 LTS |paperback |1-59682-206-6 |978-1-59682-206-1
Packaging Guide eBook (pdf) |1-59682-210-4 |978-1-59682-210-8
Ubuntu 9.10 | paperback |1-59682-171-X | 978-1-59682-171-2
Installation Guide eBook (pdf) |1-59682-175-2 |978-1-59682-175-0
Ubuntu 9.10 | paperback |1-59682-172-8 |978-1-59682-172-9
Ubuntu |Desktop Guide eBook (pdf) [1-59682-176-0 |978-1-59682-176-7
9.10 Ubuntu 9.10 | paperback |1-59682-173-6 |978-1-59682-173-6
Server Guide eBook (pdf) [1-59682-177-9 [978-1-59682-177-4
Ubuntu 9.10 | paperback |1-59682-174-4 |978-1-59682-174-3
Packaging Guide eBook (pdf) |1-59682-178-7 |978-1-59682-178-1
Ubuntu 9.04 | paperback |1-59682-150-7 |978-1-59682-150-7
Installation Guide eBook (pdf) [1-59682-154-X [978-1-59682-154-5
Ubuntu 9.04 | paperback |1-59682-151-5 |978-1-59682-151-4
Ubuntu |Desktop Guide eBook (pdf) [1-59682-155-8 |978-1-59682-155-2
9.04 Ubuntu 9.04 | paperback [1-59682-152-3 |978-1-59682-152-1
Server Guide eBook (pdf) [1-59682-156-6 |978-1-59682-156-9
Ubuntu 9.04 | paperback |1-59682-153-1 |978-1-59682-153-8
Packaging Guide eBook (pdf) [1-59682-157-4 [978-1-59682-157-6

httpy//www.linbrary.com/ubuntuy/

s

Linbrary Advertising Club

Advertising

' PostgreSQL

PostgreSQL Official Documentation

http://www.postgresq.org/

Version Title Edition ISBN- 10 ISBN- 13

PostgreSQL 8.04 | paperback |1-59682-158-2 |978-1-59682-158-3

Volume I. The SQL Language eBook (pdf) |1-59682-163-9 |978-1-59682-163-7

PostgreSQL 8.04 | paperback |1-59682-159-0 |978-1-59682-159-0

Volume II. Server Administration | eBook (pdf) [1-59682-164-7 |978-1-59682-164-4

PostgreSQL | PostgreSQL 8.04 | paperback |1-59682-160-4 |978-1-59682-160-6
8.04 Volume III. Server Programming |eBook (pdf) [1-59682-165-5 |978-1-59682-165-1
PostgreSQL 8.04 | paperback |1-59682-161-2 |978-1-59682-161-3

Volume IV. Reference eBook (pdf) |1-59682-166-3 |978-1-59682-166-8

PostgreSQL 8.04 | paperback |1-59682-162-0 |978-1-59682-162-0

Volume V. Internals & Appendixes

eBook (pdf)

1-59682-167-1

978-1-59682-167-5

httpy//www.linbrary.com/postgresql/

s

Linbrary Advertising Club

Advertising

The Apache Software Foundation Official Documentation

http://www.apache.org/

Version |Title Edition ISBN-10 ISBN-13
Apache HTTP Server 2.2|paperback |1-59682-191-4 |978-1-59682-191-0
VoLl Server Administration eBook (pdf) |1-59682-195-7 | 978-1-59682-195-8
Apache Apache I—.ITTP Server 2.2 | paperback |1-59682-192-2 |978-1-59682-192-7
Web Server VoLII Security & Server Programs |eBook (pdf) [1-59682-196-5 | 978-1-59682-196-5
29 Apache HTTP Server 2.2 |paperback |1-59682-193-0 |978-1-59682-193-4
) VolIII. Modules (A-H) eBook (pdf) [1-59682-197-3 |978-1-59682-197-2
Apache HTTP Server 2.2|paperback |1-59682-194-9 |978-1-59682-194-1
Vol.IV. Modules (I-V) eBook (pdf) [1-59682-198-1 [978-1-59682-198-9

httpy/www.linbrary.com/apache-htty/

Version |Title Edition ISBN- 10 ISBN-13
Subversion |Subversion 1.6 | paperback |1-59682-169-8 |978-1-59682-169-9
1.6 Version Control with Subversion |eBook (pdf) [1-59682-170-1 |978-1-59682-170-5

P—"SUBVERSION

httpy//www.linbrary.com/subversion/

s

Linbrary Advertising Club

s

Linhrary Advcrtising Club

Your Advertising Here

More Books Coming Soon!!!

Please Feel Free to Contact Us at

production@fultus.com

	"Bash Guide for Beginners" (Second Edition) by Machtelt Garrels
	Title
	Copyright
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Chapter 1. Bash and Bash scripts
	1.1. Common shell programs
	1.1.1. General shell functions
	1.1.2. Shell types

	1.2. Advantages of the Bourne Again SHell
	1.2.1. Bash is the GNU shell
	1.2.2. Features only found in bash
	1.2.2.1. Invocation
	1.2.2.2. Bash startup files
	1.2.2.2.1. Invoked as an interactive login shell, or with `--login'
	1.2.2.2.2. Invoked as an interactive non-login shell
	1.2.2.2.3. Invoked non-interactively
	1.2.2.2.4. Invoked with the sh command
	1.2.2.2.5. POSIX mode
	1.2.2.2.6. Invoked remotely
	1.2.2.2.7. Invoked when UID is not equal to EUID

	1.2.2.3. Interactive shells
	1.2.2.3.1. What is an interactive shell?
	1.2.2.3.2. Is this shell interactive?
	1.2.2.3.3. Interactive shell behavior

	1.2.2.4. Conditionals
	1.2.2.5. Shell arithmetic
	1.2.2.6. Aliases
	1.2.2.7. Arrays
	1.2.2.8. Directory stack
	1.2.2.9. The prompt
	1.2.2.10. The restricted shell

	1.3. Executing commands
	1.3.1. General
	1.3.2. Shell built-in commands
	1.3.3. Executing programs from a script

	1.4. Building blocks
	1.4.1. Shell building blocks
	1.4.1.1. Shell syntax
	1.4.1.2. Shell commands
	1.4.1.3. Shell functions
	1.4.1.4. Shell parameters
	1.4.1.5. Shell expansions
	1.4.1.6. Redirections
	1.4.1.7. Executing commands
	1.4.1.8. Shell scripts

	1.5. Developing good scripts
	1.5.1. Properties of good scripts
	1.5.2. Structure
	1.5.3. Terminology
	1.5.4. A word on order and logic
	1.5.5. An example Bash script: mysystem.sh
	1.5.6. Example init script

	1.6. 6. Summary
	1.7. Exercises

	Glossary
	Index

	Linbrary™ Advertising Club (LAC)
	Linux Documentation Project - Machtelt Garrels
	Fedora
	Ubuntu
	PostgreSQL
	The Apache Software Foundation
	Apache HTTP Server
	Subversion

	*** Your Advertising Here ***

