ZFS an’d btrfs

ast issue, we created a glorious
NAS box with 24TB of drives set
up as a RAID 6 array formatted as
ext4 [see Homebrew your own
NAS, p46, LXF192]. This issue, we'll show

you how to set up an alternative filesystem.

While ext4 is fine for volumes up to 100TB,

even principal developer Ted Ts'o admitted that

the filesystem is just a stop-gap to address the
shortcomings of ext3 while
maintaining backwards-
compatibility. Ext4 first
appeared in the kernel in 2008;
up until then the most exciting
filesystem around was ReiserFS.
It had some truly next-gen
features, including combined B+ tree
structures for file metadata and directory lists
(similar to btrfs). However, interest in this
filesystem flagged just a touch when its
creator, Hans Reiser, was found guilty of
murdering his wife. Development of its
successor, Reiser4, continues in his absence,
but the developers have no immediate plans
for kernel inclusion.

48| LXF193 January 2015

However, we now have a new generation of
filesystems, providing superior data integrity
and extreme scalability. They break a few of
the old rules too: traditional ideologies dictate
that the RAID layer (be it in the form of a
hardware controller or a software manager
such as mdadm) should be independent of the
filesystem and that the two should be blissfully
ignorant of each other. But by integrating them

“Interest in ReiserFS flagged
when its creator was found
guilty of murdering his wife.”

we can improve error detection and correction
— if only at the cost of traditionalists decrying
‘blatant layering violations'.

The (comparatively) new kids on the block
are btrfs (B-tree filesystem: pronounced
‘butter-FS’ or ‘better-FS’), jointly developed by
Oracle, Red Hat, Intel, SUSE and many others,
and ZFS, developed at Sun Microsystems prior
to its acquisition by Oracle. ZFS code was

www.linuxformat.com

originally released in 2005 as part of
OpenSolaris, but since 2010 this has been
disbanded and Oracle's development of ZFS in
Solaris is closed source. Open source
development continues as a fork, but since
ZFSis licensed under the CDDL, and hence
incompatible with the GPL, it's not possible to
incorporate support into the Linux kernel
directly. However, support via a third-party
module is still kosher and this is
exactly what the ZFS on Linux
project (http://zfsonlinux.
org) does. This project is largely
funded by the Lawrence
Livermore National Laboratory,
which has sizeable storage
requirements, so ZFS can support file sizes up
to 16 exabytes (224 TB) and volumes up to 256
zettabytes (2% TB).

Being an out-of-tree module, ZFS will be
sensitive to kernel upgrades. DKMS-type
packages will take care of this on Debian-
based Linux distros, Fedora, CentOS, and so
on, but for other distros you'll need to rebuild
the module every time you update your kernel.

ZFS and btrfs

Failure to do so will be problematic if your root
filesystem is on ZFS. Ubuntu users will want to
add the PPA zfs-native/stable and then
install the package ubuntu-zfs. The ZFS on
Linux homepage has packages and
information for everyone else.

Let's cover the common ground first. One
quite startling feature is that neither of these
filesystems require disks to be partitioned. In
ZFS parlance you can set up datasets within a
single-drive zpool which offers more isolation
than directories and can have quotas and
other controls imposed. Likewise you can
mimic traditional partitions using subvolumes
within btrfs. In both cases the result is much
more flexible — the ‘neopartitions’ are much
easier to resize or combine since they are
purely logical constructs. ZFS actively
discourages its use directly on partitions,
whereas btrfs largely doesn't care.

Both of the filesystems incorporate a
logical volume manager, which allows the
filesystem to span multiple drives and contain
variously named substructures. Both also
have their own RAID implementations,
although, confusingly, their RAID levels don't
really tie in with the traditional ones: ZFS has
three levels of parity RAID, termed RAID-Z1,
-/2 and -Z3. These are, functionally, the same

“Startlingly, neither of these
filesystems require disks to

be partitioned.”

as RAID 5, RAID 6 and what would be RAID 7,
meaning they use 1, 2 and 3 drives for parity
and hence can tolerate that many drives
failing. RAID 5 and 6 are supported in btrfs,
but it would be imprudent to use themina
production environment, since that part of the
codebase is significantly less mature than the
rest. RAID 0, 1 and 10 support is stable in both
filesystems, but again the levels have a slightly
different interpretation. For example, a
conventional RAID 1 array on three 1TB drives

" . o N
ZFS Adaptive Replacement Cache (ARC, simplified) . MRU data
Recently used data MFU data
{ LRUdatais evicted Ghost lists
Ghost hits tracked
\ , [T Recent/frequent
“—> i balance adjusted
accordingly
Frequently used data
N
LFU data evicted N

S

 Caching in ZFS: two lists, for recently and frequently used data, share the same amount of
memory. Most recently used (MRU) data is stored to the left and falls into the ghost list if
not accessed. Memory is apportioned according to how often ghost entries are accessed.

would mirror the data twice, making for a
usable capacity of 1TB. With btrfs, though,
RAID 1 means that each block is mirrored
once on a different drive, making (in the
previous example) for a usable capacity of
1.5TB at the cost of slightly less redundancy.
You can also use multiple drives of different
sizes with btrfs RAID 1,
but there may be
some unusable space
(hence less than half of
the total storage
present is available)
depending on the
combinatorics.
Additionally btrfs enables you to specify
different RAID levels for data and metadata;
ZFS features mirroring in much the same
manner as RAID 1, but it does not call it that.
Mirroring with both of the filesystems is
actually more advanced than traditional
RAID, since errors are detected and healed
automatically. If a block becomes corrupted
(but still readable) on one drive of a
conventional RAID 1 mirror and left intact on
another, then mdadm has no way of knowing

A brief history of filesystems

which drive contains the good data; half of the
time the good block will be read, and half of
the time you'll get bad data. Such errors are
called silent data errors and are a scourge —
after all, it's much easier to tell when a drive
stops responding, which is what RAID
mitigates against. ZFS stores SHA-256 hashes
of each block and btrfs uses CRC32C
checksums of both metadata and data. Both
detect and silently repair discrepancies when
a dodgy block is read. One can, and should,
periodically perform a scrub of one’s next-
generation volumes. This is an online check
(no need to unmount your pools), which runs
in the background and does all the detecting
and repairing for you.

All this CoW-ing (Copy-on-Writing) around
can lead to extreme fragmentation, which
would manifest itself through heavy disk
thrashing and CPU spikes, but there are
safeguards in place to minimise this. ZFS uses
a slab allocator with a large 128k block size,
while btrfs uses B-trees. In both approaches
the idea is the same: to pre-allocate sensible
regions of the disk to use for new data. Unlike
btrfs, ZFS has no defragmentation capabilities,

In the beginning, data was stored on punch
cards or magnetic tape. The concept of a file
didn't exist: data was stored as a single stream.
You could point to various addresses in that
stream (or fast-forward, using the tape counter
to find where you recorded something), but it
was all essentially a single amorphous blob.
Single-directory, or flat, filesystems emerged in
the mid '80s. These enabled discrete files, but
not subdirectories, to exist on a device. Their
release coincided with increasing usage of
floppy disks, which enabled random access of

data (you can read/write at any region of the
disk). Early Mac file managers abstracted a
hierarchical directory structure on top of a flat
filesystem, but this still required files to be
uniquely named.

By the late '80s filesystems that enabled
proper directories were necessary to support
growing storage technologies and increasingly
complex operating systems. These had in fact
been around since the days of IBM PC-DOS 2,
but the poster child for this generation is
FAT16B, which allowed 8.3 filenames and

www.tuxradar.com

volumes of up to 2GB. Windows 95 finally
brought long filenames and the ability to access
drives bigger than 8GB, but since 1993 Linux
users had already seen these benefits thanks to
ext2. This marked another step forward,

featuring metadata such as file permissions,

so that the filesystem becomes intrinsically
linked with the user control mechanism. Ext3
and later revisions of NTFS introduced the next
innovation: journaling, which allows filesystems

to be easily checked for consistency, and quickly

repaired following OS or power failure.

January 2015 LXF193 | 49

ZFS and btrfs

» which can cause serious performance issues
if your zpools become full of the wrong kind
of files, but this is not likely to be an issue for
home storage, especially if you keep your
total storage at less than about 60% capacity.
If you know you have a file that is not CoW-
friendly, such as a large file that will be subject
to lots of small, random writes (let's say it's
called ruminophobe), then you can set the
extended attribute C on it, which will revert the
traditional overwriting behaviour:

$ chattr +C ruminophobe

This flag is valid for both btrfs and ZFS, and

in fact any CoW-supporting filesystem. You
can apply it to directories as well, but this will
affect only files added to that directory after
the fact. Similarly, one can use the c attribute
to turn on compression. This can also be
specified at the volume level, using the
compress mount option. Both offer zlib
compression, which you shouldn’t enable
unless you're prepared to take a substantial
performance hit. Btrfs offers LZO, which even
if you're storing lots of already-compressed

data won't do you much harm. ZFS offers the
LZJB and LZ4 algorithms, as well as the naive
ZLE (Zero Length Encoding scheme) and the
ability to specify zlib compression levels.
Note that while both btrfs and ZFS are
next-generation filesystems, and their
respective feature sets do intersect
significantly, they are different creatures and
as such have their own advantages and
disadvantages, quirks and oddities.

Let’s talk about ZFS, baby

The fundamental ZFS storage unit is called a
vdev. This may be a disk, a partition (not
recommended), a file or even a collection of
vdevs, for example a mirror or RAID-Z set up
with multiple disks. By combining one or more
vdevs, we form a storage pool or zpool.
Devices can be added on-demand to a zpool,
making more space available instantly to any
and all filesystems (more correctly ‘datasets’)
backed by that pool. The image below shows
an example of the ZFS equivalent of a RAID 10
array, where data is mirrored between two

r

zpool

(vdev mirrorO

v

B vorite #1
. write #2

.

N

\

4 vdev mirrorl

. 4

r

} ZFS will stripe data intelligently depending on available space: after a 3TB write and then
a 1.5TB write, all drives are half-full (or half-empty, depending on your outlook).

]

drives and then striped across an additional
pair of mirrored drives. Each mirrored pair is
also a vdev, and together they form our pool.
Let's assume you've got the ZFS module
installed and enabled, and you want to set up
a zpool striped over several drives. You must
ensure there is no RAID information present
on the drives, otherwise ZFS will get confused.
The recommended course of action is then to
find out the ids of those disks. Using the
/dev/sdX names will work, but these are
not necessarily persistent, so instead do:
1s -1 /dev/disk/by-id
and then use the relevant ids in the following
command, which creates a pool called tank:
zpool create -m <mountpoint> tank <ids>
If your drives are new (post-2010), then
they probably have 4kB sectors, as opposed
to the old style 512 bytes. ZFS can cope with
either, but some newer drives emulate the old-
style behaviour so people can still use them in
Windows 95, which confuses ZFS. To force the
pool to be optimally arranged on newer drives,
add -o ashift=12 to the above command. You
also don't have to specify a mountpoint: in our
case, omitting it would just default to /tank.
Mirrors are set up using the keyword mirror,
so the RAID 10-style pool in the diagram
(where we didn't have room to use disk ids but
you really should) could be set up with:
zpool create -o ashift=12 mirrortank mirror /
dev/sda /dev/sdb mirror /dev/sdc /dev/sdd
We can use the keyword raidz1 to set
RAID-Z1 up instead, replacing 1 with 2 or 3 if
you want double or triple parity. Once created,
you can check the status of your pool with:
zpool status -v tank
You can now add files and folders to your
zpool, as you would any other mounted
filesystem. But you can also add filesystems
(a different, ZFS-specific kind), zvols,
snapshots and clones. These four species are
collectively referred to as datasets, and ZFS
can do a lot with datasets. A filesystem inside
a ZFS pool behaves something like a disk
partition, but is easier to create and resize
(resize in the sense that you limit its maximum
size with a quota). You can also set
compression on a per-filesystem basis.

- AL
Even if you have no redundancy in your next-gen
filesystem, it will be significantly more robust
than its forbears. This is thanks to a technique
called Copy-on-Write (CoW): a new version of a
file, instead of overwriting the old one in-place, is
written to a different location on the disk. When,
and only when, that is done, the file's metadata
is updated to point to the new location, freeing
the previously occupied space. This means that
if the system crashes or power fails during the
write process, instead of a corrupted file, you at

50 | LXF193 January 2015

CoW; man

least still have a good copy of the old one
Besides increased reliability, CoW allows for a
filesystem (or more precisely a subvolume) to
be easily snapshotted. Snapshots are a feature,
or even the feature, that characterises our next-
generation filesystems. A snapshot behaves like
a byte-for-byte copy of a subvolume at a given
time (for now think of a subvolume as a glorified
directory — the proper definition is different for
btrfs and ZFS), but when it is initially taken, it
takes up virtually no space. In the beginning, the

www.linuxformat.com

snapshot just refers to the original subvolume.
As data on the original subvolume changes, we
need to preserve it in our snapshot, but thanks
to CoW, the original data is still lying around; the
snapshot is just referred to the old data, so the
filesystem will not mark those blocks as unused,
and old and new can live side by side. This
makes it feasible to keep daily snapshots of your
whole filesystem, assuming most of its contents
don't change too drastically. It is even possible
to replicate snapshots to remote pools via SSH.

y

ZFS and btrfs

Let's create a simple filesystem called stuff.
Note that our pool tank does not get a leading
/ when we're referring to it with the ZFS tools.
We don’'t want it to be too big, so we'll put a
quota of 10GB on there too, and finally check
that everything went OK:

zfs create tank/stuff

zfs set quota=10G tank/stuff

zfs list

A zvol is a strange construction: it's a
virtual block device. A zvol is referred to by a
/dev node, and like any other block device you
can format it with a filesystem. Whatever you
do with your zvol, it will be backed by whatever
facilities your zpool has, so it can be mirrored,
compressed and easily snapshotted. We've
already covered the basics of snapshots
(see Have a CoW, man), but there are some
ZFS-specific quirks. For one, you can't
snapshot folders, only filesystems. So let's do
a snapshot of our stuff filesystem, and marvel
at how little space it uses:

zfs snapshot tank/stuff@snapshot0
zfs list -t all

The arobase syntax is kind of similar to
how a lot of systemd targets work, but let's
not digress. You can call your snapshot
something more imaginative than snapshotO
— it's probably a good idea to include a date, or
some indication of what was going on when
the snapshot was taken. Suppose we now do
something thoughtless resulting in our stuff
dataset becoming hosed. No problem: we can
roll back to the time of snapshotO and try and
not make the same mistake again. The zfs
diff command will even show files that are
new (+), modified (M) or deleted (-) since the
snapshot was taken:

zfs diff tank/stuff@snapshot0

M /pool/stuff

s /pool/stuff/newfile

- /pool/stuff/oldfile

zfs rollback tank/stuff@snapshot0

Snapshots are read-only, but we can also
create writable equivalents: the final member
of the dataset quartet, called clones.

It would be remiss of us to not mention
that ZFS works best with lots of memory.
Some recommendations put this as high as a
GB per TB of storage, but depending on your
purposes you can get away with less. One
reason for this is ZFS's Adaptive Replacement
Cache. This is an improvement on the
patented IBM ARC mechanism, and owing to
its consideration of both recent and frequent
accesses (shown in the diagram on p49)
provides a high cache hit rate. By default it
uses up to 60% of available memory, but
you can tune this with the module option
zfs_arc_max, which specifies the cache limit
in bytes. If you use the deduplication feature
then you really will need lots of memory —
more like 5GB to the TB — so we don't
recommend it. A final caveat: use ECC

) Btrfs uses a B-tree data
structure. Here we have a
subvolume called ‘default’ and
a snapshot called ‘snap’ The
subvolume hasn’t changed
since the snapshot,

so both pointers target the
same root block on the disk.

Extent root

pointer pointer

Super

Root tree

Subvolume ‘default’

Directory items

Snapshot ‘snap’
pointer

default
snap

r

Extent tree

Subvolume tree

Block allocation
information and
reference counts

Files and
directories

memory. All the benefits offered by ZFS
checksums will be at best useless and at
worst harmful if a stray bit is flipped while
they're being calculated. Memory errors are
rare but they do happen, whether it's dodgy
hardware or stray cosmic rays to blame.

Btrfs me up, baby

As well as creating a new btrfs filesystem with
mkfs.btrfs, one can also convert an existing
ext3/4 filesystem. Obviously, this cannot be
mounted at the time of conversion, so if you
want to convert your root filesystem then
you'll need to boot from a Live CD or a
different Linux. Then use the btrfs-convert
command. This will change the partition’s
UUID, so update your fstab accordingly. Your
newly converted partition contains an image
of the old filesystem, in case something went
wrong. This image is stored in a btrfs
subvolume, which is much the same as the
ZFS filesystem dataset.

As in ZFS, you can snapshot only
subvolumes, not individual folders. Unlike ZFS,
however, the snapshot is not recursive, so if a
subvolume itself contains another subvolume,
then the latter will become an empty directory
in the snapshot. Since a snapshot is itself a
subvolume, snapshots of snapshots are also
possible. It's a reasonable idea to have your
root filesystem inside a btrfs subvolume,
particularly if you're going to be snapshotting
it, but this is beyond the scope of this article.

Subvolumes are created with:

btrfs subvolume create <subvolume-name>

www.tuxradar.com

They will appear in the root of your btrfs
filesystem, but you can mount them
individually using the subvol=<subvolume-
name> parameter in your fstab or mount
command. You can snapshot them with:

btrfs subvolume snapshot <subvolume-
name> <snapshot-name>
You can force the snapshot to be read-only
using the -r option. To roll back a snapshot:
btrfs subvolume snapshot <snapshot-
name> <subvolume-name>
If everything is OK then you can delete the
original subvolume.

Btrfs filesystems can be optimised for
SSDs by mounting with the keywords discard
and ssd. Even if set up on a single drive, btrfs
will still default to mirroring your metadata -
even though it's less prudent than having it on
another drive, it still might come in handy.
With more than one drive, btrfs will default to
mirroring metadata in RAID 1.

One can do an online defrag of all file data
in a btrfs filesystem, thus:

btrfs filesystem defragment -r -v /

You can also use the autodefrag btrfs
mount option. The other piece of btrfs
housekeeping of interest is btrfs balance.
This will rewrite data and metadata, spreading
them evenly across multiple devices. It is
particularly useful if you have a nearly full
filesystem and btrfs add a new device to it.

Obviously, there's much more to both
filesystems. The Arch Linux wiki has great
guides to btrfs (http://bit.ly/BtrfsGuide)
and ZFS (http://bit.ly/ZFSGuide).

January 2015 LXF193 | 51

