
BERNSTEIN &
ROBERTSON

If Zope can do it, you can do it too . . .
Power, versatility, and broad community support have made Zope one of the fastest-growing Open Source
platforms around. This in-depth guide brings you up to speed fast on Zope’s innovative Web site and
application development model. Two veteran Zope developers cover all aspects of Zope in detail, from
installation to advanced topics like debugging, persistence, and automatic indexing support. Whether you’re a
Web developer, a Web architect, or a content manager, you’ll learn all you need to know to put Zope to work.

Shelving Category:
Web Development

Reader Level:
Beginning to Advanced

System Requirements:
Pentium PC, 128 MB RAM. See the
About the CD Appendix for details
and complete system requirements.

ISBN 0-7645-4857-3

$49.99 USA
$74.99 Canada
£39.99 UK incl. VAT

Zope
Zope

Unleash the power
of the leading
Open Source Web
application server

Master Zope’s
innovative Web
object development
model

Build secure,
flexible, and
powerful Web sites
and Web applications

Zope
Michael R. Bernstein, Scott Robertson,

and the Codeit Development Team

“The Zope Bible is an indispensable, hands-on guide
to Zope product development.”

— Paul Everitt, Co-founder and Vice President of Products,
Zope Corporation

,!7IA7G4-feifhe!:p;o;t;T;T
Zope

and more
on CD-ROM

BONUS
CD-ROM
Zope plus sample
code from the book

w w w . h u n g r y m i n d s . c o m

100%
O N E H U N D R E D P E R C E N T

C O M P R E H E N S I V E
A U T H O R I T A T I V E
W H A T Y O U N E E D
O N E H U N D R E D P E R C E N T

Bonus CD-ROM
• Zope

• Adobe GoLive tryout version
• Dreamweaver trial version from Macromedia
• Plus sample applications and code from the book Zope

Bible

*85555-AJEFBc

100%
C O M P R E H E N S I V E

™ ™

™™

Inside, you’ll find complete
coverage of Zope
• Set up and run Zope on Linux or Windows

• Learn Zope Product development using
Python Products and ZClasses

• Develop a complete multi-user application as
a Python Product

• Master content management and version
control strategies

• Manage databases using SQL and DTML tags

• Use Zope’s built-in security to safeguard Web
sites and applications

• Find out how to run Zope behind Apache using
PCGI, FCGI, or Proxy Pass

You can
install the Zope

Packages
on Linux using

GnoRPM’s
point and click

interface.

Most of the
true work
in Zope is

done via the
management

interface.

Zope enables
you to give an
entity a role on

a particular
object. This is

called a Local role.

4857-3 cover 2/20/02 12:48 PM Page 1

Zope™ Bible

a4857-3 FM.F 3/1/02 9:36 AM Page i

a4857-3 FM.F 3/1/02 9:36 AM Page ii

Zope™ Bible

Michael R. Bernstein, Scott Robertson,
and the Codeit Development Team

Best-Selling Books • Digital Downloads • e-Books • Answer Networks • e-Newsletters • Branded Web Sites • e-Learning

New York, NY ✦ Cleveland, OH ✦ Indianapolis, IN

a4857-3 FM.F 3/1/02 9:36 AM Page iii

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST EFFORTS
IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO
WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY
AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT
GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR
SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES. FULFILLMENT OF EACH COUPON
OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

Zope™ Bible

Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2002 Hungry Minds, Inc. All rights reserved. No part of this book, including interior design, cover design, and
icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording, or otherwise)
without the prior written permission of the publisher.

Library of Congress Control Number: 2001118285

ISBN: 0-7645-4857-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/SQ/QT/QS/IN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers Limited in the United Kingdom; by IDG Norge
Books for Norway; by IDG Sweden Books for Sweden; by IDG Books Australia Publishing Corporation Pty. Ltd. for Australia
and New Zealand; by TransQuest Publishers Pte Ltd. for Singapore, Malaysia, Thailand, Indonesia, and Hong Kong; by
Gotop Information Inc. for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South Africa; by Eyrolles for France; by
International Thomson Publishing for Germany, Austria, and Switzerland; by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer Publishing
Corporation, Inc., for the Philippines; by Contemporanea de Ediciones for Venezuela; by Express Computer Distributors for
the Caribbean and West Indies; by Micronesia Media Distributor, Inc. for Micronesia; by Chips Computadoras S.A. de C.V.
for Mexico; by Editorial Norma de Panama S.A. for Panama; by American Bookshops for Finland.

For general information on Hungry Minds’ products and services please contact our Customer Care department within the
U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including discounts, premium and bulk quantity sales, and foreign-language
translations, please contact our Customer Care department at 800-434-3422, fax 317-572-4002 or write to Hungry Minds,
Inc., Attn: Customer Care Department, 10475 Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic rights, please contact our Sub-Rights Customer Care department at
212-884-5000.

For information on using Hungry Minds’ products and services in the classroom or for ordering examination copies, please
contact our Educational Sales department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other publicity information, please contact our Public Relations department
at 317-572-3168 or fax 317-572-4168.

For authorization to photocopy items for corporate, personal, or educational use, please contact Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

Trademarks: Hungry Minds and the Hungry Minds logo are trademarks or registered trademarks of Hungry Minds, Inc. in
the United States and other countries and may not be used without written permission. Macromedia and Dreamweaver are
trademarks or registered trademarks of Macromedia, Inc. in the United States and/or other countries. Copyright ©
1997–2000. Macromedia, Inc. 600 Townsend Street, San Francisco, CA 94103 USA. All Rights Reserved. Zope is a trademark
or registered trademark of Zope Corporation. All other trademarks are the property of their respective owners. Hungry
Minds, Inc., is not associated with any product or vendor mentioned in this book.

is a trademark of Hungry Minds, Inc.

a4857-3 FM.F 3/1/02 9:36 AM Page iv

About the Authors
Michael Bernstein is an information architect for Codeit. He has been a member of

the Zope development community since it was released as Open Source in late

1998, and wrote the first community-contributed “How-To” for Zope in February of

1999. Michael was one of the technical reviewers for The Zope Book published by

New Riders in 2001, and created the Zope category in the Open Directory Project

(dmoz.org). Currently residing in Las Vegas, he has worked for two start-ups before

joining Codeit and has built and managed various Content Management Systems

and intranets using Zope. His interests include Science Fiction Fandom, Open

Source, and other self-organizing emergent phenomena. His personal Web site is at

http://www.michaelbernstein.com.

Scott Robertson co-founded Codeit in 1997, a company dedicated to building cus-

tom applications that help businesses increase productivity and lower expenses. In

1998, he discovered a technology named Bobo that was so compelling that he

learned Python and swore off Perl forever. When Principia (an application built on

Bobo) was renamed Zope and released as Open Source, he selected it as Codeit’s

preferred Web platform. An ardent believer in Open Source, he has contributed sev-

eral products to the community and encourages his employees to do the same.

When he’s not working he can usually be found creating strategies for achieving

world domination, or at the very least devising ones that will annoy his partners.

The Codeit Development Team has over 15 years of combined Zope experience.

Besides the primary authors, other Codeit developers and staff contributed mate-

rial to this book, including Nick Garcia, Erik Burrows, Forest Zachman, Brent Rogan,

and Sam Stimson.

The entire Codeit team is dedicated to using Open Source technologies on behalf of

our customers, so that at the conclusion of a project they have the skills, code, and

documentation on how to change and scale each application we build, enabling

them to be as self-reliant as they wish to be. Beyond development, Codeit also

offers Zope hosting as one of its services.

a4857-3 FM.F 3/1/02 9:36 AM Page v

Credits
Acquisitions Editor

Terri Varveris

Project Editor

Barbra Guerra

Technical Editor

Tom Deprez

Copy Editors

Katherine Dvorak

Ryan Rader

Permissions Editor

Carmen Krikorian

Editorial Manager

Kyle Looper

Project Coordinator

Ryan Steffen

Graphics and Production Specialists

Sean Decker

Joyce Haughey

Gabriele McCann

Heather Pope

Betty Schulte

Quality Control Technicians

Laura Albert

John Greenough

Andy Hollandbeck

Carl Pierce

Linda Quigley

Charles Spencer

Media Development Specialist

Travis Silvers

Proofreading and Indexing

TECHBOOKS Production Services

Cover Illustration

Kate Shaw

a4857-3 FM.F 3/1/02 9:36 AM Page vi

To Ruth, for doing such a good job raising me; to Roxanne, for making my life
complete; and to Talia, for the future.

— Michael

To Kyle Reid, welcome to the party. Glad you could make it.

— Scott

a4857-3 FM.F 3/1/02 9:36 AM Page vii

a4857-3 FM.F 3/1/02 9:36 AM Page viii

Preface

Hi! You’re holding the Zope Bible, a book we suspect will change how you look

at building Web sites and Web applications. If you’re like most Web develop-

ers and designers, you’re probably always looking for ways to improve your pro-

cess, both for building and for maintaining Web sites. Whether the sites you’re

building are consumer-oriented Web applications, content-centric publishing sites,

intranets, or even vanity sites, you want to build them faster, maintain them easier,

and integrate other people into your workflow with a minimum of hassle and fuss.

Zope is a tool that is hard to describe, as in many ways it’s in a category all its own.

So, rather than describe what it is, it’s better to describe what Zope can do for you:

✦ Zope contains a templating language for creating dynamic pages, making it

easier to create and maintain a common look and feel for your site.

✦ Zope uses a powerful scripting language (Python) for creating business logic,

making it easy to create powerful Web applications.

✦ Zope has a built-in Web management interface so you can create and maintain

entire sites with nothing more than a standard browser and an Internet

connection.

✦ Zope has a built-in object database, making it easy to store content, logic, and

presentation in a single place.

✦ Zope has a built-in security framework, making it easy and safe to delegate

maintenance of sections or subsections of the site to other people.

✦ Zope sites are also accessible via FTP and WebDAV, making it easier to lever-

age the desktop site creation tools you already use.

✦ Zope is written in Python, making it easy to extend and enhance with your

own customizations.

✦ Zope has built-in content management tools such as Version objects and

Undo, which make it easier to safely modify and update a site while it’s “live.”

In other words, if you build Web sites, Zope is the tool for you.

a4857-3 FM.F 3/1/02 9:36 AM Page ix

x Zope Bible

Why We Wrote This Book
In the two years since Zope was open-sourced, the user and developer communities

have grown tremendously. However, while Zope itself has grown and become both

more powerful and easier to use, the documentation has not kept pace.

The most glaring omission, the lack of a user manual, was remedied last year with

the release of The Zope Book by Amos Latteier and Michel Pelletier (New Riders,

2001). This was a very important milestone, as The Zope Book was a complete refer-

ence for using Zope to build Web sites and simple applications. However, by focus-

ing on thoroughly covering the basics, it left those who wanted to take advantage of

Zope’s more advanced features out in the cold.

At Codeit Computing, we’ve long wanted a book that could serve as a textbook for

educating our own employees, not only teaching them the basics, but more

advanced topics as well, such as extending Zope with Python products and building

advanced user interfaces. We’ve also wanted a book that we could hand to our

clients and their IT staff to make it easier for them to assume the maintenance of

the projects that we complete.

When we were approached to write this book, we determined that this would be

our opportunity to write the book that we wished we had all along.

What You Need
To follow along with the steps in this book you need to know how to use your

browser. Don’t laugh! Zope is very browser-centric. Knowing what the “Back” but-

ton does, or that right-clicking a link lets you launch the link target in another win-

dow is kind of important when you’re actually using your browser to develop a Web

site.

This book assumes that you already know how to build Web sites “the old fash-

ioned way.” A basic familiarity and ability to write HTML, including tables and

forms and using a text editor, will be very handy. In fact, we assume that you’re sick

and tired of maintaining your sites by hand.

A familiarity with some other application server or middleware technology is help-

ful, but not really required. Examples of these are Macromedia ColdFusion,

Microsoft Active Server Pages, Java Servlets, Java Server Pages, or PHP.

Regardless of your operating system, you’ll need to have the appropriate privileges

to install software on your computer. Zope is very lightweight, and can be installed

on most desktops with a minimum of fuss, but many corporate environments don’t

give users the ability to install software.

a4857-3 FM.F 3/1/02 9:36 AM Page x

xiPreface

DTML, Python, and ZPT Code Conventions
This book contains many small snippets of code, as well as complete code listings.

Each listing appears in a monospace font.

If a line of code doesn’t fit on a single line in this book, We use the arrow (Æ)

symbol. For example, the following two lines comprise a single line of code:

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” size=20 Æ
start=start sort_expr=”sort_by”>

What the Icons Mean
Throughout the book, we’ve used icons in the left margin to call your attention to

points that are particularly important.

We use Note icons to tell you that something is important — perhaps a concept
that may help you master the task at hand or something fundamental for under-
standing subsequent material.

Tip icons indicate a more efficient way of doing something, or a technique that
may not be obvious.

These icons indicate that an example file is on the companion CD-ROM.

We use Caution icons when the operation that we are describing can cause prob-
lems if you’re not careful.

We use this icon to indicate that the material discussed is new to the latest Zope
version.

We use the Cross-Reference icon to refer you to other chapters that have more to
say on a subject.

Cross-
Reference

New
Feature

Caution

On the
CD-ROM

Tip

Note

a4857-3 FM.F 3/1/02 9:36 AM Page xi

xii Zope Bible

How This Book Is Organized
This book is organized into four parts that are meant to be read in order if you’re a

complete newcomer to Zope.

Part I: Getting Started with Zope
In this section Zope is introduced, as are the fundamentals of coding in DTML and

Python. If you are already an experienced Zope user, and want to jump to Part II and

start developing Python Zope Products, we suggest reading Chapter 5, “Object-

Oriented Programming and Python,” in this section first, even if you’re already

familiar with Python.

Part II: Building Zope Products
In this section, we build upon the material from Part I, and show you how to extend

Zope with new object types. At the end of this section, you will have built a power-

ful and useful Web application.

Part III: Zope Management
Zope provides powerful tools for building and maintaining Web sites. In this sec-

tion, several aspects of Zope are explored in-depth. Chapter 11 covers content

management strategies using Zope, Chapter 12 explains data management

including integrating external RDBMSs, and Chapter 13 deals with security and

user management.

Part IV: Advanced Zope Concepts
In this section, we’ve put the advanced topics that are relatively independent of

each other and the rest of the book. Chapter 14 describes in detail the various parts

and pieces that Zope is built out of and how they fit together; Chapter 15 covers

writing scripts for Zope using Python and/or Perl Script Objects; Chapter 16 covers

ZClasses for those who wish to develop products entirely within the browser;

Chapter 17 explains Zope’s Searching and indexing framework, and how to create

automatically indexed content objects; Chapter 18 introduces Zope Page

Templates, a new presentation scripting technology introduced in Zope 2.5; Chapter

19 covers Debugging; and Chapter 20 addresses creating and running clusters of

Zope servers.

Appendixes
Appendix A describes the material included on the CD-ROM, and Appendix B cov-

ers installing Zope from source code or RPM files.

a4857-3 FM.F 3/1/02 9:36 AM Page xii

xiiiPreface

Web Site
We, the authors of the Zope Bible, have set up a Web site specifically for the readers

of this book at http://www.zopebible.com. The Web site contains additional infor-

mation, sample code from the book, links to Zope-related Web sites, and other

items and information we think you’ll find useful.

a4857-3 FM.F 3/1/02 9:36 AM Page xiii

a4857-3 FM.F 3/1/02 9:36 AM Page xiv

Acknowledgments

This book represents a great deal of very hard work (if only we had known what

we were getting into), and the authors couldn’t have succeeded without the

following list of extremely pushy people who insisted they get some credit:

The other employees at Codeit Computing, who pitched in to help with individual

chapters when we realized we needed their expertise, particularly: Erik Burrows,

who wrote a phenomenal chapter on RDBMS integration (Chapter 12); Nick Garcia,

who has debugged enough of our code that he was able to write a chapter on how

to debug yours (Chapter 19); and Forest Zachman, Zope scripting dude number one

(Chapter 15).

The incredible Zope Development Community, including the following folks from

the #zope IRC channel who helped answer both newbie and advanced questions:

Kapil Thangavelu (hazmat); Ron Bickers (rbickers); George A. Runyan Jr. (runyaga);

Andrew Milton (TheJester); Chris McDonough (chrism); Andreas Jung (YET);

R. David Murray (rdmurray); Alex Verstraeten (zxc); M. Adam Kendall (DaJoker);

and Morten W. Petersen (Morphex). A special thanks goes to Chris Withers for

pitching in on the final review at the last minute. Far too many others in the Zope

community, on the mailing lists and in the IRC channel, helped with suggestions,

code snippets, HowTos, tutorials, and detailed explanations on every aspect of

Zope over the years than could be listed here. We couldn’t have learned as much as

we did without the rest of you. The community is a big part of what makes Zope a

success.

Any remaining bugs in the book’s example code are definitely their fault.

Many thanks go to the great folks at Hungry Minds: Terri Varveris, our acquisitions

editor, for understanding that we have day jobs and whose efforts went above and

beyond the call of duty; Barb Guerra, our project editor, whose gentle guidance

forced us into submitting our chapters; Tom Deprez, our technical editor, for help-

ing to make the book both clearer and more complete; and Katharine Dvorak and

Ryan Rader, our copy editors, who fixed punctuation gaffes, rephrased subjunctive

sentences, and cut out unnecessary prepositions with reckless abandon.

And of course, all the great folks at Zope Corporation, for creating an open-source

Web application platform that lets us solve our customer’s problems without creat-

ing new ones.

a4857-3 FM.F 3/1/02 9:36 AM Page xv

xvi Zope Bible

Michael adds:

Besides the folks mentioned above, I’d also like to extend my personal thanks to the

following people:

My co-author Scott Robertson and Codeit CEO Jason Reid deserve my thanks for

giving me the opportunity to write this book and accepting my tendency to

perfectionism.

Roxanne, for encouraging me when I was down, and keeping my eye on the ball

when things just seemed too hard, even though she really deserved my attention

more.

The members of the Southern Nevada Area Fantasy and Fiction Union (snaffu.org),

who deserve my thanks for not complaining even though they didn’t really get the

club Vice President they voted for (no, guys, I am not taking you all to Disneyland).

Scott adds:

Thanks to my partners, Chris Klein and Jason Reid, who told me to not write a book

because I didn’t have time and I’d hate the process (they know me too well) and

then helped out in every possible way when I ran into trouble because I never

listen.

a4857-3 FM.F 3/1/02 9:36 AM Page xvi

Contents at a Glance
Preface. ix

Acknowledgments . xv

Part I: Getting Started with Zope . 1
Chapter 1: Overview of Zope . 3

Chapter 2: Installation . 13

Chapter 3: Zope Objects and the Management Interface 31

Chapter 4: Document Template Markup Language 65

Chapter 5: Object-Oriented Programming and Python 121

Part II: Building Zope Products . 175
Chapter 6: From Packages to Products . 177

Chapter 7: Creating an AddressBook Application 197

Chapter 8: Enhancing the AddressBook . 231

Chapter 9: Zope Product Security . 267

Chapter 10: Creating a Multi-User AddressBook 291

Part III: Zope Management . 309
Chapter 11: Content Management Strategies . 311

Chapter 12: Database Management . 335

Chapter 13: User Management and Security . 367

Part IV: Advanced Zope Concepts . 387
Chapter 14: Core Zope Components . 389

Chapter 15: Scripting Zope . 439

Chapter 16: ZClasses . 455

Chapter 17: Searching Content . 491

Chapter 18: Zope Page Templates . 517

Chapter 19: Debugging . 541

Chapter 20: Alternative Methods of Running Zope 557

Appendix A: What’s on the CD-ROM . 567

Appendix B: Installing Zope from the Red Hat RPMs or Source Code 571

Index . 579

End-User License Agreement . 616

a4857-3 FM.F 3/1/02 9:36 AM Page xvii

a4857-3 FM.F 3/1/02 9:36 AM Page xviii

Contents
Preface. ix

Acknowledgments . xv

Part I: Getting Started with Zope 1

Chapter 1: Overview of Zope . 3
What Is Zope? . 3

History of Zope . 4

Features of Zope . 5

Platforms . 5

Database adapters . 6

Web-based user interface . 6

Integration with existing tools . 6

Open source . 6

Extendibility . 6

Built-in Web server . 6

Plays nice with third-party Web servers 7

Multiple protocol support . 7

Indexing and searching . 7

Built-in object database . 7

Built-in security model . 7

Clustering and load balancing . 7

Transactions . 7

Versions . 8

Undo support . 8

Zope Architecture . 8

ZServer . 9

ZPublisher . 9

Transaction Manager . 10

ZODB . 10

ZEO . 11

ZRDBM . 11

Zope Advantages . 11

Low cost of ownership . 11

Fast development/deployment time 11

Reliability . 12

Scalability . 12

a4857-3 FM.F 3/1/02 9:36 AM Page xix

xx Zope Bible

Chapter 2: Installation . 13
What You Need to Run Zope . 13

Where to Find Zope . 14

Installing Zope Under Windows . 14

Installing Zope Under Linux . 16

Finding Your Way around Zope’s

Directory Tree . 18

Starting up Zope for the First Time . 20

Logging in . 21

Shutting down . 21

Copying your Web site to a different machine 23

Running Zope with ZServer . 23

Modifying ZServer’s behavior with switches 24

Using the command line switches

when running Zope as a service . 28

Expanding Zope with Products . 29

Installing new products . 29

Product troubleshooting . 30

Getting Support . 30

Chapter 3: Zope Objects and the Management Interface 31
Object Basics . 32

The Zope Management Interface . 32

Using the top frame . 33

Exploring folders with the Navigator frame 35

Manipulating objects in the Workspace frame 35

Common Views . 37

Viewing objects through the Default view 37

Examining an object and its Properties 37

Changing permissions in the Security view 39

Simulating roles with the Proxy view 40

Viewing ownership information . 40

Fixing mistakes in the Undo view . 40

Folder Objects . 41

Adding folders . 41

The contents View . 43

Viewing a folder . 46

The Find view . 46

DTML Documents . 47

Adding a DTML document . 47

Editing a DTML document . 48

Viewing a DTML Document . 49

Reviewing changes with the History view 49

DTML Methods . 50

Introducing the standard header . 51

Overriding the standard header . 52

a4857-3 FM.F 3/1/02 9:36 AM Page xx

xxiContents

File Objects . 52

Adding a file . 52

Editing a file . 52

Viewing a file . 54

Image Objects . 54

Adding an image . 54

Editing an image . 54

Viewing an image . 55

User Folders and User Objects . 55

Adding a User Folder . 56

Editing a User Folder . 56

Adding a user . 56

Editing a user . 57

Managing users . 57

Control Panel . 58

Stopping and restarting Zope . 59

Managing the database . 60

Managing versions . 62

Managing products . 62

Debug information . 64

Chapter 4: Document Template Markup Language 65
DTML Concepts . 66

Where data comes from . 67

Understanding variables, properties, and methods 67

DTML tag syntax . 67

The name attribute . 68

The expr attribute . 70

Namespaces . 72

The dtml-var Tag . 79

Entity syntax . 79

Attributes of the dtml-var tag . 80

The dtml-if Tag . 87

The basics of conditional insertion . 87

The dtml-else and dtml-elif tags . 88

The dtml-unless Tag . 89

The dtml-in Tag . 90

The basics of iterative insertion . 90

The dtml-else tag and empty sequences 91

Attributes of the dtml-in tag . 92

Current item variables . 94

Summary statistic variables . 97

Grouping variables . 98

Batch processing . 99

The dtml-with Tag . 102

The dtml-let Tag . 103

a4857-3 FM.F 3/1/02 9:36 AM Page xxi

xxii Zope Bible

The dtml-call Tag . 104

The dtml-return Tag . 104

The dtml-comment Tag . 105

The dtml-raise Tag . 106

The dtml-try Tag . 107

Checking for errors . 107

Handling multiple exceptions . 108

Optional dtml-else and dtml-finally tags 108

Writing your own error messages . 109

The dtml-tree Tag . 110

Displaying objects in a tree . 111

Attributes of the dtml-tree tag . 111

Current item variables . 115

Control variables . 116

The dtml-sendmail and dtml-mime Tags . 117

Creating dynamic e-mail messages . 117

Sending attachments . 118

Chapter 5: Object-Oriented Programming and Python 121
Using the Interactive Interpreter . 122

Running Python Commands from a File . 124

Variables . 126

Types and Operators . 128

Numbers . 128

Sequences . 133

Dictionaries . 144

Control Statements . 146

Conditional testing with the If statement 148

Looping . 151

Functions . 154

Understanding Namespaces . 159

Namespaces within functions . 160

Creating and manipulating global variables 161

Modules and Packages . 161

Using modules . 162

Playing with the module path . 163

Importing specific names from modules 163

Creating and using packages . 164

Examining the contents of a namespace with dir() 166

Understanding .pyc files . 166

Classes and Objects . 166

Defining a new class . 167

Class scope versus object scope . 167

Methods . 168

Controlling how classes are initialized with __init__ 169

Inheritance . 169

a4857-3 FM.F 3/1/02 9:37 AM Page xxii

xxiiiContents

Exception Handling . 170

Using the try statement . 171

The except object . 171

Catching exceptions . 172

Using else: with try . 172

The finally clause . 172

Raising exceptions . 173

Where Do I Go From Here? . 173

Part II: Building Zope Products 175

Chapter 6: From Packages to Products 177
What’s a Product? . 178

Creating a Hello World Package . 179

Publishing Objects . 180

Changing a Package into a Product . 181

Instantiating Your Object . 184

Filling out the manage_add methods 184

Subclassing from Zope base classes 186

Adding DTML Methods . 188

Processing Form Submissions and Returning 191

Web-enabling the edit method . 191

Dealing with non-Web situations . 193

Adding manage_editHelloForm . 193

Defining your own management tabs 194

Chapter 7: Creating an AddressBook Application 197
The Addressit Product and the AddressBook Class 197

Creating the Addressit Product . 198

Creating edit and index_html Methods . 201

Creating an Entry Module in the Addressit Product 205

Adding, Listing, and Deleting Entries from the AddressBook 215

Adding entries to the AddressBook 215

Testing the addEntryForm . 220

Listing the entries in the AddressBook 222

Traversing the AddressBook into the Entries 226

You can’t get there from here . 226

Improving access to the entries . 227

Editing an Entry . 227

a4857-3 FM.F 3/1/02 9:37 AM Page xxiii

xxiv Zope Bible

Chapter 8: Enhancing the AddressBook 231
Adding a Standard Header . 231

Batching the Entries Display . 233

Scaling to many results . 234

About orphans . 234

Navigating among the batches . 235

Grouping Entries . 240

Adding a GroupList attribute to

the AddressBook class . 241

Adding a Group attribute to the Entry class 241

Adding and Deleting Groups . 244

Retrieving Entries by Group . 250

Renaming Groups . 254

Sorting Entries by Column . 257

Dealing with case-sensitivity . 263

Chapter 9: Zope Product Security . 267
Security and the Web . 267

Security 101 . 267

The Web is fundamentally insecure 268

The Zope Security Framework . 268

Roles . 270

Acquisition . 271

Ownership . 271

Local roles . 272

What Zope won’t do for you . 273

What Zope will do for you . 273

Determining your Security Requirements 274

The Default policy . 274

Listing the methods . 274

Reusing existing roles . 276

Reusing existing Permissions . 277

Adding Security . 278

Adding Permissions . 280

Associating Permissions with roles 281

Chapter 10: Creating a Multi-User AddressBook 291
Creating the Addressit Class . 292

Adding AddressBooks . 297

Public and Private AddressBooks . 301

Adding a Public attribute to the AddressBook class 301

Using the Public attribute . 302

Incorporating the user’s private AddressBooks 303

Finishing Touches . 306

Adding help . 306

Adding an Icon . 307

a4857-3 FM.F 3/1/02 9:37 AM Page xxiv

xxvContents

Part III: Zope Management 309

Chapter 11: Content Management Strategies 311
Content Management Concepts . 311

Content management basics . 312

Consistency . 313

Separation of content from presentation 313

Separation of Presentation from Logic 315

Minimizing redundancy . 316

Using Acquisition to Enforce Consistency 317

So, what is acquisition? . 317

Using acquisition to standardize layout 318

Navigation . 320

Using Acquisition to share Logic . 323

Collaboration and Versions . 325

What is a version? . 325

Creating a version . 325

Joining and leaving a version . 326

Working in a version . 327

Saving or discarding your changes 328

Things to consider when working with versions 329

Applied Security . 329

Delegation . 329

Damage Control . 331

Chapter 12: Database Management 335
About Relational Databases . 335

Database basics . 335

Relational database structure . 336

Accessing relational databases: SQL 340

Real world: Specific RDBMS products 343

Connecting Zope to a Relational Database 344

Getting an adaptor . 344

Connecting and disconnecting . 345

Testing SQL statements . 346

Browsing tables . 347

SQL Methods: The Basics . 347

Static SQL methods . 347

Dynamic SQL methods . 348

Using SQL Methods from DTML . 349

Using the dtml-call tag . 351

Using the dtml-in tag . 351

Using SQL Methods from External Methods 352

Using SQL Methods from Python Products 353

Importing the SQL method class . 353

Instantiating new SQL method objects 353

Calling SQL methods . 354

a4857-3 FM.F 3/1/02 9:37 AM Page xxv

xxvi Zope Bible

Advanced Techniques . 354

Acquiring parameters . 354

Traversing to SQL method results . 355

Pluggable Brains . 356

Caching . 356

Transactions . 358

Building a SQL Application . 359

Setup a workspace . 360

Create a new Gadfly connection . 360

Create the table schema . 361

Create the SQL methods to access the database 362

Write the DTML for the user interface 363

Chapter 13: User Management and Security 367
The Zope Security Framework . 367

Creating and Managing Users . 368

Adding a user . 368

Editing a User . 368

Setting the allowed domains . 370

The Emergency User . 370

Creating the emergency user by hand 370

Creating the emergency user with zpasswd.py 371

Understanding Roles . 372

The Anonymous role . 372

The Authenticated role . 372

The Manager role . 372

The Owner role . 373

Creating roles . 373

Setting Permissions for Roles . 374

Proxy Roles . 376

Giving a proxy role to a method . 376

Testing the proxy role . 378

Local Roles . 379

Using multiple user folders . 382

Removing a Local role . 382

Local roles gotchas . 383

Authentication Adapters . 383

Installing a custom acl_user folder in the Root Folder 383

MySQL User Folder . 383

SSL Certificate Authenticator . 383

Cookie User Folder . 384

NT User Folder . 384

SMB User Folder . 384

etc User Folder . 384

Generic User Folder . 384

Login Manager . 385

UserDB . 385

LDAPLoginAdapter . 385

LDAPUserManager . 385

a4857-3 FM.F 3/1/02 9:37 AM Page xxvi

xxviiContents

Part IV: Advanced Zope Concepts 387

Chapter 14: Core Zope Components 389
Acquisition . 389

Understanding wrappers . 390

Manipulating wrappers . 391

Context versus containment . 396

ZODB and Persistence . 397

Using the ZODB in other applications 398

Storing objects and subobjects . 399

Notifying the ZODB when an object has changed 400

Meet the rules of persistence . 401

Creating attributes that won’t be saved in the ZODB 402

Aborting transactions . 402

Caching and memory management 403

Thread safety . 408

Undoing transaction . 410

Removing old transactions to save space 410

Working with, saving, and aborting versions 411

ZPublisher . 411

Traversing objects . 412

Publishing the object . 413

Create Dynamic Text with DocumentTemplates 425

Initializing templates with default arguments 427

Calling templates . 427

Working with templates stored in files 428

Document template security . 428

Creating your own tags . 430

Chapter 15: Scripting Zope . 439
Jumping in with Python Scripts . 440

Creating a Python-based script . 440

Script security . 443

Binding variables . 444

Under the Hood of a Python Script . 445

Calling Python-Based Scripts . 445

Calling scripts from DTML . 446

Calling scripts from a URL . 447

A practical example . 448

External Methods . 449

Why external methods? . 450

A practical example . 450

Perl-Based Scripts . 452

Before installing Script (Perl) . 452

Installing Zoperl . 453

Using Perl-based scripts . 453

a4857-3 FM.F 3/1/02 9:37 AM Page xxvii

xxviii Zope Bible

Chapter 16: ZClasses . 455
What are ZClasses? OOP and Classes . 455

Through-the-Web ZClasses . 456

ZClass disadvantages . 456

Creating a Simple ZClass . 456

Creating the product . 457

Creating the ZClass . 459

Adding a default view . 461

ZClasses and PropertySheets . 464

Using simple property types . 465

Using select and multiple-select properties 471

Automatically Generating ZClass Views . 473

Generating a View interface . 473

Generating an Edit interface . 475

Creating Simple Applications Using ZClasses 478

FAQManager ZClass . 478

QandA ZClass . 479

Finishing the FAQManager interface 483

Creating CatalogAware ZClasses . 484

Making a ZClass catalog aware . 485

Editing the constructor . 485

Cataloging changes to the object . 487

Subclassing ZClasses from Python Base Classes 487

Why Subclass Python classes? . 488

Creating the Python base class . 488

Subclassing the ZClass from the base class 488

Distributing ZClass Products . 489

Chapter 17: Searching Content . 491
Adding and Populating ZCatalogs . 491

What is a ZCatalog? . 491

Adding a ZCatalog to your site . 492

Populating a ZCatalog . 493

Configuring and Querying the ZCatalog . 494

ZCatalog indexes . 494

ZCatalog Metadata . 497

Building search interfaces . 498

Accessing ZCatalogs from Python . 505

Accessing ZCatalogs from Python script objects 505

Accessing ZCatalogs from Python products 507

Complex queries from Python . 507

Making Zope Product Classes auto catalogable

(CatalogAwareness) . 508

More about ZCatalog . 510

More about text indexes . 510

More about field indexes . 510

a4857-3 FM.F 3/1/02 9:37 AM Page xxviii

xxixContents

More about keyword indexes . 512

More about path indexes . 514

The Advanced tab . 514

Chapter 18: Zope Page Templates . 517
The Problem with DTML . 517

DTML tags are not friendly to HTML editors 518

DTML Methods and Documents are not renderable

by WYSIWYG editors . 518

DTML encourages the mixing of presentation

and logic . 519

TAL (Template Attribute Language) . 520

Page template basics . 520

TAL statements . 524

Order of TAL statement execution . 531

TALES (TAL Expression Syntax) . 531

Path expressions . 532

Python expressions . 534

String expressions . 535

The not: expression flag . 536

METAL (Macro Expansion TAL) . 536

Simple code reuse . 537

Macro slots . 538

Chapter 19: Debugging . 541
Error Messages . 543

Debug Mode . 545

Calling Zope from Python . 545

The Python debugger (pdb) . 547

Post-mortem debugging . 550

Triggering the Python Debugger via the Web 550

Logging . 552

zLOG module . 552

Profile logging . 553

Control panel . 553

Debug information . 554

Profiling . 555

Chapter 20: Alternative Methods of Running Zope 557
Interfacing Zope with Other Web Servers 557

Zope and Apache . 558

Zope and Microsoft IIS . 559

Zope and Scalability . 560

What is scalability? . 560

Clustering and load balancing . 561

Zope Enterprise Objects . 563

a4857-3 FM.F 3/1/02 9:37 AM Page xxix

xxx Zope Bible

Appendix A: What’s on the CD-ROM 567

Appendix B: Installing Zope from the Red Hat RPMs or
Source Code . 571

Index . 579

End-User License Agreement . 616

a4857-3 FM.F 3/1/02 9:37 AM Page xxx

Getting Started
with Zope

✦ ✦ ✦ ✦

In This Part

Chapter 1
Overview of Zope

Chapter 2
Installation

Chapter 3
Zope Objects and
the Management
Interface

Chapter 4
Document Template
Markup Language

Chapter 5
Object-Oriented
Programming and
Python

✦ ✦ ✦ ✦

P A R T

II

b4857-3 PtO1.F 3/1/02 9:37 AM Page 1

b4857-3 PtO1.F 3/1/02 9:37 AM Page 2

Overview
of Zope

If you are picking up this book, you probably fall into one of

three categories: the tech book browser who wants to

know what the application with the funny name is, the Web

developer who is looking into application platforms to develop

on top of, or your company’s HTML resource, looking for some-

thing that will help you build the intranet your boss wants

online yesterday. No matter which of these categories you fall

under, this book is for you. Not only do we explain what Zope is

and how it can help you, but we also get into the nitty-gritty of

building Web applications in Zope from back to front.

What Is Zope?
Put quite simply, Zope is an open source Web application

server. Published by Zope Corporation (formerly Digital

Creations) and supported by a large, active community of

users, it was designed with the idea in mind that a successful

Web application requires the collaboration of many people in

an organization. Zope runs on almost all UNIX systems, as well

as on Windows, plus it can be run with most Web servers or

its own built-in Web server. The few platforms that are not

officially supported (such as Apple MacOS) nevertheless have

their own community supporters who can almost certainly

provide a version of Zope pre-compiled for your platform.

Since Zope is open source, you also always have the option

(as a last resort) of compiling Zope for your platform yourself

with some assistance from the community. In practice, this is

rarely necessary.

One of Zope’s biggest attractions is that it contains everything

you need to build secure, speedy, and reliable Web-based

applications. You can create community Web sites, sell prod-

ucts online, streamline your business with an intranet/

extranet, or invent the next Internet fad. Instead of having to

buy several components separately and getting them to work

together, Zope provides many (if not most) of the features you

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

History of Zope

Zope features

Zope architecture

The advantages of
Zope

✦ ✦ ✦ ✦

c4857-3 Ch01.F 3/1/02 9:37 AM Page 3

4 Part I ✦ Getting Started with Zope

need, including content management features, adapters to common databases (such

as Oracle, PostGreSQL,Sybase, MySQL, MS SQL Server, Interbase, or any other ODBC

(Open Database Connectivity)-compliant database), and a rich security model.

As an open source technology, especially with its rapidly growing user base and the

ease with which it can be extended, it is unlikely Zope will end up as a “dead tech-

nology.” There is a wide selection of third-party products and plug-ins created by

other Zope users that you can use to customize your site. And, because of Zope’s

non-proprietary license, you have access to the source code in case you would like

to add or tweak anything on your own. In fact, in the second part of this book, we’ll

show you exactly how to do just that.

History of Zope
The World Wide Web originally consisted of a series of documents used by scien-

tists and researchers to share ideas and information. As more and more people

used the Internet and for different purposes, there developed a need to interact

with these documents. Thus, CGI (Common Gateway Interface) was created to

enable such interaction between people and Web sites, and significantly increased

the practical functionality of the Internet. This transformed the Web from a collec-

tion of static documents to a place where things could be done. Suddenly docu-

ments could change depending on parameters that were provided to them,

incorporating data from other sources, or modifying and storing data.

CGI is used to collect user input from the Web through the use of forms. Because

CGI only defines how Web servers communicate with programs designed to process

input from the Web, programmers found themselves constantly recreating all of the

other necessary components of a Web application every time they wanted to write

something new.

To resolve this limitation, programmers created reusable libraries of common func-

tions and routines, saving themselves some of the time and trouble involved in cre-

ating Web applications. Enterprising individuals collected these libraries into

programs capable of performing multiple tasks, such as communicating with

databases and managing content. This made the process of building applications

more convenient by concealing many of the low-level functions programmers found

themselves rewriting.

Up until this point most of the application servers were procedural based. This may

be due to the fact that the first thing most programmers wanted to do was to con-

nect a Web site with organizations’ databases, which are procedural in nature. (Java

wasn’t nearly as prevalent on the Web as it is today.)

In 1996, Jim Fulton needed to learn about CGI scripting to give a tutorial on the subject

and, while traveling, came up with a way to publish objects on the Web as a better

alternative to CGI scripts. Jim had been working for Zope Corporation (then Digital

Creations) for about a week at that point and coded most of an ORB on the flight back.

c4857-3 Ch01.F 3/1/02 9:37 AM Page 4

5Chapter 1 ✦ Overview of Zope

There was much rejoicing in the OOP (object-oriented programming) community.

They released several components: Bobo, BoboPOS, and Document Template as open

source, but built a proprietary product called Principia with those components that

they attempted to sell. In 1998 an investor by the name of Hadar Pedahazur convinced

Digital Creations that its product would be more successful if it, too, was released as

open source. Thus, Principia became Zope, and a movement began.

Zope exploded onto the scene and immediately the user base increased signifi-

cantly, proving that Pedahazur’s decision was a good one. The user base became an

integral part of the development of Zope, becoming a full-blown community cen-

tered on this product. Currently Zope applications are developed all over the world

to suit all sorts of Web-application needs, and recently Zope Corporation has

opened up the development process for more community participation in Zope’s

development, with promising results.

More businesses now are adopting Zope as their Web-development toolkit every

day, increasing the pool of available developers and third-party products for each

new user. Organizations such as Red Hat, NASA, Bell Atlantic Mobile, CBS, and the

U.S. Navy all have chosen to use Zope for various Web applications, and the list

keeps growing.

Features of Zope
Zope has a lot of moving parts that are put together in a very integrated way. This

gives Zope many features that are not present in other application servers. In many

ways, calling Zope an application server ignores additional features such as the

integrated object database that other application servers simply don’t have.

Platforms
Because Zope is written in Python (you’ll meet the computer language Python in

Chapter 5), Zope can run on any platform Python can run on (which is virtually

every platform in use today). Currently, Zope is officially supported on the follow-

ing platforms:

✦ Windows 95/98/NT/2000

✦ Linux

✦ Solaris

Zope has also been run successfully on the following platforms:

✦ NetBSD/OpenBSD/FreeBSD

✦ HP-UX

✦ MacOS X

✦ BeOS

c4857-3 Ch01.F 3/1/02 9:37 AM Page 5

6 Part I ✦ Getting Started with Zope

Database adapters
Name a database and a Zope adapter probably already exists for it. Adapters exist

to talk to various traditional databases such as Oracle, Sybase, MSSQL, Access,

MySQL, PostgresSQL, and many others. There is even a wide variety of adapters for

non-traditional databases such as LDAP and IMAP.

Web-based user interface
Everything in Zope can be managed through a Web browser. Maintenance and sup-

port are simplified due to the independence from any required client-side utilities.

In addition, building and editing your site can be accomplished from anywhere you

have access to the Internet.

Integration with existing tools
Zope has built-in support for FTP and WebDAV, which enables existing client-side

tools to access Zope easily. When combined with Zope Page Templates (discussed

in Chapter 18), you’ll find that developers and designers can work together more

smoothly than ever before.

Open source
Zope is an open source technology, which means not only that is it free but also

that there exists a large community that has adopted the product and is constantly

contributing to its growth and well-being. In addition, there is the added advantage

of not being locked in to a single vendor for extensions and upgrades. Of course, for

those organizations desiring it, support contracts are available from a variety of

vendors.

Extendibility
Zope has an easy, consistent architecture built with the powerful Python language,

so in the rare event that you cannot find a product to do your bidding, you can

write your own. Chapter 5 is an introduction to Python, and chapters 6 through 10

provide a detailed tutorial on extending Zope with your own Python products.

Chapter 16 deals with extending Zope through the Web by using ZClasses.

Built-in Web server
Zope includes its own built-in multi-threaded Web server, which you can use to

quickly get Zope up and running. In many (if not most) cases you won’t need any-

thing else.

c4857-3 Ch01.F 3/1/02 9:37 AM Page 6

7Chapter 1 ✦ Overview of Zope

Plays nice with third-party Web servers
Zope can be run on any of the leading Web servers. It can interface with Apache,

Microsoft IIS, Netscape Enterprise Server, and many others.

Multiple protocol support
Zope supports many existing Internet standards such as HTTP, FTP, SQL, and

ODBC, as well as many emerging standards such as DOM, XML, SOAP, XML-RPC,

and WebDAV.

Indexing and searching
Powerful search functions put every object in your Zope installation at your finger-

tips. You can search your entire architecture for a particular object, or search for all

of the objects that match an extensive list of criteria. You can also incorporate this

functionality into your Zope Web applications (discussed in Chapter 17).

Built-in object database
Every object you create — including documents, files, images, folders, and more —

is stored in Zope’s integrated, easy-to-manage object database.

Built-in security model
Zope’s dynamic security model offers a powerful range of options and capabilities.

It enables you to protect entire sections of your Web site by simply editing one list

of permissions, and protect individual objects by setting permissions on an object-

by-object basis. (Chapter 9 shows you how to incorporate security into your Zope

Products, and Chapter 13 explains how to leverage Zope security in your site.)

Clustering and load balancing
ZEO (Zope Enterprise Options) is an open source add-on that is included with the

Zope package. Using ZEO and a variety of load-balancing options, you can scale a

site up from running on a single server to one that spans the globe. Chapter 20

explains these alternatives in detail.

Transactions
Zope works off of transactions. What this means is that a series of changes made to

the database is stored in a transaction. If that transaction causes an error or is

somehow invalid, all of the changes are rolled back and the database remains unal-

tered. In addition, Zope plays well with other systems that support transactions,

such as Oracle.

c4857-3 Ch01.F 3/1/02 9:37 AM Page 7

8 Part I ✦ Getting Started with Zope

Versions
All development in Zope can be done in Versions. This means many changes (trans-

actions) can be made and reviewed on the live site without affecting what a visitor

sees until the changes are approved and the version committed.

Undo support
Just about everything you do in Zope can be undone with Zope’s transactional

undo support. If you don’t like a change you just made or you accidentally broke a

part of your Web site, fixing the problem takes just a few clicks.

Zope Architecture
You are probably wondering how Zope accomplishes all of the features we have

been preaching about. At the heart of Zope is a series of components that provides

services for handling tasks such as Internet requests, object persistence, transac-

tion management, content indexing/searching, undo support, RDBMS (Relational

DataBase Management System) access, and plug-in support. Most of these compo-

nents can be embedded into other Python applications without Zope. Figure 1-1

shows an overview of the various Zope components and their relations to each

other.

Figure 1-1: The server bone is connected to the backbone . . .

ZPublisher Transaction Manager

ZODB ZEO ZRDBM

ZServer
Zope

ZEO Server

HTTP

HTTPHTTP
HTTP

FTP

HTTP
HTTP

FTPWWW WebDAV XML-RPC

Apache HTTP

Oracle MySQL ODBC

c4857-3 Ch01.F 3/1/02 9:37 AM Page 8

9Chapter 1 ✦ Overview of Zope

ZServer
To understand what ZServer is and how it works, imagine that you are a translator

for the United Nations. Every culture has different customs, expressions, and other

idioms that to the uninitiated are not understood or might even be considered

offensive. Your job then is to not only translate the words of one diplomat into the

language of another, but you also must help each diplomat understand the other’s

point of view. To do this you might have to rephrase what a diplomat asked so as to

not upset the other, which requires that you be well-versed in both cultures in

order to know the right way to phrase something.

ZServer performs a similar job. Except in this case instead of diplomats speaking

foreign languages, you have client programs speaking a specific Internet protocol.

ZServer translates a specific protocol into a request that Zope understands and

then translates Zope’s response into a format the client understands.

However, this is a gross understatement of the work ZServer does. ZServer also per-

forms many other complex server operations as well. This way a developer can

extend Zope to speak another protocol without having to get bogged down in the

details of writing a server application from scratch.

ZServer is based on Sam Rushing’s Medusa server (http://www.nightmare.com/
medusa/) and could, if your needs were different enough from other Zope users,
be replaced with some other integrated server architecture. In practice, it’s often
easier to run Zope behind Apache or another Web server instead.

ZPublisher
Zope is an object-publishing environment. That means that when Zope is asked for

an object, it is searched for and published back to the requester. This is done by

what some developers call an ORB (Object Request Broker). ZPublisher is Zope’s

ORB component. You can think of ZPublisher as a helpful librarian. Instead of ask-

ing the librarian to help you search through all of the bookshelves to find a specific

book, you ask ZPublisher to search through the ZODB (Z Object Database) to find

an object, typically by specifying a URL in an HTTP request.

Once ZPublisher finds an object, and you have the appropriate permissions,

ZPublisher checks to see if the object is callable (in other words, it checks to see

whether the object is a function), or to see whether the object has a callable

attribute named index_html. In which case ZPublisher runs the function and returns

the results back to ZServer.

Just as a librarian keeps the library tidy and efficient by returning books back to

the shelves when inconsiderate people come along and leave them out on the

tables, ZPublisher also performs house keeping functions, such as starting/ending

transactions and rolling failed transactions back in case there was an error.

Note

c4857-3 Ch01.F 3/1/02 9:37 AM Page 9

10 Part I ✦ Getting Started with Zope

Transaction Manager
Zope supports atomic transactions, which means that all operations in a transaction

must be successful or the whole database must be restored to the state it was

before the beginning of the transaction. The Transaction Manager is responsible for

keeping track of all objects that have changed during the publishing process. At the

end of the request, after ZServer has returned Zope’s response back to the client,

the Transaction Manager either commits the changes (permanently accepts them)

or if there was an error, it loops through each changed object and tells the database

to abort the changes (and hence revert back to the database’s original state).

Persistent objects (objects that are stored in the ZODB) and RDBMS adapters that

support transactions are integrated with the Transaction Manager, which means

that you never have to worry about managing your own transactions (unless you

want to).

A good example of the necessity for atomic transactions is an account balance

transfer. Suppose two users — Margaret and Todd — each have an account on your

system, and that you have enabled your users to initiate balance transfers from

their accounts to any other account on the system. One day, as Margaret is transfer-

ring about $1,000 from her account to Todd’s account, a rat chews through the

power cord of your server. The good news is that the rat was electrocuted, and

won’t be taking down any of your other servers. The bad news is that while

Margaret’s account balance was reduced by the transferred amount, Todd’s

account was never increased by the equivalent amount. The money disappeared. In

a Zope implementation of this system, both accounts would be updated with their

new balances, or neither would be, as the balance transfer operation would be con-

tained in a single transaction, rats be damned.

ZODB
The ZODB (Z Object Database) provides transparent persistent object support.

What this means is that developers can create instances of objects and manipulate

them, and they will automatically be saved with little or no intervention from the

developer.

Refer to Chapters 5 for more information on objects and Chapter 6 to see persis-
tent objects in action.

Engineered from the ground up to be robust, ZODB uses a simple journaling schema

for saving changes to the object. When an object is changed, a new version of the

object is saved at the end of the database and the database is then saved to disk.

This way you never run the risk of having corrupt data due to Zope unexpectedly

quitting (maybe you had a loss of power or someone randomly killing your Zope

process). The worst that could happen is that you will lose the transaction that

Zope was in the middle of committing to disk. One side effect of this approach of

saving versions of objects is that you have the ability to undo changes that you pre-

viously made.

Cross-
Reference

c4857-3 Ch01.F 3/1/02 9:37 AM Page 10

11Chapter 1 ✦ Overview of Zope

ZEO
ZEO (Zope Enterprise Option) allows one ZODB to be shared with multiple Zope

instances running on different machines. This option enables you to quickly scale a

site to handle more traffic with use of additional hardware.

ZRDBM
ZRDBM (Zope Relational Database management) provides an abstracted interface

layer to relational databases. This enables you to swap different database adapters

without having to rewrite major portions of your site, and to access multiple

databases at the same time. If your database supports transactions, the ZRDBM will

manage them for you.

Zope Advantages
“That’s nice and all,” you may be thinking. “But why should I stick my neck out and

tell my project manager that this is the way to go when there are so many other

well-known Web-development platforms out there?” A good question. Besides hav-

ing a cool name (which lends itself to such phrases and terms as “Zope-It!” and

“Zope-ification”), there are several aspects to it that make Zope an attractive option

for your development needs.

Low cost of ownership
Probably Zope’s most enticing aspect is its price tag. At the low, low price of free,

it’s a deal that’s hard to beat. Other Web development toolkits can cost upwards of

six figures when you factor in associated software and licenses for multiple sys-

tems, not including the price for the training that is often required, and customiza-

tion that is frequently available only from a single vendor, if it’s available at all. With

Zope, you get a complete package for absolutely nothing. Also, with Zope’s public

license, you are free to do whatever you wish with the software, including creating

your own tweaks and add-ons. Even if you do decide to go with another product,

it’s worth the time to download Zope and see what it’s capable of.

Fast development/deployment time
Zope was designed with your entire development team in mind. With Zope’s

Versions and flexible security model, you can minimize the possibility that one

change may override another. Zope Page Templates, introduced in Zope 2.5

(Chapter 18) separate presentation from logic in a way that let your designers use

their favorite WYSIWYG HTML editors while collaborating with the coders on your

team. As well, Zope’s acquisition helps make for less coding. For example, if a sec-

tion of the Web site is supposed to have a universal look, you can set up a template

with universal headers and footers and have the pages dynamically rendered from

stored information, whether from within Zope itself or from external databases.

c4857-3 Ch01.F 3/1/02 9:37 AM Page 11

12 Part I ✦ Getting Started with Zope

Reliability
Because of Zope’s transactional method of changing the database, it’s virtually

impossible to have invalid entries in the database that might break your site.

Coupled with the easy undo system, even if a change is made that does break some

portion of your site, you can quickly recover with minimum hassle.

Scalability
Zope runs smoothly on single machines, but the nifty thing about Zope is that it can

easily be scaled to a much larger operation with hardly any fuss at all using the ZEO

package. If your Web site grows from 100 hits a day to 100,000, you will be able to

spread across as many machines as you will need to handle the load.

Summary
It all sounds pretty interesting, doesn’t it? The great thing about Zope is that you

can download it, install it, and have it up and running to play with in less time than

it would take to wash your car. And because it’s free, you have no major commit-

ment if it’s not what you’re looking for. We suspect that you will be pleased with the

surprising power Zope offers. So let’s go get it installed!

✦ ✦ ✦

c4857-3 Ch01.F 3/1/02 9:37 AM Page 12

Installation

In the last chapter we discussed Zope’s many features. Now

it is time to install the application so that we can get you

started working with it.

This chapter is served to you in two parts. The first part is

designed to give you everything you need to get Zope

installed and running on your computer. The second part

deals mostly with modifying the behavior of Zope’s built-in

Web server, ZServer. (You may want to skip this part until

later.)

What You Need to Run Zope
Zope is remarkably easy on your system. In the past, we have

set Zope up on everything from Sun SPARC stations to laptops

running Microsoft’s Windows 95. In this chapter, we discuss

how to install Zope on a Windows or Linux machine.

To install Zope under Linux or Windows, you only need the

following:

✦ An Intel x86 or compatible chipset or a SPARC machine

✦ At least 128 MB of RAM

✦ At least 16 MB of hard drive space

Zope consumes 16 MB of hard drive space once it is
installed. The space that it takes will grow significantly
once you start adding content, so you will want to have
plenty of room available.

This is also all you need to get going with the software we pro-

vide on the CD-ROM that accompanies this book.

Note

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What you need to
run Zope

Finding Zope

Installing Zope under
Windows

Installing Zope under
Linux

Firing Zope up for the
first time

Starting up Zope’s
Web server
application, ZServer

Installing additional
products

Troubleshooting tips

✦ ✦ ✦ ✦

c4857-3 Ch02.F 3/1/02 9:37 AM Page 13

14 Part I ✦ Getting Started with Zope

Where to Find Zope
The easiest place to find the Zope installation files is on the CD-ROM supplied with

this book. In the /Zope directory, you will find all of the files necessary to get

started with Zope, which are listed as follows:

Zope-2.5.0-win32-x86.exe This is the file to install under

Microsoft Windows 9x/NT/2000.

Zope-2.5.0-linux2-x86.tgz This is the binary used to install

under the various Linux operating

systems.

Zope-2.5.0-solaris-2.6-sparc.tgz This is the file to install on a SPARC

station.

Zope-2.5.0-src.tgz This file contains the source code, in

case you wish to compile straight

from the source.

You can also find the most recent version of Zope at http://www.zope.org. You will

find the naming convention of the files identical.

If you want Zope in Red Hat’s RPM or Debian’s deb formats, then you will have to

look elsewhere. Zope RPMs can be found at http://starship.python.net/crew/
jrush/Zope/, while the deb packages can be found on Debian’s Web site,

http://www.debian.org.

Check out Appendix B for instructions on how to compile Zope from the source
code or install it using the Red Hat RPMs.

Installing Zope Under Windows
Installing Zope on Windows 9x/NT/2000 is a quick and easy process. To start, run

the .exe file that is on the CD-ROM that accompanies this book or in whatever

directory you downloaded it by double-clicking it or using “Run” in the Windows

Start menu. This will start a simple installation wizard that will ask you for a few

things and then install Zope.

While you can run Zope on Windows 95, 98, or ME for exploring and experiment-
ing, you will definitely want to choose a more stable operating system if you plan
to produce a site that will be receiving any sort of traffic.

After the usual licensing agreement, you will be asked to name your Web site, as

you can see in Figure 2-1. The default is imaginatively named “WebSite.” One effect

the name of your Web site has is that it determines the default directory to which

Zope will be installed. For example, if you kept “Website,” Zope will be installed to

C:\Program Files\WebSite. You can still change the default installation directory in

Caution

Cross-
Reference

c4857-3 Ch02.F 3/1/02 9:37 AM Page 14

15Chapter 2 ✦ Installation

the next step of the wizard, but the name of your site is also listed in the

Add/Remove Programs dialog of your control panel.

Figure 2-1: Naming your Web site

The final step in the installation process is setting the username and password of

the initial user. This first user that is created will have the manager role. Roles will

be explained in Chapter 3; however, for now, just know that this initial user will

have the ability to add and remove any Zope object, such as documents, methods,

or even other users.

After these three steps are completed, Zope will auto install itself onto your com-

puter. To start Zope after it is installed, go to the directory that was defined above

and run the start.bat that you find there. You may notice that Zope starts in a

command prompt. Once the batch file runs, you will be ready to log on to Zope

using your Web browser and start building your application. Logging on will be

explained in the next section. There are various command line options that you can

use to alter Zope’s behavior and configuration, and we’ll cover them later in the

chapter in “Modifying ZServer’s behavior with switches.”

When you are installing Zope on Windows NT/2000, you may choose to set Zope
as a service. Refer to the appropriate Microsoft documentation for more informa-
tion on services.

Following are the quick steps to get Zope running on Windows 9x/NT/2000:

1. Run the installation .exe file by either clicking it in Windows Explorer, by typ-

ing Zope-2.5.0-win32-x86 in the command prompt, or by typing the full path

to the .exe file in Run.

2. Accept the License Agreement.

3. Name your Web site. (This will affect the next step, and the name used in the

Add/Remove programs dialog.)

Note

c4857-3 Ch02.F 3/1/02 9:37 AM Page 15

16 Part I ✦ Getting Started with Zope

4. Select the directory to which you wish to install. The default is C:\Program
Files\WebSite.

5. Choose the username and password for the initial user.

6. Choose whether or not you wish to have Zope run as a service if installing

under Windows NT/2000. (See Figure 2-2.)

Figure 2-2: Setting Zope up as a service on
Windows NT/2000

7. Start Zope by running the start.exe in Zope’s installation directory.

8. Log onto Zope by pointing your Web browser to http://localhost:8080/.

(This is explained in the next section.)

Installing Zope Under Linux
Installing Zope with the UNIX binaries isn’t much more of a hassle than installing

under Windows, especially if you are familiar with the use of the tar and chown com-

mands. Go to the directory off of which you would like to have your Zope directory

(we recommend /usr/local; you will also need to be logged in as the root user as

well) and extract the tarball that you downloaded from the Internet or copied off of

the CD-ROM that accompanies this book with tar. The following tar command

should work: tar xvfz Zope-2.5.0-linux2-x86.tgz.

Another task that you may wish to do, though isn’t necessary, is to rename the

directory to which Zope is installed. By default the directory will be named some-

thing such as /usr/local/Zope-2.5.0. Type mv Zope-2.5.0 Zope from the /local
directory. (This will make it easier to change directories.)

c4857-3 Ch02.F 3/1/02 9:37 AM Page 16

17Chapter 2 ✦ Installation

You will then want to use the cd command to change to the directory that will be

created. Once in this directory, run the installer script with ./install. The output

from the script should look something like the following:

./install

Compiling python modules

creating default access file
Note:

The admin name and password are ‘admin’
and ‘VjLk2UV8’.

You can change the superuser name and password with the
zpasswd script. To find out more, type:

/usr/local/zope/2-5-0/bin/python zpasswd.py

chmod 0600 /usr/local/zope/2-5-0/access
chmod 0711 /usr/local/zope/2-5-0/var

setting dir permissions

creating default database
chmod 0600 /usr/local/zope/2-5-0/var/Data.fs

Writing the pcgi resource file (ie cgi script),
/usr/local/zope/2-3-0/Zope.cgi
chmod 0755 /usr/local/zope/2-5-0/Zope.cgi

Creating start script, start
chmod 0711 /usr/local/zope/2-5-0/start

Creating stop script, stop
chmod 0711 /usr/local/zope/2-5-0/stop

Done!

Make note of the initial username and password that are printed in the installer

script, as these are what you will use to access Zope for the first time. If you would

like to install Zope with a specific name for the initial user, try running the installer

script like: ./install -u name -g users, where “name” is the name you would like and

“users” is group to which “name” belongs.

You may also create the initial user yourself using the zpasswd.py script. You can do

this by typing python zpasswd.py inituser (assuming that you have Python in your

c4857-3 Ch02.F 3/1/02 9:37 AM Page 17

18 Part I ✦ Getting Started with Zope

path). The script will prompt you for a username, a password, and allowed

domains. Allowed domains are explained in Chapter 3, so for the time being do not

enter anything. Note that this can be done at any time, and is especially handy if

you lost your Zope password.

One thing you will need to do before starting up Zope for the first time is change

the ownership of the contents of Zope’s /var directory to the “nobody” user by

using the chown command. We do this by typing chown –R nobody var from the

directory of your Zope installation. This is because Zope switches user contexts to

“nobody” if you start it as the root user, so you will need to allow “nobody” access

to Zope’s database files. Under the nobody user, the likelihood of an external user

gaining access to your file system through Zope is minimized, as the nobody user

has no power other than what is explicitly assigned by an administrator (you). You

can also make Zope run as a different user with the –u switch. (The –u switch is

explained later in this chapter when we discuss ZServer options.)

To start up the Zope processes, simply run the ./start script in the directory to

which Zope is installed. You will see information printed on your screen, including

what ports on which Zope is running. This means you can now log onto Zope with

your Web browser by going to http://localhost:8080/.

As we mentioned before, Zope’s startup scripts have many optional arguments.

We’ll cover those options a little later in the chapter.

Following is a summary of the steps for installing under Linux:

1. Uncompress the Zope tarball with tar xvfz Zope-2.5.0-linux2-x86.tgz.

2. Change to the newly created directory with cd Zope-2.5.0-linux2-x86.

3. Run the installation script by typing ./install. Make note of the name and pass-

word of the initial user that will be printed while the script runs.

4. Change the ownership of the /var directory with chown –R nobody var.

5. To start Zope, run the startup script with ./start.

6. Log onto Zope by pointing your Web browser to http://localhost:8080/.

Finding Your Way around Zope’s
Directory Tree

There are several points in this book where we direct you to copy files to or from

some directory of your Zope installation. We’ll explain some of the directories you

may need to be familiar with later. Figure 2-3 is of a Zope installation’s directory

tree.

c4857-3 Ch02.F 3/1/02 9:37 AM Page 18

19Chapter 2 ✦ Installation

Figure 2-3: Zope’s Directory Tree

The bin directory contains the Python application that Zope uses. As well, in the lib
directory below it are all of the Python modules. You probably will not need to

mess with this directory unless you are a Python programmer and wish to tweak

Zope itself.

You may notice that the Extensions directory is empty but for a .txt file when you

first install Zope. This is not a mistake. As you can read in the .txt, this will be the

place where you will place any External Methods.

External Methods are explained in Chapter 14.

Likewise, the import directory is empty. If you are importing Zope files from another

Zope installation, this is where you will want to place them. Likewise, this location

is where you will find files that you export to the server (rather than automatically

downloaded to your desktop).

Importing and exporting are discussed in Chapter 3.

The var directory will start off with a small Data.fs file. This is one of the most

important files in your Zope installation as it is the ZODB, or Z\ Object Database,

and contains the contents of your Zope Web site. If you need to copy in a new

Data.fs or restore an old one, this is where you’ll want to take care of that.

Cross-
Reference

Cross-
Reference

c4857-3 Ch02.F 3/1/02 9:37 AM Page 19

20 Part I ✦ Getting Started with Zope

If you ever start Zope with no Data.fs in the var directory, Zope will create a new,
empty Data.fs file to work from.

Starting up Zope for the First Time
Once you have the Zope processes up and running, it is time to log in and start

playing. Zope’s interface is entirely browser-based, which means you can log into it

with any Web browser such as Mozilla, Internet Explorer, or Netscape Navigator.

Point your browser (from the same computer that Zope is installed on) to

http://localhost:8080/. If you see the “Zope Quick Start” page (Figure 2-4), then

you will know Zope is running.

“localhost” is the equivalent of saying “this machine” to your browser. So when
you give “localhost:8080” to the browser, it goes and checks the current machine,
port 8080. As an alternative, you could also enter the machine’s name or IP
address and achieve the same result. There is also a ‘special’ IP address (127.0.0.1)
that is equivalent to ‘localhost’ in that it means ‘this machine’. To change the port
number, use the -w switch when starting ZServer (see “Modifying ZServer’s behav-
ior with switches”).

Figure 2-4: Starting Zope quickly with the Zope Quick Start

If you have trouble getting Zope to start up, check to make sure that no other
application is running on the same port on which that Zope is trying to start. To
change the port number that Zope will use, use the -w switch when starting
ZServer (see “Modifying ZServer’s behavior with switches”’).

Note

Note

Note

c4857-3 Ch02.F 3/1/02 9:37 AM Page 20

21Chapter 2 ✦ Installation

Logging in
Most of the true work in Zope is done via the management interface, which you can

see in Figure 2-5. You will find several links to the management interface throughout

the Zope Quick Start page. If you follow any of these links (or go directly to

http://localhost:8080/manage/, which is much easier), the first thing you will see

is a login prompt. This is where you enter the username and password that were

defined when you installed Zope. Once you login, your authentication information

is cached, so you won’t need to re-enter it unless you exit all instances of your

browser.

Figure 2-5: The Zope Management Interface should look familiar if you use
Windows.

Shutting down
In most cases there are three “proper” ways to shut down Zope. The first can be

accomplished from Zope’s management interface by going into the Control Panel

folder (which is in the root folder of the Zope management interface) and clicking

the Shutdown button (see Figure 2-6). A message will appear that the Zope pro-

cesses have been stopped (more information about the Management Interface can

be found in Chapter 3). The second way to shut down Zope is by pressing Ctrl-C in

the Command Prompt window while Zope is in Debug mode. You will get a message

that there has been a keyboard interrupt and Zope will stop running. The third way

c4857-3 Ch02.F 3/1/02 9:37 AM Page 21

22 Part I ✦ Getting Started with Zope

to shut down Zope can only be accomplished under Linux, and that is using the

stop batch file. Simply go to the Zope directory and type ./stop, and the Zope pro-

cesses will be shut down.

Figure 2-6: Shut it down!

The Control Panel and its other functions are discussed in Chapter 3.

When running Zope as a Windows NT service, things operate a little differently. For

one, it will start automatically when Windows starts, shut down when Windows is

shut down, and it will not have to be restarted if the user logs out. This saves you

the trouble of starting up the Zope processes with the start batch file that you

would usually need to do. However, to start and stop the Zope processes manually,

you must access Windows NT’s Services Manager (as shown in Figure 2-7).

Figure 2-7: Windows NT’s Services manager

Cross-
Reference

c4857-3 Ch02.F 3/1/02 9:37 AM Page 22

23Chapter 2 ✦ Installation

If you double-click Services under Window NT’s Control Panel, you will bring up the

Services manager. Zope will be listed as “Zope (SiteName)” along with its status

(“Started” or blank) and whether it starts up automatically or not. Click Zope’s

name to highlight it, then choose the function you wish to do.

You cannot Pause the Zope service, only turn it on or off.

Copying your Web site to a different machine
Everything in your Web site is saved in the ZODB. The representation of this in your

file structure is the Data.fs file found in the /usr/local/Zope/var directory (on

UNIX-like systems). This file contains basically everything in your application, from

the objects you have added to any Undo information. Under Windows this file is

located in the C:/Program Files/WebSite/var directory.

Sometimes it is necessary to add a new Data.fs file to your application whether

you are reverting to a previously saved backup or copying in a Data.fs to a brand

new installation. Most likely you will be moving your Web site to a more powerful

machine or copying it to other Zope instances.

To copy your Web site to a different machine, first shut down any running copies of

Zope using one of the methods discussed earlier in this chapter.

Now go to the ./Zope/var directory. Before you copy anything, you may want to

name the existing Data.fs to a name such as Data.fs.old, just in case you might

need it later. Then all you need to do is copy in the new Data.fs file. Restart Zope,

and you should see the change immediately when you log into the management

screen.

If you have packed your database at some point, you might already find a file
named Data.fs.old. It is safe to delete this file.

Running Zope with ZServer
ZServer is the Web server that comes packaged with Zope. Essentially, this is what

enables you to publish anything you create in Zope on the World Wide Web.

Besides coming with Zope and allowing you to get going without the use of a third-

party Web server, ZServer allows you to access Zope through protocols other than

HTTP, such as FTP, WebDAV, or LDAP. As well, ZServer is multi-threaded, allowing

for multiple Web requests at the same time.

See Chapter 17 to find out how to run Zope behind other third-party Web servers,
such as Apache, IIS, and Netscape.

Cross-
Reference

Note

Note

c4857-3 Ch02.F 3/1/02 9:37 AM Page 23

24 Part I ✦ Getting Started with Zope

If you are playing around with Zope for the first time, you can skip this section and

come back to it later. Here we explain how to modify how ZServer runs and

behaves, and most likely it should be operating properly to suit our needs right out

of the box.

When you run the startup script for Zope, you will see an output similar to what is

listed here:

2001-04-04T21:53:38 INFO(0) ZServer HTTP server started at Wed
Apr 04 14:53:38 2001

Hostname: localhost
Port: 8080

2001-04-04T21:53:38 INFO(0) ZServer FTP server started at Wed
Apr 04 14:53:38 2001

Hostname: sam.moosestore.com
Port: 8021

2001-04-04T21:53:38 INFO(0) ZServer PCGI Server started at Wed
Apr 04 14:53:38 2001

Inet socket port: 8090

This is Zope’s ZServer getting up and running. When this is started, three main pro-

cesses are begun: the HTTP server, the FTP server, and a secure monitor service

that allows interactive Python-style access to a running ZServer. Once ZServer is

running, you can publish Zope content or python modules via HTTP and/or FTP.

The output to the console basically just informs you what machine name Zope rec-

ognizes, and what port numbers different protocols are running on. In this case, it’s

informing you that HTTP access is at localhost:8080, that FTP access is at

sam.moosestore.com:8021, and that the Persistent CGI service is at port 8090 on that

machine.

Modifying ZServer’s behavior with switches
As you can see from the previous section, the basic command to get ZServer

started under Linux is /usr/local/Zope/bin/python.exe /usr/local/Zope/z2.py -D.

Under Windows, it might look like C:/Program Files/Zope/python z2.py -D. If you

wish, you can modify the script to incorporate several different startup command

line options. Table 2-1 contains the most common ZServer command line options.

(You can also see this table by running ./python z2.py -h.)

c4857-3 Ch02.F 3/1/02 9:37 AM Page 24

25Chapter 2 ✦ Installation

Table 2-1
ZServer Command Line Switches

Command line option What it does

-h Displays this list of commands.

-z path The location of the Zope installation. The default is the
location of this script.

-Z path UNIX only! This option is ignored on Windows.

If this option is specified, a separate management process
will be created that restarts Zope after a shutdown (or
crash). The path must point to a pid file that the process
will record its process id in. The path may be relative, in
which case it will be relative to the Zope location.

To prevent use of a separate management process, provide
an empty string: -Z ‘ ‘

-t n The number of threads to use, if ZODB3 is used. The
default is 4. The older ZODB2 file format was deprecated
as of Zope 2.0. If you’re unsure which format you’re using,
check the filename in the /var subdirectory of your Zope
installation. ZODB3 files are named Data.fs, and ZODB2
files are named Data.bbb.

-i n Set the interpreter check interval. This integer value
determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The
Zope default is 120, but you may want to experiment with
other values that may increase performance in your
particular environment.

-D Run in Zope debug mode. This causes the Zope process
not to detach from the controlling terminal, and is
equivalent to supplying the environment variable setting
Z_DEBUG_MODE=1

-a ipaddress The IP address to listen on. If this is an empty string (-a ‘ ‘),
then all addresses on the machine are used.

-d ipaddress IP address of your DNS server. If this is an empty string
(-d ‘ ‘), then IP addresses will not be logged. If you have
DNS service on your local machine then you can set this to
127.0.0.1.

Continued

c4857-3 Ch02.F 3/1/02 9:37 AM Page 25

26 Part I ✦ Getting Started with Zope

Table 2-1 (continued)

Command line option What it does

-u username or uid number The username to run ZServer as. You may want to run
ZServer as “nobody” or some other user with limited
resources. This only works under UNIX-like operating
systems, and if ZServer is started by root.

-P [ipaddress:] number Set the Web, FTP, and monitor port numbers
simultaneously as offsets from the number. The Web port
number will be number+80. The FTP port number will be
number+21. The monitor port number will be number+99.

The number can be preceded by an IP address followed by
a colon to specify an address to listen on. This allows
different servers to listen on different addresses.

Multiple -P options can be provided to run multiple sets of
servers.

-w [ipaddress:] port The Web server (HTTP) port. This defaults to 8080. The
standard port for HTTP services is 80. If this is an empty
string (-w ‘ ‘), then HTTP is disabled.

The number can be preceded by an IP address followed by
a colon to specify an address to listen on. This allows
different servers to listen on different addresses.

Multiple –w options can be provided to run multiple
servers.

-f [ipaddress:] port The FTP port. If this is an empty string (-f ‘ ‘), then FTP is
disabled. The standard port for FTP services is 21. The
default is 8021.

The port can be preceded by an IP address followed by a
colon to specify an address to listen on. This allows
different servers to listen on different addresses.

Multiple -f options can be provided to run multiple servers.

-p path Path to the PCGI resource file. The default value is Zope.cgi,
relative to the Zope location. If this is an empty string
(-p ‘ ‘) or the file does not exist, then PCGI is disabled.

-F path or port Either a port number (for inet sockets) or a path name (for
UNIX domain sockets) for the FastCGI Server. If the flag and
value are not specified then the FastCGI Server is disabled.

c4857-3 Ch02.F 3/1/02 9:37 AM Page 26

27Chapter 2 ✦ Installation

Command line option What it does

-m [ipaddress:] port The secure monitor server port. If this is a dash (-m -), then
the monitor server is disabled. The monitor server allows
interactive Python style access to a running ZServer. To
access the server see medusa/monitor_client.py or
medusa/monitor_client_win32.py. The monitor
server password is the same as the Zope emergency user
password set in the access file. The default is to not start
up a monitor server.

The port can be preceded by an IP address followed by a
colon to specify an address to listen on. This allows
different servers to listen on different addresses.

Multiple –m options can be provided to run multiple
servers.

-l path Path to the ZServer log file. If this is a relative path then the
log file will be written to the var directory. The default is
Z2.log.

-r Run ZServer is read-only mode. ZServer won’t write
anything to disk. No log files, no pid files, nothing. This
means that you cannot do a lot of things such as use PCGI
and zdaemon. ZServer will log hits to STDOUT and zLOG
will log to STDERR.

-L Enable locale (internationalization) support. The value
passed for this option should be the name of the locale to
be used (see your operating system documentation for
locale information specific to your system). If an empty
string is passed for this option (-L ‘’), Zope will set the
locale to the user’s default setting (typically specified in the
$LANG environment variable). If your Python installation
does not support the locale module, the requested locale
is not supported by your system or an empty string was
passed but no default locale can be found, an error will be
raised and Zope will not start.

-X Disable servers. This might be used to effectively disable all
default server settings or previous server settings in the
option list before providing new settings. For example, to
provide just a Web server use: z2.py -X -w80

-M file Save detailed logging information to the given file.

This log includes separate entries for the start of a request;
the start of processing the request in an application thread;
the start of response output; and the end of the request.

c4857-3 Ch02.F 3/1/02 9:37 AM Page 27

28 Part I ✦ Getting Started with Zope

Generally speaking, if an option is omitted, the default value is used, so you only

have to specify those options which you want set to some non-default value.

Using the command line switches when running Zope
as a service
To modify the command line switches when running Zope as a service under

Windows NT, you cannot just edit the batch file that Zope uses to start up. What

you will need to do is actually edit the registry key directly in the Windows registry.

To edit the registry key, select Run from the Start menu, type regedit32, and click

OK. This will enter the Registry Editor. Once in the registry, the path is

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SiteName\Parameters\St
art, where SiteName is the name you gave your Web site when installing Zope (see

Figure 2-8). Add the switches that you would like and click OK. The changes will

take effect when you restart the Zope service.

Figure 2-8: Editing the Registry Key

Editing the Windows registry makes it really easy to truly mess up your system if
you are not careful. We advise not touching anything besides the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SiteName\
Parameters\Start key unless you really know what you are doing.

Caution

c4857-3 Ch02.F 3/1/02 9:37 AM Page 28

29Chapter 2 ✦ Installation

Expanding Zope with Products
Products are essentially “plug-ins” for Zope usually created by other Zope users like

you. There are products for many uses, from simple database adapters to full

e-commerce suites. If you go to http://www.zope.org/Products, you will see a wide

range of products available for download.

Installing new products
The procedure for installing new products should be exactly the same on both

UNIX and Windows, with a few syntactic differences.

First, download the product you want to install. Typically, you will receive a com-

pressed archive with the name and version number of the product. Let’s say for

example that we have just downloaded ZLDAPConnection.tgz, the Zope LDAP

Connection Product, and placed it in /tmp/ for UNIX or in C:\Downloads\forWindows.

If they have been constructed correctly, most products will need to be uncom-

pressed into your Zope installation directory. Under UNIX, you will have to change

to the Zope directory: cd /usr/local/Zope-2.5.0 (or whatever you named your

Zope installation directory). From there, you will do tar xvfz /usr/downloads/

ZLDAPConnection.tgz, which will extract the product and place it in the directory,

/lib/python/Products/ZLDAPConnection/.

Under Windows, you must use a program that understands the tar and gzip com-

pression schemes, such as WinZip. Instruct your program to extract the files, using

full path information, to your Zope installation directory.

Check the directory where the product was installed for any README or INSTALL files.

If any exist, you should read them thoroughly and follow any other installation

instructions that they may have.

After this, your product should be ready to go. Restart your Zope server by going

into the Zope Control Panel and clicking the Shutdown button. Start your Zope

server back up the way you normally would.

Once you are back in Zope’s management interface, you want to verify that you can

use the product. All you have to do in this case is click the list of items to add and

verify that the product, in this case, “ZLDAPConnection,” is listed in there.

Check out Chapter 3 for more on products and the Product Management screen.Cross-
Reference

c4857-3 Ch02.F 3/1/02 9:37 AM Page 29

30 Part I ✦ Getting Started with Zope

Product troubleshooting
If the product does not show up in the add list, you can get more information as to

what the problem might be. In the Control Panel is a special folder called Product
Management. This folder has a list of all the products currently installed on your

system. If a product is broken, it will say so next to the name of the product, as well

as display an icon of a broken box. Clicking the product will take you to a page that

has a link to a Traceback (a listing of the sequence of object and method calls that

lead to the error) that will tell you what error the product is giving. More informa-

tion on this can be found in Chapter 19.

Getting Support
If you can’t figure out a problem, help is always only an e-mail message away. Zope

currently has two mailing lists for getting help or discussing Zope-related issues.

The zope@zope.org list provides help for people using Zope to develop Web sites

and Web applications, while the zope-dev@zope.org list provides a place for people

developing Zope itself to discuss problems. You can subscribe to either list or

search their archives by going to http://www.zope.org/Resources/MailingLists. If

you do have a question, it is generally considered polite to search the archives first

to make sure your question has not been asked (and answered) before.

Summary
In this chapter we installed and ran Zope for the first time. We also explained the

Zope directory structure before moving on to help you get Zope running with its

built-in Web server, ZServer. Finally, we explained how to add new products that

you may have downloaded from the CD-ROM that accompanies this book or off of

the Web.

In the next chapter we start working in Zope, helping you become familiar with the

work interface and how to use Zope objects.

✦ ✦ ✦

c4857-3 Ch02.F 3/1/02 9:37 AM Page 30

Zope Objects
and the
Management
Interface

In this chapter, we introduce you to Zope’s unique browser-

based management interface. The management interface is

the default tool you use to create and manipulate your Web

application (other tools can also be used, since Zope provides

FTP and WebDAV access as well). As we mentioned earlier in

this book, Zope uses objects to store and manage information

over the Web. Some of the more commonly used objects,

which are also described in this chapter, include Folders,

DTML Documents, DTML Methods, Images, Files, and Users.

Following a detailed look at the management interface itself,

the functions and features of each of these objects are thor-

oughly described.

It is our goal that by the end of this chapter, you will be famil-

iar enough with Zope objects and the management interface

to begin building your own Web site. If after reading this chap-

ter some subjects still seem confusing, don’t worry; most of

the concepts introduced here are described throughout the

book in greater detail. In an effort to minimize any confusion

you may experience, this chapter is infested with examples.

While some of the examples we present are more extensive

than others, they are all designed to get you more comfort-

able with the objects and ideas as they are introduced over

the course of the chapter.

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Object basics

The Zope
management
interface

Common views

Folder objects

DTML documents

DTML methods

Files

Images

Users and user
folders

The Control Panel

✦ ✦ ✦ ✦

c4857-3 Ch03.F 3/1/02 9:37 AM Page 31

32 Part I ✦ Getting Started with Zope

Object Basics
The word object is used extensively in modern computer literature. You might be

unsure of what an object really is because you’ve heard it used just about every-

where. The reason for this confusion and seemingly over usage of the word is that

“object” means “a thing.” It is hard to precisely explain what an “object” or even “a

thing” is because it’s a generic word that is used to reference . . . well, other things.

Now that we have done our best to thoroughly confuse you we’ll attempt to explain

what objects are to Zope.

Throughout this book we will constantly be referring to things in Zope as objects, so

we should probably begin by telling you what an object is. To put it simply, every-

thing you use to build a Web site or an application in Zope is an object, from the

document that stores data, to the template that presents that data, to the script

that adds to or manipulates that data. As far as Zope is concerned, even the users

of your application are objects. For the purposes of this chapter, you only need to

realize that with Zope you are working with these things called objects.

Objects in Zope have a number of characteristics that are, if not unique to Zope, are

at least uncommon in other systems, and are unique in combination:

✦ Objects can be identified and accessed via a unique, human readable URL,

and can be accessed via HTTP, FTP, XML-RPC, or WebDAV like this:

http://myzopesite.com/book/cover/large

✦ Changes to objects are persistent, and are stored in the ZODB

✦ Objects can acquire attributes from their containers, even if they don’t have

those attributes themselves, so that in the above book cover example, a book

that has no cover image can acquire a default one from the containing folder

Objects are discussed in more detail in Chapter 5.

The Zope Management Interface
Almost everything you do in Zope is through the management interface. The man-

agement interface is accessed by starting up your Web browser and going to

http://localhost:8080/manage. After successfully logging in, you are presented

with the management screen like the one shown in Figure 3-1. Note the similarity

between the management screen and your system’s File Manager (on Microsoft

Windows this is the Windows Explorer). This is the default way of accessing Zope,

and is one of the things that makes Zope very convenient for website development.

Using the management interface you can build and maintain a Zope site from any

Internet connected computer, without having to install any software. Other meth-

ods of accessing Zope, such as FTP, may require downloading and installing special

software on your system (such as an FTP client) but make it easier to access Zope

Cross-
Reference

c4857-3 Ch03.F 3/1/02 9:37 AM Page 32

33Chapter 3 ✦ Zope Objects and the Management Interface

from within any special development tools that you may be used to using, however,

even experienced developers who use their own favorite tools with Zope find them-

selves using the management interface occasionally, especially when working from

someone else’s computer.

Figure 3-1: The Zope management interface

As you can see, the management screen is broken up into three frames. The top

frame that extends the width of the screen contains the Zope logo; the username

you are currently logged in as; and a drop-down list containing Zope Quick Start,

Set Preferences, and Logout. The left frame, called the Navigator frame, shows all of

the current folders off of the Root Folder, a link to the Zope Corporation copyright,

and a Refresh link. The right frame, called the Workspace frame, contains the path

of the current folder, all of its contents, and several tabs and buttons, which are dis-

cussed in the following section.

Using the top frame
The topmost frame has only a few functions in the current release, though that may

change in future versions of Zope. Currently the top frame houses the Zope logo,

which if clicked, opens a new browser window pointed toward http://www.zope.
org; the username that you are currently logged on as; and a short drop-down list of

options. The topmost option, Zope Quick Start, is a simple page that contains some

useful links, including those to Zope’s online documentation at http://www.zope.
org, Zope mailing lists, and the built-in help system.

c4857-3 Ch03.F 3/1/02 9:37 AM Page 33

34 Part I ✦ Getting Started with Zope

Customizing the interface
A new feature in Zope 2.3 was the ability to loosely customize the default settings of

Zope’s management interface. From the drop-down list in the top frame, select Set

Preferences and click the Go button. You are taken to the screen shown in Figure 3-2.

Figure 3-2: Setting your preferences for the management interface

Show Top Frame determines whether the top navigation bar is shown with a simple

Yes/No radio button. Yes is the default setting. If set to No, the top frame is removed

and the name of the current user and the drop-down list is relocated to the bottom

of the Navigator frame. Any changes you make will not ‘take’ until after you click

the Change button, and you must refresh your browser to see this change take

effect.

Use Style Sheets is another Yes/No radio button, which is defaulted to Yes. This set-

ting determines whether the management interface uses style sheets to determine

its look. When set to No, none of the text in the interface is formatted in any way

and will appear in your browser’s default formatting.

c4857-3 Ch03.F 3/1/02 9:37 AM Page 34

35Chapter 3 ✦ Zope Objects and the Management Interface

The next two options, Text Area Width and Text Area Height, determine the size of

the text area seen when working in objects such as DTML Documents or Methods.

The defaults are set at 100 columns for width and 20 rows for height. A sample text

box is provided at the bottom of the Browser Preferences page so you can fiddle

with the settings until they are comfortable for you.

To enact any changes you make, simply click the Change button. With the exception

of the Show Top Frame option, any changes you make should become immediately

visible. The Show Top Frame option also requires that you refresh your browser

after clicking the Change button.

Logging out
This simple-seeming function is a feature that was added to Zope 2.3. Its operation

is as straightforward as it looks. Click the Logout option in the drop-down list in the

top frame and a login dialog box appears. Simply enter a valid username and pass-

word and you should be working under that username from then on.

If you have multiple browser windows open, they probably will still show that you

are logged in under the old username in the top frame. If you reload the top frame,

it should update to the current username that you are logged in as.

The function of switching authentication is often browser-dependent. If you have
any trouble logging in as a new identity, simply close all of your browser windows
and restart Zope with a fresh login.

Exploring folders with the Navigator frame
The Navigator frame shows all of the folders off of the Root Folder in a tree layout,

including the Control_Panel, acl_users, and temp_folder folders. If a folder has sub-

folders, a plus sign in a box will appear beside its icon, indicating that it can be

expanded. Clicking the plus sign changes it into a minus sign and expands the

folder one more level. You can see the expanded tree in Figure 3-3. Clicking the

minus sign collapses the folders back down.

Sometimes when adding new subfolders, the Navigator frame doesn’t properly

update to reflect the change. If this happens, click the Refresh link at the bottom of

the Navigator frame and Zope will update the frame so that it is accurate.

Manipulating objects in the Workspace frame
The Workspace frame is where you will do the majority of your work in Zope.

Within the Workspace frame, you view, manipulate, and edit the various objects

that make up your Zope Web site and applications.

Caution

c4857-3 Ch03.F 3/1/02 9:37 AM Page 35

36 Part I ✦ Getting Started with Zope

Figure 3-3: An expanded folder tree in the Root Folder

Along the top of the Workspace are several tabs that let you switch between the dif-

ferent views of an object. The number and labels of these tabs depend on the type

of the object that you are currently working with. Below these tabs is listed the type

of object you are working in, as well as its path. For example, if you were working in

a document called “meeting” that was in an “Events” folder off of the Root Folder,

you would see DTML Document at / Events/meeting (notice that the current

object you are in is also underlined).You would also see that the first slash and the

containing folder were links: the slash link would take you to the Root Folder, while

the other would take you to the Events folder.

Let’s use an existing example to make sure that this is clear. Click on the plus sign

next to the Examples folder in the Navigator Frame. You should see several new

folders there, including FileLibrary. Click on the FileLibrary in the Naviagtor frame,

and the contents of the Workspace Frame will change to display the FileLibrary

folder. Just below the tabs, you should see a folder icon, and the text Folder at

/Examples/FileLibrary.

To the far right of the location, there is also a Help! link, which will pop up a help

window that will display help for the object you are currently examining.

c4857-3 Ch03.F 3/1/02 9:37 AM Page 36

37Chapter 3 ✦ Zope Objects and the Management Interface

What is displayed below this depends not only on the type of object you are cur-

rently in, but also on which tab you have selected. For example, in Figure 3-1 you

are looking at the Content view of the Root Folder. You can tell this because the

Content tab is in front of the others (the other tabs are slightly grayed out, and

have a line dividing them from the rest of the workspace frame).

Common Views
The tabs along the top of the Workspace frame represent different views of the cur-

rent object. Views show you different aspects of the information about an objects

attributes and/or enable you to edit its attributes, from defining their security set-

tings to undoing any changes made. To access a view, simply click its title.

What follows is a brief tour through the views found on most objects, to get you

acquainted with their look and feel. Although explaining each one fully is far more

complex than we can get into at this point, each are explained in much more detail

in the coming chapters. Keep in mind, that custom objects that are added to Zope

have their own specialized views, and it’s up to the Product developer to decide

how those are displayed. We’ll be discussing building custom Products in Section II

of the book.

Viewing objects through the Default view
All Zope objects have URLs that can be accessed through a Web browser. Whenever

you click the View tab, it merely replaces the Workspace frame with a view of the

object as if you had gone to its absolute URL through the Web. You might use this

to check your work in a DTML (Document Template Markup Language) method, or

see how an image would appear when rendered by a browser. This basic functional-

ity is important to Zope’s design, so it bears repeating: All Zope objects can be

uniquely accessed through a human readable URL. Calling an object through its

URL will give you that object’s default rendering: Image objects display themselves,

Folder objects display a contained index_html object if they have one (if they don’t,

then they acquire one), and method and document objects render themselves and

display the rendered result to the browser.

Examining an object and its Properties
Many objects in Zope can have properties attached to them. Properties are bits of

data associated with an object, such as the object’s title or content type. The

Properties view displays all of the properties associated with an object, showing

the property names, values, and types. In this view you may also define new proper-

ties and edit or delete old properties. You display this view by clicking on the View

tab of an object. Clicking on a folder’s Properties view will result in a display some-

thing like Figure 3-4.

c4857-3 Ch03.F 3/1/02 9:37 AM Page 37

38 Part I ✦ Getting Started with Zope

In Chapter 4, you will see how you can use object properties when building your
application.

Figure 3-4: The Properties view

You can see that the properties view first lists the existing properties, along with

their values and types in a list. Below the list, there are two buttons: Save Changes

and Delete. Below that, there is another form for adding new Properties to an object

with a Name field, a Value field, and a Type drop-down box.

Adding a new property
To add a new property, enter a name for the property into the Name field at the bot-

tom of the Properties view, select the property’s type from the drop-down menu,

and enter a value for that property into the Value field. Click the Add button, and

the property will be added to the property list above the Add Property form.

Suppose you want to add a new property to the index_html Document in the Root

Folder of your site that reflects the last time it was updated. Click index_html to

get into the document object, then click the Properties tab at the top of the page to

enter the Properties view. In the Name field, enter last_updated, then click the Type

drop-down list and select date. Finally, enter the current date in the format:

YYYY/MM/DD into the Value field. For example, January 1, 2001 would be entered

as 2001/01/01. Now click the Add button and voila! A new property has been added

to your index_html document.

Cross-
Reference

c4857-3 Ch03.F 3/1/02 9:37 AM Page 38

39Chapter 3 ✦ Zope Objects and the Management Interface

Most property types correspond to their equivalent Python types, with the excep-
tions of the lines, text, tokens, selection and multiple selection’ types. For a discus-
sion of these special types, see Chapter 16. The python equivalents of the ‘normal’
property types (Boolean, date, float, int, long, string) are discussed in Chapter 5.

Editing or deleting an existing property
To edit the value of an existing property, simply change whatever is in the Value

field to what you desire and then click the Save Changes button. To delete proper-

ties, place checkmarks in the boxes beside the properties you wish to remove, then

click the Delete button. Changes or deletions will become immediately visible.

Changing permissions in the Security view
The Security view shows you all of the security settings of the current object. By

manipulating these settings, you can allow some users to view certain parts of your

site, while denying access to others. It lists all of the permissions available for the

object in rows, and all of the roles in columns. The roles that have permissions

assigned to them have checkmarks. Figure 3-5 shows this View.

The Security view is covered in greater detail in Chapter 13.

Figure 3-5: The Security view

Cross-
Reference

Cross-
Reference

c4857-3 Ch03.F 3/1/02 9:37 AM Page 39

40 Part I ✦ Getting Started with Zope

Simulating roles with the Proxy view
Usually when objects are invoked, they have the same privileges as the user that

invokes them. Using proxy roles, you can allow DTML documents or methods to

run using a different role than that of the user who invokes it. The Proxy view

shows what proxy roles the DTML document or method has, if any. Proxy roles

replace the roles of the user who is viewing the document or method, enabling you

to give greater or lesser control over what the document or method may access.

For example, you could give a method being viewed by an anonymous user the abil-

ity to create other objects, which an anonymous user is normally not allowed to do.

As is the Security view discussed earlier in this chapter, the Proxy view is explained
in more detail in Chapter 13. User roles and their privileges are discussed in
Chapter 11 (Content Management).

Viewing ownership information
Any object, except those found in the Control Panel, can be owned. The Ownership

view displays the name of the user that currently owns the object and enables you

to change that status.

Ownership is discussed in more detail in Chapter 13.

Fixing mistakes in the Undo view
Any change you make to an object constitutes a transaction. Zope automatically

tracks which object was modified and which method was used to make that modifi-

cation. These transactions are listed in the object’s Undo tab, along with the user-

name of the person who made the change and the date the change was made. For

example, if you were logged in as Bob and modified the index_html object in the

Root Folder, the record of the transaction in the Undo tab would look something

like the following:

/index_html/manage_edit by Bob 2001-02-05 04:36:00 PM

The Undo tab in a folder shows all of the transactions of the objects contained

within that folder, including those in any subfolders. This means that if you are in

the Root Folder you can see all of the transactions performed in Zope. Figure 3-6

shows the Undo view.

To undo any change, place a checkmark in the box beside the listing of the transac-

tions you would like to remove, then click the Undo button at the bottom of the

screen. It is important to note that you cannot undo a transaction for an object if

any later transactions modify the same object. The way around this is to simply

select all of the later transactions as well as the one you wish to remove. Also, you

cannot undo an Undo — once a transaction is removed, it is permanently gone.

Cross-
Reference

Cross-
Reference

c4857-3 Ch03.F 3/1/02 9:37 AM Page 40

41Chapter 3 ✦ Zope Objects and the Management Interface

Figure 3-6: The Undo view

Folder Objects
Folders provide the framework around which you build your application.

Essentially, Folders are similar to directories on your computer, containing the

other objects that make up your Web site, including other folders. More important,

the security and behavior of your Web site can be affected by how you organize

your folder structure. Here we show you the basic functions of the Folder object,

but you will see as we go on how it affects the rest of your site.

Adding folders
If you are not already looking at the Root Folder object, click the Root Folder in the

Navigation Frame. From the Root Folder of your Zope site (your browser should

look like Figure 3-1) click the drop-down list of available objects (this drop down is

between the location bar and the contents list). Select the item labeled Folder from

the list. The form shown in Figure 3-7 will appear.

The Add Folder form prompts you for an id, title, and whether you want to create a

public interface and/or user folder. Zope creates a default Zope Page Template called

index_html if you select “Create public interface.” This is the default document that

is displayed by Zope when you access the URL for the folder. For example, if your

c4857-3 Ch03.F 3/1/02 9:37 AM Page 41

42 Part I ✦ Getting Started with Zope

folder is named “products,” you could then type http://localhost:8080/
products/ into your browser and you will see the contents of the index_html
Method in the products folder.

For more information regarding Zope Page Templates, see Chapter 18.

Zope creates an acl_users folder for you in your new folder if you select the

“Create user folder” option.

Later in this chapter (in the User Folders and User Objects section) we briefly
explain what User Folders are and how they work, but for in-depth coverage, see
Chapter 13.

Figure 3-7: The Add Folder form

To become familiar with how this works, let’s add a Folder object to our example

site. Enter “SampleFolder” for the Folder’s id and “Sample Folder” for the title.

Check “Create public interface” but leave the “Create user folder” unchecked. Then

click add. Now you should have a brand-new folder with a public interface.

Now, open another browser window, and type in the URL http://localhost:
8080/SampleFolder. Congratulations! You’ve just created your first Zope object,

and displayed it in a browser.

Cross-
Reference

Cross-
Reference

c4857-3 Ch03.F 3/1/02 9:38 AM Page 42

43Chapter 3 ✦ Zope Objects and the Management Interface

The folder object you just added to your site is similar, in most respects to the Root

Folder itself. There are only a few differences in the Root Folder from a regular

Folder object. You cannot delete the Control_Panel for example.

The contents View
When you click a folder in the Zope management screen, you are presented with

the folder’s Contents view as can be seen in Figure 3-8. The Contents view displays

an id for each of the objects in a folder, as well as the size of the object and the date

the object was last modified. If any of those objects has a title property, the title is

displayed in parentheses beside the id.

Figure 3-8: The folder content list

Adding objects
Just as you added a Folder to the Root Folder, you add new objects to a Folder by

clicking the drop-down list titled “Select type to add” This list contains all of

the available objects that you can add to a Folder. Select the type of object you

wish to add. If you have JavaScript enabled in your browser, Zope will automatically

load the add form (if you do not have JavaScript enabled, you’ll need to click the

Add button). Each object type has its own add form.

Removing objects
Removing objects you no longer need is simple. Click the checkbox next to the

object(s) you want to remove and click the Delete button. The object(s) will be

deleted and you will be returned to the folder’s contents. Deleting objects from a

folder is considered a transaction, and will appear in the Folder’s Undo tab as a

c4857-3 Ch03.F 3/1/02 9:38 AM Page 43

44 Part I ✦ Getting Started with Zope

transaction that can be undone. There are certain objects in the Root Folder like

the Control Panel and the standard_error_message that Zope will not allow you to

delete, as they are necessary for Zope to function.

Renaming objects
Renaming an object involves a similar process as removing objects. Place a check-

mark in the box beside the object you wish to rename and click the Rename button.

A page will appear with a text box, an OK button, and a Cancel button. Simply erase

the old name and enter the new one, then click the OK button. If the new name has

invalid characters or is blank, Zope displays an error and the old name will remain

unchanged. Renaming objects is also an undo-able transaction that will be listed in

the object’s Undo tab.

Sorting objects
By default Zope sorts all of the objects in folder according to their ids in case-

sensitive, alphabetical order, meaning that capital Z comes before lowercase a. If

you have a lot of objects in one folder, you might have trouble finding the object

with which you want to work. Since the release of 2.3 Zope lets you click on the col-

umn headers to change the sort order of the objects. Objects can now be sorted by

type, size, and the date they were last modified as well as by their names. Clicking a

column header again will reverse the sorting order.

Cutting and pasting objects
The Cut and Copy buttons work exactly as you would expect them to work in tradi-

tional programs. You can move one or more objects to another folder by selecting the

checkbox to the left of the object name and then clicking the Cut button. The browser

will redisplay the same page you were viewing but with an additional button labeled

Paste. The presence of this button indicates that there are objects on your clipboard

that you can paste. To paste objects, go to the folder to which you wish to move your

object(s), then click the Paste button. The object(s) that you have previously cut will

be moved from their current folder and placed into the new folder.

Copying works in the same way. The only difference is that the original objects

remain where they were. If there is already an object in the destination folder with

the same name as the one you are moving or copying, your new object will be pre-

fixed with the name copy_of_. If you copied an index_html into a folder that

already contains an index_html, your new object will be named

copy_of_index_html. (You can then use the rename function to fix this problem.)

As with other changes, cutting and pasting, and copying and pasting are undoable

transactions that will show up in the Undo tab.

The prefix copy_of_ can be something of a misnomer as the object may not really
be a copy of the object of the same name in that folder. For example, if you copied
an index_html from one folder to another folder that already had an
index_html, the copy will show up in the second folder as
copy_of_index_html but will actually be identical to the index_html in the
original folder.

Caution

c4857-3 Ch03.F 3/1/02 9:38 AM Page 44

45Chapter 3 ✦ Zope Objects and the Management Interface

Importing and exporting objects
If you work with multiple Zope sites, you may want to export an object to a

different installation of Zope instead of recreating it there from scratch. Using

Zope’s Import/Export facilities you can copy objects between two different Zope

installations.

To export an object to a different Zope installation, place a checkmark beside the

object you wish to export and then click the Import/Export button. Zope will dis-

play the Import/Export page, like you see in Figure 3-9. The top part of the page is

for exporting objects from the current folder, while the bottom part is for importing

objects into the current folder. If you clicked on the button without first checking

an object to export, the Export Object id field will be blank, and you can enter the

id of the object in the current folder that you wish to export. If you leave the id

blank, Zope will let you export the current folder and all of its contents. This is the

only way to export an entire Zope site (since the Root Folder isn’t contained in any-

thing else, and doesn’t have an Id).

Below the object’s id, you will be presented with two choices on how to export the

file: you may either save it to your local machine or you may save it to the server. If

you save it to your local machine, your browser will bring up the save box and you

can pick where you want it to be saved. Notice that the name of the file is the id of

the object plus the extension, .zexp (if you export the Root Folder, the file will be

named .zexp). If you save the object to the server, Zope will save the export file to

the var directory of the current Zope installation (refer to Chapter 2 if you do not

know where this directory is). After exporting a file to the server, you will be pre-

sented with a message notifying you that the export was successful. You can only

export one object at a time.

Figure 3-9: The Zope Import & Export screen

c4857-3 Ch03.F 3/1/02 9:38 AM Page 45

46 Part I ✦ Getting Started with Zope

The export file is usually saved as a binary file, but you have the option to instead

save it in XML (eXtensible Markup Language) format by placing a checkmark in the

“XML format” checkbox. The XML file is significantly larger than its binary counter-

part, but it enables you to actually look at the exported object in a somewhat intelli-

gible light. You may also do some limited editing if you need to, though messing

with the data is inadvisable unless you know what you are doing. Importing an

object saved as an XML file is no different than importing one saved as a binary.

To import objects, place the .zexp file into the import directory of the Zope installa-

tion to which you wish to import (refer to Chapter 2 if you do not know where this

is). Then, in Zope, go to the folder where you want to import the object and click the

Import/Export button. Type the name of the file into the “import filename” field in the

bottom portion of the screen and select Import. By default, the username you are

logged in as will become the object’s owner, but you may have the object keep its

original ownership information by selecting “Retain existing ownership information”

before you import it. More information on Ownership can be found in Chapter 13.

Viewing a folder
The View tab operates just as we discussed earlier in this chapter, showing you the

default view of the folder, as if you went to the folder’s URL in your Web-browser. For

example, if you had a folder named “Widgets” that was under the “Products” folder,

which happened to be in the Root Folder, the View tab will show you what it would

look like if you went to the URL, http://localhost:8080/Products/Widgets, in

your browser. One thing to note, though, is that the View tab only works if the cur-

rent folder either has or inherits an index_html object. This is assuming that you

are running Zope using ZServer as we discussed in Chapter 2. Essentially, you would

see the exact same thing if you were to go to http://localhost:8080/Products/
Widgets/index_html.

The Find view
Zope provides a method for you to search your entire site for a specific object

based on custom search criteria. When you click the Find tab you are presented

with the basic searching functions. The basic functions will perform a search using

the following fields:

✦ Find objects of type. The type of objects to find, such as Folders, Images,

DTML Documents, and so on. You may also search by all object types.

✦ With ids. The ids of objects to find. You may specify one or more ids, sepa-

rated by spaces.

✦ Containing. The text that must be contained in the body of found items. Text

in the title or other attribute fields will not be searched.

✦ Modified. Enables you to restrict your search to a specific time period. You

can choose objects before or after a specified date/time.

c4857-3 Ch03.F 3/1/02 9:38 AM Page 46

47Chapter 3 ✦ Zope Objects and the Management Interface

The date should be a DateTime string such as YYYY/MM/DD hh:mm:ss, YYYY-MM-
DD, or hh:mm.

You can also limit or expand the scope of the search by telling Zope to only search

the current folder or to search all of the current folder’s sub-folders.

You can specify additional criteria by clicking on the “Advanced” link. An advanced

search adds the following fields to the search form:

✦ expr. A DTML expression to restrict found items. If the expression equals false

in the context of the found object, the object is rejected. For example, try

searching with the expression id is not “Control_Panel”. It will bring up

every object in the site except the Control Panel, for which the expression

evaluates as false.

✦ Where the roles. Use in combination with the “have permission” option.

Restricts found objects to those that provide the indicated permissions for

the indicated roles.

✦ Have permission. Use in combination with “Where the roles” option. Restricts

found objects to those that provide the indicated permissions for the indi-

cated roles.

DTML Documents
DTML Documents are the building blocks of any Web site created with Zope.

Documents are used to display Web content to users over the Internet. As they are

most commonly used, a DTML Document is basically the equivalent of a Web page.

Among other formats, Documents can contain textual information in the form of

plain text, HTML (Hypertext Markup Language), XML, or structured-text. DTML

scripting commands (or tags) can be added to create dynamic Web pages capable

of performing calculations, connecting to databases, sending mail, and even condi-

tional or iterative insertion.

For a complete description of the scripting capabilities of DTML, refer to Chapter 4.

Adding a DTML document
In the Root Folder, select DTML Document from the drop-down list of available

objects at the top of the Workspace, and click the Add button next to the list. The

form shown in Figure 3-10 should appear on your screen.

You will see form inputs for Id, Title, and File. Of these, only Id is required. For

example, enter sampleDoc for Id and Sample Document for Title. The file input is

only used if you already have an HTML file in another location that you want to

insert into a document when it is created. If so, click the Browse button and locate

Cross-
Reference

Note

c4857-3 Ch03.F 3/1/02 9:38 AM Page 47

48 Part I ✦ Getting Started with Zope

the file on your local drive. To just create this document and return to the list of

contents, click Add. If you want to begin working on it right away, click the Add and

Edit button and you will be taken to the Edit view of the newly created document.

Figure 3-10: The Add DTML Document form

Editing a DTML document
To edit a DTML Document, find the object in the list of contents and click its name

or the document icon that appears just to the left. This opens the Edit view for the

document you selected. To continue with the previous example, find the document,

Sample Document that you just created and click it. (See Figure 3-11.)

The Edit view includes an input for changing the title of the document and a text

area for changing its content. The text area can be resized to fit your preference by

clicking the Taller, Shorter, Wider, and Narrower buttons (don’t forget you can also

set a preference for the field size by choosing the Set Preferences option from the

drop-down box in the Top Frame). To save any changes to your document, click the

Save Changes button. Before your changes are actually saved, Zope parses the con-

tent of the text area for proper DTML syntax. If no syntax errors are found, the page

is reloaded with a confirmation that your changes were saved and when. To over-

write the current contents of the document, you can upload the contents of another

file by browsing your local drive for the location of the file and clicking Upload File.

c4857-3 Ch03.F 3/1/02 9:38 AM Page 48

49Chapter 3 ✦ Zope Objects and the Management Interface

Figure 3-11: The Edit DTML Document view

Viewing a DTML Document
Viewing a DTML Document is a fairly simple process and can be achieved a couple

of different ways. To view the document without leaving the management interface,

click the View tab. This replaces the Workspace frame with a view of the document

as it will be rendered on the Web.

Another way to view a DTML Document is by entering the URL of the object directly

into your browser. As stated earlier in this chapter, a Zope object’s URL is based on

its id. So if we had a DTML Document in the Root Folder called “sampleDoc,” its

URL would be http://localhost:8080/sampleDoc. If the same document were in

a folder called “sampleFolder,” the URL would be http://localhost:8080/
sampleFolder/sampleDoc.

Reviewing changes with the History view
The History view is used to track changes made to a DTML Document. It displays a

list of every revision made to the document in descending order starting with the

most recent. Each item on the list shows you when the revision was made, what

type of action was taken, and by whom. See Figure 3-12 for an example of the

History view of a DTML Document.

c4857-3 Ch03.F 3/1/02 9:38 AM Page 49

50 Part I ✦ Getting Started with Zope

Figure 3-12: The History view

The History view enables you to undo changes to the text content stored in a DTML

Document without affecting any changes you may have made to other properties

(such as the id or the location of the document). To revert back to a particular revi-

sion in the history of the document, check the box next to that item in the list and

click “Copy to present.” You can view the document as it existed at the time of that

revision by clicking the time date stamp.

You can also selectively compare revisions by checking the box next to any two

items on the list and clicking “Compare.” Selecting only one item will compare that

revision to the current state of the document. The comparison is shown in diff for-

mat. Lines added to the new document appear with a plus sign next to them, while

lines that have been removed from the old document appear with a minus sign.

Lines that have been replaced or changed are signified with an exclamation point.

DTML Methods
DTML Methods are almost identical to DTML Documents, except for a few funda-

mental differences. On the surface, both documents and methods have the same

user interface, are added, edited, viewed, and uploaded in the same way, and act

the same when called through the Web. Then why have two different object types?

The most important distinction between DTML Methods and DTML Documents is

how they are intended to be used. Simply put, documents are meant to contain and

display information, while methods are meant to control dynamic behavior. In other

words, methods are used when you need to display a smaller section of dynamic

content that is designed to perform some action or manipulate another object. The

practical upshot is that when a method looks for an attribute — for example, title —

it starts its search in its container, not itself. Adding a title to a Method accom-

plishes nothing, as it would never be acquired. A Document on the other hand,

looks at itself first when looking for attributes, so a title attribute attached to a doc-

ument will be found and used.

c4857-3 Ch03.F 3/1/02 9:38 AM Page 50

51Chapter 3 ✦ Zope Objects and the Management Interface

When you edit a DTML Method you may notice that it does not have a Properties

tab. Methods do not need their own set of properties; they share the properties of

the folder they are in. This is because Folders were originally intended to behave

like objects themselves with DTML Methods performing the duties of traditional

methods in OOP (Object Oriented Programming).

OOP is covered in more detail in Chapter 4.

Following are a few examples of how DTML Methods are commonly used in Zope.

These examples have code in them that we do not expect you to understand just

yet, since we haven’t really gotten to DTML yet. In the next chapter (Chapter 4),

we’ll discuss DTML syntax.

Introducing the standard header
The concept of the standard_html_header is great example of how DTML

Methods are often used. When you log into Zope for the first time, you will see a

method labeled standard_html_header among the list of contents in the Root

Folder. This method is designed to contain a section of HTML content shared by a

series of pages. This not only reduces the size and redundancy of your Web site in

terms of the amount of text needed to render all of your Web pages, but it also

makes maintaining your Web site much easier. Look at the simple example of the

default standard_html_header that Zope comes installed with by clicking on the

DTML method:

<HTML>
<HEAD>
<TITLE><dtml-var title_or_id></TITLE>
</HEAD>
<BODY BGCOLOR=”#FFFFFF”>

Chances are, with the exception of a few pages, your entire Web site will have the

same few lines of HTML at the beginning of every page. By putting these shared

lines into one DTML Method, you eliminate the task of finding and modifying that

same HTML several times when a change is needed. To illustrate this concept using

the previous example, open the standard_html_header method and change the

last line to:

<BODY BGCOLOR=”#0000CC”>

Viola! Whenever any document using this Method is rendered by a Web browser, it

will use the updated background color. Return to the Root Folder in the Workspace

frame and view the index_html document. Notice that the background color has

changed from white to blue even though you never touched the index_html. This

works because the index_html document has at its beginning a line that says:

<dtml-var standard_html_header>

Cross-
Reference

c4857-3 Ch03.F 3/1/02 9:38 AM Page 51

52 Part I ✦ Getting Started with Zope

Overriding the standard header
This concept can be taken one step further by using a special feature called acquisi-

tion in Zope. Say, for example, you have a subfolder named “NotBlue.” We want

every document in this folder to have the original white background, but the rest of

the site will still use (acquire) the new blue background. This can be easily accom-

plished by copying the standard_html_header from the Root Folder into the

NotBlue folder and changing the last line back to its original color:

<BODY BGCOLOR=”#FFFFFF”>

Because Zope looks inside the current folder for the standard_html_header before

looking elsewhere, all of the documents that use this method in the NotBlue folder

will now have a white background.Check it out by viewing http://localhost:
8080/NotBlue/.

For more information about acquisitions, see Chapter 11.

File Objects
Files provide a way to contain raw data as objects in Zope. You can put just about

any type of binary information in a file. Microsoft Word documents, PDF (portable

document format) files, Lotus spreadsheets, and even movies and sound files can

be made available on your Web site by uploading them as Zope File objects.

Adding a file
Adding a file is similar to creating a DTML Document or Method. The forms to add

files and document are almost identical. Upon selecting “File” from the Add List,

you will see a form with inputs for Id, Title, and File. As with all Zope objects, the id

is required and the title is optional. For file objects, if an id is not specified, the

name of the file you upload will be used. Click the Browse button to find the file you

want on your local drive. To save the new file object, click Add. Although techni-

cally you can create a file object without specifying a file on your local drive to

upload, it will create an empty object.

If you did not specify an id and the name of the file you are uploading contains
illegal characters, Zope will return an exception once the file is finished uploading
and you will be forced to re-upload the file.

Editing a file
To edit a file, find the file you want to edit in the list of contents and click the id or

the icon of that file. The Edit view for the file object is shown in Figure 3-13.

Caution

Cross-
Reference

c4857-3 Ch03.F 3/1/02 9:38 AM Page 52

53Chapter 3 ✦ Zope Objects and the Management Interface

Figure 3-13: The Edit File view

From this form, you can change the title of the file or replace the binary content of

the file by uploading a new file from your local drive. Although the layout of this

form should be fairly familiar to you by now, there are a couple of fields here that

are unique to file objects. These are Content Type and Precondition.

Content type
When you upload a file, Zope attempts to determine what type of file you are

adding by the extension in the filename. If you upload a file with a .pdf extension,

Zope assumes the file is an Adobe Acrobat PDF file, and sets its content type to

application/pdf. The content type field is used to tell your computer what pro-

gram to use when you try to open this file over the Web. So technically, if you

wanted to, you can change this field on the Edit view without changing the file type

and fool your computer into opening the file with a different program. If Zope does

not recognize the file extension or an extension is not included in the path of the

file when you upload, Zope will classify the object as a generic file. Zope uses

application/octet-stream to describe the content type of generic files.

Precondition
When editing a file, you can set a method or document located elsewhere on the

site as a Precondition. Zope will run the precondition method before it allows the

object to be viewed. If any exceptions are raised by the precondition, then the file

cannot be viewed. You might use this to verify an authenticated user or to update a

database that tracks the number of downloads of the file, by having the precondi-

tion set to trigger a Python Script object that incremented an int property

c4857-3 Ch03.F 3/1/02 9:38 AM Page 53

54 Part I ✦ Getting Started with Zope

Viewing a file
Like most other objects in Zope, files can be viewed by clicking the View tab or by

going directly to the URL of the object in your browser. What happens when you

attempt to view a file depends on the content type of that file. Most of the time,

your computer will know what to use to open a text file, a Microsoft Word file, and

so forth. If the file doesn’t have a content type or is considered generic (see the sec-

tion, “Content type,” earlier in this chapter), Zope tells your computer to just save

the file to your local drive so that you can figure out what to do with it.

Image Objects
Image objects are used to display graphics over the Web. Zope recognizes many of

the more popular image formats including

✦ GIF (Graphics Interchange Format)

✦ JPEG (Joint Photographic Experts Group)

✦ BMP (Bitmaps)

✦ PNG (Portable Network Graphics)

Images in Zope are a specialized kind of file object. They have the same interface

and share all of the same features common to files with the exception of a precondi-

tion. Zope also automatically determines the height and width of the image when it

is added or uploaded and sets each as an object property of the image, though they

may remain undefined for image types that Zope does not understand. If necessary,

the height and width can be altered via the image’s Properties view.

Adding an image
The process for adding an image is identical to that of adding a file. Upon selecting

“Image” from the Add list, you will see a form with inputs for Id, Title, and File. As

with all Zope objects, the id is required and the title is optional. For image objects,

if an id is not specified, the name of the image you upload will be used. Click

Browse to find the image you want on your local drive. To save the new image

object, click Add. Again, while technically you can create an image object without

specifying a file on your local drive to upload, when the image is viewed over the

Web it will appear broken.

Editing an image
Editing an image is like editing any other type of file object. The Edit view enables

you to change the title of the image, alter the content type if necessary, and replace

the image with a different image by clicking Browse and selecting a new file from

your local drive. The Edit view also displays a thumbnail of the image that it

c4857-3 Ch03.F 3/1/02 9:38 AM Page 54

55Chapter 3 ✦ Zope Objects and the Management Interface

currently contains. As mentioned previously, Zope creates a height and a width

property when an image is added. These properties change automatically if a new

image with different dimensions is uploaded into the object.

Viewing an image
Images can be viewed like other objects in Zope by either going directly to the

absolute URL of the image with your browser or by clicking the View tab while man-

aging the object. For the sake of the following example, let’s say you created an

image you want to display on the Web. You gave this image an id of sampleImage.

This image can be displayed with or without the use of DTML. If you want to, you

can write out the tag by hand to look something like this:

Alternatively, this image object can be displayed with the use of DTML scripting

tags that will do most of this writing for you. See Chapter 4 for more on using DTML

to display images over the Web.

User Folders and User Objects
Although Chapter 13 is devoted entirely to security, the following section serves as

an introduction to adding, editing, and managing User Folders and Users. Almost

every object in Zope has a Security view, meaning security can be controlled on an

object-by-object basis. For the purpose of this introduction (and everyday use),

this level of control can be time consuming and is probably excessive. The most

common way to limit viewing and management access to parts of a Zope Web site is

at the folder level.

A User Folder is a specialized Zope object that acts as a user database in the folder

in which it is created. User Folders are used to ensure security and manage the del-

egation of content development. For example, someone with the responsibility of

managing the content of a website might want to give a developer access to work

on only a certain part of a Web site. This can be achieved relatively easily by creat-

ing a user for that developer in a subfolder and giving that user access to content

only in that subfolder. For the subjects covered in the next few chapters, it is only

important that you understand that a User Folder is used to control which users

are allowed to perform certain functions on the Web site, and that this access is

only granted for the contents of the folder the user folder is in (as well as the con-

taining Folder’s remaining subfolders).

User objects on the other hand represent an individual user. They are created

within User Folders, and generally have a username and a password. When some-

one accesses a website and authenticates themselves using a username and pass-

word, they then can operate within the site with the privileges associated with that

User Object.

c4857-3 Ch03.F 3/1/02 9:38 AM Page 55

56 Part I ✦ Getting Started with Zope

Adding a User Folder
View the contents of the Root Folder on your Zope site. You will see that a User

Folder already exists. Each folder can only contain one User Folder, so we will need

to create a subfolder for this example. If you have not done so already, create a new

folder with an id of “sampleFolder.” Open the contents of sampleFolder by clicking

its name or icon.

User Folders are about the easiest objects in Zope to create. Select “User Folder”

from the Add list. There, you’re done. The folder contents will be refreshed with a

new User Folder object. All User Folders are given an id of acl_users and a title of

User Folder. These properties cannot be changed.

Editing a User Folder
User Folders don’t support most of the common editing functions associated with

other types of objects. Without a Properties view, User Folder properties such as

title cannot be changed and new ones cannot be added. Although User Folders do

have an absolute URL, they cannot be viewed directly through the Web, and there-

fore do not have a View manage tab. The functions under the Security and Undo

views pertain only to managing the users within that User Folder.

Adding a user
To view a list of users already in a User Folder or to add a new user, view the list of

contents for that User Folder by clicking its name or icon. Find the acl_users
folder in the Root Folder and view its list of contents. When you installed Zope, you

were asked for a username and password for the initial manager, which is the user

you are probably logged in as right now. You should see this user in the list of con-

tents of this User Folder.

To add a new user, click the Add button at the bottom of the user list. Figure 3-14

shows the Add User form.

Enter a name and password for the new user. To be sure that you typed it correctly,

you will be asked to confirm the password. For additional security, you have the

option of limiting the Internet domains that this user can log in from. Enter these in

the input for Domains and be sure to separate them by spaces (for example,

“zope.org MooseStore.com”). Roles are used to control which users are allowed to

perform certain actions in Zope. For example, the initial user you create has the

“Manager” role. This is required to access the Zope management interface you are

currently using. Although you are not required to specify any roles for a new user,

logging in for a user without any roles would be a pointless endeavor, as he or

she is essentially an unauthenticated user. (Authentication is fully explained in

Chapter 13.) For our purposes here, consider an unauthenticated user as a user

who has not been given any roles by the Web site.

c4857-3 Ch03.F 3/1/02 9:38 AM Page 56

57Chapter 3 ✦ Zope Objects and the Management Interface

Figure 3-14: The Add User form

Editing a user
The form used to edit an existing user is the same form used to add a new one.

Click the name or icon of one of the users in the list of contents. All of the roles this

user has been given will be highlighted on the drop-down list of available roles.

Notice hat both the password field and the confirm field have eight hidden charac-

ters (these appear as *). If, when the form is saved, these two fields are unchanged,

the user’s actual password is not changed. This allows someone with access to the

user folder to make changes to a user’s other properties (such as roles or domains)

without knowing or changing his or her password. The name of a user object can-

not be changed. If a someone wants a different name, a new user object will have to

made.

Managing users
Now that we have discussed the nuts and bolts of users and User Folders, let’s look

at a simple example of how they are commonly implemented. Create a new folder in

the Root Folder called MooseStore. Put a subfolder called Products and a User

Folder in MooseStore. Finally, add a new user, Bob, to the User Folder.

c4857-3 Ch03.F 3/1/02 9:38 AM Page 57

58 Part I ✦ Getting Started with Zope

View the list of contents for the User Folder in the MooseStore folder. You should

see a user called “Bob.” For the sake of this example, let’s say you decide to put

Bob in charge to maintaining all of the content in the MooseStore folder, but you are

not comfortable with giving him the Manager role (and therefore top-level access to

everything else on the Web site).

Every time a user interacts with the Web site (whether he or she is managing the

Web site or simply viewing it over the Internet), Zope verifies whether the user

attempting to perform the action in question has the necessary permissions. Many

permissions, such as View and Access Database Methods, are usually granted to the

anonymous user. In other words, everyone, even if they are not logged in, can per-

form these actions. Other more sensitive operations such as View management

screens are limited to authenticated users with the Manager role. Zope looks first in

the folder in which the operation is requested. If a user object with properties

matching those of the person logged in (username, password, and roles) is not

found in the User Folder at the level at which the operation is being performed, Zope

continues up the folder tree in search of a user that does have the necessary roles.

What this means for Bob is that he will be granted access to the management inter-

face, but only for the MooseStore folder and all its contents. This also means that

he will have the manager role in the Products folder, as it is a subfolder of

MooseStore. But, Bob would be denied if he attempted to perform a privileged oper-

ation in the Root Folder. This example can be extended into infinite subfolders,

granting any level of access to any user in any subfolder anywhere on your site,

without allowing them access up the folder tree in the opposite direction.

Control Panel
The Control Panel is a special object in Zope. This object is created for you during

installation. You cannot create a new one or remove the existing one.

The Control Panel provides the interfaces for administrating and maintaining Zope.

Clicking Control_Panel (located in the Root Folder) will show the view displayed

in Figure 3-15.

In this screen you are presented with information about the current Zope process;

what version of Zope and Python you are using, what platform the system is run-

ning on, the current process id, and how long the process has been running.

Two controls are provided as well as one for restarting the server and another for

shutting the server down. In addition, there are links to Database Management,

Version Management, Product Management, and Debugging Information.

The Restart button only appears when Zope is being run on a platform that is
capable of supporting restarts. That is, under Windows 9x, Zope will not display
the button, but if you install Zope as a service on Windows NT, it will. UNIX-like
operating systems generally support the restart functionality.

Note

c4857-3 Ch03.F 3/1/02 9:38 AM Page 58

59Chapter 3 ✦ Zope Objects and the Management Interface

Figure 3-15: The Control Panel

Stopping and restarting Zope
Even though the two buttons we mentioned labeled Restart and Shutdown are

probably self-explanatory, let’s review how they work.

Clicking the Restart button restarts the server, as the name implies. This is useful

when you are installing new Products. The server will shutdown for a moment and

then go through the startup process.

The only difference between Shutdown and Restart is that the server will not auto-

matically be brought back online after you click the Shutdown button. You will have

to bring the server back online by following the instructions in Chapter 2 for your

particular installation.

In Version 2.5, Zope incorporated new functionality that made it possible to
update Products that had been installed by refreshing them. Previously, upgrading
a product required restarting Zope.

New
Feature

c4857-3 Ch03.F 3/1/02 9:38 AM Page 59

60 Part I ✦ Getting Started with Zope

Managing the database
This link will take you to the pages that enable you to manage the ZODB. The ZODB

contains all of the objects that comprise your site. Not very much can go wrong

here, so normally a lot of maintenance will not be required on your part. Two things

you may have to do every once in a while are packing the database and managing

the cache.

Packing the database
Zope provides a sophisticated Undo system. It tracks all of the changes you make.

So, if you accidentally make changes that you do not want to keep, or maybe you

got a little trigger happy with the delete button, you can revert. This feature comes

with the slight penalty of using up diskspace. Zope keeps track of each change on

the hard disk, so the file that all of the objects are stored in will grow over time. To

reclaim this space, periodically you need to remove the old object versions from

the database. This is called packing the database.

The Database view is shown in Figure 3-16. This view shows you the location of

your Zope database and its current size. Even though it can be in various places on

your hard drive, the file is always named Data.fs.

Figure 3-16: The Database view

Using this view you can remove revisions based on the date you entered. For exam-

ple, if you entered 1 in the box and click the Pack button, Zope will discard all of the

previous changes you made more than 24 hours ago. This means that you will only

be able to undo changes that you made more recently than 24 hours ago. The

default number of days is set to 0, which would mean that when you pack all the

previous changes that you have made to the objects in your site will be discarded,

leaving only the current version. If you do this, keep in mind that you cannot undo

any changes made before the moment you packed the database, and that you can-

not undo the pack operation itself.

c4857-3 Ch03.F 3/1/02 9:38 AM Page 60

61Chapter 3 ✦ Zope Objects and the Management Interface

When you pack the database, Zope will first copy your existing database to a file

named Data.fs.old in the same location as your current directory. If you forget

where your current directory is, take a look at the “Database Location” section in

the Database view (shown in Figure 3-16). Zope will then remove the previous ver-

sions of your objects out of the database and you should see a significantly reduced

database after pressing the Pack button. You can delete the Data.fs.old file at

anytime to free up more diskspace.

Because Zope makes a copy of the Data.fs before performing the packing oper-
ation, you might run into a situation in which you do not have enough diskspace.
Make sure you have at least two times the size of your current Data.fs in
diskspace available before performing the pack operation. If not, Zope will return
an IO error in the middle of the operation.

Managing the Object Cache
Zope caches each object in memory as it retrieves them from the computer’s hard

disk. This increases performance because Zope does not need to constantly per-

form time-consuming disk operations on every request. Keeping large objects (or

large numbers of objects) around in the cache can quickly fill your computer’s

memory. To conserve space in memory, Zope keeps track of how long since each

object has been used. If an object has not been used for period of time (which you

can set), the objects will be removed from the cache to free up memory for other

objects.

You can adjust how many objects Zope will attempt to keep in memory before

grooming the cache, and how long an object can sit unused before it should be

removed. Take a look at Figure 3-17.

Figure 3-17: Adjusting the cache parameters

Caution

c4857-3 Ch03.F 3/1/02 9:38 AM Page 61

62 Part I ✦ Getting Started with Zope

The Cache Parameters view tells you how many objects are in the database and

how many are cashed in memory. From here, you can change the target size for the

number of objects to be kept in cache. The default value for this parameter is 400

objects. You can also alter the maximum number of seconds that an object can

remain idle before it can be removed from the cache.

If you find that Zope is using too much memory on your system, you can try reduc-

ing either of these parameters, but that will lead to a greater reliance on disk access

for retrieving objects, and may result on slower performance.

Managing versions
This screen (found by clicking on version Management in the Control Panel) con-

tains a list of each version that has changes in it. It is here as a convenience so that

you do not have to search the entire site to find a particular version.

Versions allow you to make changes to the site that are temporarily hidden from

other people. This lets you redesign or rebuild parts or aspects of your site, with-

out having to show the world your work in progress. When you are satisfied with

your changes, you can commit them, and as far as anyone else is concerned, the

entire site is changed at once. Conversely, if you are unhappy with your changes,

you can undo them within the version, or just discard all the version’s changes

wholesale (Refer to Chapter 11 for more information on versions).

Managing products
The Manage Product view gives you a list of all the products that you have

installed. Take a look at Figure 3-18. This view shows all of the products that were

successfully installed (closed box icon), those that you have created through the

Web (open boxed icon), and those that are broken (shattered icon).

We discuss through-the-Web products in more detail in Chapter 16.

If you have the base Zope 2.5 package installed without any additional Products,

your Product list should contain the following:

✦ ExternalMethod

✦ MIMETools

✦ MailHost

✦ OFSP

✦ Page Templates

✦ PluginIndexes

✦ PythonScripts

Cross-
Reference

c4857-3 Ch03.F 3/1/02 9:38 AM Page 62

63Chapter 3 ✦ Zope Objects and the Management Interface

✦ Sessions

✦ SiteAccess

✦ StandardCacheManagers

✦ TemporaryFolder

✦ Transience

✦ ZCatalog

✦ ZGadflyDA

✦ ZSQLMethods

✦ ZopeTutorial

If you click any one of these Products you will be presented with the content list

screen that you should be familiar with by now. The only thing you will see is an

object labeled help.

Figure 3-18: Products, products everywhere

If you are developing (or installing someone else’s Product) and for some reason

Zope had a problem initializing the Product, it will mark the Product as broken in

the Product list. Broken Products are displayed as a box that has been shattered

into many pieces. Clicking a broken Product displays some interesting information.

This information is only of interest to you if you are developing or installing

Products. Zope provides you with the traceback that Python produced when it

encountered the error. (See Figure 3-19.)

For information on reading tracebacks see Chapter 19.Cross-
Reference

c4857-3 Ch03.F 3/1/02 9:38 AM Page 63

64 Part I ✦ Getting Started with Zope

Figure 3-19: Traceback from a broken product

Debug information
The Debug Information view helps you optimize Zope’s performance by showing

you what Zope is spending its time doing and what products are consuming mem-

ory. This topic is discussed in more detail in Chapter 19.

Refer to Chapter 19 for instructions on using this view to optimize your site.

Summary
By now, you should have a working familiarity with manipulating Zope objects in

the management interface, as well as have seen a glimpse of some of what is to

come. With what you have learned in this chapter, you can put together a tradi-

tional Web site of static documents, and maybe even augment it with some of

Zope’s features, such as user folders and object properties.

In the next chapter, you will learn about Zope’s special Document Template Markup

Language, or DTML, in more detail. With DTML, you can turn that static Web site

into one that is capable of becoming a true Web application by taking information

from users, databases, and even other programs, and displaying it in a dynamically

created page.

✦ ✦ ✦

Cross-
Reference

c4857-3 Ch03.F 3/1/02 9:38 AM Page 64

Document
Template
Markup
Language

By now you have had a chance to play with some of the

basic features of Zope and you’ve probably already

used some of the concepts in this chapter, even if you didn’t

know it. Now it’s time to roll up our sleeves and really dig into

one of the reasons why you bought this book: to build power-

ful, dynamic Web sites that will revolutionize the Internet!

Okay, maybe we’ll hold off on the revolution for now, but we

will take a hard look at the concepts and components of

Document Template Markup Language (DTML).

In this chapter we start with a discussion of how to write

DTML and discuss some of the magic that goes on behind the

scenes when Zope renders your documents for the rest of the

world to see. Most of the chapter is then devoted to examin-

ing each DTML tag (or command) individually, picking apart

its uses and limitations and suggesting how each might best

be used to achieve whatever effect you have in mind for you

Web site.

This chapter is intended to be both an introduction to DTML

for those new to Zope and a reference for more experienced

users in search of specific information on individual tags.

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

DTML concepts

DTML tags

✦ ✦ ✦ ✦

c4857-3 Ch04.F 3/1/02 9:38 AM Page 65

66 Part I ✦ Getting Started with Zope

DTML Concepts
In technical terms, DTML (Document Template Markup Language) is a tag-based

template language that lets you insert dynamically generated text into HTML docu-

ments. Zope combines DTML tags and static HTML (Hypertext Markup Language)

text to create document templates. These templates are used to display dynamic

content over the Web. When a document is requested by a Web browser, Zope eval-

uates the DTML tags in the document template and converts them into source text

that can be rendered by the browser and shown over the Web.

A simple HTML document might look like this:

<html>
<body>
Hello World!
</body>
</html>

A DTML document template looks likes a HTML document but it contains DTML

tags that Zope reads and replaces with HTML text. For example, the following DTML

would dynamically change the text on your Web page to greet whomever happened

to be logged into your Web site by inserting the value of one of the many default

variables that Zope makes available to DTML authors.

<html>
<body>
Hello <dtml-var name=”AUTHENTICATED_USER”>!
</body>
</html>

When this is rendered into HTML source text, it would look like:

<html>
<body>
Hello Bob!
</body>
</html>

Basically, DTML enables you to present and manipulate data dynamically on your

Web site. It is most often used to substitute data in your Web pages in the form of

object properties or other types of variables that we discuss a little later in this

chapter. DTML can also be used to evaluate Python expressions and conditionally

insert or modify content in your documents. You can iterate through a list of results

from a database query or even check for errors and provide custom instructions for

handling any problems that might come up when your pages are rendered or a form

is submitted. Before we tell you more than you ever wanted to know about what

DTML can do for you, let’s take a look at how to write DTML tags and some of the

features that most tags have in common.

c4857-3 Ch04.F 3/1/02 9:38 AM Page 66

67Chapter 4 ✦ Document Template Markup Language

For a basic description of object properties and for instructions on how to create
and edit DTML Documents, please refer to Chapter 3. Detailed descriptions of the
different property types can be found in Chapter 16.

Where data comes from
As the chapter deals with generating HTML documents using dynamic data, it’s

helpful to understand where this data comes from and how to use it. Data can come

from the following three sources:

1. Zope objects. These include all of the objects you add under the root folder.

Every object has a set of properties and methods that can be used from

within DTML and scripts. For instance, all of the objects that come with the

standard installation of Zope have a title property and a getId method.

All of the objects, their methods, and their properties are collectively known

as the Zope API (application program interface). We introduce you to some of

these methods and properties from the API for demonstrative purposes in

this chapter. For the API complete reference, click the help link from the Zope

Management page.

2. External sources. These sources can include just about anything, such as

RDBMS databases (Oracle, MSSQL, PostgreSQL, MySQl); LDAP servers; IMAP;

and many more. Technically this data is accessed through other Zope objects

that you create such as ZSQLMethods.

3. The user’s browser. Information can include user input from HTML forms and

other information that is part of normal HTTP request such as cookies and

header information. All of these values are placed in a special variable called

“REQUEST.”

Understanding variables, properties, and methods
In this book we assume that you have at least some programming experience and

understand concepts such as variables and functions. This is because DTML is a

type of programming language (one that is designed for formatting data not neces-

sarily manipulating it) and as such you need this type of background to be effective

using it.

DTML tag syntax
In this section we introduce the basic syntax and structure for using tags. In order

to demonstrate the tag structure we need to use variable names (dynamic data)

and other tag elements that we haven’t had a chance to explain. For now, concen-

trate on the syntax. In the sections that follow we explain where your dynamic data

comes from and how you can use it.

Cross-
Reference

c4857-3 Ch04.F 3/1/02 9:38 AM Page 67

68 Part I ✦ Getting Started with Zope

All tags in DTML have the same basic structure. Each tag starts with a tag name

that determines the type of tag being used. Most tags also have attributes that tell

Zope how find the data the tag is accessing and what to do with that data. The for-

mat of a DTML tag is identical to the format used to write HTML tags. The standard

syntax for a DTML tag is shown here:

<dtml-name attribute1=”argument1” attribute2=”argument2”>

Although many tag attributes require some kind of argument to function properly,

there are a number of attributes that are essentially a predefined instruction on

how to handle the data the tag is accessing. The dtml-var tag is used to substitute

data in a document. In the example that follows, the name attribute indicates the

name of the object to be inserted by the dtml-var tag and always requires an argu-

ment. The upper attribute converts all lowercase letters in the inserted string to

uppercase and does not require any kind of argument.

<dtml-var name=”title” upper>

Just as in HTML, DTML uses both block and singleton tags. Block tags are actually

two-part tags that consist of an open and a close tag. Any attributes needed to per-

form the desired actions are placed in the open tag. The close tag is written in the

same way as the open tag except that the tag name is preceded by a /. Close tags

never contain attributes and are only used to tell Zope that the tag is done doing its

job. The real work of the tag is done by the enclosed text between the open and

close tags. These tags can also contain other DTML tags. The dtml-if tag is a good

example of a block tag:

<dtml-if expr=”age > 5”>
I am <dtml-var name=”age”> years old!

</dtml-if>

Singleton tags are able to perform their functions using only the attributes con-

tained in one tag and therefore do not need to be closed. The dtml-call tag is a

commonly used singleton tag in DTML.

<dtml-call name=”documentAdd”>

The name attribute
Because of the frequency with which the name attribute is used, there is a special

shorthand notation for writing this variable in DTML tags. In this notation the name
attribute is written before any other attributes in the tag and is not enclosed in quo-

tation marks. Until now, all of our examples have used the more formal notation of

the name attribute, as shown here:

<dtml-var name=”title” upper>

c4857-3 Ch04.F 3/1/02 9:38 AM Page 68

69Chapter 4 ✦ Document Template Markup Language

In all future examples we use the following shorthand notation:

<dtml-var title upper>

The name attribute is used during data substitution and evaluation to look up

objects by name. The rules for this process are explained in more detail in the sec-

tion, “Name Lookup,” later in this chapter. For now, we focus on what happens

when the value of a name attribute is requested.

If the value of the name attribute is an object property or REQUEST variable, the

value is returned directly to the current document. In the previous example, the

value of the title property of the current document or folder would replace the

dtml-var tag when the document is rendered.

When the name attribute requests a method, Zope attempts to evaluate the method

by mapping any properties from the object hierarchy and/or the REQUEST object to

the arguments the method needs. For instance, imagine you want to insert the

results of a method that expects two arguments, foo and bar, using the var tag. It

doesn’t matter where foo or bar are located; if Zope can locate them, it will pass

them to the method for you.

If the name attribute requests a Zope Document or Python document template, the

contents of the document or template are rendered into source text before they are

returned to the object making the request. To illustrate a common application of

this process, create a DTML Method like we did in Chapter 3 and examine its

default content.

<dtml-var standard_html_header>
<h2><dtml-var title_or_id></h2>
<p>
This is the <dtml-var id> Document.
</p>
<dtml-var standard_html_footer>

Most of your DTML Documents and Methods will start with a standard_html_header
and end with a standard_html_footer. These are DTML Methods that are created in

the Root Folder by Zope during installation and cannot be moved, deleted, or

renamed. Each contains a section of HTML and DTML that is inserted into the

beginning and end, respectively, of all of the pages on your Web site. The contents

of the default standard_html_header created by Zope appear as follows:

<HTML>
<HEAD><TITLE><dtml-var title_or_id></TITLE></HEAD>
<BODY BGCOLOR=”#FFFFFF”>

When this method is requested by a document, the three lines shown previously

are rendered as HTML source text and inserted into the document.

c4857-3 Ch04.F 3/1/02 9:38 AM Page 69

70 Part I ✦ Getting Started with Zope

If the name attribute is used in block tags such as in the dtml-if, dtml-elif, dtml-
unless, dtml-in, or dtml-with the value associated with the name is cached until

the tag is closed. This allows references to the name to be made faster inside the

block tag. This is one way of reducing the burden placed on your system by having

to request a large or complicated function more than once. The example that fol-

lows shows the value of reallyBigMethod being cached by a dtml-if tag and then

referenced again by a dtml-var tag:

<dtml-if reallyBigMethod>
<dtml-var reallyBigMethod>

</dtml-if>

The expr attribute
The expr attribute is a powerful tool that enables you to evaluate Python expres-

sions in your DTML tags. This can solve a multitude of problems and issues that

simply cannot be handled using DTML alone. If, for example, you want to perform a

function with a variable in one of your documents but you need to make sure that

the data has a certain value first. You can use an expression to evaluate the value of

the data and see if it fits your requirements. Following is an example of the expr

attribute syntax:

<dtml-if expr=”tickets_sold < 1000”>
There are still tickets available for this event!

</dtml-if>

Everything between the quotation marks in the expr attribute will be evaluated as if

it were Python code.

For more on Python syntax, please see Chapter 5.

The expr attribute can also be used to explicitly pass arguments into a method as

you are calling it:

<dtml-var expr=”getClients(‘New’)”>

You can also use an expression to access the objects that Zope cannot find using

the normal rules of acquisition. Usually, Zope only looks up through the folder hier-

archy of your Web site to find objects. If you needed to access a method in a sub-

folder below the folder you are currently working in, you could use the following

syntax:

<dtml-var expr=”Subfolder.methodObject()”>

See Chapter 14 for more information on the rules of acquisition in Zope.Cross-
Reference

Cross-
Reference

c4857-3 Ch04.F 3/1/02 9:38 AM Page 70

71Chapter 4 ✦ Document Template Markup Language

The expr attribute can also be used to look sideways, in effect, and access the con-

tents of another folder that is neither above nor below the folder you are in. Take a

look at Figure 4-1.

Figure 4-1: Side-stepping to another folder

Say, for example, we are displaying a document in the Products folder, but we need

access to a method in the Admin folder. To do this, you could use:

<dtml-var expr=”Admin.methodObject()”>

As with the name attribute syntax, there is a shorthand notation used to write the

expr attribute syntax in DTML tags. In this notation, the “expr=” is omitted and the

expression is simply enclosed in double quotes. For this reason, double quotes are

not allowed inside the expression. Following is the previous example rewritten to

use the shorthand notation of the expr attribute:

<dtml-var “getClients(‘New’)”>

The creators of Zope recommend against using this shortcut because it can be the

source of some confusion. They believe that the two lines below are too easily con-

fused:

<dtml-var getClients>
<dtml-var “getClients”>

These two lines will return completely different results. In the first line, getClients
is the value of the name attribute written in the shorthand name attribute notation.

Zope looks for getClients by name and render whatever it finds into the document

that requested it. In the second line, getClients is evaluated as a Python

expression. Instead of figuring out what getClients is and what it should do with it,

Zope simply tries to insert the results of the expression. In this case, Zope returns

something like the following as source text to your browser:

<ExternalMethod instance at 869f6e0>

This isn’t always true. In Python, object designers can override how objects are for-
matted when they are converted to a string. For instance, Python scripts return a
blank string when the objects are referenced using the expression syntax but don’t
have the suffix “(“ and “)”.

Note

Admin

<>

<> methodObject
Products

Accessories
Apparel
Food
myDocument

Specials

c4857-3 Ch04.F 3/1/02 9:38 AM Page 71

72 Part I ✦ Getting Started with Zope

Namespaces
When you look past all of the fancy features and terminology, one of the most basic

and essential functions of DTML is to generate dynamic Web pages using your

objects and your instructions in the form of tags. In order to work its magic, Zope

must first find the objects to which you refer. Unfortunately, it’s pretty much up to

you to figure out if Zope finds the right objects or not. Let’s look at the simple exam-

ple of inserting the value of a variable into your document with the dtml-var tag:

<dtml-var my_name>

When Zope comes across this tag as it renders your document, it uses a process

called Name Lookup to search for the my_name variable in the document’s name-

space. We will talk more about Name Lookup in just minute, but first let’s focus on

namespaces.

The concept of namespaces can be a bit tricky to explain, especially in Zope. Simply

put, a namespace is a collection of names arranged in a predefined order. A name is

a reference or a link to an object that exists in your ZODB (Zope Object Database).

Zope uses names to find a specific object when it is executing the DTML tags in

your documents. Although this is a bit of a simplification, it is easier to think of

namespaces as stacked one on top of the other. A stack of namespaces is initially

made up of two layers, the DTML Client Object and the DTML Request Object.

Although we will explain the process that Zope goes through when it looks up an

object later in this chapter, for now it is important that you understand that a

namespace is where Zope looks for references to the objects that are used to create

your Web site.

For more on Zope objects, refer to Chapter 3.

Name Lookup
Understanding the process of how Zope looks up a variable is the key to under-

standing how your objects will behave when they are rendered. By knowing exactly

where your variables are coming from (from which namespace, that is), you can

avoid much of the confusion that can occur with Zope’s somewhat complicated

process of Name Lookup.

When a DTML tag tries to perform some action with an object, Zope must first find

that object before it can use it. Zope looks for an object by searching for object

names in the namespace stack of the document it is rendering. When Zope starts to

render a document, it creates a namespace stack to resolve all of the name lookups

it needs to evaluate the various DTML tags in that document.

Initially, there are two layers in the namespace stack: the DTML Client Object and

the DTML Request Object. There are a few DTML tags that can be used to modify an

existing namespace stack by changing the objects in one of the layers or adding a

Cross-
Reference

c4857-3 Ch04.F 3/1/02 9:38 AM Page 72

73Chapter 4 ✦ Document Template Markup Language

new layer, but we’ll get to those a little later in this chapter. Unless the namespace

stack has been modified by one of these tags, the Client Object is at the top of the

stack and is the first place Zope looks for the name of an object. If a reference to the

name of your object cannot be found in the namespace of the Client Object, Zope

then looks in the Request Object. The Request Object namespace is usually the last

place Zope looks for an object reference because it is at the bottom of the stack.

For more on modifying existing namespaces see the sections, “The dtml-with Tag,”
“The dtml-let Tag,” and “The dtml-in Tag,” later in this chapter.

The DTML Client Object
The DTML Client Object layer of the namespace stack is actually made up of a

series of objects. Which object Zope looks at first depends on whether you are

using a DTML Document or a DTML Method.

If you are using a DTML Document, the first object in the Client Object namespace

is the document itself. That means when Zope searches the Client Object for a

name, it first searches the object properties and methods of the document in which

you are working. If the document does not contain the variable you need, Zope then

uses acquisition to search all of the document’s parents. If, after searching all the

way up to the Root Folder a reference to the name of the object you are looking for

still cannot be found, Zope then searches the DTML Request Object.

For a more information on the rules of Zope Acquisition, please refer to
Chapter 14.

If, however, you are using a DTML Method, the Client Object becomes the folder

that contains that DTML Method. This is because DTML Methods are not designed

to have their own object properties; they inherit the properties of their parent

folder. If a reference to the object for which you are looking cannot be found in the

properties of the method’s parent folder or in the properties of the other objects in

the same folder, Zope continues the same process of searching up through the

folder hierarchy that it performs when searching the Client Object of a DTML

Document.

In a sense, this layer of the namespace can be thought of as a stack of objects, with

the document (or the parent folder in the case of a method) at the top of the stack.

Below that is each successive parent folder.

The DTML REQUEST Object
Usually, the DTML REQUEST Object is the last namespace that Zope searches for a

reference to the name of your object. You could also think of this layer of the

namespace as always at the bottom of the namespace stack. The Request Object

contains all of the information about the current Web request, including form data,

cookies, and a number of useful variables defined by the CGI (Common Gateway

Interface) and Zope. The intimate workings of the Request Object are out of the

Cross-
Reference

Cross-
Reference

c4857-3 Ch04.F 3/1/02 9:38 AM Page 73

74 Part I ✦ Getting Started with Zope

scope of this chapter. For now, it is important that you understand that the Request

Object, like any other layer of the namespace, can be thought of as a stack of

objects in a predetermined order.

For a complete explanation of the Request Object and the variables that it pro-
vides see Chapter 14.

The _ variable
The _ variable (also referred to as the special namespace variable) is a special

object in Zope that enables you to access the namespace object directly when

using the expr attribute of a tag. The _ is used because some of the special vari-

ables that certain block tags provide within their block have hyphens in them.

While it’s perfectly legal for hyphens to be included in DTML, it’s not legal to

include hyphens within Python expressions. This is because Python treats the

hyphen as the subtraction operator.

This DTML quirk is a historical problem that developed when DTML variables with

hyphens in them were introduced before tags could use Python expressions. In

order to maintain backwards’ compatibility, this cumbersome work around was

created.

To understand the use of the _ to get around this problem, it’s best to refer to the
in tag, which is explained later in this chapter.

The second use of the _ variable is for accessing certain Python modules such

as string and math within your expressions. Here’s an example of using the

lower method, which converts a string of characters to all lower case, within an

expression:

<dtml-var “_.string.lower(‘I\’M NOT SHOUTING!’)”>

which produces this result:

i’m not shouting

For security reasons Zope doesn’t allow you to use all of the standard Python mod-

ules. Table 4-1 includes a list of all Python modules and their methods that can be

used with DTML. For further information on how to use these methods refer to the

Python Library reference at http://www.python.org/doc/current/lib/lib.html.

Note

Cross-
Reference

c4857-3 Ch04.F 3/1/02 9:38 AM Page 74

75Chapter 4 ✦ Document Template Markup Language

Table 4-1
Modules and Methods Available from DTML

Module Methods

math abs(number): Returns the absolute value of a number. number may
be a plain or long integer or a floating point number. If number is a
complex number, its magnitude is returned.

divmod(number1, number2): Takes two numbers as arguments and
returns a pair of numbers consisting of their quotient and remainder
when using long division. With mixed operand types, the rules for
binary arithmetic operators apply. For plain and long integers, the result
is the same as (a / b, a % b). For floating point numbers the result
is (q, a % b), where q is usually math.floor(a / b) but may be
1 less than that. q * b + a % b is very close to a. If a % b is non-
zero, it has the same sign as b, and 0 <= abs(a % b) < abs(b).

float(number): Converts a string or a number to floating point. If the
argument is a string, it must contain an optionally signed decimal or
floating-point number, possibly embedded in whitespace. This behaves
identical to string.atof(number). Otherwise, the argument may be
a plain or long integer or a floating-point number, and a floating-point
number with the same value (within Python’s floating-point precision)
is returned.

hash(object): Returns the hash value of the object if the object has
one. Hash values are integers. Hashes are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that test true
for equality (even if not for identity) have the same hash value (even if
they are of different types, such as 1 and 1.0).

hex(integer): Converts an integer number (of any size) to a
hexadecimal string. The result is a valid Python expression. Note: this
always yields an unsigned literal. (For example, on a 32-bit machine,
hex(-1) yields 0xffffffff.) When evaluated on a machine with the
same word size, this literal is evaluated as -1; at a different word size, it
may turn up as a large positive number or raise an OverflowError
exception.

int(number): Converts a string or number to a plain integer. If the
number is a string, it must contain an (optionally signed) decimal
number that can be represented as a Python integer, possibly embedded
in whitespace. This has identical behavior to string.atoi(number[,
radix]). The radix parameter gives the base for the conversion and
may be any integer in the range 2 to 36. If radix is specified and
number is not a string, TypeError is raised. Otherwise, the argument
may be a plain or long integer or a floating-point number. Conversion of
floating-point numbers to integers is defined by the C semantics. (Usually
the conversion truncates toward zero.)

Continued

c4857-3 Ch04.F 3/1/02 9:38 AM Page 75

76 Part I ✦ Getting Started with Zope

Table 4-1 (continued)

Module Methods

oct(integer): Converts an integer number (of any size) to an octal
string. The result is a valid Python expression. Note: this always yields
an unsigned literal. (For example, on a 32-bit machine, oct
(-1) yields 037777777777.) When evaluated on a machine with the
same word size, this literal is evaluated as -1; at a different word size, it
may turn up as a large positive number or raise an OverflowError
exception.

pow(x, y [,z]): Returns x to the power y; if z is present, returns x
to the power y, modulo z (computed more efficiently than pow(x, y)
% z). The arguments must have numeric types. With mixed operand
types, the rules for binary arithmetic operators apply. The effective
operand type is also the type of the result; if the result is not
expressible in this type, the function raises an exception. (For example,
pow(2, -1) or pow(2, 35000) is not allowed.)

round(x [,n]): Returns the floating-point value x rounded to n digits
after the decimal point. If n is omitted, it defaults to zero. The result is a
floating-point number. Values are rounded to the closest multiple of 10
to the power minus n; if two multiples are equally close, rounding is
done away from 0. (round(0.5) is 1.0 and round(-0.5) is -1.0.)

sequence len(sequence): Returns the length (the number of items) of an
object. The argument may be a sequence (for example, a string, tuple,
or list) or a mapping (dictionary).

max(s): With a single argument s, returns the largest item of a non-
empty sequence (for example, a string, tuple, or list). With more than
one argument, it returns the largest of the arguments.

min(s): With a single argument s, returns the smallest item of a non-
empty sequence (for example, a string, tuple, or list). With more than
one argument, returns the smallest of the arguments.

reorder(s [,with] [,without]): Reorders the items in s
according to the order given in with and without the items mentioned
in without. Items from s not mentioned in with are removed. s,
with, and without are all either sequences of strings or sequences of
key-value tuples, with ordering done on the keys. This function is useful
for constructing ordered select lists.

string chr(integer): Returns a string of one character whose ASCII code is
the integer. (For example, chr(97) returns the string a.) This is the
inverse of ord(). The argument must be in the range 0 to 255,
inclusive. A ValueError exception is raised if the integer is outside
that range.

c4857-3 Ch04.F 3/1/02 9:38 AM Page 76

77Chapter 4 ✦ Document Template Markup Language

Module Methods

ord(character): Returns the ASCII value of a string of one character.
(For example, ord(“a”) returns the integer 97.) This is the inverse of
chr().

Zope specific functions, and Zope versions of Python core functions
DateTime(): Returns a Zope DateTime object given constructor
arguments.

getattr(object, name[,default]): Returns the value of the
named attribute of object. name must be a string. If the string is the
name of one of the object’s attributes, the result is the value of that
attribute. (For example, getattr(x, “foobar”) is equivalent to
x.foobar.) If the named attribute does not exist, default is returned
if provided. Otherwise AttributeError is raised.

getitem(variable, render=0): Returns the value of a DTML
variable. If render is true, the variable is rendered. (See the render()
function.)

has_key(variable): Returns true if the DTML namespace contains
the named variable.

hasattr(object, string): The arguments are an object and a string.
The result is 1 if the string is the name of one of the object’s attributes; 0 if
not. (This is implemented by calling getattr(object, name) and
seeing whether it raises an exception.)

namespace([name=value]...): Returns a new DTML namespace
object. Keyword arguments of name=value pairs are pushed into the
new namespace.

range([start,] stop [,step]): This function creates lists
containing arithmetic progressions. The arguments must be plain
integers. If the step argument is omitted, it defaults to 1. If the start
argument is omitted, it defaults to 0. The full form returns a list of plain
integers [start, start + step, start + 2 * step, ...]. If
step is positive, the last element is the largest start + i step that is
still smaller than stop. If step is negative, the last element is the
largest start + i step that is larger than stop. step must not be
zero (or else ValueError is raised).

render(object): Renders the object. For DTML objects this evaluates
the DTML code with the current namespace. For other objects, this is
equivalent to str(object).

SecurityCalledByExecutable(): Returns true if the current object
(DTML document or method) is being called by an executable (another
DTML document or method, a script or a SQL method).

Continued

c4857-3 Ch04.F 3/1/02 9:38 AM Page 77

78 Part I ✦ Getting Started with Zope

Table 4-1 (continued)

Module Methods

SecurityCheckPermission(permission, object): Checks
whether the security context allows the given permission on the given
object. For example, SecurityCheckPermission(“Add
Documents, Images, and Files”, this()) would return true if
the current user was authorized to create documents, images, and files
in the current location.

SecurityGetUser(): Returns the current user object. This is normally
the same as the REQUEST.AUTHENTICATED_USER object. However,
the AUTHENTICATED_USER object is insecure since it can be replaced.

SecurityValidate([object] [,parent] [,name] [,value]):
Returns true if the value is accessible to the current user. object is the
object the value was accessed in, parent is the container of the value,
and name is the name used to access the value. (For example, if it was
obtained via ‘getattr’.) You may omit some of the arguments; however, it is
best to provide all available arguments.

SecurityValidateValue(object): Returns true if the object is
accessible to the current user. This function is the same as calling
SecurityValidate(None, None, None, object).

str(object): Returns a string containing a nicely printable
representation of an object. For strings, this returns the string itself.

test(condition, result [,condition, result]...
[,default]): Takes one or more condition, result pairs and
returns the result of the first true condition. Only one result is
returned, even if more than one condition is true. If no condition
is true and default is given, the default is returned. If no condition is
true and there is no default, None is returned.

unicode unichr(number): Returns a unicode string representing the value of
number as a unicode character. This is the inverse of ord() for unicode
characters.

unicode(string[, encoding[, errors]]): Decodes string
using the codec specified for encoding. Error handling is done
according to errors. The default behavior is to decode UTF-8 in strict
mode, meaning that encoding errors raise ValueError.

c4857-3 Ch04.F 3/1/02 9:38 AM Page 78

79Chapter 4 ✦ Document Template Markup Language

The dtml-var Tag
One of the most basic yet powerful functions of DTML is variable substitution. The

dtml-var tag is used to insert objects into DTML Documents and Methods. You may

find yourself using this tag more often than any other when creating dynamic Web

pages.

Although you have already seen this tag in action in some of the previous examples,

the dtml-var tag can be used to substitute all kinds of data. It can be used to

dynamically display object properties such as id or title:

<dtml-var expr=”myDocument.title”>

You can also use the dtml-var tag to generate dynamic hyperlinks to your docu-

ments and other objects:

<a href=”<dtml-var absolute_url>”><dtml-var title>

Entity syntax
Zope provides an alternate syntax for writing simple dtml-var tags. To make your

HTML a little easier to read, dtml-var tags that do not require attributes or expres-

sions can be written using the HTML entity syntax. Following is an example of a vari-

able called title written in this syntax:

&dtml-title;

This is the same as writing:

<dtml-var title>

The reason this style of DTML is called entity syntax is because HTML uses a simi-
lar format for inserting special characters that you can’t type into your document
from the keyboard. To insert an HTML entity (such as the copyright symbol) into an
html document, you must enter a & (ampersand) symbol followed by the entity’s
special code followed by ; (semicolon). For example, to insert a copyright symbol,
embed © into your HTML.

The entity is primarily used to avoid writing normal DTML tag syntax inside HTML

tags. For example, instead of writing:

<input type=”hidden” name=”title” value=”<dtml-var title>”>

Note

c4857-3 Ch04.F 3/1/02 9:38 AM Page 79

80 Part I ✦ Getting Started with Zope

You can use the entity syntax to make your DTML and HTML text easier to read:

<input type=”hidden” name=”title” value=”&dtml-title;”>

This syntax is also often used to generate dynamic URLs in HTML hyperlinks:

Click Here

As you will see in this section and throughout the rest of this chapter, there is virtu-

ally no limit to the number of uses for the dtml-var tag. Let’s take a look at some of

the attributes that make this tag tick.

Attributes of the dtml-var tag
The dtml-var tag has a multitude of attributes that enable you to control how the

data you are inserting is presented. These attributes are described in Table 4-2.

Table 4-2
The dtml-var Tag Attributes

Attribute Requires an Argument Description

name Yes Used to look up the object you are
trying to insert; the argument is the
name of the object you are looking up

expr Yes Evaluate a Python expression and
return a value

fmt Yes Specifies a format for the data you are
inserting; format can be custom,
special, or C-style

null Yes Specifies a string to be inserted if value
of object is null

lower No Converts all uppercase letters to
lowercase

upper No Converts all lowercase letters to
uppercase

capitalize No Converts the first character in the
object to uppercase

spacify No Converts all underscores to spaces

c4857-3 Ch04.F 3/1/02 9:38 AM Page 80

81Chapter 4 ✦ Document Template Markup Language

Attribute Requires an Argument Description

thousands_commas No If object is a number, inserts a comma
every three digits left of the decimal
point

html_quote No Converts all characters that have a
special meaning in HTML into HTML
entities

url_quote No Converts all characters that have a
special meaning in URLs into HTML
entities using decimal values

url_quote_plus No Same as url_quote except spaces are
converted to into plus signs (+)

sql_quote No Converts a single quotation mark into a
pair of single quotation marks; required
to include values that contain single
quotes in a SQL string

newline_to_br No Converts new lines (including carriage
returns) to HTML break
 tags

size Yes Truncates an object to a specified
number of characters

etc Yes Used to change the text that is added
to the end of a string that as been
truncated with the size attribute;
default text is “...”

missing No Specifies a value to be inserted if
object is missing and prevents a
KeyError if object cannot be found

Some of these attributes require a little more explanation. Those dtml-var tag

attributes that are not relatively self-explanatory in their use are described in more

detail here.

Null and missing values
The null attribute enables you to specify a default string of text if the value of the

object you are trying to insert is a null value. A null value is a value that cannot be

formatted with the specified format, a special Python value None, or is false and

yields an empty string. Following is an example of a dtml-var tag the null attribute:

<dtml-var phone_number null=”No Number Listed”>

c4857-3 Ch04.F 3/1/02 9:38 AM Page 81

82 Part I ✦ Getting Started with Zope

The missing attribute enables you to specify a default value if the object you are

trying to insert cannot be found. Usually, when Zope cannot find an object it is look-

ing for by name, it returns a KeyError. If you specify a value for the missing

attribute, Zope inserts that value if the object cannot be found instead of returning

an error. Note that the missing attribute can only be used to prevent a KeyError

returned by unsuccessful name lookup. It cannot be used to prevent a NameError

that is returned by an invalid expression in a dtml-var tag.

For more on Zope errors and debugging, please refer to Chapter 19

Variable truncation
Sometimes the design of your Web pages limits the amount of space you have to

work with when inserting variables. This can be especially true when you are using

a carefully constructed HTML table layout with predetermined pixel widths for

each cell. It then becomes necessary to truncate long strings to prevent them from

stretching out your table and visually disrupting your Web page. The size attribute

truncates a variable to a number of characters specified by the value of the

attribute. In the following example, the value of the variable too_long is “This sen-

tence is way too long to fit on my page.”

<dtml-var too_long size=24>

This would render the following string when displayed on your Web page:

This sentence is way too...

The etc attribute is used to change the text that is added to the end of a string that

as been truncated with the size attribute. As you can see from the results of the

previous example, when the size attribute truncates an object and no value is spec-

ified for the etc attribute, the default value of “...” is used. Any text string can be

substituted for the default value, but the etc attribute is often used to prevent any

text from being added to the end of a truncated object by setting the value to an

empty string. For example:

<dtml-var too_long size=24 etc=””>

URL and HTML quotes
Sometimes, in order for your variables to be included in URLs and other kinds of

query strings, certain reserved or illegal characters must be converted. The dtml-
var tag offers a few useful attributes for just this purpose.

The url_quote attribute is used to convert all characters in your variable that have

special meaning in URLs into HTML entities using decimal values. Here’s a quick

example:

<a href=”<dtml-var salesReport url_quote>”>Click Here

Cross-
Reference

c4857-3 Ch04.F 3/1/02 9:38 AM Page 82

83Chapter 4 ✦ Document Template Markup Language

If the value of salesReport was “Weekly Sales Report.txt,” for example, the spaces

in this string will cause a problem when you try to click this hyperlink. The

url_quote attribute can be used to solve this sort of problem by converting the

spaces (and any other illegal characters) into HTML entities. Therefore, the previ-

ous example is rendered as the following HTML source text:

Click Here

The url_quote_plus attribute works the same way as the url_quote attribute except

that it replaces each empty space character with a plus sign (+). Sometimes this is

required when passing a query string through an URL.

The html_quote converts all characters in your variable that have a special meaning

in HTML into HTML entities. That means that <, >, and & are converted respectively

into <, >, and &.

Formatting your data with the fmt attribute
The fmt attribute gives you more specific control over the format of the data being

inserted by the dtml-var tag. There are three basic formats used by the fmt
attribute: Special, Custom, and C-style.

Special formats
There are a few special formats that have been predefined as part of the dtml-var
tag because of their common use in data presentation. These formats are described

in Table 4-3.

Table 4-3
Special Formats for the dtml-var Tag fmt Attribute

Format Description

Whole-dollars Converts a number value into a whole dollar amount
preceded by a dollar sign ($)

Dollars-and-cents Converts a number value into a dollar amount out to two
decimal places, preceded by a dollar sign ($); numbers more
specific than two decimal places are rounded

Collection-length If the variable is a sequence, this format returns its length

Structured-text Converts the variable to structured text

Following is a quick example of one of these special formats in action. An object for

sale in our online store has a float property price that we want to display as a dollar

amount. In this example, the value of price is 10.5.

<dtml-var price fmt=”dollars-and-cents”>

c4857-3 Ch04.F 3/1/02 9:38 AM Page 83

84 Part I ✦ Getting Started with Zope

This format displays the price property of our object as:

$10.50

Custom format methods
Zope supports the use of custom formats for greater control over the presentation

of objects in your Web pages. Although the most often used custom formats are

related to the formatting of date-time strings, any method evaluated on an object

that returns a string can be used as a custom format.

Date-time strings can be formatted in just about any way you can imagine with the

various date-time methods available in Python. Chances you are working with a

date-time string retrieved from a form or a database, but if you need to display (and

format) the current date and time, you can use the ZopeTime object:

<dtml-var ZopeTime>

The date-time string that follows shows how the ZopeTime method is displayed

without any custom formatting:

2001/01/01 12:00:00.00 US/Pacific

That’s great and all but you may want to display your date-time strings in a format

that is a little easier to read:

<dtml-var ZopeTime fmt=”aCommon”>

The aCommon format is a fairly common way of displaying a date and time. When ren-

dered, the line above will look like this:

Jan 1, 2001 12:00 pm

For your convenience, the custom date-time formats from the Python DateTime

Library are show in Table 4-4.

Table 4-4
Custom date-time Formats for the dtml-var Tag fmt Attribute

Method Description

AMPM Returns the time to the nearest second

AMPMMinutes Returns the time to the nearest minute

aCommon Returns a string with the format: Jan 1, 1980 12:00 pm

aCommonZ Returns a string with the format: Jan 1, 1980 12:00 pm US/Eastern

c4857-3 Ch04.F 3/1/02 9:38 AM Page 84

85Chapter 4 ✦ Document Template Markup Language

Method Description

aDay Returns the abbreviated name of the day of the week

aMonth Returns the abbreviated month name

ampm Returns the appropriate time modifier (am or pm)

Date Returns the date string for the object

Day Returns the full name of the day of the week

DayOfWeek Returns the full name of the day of the week

day Returns the day of the object as an integer

dayOfYear Returns the day of the year in context of the time-zone
representation of the object

dd Returns day as a 2-digit string

fCommon Returns a string with the format: January 1, 1980 12:00 pm

fCommonZ Returns a string with the format: January 1, 1980 12:00 pm
US/Eastern

H_12 Returns the 12-hour clock representation of the hour

h_24 Returns the 24-hour clock representation of the hour

hour Returns the 24-hour clock representation of the hour

isCurrentHour Returns true if this object represents a date/time that falls within the
current hour in the context of this object’s time-zone representation

isCurrentMonth Returns true if this object represents a date/time that falls within the
current month in the context of this object’s time-zone
representation

isFuture Returns true if this object represents a date/time later than the time
of the call

isLeapYear Returns true if the current year (in the context of the object’s time
zone) is a leap year

isPast Returns true if this object represents a date/time earlier than the
time of the call

Month Returns the full month name

minute Returns the minute

mm Returns month as a 2-digit string

month Returns the month of the object as an integer

PreciseAMPM Returns a precise time string for the object on a 12-hour clock

PreciseTime Returns a precise time string for the object on a 24-hour clock

pCommon Returns a string with the format: Jan. 1, 1980 12:00 pm

Continued

c4857-3 Ch04.F 3/1/02 9:38 AM Page 85

86 Part I ✦ Getting Started with Zope

Table 4-4 (continued)

Method Description

pCommonZ Returns a string with the format: Jan. 1, 1980 12:00 pm US/Eastern

pDay Returns the abbreviated (with a period) name of the day of the
week

pMonth Returns the abbreviated (with a period) month name

Rfc822 Returns the date in RFC 822 format

second Returns the second

timezone Returns the time zone in which the object is represented

year Returns the calendar year of the object

yy Returns calendar year as a 2-digit string

For more information about DateTime objects see the Zope API reference in
Zope’s Online Help System.

You might be thinking, “Great! I can combine a few of these formats to display my

dates and times in whatever way I want.” You can, but not in the same dtml-var tag.

Cramming a few of these methods into the same fmt attribute won’t display what

you had in mind. Let’s say you want to show a date string in the following format:

mm/dd/yy. To do this using the methods in Table 4-3, you would have to write

something like this:

<dtml-var ZopeTime fmt=”mm”>/<dtml-var ZopeTime fmt=”dd”>/ _
<dtml-var ZopeTime fmt=”yy”>

This isn’t very pretty, but that’s the way the tag is designed. However, you can use

string formats for the Python strftime module to achieve a similar result with only

one dtml-var tag:

<dtml-var ZopeTime fmt=”%d/%m/%y”>

See Chapter 5 for more information on Python strings.

C-style format strings
The fmt attribute supports the use of C-style format strings to control the format of

your data. Although you will find a more complete discussion of string formatting in

Chapter 5, here we show you a quick example of how these formats are used.

Cross-
Reference

Cross-
Reference

c4857-3 Ch04.F 3/1/02 9:38 AM Page 86

87Chapter 4 ✦ Document Template Markup Language

Basically, C-style formats are used to convert an object or variable of one type to

another. In the following example we convert a floating point value into an integer:

<dtml-var expr=”12345.6789” fmt=”%d”>

When rendered, this tag will insert the following integer:

12345

For more about string formatting, please refer to Chapter 5.

The dtml-if Tag
Variable substitution with the dtml-var tag is one of the most powerful and most

often used functions of DTML. As in any kind of scripting or even programming, it is

often necessary to evaluate a number of conditions before your script or program

can know what variables are to be substituted and how to present them. This pro-

cess is referred to conditional insertion.

DTML primarily uses the dtml-if tag to perform conditional insertion. The dtml-
else and dtml-elif tags are also used to evaluate alternate conditions in your Web

pages and enable you to create different sets of instructions for how and what data

is to be inserted based on the conditions that exist when your Web page is loaded.

The basics of conditional insertion
As far as DTML is concerned, conditions are either true or false. Generally, all

objects are considered true unless they are 0, None, or an empty string or

sequence. Whether a condition is true or not can be evaluated using both the name
attribute syntax and the expr attribute syntax.

For more on the name attribute syntax and the expr attribute syntax, see “DTML
Concepts” earlier in this chapter.

Sometimes in order to prevent an error, the existence of a variable must be verified

before your Web page tries to use that variable. The name attribute syntax can be

used to evaluate both the existence and the value of an object. Following is a simple

example using this syntax in a dtml-if tag to see whether the title variable exists

before inserting it. In this example, Zope renders the contents of the dtml-if tag

block if the value of title is not 0, None, or an empty string or sequence.

<dtml-if title>
<dtml-var title>

</dtml-if>

Cross-
Reference

Cross-
Reference

c4857-3 Ch04.F 3/1/02 9:38 AM Page 87

88 Part I ✦ Getting Started with Zope

You may find that it is often necessary to evaluate the value of your variables with

an expression before performing some function with that object. Following is an

example of conditionally inserting content based on the value of a variable using

the expression attribute syntax. In this example, the text is displayed if the value of

tickets_sold is less than 1000.

<dtml-if expr=”tickets_sold < 1000”>
There are still tickets available for this event!

</dtml-if>

Note that the expr attribute syntax does not check for the existence of the variable

and returns an error if the variable cannot be found. For this reason, you must be

sure to use a valid Python expression.

The dtml-else and dtml-elif tags
By itself, the dtml-if tag will only evaluate the truth of a single condition. Often,

you may want to provide an alternate set of instructions for presenting your con-

tent if the condition you are evaluating is false. This can be achieved with the dtml-
else tag. Following is an example of how to use the dtml-else tag to insert content

if the condition in the dtml-if tag is false:

<dtml-if “color == ‘blue’”>
Good guess!

<dtml-else>
Sorry, guess again.

</dtml-if>

There are no valid attributes for the dtml-else tag. Each dtml-if tag block can only

contain one dtml-else tag. However, you can nest dtml-if tags within other dtml-if
tags. In the next example, we first verify that a color variable exists with the name

attribute syntax, and then we use the expr attribute syntax to see if it matches a

certain value.

<dtml-if color>
<dtml-if “color == ‘blue’”>
Good guess!

<dtml-else>
Sorry, guess again.

</dtml-if>
<dtml-else>
No color provided.

</dtml-if>

Sometimes it can be helpful to evaluate several conditions in the same dtml-if tag

block. You can evaluate multiple conditions by adding a dtml-elif tag for each

additional condition you need to evaluate. The dtml-elif tag uses the same syntax

c4857-3 Ch04.F 3/1/02 9:38 AM Page 88

89Chapter 4 ✦ Document Template Markup Language

and attributes as the dtml-if tag. If the condition specified in the initial dtml-if tag

is false, each dtml-elif tag is evaluated in the order in which they are presented

until one is evaluated as true. If none of the conditions specified are found to be

true, Zope renders the contents of the dtml-else tag if one is present.

A dtml-if tag block can contain any number of dtml-elif tags but only one dtml-
else tag. The dtml-else tag must always come after the dtml-elif tags. An addi-

tional condition is added to one of the previous examples in the code that follows:

<dtml-if “color == ‘blue’”>
Good guess!

<dtml-elif “color == ‘green’”>
Green is not a valid choice, guess again.

<dtml-else>
Sorry, guess again.

</dtml-if>

The dtml-unless Tag
The dtml-unless tag offers another way to perform conditional insertion. It has the

same basic functions as the dtml-if tag, except that the contents of the dtml-
unless tag are only rendered if the condition being evaluated is false. The same

effect could be created by specifically testing for a false condition with a dtml-if
tag, but sometimes it is more convenient (and easier to read) if a dtml-unless tag is

used. The following two examples return the same result, but the first is written

with a dtml-if tag and the second uses a dtml-unless:

<dtml-if expr=”sum != 10”>
Sorry, that answer is incorrect. Please try again.

</dtml-if>

<dtml-unless expr=”sum == 10”>
Sorry, that answer is incorrect. Please try again.

</dtml-unless>

Although this example doesn’t illustrate much of a convenience by choosing the

dtml-unless tag over the dtml-if tag when a false condition must be tested for, it

does show that the two tags work pretty much the same way. One simply looks for

a true condition and the other looks for a false condition.

The dtml-unless tag is more limited than the dtml-if tag in that it cannot be used

with the dtml-else or dtml-elif tags. However, the dtml-unless tag is great for

when you only want to insert dynamic content if an object does not exist in the cur-

rent namespace. Take a look at the following example:

<dtml-unless daily_sales>
No sales today!</dtml-unless>

c4857-3 Ch04.F 3/1/02 9:38 AM Page 89

90 Part I ✦ Getting Started with Zope

This tag checks to see whether the object daily_sales exists. If it cannot be found

in the current namespace, then the phrase “No sales today!” is inserted into the

document. This is just one of many ways of achieving the same result with DTML,

but you might find this method more convenient or easier to read than if a dtml-if
or some other tag were used.

The dtml-in Tag
So far, we have looked at variable substitution with the dtml-var tag and setting

conditions for when and how to insert those variables with the dtml-if tag. As your

Web pages become more complex, especially if they interact with some kind of

database, it may become necessary to loop through and manipulate a list of some

kind of objects. Often this list will be a set of results from a database query. The

dtml-in tag is used to iterate (or loop) through these results and perform a speci-

fied set of actions for each item in the sequence. This process is referred to as itera-
tive insertion.

The basics of iterative insertion
Like the dtml-if tag, dtml-in is a block tag. The object or sequence to be iterated

over is specified either by name or by an expression in the open tag and there are a

significant number of specialized variables for use with the dtml-in tag. We will take

a look at these attributes in much closer detail later in this section, but for now let’s

look at a simple example of how the dtml-in tag works. In the example that follows,

we use a dtml-in tag to generate a list of employees from an imaginary database:

<dtml-in listEmployees>
<dtml-var employee_name></br>

</dtml-in>

Depending on your database, this might look something like:

Tom
Dick
Harry

The method listEmployees is used to generate a result set containing a list of all of

the employees stored in our database. A result set is an object that acts like a list.

In this result set, we have a sequence of values associated with a variable called

employee_name. The dtml-in tag in this example iterates through this result set and

render the <dtml-var employee_name> tag and a line break for each item in the

sequence.

c4857-3 Ch04.F 3/1/02 9:38 AM Page 90

91Chapter 4 ✦ Document Template Markup Language

We can perform a similar function using an expression instead of calling a method

by name. The next example uses the Zope API method objectValues to query the

ZODB for a list of all of the DTML Document objects in the current folder.

<dtml-in expr=”objectValues(‘DTML Document’)”>
<dtml-var title_or_id>

</dtml-in>

The objectValues method in this example is the same method the Zope manage-

ment interface uses to generate a list of all the objects in a folder. This is done by

using the same DTML shown the previous example without specifying an object

type as an argument in the expression that calls the objectValues method. (An

object type is the same names that you see in the drop-down box for adding

objects.)

Also be aware that the dtml-in tag does change the namespace stack by pushing

the contents of the tag (all of the objects in the result set) to the top of the stack. In

other words, if the results of your dtml-in tag contain a variable name that also

appears elsewhere in your page, Zope finds the value associated with the name that

appears in the dtml-in tag for the duration of the block. Once the dtml-in tag block

is closed, the order of the namespace stack returns to its usual state.

The dtml-else tag and empty sequences
As we have seen, the dtml-in tag is used to iterate through a sequence of objects

and insert the same dynamic content for each item in the list. But what happens if

the list is empty? If there were no DTML Documents in the current folder of our pre-

vious example, the objectValues returns an empty sequence. In this case, Zope

doesn’t do anything. No content is inserted and Zope continues rendering the rest

of the document as though the dtml-in tag wasn’t even there. You can account for

this possibility by using a dtml-else tag. Using the previous example, we could dis-

play a string of text to the user instead of nothing at all if the method returns an

empty sequence:

<dtml-in expr=”objectValues(‘DTML Document’)”>
<dtml-var title_or_id>

<dtml-else>
No documents were found.

</dtml-in>

The previous example assumes that the code is within a DTML Method and not
within a DTML Document.

Caution

c4857-3 Ch04.F 3/1/02 9:38 AM Page 91

92 Part I ✦ Getting Started with Zope

Attributes of the dtml-in tag
The dtml-in tag has specialized attributes that enable you to manipulate the itera-

tion of the data in your sequence. These attributes are described in Table 4-5.

Table 4-5
The dtml-in Tag Attributes

Attribute Requires an Argument Description

Name Yes Name of the object that returns the
sequence you want to iterate over

Expr Yes Evaluates a Python expression to return
the sequence you want to iterate over

Mapping No Iterates over mapping objects rather
than instances; this allows values of the
mapping objects to be accessed as
DTML variables. Mapping objects are
explained within Chapter 5.

Sort Yes Sorts the sequence based on the
specified attribute of the result set

Reverse No Causes the order of the sequence to be
reversed

Start Yes Specifies the index of the row on which
to start a batch

Size Yes Specifies the maximum size of the
batch; value of the argument is the
maximum number of rows to be
processed

skip_unauthorized No Causes an item to be skipped if access
to the item is unauthorized; this
attribute prevents an error from being
raised if unauthorized items are
encountered

Orphan Yes Specifies the minimum desired size of
the batch; value of argument is the
minimum number of rows to be
processed

Overlap Yes Specifies the number of rows to overlap
between batches

c4857-3 Ch04.F 3/1/02 9:38 AM Page 92

93Chapter 4 ✦ Document Template Markup Language

Attribute Requires an Argument Description

Previous No Prevents iterative insertion; provides
processing variables associated with the
previous batch in the sequence (if one
exists)

Next No Prevents iterative insertion; provides
processing variables associated with the
next batch in the sequence (if one
exists)

Many of the attributes of the dtml-in tag are used to perform batch processing.

Batch processing can add powerful dynamic capabilities to your Web pages by

breaking up a long sequence of objects into manageable bits, but it can also be

somewhat complicated. Before we get in to that, let’s take a look at some of the

more basic attributes of the dtml-in tag.

Sorting the contents of your sequence
The sort attribute enables you to control the order in which the contents of your

sequence are processed. The dtml-in tag uses the value of the sort attribute to sort

the sequence before the results are iterated into your document. In the example

that follows, a ZSQLMethod listClients returns a result set that contains several

rows of data with the following attributes: first_name, last_name, phone, and

address. The list of clients displayed in the HTML table is sorted in ascending order

by the last_name attribute of the result set.

<table>
<dtml-in listClients sort=”last_name”>
<tr>
<td><dtml-var last_name>, <dtml-var first_name></td>
<td><dtml-var phone></td>
<td><dtml-var address></td>

</tr>
</dtml-in>

</table>

The reverse attribute is fairly straightforward. Including the reverse attribute in a

dtml-in tag reverses whatever order the sequence already has and can be used

with the sort attribute, but does not require it.

c4857-3 Ch04.F 3/1/02 9:38 AM Page 93

94 Part I ✦ Getting Started with Zope

Changing the size of your sequence
Sometimes you may only be interested in displaying part of a sequence. In the code

that follows, only the first ten rows of the result set will be displayed, the rest will

be ignored. (Please note that this will only work inside of a DTML method.)

<dtml-in “objectValues()” size=10>
<dtml-var title_or_id>

</dtml-in>

The previous example assumes that the code is within a DTML Method and not
within a DTML Document.

Current item variables
Zope provides several variables with the dtml-in tag that are used to access infor-

mation about the current item in the sequence of objects you are iterating through.

These current item variables are described in Table 4-6.

Table 4-6
The dtml-in Tag Current Item Variables

Variable Description

sequence-item The current item in the iteration

sequence-key The current key in the iteration, only useful when iterating
over a mapping object

sequence-index The current number of iterations completed so far starting
from 0

sequence-number The current number of iterations completed so far starting
from 1

sequence-roman The current number of iterations completed so far; displayed
in lowercase Roman numerals starting from i

sequence-Roman The current number of iterations completed so far; displayed
in uppercase Roman numerals starting from I

sequence-letter The current number of iterations completed so far; displayed
incrementally in lowercase letters

sequence-Letter The current number of iterations completed so far; displayed
incrementally in uppercase letters

sequence-start True if the current item is the first item in the iteration

sequence-end True if the current item is the last item in the iteration

Caution

c4857-3 Ch04.F 3/1/02 9:38 AM Page 94

95Chapter 4 ✦ Document Template Markup Language

Variable Description

sequence-even True if the index of the current item is 0 or even

sequence-odd True if the index of the current item is odd

sequence-var-variable Used to access a variable of the current item

sequence-index-variable The index of a variable of the current item

To get a better idea of how some of these variables are used, let’s take a look at a

few examples. First, we use the dtml-in tag and the sequence-item variable to

dynamically generate a list of options in a HTML select form input. In the example

that follows, the method listMonths generates a list of the months of the year as a

sequence of strings.

<select name=”month”>
<dtml-in _
expr=”[‘Jan’,’Feb’,’Mar’,’Apr’,’May’,’Jun’,’Jul’,’Aug’,’Sep’,’Oct’,’Nov’,’Dec’]”
>
<option value=”&dtml-sequence-item;”><dtml-var sequence-item></option>

</dtml-in>
</select>

This dtml-in tag generates a select form input with an option for each month of the

year that was listed in our sequence. In the next example, let’s say a value for month
already exists in our namespace and we want this select input to default to the that

value automatically when the page is loaded. A dtml-if tag is used to see whether

the value of the month variable matches each item in the list of months, assuming

it’s in the namespace.

<select name=”month”>
<dtml-in _

expr=”[‘Jan’,’Feb’,’Mar’,’Apr’,’May’,’Jun’,’Jul’,’Aug’,’Sep’,’Oct’,’Nov’,’Dec’]”
>

<option<dtml-if expr=”month == _.[‘sequence-item’]”> SELECTED</dtml-if> _
value=”&dtml-sequence-item;”><dtml-var sequence-item></option>

</dtml-in>
</select>

For information on simplifying this DTML and eliminating the _.[‘sequence-
item’] portions of the expression, read the “Using the <dtml-in> Prefix Attribute”’
sidebar.

Note

c4857-3 Ch04.F 3/1/02 9:38 AM Page 95

96 Part I ✦ Getting Started with Zope

The sequence-even variable can be used to create the alternating gray and white

table cells seen in the list of contents for each folder in the Zope management inter-

face. The following example generates a list of links to all of the objects contained

in the current folder and highlights every other row with a light gray background:

<table>
<dtml-in expr=”objectValues()”>
<tr<dtml-if sequence-even> bgcolor=”#EFEFEF”</dtml-if>>
<td><dtml-var title_or_id></td>

</tr>
</dtml-in>

</table>

Using the <dtml-in> Prefix Attribute

The dtml-in tag has several attributes that are hyphenated, such as sequence-item and
XX. These attributes are difficult to use within Python expressions, as they require cryptic
notations such as:

<dtml-if expr=”month == _.[‘sequence-item’]”>

This notation is necessary because Python would otherwise interpret sequence-item as
sequence minus item. The prefix attribute (added in Zope 2.4) enables you to circum-
vent this limitation and increase the clarity of your code. When you specify a prefix for a
dtml-in tag, all hyphenated attributes have the sequence portion of their names replaced
with the value of prefix, and the hyphens are replaced with underscores. This lets you write
DTML code as follows:

<dtml-in expr=”objectValues(‘Folder’,’DTML Document’)”
prefix=”objects”>
<dtml-if “objects_item.meta_type = ‘Folder’”>
<dtml-var “objects_item.id”>
<dtml-else>
<dtml-var “objects_item.id”>
</dtml-if>

The prefix notation also has another use. It allows access to the outer iteration’s attributes
from nested inner iterations. Without the prefix notation, the attribute names of nested iter-
ations mask the outer iteration’s attributes, as the attribute names are identical. With the
prefix attribute set, you can get around this limitation without having to use dtml-let, like
so:

<dtml-in expr=”[1,2,3]” prefix=”outer”>
<dtml-in expr=”[4,5,6]” prefix=”inner”>
<dtml-var expr=”outer_item * inner_item”>

</dtml-in>
</dtml-in>

As you can see, the prefix attribute of dtml-in is a powerful tool for simplifying your code.

c4857-3 Ch04.F 3/1/02 9:38 AM Page 96

97Chapter 4 ✦ Document Template Markup Language

The previous example assumes that the code is within a DTML Method and not
within a DTML Document.

Summary statistic variables
The dtml-in tag can calculate statistical information about a sequence with the use

of a number of summary statistic variables. See Table 4-7 for a complete list of

these variables.

Table 4-7
The dtml-in Tag Summary Statistic Variables

Variable Description

total-nnn* Returns the sum of a sequence of numeric values

count-nnn Returns the total number of non-missing values in a sequence

min-nnn Returns the smallest number in a sequence of non-missing
values

max-nnn Returns the largest number in a sequence of non-missing
values

median-nnn Returns the median of a sequence of non-missing values

mean-nnn Returns the mean of a sequence of numeric values

variance-nnn Returns the variance of a sequence of numeric values
computed with a degrees of freedom equal to the (count - 1)

variance-n-nnn Returns the variance of a sequence of numeric values
computed with a degrees of freedom equal to the count

standard-deviation-nnn Returns the standard deviation of a sequence of numeric
values computed with a degrees of freedom equal to the
(count - 1)

standard-deviation-n-nnn Returns the standard deviation of a sequence of numeric
values computed with a degrees of freedom equal to the
count

* nnn is the name of an attribute or key. For example, to get the mean price in a list of products each with the
attribute price, type mean-price.

If you are using another database besides the ZODB, you may already be able to

perform many of these functions. Nevertheless, these variables do offer a quick and

easy way of accessing certain statistics about your sequence without having to

write other database queries to calculate them. The following example is only con-

cerned with displaying some statistical data about our sequence, not with actually

Caution

c4857-3 Ch04.F 3/1/02 9:38 AM Page 97

98 Part I ✦ Getting Started with Zope

displaying the sequence itself. The method showSalesReport returns a list of objects

with two attributes: product_name and price.

<table>
<dtml-in showSalesReport size=”1”>
<tr>
<td>Total Products Sold:</td>
<td><dtml-var count-product_name></td>

</tr><tr>
<td>Total Sales:</td>
<td><dtml-var total-price fmt=”dollar-and-cents”></td>

</tr><tr>
<td>Average Price:</td>
<td><dtml-var mean-price fmt=”dollar-and-cents”></td>

</tr>
</dtml-in>

</table>

This example displays the following text (assuming some imaginary values for the

summary statistic variables):

Total Products Sold: 24
Total Sales: $3620.00
Average Price: $150.83

Because the dtml-in tag is designed to iterate through a sequence of objects and

perform a predefined set of actions for each object, it is necessary to set the size of

the batch in the preceding example to “1”. Otherwise, the contents of the dtml-in
tag block would be displayed once for every item in the sequence.

Grouping variables
The dtml-in tag also supports two variables that are used to test when a grouping

of data within your sequence starts or ends. You can group your data by sorting the

sequence by a particular attribute and then testing to see when that variable

changes with the grouping variables described in Table 4-8.

Table 4-8
The dtml-in Tag Grouping Variables

Variable Description

First-nnn true if the current item is the first item in the sequence that
has the current value for the variable nnn; otherwise false

Last-nnn true if the current item is the last item in the sequence that
has the current value for the variable nnn; otherwise false

c4857-3 Ch04.F 3/1/02 9:38 AM Page 98

99Chapter 4 ✦ Document Template Markup Language

The following example groups the sequence we are displaying by the type attribute.

The product type is printed in <H1> text at the beginning of each new group and a

<hr> is inserted at the end of every group.

<dtml-in listProducts sort=”type”>

<dtml-if first-type>
<H1><dtml-var type></H1>

</dtml-if>

<P><dtml-var name></P>

<dtml-if last-type>
<hr size=”1” noshade>

</dtml-if>

</dtml-in>

Batch processing
When you are working a large sequence of items, it is not practical to display the

entire sequence all at once. To make your Web interface easier to use and to

decrease size of your Web pages (and therefore the amount time they take to load),

you may want to display your sequence in little chunks. Breaking up your sequence

into digestible bits is called batching. The dtml-in tag is equipped with several vari-

ables that enable you to perform some powerful batch processing. These variables

are described in Table 4-9.

Table 4-9
The dtml-in Tag Batch Processing Variables

Variable Description

sequence-query Returns the HTTP query string with the start variable
removed; this variable can be used to construct links to
next and previous batches

sequence-step-size Returns the batch size

previous-sequence True when the first item in the current batch is
displayed and when that item is not the first item in the
entire sequence

previous-sequence-start-index Returns the index (starting from 0) of the first item in
the previous batch

Continued

c4857-3 Ch04.F 3/1/02 9:38 AM Page 99

100 Part I ✦ Getting Started with Zope

Table 4-9 (continued)

Variable Description

previous-sequence-start-number Returns the number (starting from 1) of the first item in
the previous batch

previous-sequence-end-index Returns the index (starting from 0) of the last item in
the previous batch

previous-sequence-end-number Returns the number (starting from 1) of the last item in
the previous batch

previous-sequence-size Returns the size of the previous batch

previous-batches A sequence of mapping objects with information about
all previous batches; each mapping object has these
keys: batch-start-index, batch-end-index, and batch-size

next-sequence True when the last item in the current batch is displayed
and when that item is not the last item in the entire
sequence

next-sequence-start-index Returns the index (starting from 0) of the first item in
the next batch

next-sequence-start-number Returns the number (starting from 1) of the first item in
the next batch

next-sequence-end-index Returns the index (starting from 0) of the last item in
the next batch

next-sequence-end-number Returns the number (starting from 1) of the last item in
the next batch

next-sequence-size Returns the size of the next batch

next-batches A sequence of mapping objects with information about
all following batches; each mapping object has these
keys: batch-start-index, batch-end-index, and batch-size

Instead of looking at these variables one or two at a time, we are going to go ahead

and hit you with whole thing at once. Take a look at the example that follows, but

don’t get too upset; we will every part of it in just a minute.

<dtml-var standard_html_header>

<dtml-in listCustomers size=10 sort=name start=query_start>

<dtml-if sequence-start>
<H1>Customer List</H1>
<dtml-if previous-sequence>
<P><a href=”&dtml-URL;&dtml-sequence-query;query_start=&dtml-previous-

sequence-start-number;”>Previous <dtml-var previous-sequence-size></P>

c4857-3 Ch04.F 3/1/02 9:38 AM Page 100

101Chapter 4 ✦ Document Template Markup Language

</dtml-if>
<table>
<tr>
<th>Customer</th>
<th>Phone</th>
<th>Address</th>

</tr>
</dtml-if>

<tr<dtml-if sequence-even> bgcolor=”#EFEFEF”</dtml-if>>
<td><dtml-var name></td>
<td><dtml-var phone></td>
<td><dtml-var address></td>

</tr>

<dtml-if sequence-end>
</table>
<dtml-if next-sequence>
<P><a href=”&dtml-URL;&dtml-sequence-query;query_start=&dtml-next-sequence-

start-number;”>Next <dtml-var next-sequence-size></P>
</dtml-if>

</dtml-if>

</dtml-in>

<dtml-var standard_html_footer>

This isn’t really as bad as it looks. Let’s start from the beginning. The method

listCustomers creates a list of customers with attributes for name, phone, and

address. The size attribute limits our batches to a maximum of 10 results, and the

sort attribute sorts the entire sequence by the name attribute. The start attribute

tells the dtml-in tag which index (of the entire sequence) it should use to start the

current batch.

Next we have two nested dtml-if tags. The first checks to see whether sequence-
start is true, meaning it checks to see whether the current item is the first item in

this batch. If it is, it prints the <H1> text, evaluates a second dtml-if tag, and then

inserts some column headers for the table we will use to display our results. This

second dtml-if tag checks to see whether previous-sequence is true, meaning it

checks for any items in the sequence before the first one of the current batch. If the

first item in the current batch is not the first item in the entire sequence, a link to

the previous batch of 10 results is inserted.

Below this, we create the table row that will be inserted for each item in the current

batch. There isn’t much going on here that hasn’t already been discussed under

previous sections.

Toward the end of the example you will see two more nested dtml-if tags. This sec-

tion performs basically the same function as the first set of nested dtml-if tags

except that here we are testing to see if the current item is the last item in this

batch. If it is, the table is closed and another if check is evaluated to see whether

c4857-3 Ch04.F 3/1/02 9:38 AM Page 101

102 Part I ✦ Getting Started with Zope

this is the last batch in the sequence. Unless the current batch is the last batch of

10 results (or part-thereof), a link to the next batch is inserted.

A few of the batch processing variables can be used to display statistics about the

next and previous batches. In the previous example, the previous-sequence-size
and next-sequence-size variables are used to show the number of results in the pre-

vious and next batches, respectively. There are also variables to display the start-

ing and ending index of the next and previous batches.

The dtml-with Tag
The dtml-with tag is used to push a particular object to the top of the namespace.

This enables you to either add new attributes to the namespace by including an

object outside of the normal chain of acquisition (like a subfolder), or look for vari-

ables in a particular object before searching the rest of the namespace.

In the example that follows, we must access several objects in another folder. This

can be accomplished without the dtml-with tag by using an expression to access

the objects of another container:

<dtml-in expr=”Clients.getClientInfo(client_id=client_id)”>
<H1><dtml-var name></H1>
<dtml-if “employees > 50”>
<dtml-var expr=”Clients.addInsuranceForm”>

<dtml-else>
<dtml-var expr=”Clients.smallBusinessMethod()”>

</dtml-if>
</dtml-in>

As you can see, this can make for a lot of extra work if you need to access another

folder like this more than once or twice. By using a dtml-with tag to push the

Clients folder (and its contents) to the top of the namespace, this example becomes

a little easier to read and a lot easier to write. Everything inside the dtml-with tag

block will look for objects in the Clients folder before following the normal pattern

of acquisition.

<dtml-with Clients>
<dtml-in expr=”getClientInfo(client_id=client_id)”>
<H1><dtml-var name></H1>
<dtml-if “employees > 50”>
<dtml-var addInsuranceForm>

<dtml-else>
<dtml-var smallBusinessMethod>

</dtml-if>
</dtml-in>

</dtml-with>

Usually, the Request is at the bottom the namespace stack. In other words, it’s the

last place Zope looks when searching for a variable. The dtml-with tag is often used

c4857-3 Ch04.F 3/1/02 9:38 AM Page 102

103Chapter 4 ✦ Document Template Markup Language

to push the Request to the top of the namespace. This can be useful if you need to

access a variable in the Request that also exists somewhere else in the namespace.

Let’s say you need to access a variable in the Request called title. Finding the right

title variable can be a problem as Zope looks for the name title in the client object

before it looks in the Request. If you are working in a DTML Document, the client

object is likely to have a title attribute and Zope will think this must be what you

were looking for. By enclosing your dtml-var tag in a dtml-with tag block, you can

force Zope to look in the Request before it looks anywhere else.

<dtml-with REQUEST>
<dtml-var title>

</dtml-with>

In the previous example, if the Request does not contain a title variable, it is still

possible that a title variable from somewhere else in the namespace stack could be

returned. Chances are, this is the wrong title. The only attribute prevents Zope from

looking up objects outside the namespace specified in the dtml-with tag. This

enables you to be sure about which variables are being inserted into your

documents.

<dtml-with REQUEST only>
<dtml-var title>

</dtml-with>

The dtml-let Tag
The dtml-let tag is used to create a new layer at the top of the namespace stack and

assign multiple variables to that namespace. Although both the dtml-with and dtml-
let tags are used to modify namespaces, the dtml-let tag is better suited for setting

one or more new variables in the namespace instead of accessing the attributes or

contents of an existing object. As with the dtml-with tag, any changes to the name-

space stack are undone when the dtml-let tag is closed. In other words, the name-

space stack is only changed for the contents of the dtml-let tag block.

In the next example, the method getShoppingCart returns a list of objects with the

following properties: sku, cost, and inventory. For each object in the sequence, the

dtml-let assigns a value to the date and subtotal variables.

<dtml-in getShoppingCart sort=”sku”>
<dtml-let date=”ZopeTime()” subtotal=”cost*inventory”>
<dtml-call

“addToReceipt(sku=sku,date=date,subtotal=subtotal)”>
</dtml-let>

</dtml-in>

This shows how multiple assignment with the dtml-let tag can help make simple

scripting a little easier.

c4857-3 Ch04.F 3/1/02 9:38 AM Page 103

104 Part I ✦ Getting Started with Zope

The dtml-call Tag
Sometimes you may find it necessary to call a method without displaying the

results on your Web page. You may need to define a new a variable in the Request

or insert some form elements into a database. The dtml-call tag is intended for just

this purpose. Unlike the dtml-var tag, the dtml-call tag enables you to run a

method without inserting any results into your document.

For example, let’s say you want to insert the contents of an online questionnaire (an

HTML form) into a MySQL database. One efficient way to achieve this is to have the

form post to a DTML Method that contains only two dtml-call tags. The first tag

calls a method insertQuestionnaire that inserts the form elements from the

Request into a MySQL database, and the second tag redirects the user to another

document, possibly a thank you page.

<dtml-call insertQuestionnaire>
<dtml-call “RESPONSE.redirect(‘thank_you.html’)”>

This DTML Method is completely transparent to the user. Without any dtml-var
tags or other forms of output, the user will not see the contents of this DTML

method. For the user, it is a simple process of submitting the form and being taken

to the thank_you.html page.

The dtml-call tag is also commonly used to define a new variable in the current

namespace by calling the set method of the Request object. For example, if a docu-

ment always requires a certain variable but for some reason that variable is not

always passed in when the document is loaded, you can set a default value for that

variable in the Request.

<dtml-unless new_variable>
<dtml-call “REQUEST.set(‘new_variable’, 1)”>

</dtml-unless>

As with many things in Zope, there are other ways of achieving the same result, but

sometimes how you perform a certain action with DTML is a function of personal

preference and sometimes it is determined by the overall design of your Web site.

The dtml-return Tag
In earlier versions of Zope (before 2.3.0), the dtml-return tag was used to perform

script-like computations with DTML Documents or Methods. If Zope encounters a

dtml-return tag while rendering a document, only the results of the expression or

name lookup in the tag itself will be displayed. All other content in the page is

ignored. In other words, when a valid dtml-return tag is parsed, Zope stops evaluat-

ing the rest of page and returns only the value of the tag.

<H1>Ignore me!</H1>
<dtml-return expr=”ZopeTime()”>

c4857-3 Ch04.F 3/1/02 9:38 AM Page 104

105Chapter 4 ✦ Document Template Markup Language

When rendered, the previous example would return only:

2001/01/01 12:00:00.0 US/Pacific

All content in the document or method other than the value of the dtml-return tag

is ignored when the template is parsed. The dtml-return tag even stops block tags

like the dtml-if and dtml-in tags from being completely evaluated.

<dtml-in shortLivedMethod>
<dtml-return sequence-item>

</dtml-in>

In this example, only the first item in the sequence is returned. The rest of the

sequence is not processed or displayed.

With the development of script objects, this tag is now basically useless. Anything

that is possible with the dtml-return tag is probably easier to achieve with a script

object. In fact, in a way, this tag now contradicts the purpose of DTML as it was

intended to be used: for presentation only. This tag is left over from a time when

there was no other way to achieve these kind of computations in DTML. With the

addition of Python Scripts and other features, there is no reason to use DTML to

perform any kind of serious logic or computation.

Please see Chapter 15 for more information on Python Script objects.

The dtml-comment Tag
The dtml-comment tag is primarily used to remove a piece of text from a DTML

Document or Method. When a document is requested by the client, any content in

the dtml-comment tag block is not rendered, even in the HTML source of the docu-

ment. This is different from the behavior of HTML comments that hide their con-

tents when the page is displayed, but still show up when the source for the Web

page is viewed. The following document would appear blank when viewed regularly

with a browser:

<dtml-var standard_html_header>

<!-- You must be viewing the source if you can see this. -->

<dtml-comment>
<P>You shouldn’t see any of this, even when viewing the

source</P>
<P>The current time is <dtml-var ZopeTime fmt=”AMPM”>.</P>

</dtml-comment>

<dtml-var standard_html_footer>

Cross-
Reference

c4857-3 Ch04.F 3/1/02 9:38 AM Page 105

106 Part I ✦ Getting Started with Zope

If you were to view the HTML source for this page, you would see the following:

<html>
<head>
<title>Test Page</title>
</head>

<body bgcolor=”#FFFFFF”>

<!-- You must be viewing the source if you can see this. -->

</body>

</html>

As far your browser is concerned, the dtml-comment tag block and all of its contents

aren’t even there. For this reason, the dtml-comment tag can be used to document

your DTML by making notes to yourself (or to others) that no one on the client

server side will ever see.

The dtml-raise Tag
The dtml-raise tag is used to raise an exception, usually in the event of an error. An

exception is an unexpected error encountered while Zope is rendering a DTML

Document or Method. Once an exception is raised by you or by Zope, the execution

of the Document or Method being accessed is stopped and a Zope Error explaining

what went wrong is displayed.

There are a couple of advantages to using a dtml-raise tag to report errors. First,

the dtml-raise tag enables you to raise specific HTTP errors or even generate cus-

tom exceptions based on certain conditions in your documents. You can even

insert a special error message in the dtml-raise tag block that will displayed when

the exception is raised. If your error message contains any HTML formatting, the

standard Zope Error will be replaced with the contents of the dtml-raise tag block.

In the next example, a Moose Error exception is raised if the object moose_info is

not true:

<dtml-if moose_info>
<dtml-call expr=”createMooseProfile()”>
<dtml-call “RESPONSE.redirect(‘thank_you.html’)”>

<dtml-else>
<dtml-raise type=”Moose Error”>
<H1>Moose Error</H1>
<I>Profile information missing, cannot generate Moose Profile.</I>

</dtml-raise>
</dtml-if>

c4857-3 Ch04.F 3/1/02 9:38 AM Page 106

107Chapter 4 ✦ Document Template Markup Language

The other advantage to using a dtml-raise tag to report errors is that the current

transaction is rolled back if an exception is detected. This means that all changes to

other objects that are part of the current request are undone. If, for example, you

were making a series of changes to an object and one or more of your methods

encountered some kind of error, you wouldn’t have to worry about keeping track of

which changes were successful and which ones weren’t. To preserve the integrity

of the object or the data you are trying to change, the entire transaction is rolled

back.

The dtml-try Tag
When Zope encounters an exception while rendering a document or method, either

because an error prevented your document from being displayed correctly or

because an exception was generated with a dtml-raise tag, Zope stops whatever it

was doing and displays an error message. Sometimes you may need to know

whether an exception will be raised by running a method or performing some other

action, but you don’t want to show a cryptic error message to everyone in the

event that an error does occur. The dtml-try tag enables you to detect and handle

exceptions by specifying alternate sets of instructions based on the outcome of

whatever action you are trying. By providing Zope with another set of instructions

in the event of an exception, the rest of the document or method can be rendered

even if an error is encountered. Another way to think about this is to say that the

dtml-try tag works sort of like the dtml-if tag, except that instead of evaluating

objects or expressions as true or false, the dtml-try tag evaluates whether or not

an object or an expression raises an exception.

Checking for errors
Let’s take a look at how we can perform some simple error checking with the dtml-
try tag. In the next example, we receive a variable, hourlyWage, from a form input

and we need to make sure that the value is a floating point number. If hourlyWage
cannot be converted into a float, a ValueError exception will be raised and Zope

renders the contents of the dtml-except tag. Instead of displaying a ZopeError, the

string hourlyWage is added to a list of problem fields that will be dealt with later and

Zope can continue about its business of rendering the rest of the document.

<dtml-try>
<dtml-call “_.float(hourlyWage)”>

<dtml-except ValueError>
<dtml-call “error_list.append(‘hourlyWage’)”>

</dtml-try>

In the dtml-except tag in the previous code, we are only looking for a ValueError

exception. If any other type of exception is raised by our dtml-try tag, a ZopeError

is displayed. It is possible to have more than one dtml-except tag if you expect to

be raising different types of exceptions. If you do not specify an exception type in

the dtml-except tag, it catches any kind of exception.

c4857-3 Ch04.F 3/1/02 9:38 AM Page 107

108 Part I ✦ Getting Started with Zope

See Chapter 19 for more information on exceptions and ZopeErrors.

Handling multiple exceptions
The following example shows a dtml-try tag with multiple dtml-except tags. The

first dtml-except tag is only concerned with a ZeroDivisionError that would be

raised if the value of managers is equal to zero. The second dtml-except does not

specify a type of exception to look for, so it will handle any exception. If you want to

include a catch-all dtml-except tag like this, it must be the last one in the list.

<dtml-try>
<dtml-var expr=”_.float(sales_week/managers)” fmt=”dollars-and-cents”>

<dtml-except ZeroDivisionError>
$0.00

<dtml-except>
N/A

</dtml-try>

Some exceptions in Python (and therefore Zope) are grouped together in what are

called base classes. For example, the LookupError base class includes both the

IndexError and KeyError exceptions. A base class is never raised as an exception,

but they can be used to catch multiple types of exceptions with one dtml-except
tag.

<dtml-try>
<dtml-var Hoffa>

<dtml-except LookupError>
Sorry, your variable could not be found.

</dtml-try>

The dtml-except tag in the previous example uses the LookupError base class and

would handle either an IndexError or KeyError exception.

Optional dtml-else and dtml-finally tags
The dtml-try tag supports two optional tags that can be used to handle almost any

other conditions that aren’t covered by the dtml-except tag. The dtml-else tag is

used to provide content to be rendered if no exceptions are raised, and the dtml-
finally tag inserts content whether an exception is raised or not.

The dtml-else tag works basically the same way here as it does with the dtml-if
tag. If the contents of the dtml-try tag do not raise any exceptions, all of the dtml-
except tags are ignored and the contents of the dtml-else tag (if one exists) are ren-

dered. This is really more useful when the dtml-try tag itself isn’t returning any

input. In the next example, the dtml-else tag is used to confirm that the method

updateWage was run successfully:

Cross-
Reference

c4857-3 Ch04.F 3/1/02 9:38 AM Page 108

109Chapter 4 ✦ Document Template Markup Language

<dtml-try>
<dtml-call “_.float(hourlyWage)”>
<dtml-call expr=”updateWage(hourlyWage)”>

<dtml-except ValueError>
<dtml-call “error_list.append(‘hourlyWage’)”>

<dtml-else>
<H1>Thank you!</H1>
<P>Your hourly wage has been updated.</P>

</dtml-try>

You can use the dtml-finally tag to insert content regardless of whether your

objects or methods raised any exceptions. Instead of preventing exceptions, the

dtml-finally tag is designed to allow the exceptions to be raised and then cleanup

after them. Usually, a failed transaction is rolled back, but there are some tasks,

such as unlocking a locked table in a database, that the Transaction Manager might

not (depending on the Database you are using) take care of. In the following exam-

ple, a method locks a table in a database from being accessed by anyone else and

then runs a method. In this case, it is important to always unlock the table, even if

an error occurred so that the table can be accessed again.

<dtml-try>
<dtml-call expr=”lockTable(table_name)”>
<dtml-call expr=”updateTable(table_name)”>

<dtml-finally>
<dtml-call expr=”unlockTable(table_name)”>

</dtml-try>

The creators of Zope contend that whatever results you might achieve with this use

of the dtml-finally tag are probably outside the intended realm of the capabilities

of DTML and would be better if done in Python or Perl.

Writing your own error messages
Zope gives you access to the same variables it uses to display ZopeErrors. These

exception variables are described in Table 4-10.

Table 4-10
The dtml-try tag Exception Variables

Variable Description

error_type Returns the type of the handled exception

error_value Returns the value of the handled exception, usually the name
of the object or method that caused the error

error_tb Returns the traceback of the handled exception; this is
displayed on all ZopeErrors when Zope is in debug mode

c4857-3 Ch04.F 3/1/02 9:38 AM Page 109

110 Part I ✦ Getting Started with Zope

The following DTML is an excerpt from the standard_error_message method. It can

be found in the root folder. Zope uses it to report most types of ZopeErrors. This is

included to show how these variables can be used to create your own custom error

messages or to change the default message Zope uses.

<dtml-try>
<dtml-call brokenMethod>

<dtml-except>
<H2>Zope Error</H2>
<P>Zope has encountered an error while publishing this resource.</P>

<P>
Error Type: <!--#var error_type-->

Error Value: <!--#var error_value-->

</P>
</dtml-try>

The dtml-tree Tag
The dtml-tree tag is a specialized tag that is used to display object hierarchies in

an expandable tree format. The Navigator frame on the left side of the Zope man-

agement interface is generated using a dtml-tree tag. Each folder object in the Root

Folder is displayed in this frame and those with subfolders have a plus (+) sign to

the left of the folder name. Clicking this plus sign expands a branch to show a list of

all the folder objects that are contained in the folder you selected. To collapse that

branch of the tree again, click the minus (-) sign that now appears to the left of the

folder name. Figure 4-2 is an example of a partially expanded Navigator frame in the

Zope management interface.

Figure 4-2: The Navigator Frame is made with a dtml-tree tag

c4857-3 Ch04.F 3/1/02 9:38 AM Page 110

111Chapter 4 ✦ Document Template Markup Language

The tree tag is usually used in conjunction with folders. As such, make sure that
you use DTML Methods, because DTML Documents use their own namespaces,
preventing you from working with most of the folders methods without explicitly
referencing the folder in your code. Most of the examples in this section assume
that the code is in a DTML Method.

Displaying objects in a tree
Creating a tree to display the contents of your folders is pretty easy with the dtml-
tree because it does most of the work for you. To generate a basic tree, you only

really need to specify what objects you want the dtml-tree tag to show.

<dtml-var standard_html_header>

<dtml-tree>
<dtml-var getId>

</dtml-tree>

<dtml-var standard_html_footer>

This is about as simple as a dtml-tree tag gets. In this tree, we are only displaying

the id of any object that can contain other objects (all folder-ish objects). This

might be useful for using a tree to display a sitemap, but it doesn’t enables you to

do much else besides show the contents of all of your folders. The Navigator frame

takes this a step further by adding some functionality to this list. Each object in the

tree generated by the DTML that follows is now also a hyperlink to the contents of

that object:

<dtml-var standard_html_header>

<dtml-tree>
<dtml-var getId>

</dtml-tree>

<dtml-var standard_html_footer>

The tree that is generated here is basically the same tree that Zope uses in the

Navigator frame of the management interface. Let’s take a look now at some of the

other features of the dtml-tree tag.

Attributes of the dtml-tree tag
The dtml-tree tag has several attributes that provide you with greater control over

how the tree is displayed. These attributes are described in Table 4-11.

Caution

c4857-3 Ch04.F 3/1/02 9:38 AM Page 111

112 Part I ✦ Getting Started with Zope

Table 4-11
The dtml-tree Tag Attributes

Attribute Requires an Argument Description

Name Yes Used to specify the root object (usually
a folder) of the tree: defaults to the
current folder

Expr Yes Inserts an expression that evaluates to
the value to be inserted

Branches Yes The name of the method used to find
the objects to be included on the tree:
defaults to tpValues (a method defined
by container objects)

Branches_expr Yes Performs the same function as the
branches attribute but uses an
expression rather than the name of a
method.

Id Yes The name of a method or attribute used
to determine the id of an object for the
purposes of calculating tree state:
defaults to tpId

url Yes The name of a method or attribute used
to determine the url of an object:
defaults to tpURL

leaves Yes The name of a DTML Document or
Method rendered when a node without
a child is expanded

header Yes The name of a DTML Document or
Method rendered at the beginning of
every expanded branch

footer Yes The name of a DTML Document or
Method rendered at the end of every
expanded branch

nowrap No If branch text exceeds available space,
this attribute is used to truncate text
instead of wrapping it

sort Yes Sorts branches based on the name of
the specified attribute

reverse No Causes the order of the branches to be
reversed

c4857-3 Ch04.F 3/1/02 9:38 AM Page 112

113Chapter 4 ✦ Document Template Markup Language

Attribute Requires an Argument Description

assume_children No Assumes that all nodes have children:
useful for large trees because sub-
objects will only be looked up when the
node is actually expanded

single No Allows only one branch to be expanded
at a time; all other branches are closed
when a new one is opened

skip_unauthorized No Skips nodes that the user is not
authorized to see; this attribute prevents
an unauthorized error

urlparam Yes Specifies a query string to be included
as branches are expanded and
collapsed

Now that you have seen a couple of simple trees, lets take a look at some of the

more advanced attributes of the dtml-tree tag.

Changing the type of objects in your tree
By default, the dtml-tree tag uses a method called tpValues to determine which

objects are used to build your tree. This method is defined by most container

objects such as folders, user folders, and even the Control Panel object. (This

method can also be defined by objects you build, but that topic is covered later in

this book.)

The branches attribute enables you to specify the name of the method used to gen-

erate a list of objects instead of tpValues. The method objectValues is often used

with the branches attribute. The following example generates a tree using all of the

objects it finds, not just container-like objects:

<dtml-tree branches=”objectValues”>
<dtml-var getId>

</dtml-tree>

Alternately, the branches_expr attribute enables you to use an expression to the

determine which objects are used to build your tree. This is useful if you only want

to specify a list of certain objectValues to be used instead of all objectValues.

<dtml-tree branches_expr=”objectValues([‘Folder’,’File’])”>
<dtml-var getId>

</dtml-tree>

This dtml-tree tag will build a tree of folders and file objects. All other object types

are ignored when the tree is built.

c4857-3 Ch04.F 3/1/02 9:38 AM Page 113

114 Part I ✦ Getting Started with Zope

Inserting leaves, headers, and footers
The leaves, header, and footer attributes of the dtml-tree tag enable you to insert

the contents of other DTML Documents and Methods into the branches of your

tree. The leaves attribute enables you to specify a document or method to be ren-

dered when a node without a child is expanded. In other words, the contents of the

document or method are displayed when an object that does not contain other

objects is expanded. This can be useful for displaying the contents of a database.

The branches of the tree are used to organize the content of the database and the

leaves are used to display actual data.

The header and footer attributes can also be used to insert the content of other

documents into your tree, but they are only displayed in branches that contain

other sub-branches. The header document is displayed before the list of objects is

any expanded branch of your tree that contains other sub-branches. The footer
attribute performs the same function, except that its document is displayed after

the list of contents.

Changing how your tree is displayed
The sort attribute of the dtml-tree tag works the same way as the sort attribute of

the dtml-in tag. The value of the sort attribute is used to sort the list of objects in

each branch before the objects are displayed in the tree. If a list of objects is used

to generate your tree (as opposed to a result set from a database), the objects are

sorted according to their id by default. The objects can be sorted by any property

they all have in common, but generally you want to sort the objects in your tree

according to the same property you are using to display them.

The reverse attribute is fairly straightforward. Including the reverse attribute in a

dtml-tree tag reverses whatever order the sequence already has and can be used

with the sort attribute, but does not require it.

The assume_children attribute is unique to the dtml-tree tag. If this attribute is

true, Zope assumes that all of the objects in your tree have children, meaning that

initially every object in the tree will have a plus (+) sign next to it. Usually, when

Zope displays a tree, it looks in the current container (usually a folder object) and

returns whatever you told it look for. It then has to look at each object individually

to see if that object contains any other objects This is how Zope knows to put the

plus (+) sign next to each object that can be expanded. Another way to think of this

is to say that Zope always looks one level deeper into the tree than it is actually

showing you. If you are building a large tree, the assume_children attribute can be

used to save some system resources by not looking at each item being displayed to

see if it contains any other objects. Zope simply assumes that everything is expand-

able and won’t look to see whether a particular branch actually contains anything

until you try to expand it.

Passing variables within your tree
The urlparam attribute is used to pass along any variables that exist when your tree

is first generated. The value of the urlparam attribute is whatever query string you

c4857-3 Ch04.F 3/1/02 9:38 AM Page 114

115Chapter 4 ✦ Document Template Markup Language

want to pass along every time your tree is redrawn when a branch is expanded or

collapsed. The use of this attribute is somewhat limited because Zope simply

passes along whatever string you specify as the value for the urlparam attribute.

Expressions, and therefore the dynamic insertion of variables, are not possible with

this attribute under the current version of Zope.

Current item variables
Zope provides several variables with the dtml-tree tag that are used to access

information about the current item in the sequence of objects displayed in your

tree. These current item variables are described in Table 4-12.

Table 4-12
The dtml-tree Tag Current Item Variables

Variable Description

tree-item-expanded True if the current item is expanded

tree-item-url The URL of the current item relative to the URL of the DTML
Document or Method in which the dtml-tree tag appears

tree-root-url The URL of the DTML Document or Method in which the dtml-
tree tag appears

tree-level The depth (in expanded nodes) of the current item, items at
the top of the tree have a level of 0

tree-colspan The total number of columns that the table is currently using
to display the tree (equal to one greater than the current
number of expanded nodes)

tree-state The tree state expressed as a list of ids and sub-lists of ids

These variables are similar in function to the current item variables of the dtml-in
tag. They are used to determine or display information about each object displayed

in your tree. The tree-item-expanded variable is used when the tree is created to

see whether the object being displayed is expanded or not. This, among other pos-

sibilities, enables you to visually differentiate expanded items form collapsed ones.

Take a look at the following example:

<dtml-tree branches=”objectValues”>
<dtml-if tree-item-expanded>
<dtml-var getId>

<dtml-else>
<dtml-var getId>

</dtml-if>
</dtml-tree>

c4857-3 Ch04.F 3/1/02 9:38 AM Page 115

116 Part I ✦ Getting Started with Zope

This example illustrates a simple use of the tree-item-expanded variable to test

whether each item is expanded as it is being generated and to render it in a slightly

larger font if it is.

At some point, you may want to turn the objects in your tree into hyperlinks to

other documents. The tree-item-url and tree-root-url are useful for generating

dynamic relative and absolute URLs to the objects displayed in your tree. The fol-

lowing example is similar to the Navigator frame in the Zope management interface

in that each item in the tree is a hyperlink to either its Contents or Edit tab, depend-

ing on the type of object:

<dtml-tree branches=”objectValues”>
<dtml-var getId>

</dtml-tree>

Control variables
The dtml-tree tag offers a couple of variables that are used to control the state

of the entire tree. The expand_all and collapse_all variables are described in

Table 4-13.

Table 4-13
The dtml-tree Tag Control Variables

Variable Description

expand_all If set to a true value, this variable causes the entire tree to be expanded

collapse_all If set to a true value, this variable causes the entire tree to be collapsed

There isn’t much mystery to the use of these variables, but the following example

shows how they can be used to expand or collapse your entire tree with the click of

a hyperlink:

<dtml-var standard_html_header>

<P>
Expand
 |
Collapse

</P>

<dtml-tree>
<dtml-var getId>

</dtml-tree>

<dtml-var standard_html_footer>

c4857-3 Ch04.F 3/1/02 9:38 AM Page 116

117Chapter 4 ✦ Document Template Markup Language

The dtml-sendmail and dtml-mime Tags
The dtml-sendmail tag is used to generate and send dynamic e-mail messages in

DTML or Python scripts. The dtml-mime tag encodes data using MIME

(Multipurpose Internet Mail Extensions) so that it can be sent as an attachment

with a message generated by the dtml-sendmail tag.

To send an e-mail with the dtml-sendmail tag, you must specify either the MailHost
object or the address of the SMTP server that you want to use to send the message.

Creating dynamic e-mail messages
Although it can be used in many different ways, the dtml-sendmail tag is often used

to dynamically generate and send an e-mail using data from a HTML form. In the fol-

lowing example, we assume a customer has already filled out a request form asking

to receive an online newsletter. The form posts to the following method, which gen-

erates the e-mail and assures the customer that his or her message has been sent:

<dtml-var standard_html_header>

<dtml-sendmail mailhost=”MailHost”>
To: editor@moosenews.com
From: <dtml-var e-mail>
Subject: Moose News Magazine

I would like to subscribe to Moose News Magazine!
Name: <dtml-var first_name> <dtml-var last_name>
Address: <dtml-var address>
Phone: <dtml-var phone>
E-mail: <dtml-var e-mail>
</dtml-sendmail>

<H1>Thank you <dtml-var first_name>!</H1>
<p>Your request has been sent to the editor.</p>

<dtml-var standard_html_footer>

There are a few things to notice about how the dtml-sendmail tag is written. First,

the content of the tag is broken into two parts: the mail headers and the body of the

message. Although the dtml-sendmail tag supports all of the standard mail headers

(To, From, Subject, Cc, Bcc, and Reply To), you must specify a value for at least the

To, From, and Subject mail headers. Also note that the mail headers and the rest of

the contents of the tag are separated by a line break. This is used to identify where

the body of the message begins. Although the contents of the dtml-sendmail tag

can contain additional line breaks, Zope uses the first one it finds to start the body

of the e-mail message. Also, the body of the message is formatted as though it were

in a HTML <pre> tag. In other words, the body of the message will be displayed

exactly as it is typed, including all additional spaces and line breaks between

words. Lastly, the dtml-sendmail tag itself does not generate any output the current

c4857-3 Ch04.F 3/1/02 9:38 AM Page 117

118 Part I ✦ Getting Started with Zope

document. When the method in this example is displayed to the customer, the cus-

tomer will only see the text that thanks him or her for filling out the form.

Notice also that the body of the message in this example contains a dtml-var tag.

Any DTML tag can be used inside a dtml-sendmail tag to dynamically generate the

body of the message.

All valid attributes of the dtml-sendmail tag are described in Table 4-14. If used,

each attribute does require some kind of argument to be specified.

Table 4-14
The dtml-sendmail Tag Attributes

Attribute Description

Mailhost This attribute specifies the id of the mailhost object that will
deliver the message; not to be used with the smtphost attribute

Smtphost This attribute specifies the address of the SMTP server that will
deliver the message; not to be used with the mailhost attribute

Port If the smtphost attribute is used this attribute specifies the port
number to connect to; the default value of 25 will be used if the
port attribute is not specified.

Mailto The e-mail address of the recipient of the message or list of
address separated by commas

Mailfrom The e-mail address of the sender of the message

Subject The subject of the message

Sending attachments
The dtml-mime tag is used to send attachments with the dtml-sendmail tag. In the

next example, a dtml-in tag is used to iterate through a result set of subscriber

information generated by the ZSQLMethod listSubscribers. An individualized

e-mail message is generated with a newsletter attachment and sent to each sub-

scriber in the sequence.

<dtml-in listSubscribers>

<dtml-sendmail mailhost=”MailHost”>
To: <dtml-var e-mail>
From: editor@moosenews.com
Subject: Moose News Magazine
<dtml-mime type=text/plain encode=7bit>

c4857-3 Ch04.F 3/1/02 9:38 AM Page 118

119Chapter 4 ✦ Document Template Markup Language

Hi <dtml-var first_name>,
Here is this month’s copy of Moose News Magazine. Enjoy!

<dtml-boundary type=text/plain disposition=attachment
encode=base64><dtml-var newsletter></dtml-mime>

</dtml-sendmail>

</dtml-in>

If you compare the text in this example to the previous dtml-sendmail example, you

may notice that using the dtml-mime tag changes a few things. First, there is no line

break between the mail headers and the open dtml-mime tag. The first line break is

inside the dtml-mime tag, and therefore, so is the body of the message. For most

e-mail messages, you may need to set the encode attribute of the dtml-mime tag to

“7bit.” This means that the body of the e-mail messagse will not be encrypted. After

the body of the message, there is a dtml-boundary tag that indicates the next part of

the e-mail message is an attachment. A dtml-var tag is then used to insert the file

you want to attach to the e-mail. Notice also that there are no line breaks between

the dtml-boundary tag, dtml-var tag and the close dtml-mime tag. Any line breaks

between these tags will be encoded and sent along with the MIME part of the e-mail.

The dtml-mime tag has three attributes, which are listed in Table 4-15. The dtml-
boundary tag uses the same attributes as the dtml-mime tag.

Table 4-15
The dtml-mime and dtml-boundary Tag Attributes

Attribute Description

Type Sets the MIME header, Content-Type, of the subsequent data

Disposition Sets the MIME header, Content-Disposition, of the subsequent
data (If disposition is not specified in a mime or boundary tag
Content-Disposition MIME header is not included.)

Encode Sets the MIME header, Content-Transfer-Encoding, of the
subsequent data (f encode is not specified, base64 is used as
default. The options for encode are: base64, uuencode,
x-uuencode, quoted-printable, uue, x-uue, and 7bit. No
encoding is done if set to 7bit.)

c4857-3 Ch04.F 3/1/02 9:38 AM Page 119

120 Part I ✦ Getting Started with Zope

Summary
Chances are, the reason you bought this book in the first place has something to do

with a desire to build a powerful and dynamic Web site that will meet and exceed all

of your business or personal Internet needs. If you’ve gotten this far into the book,

we shouldn’t have to spend any more time shouting from our soapbox about why

Zope is great platform for building such a Web site. Although DTML is by no means

the answer to every problem, most of Zope and the current add-on products rely

on it.

DTML provides you with a powerful way to separate the presentation of your Web

site from the logic that makes it work. It also enables two different groups of people

(content managers and developers) to manage either task. This capability, com-

bined with a large variety powerful options and special variables, makes DTML one

of the most powerful tools in your Zope toolbox.

✦ ✦ ✦

c4857-3 Ch04.F 3/1/02 9:38 AM Page 120

Object-Oriented
Programming
and Python

This chapter is intended as a brief introduction to the

Python programming language. As Zope is written in

Python, some of the obscure syntax that you encounter in

DTML pages will become obvious. Additionally a good work-

ing knowledge of Python will help you conquer certain tasks

more easily or accomplish ones that are just plain impossible

to do with a template language.

Python is an interpreted scripting language. This means that it

is not necessary to compile Python files in order to get them

to run on the computer. In this respect it is similar to the Perl

programming language.

Python is object-oriented. This means that besides the proce-

dural (step-by-step) features of most programming languages,

it has features that enable you to define the problem you want

your program to solve in terms of objects, which can have

their own traits and data attached to them. If you’re not

already familiar with object-oriented programming, Python is

one of the easiest ways to learn about it. In this respect it is

often compared to both the C++ and Java programming lan-

guages. Python is as or more object-oriented than any other

language, and makes it easier to apply an object-oriented

methodology to your programming efforts.

Python is portable. The examples in this chapter should work

on any platform for which Python is available with little or no

changes to the examples. This means that the programs that

you write using Python are write-once-run-anywhere (WORA),

and are even more portable than Java programs in that

regard. One practical upshot of this is that any enhancements

you make to Zope will almost certainly work regardless of

what platform on which you’re running Zope, whether it’s a

Windows variant (95/98/NT/2000), Linux, Sun Solaris, or one

of the BSD variants.

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using the interactive
interpreter

Running Python
commands from a file

Variables

Types and operators

Control statements

Understanding
namespaces

Modules and
packages

Classes and objects

Exception handling

✦ ✦ ✦ ✦

c4857-3 Ch05.F 3/1/02 9:38 AM Page 121

122 Part I ✦ Getting Started with Zope

Using the Interactive Interpreter
Python comes bundled with the pre-compiled versions of Zope. Assuming that you

have followed the instructions for installing Zope in Chapter 2, you already have a

copy of Python installed on your computer and you are ready to begin working. If

you have not yet installed Zope, please read Chapter 2.

Alternatively, you can visit the Python Web site at http://www.python.org and
follow the instructions there for downloading and installing Python on your com-
puter. Be advised that directories and paths we refer to in this chapter assume that
you are working with a copy of Python that was installed with a pre-built version
of Zope. If you have installed a separate version of Python or placed Zope in a
directory other than the default, you will have to take that into account while read-
ing our examples.

How you start the Python interpreter depends on what operating system you are

running.

If you are using Windows (Win95/98/NT/2000), open the MS-DOS prompt and follow

these steps:

C:\>cd “c:\program files\website\bin”
C:\Program Files\WebSite\bin>python

If you are running Linux (or other UNIX variant) follow these steps from the console

or a terminal window:

$ cd /usr/local/Zope/bin
$./python

Python will start up and will print a short copyright notice. It then displays the

Python command prompt similar to the one shown here:

Python 1.5.2 (#0, Jul 30 1999, 09:52:18) [MSC 32 bit (Intel)]
on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

The interpreter lets you evaluate the results of Python statements directly from

your terminal. This is a great method for learning and/or experimenting with new

Python commands. To get a feel for how the interpreter works, type 1001 + 1 and

press Enter. Python will evaluate the expression you entered and will return back a

result of 1002:

C:\Program Files\WebSite\bin>python
Python 1.5.2 (#0, Jul 30 1999, 09:52:18) [MSC 32 bit (Intel)]
on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> 1001 + 1
1002
>>>

Note

c4857-3 Ch05.F 3/1/02 9:38 AM Page 122

123Chapter 5 ✦ Object-Oriented Programming and Python

The interactive interpreter has two prompts to indicate the “mode” the interpreter

is in. The first is the one you’ve seen in the previous example: >>>. The second

prompt type is the “continuation” prompt, which looks like this: Python uses

the two types of prompt to indicate whether it is expecting further input before a

statement can be evaluated. The 1001 + 1 statement did not require any further

input in order to be evaluated, so it was evaluated and the result displayed.

Let’s take a look at a statement that requires a continuation before it can be evaluated:

>>> x = “eggs and spam”
>>> for y in x:
... print y, “ “,
...
e g g s a n d s p a m
>>>

When entering this statement into the interpreter, make sure that you precede the
print y, “ “, with at least one space (or more). It doesn’t matter how many
spaces, so long as the print line is indented more than the for statement. We’ll
explain later in this chapter how and why indentation is important to Python.

The assignment of “eggs and spam” to x did not require a continuation in order to

be evaluated, but also did not produce a result.

The second statement, for y in x: is a multi-line statement (in this case, a loop), as

indicated by the colon at the end of the line. Accordingly, on the subsequent line,

the prompt changed to ... and you were required to indent the statement before

you entered it (in fact you would have received an error I you didn’t). print y, “ “.

The statement, print y, “ “, will be evaluated once for every step through the loop,

printing the current offset into the string x and a space.

Finally, pressing Enter key at the second continuation prompt without any further

input indicates that the for statement is now complete and can be evaluated. The

indentation of the second line of the for statement is very significant. Python uses

indentation to identify blocks of code that belong to the same statement. A state-

ment sequence is identified by its indentation level, so that when the indentation

returns to its previous level, the interpreter assumes that the current sequence has

ended. Because statements of various sorts can be nested within each other, inden-

tation is very significant in determining to which statement a particular line of code

belongs.

The interpreter is more than a glorified calculator; it can be used to perform just

about any command that you would write in a Python program. Before we get into

the various different commands you can use, we will show you how to write and

run your first Python program. For now you need to exit the interpreter. If you are

using Windows, press ^Z and hit the Enter key. If you are using Linux, press ^D.

Python will return you to your operating system’s respective command prompt.

Caution

c4857-3 Ch05.F 3/1/02 9:38 AM Page 123

124 Part I ✦ Getting Started with Zope

Running Python Commands from a File
The program we are going to write, if you have not guessed it by now, is the venera-

ble “Hello, world!” program that is used to introduce most computer languages.

This program when invoked will simply print out the words “Hello, world!” on the

screen and then quit. Creating this program quickly introduces you to the process

of writing and running a program in Python.

To create this program, open your favorite text editor and type this line of code

exactly as shown:

print “Hello, world!”

Save this as a plain text file named hello.py, and exit your editor.

That’s it, you have written your first Python program! Now you need to run it to see

what it does. You will invoke your program in a similar fashion to starting the inter-

preter. Go back to your Command Prompt or Terminal Window and change the cur-

rent directory to the directory where you saved hello.py. Type in the complete

path to the Python interpreter and pass hello.py as an argument.

Saving Time Running Python

Having to type the full path to the Python interpreter to invoke a program every time gets
tedious. Fortunately there are several methods, operating system-dependent of course, that
can minimize the amount of typing you need to do in order to run a program.

The first thing you should do is to make sure that the Python executable is in your path. This
way you can just type python at the prompt instead of the full path to the program. If you
are using windows the path to Python should be “c:\program files\website\bin”. So,
add the following line to your autoexec.bat file, located in the root directory of your
C:\ drive:

PATH=%PATH%;”C:\Program Files\WebSite\bin”Making this change will let you run Python
programs like so:

C:\>Python hello.py

On Windows NT, you can go a step further and eliminate the necessity of specifying the .py
extension. You do this by utilizing the PATHTEXT environment variable. Check to see what
extensions are currently executable:

C:>\echo %PATHTEXT%
.exe;.bat;.cmd

C:\>

c4857-3 Ch05.F 3/1/02 9:38 AM Page 124

125Chapter 5 ✦ Object-Oriented Programming and Python

You can add Python .py files to this list like so:

C:\>set PATHTEXT=%PATHTEXT%;.py

And then test your change:

C:\>echo %PATHTEXT%
.exe;.bat;.cmd;.py

Voilà! You can now run Python scripts from the command line, just by using the following
command under Windows NT:

C:\>python hello

Most versions of Linux already have Python installed. Testing this is fairly simple, just type
python at the command prompt:

$ python

>>>Python 1.5.2 (#1 Aug 25 2000, 09:33:37) [GCC 2.96 20000731
(experimental)] on Linux-i386
>>>

Making your Python scripts executable is a fairly simple procedure. First, you need to tell the
UNIX shell to use the Python interpreter when running the script. This is done by making
the following modification at the beginning of your script:

#! /usr/bin/python

print “Hello, world!”

The string #! at the beginning of your script will tell the UNIX shell where to find the inter-
preter for the rest of the script. In this case, the shell will look for the Python interpreter at
/usr/bin/python, which is the standard location for Red Hat Linux–based distributions.
Your distribution may place the Python in another location.

Next, you need to change the permissions on the hello.py file itself in order for the shell
to recognize it as an executable file.

In the same directory as the hello.py file, execute the following command:

$ chmod 755 hello.py

This will set the permissions on the file as follows: The file owner can read, write, or execute
the file; other users in the owners group can read or execute the file, and users not in the
owners group can also read or execute the file.

Once this is done you can type the script name directly at the prompt.

$./hello.py
Hello, World!
$

c4857-3 Ch05.F 3/1/02 9:38 AM Page 125

126 Part I ✦ Getting Started with Zope

For example, in Windows, if you saved hello.py to c:\temp you would run your pro-

gram like this:

C:\>cd temp
C:\temp>”c:\program files\website\bin\python” hello.py
Hello, world!

C:\temp>

If you are using Linux and you saved hello.py to /tmp you would run the program

like this:

$ cd /tmp
$ /usr/local/Zope/bin/python hello.py
Hello, world!
$

You can also run your script directly in the interactive interpreter. To do this, start

the interpreter as we did in the previous section. Make sure the current directory is

the same place where your hello.py file is, first. Once you are at the Python prompt

type import hello. Python will print out the words, “Hello, world!” as in the previ-

ous examples, and will then redisplay the Python prompt >>> and wait for you to

enter another command.

Notice that you did not need to type the file extension .py. In fact, if you did, Python

would print out ImportError: No module named py. The reason for this is that the

period, also known as the “dot,” has a special meaning to Python. It is used for

attribute look up on an object. We explain what this means in the section regarding

objects.

That is all there is to writing and running Python scripts. Of course printing out a

bunch of words on a screen is pretty pointless by itself. In the next sections we

discuss the other fundamental building blocks of any programming language;

variables, control statements, functions, and so on.

Variables
One could make the generalization that all programs do the same thing. They take

data in the form of input (usually from a human via a keyboard and mouse, but not

always) and perform a series of calculations or transformation on it and then out-

put the results (normally to a monitor but not always). The program you created in

the previous section was useless because every time you ran the program it would

do the exact same thing. In order for a program to have any merit it needs to inter-

act with data. Data can come from a variety of sources; a user could type a key on

the keyboard, click a mouse button or the data could come from a file or across the

network. Programs do not always interact with one source of data either, actually

most programs work with several sources of data to get the job done.

c4857-3 Ch05.F 3/1/02 9:38 AM Page 126

127Chapter 5 ✦ Object-Oriented Programming and Python

So you as the programmer need a way to tell the computer where to get its data.

You need the ability to take information and ferret it away for later reference. This

is what variables are for.

Consider the Hello, world! program that you created earlier. Pretend that you

need to change this program so that it will say hello to your friend Sally. You could

change your program to print “Hello, Sally!”, which would get the job done. But

would you want to rewrite your program every time that you got a new friend. What

you ideally would like is to have your program say hello to that person. This way

you only have to write your program once. The following code contains all the

change necessary to make your program ask for a name and then say hello.

name = raw_input(“What is your name? “)
print “Hello, “ + name + “!”

Create a new file with the above listing in it. If you run this code it will look some-

thing like this.

$ python hello2.py
What is your name? Bob
Hello, Bob!

Here is an explanation of what each line of code is doing. raw_input is a built-in

Python function that will prompt a user with a specified string, in this case,

“What is your name?” It then waits for the user to type a few keys and press Enter.

Whatever the user has entered will be stored in the variable, name. The next line

contains the print statement that is similar to our “hello world” example. The differ-

ence here is that we are constructing a new string by adding the string Hello to

whatever is in the name variable. You have also tacked on an exclamation point to

the end, so that the user knows that your program is really excited to great them.

In the previous example you used the name variable to hold the users input until

your program had the chance to print it. One thing to note is that you could have

called the variable anything you wanted. You could have just as easily written your

program like this:

user = raw_input(“What is your name? “)
print “Hello “ + user + “!”

All you need to do is store that results of raw_input into a legally named Python

variable and then update your print statement to use the same variable. A Python

variable must be a single word (no spaces) start with a letter or the underscore

(“_”) and can have any number of alpha or numeric characters.

So, for example, the following are legal variable names:

user
your_name
name1

c4857-3 Ch05.F 3/1/02 9:38 AM Page 127

128 Part I ✦ Getting Started with Zope

While the following are not

2name
your name
*!#%user

If you try to use a variable name with illegal characters Python will stop the pro-

gram at the line in your code where you first tried to use the illegal variable and

will complain that you have a SyntaxError.

Types and Operators
Everything in Python is implemented as an object. Numbers, characters, arrays,

and even functions are objects. The rich set of built in object types is one of the

things that make Python such a pleasure to program in. Unlike lower-level lan-

guages, with Python you do not have to manage your own memory and strings and

arrays do not have to be initialized to a specific size prior to their use (they grow

and shrink as needed without intervention from you). Nor do you need to worry

about crashing your computer because you improperly initialized a variable or

inadvertently wrote to the wrong location in memory. If you are a user of a higher-

level language such as Perl or Visual Basic you probably take some of these fea-

tures for granted, but you will find that some of the features that are uniquely

Python are so convenient you will wonder how you lived without them.

Numbers
Python supports the usual number types that you find in other programming lan-

guages such as integers, long integers, and floating points. The different numeric

types refer to the largest value that a number can hold and how precise (the num-

ber of digits to the right of the decimal point) the number is.

Table 5-1 lists the different number types and how they can be expressed in Python.

Table 5-1
Numeric Types

Type Literal

Integer 0, -1, 10

Long integer 10923809128309019832L

Float 2.1, 1.0, 3.14e-10, 4E210, 4.0e+210

Octal Notation 012

Hex 0xff, 0x1A

Complex 23+10j, 8j, 4+1.1j

c4857-3 Ch05.F 3/1/02 9:39 AM Page 128

129Chapter 5 ✦ Object-Oriented Programming and Python

Understanding the number syntax
Integers are written as either positive or negative numbers without a decimal point.

They are limited in size based on your hardware. Refer to the sidebar “Determining

How Large an Integer Can Be” to find out what the limits are for your machine.

Examples of using integers:

>>> x = 1
>>> x + 2
3

Integers can also be expressed in either octal or hexadecimal notation. To express a

number in hex format you would prefix your number with a 0x. Similarly, you can

express an integer in octal format by prefix the number with a 0. You cannot write a

normal base 10 number starting with a 0, because Python interprets it as an octal.

For example:

>>> x = 010

is equivalent to writing

>>> x = 8

Normally Python will raise an OverflowError exception when you try to create an

integer bigger than what is allowed for your particular architecture. If you have the

need for numbers that are bigger than the limit you can use a long integer. The dif-

ference between long integers and normal ones is that the only size limit is based

upon the amount of available memory, and are slightly less efficient. To create a

long integer you add either a lower or uppercase L to the end of the number. (It is

usually recommended that you use the capital L because the lowercase L some-

times looks like the number one.)

Floats, on the other hand, are numbers that contain decimal points and exponents.

Exponents are denoted with either an uppercase or lowercase E. The compiler that

was used to compile your version of Python determines the precision of a float;

generally you do not need to worry about precision unless you are doing calcula-

tions that are used in scientific applications and the like.

Complex numbers are composed of a real and an imaginary part. To create a com-

plex number you add either a lowercase or uppercase J to your number. The plus

symbol is used to denote where the real number ended and the imaginary one

begins. Once you have assigned a complex number to a variable you can access

the real and imaginary parts like so:

>>> x = 2+1j
>>> x.real
2.0
>>> x.imag
1.0

c4857-3 Ch05.F 3/1/02 9:39 AM Page 129

130 Part I ✦ Getting Started with Zope

Evaluating numbers
You perform calculations on numbers by using the operators in Table 5-2. If you

perform a calculation using two different types of numbers Python will automati-

cally convert the number to the larger type. If you have an integer and a long

Python will convert both numbers to a long before performing your calculations.

Table 5-2
Numeric Operations

Operation Result

x + y sum of x and y

x – y difference of x and y

x * y product of x and y

x / y quotient of x and y

x % y remainder of x / y

-x x negated

+x x unchanged

x < y 1 (true) if x is less than y, 0 if x is greater or equal to y

Determining How Large an Integer Can Be

The largest number that an integer can contain depends on your system architecture. For
instance, on a 32-bit Intel machine (running either Windows or Linux) the largest positive
integer you can have is 2,147,483,647 and the largest negative number is –2,147,483,648.
If you try to create a number larger or smaller than these limits Python will raise an
OverflowError.

If you are not running an Intel-based machine you can determine the maximum positive
size for yourself by running this command from the Python interpreter.

>>> import sys
>>> sys.maxint
2147483647

To determine the largest negative number (assuming that you ran the example above and
already imported the sys module) you would type.

>>> -sys.maxint-1

Add one to sys.maxint to see how Python handles a number larger than the maximum.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 130

131Chapter 5 ✦ Object-Oriented Programming and Python

Operation Result

x <= y 1 if x is less than or equal to y, 0 if x is greater than y

x > y 1 if x is greater than y, 0 if x is less than or equal to y

x >= y 1 if x is greater than or equal to y, 0 if x is less than y

x == y 1 if x equals y, 0 if x does not equal y

x != y 1 if x does not equal y, 0 if x equals y

x <> y 1 if x does not equal y, 0 if x equals y

x and y if x is false, then x, else y

x or y if x is false, then y, else x

These operations are straightforward and work like you would expect them to work

in other languages. Here are some examples and their result. You can try these out

for yourself by typing them directly into the Python interpreter.

Adding to integers:

>>> 1 + 1
2

Adding an integer to a float:

>>> 1 + 13.2
14.2

Python will evaluate your expressions according to the order of precedence. This

means that if your expression contains addition and multiplication, the multiplica-

tion is evaluated first before the numbers are added. You can use parentheses ()
to control the order in which numbers are evaluated. Consider the following

examples.

Addition and multiplication without grouping:

>>> 1 + 2 * 3
7

Here is the same example but this time we control the order in which the expres-

sion is evaluated using parentheses. (Notice that you get a completely different

result.)

>>> (1 + 2) * 3
9

c4857-3 Ch05.F 3/1/02 9:39 AM Page 131

132 Part I ✦ Getting Started with Zope

When dividing integers the result is an integer. Python does not do any rounding it

ignores the remainder. So for example:

>>> 1 / 2
0
>>> 3/2
1
>>> 4/1
4

To discover what the remainder is you can you can use the modulus operator %. For

example, 20 divided by 7 is 2 with a remainder of 6. To find both these numbers you

would first divide then perform the modulus operation.

>>> 20 / 7
2
>>> 20 % 7
6

Alternatively, you can include a float in your expression and Python will return the

results as a decimal:

>>> 20 / 7.0
2.85714285714

Manipulating numbers using Python’s built-in functions
The following list contains Python’s built-in functions for manipulating numbers:

abs(x) Returns the absolute vale of x

complex(real [, imag]) Creates a complex number, using real and

imaginary components

divmod(x, y) Returns the quotient and remainder of long

division as a tuple. For integers, the tuple

(x / y, x % y) is returned. Floating point

numbers return (math.floor(x / y), x % y)

float(x) Returns a floating point number

hex(x) Returns a hexadecimal string

long(x) Returns a long integer, if given a number or a

string

max(seq [, arg1, ...]) For a single sequence argument seq, returns

the largest item in the sequence. If supplied

with multiple arguments, returns the largest

argument.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 132

133Chapter 5 ✦ Object-Oriented Programming and Python

min(seq [,arg1, ...]) For a single sequence argument seq, returns

the smallest item in the sequence. If sup-

plied with multiple arguments, returns the

smallest argument.

oct(x) Returns an octal string

pow(x, y [, z]) Returns x ** y. if z is supplied, returns

(x ** y) % z

round(x [,y]) Returns the result of rounding a floating-

point number x to the closest multiple of

10^y. If y is not supplied, y defaults to a

value of 0.

Sequences
Python has a “family” of types called sequences. There are three sequence types:

✦ Strings

✦ Lists

✦ Tuples

All sequences are ordered collections of objects. Strings are immutable ordered col-

lections of characters; lists are mutable ordered collections of arbitrary objects;

and tuples are immutable ordered collections of arbitrary objects.

All sequences have some common methods and operations:

✦ Elements of the sequence can be accessed by index: s[i]

✦ A subset of the elements can be returned using slice notation: s[i:j]

✦ The number of elements in the sequence can be returned: len(s)

✦ The value of the element with the largest value can be returned: max(s)

✦ The value of the element with the smallest value can be returned: min(s)

If you have programmed with other languages, you are probably familiar with all

the previous notations except for slicing. Have no fear. We’ll explain this powerful

feature under the section dealing with lists.

Strings
Strings are used for manipulating text and binary data. They are a sequence of char-

acter elements surrounded by either double or single quotations. Python does not

have a built-in type specifically designed for the handling of single characters as

some other programming languages do. The letter “a” is a sequence 1 item long.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 133

134 Part I ✦ Getting Started with Zope

Accessing a particular character from within a string is fairly simple:

>>> x = “spam and eggs”
>>> x[6]
‘n’
>>>

You indicate which element you want out of the sequence by specifying its index

within square brackets. Notice how the x[6] operation returns the seventh element

in the string. This is because sequence element indexes begin with 0 not 1. So a ten-

element sequence’s last element would be accessed using s[9].

Strings can be created in one of four ways in Python.

You can enclose a string in double quotes as in the previous example:

>>> text = “I’m a string!”
>>> print text
I’m a string

Also notice that a string is created by using double quotes in the assignment.

Certain characters in a string have special meanings to Python. For example, the

double quote character tells Python that you are either starting or ending a string.

If your string contains double quotes as one of its characters you must prefix the

\ character to it so that Python knows that the double quote is part of your string.

For example:

>>> quote = “\”A penny saved is a penny earned.\” – Ben Franklin”
>>> print quote
“A penny saved is a penny earned.” – Ben Franklin

Having to escape all of your double quotes can be tedious if you are creating a

string that contains a lot of them. This is why Python also lets you create a string

using single quotes. When you use single quotes you do not need to escape the

double quotes. You will, however, need to escape all of your single quotes.

>>> text = ‘I\’m a string!’
>>> print text
I’m a string!

There is no difference between strings created with either single or double quotes.

Python provides this feature purely for your convenience and because it is easier

to read strings that are not cluttered with a bunch of back slash characters. If you

spend any time reading other peoples Python code you will notice that an author

will use both methods indiscriminately.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 134

135Chapter 5 ✦ Object-Oriented Programming and Python

Your string cannot span multiple lines when using the double or single quote

method of creating strings. For example, if you try starting a string with the first

double quote but press enter instead of closing the string with the second quote

Python will raise a SyntaxError because it is expecting another quote before it

reads the next line

>>> “This string is missing the closing quote.
File “<stdin>”, line 1
“This string is missing the closing quote.

^
SyntaxError: invalid token
>>>

You have a couple options available to you if you want your string to span multiple

lines. Normally you do this to keep your code pretty — other programmers will

appreciate your thoughtfulness when they do not have to repeatedly scroll left and

right to read what you have written.

First you can use the backslash character to escape the end of the line. This tells

Python to continue your statement on the following line.

>>> x = “This string \
... spans two lines!”
>>> print x
This string spans two lines!

Once again Python has a more convenient method for inputting strings that span

multiple lines called triple quoting. As the name implies instead of opening and clos-

ing your code with one quote you enclose your quotes with three quotes (either

“”” or ‘’’) in a row. Your strings can then span an unlimited amount of lines as in

the following example:

>>> x = “””This is a triple quoted
... string. Not only can it span
... multiple lines. It can contain
... double quotes that do not need
... to be “escaped”.
... “””
>>> print x
This is a triple quoted
string. Not only can it span
multiple lines. It can contain
double quotes that do not need
to be “escaped”.

>>>

c4857-3 Ch05.F 3/1/02 9:39 AM Page 135

136 Part I ✦ Getting Started with Zope

Escape sequences
When you use the backslash (\) to escape a character you are telling Python to

change the meaning of the character following the backslash. From the previous

sections you have already seen two different uses of the backslash one to escape a

quote so that Python does not think that you want the string closed and the other

to tell Python to ignore the end of the line. Table 5-3 contains all of Python’s escape

codes.

Table 5-3
Character Escape Codes

Code Description

\\ Backslash

\’ Single quote

\” Double quote

\a Bell

\b Backspace

\e Escape

\000 Null

\n Newline

\v Vertical tab

\t Horizontal tab

\r Carriage return

\f Form feed

\0XX Octal value XX

\xXX Hex value XX

To get a feel for how these work, create a few strings in the interpreter. For

instance, to include a backslash in your string you need to escape it as well.

>>> s1 = “This string has a backslash (\\) in it.”
>>> print s1
This string has a backslash (\) in it.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 136

137Chapter 5 ✦ Object-Oriented Programming and Python

To include a newline in your string you would use \n. This makes the text wrap to

the next line when you print it.

>>> s2 = “This is the first line.\nThis is the second!”
>>> print s2
This is the first line.
This is the second!

The newline can be different depending on what platform it runs on. Under UNIX,
the newline is represented as the line feed character \n or the ASCII character
number 12. In Windows the newline is actually represented by two characters, the
carriage return \r or ASCII character 15 and then the line feed \n ASCII character
number 12. While on the Macintosh the newline is represented as just the carriage
return.

Formatting strings
There are several ways to format strings in Python. Perhaps the simplest to under-

stand is string concatenation. This is when you take two or more strings and add

them together to make a new string. For instance:

>>> s1 = “This is the first part of the string,”
>>> s2 = “ and this is the second.”
>>> s3 = s1 + s2
>>> print s3
This is the first part of the string, and this is the second.

If you wanted to add a number to your string you would first need to convert the

number to a string using Python’s built in str() function and then add the string

together.

>>> s1 = “I saw “ + str(10) + “ dead birds.”
>>> print s1
I saw 10 dead birds.

Python provides another method that you can use to format strings using the

% operator. Table 5-4 contains a list of all the string formatting codes. With the

% operator you can create new strings by first creating a format string (a string that

holds special markers that tells Python where you will be inserting objects) and

then use the % operator like you used the + operator to format a list of objects into

the string.

>>> s1 = “Format string %d” % 10
>>> print s1
Format string 10
>>> s1 = “A %s, %d, %f oh my!” % (‘string’, 5, 3.14)
>>> print s1
A string, 5, 3.14 oh my!

Note

c4857-3 Ch05.F 3/1/02 9:39 AM Page 137

138 Part I ✦ Getting Started with Zope

Table 5-4
String Formatting Codes

Code Description

%s String conversion of any object

%c Character conversion of an int

%d Decimal integer

%I Integer

%u Unsigned integer

%o Octal integer without a leading “0”

%x Hexadecimal integer without leading “0x”

%X Uppercase Hexadecimal integer

%e Floating point with exponent

%E Floating point

%f Floating point

%g Floating point with or without exponent

%G Floating point

%% Literal %

When Python sees the % in the format string it looks at the next character to deter-

mine how to format the next object in the list. There must be exactly the same num-

ber of format directives in the string as there are objects to format. If not, Python

will raise TypeError.

Not all objects can be converted to all types. Just about every object type in Python

can be converted to a string representation, but not all strings can be converted to,

say, a floating-point number.

>>> x = ‘2’
>>> x
‘2’
>>> x * 2
‘22’
>>> y = int(x)
>>> y
2
>>> y * 2
4

c4857-3 Ch05.F 3/1/02 9:39 AM Page 138

139Chapter 5 ✦ Object-Oriented Programming and Python

>>> x = ‘a 2’
>>> x * 2
‘a 2a 2’
>>> y = int(x)
Traceback (innermost last):
File “<stdin>”, line 1, in ?

ValueError: invalid literal for int(): a 2
>>>

Similarly, %f will not work correctly for s1 = “%f” % (x) if x is a string object, even

one that could be converted to a float:

>>> x = 2
>>> s1 = “%f” % (x)
>>> s1
‘2.000000’
>>> x = ‘2’
>>> s1 = “%f” % (x)
Traceback (innermost last):
File “<stdin>”, line 1, in ?

TypeError: illegal argument type for built-in operation
>>>

Lists
Lists are one of the real workhorses in Python. They are analogous to arrays in

other languages. There are some key differences. First, they are dynamic — they

automatically grow or shrink as needed and you do not have to specify its size

when you initialize it. Second, they can contain any combination of Python objects

even other lists (some languages only allow arrays to be all of one type).

Creating and filling lists
Lists are created either empty or containing objects. You create an empty list by

typing the open and close brackets with nothing in between them (for example, []).

Once this is done you can use the list’s append() method to dynamically add items.

The following code creates an empty list and then adds one of each object type that

you have learned so far (a number, a string, and an empty list):

>>> mylist = []
>>> mylist.append(1)
>>> mylist.append(“string”)
>>> mylist.append([])
>>> mylist
[1, “string”, []]

Although most programs you write will probably create empty lists in the

beginning and dynamically fill them in as your program runs, sometimes you need

to pre-populate lists with objects. To create a list containing elements you type

in the open bracket and then a comma-separated list of each variable name

c4857-3 Ch05.F 3/1/02 9:39 AM Page 139

140 Part I ✦ Getting Started with Zope

(or expression that evaluates to an object) followed by the closing bracket. Here

is a condensed version of the code you just wrote:

>>> mylist = [1, “string”, []]
>>> mylist
[1, ‘string’, []]

Working with elements in a list
As in other sequence types, list elements can be accessed individually by using the

sequence index notation. For example, mylist[1], will return the second element in

the list. The index of the first element is 0. So, if your list were 10 elements large,

the last element’s index would be 9. The difference between lists and strings in this

regard is that string sequence elements are single characters, and list sequence ele-

ments can be any type of object that exists in Python.

>>> mylist = [‘a’,’b’,’c’]
>>> print mylist[1]
‘b’

You can use an entry from a list just like you would use a normal variable. For exam-

ple, you can change the value of an element in place, using the same method you

use to set a variable to an object.

>>> mylist[1] = ‘d’
>>> print mylist[1]
d

To access the last element of a list under most programming languages requires

that you know the size of your list first. You then subtract one from the size to

access the last element, subtract two to access the second to last element and so

on. To determine the size of your list you use the built-in len() method, as in the

next example:

>>> mylist = [‘a’,’b’,’c’,’d’]
>>> size = len(mylist)
>>> print size
4
>>> print mylist[size -1]
d

Accessing the element at the end of a list is done so often Python provides a short-

cut. Normal indexing (using the elements position in the list to access it) is pre-

formed from the beginning to the end. Using a negative index you can access the

elements from end to beginning. To access the last element you would use an index

of –1, as in mylist[-1]. To access the second to last element use -2 and -3 to access

the third from last. You get the idea.

>>> mylist = [1,2,3,4]
>>> print mylist[-1]
4

c4857-3 Ch05.F 3/1/02 9:39 AM Page 140

141Chapter 5 ✦ Object-Oriented Programming and Python

A two-dimensional list is a list that has elements that are lists (say that three times

fast). To work with the second lists third element, you would type mylist[1][2]. A

list of any dimension (three, four, and so on) is accessed in the same manner. If this

seems confusing, the following example should clear things up:

>>> list2d = [[‘a’, ‘b’, ‘c’],
... [‘d’, ‘e’, ‘f’],
... [‘g’, ‘h’, ‘i’]]
>>> print list2d
[[‘a’, ‘b’, ‘c’], [‘d’, ‘e’, ‘f’], [‘g’, ‘h’, ‘i’]]
>>> list2d[0]
[‘a’, ‘b’, ‘c’]
>>> list2d[2][0]
‘g’

Inserting elements into a list
We have already introduced you to list’s append() method. This adds an element to

the end of a list. You can also insert new items into any place in the list your heart

desires. Using the aptly named insert() method, you can specify where in the list

to insert your new item. When you insert an item, the size of the list is increased by

one. All the items in the list, starting at the position you specified, are shifted to the

right to make room for the new item.

To insert the value three into the third position in a list you would type

mylist.insert(2, 3). Remember that the third position is index referenced with

index number 2.

>>> mylist = [1,2,4]
>>> print mylist
[1, 2, 4]
>>> mylist.insert(2,3)
>>> print mylist
[1, 2, 3, 4]

Similarly, to insert the number 100 to the beginning of the list you would type

mylist.insert(0, 100).

Slicing and dicing lists
Python sequences also provide another unique access method called slicing. Slicing

allows you to work with a series of consecutive elements at once. Slices are written

using a pair of indexes in between the brackets. For example mylist[2:4], tells

Python to return a new sub-list (or slice) from the list starting at index two and up

to but not including index four. In other words mylist[2:4] returns a list containing

the third and fourth elements in the list.

>>> mylist = [1,2,3,4,5,6,7,8,9,10]
>>> sublist = mylist[2:4]
>>> print sublist
[3,4]

c4857-3 Ch05.F 3/1/02 9:39 AM Page 141

142 Part I ✦ Getting Started with Zope

Accessing elements using slice notation is something that all types in the sequence

group share, including strings and tuples. So you can easily grab the first two char-

acters in a string by using s[0:2].

Slices can sometimes be confusing if you forget that the first element in the
sequence starts at position 0. This is why mylist[2:4] returns the third and fourth
entries not the second and third.

There are a few other slice notations that are handy for you to know. Omitting the

first index as in mylist[:10] is equivalent to mylist[0:10]. Omitting the second

index in your slice is equivalent to saying slice from this index to the end. Finally,

you can omit both the first and the second index, to make a copy of your list. Try

playing with these examples in the interpreter:

>>> mylist = [1, 2, 3, 4]
>>> print mylist[:2]
[1, 2]
>>> print mylist[1:]
[2, 3, 4]
>>> print mylist[:]
[1, 2, 3, 4]

You can assign multiple entries in a list in one pass using a slice. In the next exam-

ple we change the second and third entries in a list:

>>> mylist = [‘a’,’b’,’c’,’d’]
>>> mylist[1:3] = [‘x’, ‘x’]
>>> print mylist
[‘a’, ‘x’, ‘x’, ‘d’]

Removing items from a list
What goes in might need to come out. Hence you can use the del statement to

remove items from a list. You can either specify one item to remove or you can

remove a whole selection at a time using a slice.

>>> mylist = [‘a’,’b’,’c’,’d’]
>>> del mylist[1]
>>> print mylist
[‘a’, ‘c’, ‘d’]
>>> del mylist[1:]
>>> print mylist
[‘a’]

Lists are mutable sequences. This means that they can be changed after they
have been created. Strings, on the other hand, are immutable and so cannot be
changed. For this reason, strings do not implement slice assignment or deletion,
inserting, or appending. Immutable objects can always be replaced, though:

>>> x = “qwerty”
>>> x[2:4] = [‘x’, ‘x’]
Traceback (innermost last):

Tip

Tip

c4857-3 Ch05.F 3/1/02 9:39 AM Page 142

143Chapter 5 ✦ Object-Oriented Programming and Python

File “<stdin>”, line 1, in ?
TypeError: object doesn’t support slice assignment
>>> x = x[0:2] + “xx” + x[4:6]
>>> x
‘qwxxty’
>>>

Similarly, you can achieve the same result a bit more cleanly by converting the
string into a list, manipulating it, and converting it back:

>>> import string
>>> x = “qwerty”
>>> xlist = list(x)
>>> xlist[2:4] = [‘x’, ‘x’]
>>> x = string.join(xlist, “”)
>>> x
‘qwxxty’
>>>

Tuples
Tuples share some of the characteristics of both strings and lists. Like lists, tuples

are an ordered collection of arbitrary objects. Like strings, tuples are immutable,

and so cannot be changed, only replaced.

Tuples use ordinary parentheses (for example, ‘x(y, z)’) to define its member

sequence, unlike lists, which use square brackets.

Because tuples (like strings) are immutable, they do not support item or slice

assignment, but they can be replaced:

>>> x = (‘q’, ‘w’, ‘e’, ‘r’, ‘t’, ‘y’)
>>> x
(‘q’, ‘w’, ‘e’, ‘r’, ‘t’, ‘y’)
>>> x[2] = ‘x’
TypeError: object doesn’t support item assignment
>>> x = (x[0], x[1], ‘x’, x[3], x[4], x[5])
>>> x
(‘q’, ‘w’, ‘x’, ‘r’, ‘t’, ‘y’)
>>>

You can see from this example that tuples support element access by index, even

though they don’t allow slice or index assignment.

Because tuples use ordinary parentheses to surround their sequence definition,

and parentheses are also used in Python to enclose expressions, an additional syn-

tactical device must be used to distinguish single element tuples from expressions:

>>> x = 2
>>> y = 3
>>> z = (x + y)

c4857-3 Ch05.F 3/1/02 9:39 AM Page 143

144 Part I ✦ Getting Started with Zope

>>> z
5
>>> z = (x + y,)
>>> z
(5,)
>>>

As you can see, you must use a trailing comma to create a single element tuple from

the result of x + y, rather than simply assigning the result to the variable z.

Tuples, like lists, can hold any type of object, including lists and other tuples. This

means that even though a tuple cannot itself be modified, its member elements can

be modified, if they’re of an appropriate type:

>>> x = ([‘1’, ‘2’, ‘3’], ‘123’)
>>> x[0][1] = ‘x’
>>> x
([‘1’, ‘x’, ‘3’], ‘123’)
>>>

Dictionaries
Dictionaries are unordered collections of data. They use keys that you specify to

store and retrieve items. This is different from lists where an items index is based

upon its position in the list.

Lists excel at managing data that needs to be kept in order. A draw back to working

with lists is that you need to know where the item is within the list. This isn’t a

problem if you are using a list as a queue or stack, where you either start at the

beginning or end of the list and process one entry after the next. However, if you

need to find a specific item (maybe you want to remove it from the list) you need to

implement searching algorithms that are sometimes very complex.

Creating dictionaries
To create an empty dictionary you assign a variable to an empty set of braces.

Dictionaries can also be pre initialized when they are created by using one or more

key:value pairs separated by commas in between braces. Use these examples in

the interpreter to get the feel for creating and using dictionaries.

>>> product = {‘color’: ‘green’, ‘quantity’: 10}
>>> print product
{‘quantity’: 10, ‘color’: ‘green’}
>>> print product[‘quantity’]
10

Adding and changing items
Instead of accessing an item in a dictionary based on its index, you access it by

its key. A key is usually a string that you pick to uniquely identify the item in a

c4857-3 Ch05.F 3/1/02 9:39 AM Page 144

145Chapter 5 ✦ Object-Oriented Programming and Python

dictionary. Unlike lists, dictionaries do not have an append method. To add an item

to a dictionary you assign the value to a key. If there is an item already in the dictio-

nary with the same key, it will be replaced. If the key does not exist, the key and the

item will be added to the dictionary. Consider theses examples.

>>> d = {}
>>> d[‘John Doe’] = 40
>>> print d[‘John Doe’]
40
>>> d[‘John Doe’] = 41
>>> print d[‘John Doe’]
41

You can use numbers or any other immutable object as the keys instead of strings

or a mix. In addition, instances of classes (we explain classes later in this chapter)

that have a __hash__() method can be used as keys as well.

Removing items from a dictionary
Python’s del statement is used to remove an item from a dictionary. Unlike lists,

you can only remove one item at a time because dictionaries are unordered and

do not support slicing, which depends on elements being in a particular order.

However, dictionaries do support a clear() method to remove all items from a list

at once.

>>> d = {‘a’ : 1, ‘b’ : 2, ‘c’ : 3}
>>> print d
{‘b’: 2, ‘c’: 3, ‘a’: 1}
>>> del d[‘b’]
>>> print d
{‘c’: 3, ‘a’: 1}
>>> d.clear()
>>> print d
{}

Useful operations
Dictionaries provide a whole slew of operations that make finding out what’s in

them and manipulating their contents a snap. The examples in this section assume

that you have created the following dictionary by typing this into the interpreter.

>>> d = {‘color’: ‘red’, ‘size’ : ‘large’, ‘quantity’ : 100}

✦ has_key(). This method is used to test if a particular item exists in a dictio-

nary. It returns the value of 1 (true) if the item exists or 0 (false) if it doesn’t.

>>> d.has_key(‘color’)
1
>>> d.has_key(‘moose’)
0

c4857-3 Ch05.F 3/1/02 9:39 AM Page 145

146 Part I ✦ Getting Started with Zope

✦ len. This built-in function returns the number of items that are in a dictionary.

Just like it does for lists.

>>> print len(d)
3

✦ keys(). This method returns a list of all the keys in the dictionary as in

dict.keys(). This is useful for looping through the items of a dictionary. One

caveat is that the order the keys are returned is not guaranteed. In the next

example we give you a sneak preview of the for statement which lets you loop

over a list of items.

>>> for x in d.keys():
... print x
...
size
quantity
color

✦ values(). This method returns a list of all the values in a dictionary.

>>> for x in d.values():
... print x
...
large
100
red

✦ items(). This method returns a list of list representing every key and value in

the dictionary.

>>> for key, value in d.items():
... print “Key: %s\tValue: %s” % (key, value)
...
Key: size Value: large
Key: quantity Value: 100
Key: color Value: red

Control Statements
Now that you have learned the basic types, the last thing that you need to learn

before you can write real programs are the statements that control the flow of your

program. Python provides the if statement for performing evaluation, the for and

while statements for looping, and the def statement for defining reusable functions.

An important note to keep in mind while reading this section is that how you indent

your code determines how Python groups statements. Languages such as C, Perl,

c4857-3 Ch05.F 3/1/02 9:39 AM Page 146

147Chapter 5 ✦ Object-Oriented Programming and Python

and Java use braces to group statements together. If you write a program in C that

tests whether the “q” key was pressed, runs clean up code, and then quits, your

code might look something like this:

if(key == “q”){
do_cleanup();
exit();

}

In C, all statements in between the opening and closing braces are part of one

group (also known as block). C’s if statement evaluates the expression and exe-

cutes the statements within the group if it is true. In the previous example the func-

tions do_cleanup() and exit() are ran only if the variable key is equal to the letter

“q”. If key does not equal “q” the whole block of code is skipped.

Python, however, uses indentation to determine what statements are grouped

together. Indenting can be done either with spaces or with the Tab key (one tab is

equivalent to eight spaces). The snippet of code you wrote above would look like

this in Python:

if key == “q”:
do_cleanup()
exit()

Python knows that the do_cleanup() function and the exit() are to be run if key

equals “q” because they are both indented two spaces under the if statement. Any

code after the if statement that is not part of the if block will have the same inden-

tation as the if statement.

In the next example, if the key does not equal the letter, “q” is printed to the screen.

if key == “q”:
do_cleanup()
exit()

print key

It is important that you are consistent with your indentation. Each line in the same

block must have the same indentation. If you have one line in an if statement that

is indented with two spaces and one line that is indented four spaces a SyntaxError

will be raised. Also pay attention when cutting and pasting. Sometimes when you

paste text it is inserted in the wrong place and then you have to re-indent all of your

code. The easiest way to avoid problems like this is to use a text editor that has

Python support. We like XEmacs (available at http://www.xemacs.org) because it is

available for both Windows and UNIX.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 147

148 Part I ✦ Getting Started with Zope

When editing Python code that was written on a different platform you might have
a trouble with indentation. We have run into a problem sometimes with Python
raising SyntaxErrors with code that looks correct. We only noticed this problem
when we edit code on a UNIX-based system that was originally created on a
Windows machine. The problem we discovered was due to the extra carriage
return that ends every line in a Windows text file. When we tried to add new lines
of code from a UNIX editor that only terminates lines with a single newline, our
indentation was wrong. Python was counting on the carriage return to be there
like the rest of the lines in the file. The solution was to strip the carriage returns
from the file.

Most new users absolutely abhor this requirement because they are used to the

conventional approach of grouping code in between braces or other delimiters.

Trust us, if you give Python a shot you will grow to appreciate the benefits of inden-

tation. Your code is easier to read because you are forced to indent your code. And

you don’t have to type as much.

Conditional testing with the If statement
Once you have stored data away into variables you can test their values and take

different actions based on the test using the if clause.

Continuing our ridiculous “hello” example, modify your program to match the fol-

lowing code. In this listing we prompt the user to enter his or her name as before

but this time we have included a test to determine whether the username is your

best friend Bob, and if so, a special greeting is printed. If it is not Bob, the normal

greeting prints.

best_friend = “Bob”
name = raw_input(“What is your name? “)
if name == best_friend:

print “Hello, “ + name + “, I think you are swell!”
else:

print “Hello, “ + name + “!”

If you run the above example and enter Bob when it asks your name, your program

will look something like this:

c:\temp\>python hello3.py
What is your name? Bob
Hello Bob, I think you are swell!

Now run the program again, but this time, enter a name other than Bob.

There are several new things we have introduced in this program. For starters, the

first thing we do is create a variable and set it to the string containing the word,

“Bob.” You could have just as easily skipped this step and changed the line in your

program from if name == best_friend: to if name == “Bob”: and you would have

seen the same results. The reason we do not do it this way is that it makes your

Caution

c4857-3 Ch05.F 3/1/02 9:39 AM Page 148

149Chapter 5 ✦ Object-Oriented Programming and Python

program easier to maintain. Imagine that you have written a complicated program

that makes several checks to see whether the user name matches “Bob”. Now imag-

ine that you had a falling out with Bob, maybe he told you that your program is

silly, and you want to change your program so that it works for Sally (who happens

to be a real program connoisseur). This would require that you run through the

program and change every reference of “Bob” to “Sally”, but if you had used a vari-

able like we did (hurray for us) in the beginning of this program you would only

have to change your program in one spot. You would set best_friend = “Sally” and

be done.

The next new thing that you wrote in this program is line three, which reads, if
name == best_friend: This statement tests to see whether the value of name equals

whatever is stored in the best_friend variable. == is a value comparison. == will test

to see whether two expressions have identical values.

If the test evaluates to true (for example, the input is equal to the content of the

‘best_friend’ variable), then the block of code indented under the if statement

will execute. Some languages (such as BASIC) require an explicit then statement to

specify what code to execute when the test evaluates to true. Because Python uses

indentation to indicate block structure, this sort of device is unnecessary, along

with other block delimiters.

In our case here, the code that executes when the if statement evaluates to true, is

a print statement that outputs a greeting that indicates that you think the person is

swell.

The else: statement
Continuing on down the program, we come to an else: statement, which contains

code that executes when the if statement evaluates to false, or in other words,

when the person’s name does not match the name of your best friend.

The else: statement is optional. If the conditional does not evaluate to true, but no

else: statement is present, the program does nothing.

The elif: statement
The elif: statement, like else:, is also optional. It is used when, upon evaluating an

if: as false, you want to perform one or more other tests before executing some code.

Continuing our “hello” example, modify the program to match the following code:

best_friend = “Bob”
worst_enemy = “Jimmy”
name = raw_input(“What is your name? “)
if name == best_friend:

print “Hello, “ + name + “, I think you are swell!”
elif name == worst_enemy:

print “I think you suck, “ + name + “!”
else:

print “Hello, “ + name + “!”

c4857-3 Ch05.F 3/1/02 9:39 AM Page 149

150 Part I ✦ Getting Started with Zope

Here you can see that if the name typed in by the user is not that of your best

friend, the program then checks to see whether it matches that of your worst

enemy. Only when the elif: statement also evaluates as false will the body of the

else: statement be executed. In other words, the else: statement will be executed

only if the name does not match your best friend’s or your worst enemy’s name.

While there can be only one else: statement following an if statement, you can

have as many elif: statements as you need. The first condition that evaluates to

true (whether it’s the if: or an elif:) results in all the other conditions being

ignored.

elif statements must be placed between the if and else: statements.

Nesting conditional statements
if/elif/else conditionals execute a single code block at most. More complex applica-

tions may require nesting conditionals. Consider the following program:

print “I can count to ten!”
number = raw_input(“Give me a number:”)
number = int(number)
if number >= 10:

print “Wow, that’s a big number!”
if number == “10”:

print “That’s a ten!”
else:

print “I can’t count that high.”
else:

print “I know what that is!”
if number == “1”:

print “That’s a one!”
elif number == “2”:

print “That’s a two!”
elif number == “3”:

print “That’s a three!”
elif number == “4”:

print “That’s a four!”
elif number == “5”:

print “That’s a... umm... a six?”
else:

print “That’s a... uhh... I’m not sure.”

As you can see, this program doesn’t count very well. Notice that the if:
statements for dealing with single digits are never evaluated if the number input

by the user is two or more digits long because they’re nested within the first

else: statement.

Note

c4857-3 Ch05.F 3/1/02 9:39 AM Page 150

151Chapter 5 ✦ Object-Oriented Programming and Python

Similarly, the if: statement that tests whether the number is equal to “10” is never

evaluated if the number is shorter than two digits.

By using nested conditionals in this way we avoided repeating some code, such as

the printed statement that is impressed with “big” numbers of over 12 digits, and

the one expressing a misplaced confidence with single digit numbers.

Looping
Python provides two loop constructs, while and for:

Looping with the While statement
The while statement is similar in syntax to the if statement. It starts with the key-

word while and is followed by an expression and then a block of code. If the expres-

sion evaluates to true, the block of code following the while statement is executed.

Unlike the if statement, after each statement in the while block has been evaluated,

the whole process is started over again and continues until the expression evalu-

ates to false. For example, the following statements print out the numbers one

through ten and then quits:

>>> x = 0
>>> while x < 5:
... x = x + 1
... print x
...
1
2
3
4
5
>>>

It’s very important to make sure that you do not set up a loop that will never have a

valid exit condition. A loop without a valid exit condition, called an infinite loop, will

continue indefinitely. Here is an example:

>>> x = 1
>>> while x > 0
... x = x + 1
... print x
...

This example, when run, will continue to increment x forever (or at least until the

size limit for an integer is reached). You’ll need to break the interpreter out of the

loop manually by typing ^C (in Windows) or ^Z (in UNIX-based systems such as

Linux).

c4857-3 Ch05.F 3/1/02 9:39 AM Page 151

152 Part I ✦ Getting Started with Zope

The while statement also supports an optional else clause, which if present, is exe-

cuted before the loop quits.

>>> l = [“dog”, “cat”, “frog”, “horse”]
>>> while l:
... print l[0]
... del l[0]
... else:
... print “List is empty!”
...
dog
cat
frog
horse
List is empty!

Looping with the For statement
We gave you a sneak peek of the for statement when we discussed lists. The for
statement is used to loop through each item of a sequence (string, tuple, or list).

The syntax is for variable in expression:. Just as with the while statement, you

can optionally define an else clause. The following example loops through and

prints out each animal from the list animals:

>>> animals = [“dog”, “cat”, “frog”, “horse”]
>>> for animal in animals:
... print animal
... else:
... print “List is empty!”
...
dog
cat
frog
horse
List is empty!

As the for statement loops through the list, it assigns the variable animal to the

next item and then prints out the value of animal. The first time through the list the

animal variable is created.

The expression in a for loop needs to evaluate to a sequence. If it does not, a

TypeError will be raised. Unlike the while loop, the expression in a for loop is only

evaluated once at the beginning of the statement not every time.

It is unwise to modify the sequence you are looping over inside the for loop. If
you need to modify your list, iterate over a sliced copy instead. For example:

>>> animals = [“dog”, “cat”, “frog”, “horse”]
>>> for animal in animals[:]:
... if animal == “cat”:
... animals.remove(“cat”)

Tip

c4857-3 Ch05.F 3/1/02 9:39 AM Page 152

153Chapter 5 ✦ Object-Oriented Programming and Python

...
>>> print animals
[‘dog’, ‘frog’, ‘horse’]

Nesting loops
You can nest loops in order to repeat one sequence of actions within another

sequence of actions:

>>> x = [“two”, “three”, “four”]
>>> animals = [“dog”, “cat”, “frog”]
>>> for animal in animals:
... for y in x:
... s = y + “ “ + animal + “s”
... print s
...
two dogs
three dogs
four dogs
two cats
three cats
four cats
two frogs
three frogs
four frogs
>>>

You can see here that the outer loop iterates over the list of animals, and within

each animal, loops through the list of numbers. For each number, the current num-

ber and current animal are printed.

Breaking and continuing in a loop
Python provides two methods to stop the execution of statements in the middle of

a for or while statement. These are the break and the continue statement. The

break statement immediately exits the innermost for or while statement and run

the next statement outside of the loop. The else clause of the loop is ignored. The

continue clause, on the other hand, ignores the rest of the statements in the block

and will return to the top of the loop.

Take a look at break in action. In this example each animal is printed until the ani-

mal equals “frog.”

>>> animals = [‘dog’, ‘cat’, ‘frog’, ‘horse’]
>>> for animal in animals:
... if animal == ‘frog’:
... break
... else:
... print animal
...
dog
cat

c4857-3 Ch05.F 3/1/02 9:39 AM Page 153

154 Part I ✦ Getting Started with Zope

Use the same code but this time, substitute continue for the break statement.

Notice that instead of quitting and not printing “frog” or “horse,” the code skips

over the “frog” entry and prints “horse.”

>>> animals = [‘dog’, ‘cat’, ‘frog’, ‘horse’]
>>> for animal in animals:
... if animal == ‘frog’:
... continue
... else:
... print animal
...
dog
cat
horse

Functions
Functions are the foundation of any programming language. Functions let you

define reusable sets of routines that can turn complex tasks into simple, one-line

statements. Without them programmers would constantly be recreating code that

is hard to read and even harder to maintain.

Python provides a whole slew of built-in functions for your convenience. We have

introduced you to some of them, such as int(), len(), and raw_input(). Even more

functions are available to you, which are part of the normal Python distribution. We

explain how to use some of these functions in the section, “Modules and Packages”

later in this chapter. But first we show you how to create and use your own

function.

Defining functions
To create a function in Python you use the def statement. The syntax for a function

is def function([arg1], [arg2], ... [argX]): followed by a block of code to be exe-

cuted when a function is called. When Python encounters a def statement it creates

a function object assigned to the function name you specified. For example, to cre-

ate a function that prints your favorite saying, “Hello, world!” you would type the

following:

>>> def hello():
... print “Hello, world!”
...
>>>

Now, whenever you wan to print out “Hello, world!” you can just call the hello()
function you created:

>>> hello()
Hello, world!

c4857-3 Ch05.F 3/1/02 9:39 AM Page 154

155Chapter 5 ✦ Object-Oriented Programming and Python

Passing variables to functions
You can specify that a function takes one or more arguments. This way you can

pass the function variables to work with. For example, you can change the hello()
function that you defined earlier to take an argument called name. Now your func-

tion can greet a specific person.

>>> def hello(name):
... print “Hello, %s!” % name
...
>>> hello(“Bob”)
Hello, Bob!

To define a function that takes more than one argument, create a list of arguments

separated by commas in between the parentheses. Try modifying the hello() func-

tion to take multiple arguments. The first argument will be the name of the person

to whom you are saying hello. The second argument will be how many times to say

hello.

>>> def hello(name, count):
... for x in range(count):
... print “Hello, %s!” % name
...
>>> hello(“Bob”, 2)
Hello, Bob!
Hello, Bob!

The previous bit of code uses a function called range. It’s one of the built-in func-
tions we mentioned. The range function produces a list of sequential numbers. To
get a feel for how it works, enter range(10) in the interpreter.

The order that you pass arguments into a function must be the same order in which

they were defined. If you tried to call the hello() function like this, hello(2, “Bob”),

Python would assign the argument called name to the value of 2 and count would be

assigned the string “Bob”.

Naming arguments
We were fibbing when we said that the order you pass arguments to a function must

be the same order in which they were defined. Python provides a way to specify

arguments out of order, called keyword arguments. Keyword arguments lets you

specify which value is associated with which argument by using the form argument
= value. For example, to switch up the order of the arguments you use to call the

hello() function you would type:

>>> hello(count=2, name=”Bob”)
Hello, Bob!
Hello, Bob!

Note

c4857-3 Ch05.F 3/1/02 9:39 AM Page 155

156 Part I ✦ Getting Started with Zope

It is easy to accidentally mix-up the order of parameters when calling a function,

especially if the function takes a lot of arguments. Python can sometimes detect

that you passed the arguments in the wrong order, such as if you passed a number

where a list was expected, but Python has no way to tell whether two strings (or

two numbers) are flip-flopped. In theory, using keyword arguments would help you

to avoid these kinds of errors because you can look at the function and know which

value is being used for what in a function. In practice, passing arguments in the

right position is less verbose, so keyword arguments don’t always get used.

There are a couple of rules to follow in order to use keyword arguments and to keep

Python happy. The first rule is that once you use a keyword argument when calling

a function every other argument must be passed as a keyword. Python will raise a

SyntaxError if you called the hello() function like hello(count=1, “Bob”). However,

it is not an error to call the function like this, hello(“Bob”, count=2) because the

non-keyword argument was passed first.

The second rule is that it is an error to use the same keyword twice. For instance,

you can’t call the function like hello(“Bob”, name=”Bob”, count=3).

Assigning arguments default values
It is possible to specify a default value for a functions argument. You do not need to

pass an argument to a function if it has default value. For instance, you can modify

the hello() function so that name and count both have reasonable defaults.

>>> def hello(name=”World”, count=1):
... for x in range(count):
... print “Hello, %s!” % name
...
>>> hello()
Hello, world!
>>> hello(“Frank”)
Hello, Frank!
>>> hello(“Frank”, 3)
Hello, Frank!
Hello, Frank!
Hello, Frank!

Once you specify a default value for one argument all of the following arguments

must have defaults.

The default value is only evaluated once. The drawback is that any changes made
to a mutable object (such as list or dictionary) will be remembered. For instance, if
you defined a function whose argument is defaulted to an empty list, every time
you make changes to that list they are remembered the next time the function is
called.

>>> def myFunction(x, mylist=[]):
... mylist.append(x)
... print mylist
...

Caution

c4857-3 Ch05.F 3/1/02 9:39 AM Page 156

157Chapter 5 ✦ Object-Oriented Programming and Python

>>> myFunction(1)
[1]
>>> myFunction(2)
[1, 2]
>>> myFunction(3)
[1, 2, 3]

This may cause problems if you expect mylist to be empty every time. The way
around this is default mylist to None and then in your function set mylist to an
empty list if it is the default.

>>> def myFunction(x, mylist=None):
... if mylist is None:
... mylist = []
... mylist.append(x)
... print mylist
...
>>> myFunction(1)
[1]
>>> myFunction(2)
[2]
>>> myFunction(3)
[3]

Returning values from a function
To return a value from a function use the return expression statement. Python exits

the function and passes the object that expression evaluates to back to the caller.

To get an idea how this works, create a function that computes the sum of two num-

bers and returns the results.

>>> def sum(x,y):
... return x + y
...
>>> x = sum(10, 2)
>>> print x
12

Like the break statements in loops, any statements made after the return is

ignored. Functions that do not return any values but need to quit before processing

remaining statements can call return with no expression, in which case the value

None is returned.

None is always returned when a function ends without using the return
statement.

Note

c4857-3 Ch05.F 3/1/02 9:39 AM Page 157

158 Part I ✦ Getting Started with Zope

Assigning functions to names
Functions, like almost everything else in Python, are objects. By creating a function

with the def statement you are actually creating a name that points to an object in

the current namespace. If you defined the sum() function from the previous exam-

ple you can manipulate it like other objects. For example, you can print it out or

assign it to another name. You can use a variable that has been assigned a function

like a normal function.

>>> def sum(x, y):
... return x + y
...
>>> print sum
<function sum at 823ca8>
>>> print sum(2, 1)
3
>>> foo = sum
>>> foo(2, 5)
7

This demonstrates the difference between calling a function and using its reference.

When you call a function you add the open and close parentheses to the end of a

function. For example, myfunction(). Where as myfunction (without parentheses)

tells Python that you are manipulating the function instead of its results.

This ability can lead to some interesting possibilities, such as appending several

functions that transform data into a list. In the next example we create three func-

tions. The first two functions perform minor calculations on whatever argument is

passed to the function. The third function sticks these two functions into a list.

When the third function is called and passed a number, it loops through the list and

calls each function to transform the data.

>>> def subtracttwo(x):
... return x - 2
...
>>> def multiplybyitself(x):
... return x * x
...
>>> def transform(x, transformations=[subtracttwo,
multiplybyitself]):
... for trans in transformations:
... x = trans(x)
... return x
...
>>> transform(10)
64

c4857-3 Ch05.F 3/1/02 9:39 AM Page 158

159Chapter 5 ✦ Object-Oriented Programming and Python

Arbitrary arguments
The last things we need to introduce in order to wrap up our discussion on Python

functions are two ways to pass arbitrary arguments to a function. The first method

lets you pass more arguments to a function than you have defined by prefixing an

argument with an asterisk.

>>> def foo(*args):
... for arg in args:
... print arg
...
>>> foo(1,2,3)
1
2
3

The second method collects all keyword arguments that don’t have a correspond-

ing argument in the function definition into a dictionary. To specify what dictionary

to store these arguments in you include an argument that is prefixed with two aster-

isks, as in the following example:

>>> def foo(**kw):
... print kw
...
>>> foo(bar=10, blah=”test”)
{‘blah’: ‘test’, ‘bar’: 10}

You can specify normal arguments but they must be created at the beginning of the

definition and there can be only one of each type of special argument in a function

definition.

Understanding Namespaces
Before we progress from writing functions to higher-level constructs, some discus-

sion is warranted on exactly what names mean in Python.

Whenever Python first comes across a name, the interpreter first looks in the local

namespace for it, then in the global namespace, and finally in the built-in name-

space, stopping at the first successful lookup.

Namespaces, then, are where names “live.” Because names can be assigned and cre-

ated without first being declared, the namespace a name lives in is determined by

where it is assigned.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 159

160 Part I ✦ Getting Started with Zope

Namespaces within functions
Functions define a local namespace that will be looked in first when a variable is

used. This is why you can define an x variable in two different functions where one

function defines it as a list, and the other as a string, without a name conflict arising.

Because local namespaces are examined first, it’s important not to define local names

that are identical to those defined in other namespaces, such as the built-in name-

space. So, for example, you shouldn’t define a variable named int as that will over-

ride the built-in Python int function and make it unavailable within your function.

Global namespaces are defined at the module level. While we have not yet dis-

cussed writing modules, the top level of the interactive prompt is also considered a

module, so we can demonstrate fairly easily:

>>> x = 5
>>> def func():
... y = 6
... x = 2
... z = x + y
... return z
...
>>> func()
8
>>> x
5
>>>

Here you first defined a global variable named x and assigned the value 5 to it. Next

you defined a function, func(), that established its own local namespace, and cre-

ated three local variables y, x, and z, assigning them values of 6, 2, and x + y, respec-

tively. The func() function returns the value of z, so when we call it, we get 8 (6 +2).

Notice that while the local namespace overrides the global namespace, it does not

replace it. When we call x again outside of the function, it still returns the value

assigned to it at the beginning of the session.

Let’s try something a little different:

>>> def func():
... y = 6
... z = x + y
... return z
...
>>> func()
11
>>>

In this case, we did not create a local variable named x, so the interpreter, after

looking in the local namespace, looked in the global namespace, where it found the

x variable we defined earlier, and used its value when calculating z.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 160

161Chapter 5 ✦ Object-Oriented Programming and Python

Creating and manipulating global variables
Interestingly, y and z don’t even exist except while the func() function is executed.

>>> y
Traceback (innermost last):
File “<interactive input>”, line 1, in ?

NameError: There is no variable named ‘y’
>>> z
Traceback (innermost last):
File “<interactive input>”, line 1, in ?

NameError: There is no variable named ‘z’
>>>

There is also a way for a function to modify the value of a global variable, which can

be used as an alternative to returning a result:

>>> x = 5
>>> z = None
>>> def func():
... y = 6
... global z
... z = x+y
...
>>> z
>>> func()
>>> z
11
>>>

Here, we’ve shown you the use of the global statement. This statement caused the

z variable assignment within the function to modify the value of the z variable in

the global namespace, rather than creating a local variable. Note that the global

statement will create a new variable in the global namespace if the name in ques-

tion does not already exist within the global namespace.

Modules and Packages
We’ve hinted before that Python provides a way of reusing code. The way that

Python provides this is through the use of modules.

Modules have several roles in Python. They enable you to do several important

tasks, such as:

✦ Reuse your code within a project

✦ Isolate names within namespaces to avoid conflicts

✦ Reuse code across different projects

c4857-3 Ch05.F 3/1/02 9:39 AM Page 161

162 Part I ✦ Getting Started with Zope

So, what are modules good for?

✦ Reusing code within a project. Modules enable you to define data structures

and logic that are reused within several places within your project. This can

be something simple, such as a list of U.S. state codes and state names, or

something more complex, such as a custom sorting algorithm, or a special

string processing function.

✦ Isolating names within namespaces. Python doesn’t have a higher level of

program organization than the module. Executed code and class instances are

enclosed (wrapped) by their module. As a result, functions that are defined at

the module level can be used by all of the code within that module, and will

not conflict with functions defined in other modules that have the same name.

✦ Reusing code across different projects. Python modules can use the code

and data in other modules be explicitly importing them.

Using modules
A module must be imported first in order to use any of its routines, classes, or vari-

ables in your script. You do this using the cleverly named import statement. When

Python encounters this statement in your code it first checks to see whether the

module has already been loaded in memory. If it hasn’t, Python searches the mod-

ule path for the first occurrence of a file with the same name as the module that you

want to import. The file must either end in .py or .pyc. Python then attempts to

parse the script. If it doesn’t encounter any errors, it will create a name in the local

namespace that matches the name of the file.

Loading the hello script in the previous interpreter is an example of using the

import statement. To refresh your memory, import the string module. The string

module provides a collection of useful (and optimized) methods for manipulating

strings.

>>> import string

Once you have imported a module into the current namespace you can access the

names in that module using the “.” or dot operator. For instance, use the split()
method from the string module we just imported:

>>> string.split(“All good men”)
[‘All’, ‘good’, ‘men’]

As you can see, the split string is returned as a list of strings.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 162

163Chapter 5 ✦ Object-Oriented Programming and Python

Playing with the module path
When you attempt to import a module, the interpreter searches for the module by

name within the module path. You can see what module path Python is searching

by examining the path attribute of the sys module:

>>> import sys
>>> sys.path
[‘’, ‘/usr/lib/python1.5’, ‘/usr/lib/python1.5/plat-linux-
i386’, ‘/usr/lib/python1.5/site-packages’,
‘/usr/lib/python1.5/site-packages/PIL’]

The result of sys.path will depend on how your system is set up.

By appending a directory of your choosing to the path, you can make your modules

available for importing:

>>> import sys
>>> sys.path.append(‘/usr/local/me/python-modules’)
>>> sys.path
[‘’, ‘/usr/lib/python1.5’, ‘/usr/lib/python1.5/plat-linux-
i386’, ‘/usr/lib/python1.5/site-packages’,
‘/usr/lib/python1.5/site-packages/PIL’, (‘/usr/local/me/python-
modules’]

Python searches the directories in the order in which they are defined in the path

list. If you have two modules in different directories, the module in the directory

that is at the head of the list will be found first.

Importing specific names from modules
Besides importing modules wholesale, you can import individual names with great

specificity by using the from module import name syntax. This has the advantage of

not having to qualify the specified names when they’re used:

>>>from string import split
>>>split(“more good men”)
[‘more’, ‘good’, ‘men’]

If you need to import all of a module’s exported attributes but don’t want to specify

them all individually, Python has a special syntax: from module import *.

>>>from string import *
>>>join([‘aren\’t’, ‘there’, ‘good’, ‘women’, ‘too?’])
‘aren’t there good women too?’

There is an exception to the from module import * syntax: names in modules that
begin with an underscore (_) will not be imported into your module.

Note

c4857-3 Ch05.F 3/1/02 9:39 AM Page 163

164 Part I ✦ Getting Started with Zope

Creating and using packages
So, what do you do if you want to create and distribute several modules together?

It may not make sense to stuff the modules into a single file, because even though

they import from each other, you nevertheless may want to import form them sepa-

rately. The answer is to use a package.

A package is a directory containing one or more modules and possibly further sub-

directories. Just as a module derives its name from the .py file that contains its

code, Packages derive their name from the directory name. Packages also help

resolve namespace conflicts between imported modules.

Packages have one other requirement: they must contain a file named __init__.py,

which fulfills two functions:

✦ Python requires a package directory to contain an __init__.py file for it to be

recognized as a package, even if the __init__.py file is empty. This prevents

just any directory containing some Python files from accidentally being recog-

nized as a package and loaded.

✦ The __init__.py file can contain code that runs the first time the package is

loaded, making it possible to do initialization of whatever code the program-

mer wants.

Create a /helloproject package directory in one of the directories from your

Python installation’s PYTHONPATH environment variable (for example, in the

/site-packages directory), if you have one.

Then create an empty __init__.py file in the /site-packages/helloproject
directory.

Now, create a hellocode.py file containing the following code:

def hello(name=”World”, count=1):
for x in range(count):

print “Hello, %s!” % name

One problem new programmers often run into is creating a package, module, and
class that all have the same name. For example, imagine that you have a package,
module, and class all named “Klass.” If you want to use the class you would need
to type from klass.klass import klass. A common coding mistake would be to type
from klass import klass instead, and then try to instansiate Klass objects. But
because you imported the module from the package, and did not import the
class explicitly, this will not work and you would have to instantiate Klass.Klass
instances. It’s much better to name your packages, modules, and classes with dis-
tinct names instead to avoid this confusion.

Caution

c4857-3 Ch05.F 3/1/02 9:39 AM Page 164

165Chapter 5 ✦ Object-Oriented Programming and Python

Now, import the package, using the same syntax that you used to import a module:

>>>from helloproject import *
>>>from hellocode import *
Traceback (innermost last)
File “<interactive input>”, line 0, in ?

NameError: hellocode
>>>

Oops.

As this demonstrates, packages do not automatically import their contained files

even when you use the from package import * syntax. Because some file systems are

case-sensitive and others are not, you need to tell Python what names to expose to

a request to get all importable objects. This is done by adding an __all__ list into

the __init__.py file, like so:

__all__ = [hellocode, goodbyecode]

Note that this is not entirely necessary. If you want to import objects more explic-

itly, you can still do so without using __all__:

>>>from helloproject import hellocode
>>>hellocode.hello()
Hello, World!
>>>

And you can drill down with even more accuracy like this:

>>>from helloproject.hellocode import hello
>>>hello()
Hello, World!
>>>

You should use the __all__ attribute in your __init__.py files when you intend the

entire package to be imported using from package import *.

While it may seem reasonable to “hide” names form being imported by failing to
include them in the __all__ list, this is actually a bad idea. Instead, names that
need to remain private should begin with an underscore (_), as was discussed ear-
lier in this chapter.

Tip

c4857-3 Ch05.F 3/1/02 9:39 AM Page 165

166 Part I ✦ Getting Started with Zope

Examining the contents of a namespace with dir()
Let’s say you want to find out what names are defined in an imported module,

regardless of whether that module was in a package. You could examine the mod-

ule’s code directly, but that can be tedious and repetitive. Aren’t computers good at

automating repetitive tasks? Yes they are.

>>> from helloproject import hellocode
>>> dir(hellocode)
[‘__builtins__’, ‘__doc__’, ‘__file__’, ‘__name__’, ‘hello’]

The dir() function returns a list of all the names in the module. It’s not limited to

just modules either. For example, you can get a list of everything in the current

namespace by calling dir() with no arguments, or you can use it on the objects

that you create later in this chapter.

Understanding .pyc files
One of the side effects you may have noticed while working through the previous

sections is that when you import a module (whether it’s in a package or not),

another file is created on the file system with the same name as the module, but

ending in .pyc instead of .py.

.pyc files are Python bytecode files. Bytecodes are the instructions the Python inter-

preter runs on directly, and are created whenever a module is imported by another

module. If a .pyc file is present for the module that the interpreter is trying to

import, and the .pyc file is not older than the .py file, the .pyc file is loaded directly,

saving the bytecode compilation time.

.pyc files can be used as a form of pre-compiled binary library. They can be
imported into other modules and used in a portable fashion, as the interpreter will
import a .pyc file if no .py file can be found.

Classes and Objects
You can create your own objects in Python. These objects can mimic the objects

described in the section, “Types and Operators” earlier in this chapter, or you

can define completely new behavior. Usually most programs create objects that

describe things in real life. For example, imagine creating a program to keep track

of the names and numbers of your friends. You might create an address book object

that contains several person objects. Each person object would contain the name

of the person and his or her phone number.

All user-defined objects in Python are instances of a class. Classes define how

objects are created and what attributes and methods they have. In our imaginary

application the address book and person are each examples of classes. For

Tip

c4857-3 Ch05.F 3/1/02 9:39 AM Page 166

167Chapter 5 ✦ Object-Oriented Programming and Python

instance, the person class would define that all person objects will have a name and

a phone number. The Address book would define methods, which are special types

of functions that you, the programmer, would use to add and remove people from

your address book.

You can visualize the relationship of classes and objects by imagining that classes

are like cookie cutters. Once you have created a cookie cutter you can use it to

stamp out multiple cookies.

Defining a new class
Classes are defined using the class statement as follows:

>>> class person:
... firstName=’Bob’

This statement creates a class in the current namespace called “person.” Like func-

tions and modules, each class gets its own private namespace. In this particular

class we created the name called firstName and assigned it to the string, Bob. You

can access and manipulate the namespace of a class just like you can with modules.

For instance, you can print out the value of firstName from the person class:

>>> print person.firstName
Bob

Once you have defined a class you can create a new instance of the class by using

the open and close parentheses. This is identical to how you would call a function.

>>> x = person()
>>> print x.firstName
Bob

Class scope versus object scope
Instances of classes get their own private namespaces. In addition, they share the

namespace of their class. This means that when you are looking at attribute x on

object person (in other words, person.x) Python first searches the object’s private

namespace for the attribute and if it doesn’t find it there, looks for the attribute in

the class.

If you assign the instance’s attribute to a different value, the value is only changed

in the instance’s namespace and not in the classes. For example:

>>> x.firstName = ‘Frank’
>>> print x.firstName
Frank
>>> print person.firstName
Bob

c4857-3 Ch05.F 3/1/02 9:39 AM Page 167

168 Part I ✦ Getting Started with Zope

Assigning a new value to an instance attribute only changes that attribute. But if

you modify the value of an attribute of a class, all instances that haven’t overridden

the attribute (as you did in the previous example) will be changed as well. In the

next example you will create a couple of instances of the person class and reassign

the firstName attribute at instance level and at the object level.

>>> p1 = person()
>>> p2 = person()
>>> print person.firstName, p1.firstName, p2.firstName
Bob Bob Bob
>>> p1.firstName = ‘Frank’
>>> person.firstName = ‘Sally’
>>> print person.firstName, p1.firstName, p2.firstName
Sally Frank Sally
>>>

Methods
Methods are functions that are bound to an object. In other words, methods know

which specific object invoked the method. Methods are created by defining func-

tions in the block part of a class definition. Unlike normal functions, every method

must define at least one argument. This first argument is always assigned to the

value of the object for which the method was invoked. You do not need to pass this

argument. Python does it for you. Traditionally this argument is named “self.”

The next couple of examples will be easier to work with if you create your classes in

a file instead of directly in the interpreter. That way you do not have to completely

rewrite the class definition every time you make a change. In the next couple of

examples we assume that you will create your classes in file named person.py. To

begin with, modify person.py as follows:

class person:
firstName = ‘Bob’
lastName = ‘Flanders’

def fullName(self):
return self.firstName + ‘ ‘ + self.lastName

Now import the module into the interpreter, create a person object, and try out

your first method.

>>> from person import person
>>> a = person()
>>> print a.fullName()
Bob Flanders
>>> a.firstName = ‘Sally’
>>> print a.fullName()
Sally Flanders

As you can see, self is bound to the new instance you created. When you change

that instance’s attributes, the value returned by fullName() is changed as well.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 168

169Chapter 5 ✦ Object-Oriented Programming and Python

Controlling how classes are initialized with __init__
Sometimes it is not always practical to initialize attributes of an object as you did

with the firstName and lastName attributes. For instance, you may want to make it

a requirement that when a person object is created, the first name and last name

must be set. Python lets you define a method named __init__ that is called when-

ever a new instance is created. In OOP (object-oriented programming) speak this is

known as a constructor method. Rewrite your class to use __init__ method:

class person:
def __init__(self, firstName, lastName):
self.firstName = firstName
self.lastName = lastName

def fullName(self):
return self.firstName + ‘ ‘ + self.lastName

Now, whenever you create a new instance of the person class you must pass in a

first name and a last name.

>>> a = person(‘Bob’, ‘Dylan’)
>>> a.fullName()
‘Bob Dylan’

One thing to note is that we removed the firstName and lastName from the classes

namespace so that you can no longer access person.firstName. Although there are

legitimate uses for using attributes at the class level, using the constructor function

is the preferred method for initializing attributes.

Inheritance
Creating classes and class instances is only one aspect of object-orientation.

Another important aspect is inheritance. Inheritance saves time because you can

create common functionality in a base class and have another class inherit from it;

you will not need to rewrite or copy any of the code. (Just like when you try to

access an attribute in an object instance’s namespace and if it’s not there Python

checks to see if it is in class’s namespace.) Python also checks to see whether the

name is in any of the base classes.

In Python, inheritance is accomplished fairly simply in the class definition.

Consider the following rewritten person.py file:

from string import join

class person:
def __init__(self, firstName=’Bill’, lastName=’Bob’):

self.firstName = firstName
self.lastName = lastName

def fullName(self):
return join([self.firstName, self.lastName])

c4857-3 Ch05.F 3/1/02 9:39 AM Page 169

170 Part I ✦ Getting Started with Zope

class employee(person):
def __init__(self, firstName=’Bill’, lastName=’Bob’,

phoneExtension=’000’):
person.__init__(self, firstName, lastName)
self.phoneExtension = phoneExtension

As you can see, the class definition of employee states that it is a kind of person. The

employee class now has three parameters that it expects, along with default values

for missing parameters. What the employee class does not have is the initialization

code for the firstName and lastName attributes, and the fullName method defini-

tion. It is inheriting these from the person class. Also notice that the __init__
method of the person class is explicitly called from within the __init__ method of

the employee class.

Let’s test the new employee class:

>>> from person import employee
>>> a = employee(‘Jimbo’, ‘Jones’, ‘002’)
>>> a.fullName()
‘Jimbo Jones’
>>>

Great! Our employee class has demonstrably inherited both the initialization code

and the methods of its parent class, person.

It might seem that you’ve only saved a few lines of code in the employee class by

having it inherit from the person class. This is true, but this example is a trivial one.

The more complex the person class is, the greater the benefit of inheriting from it,

rather than reimplementing the same functionality in the employee class. In partic-

ular, you can inherit from other people’s classes that you install as third-party pack-

ages on your system. Some classes in third-party modules and packages run to

thousands of lines of code. Using inheritance in such circumstances can lead to

enormous savings in time.

Exception Handling
Whenever Python encounters an error it raises an exception (you can create cus-

tom exceptions as well). Your program will quit if your program does not explicitly

handle it. The benefit from using an exception is that it forces you not to ignore

errors. Compare this to the more traditional approach of error handling where you

call a function and you must check the return value of the function. If the return

value is not checked, it’s possible that the error condition will cause other errors in

the program.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 170

171Chapter 5 ✦ Object-Oriented Programming and Python

Using the try statement
Various tasks you’ve been doing with Python so far can fail for various reasons. For

example, you could attempt to import a module from code that does not exist in

your Python installation.

Let’s suppose, for example, that you’ve written a Python module that depends on a

third-party module called superstring:

from superstring import *

When this fails, the interpreter will give you a not-very-helpful warning:

Traceback (most recent call last):
File “C:\Python20\helloproject\person.py”, line 2, in ?
from superstring import *

ImportError: No module named superstring

Here’s how to make this error message a bit more helpful:

try:
from superstring import *

except:
print ‘you need the superstring third party module, from

www.super-string.org’

Now, when you try running the program, the raised exception is caught by the try
statement, and the more helpful message is printed out at the console.

The except object
The previous example also introduced the except: clause. We’ll deal with the details

of this clause shortly, but meanwhile it’s worthwhile to explain just what is happen-

ing here.

When Python encounters an error such as the one we’ve demonstrated, it “raises”

an exception object. This exception object actually has a bit of data associated with

it, which can be used for various purposes. Most important is the exception name.

The code above could just as easily been written except ImportError: and achieved

the same result, but what if there is more than one exception possible? Similarly,

the exception object can have other data associated with it that can be helpful in

analyzing failures, or put to other uses.

It’s important to note that exception objects that are raised that do not get caught

by try/except clauses continue to propagate upward until they manifest themselves

at the top level, which runs the default action of producing a traceback.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 171

172 Part I ✦ Getting Started with Zope

Catching exceptions
The except clause can have several forms:

✦ except:

✦ except name:

✦ except name, variable:

✦ except (name1, name2):

The first, second, and fourth forms are fairly self-explanatory. The first catches all

exceptions, the second catches an exception with a particular name, and the fourth

catches exceptions whose names appear in the list of arguments.

The third form catches a named exception, but also catches optional data in a vari-

able. The raise statement, which we will introduce in a moment, must pass this

optional data, or it isn’t available.

Using else: with try
The else clause of a try statement pretty much works the way it does in conditional

statements and iterators. That is, they contain code that runs if no exceptions are

raised by the code in the try block. While there may be several except blocks, there

should only be a single else in a try. Modify the code as follows:

try:
from string import join

except ImportError:
print ‘you need the string’

else:
print ‘you\’ve got string!’

Running this code produces the expected result of ‘you’ve got string!’ at the com-

mand line, as an ImportError was not raised.

The finally clause
The finally clause is one that runs whether an exception is raised or not, on the way

out of the try clause. It cannot be used with except: or else: clauses, but is a good

way of adding additional commentary that will be displayed before the top level

runs a traceback on the raised exception:

try:
from superstring import *

finally:
print ‘get superstring at www.super-string.org\n’

c4857-3 Ch05.F 3/1/02 9:39 AM Page 172

173Chapter 5 ✦ Object-Oriented Programming and Python

This will produce the following result:

get superstring at www.super-string.org

Traceback (most recent call last):
File “C:\Python20\helloproject\person.py”, line 3, in ?
from superstring import *

ImportError: No module named superstring

Raising exceptions
So far, we’ve shown you how to catch built-in exceptions that the Python inter-

preter can raise, but for more sophisticated flow control, you need to be able to

raise your own custom exceptions, as well. This is done with the raise statement.

The following code demonstrates the use of the raise statement, along with han-

dling optional data:

customException = ‘Error’

def failedFunc():
raise customException, “failure”

try:
failedFunc()

except customException, report:
print ‘failedFunc reported: ‘, report

This produces the following output when run:

failedFunc reported: failure

In this way, you can use custom exceptions to handle special cases within your

code (such as input validation) by raising the appropriate exceptions and catching

them, rather than having to pepper your code with special case handling code

everywhere.

Where Do I Go From Here?
You can find some good libraries online at the following Web sites:

✦ http://www.vex.net/parnassus/. This is an extensive resource of third-party

programs modules and packages for Python.

✦ http://www.pythonware.com/products/pil/. A popular image-processing library.

✦ http://www.python.org/sigs/. Python Special Interest Groups (SIGs). Python is

useful for a great many different problem domains, and SIGs exists for such

diverse topics as XML, databases, and internationalization.

c4857-3 Ch05.F 3/1/02 9:39 AM Page 173

174 Part I ✦ Getting Started with Zope

A few other books that we would recommend include:

✦ Python Bible (Hungry Minds, Inc., 2001) by Dave Brueck and Stephen Tanner

✦ Learning Python (O’Reilly & Associates, Inc., 1999) by Mark Lutz and David

Ascher

✦ Core Python Programming (Prentice Hall, PTR, 2000) by Wesley J. Chun

How will this help you using Zope?

As Zope is written in Python, knowledge of Python is necessary in order to extend

Zope significantly.

For example, Python expressions in DTML can be used to join several variables into

a single string using join. It is clear that PARENTS[-1] refers to the last item in the

PARENTS sequence.

We discuss the PARENTS list in Chapter 14.

Most significantly complex programming needs to happen either inside a Python

Script object, or in an external method. DTML is really not suited to complex pro-

gramming tasks. Third-party modules must also be imported into an external

method to be used from within Zope.

Furthermore, when you want to develop Python Products for Zope, you will find

that they are basically packages that define classes, which inherit from existing

Zope base classes.

Summary
This chapter has only been a very brief introduction to Python and object-oriented

programming, intended in helping you get more out of Zope than you could other-

wise. You have learned the Python syntax, basic Python data-types, operators,

functions, and flow control. You learned about creating and importing modules,

packages, and how Python allows object-oriented design with Classes and inheri-

tance. You also learned about exceptions, which allow more sophisticated flow

control and error handling.

✦ ✦ ✦

Cross-
Reference

c4857-3 Ch05.F 3/1/02 9:39 AM Page 174

Building Zope
Products

✦ ✦ ✦ ✦

In This Part

Chapter 6
From Packages to
Products

Chapter 7
Creating an
AddressBook
Application

Chapter 8
Enhancing the
AddressBook

Chapter 9
Zope Product Security

Chapter 10
Creating a Multi-User
AddressBook

✦ ✦ ✦ ✦

P A R T

IIII

d4857-3 PtO2.F 3/1/02 9:39 AM Page 175

d4857-3 PtO2.F 3/1/02 9:39 AM Page 176

From Packages
to Products

In chapters 6 through 10 we are going to roll up our sleeves

and get into the nitty-gritty details of writing a Zope appli-

cation, but we are going to build this application in a non-

traditional manner. Usually when building a Web site you

would create the site using Zope through the Web interface

(or through FTP), and you would use the components that are

supplied with Zope (those discussed in Chapter 3), or other

third-party components. So, for example, a perfectly func-

tional address book application can be built using nothing

more than DTML Documents, Folders, and DTML Methods, or

with a combination of Page Templates and Python Scripts, but

the resulting application would be extremely hard to reuse

and upgrade to new versions. An improvement would be to

use ZClasses (as described in Chapter 16) to define any

new object types you might want, and this would certainly

improve the reusability of your application, but it would still

be extremely difficult to upgrade to a newer version.

If you are already familiar with Zope, you might be wondering

why we decided to stick the chapters for building custom

products in the middle of the book when it is customary to

have these chapters at the end or even in another book. The

reason we are taking you down the path less traveled first is

because we feel that if we introduce you to the fundamental

principles of Zope that are exposed at the component level,

these principles will be easier for you to understand when we

introduce some of Zope’s other nuances — nuances that are

typically described as “black magic” by first-time users of

Zope, but are easily understood if you are already familiar

with the concepts of Python programming.

If you are not a programmer or are only interested in build-
ing a simple site, feel free to skip over these chapters.

Note

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a Hello
World package

Publishing objects

Changing a package
into a product

Instantiating your
object

Adding DTML
methods

Processing form
submissions and
returning

✦ ✦ ✦ ✦

e4857-3 Ch06.F 3/1/02 9:39 AM Page 177

178 Part II ✦ Building Zope Products

In Chapter 5, we introduced you to the basics of Python programming and object-

oriented features. Specifically, you learned how to create and use Modules and

Packages, and how to define and use Classes. While general Python programming

skills are useful for working with Zope (such as in creating Python Script objects or

external methods), understanding Packages is a necessary first step toward creat-

ing your own Python Zope products, and new Zope Object types are defined in

products using Classes. If you’ve jumped directly to this section of the book with-

out reading Chapter 5 and aren’t already familiar with Python programming, we sug-

gest you go back and read Chapter 5 now, before continuing. Don’t worry, we’ll wait

for you right here.

Back so soon? See, Python wasn’t difficult to learn, was it? Let’s move on.

What’s a Product?
Products are pre-packaged add-ons to Zope. They are most often custom objects

that have some useful combination of functionality and presentation. Once the

product is installed, you can add these objects to your Zope site through the man-

agement interface just like any of the built-in objects by using the Add Objects

drop-down menu.

An example of a popular Zope Product is the Photo product (http://www.zope.org/
Members/rbickers/Photo), which is used for organizing Photos into an online photo

album. The Photo product has presentation methods for displaying thumbnails of

photos, forms for uploading photos, and management interfaces for configuring the

default sizes for photo objects, as well as other features that make creating and

maintaining an online photo album easier.

Because the developer included so much functionality in the Photo Product, Zope

site administrators can simply install the Photo Product without having to rede-

velop the same functionality.

You’ll notice that the argument for creating and using Zope Products is very similar

to the one for creating and using Modules and Packages (namely, reusability. This

is not surprising, as Zope Products are just Packages with some additional features.

In this chapter, we walk you through the process of creating a simple Product from

a Package.

A few products don’t define new object types at all, but instead modify or enhance
Zope’s core functionality in some way. This second type of product is usually more
trouble than it’s worth, at least until its functionality is added to the standard Zope
distribution.

An example of the second type of product is the Refresh product, whose function-
ality allows modifying other installed products and refreshing them so Zope
doesn’t need to be restarted in order for the product changes to take. This func-
tionality was incorporated into Zope as of version 2.4 (making the product unnec-
essary), and you’ll be using it a lot throughout this section of the book.

Note

e4857-3 Ch06.F 3/1/02 9:39 AM Page 178

179Chapter 6 ✦ From Packages to Products

Creating a Hello World Package
So let’s get started. First, locate a directory that is included in your PYTHONPATH

environment variable (for example, /site-packages), and create a /helloPackage
subdirectory. Refer to “Playing with the Module Path” in Chapter 5 to help identify

the appropriate directories.

If you are using a binary installation of Zope, then you can find the Python directory

under the /bin directory of your Zope installation.

In your new Package subdirectory, create an empty __init__.py file and a

helloModule.py file. You’ll recall from Chapter 5 that the presence of an __init__.py
file (even an empty one) signals to Python that the directory is a Package.

Edit the helloModule.py file as follows:

class helloClass:
def __init__(self, Name = ‘World’):

self.Name = Name

def saySomething(self):
return “Hello, “ + self.Name

def edit(self, Name):
self.Name = Name

This class has three methods:

✦ An __init__ method that takes a Name argument that defaults to ‘World’

✦ A saySomething method that returns a greeting

✦ An edit method that takes a Name argument and changes the value of

self.Name

As you can see, each of the methods in the class makes use of the self object to

refer to the actual object instance. Thus self.Name refers to the name attribute of

the object, both for assignment (via the edit method) and display (through the

saySomething method). For more information on Class methods, refer back to

Chapter 5.

After saving the files in the /helloPackage subdirectory, import and instantiate the

Class:

>>> from helloPackage import helloModule
>>> from helloModule import helloClass
>>> a = helloClass()
>>> a.saySomething()
‘Hello, World’
>>>

e4857-3 Ch06.F 3/1/02 9:39 AM Page 179

180 Part II ✦ Building Zope Products

Next, use the class’s edit method to change the value of Name:

>>> a.edit(‘Bob’)
>>> a.saySomething()
‘Hello, Bob’
>>>

Okay, so we’ve demonstrated creating a rudimentary Package. Next you’re going to

turn it into a rudimentary Zope Product, but before we do that you should under-

stand the concept of publishing objects.

Publishing Objects
In Chapter 1, we briefly introduced you to ZServer and ZPublisher, which are two

of Zope’s core components. Their job is to handle a request from the network, find

the objects that the request refers to, run its method, and return the results. (We

explain the process in more detail in this section, which will be helpful when you

read the next couple of chapters.)

For the real nitty-gritty details of the publishing process and how you can exert
more control over it refer to Chapter 14.

To better explain how this works we’ll show you how to publish your hello object’s

saySomething() method on the Web. What this means is when somebody enters the

URL, http://www.yourdomain.com/hello/saySomething, into his or her browser, he

or she will get a page that says, “Hello, World!”

Here’s an over view of the publishing process:

1. When ZPublisher receives the URL from ZServer, ZPublisher creates an object

named REQUEST (a mapping, really) that contains everything that ZPublisher

knows about the HTTP request that called the object, and the context within

which the request was made. It starts at the root folder and looks for the

object named hello.

2. If ZPublisher finds that object, it looks to see if the object has a sub-object

named saySomething.

3. ZPublisher expects that the last name in a URL is the name of an object that is

callable. In other words, it expects that the last object is a method or that the

object has a default method named index_html.

4. Once ZPublisher finds the final method, it examines what arguments the

method expects and tries to pass them from the REQUEST object to the

method in the proper order. Any URL parameters or form fields submitted

through the HTTP request are also found in the REQUEST object, and passed

to the method.

5. ZPublisher returns the results of the method back to ZServer, which in turn

returns the results back to the client packaged in the appropriate protocol.

Cross-
Reference

e4857-3 Ch06.F 3/1/02 9:39 AM Page 180

181Chapter 6 ✦ From Packages to Products

In order to publish your hello object you will need to create an instance of the hello

class somewhere in the Zope object hierarchy. In this example you create the object

in the root folder object. This is accomplished by modifying your helloClass to

inherit from a few Zope-specific base classes (in Chapter 5 you learned about creat-

ing classes that inherit from other classes) and creating two constructor methods

(in Zope, you need special methods to create instances of your class within the

ZODB). Once you’ve done this you will be able to enter the Zope management

screen and add a hello object to the root folder by selecting it from the Add Object

drop-down menu.

Changing a Package into a Product
Creating a Product from a Package is not difficult. The first step is copying the

/helloPackage directory into your Zope installation’s ./lib/python/Products
directory and renaming it /helloProduct.

When Zope starts up it looks in the ./lib/python/Products directory for any

Packages (such as directories that have a __init__.py module). For each Package

it finds it attempts to call a method named initialize, which should be defined

in your __init__.py file.

In order to define the initialize method, edit the __init__.py file as follows:

import helloModule

def initialize(context):
context.registerClass(

helloModule.helloClass,
permission=”Add Hello Object”,
constructors=(helloModule.manage_addHelloForm,

helloModule.manage_addHello)
)

These changes to __init__.py call Zope’s Product registration machinery and pass

in the following:

✦ The helloClass

✦ A name for the Permission that will allow adding an instance of the Class

✦ The form to display when you want to add an instance of the Class

✦ The method that will actually add the Class

Permissions, by the way, are what Zope uses to protect certain objects and actions

from being available to all users who access your site. This is dealt with more in

depth in Chapters 9 and 13. For now, you just need to know that the permission

added here will only allow manager users to add hello Objects to the site.

e4857-3 Ch06.F 3/1/02 9:39 AM Page 181

182 Part II ✦ Building Zope Products

The last thing that you need to do is add an empty refresh.txt file to the

helloProduct directory. This enables Zope’s refresh functionality, which is very

useful when developing products, as it makes it unnecessary to constantly shut

down and restart Zope between making changes to Products.

The Product registration machinery is run when Zope starts up. Don’t start Zope

just yet, as there are a few small changes still to be made to the Module before the

registration can succeed.

Edit the helloModule.py file as follows:

def manage_addHelloForm(self):
“ “
return “”

def manage_addHello(self):
“ “
return “”

class helloClass:
def __init__(self, Name = ‘World’):

self.Name = Name

meta_type = “Hello Object”

def hello(self):
return “Hello, “ + self.Name

def edit(self, Name):
self.Name = Name

Note the following changes we made:

✦ We added two dummy methods to the Module that match the names given in

the initialize method we added to the __init__.py file.

✦ We added a meta_type declaration to the class.

The meta_type declaration sets the object’s meta type, which is useful when you

are trying to filter a list of objects to only those that you want. An example is when

you want to return all the subfolders from the current folder using (from DTML)

<dtml-in objectValues(‘Folder’)>.

Notice that both of the placeholder methods that we added to the Module have as

their first line a one-space string. The contents of this string are unimportant at this

stage, but the string must be present. This is the method’s docstring, and Zope will

not expose to the Internet any method that does not have a docstring.

e4857-3 Ch06.F 3/1/02 9:39 AM Page 182

183Chapter 6 ✦ From Packages to Products

Now that we’ve made the minimum necessary changes to the Package, Zope can

correctly register it as a Product when it finds the __init__.py file and calls the

initialize method (which calls registerClass), when you start (or restart) the

Zope server.

As you can see in Figure 6-1, the helloProduct Product registered correctly. (You

can tell this from the fact that the icon shown for the product is not broken.) If

the icon shown for the Product is broken, then you need to verify that the code

is correct. The Product also appears in the Add list drop-down menu as shown in

Figure 6-2.

Figure 6-1: The Registered Product listing

However, the Product as it is will not yet add itself to a folder. If you try, nothing will

happen. This is because the manage_addHelloForm and manage_addHello methods

are dummies, and because the helloClass doesn’t know enough about Zope’s per-

sistence machinery to interact with it correctly. The persistence machinery is the

code that Zope uses to save (or persist) objects and their attributes even between

Zope restarts. In other words it’s the mechanism by which data is stored in the

ZODB. We’ll show you how to fix both of these situations in the next section.

e4857-3 Ch06.F 3/1/02 9:39 AM Page 183

184 Part II ✦ Building Zope Products

Figure 6-2: The Add list drop-down menu

Instantiating Your Object
In this section we show you how to further modify the hello Product so that it can

instantiate correctly inside of a folder.

Filling out the manage_add methods
First, you need to fill out the two placeholder methods that you already added to

the helloModule.py file:

def manage_addHelloForm(self, REQUEST):
“Form for adding a Hello Object”
return “””
<html>
<head></head>
<body>
<form method=”post” action=”./manage_addHello”>
<input type=”text” name=”id”>
<input type=”submit” value=”Add Hello”>
</form>
</body>
</html>
“””

e4857-3 Ch06.F 3/1/02 9:39 AM Page 184

185Chapter 6 ✦ From Packages to Products

def manage_addHello(self, id, REQUEST):
“Method for adding a Hello object”
newHello = helloClass(id)
self._setObject(id, newHello)
return self.manage_main(self, REQUEST)

Another change is required in the helloClass itself, so that the object “knows” its

own id:

class helloClass:
def __init__(self, id, Name = ‘World’):

self.id = id
self.Name = Name

meta_type = “Hello Object”

def hello(self):
return “Hello, “ + self.Name

def edit(self, Name):
self.Name = Name

As you can see, the class’s __init__ method is altered so that it takes id as its sec-

ond parameter, and then sets the id attribute, in addition to the Name attribute.

Without this change, various things will break, in some subtle ways. For example,

the object will not report its id correctly to the containing object, resulting in a

blank id field in the folder contents view. This would also prevent the object from

being renamed (via the management interface) to a different id.

After you’ve made and saved these changes, you can refresh the Zope product by

going into the Products Refresh tab, and clicking the Refresh This Product button.

This will cause Zope to re-initialize the product code from the file system, and

enable the changes that you just made without having to restart Zope. This is a

feature that was introduced into Zope in version 2.4.

When you try to select Hello Object from the list of objects in the drop-down

menu, a simple form consisting of a single Add Hello button appears, as shown in

Figure 6-3.

Zope’s registration machinery automatically builds the drop-down menu so that

selecting the meta_type listed will cause the manage_addHelloForm method to be

called. In this case, the manage_addHelloForm method returns the contents of a

string, which consists of some HTML defining a simple form. The form defined by

the manage_addHelloForm method has as its target the manage_addHello method.

The code you added to the manage_addHello method is a little more complex, but if

you remember that the method is a Module level method (and not a class method),

it becomes clearer.

e4857-3 Ch06.F 3/1/02 9:39 AM Page 185

186 Part II ✦ Building Zope Products

Figure 6-3: The Hello Product’s Add form

The first line is again a docstring, necessary for exposing the method to the

Internet. The second line simply assigns a new instance of the class to newHello.

The third is where things start getting interesting. The _setObject method is not

one you may have seen before, as it is a standard method of the Folder class. It is

through this method that the instance of the helloClass is placed inside the folder

with the appropriate id.

The last line we added to manage_addHello tells Zope what to display after adding

an instance of your class to the folder. Here we tell Zope to display the current

object’s (the folder we’re in) manage_main method. This is standard behavior for the

Zope management interface, in that after you add an object to a folder, you are

brought back to the folder where you can see the object you just added.

Subclassing from Zope base classes
The helloProduct Product seems ready to work. However, if you were to refresh

the product at this point and try to add a Hello object to a folder, Zope will report

a strange error and not add the object to the folder. The problem is that the

e4857-3 Ch06.F 3/1/02 9:39 AM Page 186

187Chapter 6 ✦ From Packages to Products

helloClass doesn’t have any notion of how to represent itself in the Zope manage-

ment interface, or the persistence machinery that allows objects to be stored in

the Zope Object Database (ZODB). As far as Zope is concerned, Python objects or

attributes that aren’t stored persistently largely don’t exist, in the sense that if Zope

is shut down or restarted, whatever changes were made to the object or attribute

will be lost.

The remedy for this is fairly painless. The helloClass must inherit from one or

more of the base classes the Zope developers have thoughtfully provided.

Therefore, in order for the helloClass instances to interact correctly with the man-

agement interface, they need to inherit from OFS.SimpleItem.Item:

from OFS.SimpleItem import Item

In order for the class instances to store themselves in the ZODB, they must inherit

from Globals.Persistent:

from Globals import Persistent

And in order for the class instances to acquire attributes and methods from their

containers, they need to inherit from Acquisition.Implicit:

from Acquisition import Implicit

Add the previous three lines to the top of the helloModule.py file, and then change

the helloClass class definition as follows so the helloClass inherits from these

three base classes:

class helloClass(Item, Persistent, Implicit):

After making these changes and refreshing the Product, try adding the Hello object

again. Select the Hello Object option from the drop-down menu. The Add form

should appear as shown in Figure 6-3. Type TestHello into the form and click the

Add Hello button. You should be brought back to the folder’s main view, and you

should see a TestHello object listed, as shown in Figure 6-4.

Congratulations! You’ve successfully created a Product that you can add through

the Zope management interface. In the next section, we show you how to improve

the Product further, so that it actually does something.

e4857-3 Ch06.F 3/1/02 9:39 AM Page 187

188 Part II ✦ Building Zope Products

Figure 6-4: An Instance of helloClass added to the folder

Adding DTML Methods
In the previous section, we added the manage_addHelloForm method to the

helloModule Module:

def manage_addHelloForm(self, REQUEST):
“Form for adding a Hello Object”
return “””
<html>
<head></head>
<body>
<form method=”post” action=”./manage_addHello”>
<input type=”text” name=”id”>
<input type=”submit” value=”Add Hello”>
</form>
</body>
</html>
“””

The problem with embedding HTML code directly into your Module files like this is

that it can make your Module difficult to read and debug, as you are actually mixing

logic and presentation into the same source file. You wouldn’t want to hand your

Module file over to an HTML designer to improve the look and feel, would you?

e4857-3 Ch06.F 3/1/02 9:39 AM Page 188

189Chapter 6 ✦ From Packages to Products

There are a couple of other disadvantages, too: The Product needs to be refreshed

every time you make a change to the Module, and the embedded HTML can’t con-

tain DTML for Zope to interpret, since it’s just text returned directly to the browser,

thereby throwing away most of the advantages of working with Zope in the first

place, such as using standard headers and footers for look and feel.

The preferred alternative is to use external *.dtml files that you can bring into the

Module as HTMLFile objects.

First add a /DTML subdirectory to your /helloProduct directory. Then add a

manage_addHelloForm.dtml file in the /helloProduct/DTML subdirectory with

the following contents:

<dtml-var manage_page_header>
<form method=”post” action=”./manage_addHello”>
<input type=”text” name=”id”>
<input type=”submit” value=”Add Hello”>
</form>
<dtml-var manage_page_footer>

Notice that Zope has special headers and footers for the management interface.

Next, change the beginning of the helloModule.py file to match the following code:

from OFS.SimpleItem import Item
from Globals import Persistent, HTMLFile
from Acquisition import Implicit

manage_addHelloForm = HTMLFile(‘DTML/manage_addHelloForm’,
globals())

You can see that two changes were made here. First, we are now importing

HTMLFile from Globals, in addition to Persistent. Second, manage_addHelloForm is

now an instance of HTMLFile. HTMLFiles, despite their name, are intended to con-

tain DTML as well as HTML, so that Zope can interpret the DTML and display the

result. As HTMLFiles are intended to be presented through the Web, they don’t

require a docstring as a Python method does.

If you now refresh the product and try adding a new Hello object, you’ll see that the

functionality is unchanged, even though we have moved the code for the form to an

external file. As a result, our Module file is now shorter and easier to understand,

and we can leverage the flexibility of DTML in our template.

If after refreshing the product it breaks, check to make sure you haven’t made any
typos. Remember that file names and directory names are case-sensitive!

Our Hello objects currently do not have any way of presenting themselves on the

Internet because they lack an index_html method. This means that if you try to

access them directly, they will acquire an index_html method from their container,

Note

e4857-3 Ch06.F 3/1/02 9:39 AM Page 189

190 Part II ✦ Building Zope Products

which won’t show you anything particularly interesting. This is easily remedied by

adding an index_html.dtml file to your Products /DTML subdirectory with the fol-

lowing contents:

<dtml-var standard_html_header>
<h1>Hello, <dtml-var Name>!</h1>
<dtml-var standard_html_footer>

Then add the following to the end of the helloModule.py file inside the class:

Web Methods

index_html = HTMLFile(‘DTML/index_html’, globals())

Unlike the manage_add* Module methods at the top of the file, index_html is a

method of the class, and must be indented accordingly. Your helloModule.py file

should now look like this:

from OFS.SimpleItem import Item
from Globals import Persistent, HTMLFile
from Acquisition import Implicit

manage_addHelloForm = HTMLFile(‘DTML/manage_addHelloForm’, Æ
globals())

def manage_addHello(self, id, REQUEST):
“Method for adding a Hello object”
newHello = helloClass(id)
self._setObject(id, newHello)
return self.manage_main(self, REQUEST)

class helloClass(Item, Persistent, Implicit):
def __init__(self, id, Name = ‘World’):

self.id = id
self.Name = Name

meta_type = “Hello Object”

def hello(self):
return “Hello, “ + self.Name

def edit(self, Name):
self.Name = Name

Web Methods

index_html = HTMLFile(‘DTML/index_html’, globals())

Save the file and refresh the Product. Now you should be able to go to a URL such

as http://128.0.0.1:8080/TestHello (or whatever your development machine’s

URL is), and see results similar to the results shown in Figure 6-5.

e4857-3 Ch06.F 3/1/02 9:39 AM Page 190

191Chapter 6 ✦ From Packages to Products

Figure 6-5: The Hello Products index_html method

From this we can also see that the Name property that we are initializing in the

class’s __init__ method is working correctly, and that we can access the Name

property of the class instance from DTML by using <dtml-var Name>.

Processing Form Submissions and Returning
Next, you’ll learn how to process form submissions, and return the browser to a

management screen. We’ll use this to allow through the web editing of your objects.

Web-enabling the edit method
Our Hello Product now instantiates correctly, and even has a public viewing inter-

face, but it doesn’t let us change the attributes of its instances. The Hello Class has

an edit method, which with a little work we can Web enable:

def edit(self, Name, REQUEST):
“method to edit Hello instances”
self.Name = Name
return self.index_html(self, REQUEST)

e4857-3 Ch06.F 3/1/02 9:39 AM Page 191

192 Part II ✦ Building Zope Products

What are the changes we’ve made here? First, we added a docstring so that the edit

method could be called through the Web. Second, REQUEST was added as a parame-

ter to the method. And finally, the method returns the object’s index_html method

as a result once the change is made. Generally, all presentation methods require

REQUEST as a parameter (which contains everything that the ZPublisher knows

about the request that caused a method to be called), so any Web-enabled methods

that return a presentation method are going to need it, too, in order to correctly

pass the context that the method was called from. (We refine this to deal with non-

Web situations a little later in this chapter.)

Now, after refreshing the product, if you type into your browser a URL such as,

http://128.0.0.1:8080/TestHello/edit?Name=Bob, you should get a browser page

that demonstrates that the value of the Name attribute has been changed, as shown

in Figure 6-6.

You can see that although the edit method itself is not a presentation method, by

modifying it to return another method that is a presentation method after its pro-

cessing is complete, it can now be called directly through the Web. Without that

last line, calling the method through a browser will actually change the attribute,

but the browser will not display anything to indicate that the change has taken.

Figure 6-6: The Web-enabled edit method

e4857-3 Ch06.F 3/1/02 9:39 AM Page 192

193Chapter 6 ✦ From Packages to Products

Dealing with non-Web situations
The edit method as currently constructed now requires a REQUEST parameter that

can only be had when then the method is accessed over the Web and returns the

class index_html method, which also can only be accessed over the Web. In order

to make sure that your Product is still accessible for non-Web uses, you need to

make the following change:

def edit(self, Name, REQUEST=None):
“method to edit Hello instances”
self.Name = Name
if REQUEST is not None:

return self.index_html(self, REQUEST)

These two changes make sure that your class’ edit method is still usable from the

interactive interpreter or other non-Web situations. First, you made the REQUEST
parameter optional, with a default value of None. Second, you added a conditional

to test whether the REQUEST object was not None, and if so, only then return the

object’s index_html method.

Adding manage_editHelloForm
Obviously, calling an edit method directly through your browser is not very conve-

nient. So we need to add a manage_editHelloForm method that will make it easier to

work with. Add the following line to the helloClass, under the # Web Methods line:

manage_editHelloForm = HTMLFile(‘DTML/manage_editHelloForm’, globals())

Of course this means that we also need a manage_editHelloForm.dtml file in the

DTML subdirectory of our Product:

<dtml-var manage_page_header>
<dtml-var manage_tabs>
<p>Current Name is: <dtml-var Name></p>

<form method=”post” action=”./edit”>
<input type=”text” name=”Name”>
<input type=”submit” value=”Change Name”>
</form>
<dtml-var manage_page_footer>

Refresh the product, and test the URL, http://128.0.0.1:8080/TestHello/manage_
editHelloForm. You should be presented with a screen that resembles Figure 6-7.

Notice that Zope provides a manage_tabs method for Web management interface

views. Right now, you haven’t yet defined any tabs for your class, so Zope displays

a default set of two tabs: Undo and Ownership.

e4857-3 Ch06.F 3/1/02 9:39 AM Page 193

194 Part II ✦ Building Zope Products

If you type in some other name into the form and hit the Change Name button, the

form will submit to the edit method, be processed, and redirect you back to the

index_html method, where you will see a greeting for the new name you typed in.

Figure 6-7: The manage_editHelloForm screen

Defining your own management tabs
The manage_editHelloForm method as it currently stands has a serious drawback in

that you still have to type the URL directly into the browser in order to see it. What

we really want is for the form to have its own tab that comes up automatically when

we click the object in the management interface. As you might suspect, Zope pro-

vides a fairly simple way of adding this functionality into your Product.

Add the following line to helloModule.py inside the class, just after the meta_type
declaration:

manage_options = ({‘label’:’Edit’,
‘action’:’manage_editHelloForm’},
)

e4857-3 Ch06.F 3/1/02 9:39 AM Page 194

195Chapter 6 ✦ From Packages to Products

This might seem a little obscure, but the explanation is straightforward.

manage_options is a tuple of two-item dictionaries. Tuples are sequences, so the

order of the items in the tuple is significant. In this case, the order of items in the

tuple represents the order of the tabs in the management interface. Each dictionary

in the manage_options tuple represents a single tab and has two key/value pairs; the

first pair is the text that will appear on the tab, with a key of label, and a value of

Edit, and a second key/value pair with a key of action, and a value of manage

editHelloForm that is used as the target for the tab hyperlink. So you can see

that we’ve just defined a tab with a label of Edit that will send you to the

manage_editHelloForm method.

Because tuples use regular parentheses to enclose their members, a single item
tuple requires a trailing comma after the item to distinguish itself from a pair of
parentheses grouping some items in an expression. If we had defined two tabs
(each with its own dictionary) in the manage_options tuple, they would be sepa-
rated by a comma, and we wouldn’t need a trailing comma.

When you define more than one tab for a class in Zope, it’s helpful to remember

that the first tab defined in the manage_options tuple will be the default tab, and is

the tab you will get when you click an object in the management interface.

Now, refresh the product, and click the TestHello Hello object instance in the man-

agement interface. You should see results similar to those shown in Figure 6-8.

Figure 6-8: The Edit tab

Note

e4857-3 Ch06.F 3/1/02 9:39 AM Page 195

196 Part II ✦ Building Zope Products

The functionality of the manage_editHelloForm method is unaffected by the changes

you’ve made, but you should nevertheless see that the method no longer displays

the Undo and Ownership tabs. As long as you didn’t define manage_options within

your class, your class was acquiring a default manage_options attribute from the

Zope environment via the Item base Class that helloClass inherits from. Now that

you’ve defined manage_options for your class (overriding the inherited value), only

the tabs you define are displayed.

Another common tab is a View tab, usually defined to point toward an object’s

index_html method. You can make that change by changing the definition of

manage_options as follows:

manage_options = ({‘label’:’Edit’,
‘action’:’manage_editHelloForm’},
{‘label’:’View’, ‘action’:’index_html’}
)

This will add a View tab to the management interface.

Summary
As you’ve seen in this chapter, changing a Package into a Product is not very diffi-

cult. Mostly it involves changes to make your Package register with Zope automati-

cally when Zope is started up, changes that enable your classes to interact with the

management interface and be instantiated; changes that enable instances of your

class to be stored persistently and interact with the acquisition machinery; and

changes that enable your classes’ methods to be called over the Web.

We’ve also shown you how to create Web-specific methods by defining HTMLFile

objects that reference *.dtml files on the file system.

✦ ✦ ✦

e4857-3 Ch06.F 3/1/02 9:39 AM Page 196

Creating an
AddressBook
Application

In Chapter 6, you learned about the similarities and differ-

ences between Python Packages and Zope Products, and

how to take an existing Package and enhance it with the fea-

tures that would make it into a Zope Product.

In this chapter and the following chapters in Part II, we build

upon that knowledge to show you how to design and build

more sophisticated Zope Products that you can use to

enhance your Zope-based sites and intranets.

We chose an address book application to demonstrate how to

design and build a Web application as a Zope Product. We feel

that it is an appropriate example of an application that a devel-

oper wanting to enhance a Zope Web site or intranet with some

additional functionality would consider developing. In addition,

it possesses the appropriate levels of straightforwardness (to

support ease of understanding) and complexity (to be a suffi-

ciently challenging task) to make it a good first application.

At the end of this chapter, you will have a functional and use-

ful Zope Product, which you will continue to enhance in sub-

sequent chapters in the second part of this book.

The Addressit Product and
the AddressBook Class

So, what are you actually going to build here? Typically, an

address book can be thought of as containing entries (corre-

sponding to people) that can be listed and navigated in vari-

ous ways, and that have a number of attributes that can be

used to contact those people. An AddressBook then is a con-

taining class, and Entry instances are contained within it.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The Addressit Product
and the AddressBook
class

Creating add, edit,
and index_html
methods

Creating an entry
module in the
Addressit Product

Adding, listing, and
deleting entries from
the AddressBook

Traversing the
AddressBook into
the entries

Editing an entry

✦ ✦ ✦ ✦

e4857-3 Ch07.F 3/1/02 9:39 AM Page 197

198 Part II ✦ Building Zope Products

Creating the Addressit Product
We’ll call this product the Addressit product, if you don’t mind a little self-

promotion for the authors’ employer (Codeit Computing).

To begin, create an Addressit directory inside your Zope installation’s Products
directory, as you did for the helloProduct in the previous chapter. Then create

an __init__.py file in your Addressit directory with the following code:

import AddressBook

def initialize(context):

context.registerClass(
AddressBook.AddressBook,
permission=”Add AddressBook”,
constructors=(AddressBook.manage_addAddressBookForm,

AddressBook.manage_addAddressBook)
)

The structure of this file should be recognizable; it’s essentially the same as the file

you created for the helloProduct in the previous chapter, with a few name substitu-

tions. You can see that the __init__.py file refers to an AddressBook class inside an

AddressBook module, so you’ll need to create that next. Place an AddressBook.py file

with the code shown in Listing 7-1 into the same directory.

Listing 7-1: AddressBook.py

from OFS.SimpleItem import SimpleItem
from Globals import DTMLFile

Module level declarations and methods

manage_addAddressBookForm = DTMLFile(“dtml/addAddressBookForm”, Æ
globals())

def manage_addAddressBook(self, id, title, REQUEST):
“Adds an AddressBook object to a folder”

newAddressBook=AddressBook(id, title)
self._setObject(id, newAddressBook)

return self.manage_main(self, REQUEST)

The Addressbook Class

class AddressBook(SimpleItem):

e4857-3 Ch07.F 3/1/02 9:39 AM Page 198

199Chapter 7 ✦ Creating an AddressBook Application

“An AddressBook object”

meta_type = “AddressBook”

def __init__(self, id, title):
self.id = id
self.title = title

Here you can start to see some differences between helloProduct and the

Addressit Product. Specifically, the base classes that the two Products inherit

from are not the same. The helloProduct inherited from OFS.SimpleItem.Item,

Globals.Persistent, and Acquisition.Implicit, whereas the AddressBook class

inherits from a single class OFS.SimpleItem.SimpleItem. OFS.SimpleItem.SimpleItem
is a base class provided to make creating Zope Products easier, as it is simply a

class that inherits from the three base classes that we are already familiar with,

plus one more: AccessControl.Role.RoleManager, which enables you to set local

roles on instances of the class. This last base class isn’t really important at the

moment, as we don’t discuss application security until Chapter 9, but meanwhile

we can take advantage of the increased legibility that comes from using one base

class (SimpleItem) instead of several base classes.

Another difference is the use of DTMLFile instances instead of HTMLFile instances.

HTMLFile is actually a deprecated class that is a little simpler in some regards than

its newer replacement, DTMLFile. The examples in Chapter 6 were straightforward

enough that it didn’t really make any difference which was used, but in this and

subsequent chapters we’re building a real product, so to speak, so we’re using the

more recent DTMLFile for the rest of this chapter and the subsequent chapters in

this section.

The only thing that’s missing to get this Product to register and instantiate cor-

rectly at this point is a manage_addAddressBookForm.dtml file, so that’s what you’re

going to add next. Create the file in a /dtml subdirectory of the Product directory,

with the code shown in Listing 7-2.

Listing 7-2: manage_addAddressBook.dtml

<dtml-var standard_html_header>

<form method=post action=manage_addAddressBook>
<table border=0 cellspacing=0 cellpadding=5>
<tr>
<td>Address book ID:</td>
<td><input type=text name=”id”></td>
</tr>

Continued

e4857-3 Ch07.F 3/1/02 9:39 AM Page 199

200 Part II ✦ Building Zope Products

Listing 7-2 (continued)

<tr>
<td>Title:</td>
<td><input type=text name=”title”></td>
</tr>
<tr>
<td colspan=2><input type=submit value=”Add

AddressBook”></td>
</tr>
</table>
</form>

<dtml-var standard_html_header>

Start (or restart) your Zope installation and you should now see the Addressit

Product show up in the Control Panel/Products folder, and the AddressBook

should show up correctly in the Add drop-down menu. Adding an AddressBook

should also work correctly. At this point, the Addressit Product can be described

with the UML (Unified Modeling Language) diagram shown in Figure 7-1.

Figure 7-1: The Addressit UML diagram

If you’re not familiar with UML diagrams, we recommend that you take a look at
UML Distilled by Martin Fowler and Kendall Scott (Addison-Wesley, 1999), which
is an excellent introductory book.

The diagram in Figure 7-1 shows a single class (named AddressBook) that has two
attributes, title and id (listed directly below the name of the class), and one
method __init__ listed below the attributes. We’ll include explanations for other
features of UML as we encounter them.

Of course, the Product doesn’t actually do anything yet.

The code for the product at this point can be found in the /chapter_07/
Addressit_1 directory on the accompanying CD-ROM.

On the
CD-ROM

Note

Address Book
title:
id:
+ init (id: , title:)

e4857-3 Ch07.F 3/1/02 9:39 AM Page 200

201Chapter 7 ✦ Creating an AddressBook Application

Creating edit and index_html Methods
Okay, so the AddressBook class needs a way of displaying itself in the management

interface, and of editing its properties. Add the following code to the end of the

AddressBook.py file, extending the AddressBook class definition:

manage_options=(
{‘label’:’Edit’, ‘action’:’manage_main’ },
)

manage_main = DTMLFile(“dtml/mainAddressBook”, globals())

def editAddressBook(self, title, REQUEST):
“A method to edit Address Book Properties”

self.title = title

return self.manage_main(self, REQUEST)

You’ve done three things here:

✦ You’ve added a manage_options property to generate custom tabs for your

Product, overriding the manage_options attribute inherited from SimpleItem.

✦ You’ve defined an external DTMLFile object to act as your main management

view.

✦ You’ve defined an edit method to change the object’s properties.

You may notice that manage_options refers to manage_main, and manage_main
refers to an external DTMLFile that doesn’t yet exist, so you need to create a

mainAddressBook.dtml file in your Product’s /dtml subdirectory with the code

shown in Listing 7-3.

Listing 7-3: mainAddressBook.dtml

<dtml-var manage_page_header>
<dtml-var manage_tabs>

<form method=post action=editAddressBook>
<table border=0 cellspacing=0 cellpadding=5>
<tr>
<td>Title:</td>
<td><input type=text name=”title” value=”&dtml-title;”></td>
</tr>
<tr>

Continued

e4857-3 Ch07.F 3/1/02 9:39 AM Page 201

202 Part II ✦ Building Zope Products

Listing 7-3 (continued)

<td colspan=2><input type=submit value=”Edit
AddressBook”></td>
</tr>
</table>
</form>
</body>
</html>

<dtml-var manage_page_footer>

As we explained in Chapter 6, Zope provides special header and footer methods for

management screens, including a method for generating the tabs at the top of those

screens. The rest of this DTML method is a simple form that has as its action the

editAddressBook class method that we’ve already defined. An interesting enhance-

ment to this form is the fact that it renders the current value of a property in the

form field, which makes it easy to edit it rather than having to retype it from

scratch. It does this by setting the value of the title input form element to &dtml-
title; this HTML-entity syntax is equivalent to <dtml-var title>, and Zope would

render both the same. The only difference is that the syntax that we chose to use

here won’t cause an HTML editor to choke on the invalid HTML syntax. In any case,

rendering the current value of a property into the form element that is supposed to

change it is good practice.

Add a refresh.txt file to the /Addressit product folder and refresh the Addressit

product. The result is a main view for the AddressBook object that consists of a

form to edit the title property of the instance. Add an AddressBook to your Root

Folder with an id of Test and a title of My AddressBook. By clicking it in the manage-

ment interface, you should see a screen resembling the one shown in Figure 7-2.

Changing the value in the field and clicking the Edit AddressBook button submits

the form to the editAddressBook method of the class. The method will apply the

changed values to the instance, and return the form again. You’ll probably notice a

brief flicker as the form is re-rendered, but it will appear otherwise unchanged, as

the form re-renders with the changed values that you had already typed into the

form. Check to see if it worked correctly by looking at the main view of the folder

where you placed the AddressBook instance. You should see that the changed title

is now listed in parentheses after the AddressBook id.

To round out this basic AddressBook Product, it needs an index_html method, so

first change the class manage_options property as follows:

manage_options=(
{‘label’:’Edit’, ‘action’:’manage_main’ },

{‘label’:’View’, ‘action’:’index_html’ }
)

e4857-3 Ch07.F 3/1/02 9:39 AM Page 202

203Chapter 7 ✦ Creating an AddressBook Application

Figure 7-2: The AddressBook main view

This creates a View tab in the management interface linked to an index_html
method. If you were to refresh the product at this point and click the View tab of an

AddressBook instance (or type in its URL directly), the instance would display an

acquired index_html method (from its parent folder). Add the following code to the

end of the AddressBook.py file, indented so that it’s within the class definition:

Web Presentation Methods

index_html = DTMLFile(“dtml/indexAddressBook”, globals())

Next, create an indexAddressBook.dtml file in the /Addressit/dtml directory with

the following code:

<dtml-var standard_html_header>
<h1><dtml-var title><h1>
<dtml-var standard_html_footer>

Now, if you refresh the product and click the View tab, you’ll see the AddressBook
class’ index_html method, which should look something like Figure 7-3.

e4857-3 Ch07.F 3/1/02 9:39 AM Page 203

204 Part II ✦ Building Zope Products

Figure 7-3: The Addressbook’s index_html method

The methods we’ve added alter the UML diagram a little, so it should now look like

Figure 7-4.

Figure 7-4: AddressBook UML diagram

The code for the Product at this point can be found in the /chapter_07/
Addressit_2 directory on the CD that accompanies this book.

On the
CD-ROM

Address Book
title:
id:
__init__(id: , title:)
manage_main()
editAddressBook(title:)
index_html ()

e4857-3 Ch07.F 3/1/02 9:39 AM Page 204

205Chapter 7 ✦ Creating an AddressBook Application

Creating an Entry Module
in the Addressit Product

Our Addressit Product now has a sort of generic object that will act as a container

for our entries. However, there is as yet nothing for an AddressBook to contain.

So we need to create an Entry class. While it is perfectly possible to define the

Entry class within the AddressBook module, this is not something we recommend.

Monolithic modules are generally harder to understand and maintain. Splitting a

Product (or a Package) into several modules (one for each type of object) is usually

a good idea. Because we have a container/contained-object pattern here, a module

for each makes sense. Therefore, the Entry class will get its own Module, Entry.py.

What should an entry do? An entry should obviously have a number of attributes

that store information about the person in question and information about how to

contact the person. So our Entry class will have the following attributes:

✦ FirstName

✦ MiddleInitial

✦ LastName

✦ Address1

✦ Address2

✦ City

✦ State

✦ ZipCode

✦ Country

✦ Company

✦ Title

This should give us enough information about the person in question. But we also

need to store contact information as well. Each entry will have up to six contacts

associated with it, and each contact will have an associated contact type, like so:

Contact_1, Contact_Type_1

Contact_2, Contact_Type_2

...

Contact_6, Contact_Type_6

The class also needs (at a minimum) a constructor, a method for editing instances,

a form for entering changed values, and an index_html presentation method. The

UML diagram in Figure 7-5 shows this information, and the relationship between the

AddressBook and Entry classes.

e4857-3 Ch07.F 3/1/02 9:39 AM Page 205

206 Part II ✦ Building Zope Products

Figure 7-5: UML diagram of the AddressBook and Entry classes

Figure 7-5 shows a line connecting the two classes in the diagram, a black dia-
mond and the number 1on one end, and an asterisk on the other.

The black diamond on the AddressBook end of the line denotes that the relation-
ship between an AddressBook and an Entry is one of Composition, which means
that if the AddressBook is deleted, its contained entries are to be deleted as well.
The number 1 and the asterisk denote that the relationship is between a single
AddressBook instance, and zero or more Entry instances.

Now, create an Entry.py file in your Product directory, with the code shown in

Listing 7-4.

Listing 7-4: Entry.py

from Globals import Persistent, DTMLFile
from Acquisition import Implicit
from OFS.SimpleItem import Item

class Entry(Item, Persistent, Implicit):
“Address Book Entry”

meta_type = “AddressBook Entry”

Note

Address Book
title:
id:
__init__(id: , title:)
manage_main()
editAddressBook(title:)
index_html ()

Entry1 *
FirstName:
MiddleInitial:
LastName:
Address1:
Address2:
City:
State:
ZipCode:
Country:
Company:
Title:
Contact_1:
Contact_Type_1:
Contact_2:
Contact_Type_2:
Contact_3:
Contact_Type_3:
Contact_4:
Contact_Type_4:
Contact_5:
Contact_Type_5:
Contact_6:
Contact_Type_6:
__init__(FirstName:, MiddleInitial:, Last Name:)
editEntry(:)
editEntryForm()
index_html()

e4857-3 Ch07.F 3/1/02 9:39 AM Page 206

207Chapter 7 ✦ Creating an AddressBook Application

def __init__ (self, id, FirstName, MiddleInitial,
LastName):

self.id = id
self.editEntry(FirstName, MiddleInitial, LastName)

def editEntry (self, FirstName, MiddleInitial, LastName,
Address1 = “”,
Address2 = “”,
City = “”,
State = “”,
ZipCode = “”,
Country = “”,
Company = “”,
Title = “”,
Contact_1 = “”, ContactType_1 = “”,
Contact_2 = “”, ContactType_2 = “”,
Contact_3 = “”, ContactType_3 = “”,
Contact_4 = “”, ContactType_4 = “”,
Contact_5 = “”, ContactType_5 = “”,
Contact_6 = “”, ContactType_6 = “”,
REQUEST = None
):

“Method for updating Entries”
self.FirstName = FirstName
self.LastName = LastName
self.MiddleInitial = MiddleInitial
self.Address1 = Address1
self.Address2 = Address2
self.City = City
self.State = State
self.ZipCode = ZipCode
self.Country = Country
self.Company = Company
self.Title = Title
self.Contact_1 = Contact_1
self.ContactType_1 = ContactType_1
self.Contact_2 = Contact_2
self.ContactType_2 = ContactType_2
self.Contact_3 = Contact_3
self.ContactType_3 = ContactType_3
self.Contact_4 = Contact_4
self.ContactType_4 = ContactType_4
self.Contact_5 = Contact_5
self.ContactType_5 = ContactType_5
self.Contact_6 = Contact_6
self.ContactType_6 = ContactType_6
if REQUEST is not None:

return self.editEntryForm(self, REQUEST)

Continued

e4857-3 Ch07.F 3/1/02 9:39 AM Page 207

208 Part II ✦ Building Zope Products

Listing 7-4 (continued)

Web Presentation Methods

editEntryForm = DTMLFile(“dtml/editEntryForm”, globals())

index_html = DTMLFile(“dtml/entryDetails”, globals())

Other than the greater number of attributes that this class has, there should be

nothing intimidating about the code for this module and class. There are a few finer

points that deserve some attention, though.

First, notice that other than the id attribute, the __init__ method does not set any

other attributes directly. Instead, it calls the editEntry method, passing in the three

required parameters of FirstName, MiddleInitial, and LastName. editEntry, on the

other hand, only requires those same three parameters — all others are optional

and have default values consisting of empty strings.

The only optional parameter that does not default to an empty string is REQUEST,

which defaults to the None object. In this way, when editEntry is called from

__init__ (and REQUEST is not passed in), the editEntry method only sets the values

of the passed in parameters, and does nothing else. However, when editEntry is

called from a Web form directly (and therefore REQUEST is passed in), REQUEST will

not be None, and the method will return the editEntryForm after setting all of the

class’s attributes.

The second aspect of this class that is worth noting is that it does not have any add

methods. This is because add methods actually operate on the container, not on

the added object. One can legitimately ask then why the AddressBook’s add meth-

ods and forms are contained within the AddressBook Module, and the Entry objects’

add methods aren’t contained in the Entry Module. The answer to that question is

one of pragmatics: It would be impractical to have to add code to the Zope Folder

implementation directly to deal with every Product added to a Zope installation, so

Zope uses a bit of indirection, and registers the add methods of added products

when they are set in the Package’s __init__.py file’s initialize method. The Entry
class doesn’t have to go through any such contortions since it is only addable in

AddressBook instances, so we can safely place the methods to add entries into the

AddressBook class.

Before we do that though, we still need to add two DTMLFiles to the Entry,

index_html, and editEntryForm. Add an editEntryForm.dtml file to the

/Addressit/DTML directory with the code in Listing 7-5.

e4857-3 Ch07.F 3/1/02 9:39 AM Page 208

209Chapter 7 ✦ Creating an AddressBook Application

Listing 7-5: editEntryForm.dtml

<dtml-var standard_html_header>

<form action=”&dtml-absolute_url;/editEntry” method=POST>
<table>
<tr>
<th>First Name:</th>
<td><input type=text name=FirstName value=”&dtml-
FirstName;”></td>
</tr>
<tr>
<th>Last Name:</th>
<td><input type=text name=LastName value=”&dtml-
LastName;”></td>
</tr>
<tr>
<th>Middle Initial:</th>
<td><input type=text name=MiddleInitial size=1 Æ
value=”&dtml-MiddleInitial;”></td>
</tr>
<tr>
<th>Title:</th>
<td>
<input type=text name=Title value=”&dtml-Title;”>

</td>
</tr>

<tr>
<th>Company Name:</th>
<td>
<input type=text name=Company value=”&dtml-Company;”>

</td>
</tr>

<tr>
<th>Contact 1:</th>
<td>
<select size=1 name=”ContactType_1”>
<option value=””>Contact Type:

<dtml-in listContactTypes>
<option value=”&dtml-sequence-item;”<dtml-if Æ

“_[‘sequence-item’]==ContactType_1”>selected</dtml-if>> Æ
<dtml-var sequence-item>
</dtml-in>

</select>
<input type=text name=Contact_1 value=”&dtml-Contact_1;”>
</td>

</tr>

Continued

e4857-3 Ch07.F 3/1/02 9:39 AM Page 209

210 Part II ✦ Building Zope Products

Listing 7-5 (continued)

<tr>
<th>Contact 2:</th>
<td>
<select size=1 name=”ContactType_2”>
<option value=””>Contact Type:

<dtml-in listContactTypes>
<option value=”&dtml-sequence-item;”<dtml-if Æ

“_[‘sequence-item’]==ContactType_2”>selected</dtml-if>> Æ
<dtml-var sequence-item>
</dtml-in>

</select>
<input type=text name=Contact_2 value=”&dtml-Contact_2;”>
</td>

</tr>

<tr>
<th>Contact 3:</th>
<td>
<select size=1 name=”ContactType_3”>
<option value=””>Contact Type:

<dtml-in listContactTypes>
<option value=”&dtml-sequence-item;”<dtml-if Æ

“_[‘sequence-item’]==ContactType_3”>selected</dtml-if>> Æ
<dtml-var sequence-item>
</dtml-in>

</select>
<input type=text name=Contact_3 value=”&dtml-Contact_3;”>
</td>

</tr>

<tr>
<th>Contact 4:</th>
<td>
<select size=1 name=”ContactType_4”>
<option value=””>Contact Type:

<dtml-in listContactTypes>
<option value=”&dtml-sequence-item;”<dtml-if Æ

“_[‘sequence-item’]==ContactType_4”>selected</dtml-if>> Æ
<dtml-var sequence-item>
</dtml-in>

</select>
<input type=text name=Contact_4 value=”&dtml-Contact_4;”>
</td>

</tr>

e4857-3 Ch07.F 3/1/02 9:39 AM Page 210

211Chapter 7 ✦ Creating an AddressBook Application

<tr>
<th>Contact 5:</th>
<td>
<select size=1 name=”ContactType_5”>
<option value=””>Contact Type:

<dtml-in listContactTypes>
<option value=”&dtml-sequence-item;”<dtml-if Æ

“_[‘sequence-item’]==ContactType_5”>selected</dtml-if>> Æ
<dtml-var sequence-item>
</dtml-in>

</select>
<input type=text name=Contact_5 value=”&dtml-Contact_5;”>
</td>

</tr>

<tr>
<th>Contact 6:</th>
<td>
<select size=1 name=”ContactType_6”>
<option value=””>Contact Type:

<dtml-in listContactTypes>
<option value=”&dtml-sequence-item;”<dtml-if Æ

“_[‘sequence-item’]==ContactType_6”>selected</dtml-if>> Æ
<dtml-var sequence-item>
</dtml-in>

</select>
<input type=text name=Contact_6 value=”&dtml-Contact_6;”>
</td>

</tr>

<tr>
<th>Street Address 1:</th>
<td>
<input type=text name=Address1 value=”&dtml-Address1;”>

</td>
</tr>

<tr>
<th>Street Address 2:</th>
<td>
<input type=text name=Address2 value=”&dtml-Address2;”>

</td>
</tr>

<tr>
<th>City:</th>
<td>
<input type=text name=City value=”&dtml-City;”>

</td>
</tr>

Continued

e4857-3 Ch07.F 3/1/02 9:39 AM Page 211

212 Part II ✦ Building Zope Products

Listing 7-5 (continued)

<tr>
<th>State:</th>
<td>
<input type=text name=State value=”&dtml-State;”>

</td>
</tr>

<tr>
<th>Zipcode:</th>
<td>
<input type=text name=ZipCode value=”&dtml-ZipCode;”

size=”5”>
</td>

</tr>

<tr>
<th>Country:</th>
<td>
<input type=text name=Country value=”&dtml-Country;”>

</td>
</tr>

<tr>
<td> </td>
<td><input type=submit value=”Edit Entry”></td>

</tr>
</table>

</form>

<dtml-var standard_html_footer>

This form is much larger that the forms you’ve been creating so far, but a quick

examination reveals that most of it is fairly straightforward. Most of the form

elements are simple text fields that have as their value the current value of the

associated attribute, for example:

<tr>
<th>First Name:</th>
<td><input type=text name=FirstName value=”&dtml-
FirstName;”></td>
</tr>

e4857-3 Ch07.F 3/1/02 9:39 AM Page 212

213Chapter 7 ✦ Creating an AddressBook Application

The various Contact_Type fields, however, aren’t simple text fields, but <select>
elements:

<select size=1 name=”ContactType_1”>
<option value=””>Contact Type:

<dtml-in listContactTypes>
<option value=”&dtml-sequence-item;”<dtml-if Æ

“_[‘sequence-item’]==ContactType_1”>selected</dtml-if>> Æ
<dtml-var sequence-item>
</dtml-in>

</select>

You can see that the form element is actually built by iterating over a

listContactTypes method, and an <option> element is created for each item

in the sequence. In each iteration, however, the value of sequence-item is

compared to the current value of the ContactType attribute, and if they match,

the <option> form element is marked as selected on the form.

Obviously, the listContactTypes method needs to come from somewhere. We could

define it in the Entry module to have it be shared by all entries, but it actually

makes more sense to define it as a method of the AddressBook class and have it

return the contents of an AddressBook list property. This would enable us later to

create a management interface for customizing the list of allowed ContactTypes on

an AddressBook instance, and still have all entries contained in an AddressBook
share the list, via acquisition. We won’t be actually creating such a management

interface for ContactTypes, but we demonstrate the use of this design pattern for

another feature in Chapter 8.

Meanwhile, you still need to make the requisite changes to your AddressBook class.

Change the __init__ method of the AddressBook class as follows and add the

listContactTypes method immediately after it:

def __init__(self, id, title):
self.id = id
self.title = title
self.ContactTypeList = [‘Email’, ‘Home’, ‘Mobile’,

‘Work’, ‘Pager’, ‘ICQ/IM’,
‘URL’, ‘Extension’]

def listContactTypes(self):
“Returns a list of Contact Types”
return self.ContactTypeList

The list of contact types given here should suffice for most corporate intranet

applications.

e4857-3 Ch07.F 3/1/02 9:39 AM Page 213

214 Part II ✦ Building Zope Products

Before we move on to the more extensive changes that are going to need to

be made to the AddressBook class, there is still another DTMLFile that needs

to be added to the Product: the index_html DTMLFile. At the end of Listing 7-4,

you can see that the Entry class index_html method is pointing toward an

entryDetails.dtml file. Create the entryDetails.dtml file in the /Addressit/
dtml/ directory, and place the contents of Listing 7-6 in it.

Listing 7-6: entryDetails.dtml

<dtml-var standard_html_header>
<h1><dtml-var FirstName> <dtml-var LastName></h1>
<table cellspacing=”0” cellpadding=”3” border=”0”>

<dtml-if Title>
<tr>
<th>Title:</th>
<td><dtml-var Title>
</tr>
</dtml-if>

<dtml-if Company>
<tr>
<th>Company Name:</th>
<td><dtml-var Company>
</tr>
</dtml-if>

<dtml-if “ContactType_1 or Contact_1”>
<tr>
<th><dtml-var ContactType_1>:</th><td><dtml-var Contact_1>
</tr>
</dtml-if>
<dtml-if “ContactType_2 or Contact_2”>
<tr>
<th><dtml-var ContactType_2>:</th><td><dtml-var Contact_2>
</tr>
</dtml-if>
<dtml-if “ContactType_3 or Contact_3”>
<tr>
<th><dtml-var ContactType_3>:</th><td><dtml-var Contact_3>
</tr>
</dtml-if>
<dtml-if “ContactType_4 or Contact_4”>
<tr>
<th><dtml-var ContactType_4>:</th><td><dtml-var Contact_4>
</tr>
</dtml-if>
<dtml-if “ContactType_5 or Contact_5”>
<tr>
<th><dtml-var ContactType_5>:</th><td><dtml-var Contact_5>
</tr>

e4857-3 Ch07.F 3/1/02 9:39 AM Page 214

215Chapter 7 ✦ Creating an AddressBook Application

</dtml-if>
<dtml-if “ContactType_6 or Contact_6”>
<tr>
<th><dtml-var ContactType_6>:</th><td><dtml-var Contact_6>
</tr>
</dtml-if>

<tr>
<th valign=”top”>Address:</th>
<td>
<dtml-var Address1>

<dtml-if Address2><dtml-var Address2>
</dtml-if>
<dtml-if City><dtml-var City>, </dtml-if><dtml-var State> Æ

<dtml-var ZipCode>

<dtml-var Country>

</td>

</table>
<dtml-var standard_html_footer>

In entryDetails.dtml, we can see a fairly simple presentation method. Other than

the FirstName and LastName attributes and the various mailing address attributes,

the rest of the object’s attributes are only rendered if they are non-blank. This

reduces clutter on the page by hiding fields that aren’t used for a particular Entry.

Unfortunately, because we don’t have a way of instantiating entries, we can’t yet

test the functionality of the Entry class, so that’s what we show you next.

Adding, Listing, and Deleting Entries
from the AddressBook

In the previous section, you added the necessary code to edit and render instances

of the Entry class, but none of that will do your application any good if you don’t

have any instances to edit or render.

Adding entries to the AddressBook
The AddressBook class instances, as we told you earlier in this chapter, must

be responsible for managing their own contents. While Zope has a base class

(ObjectManager) specifically for creating container-type objects, the AddressBook
class doesn’t inherit from it. ObjectManager-derived classes are useful when you

need an object that can contain a wide variety of object types, and that requires

some functionality that you can’t get with a regular folder (Folders subclass

ObjectManager). If you need to manage the contained objects through the ZMI

(Zope Management Interface), deriving from Folder may be more appropriate.

e4857-3 Ch07.F 3/1/02 9:39 AM Page 215

216 Part II ✦ Building Zope Products

For this project, AddressBooks only need to contain Entry objects, and the Entry
objects need to be managed from a custom interface, not through the ZMI, so we’re

not subclassing ObjectManager or Folder.

The next thing you need to do to the AddressBook class is to give it somewhere to

store the Entry objects. Because we’ll want to retrieve Entry objects later by their

id, it makes most sense to store them in a dictionary, where the key is the id. So edit

the AddressBook class __init__ method (in AddressBook.py) as follows:

def __init__(self, id, title):
self.id = id
self.title = title
self.ContactTypeList = [‘Email’, ‘Home’, ‘Mobile’,

‘Work’, ‘Pager’, ‘ICQ/IM’,
‘URL’, ‘Extension’]

self.Entries = {}
self.LastEntryID = 0

Notice the last line also defines a LastEntryID integer attribute. This will be incre-

mented each time an Entry is added to the AddressBook, and will be used to ensure

that each Entry has a unique id.

Next you need to add an addEntry method. Add the following code to the

AddressBook class before the Web presentation methods section at the end

of the AddressBook.py file:

Methods to add, edit, delete and retrieve Entries

def addEntry(self, FirstName = “”, MiddleInitial = “”,
LastName = “”, REQUEST = None
):

“Method to add an entry to an AddressBook”
id = self.LastEntryID = self.LastEntryID + 1
id = str(id)
entry = Entry(id, FirstName, MiddleInitial, LastName)
self.Entries[id] = entry
self.__changed__(1)

if REQUEST is not None:
return self.index_html(self, REQUEST)

Let’s explain how this addEntry method works. The method has four optional

parameters: FirstName, MiddleInitial, and LastName default to an empty string,

while REQUEST defaults to None. After the docstring, the first statement increments

the LastEntryID (an integer) attribute of the AddressBook and assigns its value to

id, which is then converted to a string. This conversion is necessary, because when

e4857-3 Ch07.F 3/1/02 9:39 AM Page 216

217Chapter 7 ✦ Creating an AddressBook Application

we later try to access the entry in the Entries dictionary, the key we supply and the

key that was used to assign the entry to the dictionary in the first place must be of

the same type, or the lookup will fail. Converting the key to a string before the

assignment helps ensure that, since the data from the HTML forms will default to

strings. An alternative would be to leave the id as an integer and convert the incom-

ing form values to integers as well, but that way requires slightly more code.

Next, the method creates an Entry object using the parameters passed into the

method and the id attribute, and assigns it to entry.

The object assigned to entry is then assigned to the AddressBook’s Entries dictio-

nary, using id as the key.

Here is something that you may not have seen yet: self.__changed__(1) .

Previously, whenever we’ve changed a property on a class, we haven’t had to

do anything special to get the changes to “stick,” so to speak. The Persistence

machinery took care of the rest. Up till now though, the attributes we’ve been

changing have all been strings. Strings are one of the immutable types and the

Zope persistence machinery treats mutable and immutable attributes differently.

When you change a mutable attribute of a class you’re storing persistently, you

need to notify the persistence machinery that the class has changed by using

self.__changed__(1). Dictionaries have this requirement along with Lists as they

are both mutable types. Because Entries is a dictionary, we need to give the

AddressBook the proper notification after we’ve assigned entry to Entries[id].

Finally, if the method was called through the Web (determined by checking whether

REQUEST is None), it then returns the AddressBook’s index_html method.

Because the addEntry method tries to instantiate an Entry object, the AddressBook
module needs to know about the Entry class. In other words, the Entry class needs

to be imported from the Entry module. Change the beginning of the AddressBook.py
file as follows:

from OFS.SimpleItem import SimpleItem
from Globals import DTMLFile
from Entry import Entry

Finally, the AddressBook needs a presentation method to display an entry-adding

form. Add the following to the Web presentation methods section at the end of the

file:

addEntryForm = DTMLFile(“dtml/addEntryForm”, globals())

Your AddressBook module should now look like Listing 7-7.

e4857-3 Ch07.F 3/1/02 9:39 AM Page 217

218 Part II ✦ Building Zope Products

Listing 7-7: AddressBook.py

from OFS.SimpleItem import SimpleItem
from Globals import DTMLFile
from Entry import Entry

Module level declarations and methods

manage_addAddressBookForm = DTMLFile Æ
(“dtml/addAddressBookForm”, globals())

def manage_addAddressBook(self, id, title, REQUEST):
“Adds an AddressBook object to a folder”

newAddressBook=AddressBook(id, title)
self._setObject(id, newAddressBook)

return self.manage_main(self, REQUEST)

The Addressbook Class

class AddressBook(SimpleItem):
“An AddressBook object”

meta_type = “AddressBook”

def __init__(self, id, title):
self.id = id
self.title = title
self.ContactTypeList = [‘Email’, ‘Home’, ‘Mobile’,

‘Work’, ‘Pager’, ‘ICQ/IM’,
‘URL’, ‘Extension’]

self.Entries = {}
self.LastEntryID = 0

def listContactTypes(self):
“Returns a list of Contact Types”
return self.ContactTypeList

manage_options=(
{‘label’:’Edit’, ‘action’:’manage_main’ },
{‘label’:’View’, ‘action’:’index_html’}
)

manage_main = DTMLFile(“dtml/mainAddressBook”, globals())

def editAddressBook(self, title, REQUEST):
“A method to edit Address Book Properties”

e4857-3 Ch07.F 3/1/02 9:39 AM Page 218

219Chapter 7 ✦ Creating an AddressBook Application

self.title = title

return self.manage_main(self, REQUEST)

Methods to add, edit, delete and retrieve Entries

def addEntry(self, FirstName = “”, MiddleInitial = “”,
LastName = “”, REQUEST = None
):

“Method to add an entry to an AddressBook”
id = self.LastEntryID = self.LastEntryID + 1
id = str(id)
entry = Entry(id, FirstName, MiddleInitial, LastName)
self.Entries[id] = entry
self.__changed__(1)

if REQUEST is not None:
return self.index_html(self, REQUEST)

Web Presentation Methods

index_html = DTMLFile(“dtml/indexAddressBook”, globals())

addEntryForm = DTMLFile(“dtml/addEntryForm”, globals())

Now add an addEntryForm.dtml file to the /Addressit/DTML/ directory with the con-

tent from Listing 7-8:

Listing 7-8: addEntryForm.dtml

<dtml-var standard_html_header>

<form action=addEntry>

<table>
<tr>
<th>First Name:</th>
<td><input type=text name=FirstName></td>
</tr>
<tr>
<th>Last Name:</th>
<td><input type=text name=LastName></td>
</tr>
<tr>

Continued

e4857-3 Ch07.F 3/1/02 9:39 AM Page 219

220 Part II ✦ Building Zope Products

Listing 7-8 (continued)

<th>Middle Initial:</th>
<td><input type=text name=MiddleInitial size=1></td>
</tr>

<tr>
<td colspan=2>
<input type=submit value=”Add Entry”>
</table>

</form>

<dtml-var standard_html_footer>

Testing the addEntryForm
After making all the modifications described in the previous section, refresh the

Addressit product and add a new AddressBook called Test. Then click the Test

object to see its management interface, and right-click the View tab. Open the link

in a new window, and you should see a screen like the one shown in Figure 7-6.

Figure 7-6: The AddressBook index_html view

e4857-3 Ch07.F 3/1/02 9:39 AM Page 220

221Chapter 7 ✦ Creating an AddressBook Application

In Figure 7-6, the URL in the browser is http://192.168.1.101:8080/Test/
index_html. Your browser probably shows something else for the server portion of

the URL, perhaps something like 128.0.0.1, or perhaps something else. Rewrite the

end portion of the URL from /Test/index_html to /Test/addEntryForm, and press

Return.

You should now see a screen resembling the one shown in Figure 7-7.

Figure 7-7: The AddressBook addEntryForm

Enter a first name, last name, and a middle initial, and then press the Add Entry but-

ton. You should now see a page resembling Figure 7-6 again. In order to verify that

an entry object was actually added to the AddressBook’s Entries dictionary, you

need to add a listEntries method to the AddressBook class. Add the following

method just below the addEntry method:

def listEntries(self):
“Method to list Entries”
return self.Entries.values()

e4857-3 Ch07.F 3/1/02 9:39 AM Page 221

222 Part II ✦ Building Zope Products

Now restart Zope, and rewrite the URL to something like http://192.168.1.101:8080/
Test/listEntries, and you should see a screen similar to the screen shown in

Figure 7-8.

Figure 7-8: Demonstrating the successful adding of an Entry

Listing the entries in the AddressBook
Okay, now you need to be able to list the entries in the AddressBook’s index_html
method. Edit the indexAddressBook.dtml file as follows:

<dtml-var standard_html_header>
<h1><dtml-var title></h1>
<dtml-in listEntries>
<dtml-var FirstName> <dtml-var LastName>

</dtml-in>
<dtml-var standard_html_footer>

As when you developed the helloProduct, changes to DTMLFile DTML methods do

not require restarting Zope or refreshing the product. Reload the /Test/index_html
URL, and see the changes made to the page as shown in Figure 7-9

e4857-3 Ch07.F 3/1/02 9:39 AM Page 222

223Chapter 7 ✦ Creating an AddressBook Application

Figure 7-9: Listing the entries in the AddressBook

Deleting entries from the AddressBook
So far, we’ve shown you how to add entries to the AddressBook, and list them.

Deleting entries is much the same as adding them, only in reverse. First add the

following line at the top of the AddressBook.py file, just after the import statements:

ListType = type([])

Then add the following delEntries method to the AddressBook class in

AddressBook.py immediately after the addEntry method:

def delEntries(self, EntryIDs = [], REQUEST = None):
“Method to delete Entries”

if type(EntryIDs) != ListType:
EntryIDs = [EntryIDs]

for id in EntryIDs:
try:

del self.Entries[id]
except KeyError:

pass

e4857-3 Ch07.F 3/1/02 9:39 AM Page 223

224 Part II ✦ Building Zope Products

self.__changed__(1)

if REQUEST is not None:
return self.index_html(self, REQUEST)

The delEntries method takes two parameters, both of them optional: EntryIDs and

REQUEST. EntryIDs is set by default to an empty list, and REQUEST is set by default

to the None object.

The first thing that the delEntries method does is to check whether the EntryIDs
parameter is actually a list by comparing its type with the ListType that is set at the

top of the module. If it isn’t, then it takes the EntryIDs string and turns it into a one-

element list. We’re assuming that EntryIDs is a String if it isn’t a List because form

submitted values default to a string representation.

Next, the method iterates over the members of the list, and for each one tries to

delete the dictionary member whose key matches the id. Because more than one

user could be deleting entries at more — or less the same time, the delEntries
method could conceivably attempt to delete a dictionary member that has already

been deleted and no longer exists. When you try to delete a member from a dictio-

nary that doesn’t have a matching key, Python raises a KeyError exception. The

try/except block will pass on to the next member of EntryIDs if a keyError excep-

tion is raised, avoiding crashing the application with an error.

After completing the removal of the appropriate entries from the AddressBook, the

delEntries method notifies the AddressBook instance that a mutable attribute has

changed, and then returns the index_html method of the class.

So, where does this list of EntryIDs come from? You might think that you would

need to create a separate delEntriesForm.dtml file, but that’s actually unnecessary.

We are already listing all of the entries in the index_html method, so a few tweaks

will make it work for this purpose as well, as shown in Listing 7-9.

Listing 7-9: IndexAddressBook.dtml

<dtml-var standard_html_header>
<h1><dtml-var title></h1>
<form action=”.” method=”post”>
<input type=”submit” name=”delEntries:method” value=”Delete”>
<input type=”submit” name=”addEntryForm:method”
value=”Add”>

<dtml-in listEntries>
<input type=”checkbox” name=”EntryIDs:list” value=”&dtml-id;”>
<dtml-var FirstName> <dtml-var LastName>

</dtml-in>
<dtml-var standard_html_footer>

e4857-3 Ch07.F 3/1/02 9:39 AM Page 224

225Chapter 7 ✦ Creating an AddressBook Application

There are several interesting tricks being used in this revised index_html method.

First, Zope is resolving the form action from the names of the two submit buttons.

The action of the form is “.”, which is an alias for the current directory, and Zope

resolves the method to call on the object from the name of the submit button,

which is designated using a special :method convention.

Second, the checkboxes are collated into a list of values whether there is one or

several checkboxes marked. Ordinarily, a single marked checkbox would be inter-

preted by Zope as a string, and only if more than one checkbox was marked would

Zope interpret it as a list of strings. But by appending the checkbox form element’s

name with :list, Zope will always coerce the results to a list, even if only one check-

box is marked. This might be seen as overkill, as the delEntries method already

takes the precaution of making sure to change any single strings it gets into lists,

but we feel that this “suspenders-and-belt” approach is a good one.

Refresh the product, and take a look at /Test/index_html. You should see some-

thing like Figure 7-10:

Figure 7-10: Revised AddressBook index_html

Clicking the Add button takes you to the addEntryForm method, whereas checking

the boxes by any entry and clicking the Delete button will cause those entries to be

removed.

e4857-3 Ch07.F 3/1/02 9:39 AM Page 225

226 Part II ✦ Building Zope Products

The code for the product at this point can be found in the /chapter_07/
Addressit_3 directory on the accompanying CD-ROM.

Traversing the AddressBook into the Entries
So far, you can instantiate an AddressBook, add entries to the AddressBook, list

those entries, and even delete them if you don’t like them. Pretty much the only

thing you can’t do right now is display an entry.

You can’t get there from here
As the entries are stored in a dictionary within the AddressBook, it would seem that

all you would have to do is traverse the Entries dictionary to the specific entry like

this: /Test/Entries/1/index_html. But this does not work because Python’s built in

types are not traversable.

Fortunately, Zope’s object publishing framework tries to find objects in several

ways before giving up completely. One of the ways it attempts to find the right

object is by trying to call the __getitem__ method with the unknown id as a key on

the last known object (as if that object were a dictionary). So we can simply add

our own __getitem__ method to the AddressBook class. Here is a simple version:

def __getitem__(self, id):
return self.Entries[id]

This version would in fact intercept the object request, use the id as a key to

retrieve the appropriate Entry object from within the Entries dictionary, and

return the Entry object. Insofar as Entry objects have an index_html method,

Zope will attempt to render it. That’s where things break down again.

The object returned in this way is a naked or bare object. It doesn’t have any sense

of being contained within any other object, so any attempt to acquire anything from

its environment (for example, standard_html_header) will fail.

The solution is to manually wrap the object in an acquisition context before return-

ing it, like so:

def __getitem__(self, id):
return self.Entries[id].__of__(self)

The __of__(self) portion of the previous code is subtle. As a result of adding this

code, the Entry object will have a context when it is returned. Specifically, when

Zope tries to walk up the containment tree from an entry and asks the entry to

tell who its parent is, the entry will reply that it is an attribute __of__(self), self

being in this case an AddressBook instance. Add the __getitem__ method to your

AddressBook.py file, just before the addEntry method, and then refresh the product.

On the
CD-ROM

e4857-3 Ch07.F 3/1/02 9:39 AM Page 226

227Chapter 7 ✦ Creating an AddressBook Application

After restarting Zope, delete any existing AddressBooks, and add a new one with

the same id (this is to avoid having a problem with the following test). Then go to

its main view (for example, 192.168.100.101:8080/Test/index_html) and add a new

entry. Because a new AddressBook’s LastEntryID property is initialized to 0, and

this is the first entry that has been added to this new AddressBook, we can guess

that the id of the new entry is 1. So try the following URL: /Test/1/. You should now

see the entry’s rendered index_html method.

Improving access to the entries
You should probably make it easier to get to the entries from the AddressBook, so

let’s change the AddressBook’s index_html (indexAddressBook.dtml) method a little

bit. Take a look at Listing 7-10.

Listing 7-10: IndexAddressBook.dtml

<dtml-var standard_html_header>
<h1><dtml-var title></h1>
<form action=”.” method=”post”>
<input type=”submit” name=”delEntries:method” value=”Delete”>
<input type=”submit” name=”addEntryForm:method”
value=”Add”>

<dtml-in listEntries>
<input type=”checkbox” name=”EntryIDs:list” value=”&dtml-id;”>
<dtml-var FirstName> <dtml-var
LastName>

</dtml-in>
<dtml-var standard_html_footer>

You can see that we’ve added a simple link around the rendered name in the entry

listing. Now if you reload the AddressBook page, you should see links from any

names listed. Clicking the links will take you to the Entry object in question.

Editing an Entry
Now that we can traverse to an entry and render it directly by going to a URL such

as /Test/1/index_html, we can also traverse to the Entry object’s editEntryForm
method, which we added in an earlier section of the book. Try a URL such as

/Test/1/editEntryForm, and you should at this point be able to see a form like that

displayed in Figure 7-11.

e4857-3 Ch07.F 3/1/02 9:39 AM Page 227

228 Part II ✦ Building Zope Products

Figure 7-11: editEntryForm.dtml form

As you can see in Figure 7-11, the form does indeed render correctly. Some experi-

mentation will also show that the editEntry method that the form submits to is

also working correctly, and that you can now easily change the properties of an

Entry object through the Web.

It’s a little inconvenient to have to type in a direct URL to edit an Entry object, so

let’s make a small change to entryDetails.dtml, which is the file associated with

Entry’s index_html method. Take a look at Listing 7-11.

Listing 7-11: entryDetails.dtml

<dtml-var standard_html_header>
<form action=”./editEntryForm” method=”post”>
<input type=”submit” value=”Edit Entry”>
</form>
<h1><dtml-var FirstName> <dtml-var LastName></h1>
<table cellspacing=”0” cellpadding=”3” border=”0”>

<dtml-if Title>
<tr>
<th>Title:</th>
<td><dtml-var Title>
</tr>
</dtml-if>

e4857-3 Ch07.F 3/1/02 9:39 AM Page 228

229Chapter 7 ✦ Creating an AddressBook Application

<dtml-if Company>
<tr>
<th>Company Name:</th>
<td><dtml-var Company>
</tr>
</dtml-if>

<dtml-if “ContactType_1 or Contact_1”>
<tr>
<th><dtml-var ContactType_1>:</th><td><dtml-var Contact_1>
</tr>
</dtml-if>
<dtml-if “ContactType_2 or Contact_2”>
<tr>
<th><dtml-var ContactType_2>:</th><td><dtml-var Contact_2>
</tr>
</dtml-if>
<dtml-if “ContactType_3 or Contact_3”>
<tr>
<th><dtml-var ContactType_3>:</th><td><dtml-var Contact_3>
</tr>
</dtml-if>
<dtml-if “ContactType_4 or Contact_4”>
<tr>
<th><dtml-var ContactType_4>:</th><td><dtml-var Contact_4>
</tr>
</dtml-if>
<dtml-if “ContactType_5 or Contact_5”>
<tr>
<th><dtml-var ContactType_5>:</th><td><dtml-var Contact_5>
</tr>
</dtml-if>
<dtml-if “ContactType_6 or Contact_6”>
<tr>
<th><dtml-var ContactType_6>:</th><td><dtml-var Contact_6>
</tr>
</dtml-if>

<tr>
<th valign=”top”>Address:</th>
<td>
<dtml-var Address1>

<dtml-if Address2><dtml-var Address2>
</dtml-if>
<dtml-if City><dtml-var City>, </dtml-if><dtml-var State> Æ

<dtml-var ZipCode>

<dtml-var Country>

</td>

</table>

<dtml-var standard_html_footer>

e4857-3 Ch07.F 3/1/02 9:39 AM Page 229

230 Part II ✦ Building Zope Products

Making the changes to entryDetails.dtml adds an Edit Entry button at the top of

the page that makes it easier to access the editEntryForm.

After changing the file, reload the page for an entry (such as /Test/1/) and

you’ll see the button at the top of the page. Click it and you’ll be taken to the

editEntryForm method for that entry.

Congratulations! You’ve created a basic AddressBook application product. It is

admittedly a little rough around the edges, but it has all of the basic functionality

that such an application requires. In the next chapter, we show you how to add

some polish and ease of use.

The code for the product at this point can be found in the /chapter_07/
Addressit_4 directory on the accompanying CD-ROM.

Summary
In this chapter we showed you step-by-step how to create a basic Web application

as a Zope Python Product. We showed you:

✦ How to instantiate and edit AddressBooks

✦ How to add instances of the Entry class to the AddressBook

✦ How to list entries in the AddressBook

✦ How to delete entries from the AddressBook

✦ How to traverse the AddressBook into the entry instances

✦ How to edit the entry instances

In the next chapter, we show you how to increase the sophistication of the

AddressBook’s user interface.

✦ ✦ ✦

On the
CD-ROM

e4857-3 Ch07.F 3/1/02 9:39 AM Page 230

Enhancing the
AddressBook

In Chapter 7 we demonstrated the design and implementa-

tion of a fairly straightforward AddressBook application. In

this chapter, we show you how to continue and improve the

Address Book’s functionality and user interface.

Adding a Standard Header
Until now, none of the DTML files that we’ve added to the

AddressBook application have shared any code or layout

besides the standard headers and footers Zope already uses.

In order to make it easier to create standardized navigation

for the application, a new header for the AddressBook is a

good idea.

Add a StandardAddressBookHeader.dtml file to the

/Addressit/dtml/directory with the following code:

<table width=”100%” cellspacing=”0”
cellpadding=”2” border=”0”>
<tr bgcolor=”#CCCCFF”>
<td>
<h2><dtml-var title_or_id></h2>
</td>
</tr>
</table>

And edit the AddressBook.py file to add the following line to

the end of the Web presentation methods section:

standard_addressbook_header = DTMLFile Æ
“dtml/StandardAddressBookHeader”, globals())

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Adding a standard
header

Batching the Entries
display

Grouping Entries

Adding and deleting
groups

Retrieving Entries by
group

Renaming groups

Sorting Entries by
column

✦ ✦ ✦ ✦

e4857-3 Ch08.F 3/1/02 9:39 AM Page 231

232 Part II ✦ Building Zope Products

Then edit indexAddressBook.dtml so that the beginning of the file reads:

<dtml-var standard_html_header>
<dtml-var standard_addressbook_header>

<form action=”.” method=”post”>

And edit the entryDetails.dtml file so that the beginning of the file reads:

<dtml-var standard_html_header>
<dtml-var standard_addressbook_header>
<form action=”./editEntryForm” method=”post”>
<input type=”submit” value=”Edit Entry”>
</form>

<table cellspacing=”0” cellpadding=”3” border=”0”>

Notice that both DTML files have had <dtml-var standard_addressbook_header>
added to them, but both have also had some code removed. From the

AddressBook’s index_html method (indexAddressBook.dtml) we’ve removed the

<dtml-var title>, and from the Entries index_html (entryDetails.dtml) we’ve

removed the code that renders the first and last names of the Entry.

Now, the new standard_addressbook_header method will obviously replace the

AddressBook’s <dtml-var title> by rendering <dtml-var title_or_id>, but the

Entry class currently has no title attribute or method, and you’ve just removed the

code that renders the FirstName and LastName attributes. What you need to do

now, is create a title method that returns an appropriately formatted name. Add

the following method to the Entry class in Entry.py after the editEntry method and

before the Web methods section:

def title(self):
if self.MiddleInitial != “”:

return self.FirstName + “ “ + self.MiddleInitial + “.” + “ “ +
self.LastName

else:
return self.FirstName + “ “ + self.LastName

This title method returns a string consisting of the FirstName, MiddleInitial, and

LastName attributes (with appropriate punctuation and spacing) if the MiddleInitial
attribute is not blank, but the title method returns a string consisting of the

FirstName and LastName attributes only (separated by a space) if the MiddleInitial

attribute is blank. The standard_addressbook_header will now render the Entry class’

title method when it tries to render title_or_id.

e4857-3 Ch08.F 3/1/02 9:39 AM Page 232

233Chapter 8 ✦ Enhancing the AddressBook

Batching the Entries Display
The AddressBook application currently lists all of the contained Entries on a single

page, regardless of how many entries there are. This is done by calling the

listEntries method from the AddressBook’s index_html DTMLFile.

The listEntries method is fairly simple. It just returns the dictionary’s values()
method, which returns a list that contains the objects in the dictionary:

def listEntries(self):
“Method to list Entries”
return self.Entries.values()

Note that if the listEntries method had instead returned self.Entries, the result

would have been a list of key/value pairs, rather than a list of the values alone,

which would have made accessing the attributes of the values (which are Entry

instances) more difficult, though not impossible.

The code in indexAddressBook.dtml (which is mapped to index_html by the class)

calls the listEntries method like this:

<dtml-in listEntries>
<input type=”checkbox” name=”EntryIDs:list” value=”&dtml-id;”>
<dtml-var FirstName> <dtml-var
LastName>

</dtml-in>

which renders a checkbox and the first and last names for each returned object,

linking the names to the actual Entry, which displays the Entry’s index_html.

However, now that the Entry class has a title method, you can simplify this by

replacing the DTML that renders the first and last names like this:

<dtml-var standard_html_header>
<dtml-var standard_addressbook_header>

<form action=”.” method=”post”>
<input type=”submit” name=”delEntries:method” value=”Delete”>
<input type=”submit” name=”addEntryForm:method”
value=”Add”>

<dtml-in listEntries>
<input type=”checkbox” name=”EntryIDs:list” value=”&dtml-id;”>
<dtml-var title>

</dtml-in>
<dtml-var standard_html_footer>

which simplifies the DTML somewhat, and results in a nicer formatted name.

e4857-3 Ch08.F 3/1/02 9:39 AM Page 233

234 Part II ✦ Building Zope Products

Scaling to many results
But what you should be concerned about here is that the page displays all of the

Entries at once. When the AddressBook contains many Entries, this will result in

two things:

✦ The page will be much longer, forcing users to scroll farther to find the entry

they want.

✦ The page will take longer to download and render, forcing users to wait.

This clearly has a negative impact on the usability of the AddressBook. Fortunately,

there is a fairly simple solution. Zope has optional attributes for the <dtml-in> tag

that enable you to specify the beginning of the sequence you are iterating over, as

well as how large the sequence is. Taking advantage of these optional attributes is

fairly simple.

Rewrite the indexAddressBook.dtml file so that the <dtml-in> tag reads as follows:

<dtml-in listEntries size=20 start=start sort=LastName,FirstName,MiddleInitial>

You’re doing three things here. First, you’re telling the <dtml-in> tag to display 20

results at a time. Second, you’re telling the tag to start at the sequence item whose

number is contained in the “start” variable. Obviously the start variable needs to

come from somewhere, so add the following to the top of the indexAddressBook.
dtml file, just below the two header variables:

<dtml-unless start>
<dtml-call “REQUEST.set(‘start’, 1)”>
</dtml-unless>

Here, you’re checking if the start variable has already been set, or if the value was

passed in from somewhere else, and if not, you set the variable to one. This means

that the default starting point for a batch is the first item in the sequence, which is

the expected behavior.

The third thing you’re telling the <dtml-in> tag to do is to sort the result set by the

LastName, FirstName, and MiddleInitial attributes. Using a compound sort means

that the list is sorted first according to the LastName attribute, and in case of a tie,

by the FirstName attribute. If the result is still tied, then the MiddleInitial attribute

is the final tiebreaker. Sorting according to this format is standard office filing

practice, and should be familiar to your users.

About orphans
If you go ahead and test the AddressBook application at this point and begin adding

more Entries, you’ll notice something curious as you get to the twenty-first entry,

namely, that it’s being listed on the page. (See Figure 8-1.) What’s going on here and

why isn’t the batch being limited to 20 items like we asked?

e4857-3 Ch08.F 3/1/02 9:39 AM Page 234

235Chapter 8 ✦ Enhancing the AddressBook

It turns out that the <dtml-in> tag has an optional attribute called orphan. Orphans

are “dangling” sequence items that you might want to aggregate with another batch

(presumably they’d be lonely by themselves). The default value for the orphan

attribute (meaning unless you set it explicitly yourself) is three, which means that if

the next batch is smaller than three, its results are appended to the current batch

so that they don’t dangle.

If you want to disable the orphan functionality, all you need to do is set the orphan

attribute to zero, like this: <dtml-in listEntries orphan=0>. However, you don’t

really need to do that for this AddressBook application.

Figure 8-1: Orphans are added to the previous batch

Navigating among the batches
Okay, so how can the user get to the next batch? You could ask them to rewrite the

URL to pass in a new start value, like so:

http://128.0.0.1/Test?start=21

This would work, as we can see in Figure 8-2, but it’s unreasonable to expect users

(even technically inclined users) to navigate by rewriting URLs in their browser’s

address field.

e4857-3 Ch08.F 3/1/02 9:39 AM Page 235

236 Part II ✦ Building Zope Products

Figure 8-2: Manually displaying a different starting point

However, you can certainly automate this process by creating links on the page that

pass in this value for the user in an easier to use way.

There’s more than one way to create this sort of batch navigation, such as creating

previous/next links that look like this:

< Previous Next >

But we’ve found that generally speaking, a navigation interface should inform the

user as to how much information is present and enable the user to skip to an

arbitrary location within the set.

So, we’ll show you how to build a general batch navigation interface that looks like

this:

[1-20] [21-40] [41-53]

which will automatically expand to fit the number of results available.

First, edit indexAddressBook.dtml at the beginning of the file to match the following

code:

<dtml-var standard_html_header>
<dtml-var standard_addressbook_header>

e4857-3 Ch08.F 3/1/02 9:40 AM Page 236

237Chapter 8 ✦ Enhancing the AddressBook

<dtml-unless start>
<dtml-call “REQUEST.set(‘start’, 1)”>
</dtml-unless>

<dtml-in listEntries previous size=20 start=start>
<dtml-in previous-batches mapping>
[<a href=”&dtml-absolute_url;?start= &dtml-batch-start- Æ
number;”><dtml-var batch-start-number> - Æ
<dtml-var batch-end-number>]
</dtml-in>
</dtml-in>

<dtml-in listEntries size=20 start=start>
<dtml-if sequence-start>
[<dtml-var expr=”_[‘sequence-index’]+1”> -
</dtml-if>
<dtml-if sequence-end>
<dtml-var expr=”_[‘sequence-index’]+1”>]
</dtml-if>
</dtml-in>

<dtml-in listEntries next size=20 start=start>
<dtml-in next-batches mapping>
[<a href=”&dtml-absolute_url;?start= &dtml-batch-start- Æ
number;”><dtml-var batch-start-number> - Æ
<dtml-var batch-end-number>]
</dtml-in>
</dtml-in>

<form action=”.” method=”post”>
.
.
.

You’ve just added three new sections of code to the AddressBook’s index_html
method between the <dtml-unless> block and the beginning of the form, each of

which iterates over the same listEntries method that the main display does,

further along the file.

The three new sections do the following:

✦ Render links to the batches before the current one

✦ Render an indicator of the current batch

✦ Render links to the batches after the current one

Let’s take a closer look at each new section you’ve just added.

e4857-3 Ch08.F 3/1/02 9:40 AM Page 237

238 Part II ✦ Building Zope Products

First, we’ve got the following code:

<dtml-in listEntries previous size=20 start=start>
<dtml-in previous-batches mapping>
[<a href=”&dtml-absolute_url;?start= &dtml-batch-start- Æ
number;”><dtml-var batch-start-number> - Æ
<dtml-var batch-end-number>]
</dtml-in>
</dtml-in>

You can see that the code starts off by seemingly iterating over the current batch,

as defined by the “start” attribute, except that we are also adding a “previous”

attribute. The previous attribute causes the in tag to only iterate once if there are

any previous batches, and sets various special batch variables to the previous

sequence. The batch variable that you’re interested in here is “previous-batches,”

which, when iterated over using the mapping keyword, creates a sequence of

mapping objects that make “start-batch-number,” “batch-end-number,” and

“batch-size” available as variables. You can see that the code here uses the “batch-

start-” and “batch-end-” variables to construct a link that shows the range of the

batch being pointed to, and passes the “batch-start-number” value in the URL as

the value for “start.”

The next section is a bit simpler:

<dtml-in listEntries size=20 start=start>
<dtml-if sequence-start>
[<dtml-var expr=”_[‘sequence-index’]+1”> -
</dtml-if>
<dtml-if sequence-end>
<dtml-var expr=”_[‘sequence-index’]+1”>]
</dtml-if>
</dtml-in>

Here, the code is just iterating over the same current batch that further in the code

will render the Entry list, but instead of rendering entries, it just tests to see if the

code is executing on the first item in the batch, and if it is, it renders the following

python expression: “_[‘sequence-index’]+1”, which just adds one to the current

sequence index. The sequence index starts with zero, not one, so you have to add

one to it to get the number to match a user’s expectations.

The second bit of code here does the same thing except that it tests whether the

code is executing on the last item of the sequence and if so, renders the sequence

index plus one.

And that’s it for the current batch — it doesn’t need to be linked to, it just must

have a placeholder displayed.

e4857-3 Ch08.F 3/1/02 9:40 AM Page 238

239Chapter 8 ✦ Enhancing the AddressBook

Finally, the third bit of code is very similar to the first:

<dtml-in listEntries next size=20 start=start>
<dtml-in next-batches mapping>
[<a href=”&dtml-absolute_url;?start= &dtml-batch-start- Æ
number;”><dtml-var batch-start-number> - Æ
<dtml-var batch-end-number>]
</dtml-in>
</dtml-in>

Similar, that is, except that we pass the “next” attribute instead of “previous,” and

iterate over “next-batches” using the mapping keyword instead of “previous-

batches.” Other than those changes, the code is identical, and produces a series of

links to the batches following the current one.

With these three sections of code rendering navigation elements for the previous

batches, current batch, and next batches, we have all that is necessary to display a

functional batch-navigation device.

The result, after adding a few more Entries, looks like Figure 8-3 and Figure 8-4.

Figure 8-3: Batch Navigation 1

e4857-3 Ch08.F 3/1/02 9:40 AM Page 239

240 Part II ✦ Building Zope Products

Figure 8-4: Batch Navigation 2

The code for the product at this point can be found in the /chapter_08/
Addressit_5 directory on the accompanying CD-ROM.

Grouping Entries
The changes you’ve made to the AddressBook in this chapter make it easier to

manage and navigate Entries once you have more than 30 Entries. Now the

AddressBook is capable of displaying any number of Entries by batching through

them, so you can easily manage hundreds of Entries. However, suppose that you

need to navigate among thousands of Entries, or that you need to categorize the

entries in some way. If so, you should consider another enhancement: grouping.

There are two basic approaches for adding grouping to the AddressBook:

✦ Groups could be objects contained within the Addressbook, and containing

Entries themselves.

✦ A Group could be a simple attribute of an Entry.

Both approaches have merit. In general, unless the Group has to have some

attributes of its own beyond a simple label, the second approach is simpler. In this

case, a group is simply a labeled category, so we’ll go with the second approach.

On the
CD-ROM

e4857-3 Ch08.F 3/1/02 9:40 AM Page 240

241Chapter 8 ✦ Enhancing the AddressBook

Adding a GroupList attribute to
the AddressBook class
Because the list of Groups that Entries can be categorized into is common to all

Entries, a GroupList attribute should belong to the AddressBook class. This

attribute can be a simple list of strings.

Change the AddressBook class’ __init__ method to read as follows:

def __init__(self, id, title):
self.id = id
self.title = title
self.ContactTypeList = [‘Email’, ‘Home’, ‘Mobile’,

‘Work’, ‘Pager’, ‘ICQ/IM’,
‘URL’, ‘Extension’]

self.Entries = {}
self.LastEntryID = 0
self.GroupList = [‘Unfiled’, ‘test1’, ‘test2’]

The AddressBook class also needs a method similar to the listContactTypes
method that will return the list of Groups, so add the following code to the

AddressBook class (in AddressBook.py) just before the section labeled #Methods to
add, edit, delete and retrieve Entries:

Methods to manipulate groups

def listGroups(self):
“Returns a list of Groups”
return self.GroupList

More methods to manipulate the list of Groups will be created in a later section of

this chapter.

Adding a Group attribute to the Entry class
In the Entry class, most of the attributes are initialized in the editEntry method, so

you need to edit this method to take an additional optional parameter, Group, with

its default value as “Unfiled.” In addition, in the body of the method, the Group

attribute must be set as well. Edit the Entry.py file so the editEntry method

corresponds to the following code:

def editEntry (self, FirstName, MiddleInitial, LastName,
Address1 = “”,
Address2 = “”,
City = “”,
State = “”,
ZipCode = “”,
Country = “”,
Company = “”,
Title = “”,

e4857-3 Ch08.F 3/1/02 9:40 AM Page 241

242 Part II ✦ Building Zope Products

Group = “Unfiled”,
Contact_1 = “”, ContactType_1 = “”,
Contact_2 = “”, ContactType_2 = “”,
Contact_3 = “”, ContactType_3 = “”,
Contact_4 = “”, ContactType_4 = “”,
Contact_5 = “”, ContactType_5 = “”,
Contact_6 = “”, ContactType_6 = “”,
REQUEST = None
):

“Method for updating Entries”
self.FirstName = FirstName
self.LastName = LastName
self.MiddleInitial = MiddleInitial
self.Address1 = Address1
self.Address2 = Address2
self.City = City
self.State = State
self.ZipCode = ZipCode
self.Country = Country
self.Company = Company
self.Title = Title
self.Group = Group
self.Contact_1 = Contact_1
self.ContactType_1 = ContactType_1
self.Contact_2 = Contact_2
self.ContactType_2 = ContactType_2
self.Contact_3 = Contact_3
self.ContactType_3 = ContactType_3
self.Contact_4 = Contact_4
self.ContactType_4 = ContactType_4
self.Contact_5 = Contact_5
self.ContactType_5 = ContactType_5
self.Contact_6 = Contact_6
self.ContactType_6 = ContactType_6
if REQUEST is not None:

return self.editEntryForm(self, REQUEST)

After you’ve made this change to the Entry.py file, a corresponding change needs

to be made to the editEntryForm.dtml file, so as to provide a way to set the Group

for the Entry. Edit editEntryForm.dtml so as to add the following between the rows

for the “Company” form element and the “Contact_1” form element.

<tr>
<th>Group:</th>
<td>
<select size=1 name=”Group”>
<dtml-in listGroups>
<option value=”&dtml-sequence-item;” <dtml-if “_[‘sequence-Æ

item’]==Group”>selected</dtml-if>><dtml-var sequence-item>

e4857-3 Ch08.F 3/1/02 9:40 AM Page 242

243Chapter 8 ✦ Enhancing the AddressBook

</dtml-in>
</select>

</td>
</tr>

This little bit of code is similar to the form element you created earlier in this

chapter for the contact type, namely, that the code iterates over the results of a

method (in this case, listGroups), checks with each iteration if the sequence-item

corresponds with the value of the Group attribute, and if so, causes that option to

be selected in the form element.

At this point, you’ve made all the changes necessary to set a Group attribute on an

Entry. Unfortunately, any AddressBooks that you have already created don’t have a

GroupList attribute, so refreshing the Product won’t be very much help. You’ll have

to delete the existing AddressBook and create a new one after refreshing. After

you’ve added an Entry, check its editing view and you should see something like

the screen shown in Figure 8-5.

Figure 8-5: Editing an Entry with a Group attribute

Choosing another Group (such as test1) and submitting the change will demonstrate

that the Group attribute is being persisted correctly in the ZODB (Zope Object

Database).

e4857-3 Ch08.F 3/1/02 9:40 AM Page 243

244 Part II ✦ Building Zope Products

Adding and Deleting Groups
In the previous section, you added the ability to set a Group attribute on an Entry

object. This works in a substantially similar way to the various ContactType

attributes, but with one important difference. You, as a developer, can’t really

anticipate how users are going to want to group the Entries in their AddressBooks

the way you could anticipate the contact types. It’s obvious then, that the

AddressBook class needs some way of modifying the list of Groups besides editing

the class’ source code in AddressBook.py. In other words, the Group list must be

configurable via its own management screens.

There is another design decision to be made here: whether the group management

screens should be end-user screens or Zope management screens. The decision

depends on who you see adding, deleting, and renaming groups — a site administra-

tor or an end user. We are going to proceed under the assumption that the end user

should be able to manage the groups.

There are three modifications that need to be made to the AddressBook:

✦ AddressBook needs a manageGroupForm DTML method.

✦ AddressBook needs a addGroup method.

✦ AddressBook needs a delGroups method.

First, add a manageGroupForm.dtml file to the /Addressit/dtml/ folder with the

following code:

<dtml-var standard_html_header>
<dtml-var standard_addressbook_header>

<h2><dtml-var title></h2>
<h3>Manage Groups</h3>
<form action=”.” method=”post”>
<table border=0 cellpadding=3 cellspacing=0>

<dtml-in listGroups>
<tr <dtml-if sequence-even>bgcolor=”#CCCCCC”</dtml-if>>
<td><input type=checkbox name=”groups:list” Æ

value=”&dtml-sequence-item;”></td>
<td><dtml-var sequence-

item></td>
</tr>
</dtml-in>
<tr><td colspan=2>
<input type=submit name=”delGroups:method” value=”Delete Æ

selected Groups”>

<input type=text name=”group”><input type=submit Æ

name=”addGroup:method” value=”Add a Group”>
</td></tr>

e4857-3 Ch08.F 3/1/02 9:40 AM Page 244

245Chapter 8 ✦ Enhancing the AddressBook

</table>
</form>

<dtml-var standard_html_footer>

The code here is fairly simple and reminiscent of an earlier version of the

AddressBook’s index_html method, except that here the code is iterating over

listGroups instead of listEntries.

Another change is the code in the following line:

<tr <dtml-if sequence-even>bgcolor=”#CCCCCC”</dtml-if>>

This checks to see whether the current sequence-item number is even, and if so, adds

a gray background color to the table row. The upshot of this little bit of code is that

every other row is gray, which is a technique known as greenstriping after the green

and white striped printout paper that was used in dot-matrix printers. Whether in a

printout or on-screen, greenstriping increases the legibility of information in tabular

format, which is a common usability improvement in Web applications.

Next, you will need to make some changes to the AddressBook.py file. First, edit the

end of the file (where the Web methods are defined) to add the manageGroupForm
Web method:

Web Presentation Methods

index_html = DTMLFile(“dtml/indexAddressBook”, globals())

addEntryForm = DTMLFile(“dtml/addEntryForm”, globals())

standard_addressbook_header = DTMLFile(“dtml/StandardAddressBookHeader”, Æ
globals())

manageGroupForm = DTMLFile(“dtml/manageGroupForm”, globals())

Next, edit the “Methods to manipulate groups” section to incorporate the addGroup
and delGroups methods outlined in Listing 8-1.

Listing 8-1: addGroup and delGroups

Methods to manipulate groups

def addGroup(self, group, REQUEST = None):
“Method to add Groups”

if group not in self.GroupList:
self.GroupList.append(group)

Continued

e4857-3 Ch08.F 3/1/02 9:40 AM Page 245

246 Part II ✦ Building Zope Products

Listing 8-1 (continued)

self.__changed__(1)

if REQUEST is not None:
return self.manageGroupForm(self, REQUEST)

def delGroups(self, groups = [], REQUEST = None):
“method to delete groups”
if type(groups) != ListType:

groups = [groups]

for group in groups:
if group == ‘Unfiled’: continue
You are not allowed to delete Unfiled

try:
index = self.GroupList.index(group)
del self.GroupList[index]

except ValueError:
pass

self.__changed__(1)

if REQUEST is not None:
return self.manageGroupForm(self, REQUEST)

def listGroups(self):
“Returns a list of Groups”
return self.GroupList

The addGroup method is fairly self-explanatory. It takes a group parameter and an

optional REQUEST parameter (with a default value of None). The method checks to

see whether the Group name is already in the GroupList, and if not, adds it to the

list. Then, the method checks that the REQUEST parameter’s value is not equal to

None, and if it isn’t, (meaning that the addGroups method was invoked through the

Web), the method returns the manageGroupForms method.

The delGroups method is a little more complex. It takes a list of group ids in the

parameter “groups.” The manageGroupForm page identifies each listed Group submit-

ted via checkbox whose name is set to “groups:list.” This is a technique whereby

Zope will coerce the submitted values to a list, even if there is only one checkbox

checked. Meanwhile, in a suspenders-and-belt fashion, the delGroups method also

checks to see whether the group’s parameter submitted to it is a list, and if not,

changes it into one. This is done to ensure that the correct type is iterated over,

even if the method is called from somewhere else other than the manageGroupForm
page.

e4857-3 Ch08.F 3/1/02 9:40 AM Page 246

247Chapter 8 ✦ Enhancing the AddressBook

After delGroups has ensured that it is operating on a list, it iterates over that list to

try and delete each group in turn, but first it checks to see whether the group it is

trying to delete is the “Unfiled” group. As this is the group that Entries are set to by

default upon their creation, deleting this group would probably be a bad thing, so

the method will skip over an attempt to delete this Group.

Next, the delGroups method tries to find the index of the current Group in

GroupList, and tries to delete the list item of that index. If the index lookup fails

(and raises a ValueError), this would indicate that the list does not actually have a

group of that name stored. This situation would pretty much only occur if someone

else had already deleted the group in question sometime between when the

manageGroupForm was rendered and when that particular group was iterated over in

delGroups. So, delGroups will skip over the group if this exception is raised.

And that’s it! If you refresh the Addressit product after saving the open files, you

should be able to go to /Test/manageGroupForm in order to see the group manage-

ment interface, as shown in Figure 8-6:

Figure 8-6: The manageGroupForm interface

Now that the user has an easy way to add and delete Groups, there is some clean

up that needs to be done. The AddressBook should no longer be initialized with the

test1 and test2 values in the GroupList attribute, only with Unfiled. So we need to

make the following change to __init__:

e4857-3 Ch08.F 3/1/02 9:40 AM Page 247

248 Part II ✦ Building Zope Products

def __init__(self, id, title):
self.id = id
self.title = title
self.ContactTypeList = [‘Email’, ‘Home’, ‘Mobile’,

‘Work’, ‘Pager’, ‘ICQ/IM’,
‘URL’, ‘Extension’]

self.Entries = {}
self.LastEntryID = 0
self.GroupList = [‘Unfiled’]

You should also change StandardAddressBookHeader.dtml to link to the

manageGroupForm method and generally improve the application-level navigation:

<table width=”100%” cellspacing=”0” cellpadding=”2” border=”0”>
<tr bgcolor=”#CCCCFF”>
<td>
<h2><dtml-var title_or_id></h2>

<a href=”<dtml-if “meta_type==’AddressBook’”>.Æ
/<dtml-else>../</dtml-if>”>Address Book

| <a href=”<dtml-if “meta_type==’AddressBook’”>.Æ
<dtml-else>..</dtml-if>/manageGroupForm”>Manage Groups

<dtml-if “meta_type==’AddressBook Entry’”> | Æ
Edit Entry</dtml-if>
</td>
</tr>
</table>

The code that this adds to standard_addressbook_header creates two links on every

page of the application and one additional link on Entry pages.

The first link this code generates is a link to the front page of the AddressBook. If

the meta-type of the current object is “AddressBook,” then the link is created to

point to ./, or in other words, to the default view object of the current directory.

Otherwise, if the meta-type is something else, the link is created to point towards

../, or in other words, the default view object in the parent directory. This means

that whether the standard_addressbook_header is rendered in the context of the

AddressBook (or one of its methods) or in the context of an Entry (or one of the

Entry’s methods) the link will always point correctly towards the AddressBook’s

index_html method, and not toward the Entry’s index_html method.

Similarly, the code for creating the second link will always point toward the

AddressBook’s manageGroupForm method.

The code creating the third link only renders if the current context’s meta-type is

“AddressBook Entry,” and creates a link to the current Entry’s editEntry method.

Figure 8-7 and Figure 8-8 show the improved application navigation:

e4857-3 Ch08.F 3/1/02 9:40 AM Page 248

249Chapter 8 ✦ Enhancing the AddressBook

Figure 8-7: The Improved AddressBook Navigation 1

Figure 8-8: The Improved AddressBook Navigation 2

e4857-3 Ch08.F 3/1/02 9:40 AM Page 249

250 Part II ✦ Building Zope Products

The simplicity of the code to create this navigation bar is one of the ways in which

Zope demonstrates the power of its approach toward object publishing. Because

object containment can be reflected directly in the URL, creating a link that leads to

the containing object is as simple as pointing the link towards the parent directory.

The code for the product at this point can be found in the /chapter_08/
Addressit_6 directory on the accompanying CD-ROM.

Retrieving Entries by Group
Now that you can categorize Entries by Group, we’ll show you how to enhance the

AddressBook class and the user interface to retrieve Entries according to which

group the entries are in.

First, the listEntries method must be replaced with a listEntriesByGroup
method. The new method will take a group parameter whose default will be “All”:.

Remove the listEntries method from AddressBook.py, and replace it with the

following code:

def listEntriesByGroup(self, group = “All”):
ret = []
if group == “All”:

for entry in self.Entries.values():
ret.append(entry)

else:
for entry in self.Entries.values():

if entry.Group == group:
ret.append(entry)

return ret

Note that if the group parameter equals All, the listEntriesByGroup method has

identical functionality to the original listEntries method (returning all Entries).

But if group equals some other value, the method iterates over the list of Entry

objects, examines each Entry’s Group attribute, and only appends it to a list object

(labeled ret) if the Group attribute’s value equals the value of the group parameter.

After all entries that match this criteria are appended to the ret list, the list is

returned by the method.

Changing the name of the method by which Entries are retrieved necessitates some

changes to indexAddressBook.dtml as well.

First, add the following code to the beginning of the file, between the headers and

the code that set’s the default start value:

On the
CD-ROM

e4857-3 Ch08.F 3/1/02 9:40 AM Page 250

251Chapter 8 ✦ Enhancing the AddressBook

<dtml-unless SelectedGroup>
<dtml-call “REQUEST.set(‘SelectedGroup’, ‘All’)”>
</dtml-unless>

This sets the default value of SelectedGroup to “All.” Now change all occurrences of

listEntries to “listEntriesByGroup(_[‘SelectedGroup’])”, including the quotes.

If you refresh the Addressit product, the AddressBook should at this point exhibit

behavior that is identical to its previous behavior.

Let’s demonstrate the new functionality of the listEntriesByGroup method. Create

two new groups using the manageGroupForm screen: Good and Bad. Now create a

couple of new Entries, and edit them so that there are at least one in each Group,

and at least one that is still Unfiled.

Now, pass the SelectedGroup parameter in the URL like this: /Test?SelectedGroup=Bad,

and you should now see the filtered list of Entries that correspond to the appropriate

Group. (Remember that the Group attribute is case-sensitive.)

However, if you have more than one batch of Entries displayed and want to navigate

among them, you’ll notice that clicking on any of the batch navigation links reset

the SelectedGroup parameter back to the default, and so causes the resulting page

to display all of the Entries again. Clearly this is not what you want. In order to pre-

serve the SelectedGroup parameter, you must cause the parameter to be passed

along in the URL of the batch navigation links, just like the start parameter. Rewrite

all of the links in indexAddressBook.dtml that look like this:

to look like this, instead:

<a href=”&dtml-absolute_url;?start=&dtml-batch-start-Æ
number;&SelectedGroup=&dtml-SelectedGroup;”>

The batch navigation links should now have the expected behavior when navigating

a particular Group.

However, as with navigating among batches, selecting the Group by rewriting the

URL is clearly not very user-friendly, so you need to add a Group navigation device.

Because the user is selecting from among a list of Groups, and this list is of

unknown length (because the user is free to define as many Groups as he or she

wishes), a drop-down selection box is the most appropriate solution. Add the

following code to indexAddressBook.dtml after the form tag but before the two

existing submit buttons (“Add” and “Delete”):

<input type=”submit” name=”index_html:method” value=”View”>
<select size=1 name=”SelectedGroup”>
<option value=”All”>All Groups

e4857-3 Ch08.F 3/1/02 9:40 AM Page 251

252 Part II ✦ Building Zope Products

<dtml-in listGroups>
<option value=”&dtml-sequence-item;”<dtml-if SelectedGroup>Æ

<dtml-if “_[‘sequence-item’]==SelectedGroup”>selected</dtml-if>Æ
</dtml-if>><dtml-var sequence-item>
</dtml-in>
</select>

This code first creates an option in the select form element for “All Groups” that

passes a value of “All,” and then iterates over the listGroups method to create

options for all the other Groups, including “Unfiled.”

Your indexAddressBook.dtml file should now look like the code in Listing 8-2.

Listing 8-2: indexAddressBook.dtml

<dtml-var standard_html_header>
<dtml-var standard_addressbook_header>

<dtml-unless SelectedGroup>
<dtml-call “REQUEST.set(‘SelectedGroup’, ‘All’)”>
</dtml-unless>

<dtml-unless start>
<dtml-call “REQUEST.set(‘start’, 1)”>
</dtml-unless>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” previous Æ
size=20 start=start>
<dtml-in previous-batches mapping>
[<a href=”&dtml-absolute_url;?start=&dtml-batch-start-number;Æ
&SelectedGroup=&dtml-SelectedGroup;”><dtml-var Æ
batch-start-number> - <dtml-var batch-end-number>]
</dtml-in>
</dtml-in>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” Æ
size=20 start=start>
<dtml-if sequence-start>
[<dtml-var expr=”_[‘sequence-index’]+1”> -
</dtml-if>
<dtml-if sequence-end>
<dtml-var expr=”_[‘sequence-index’]+1”>]
</dtml-if>
</dtml-in>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” next Æ
size=20 start=start>

e4857-3 Ch08.F 3/1/02 9:40 AM Page 252

253Chapter 8 ✦ Enhancing the AddressBook

<dtml-in next-batches mapping>
[<a href=”&dtml-absolute_url;?start=&dtml-batch-start-number;Æ
&SelectedGroup=&dtml-SelectedGroup;”><dtml-var Æ
batch-start-number> - <dtml-var batch-end-number>]
</dtml-in>
</dtml-in>

<form action=”.” method=”post”>

<input type=”submit” name=”index_html:method” value=”View”>
<select size=1 name=”SelectedGroup”>
<option value=”All”>All Groups

<dtml-in listGroups>
<option value=”&dtml-sequence-item;”<dtml-if SelectedGroup>Æ

<dtml-if “_[‘sequence-item’]==SelectedGroup”>selected</dtml-if>Æ
</dtml-if>><dtml-var sequence-item>
</dtml-in>
</select>

<input type=”submit” name=”delEntries:method” value=”Delete”>
<input type=”submit” name=”addEntryForm:method”
value=”Add”>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” Æ
size=20 start=start sort=LastName,FirstName,MiddleInitial>
<input type=”checkbox” name=”EntryIDs:list” value=”&dtml-id;”>
<dtml-var title>

</dtml-in>

</form>
<dtml-var standard_html_footer>

As these changes were only to a *.dtml file, you can see the improvements by

reloading the AddressBook’s index_html view, which should look something like the

screen shown in Figure 8-9.

e4857-3 Ch08.F 3/1/02 9:40 AM Page 253

254 Part II ✦ Building Zope Products

Figure 8-9: The Group selection box

Renaming Groups
So, now that the users of the AddressBook have the ability to define Groups and set

a Group attribute on Entries (which is useful for filtering the Entry list displayed),

it is much easier for those users to manage and navigate a large AddressBook

(hundreds or even thousands of Entries). But another maintenance headache can

now rear its ugly head.

What do users do if they want to rename one of the Groups? With the current ver-

sion, a user would have to create a new Group, go through the list of the old Group,

and edit the individual Entries to use the new Group name instead of the old one.

Once the old Group was empty, it could be safely deleted.

This is an incredible pain in the tuchis (Yiddish for butt) if the group in question has

more than a few Entries in it, so let’s add a renameGroups method to the AddressBook

class to take the drudgery out of this maintenance chore. Add the following code into

the section of the AddressBook class that is labeled “# Methods to add, edit, delete

and retrieve Entries” between the delGroups method and the listEntriesByGroup
method:

e4857-3 Ch08.F 3/1/02 9:40 AM Page 254

255Chapter 8 ✦ Enhancing the AddressBook

def renameGroup(self,
OldGroupNames,
NewGroupName,
REQUEST = None
):

“Method to rename one or more groups”

if type(OldGroupNames) != ListType:
OldGroupNames = [OldGroupNames]

self.addGroup(NewGroupName)

for OldGroupName in OldGroupNames:

if OldGroupName != ‘Unfiled’:

self.delGroups(OldGroupName)

for entry in
self.listEntriesByGroup(OldGroupName):

entry.Group = NewGroupName

if REQUEST is not None:
return self.manageGroupForm(self, REQUEST)

The renameGroups method takes an OldGroupNames parameter (which should be a

list) and a NewGroupName parameter, as well as the now familiar REQUEST = None.

First, the method makes sure that the OldGroupName is in fact a list, and if it isn’t a

list, the method changes it into one. It then adds the NewGroupName to GroupList.

Then the renameGroup method iterates over the OldGroupNames list, and for each

OldGroupName does the following:

✦ Deletes the GroupName if it’s not “Unfiled”

✦ Uses listEntriesByGroup to retrieve all of the Entries that match

OldGroupName

✦ Iterates over that list, setting each Entry’s Group attribute to NewGroupName

After each inner loop in which the members of the OldGroupName are moved to the

NewGroupName, the method increments the outer loop to move on to the next

OldGroupName. After all of the OldGroupName’s are done, the method checks to see

whether it was called through the Web, and if so, returns the manageGroupForm view.

This renameGroups method is a miniature study of code reuse in a way. The method is

using two methods that we’ve previously defined: delGroups (used to delete the

OldGroupName) and listEntriesByGroup (used to retrieve a subset of Entry objects

that match OldGroupName for reassignment to NewGroupName). The listEntriesByGroup
method was never intended to be called through the Web, but it is easy to see now

e4857-3 Ch08.F 3/1/02 9:40 AM Page 255

256 Part II ✦ Building Zope Products

why the delGroups method and all other methods that could be called that way need

to check and see whether in fact they were. If the delGroups method had not been set

up to check whether it had been called through the Web, it would have returned the

manageGroupForm view early (to the renameGroups method), which would have

caused an error.

There are two more changes you need to make to enable this feature. The first is to

add an appropriate submit button that will lead to a renameGroupForm. To do so,

rewrite the manageGroupForm.dtml file as follows:

<dtml-var standard_html_header>
<dtml-var standard_addressbook_header>

<h3>Manage Groups</h3>
<form action=”.” method=”post”>
<table border=0 cellpadding=3 cellspacing=0>

<dtml-in listGroups>
<tr <dtml-if sequence-even>bgcolor=”#CCCCCC”</dtml-if>>
<td><input type=checkbox name=”groups:list” value=”&dtml-sequence-item;”></td>
<td><dtml-var sequence-item></td>
</tr>
</dtml-in>
<tr><td colspan=2>
<input type=submit name=”delGroups:method” value=”Delete selected Groups”>
<input type=submit name=”renameGroupForm:method” value=”Rename selected Æ

Group”>

<input type=text name=”group”><input type=submit name=”addGroup:method” Æ

value=”Add a Group”>
</td></tr>
</table>
</form>

<dtml-var standard_html_footer>

Next, you need to add a renameGroupForm.dtml file with the following code:

<dtml-var standard_html_header>
<dtml-var standard_addressbook_header>
<h3>Rename Group</h3>

<form action=”renameGroup” method=post>
<dtml-in groups>
<input type=”hidden” name=”OldGroupNames:list” value=”&dtml-sequence-item;”>
</dtml-in>
Old Group Name: <dtml-var groups>

New Group Name: <input type=”text” name=”NewGroupName”>
<input type=”submit” value=”Rename Group”>
</form>

<dtml-var standard_html_footer>

e4857-3 Ch08.F 3/1/02 9:40 AM Page 256

257Chapter 8 ✦ Enhancing the AddressBook

The code here is not quite obvious. In order to take the selected Groups (that had

their checkboxes checked) from the previous form and pass them along to the

renameGroups method, the “groups” form value is iterated over here to create a

hidden form field for each checked group. The hidden fields all have the name

OldGroupNames:list, which again causes Zope to force the submitted values to a

list, even when there is only one. This form also has a NewGroupName text field and a

submit button.

Now you just need to add a declaration in the “# Web presentation methods”

section of the AddressBook class to enable the new functionality. Add the following

code to the end of the AddressBook.py file:

renameGroupForm = DTMLFile(“dtml/renameGroupForm”, Æ
globals())

One of the interesting things about the way the renameGroup feature works, is that

by checking more than one group name on the manageGroupForm, you not only

rename several groups at once, but also their Entries are consolidated into the new

Group as well. So, for example, if you have a “Competitors” group and a “Rivals”

group, you can check them both, and click the Rename selected groups button.

After you are presented with the renameGroupsForm, you can fill in the new group

name as “Enemies,” and click the submit button. Voila! You’ve combined both of the

old Groups into a single new Group.

The code for the product at this point can be found in the /chapter_08/
Addressit_7 directory on the accompanying CD-ROM.

Sorting Entries by Column
You’ve made a lot of user interface and usability improvements in the AddressBook

throughout this chapter, but the main view of the AddressBook could still use some

work.

First, change the rendering code for the entry list so it displays the list in a more

informative and usable way, as in Listing 8-3.

Listing 8-3: IndexAddressBook.dtml

<dtml-var standard_html_header>
<dtml-var standard_addressbook_header>

<dtml-unless SelectedGroup>
<dtml-call “REQUEST.set(‘SelectedGroup’, ‘All’)”>
</dtml-unless>

Continued

On the
CD-ROM

e4857-3 Ch08.F 3/1/02 9:40 AM Page 257

258 Part II ✦ Building Zope Products

Listing 8-3 (continued)

<dtml-unless start>
<dtml-call “REQUEST.set(‘start’, 1)”>
</dtml-unless>

<dtml-unless sort_by>
<dtml-call “REQUEST.set(‘sort_by’,
‘LastName,FirstName,MiddleInitial’)”>
</dtml-unless>

<form action=”.” method=”post”>
<table border=0 cellpadding=2 cellspacing=0 width=”100%”>
<tr>
<td colspan=5>
<table border=”0” cellpadding=”0” cellspacing=”0”

width=”100%”>
<tr>
<td>
<input type=”submit” name=”delEntries:method”

value=”Delete”>
<input type=”submit” name=”addEntryForm:method” Æ

value=”Add”>

</td>
<td align=”right”>
<input type=”submit” name=”index_html:method”

value=”View”>
<select size=1 name=”SelectedGroup”>
<option value=”All”>All Groups

<dtml-in listGroups>
<option value=”&dtml-sequence-item;”<dtml-if Æ

SelectedGroup><dtml-if “_[‘sequence-Æ
item’]==SelectedGroup”>selected</dtml-if></dtml-if>><dtml-var Æ
sequence-item>
</dtml-in>

</select>
<input type=”submit” name=”manageGroupForm:method”Æ

value=”...”>
</td>
</tr>
</table>
</td>
</tr>
<tr>
<td colspan=5>
<p align=center>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” previous Æ
size=20 start=start>
<dtml-in previous-batches mapping>
[<a href=”&dtml-absolute_url;?start=&dtml-batch-start-number;Æ
&SelectedGroup=&dtml-SelectedGroup;”><dtml-var Æ
batch-start-number> - <dtml-var batch-end-number>]
</dtml-in>

e4857-3 Ch08.F 3/1/02 9:40 AM Page 258

259Chapter 8 ✦ Enhancing the AddressBook

</dtml-in>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” size=20
start=start>
<dtml-if sequence-start>
[<dtml-var expr=”_[‘sequence-index’]+1”> -
</dtml-if>
<dtml-if sequence-end>
<dtml-var expr=”_[‘sequence-index’]+1”>]
</dtml-if>
</dtml-in>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” next Æ
size=20 start=start>
<dtml-in next-batches mapping>
[<a href=”&dtml-absolute_url;?start=&dtml-batch-start-number;Æ
&SelectedGroup=&dtml-SelectedGroup;”>Æ
<dtml-var batch-start-number> - <dtml-var batch-end-
number>]
</dtml-in>
</dtml-in>
</p>

</td>
</tr>
<tr>
<td> </td>
<th>Name</th>
<th>Title</th>
<th>Company</th>
<td> </td>
</tr>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” size=20 Æ
start=start sort=FirstName,LastName,MiddleInitial>
<tr <dtml-if sequence-even>bgcolor=”#CCCCCC”</dtml-if>>
<td><input type=checkbox name=”EntryIDs:list” Æ

value=”&dtml-id;”></td>
<td><dtml-var title></td>
<td><dtml-var Title> </td>
<td><dtml-var Company> </td>
<td><a href=”<dtml-var id>/editEntryForm”>Edit</td>
</tr>

</dtml-in>

</form>
</table>

<dtml-var standard_html_footer>

e4857-3 Ch08.F 3/1/02 9:40 AM Page 259

260 Part II ✦ Building Zope Products

This improved version of the AddressBook’s index_html method makes a number of

changes as you can see in Figure 8-10.

Figure 8-10: Improved index_html for the AddressBook

The improvements in this version are easily summed up. Starting from the top of

the page and working down and left-to-right the improvements are:

✦ The form buttons, batch navigation, and Entry list are now in a single table.

✦ The group selection drop-down menu was moved to the right, and an ellipsis

(...) button was added to point to manageGroupForm.

✦ The batch navigation was moved below the form buttons and centered.

✦ The checkboxes and name for each entry are now in separate columns of the

table.

✦ Three more columns were added to the table, one each for the Entries’ Title,

Company, and another for an edit link pointing to the Entry’s editEntry view.

✦ The Name, Title, and Company columns of the table have appropriate headers.

You can see that this has improved the usability of the AddressBook, even though

we haven’t added any new functionality yet.

e4857-3 Ch08.F 3/1/02 9:40 AM Page 260

261Chapter 8 ✦ Enhancing the AddressBook

Now that we’re displaying three separate columns for each Entry (not counting the

columns that contain the checkboxes and edit links), it would be nice to let users

sort the Entries according to whichever column they find most convenient.

This is usually done by making the column titles into links. First though, you need

to create and set a sort_by variable in the page so that the page can have a default.

Add the following code just after the code that sets the start variable at the begin-

ning of the indexAddressBook.dtml file:

<dtml-unless sort_by>
<dtml-call “REQUEST.set(‘sort_by’,
‘LastName,FirstName,MiddleInitial’)”>
</dtml-unless>

Now change the batch navigation <dtml-in> tags to include a sort_expr=”sort_by”
attribute and replace the sort=FirstName,LastName,MiddleInitial from the main

Entries loop with a sort_expr=”sort_by” as well.

We’re using a form of indirection here. The sort_expr attribute in the <dtml-in> tag

indirectly gets the sorting string from sort_by. The expression in quotes for this

attribute must be a valid Python expression, but the expression is not evaluated for

each sequence-item to calculate the value that the items will be sorted by as you

might think. Instead, the expression is evaluated once, and the result must be a

valid sorting string, just as if you had passed it to the sort attribute. So, the default

value of sort_by is FirstName,LastName,MiddleInitial (no spaces) and when the

<dtml-in> tag evaluates sort_expr=”sort_by”, sort_by is evaluated to its contained

value, and the <dtml-in> tag behaves just as it had been told to

sort=FirstName,LastName,MiddleInitial.

If all this rigmarole to get the same sorting result seems unnecessary, remember

that the code you added to the beginning of the file which sets the default sorting

order can be easily overridden by setting the sort_by attribute before the code

executes.

For example, you can pass in a sort_by parameter in the URL to change how the

Entries are sorted. Rewrite the URL to /Test?sort_by=Company and you’ll see that

the Entries are now sorted differently.

So, now you need to expose this sorting functionality to the users, as you don’t

want them to have to rewrite URLs to sort the Entries.

Change the section of the file that creates the column headings to read as follows:

<tr>
<td> </td>
<th><a href=”&dtml- _

absolute_url;?sort_by=LastName,FirstName,MiddleInitial&SelectedGroupÆ
=&dtml- SelectedGroup;”>Name</th>

e4857-3 Ch08.F 3/1/02 9:40 AM Page 261

262 Part II ✦ Building Zope Products

<th><a href=”&dtml-absolute_url;?sort_by=Title&SelectedGroupÆ
=&dtml-SelectedGroup;”>Title</th>

<th><a href=”&dtml-absolute_url;?sort_by=Company&SelectedGroupÆ
=&dtml-SelectedGroup;”>Company</th>

<td> </td>
</tr>

You can see that each column heading is now a link that passes on the current

value of SelectedGroup and an appropriate value for sort_by depending on the

Column in question. For example, the Name column passes on a value of

FirstName,LastName,MiddleInitial, the Title column passes on a value of “Title,”

and the Company column passes on a value of “Company.”

Similarly, the batch navigation links must be modified so as to pass on the current

sorting information even while they pass on a modified start value:

<p align=center>
<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” previous Æ
size=20 start=start sort_expr=”sort_by”>
<dtml-in previous-batches mapping>
[<a href=”&dtml-absolute_url;?start=&dtml-batch-start-number;Æ
&sort_by=&dtml-sort_by;&SelectedGroup=&dtml-SelectedGroup;”>Æ
<dtml-var batch-start-number> - <dtml-var batch-end-
number>]
</dtml-in>
</dtml-in>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” Æ
size=20 start=start sort_expr=”sort_by”>
<dtml-if sequence-start>
[<dtml-var expr=”_[‘sequence-index’]+1”> -
</dtml-if>
<dtml-if sequence-end>
<dtml-var expr=”_[‘sequence-index’]+1”>]
</dtml-if>
</dtml-in>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” next Æ
size=20 start=start sort_expr=”sort_by”>
<dtml-in next-batches mapping>
[<a href=”&dtml-absolute_url;?start=&dtml-batch-start-number;Æ
&sort_by=&dtml-sort_by;&SelectedGroup=&dtml-SelectedGroup;”>Æ
<dtml-var batch-start-number> - <dtml-var batch-end-
number>]
</dtml-in>
</dtml-in>
</p>

e4857-3 Ch08.F 3/1/02 9:40 AM Page 262

263Chapter 8 ✦ Enhancing the AddressBook

After you’ve made these two sets of changes to the file, reload the AddressBook’s

index_html page and you’ll see that the column headers are now links, and that

changing the sort order by clicking the links works. Navigating to a different batch

will preserve the sort order now, as well as the selected Group.

Notice that while the batch navigation links pass in the selected Group and the sort

order as well as the modified batch starting point, the column heading links only

pass along the selected Group along with the modified sort order, while the current

batch number is ignored. There is a very good reason for this. When a user resorts

the Entries, the Entries they are looking at currently will likely be scattered through-

out the re-sorted list, while the current batch number will be filled with different

Entries altogether. Therefore, once the list has been resorted, it makes sense to

present the beginning of the resorted list rather than some batch in the middle.

By omitting the start parameter from the link, the resulting page has its start

parameter reset to the default value, which is at the beginning of the list.

Dealing with case-sensitivity
You may have noticed that the sorting facility for <dtml-in> is case-sensitive. This

means that words beginning with lower-case letters are sorted after upper-case

letters. In other words, abrams will be listed after Zither.

The simplest and most elegant solution to this is to capitalize the various fields

when they are edited. Make the following changes to Entry.py: Add “from string

import capitalize” to the beginning of the Entry.py file, and edit the editEntry
method to look like this:

def editEntry (self, FirstName, MiddleInitial, LastName,
Address1 = “”,
Address2 = “”,
City = “”,
State = “”,
ZipCode = “”,
Country = “”,
Company = “”,
Title = “”,
Group = “Unfiled”,
Contact_1 = “”, ContactType_1 = “”,
Contact_2 = “”, ContactType_2 = “”,
Contact_3 = “”, ContactType_3 = “”,
Contact_4 = “”, ContactType_4 = “”,
Contact_5 = “”, ContactType_5 = “”,
Contact_6 = “”, ContactType_6 = “”,
REQUEST = None
):

“Method for updating Entries”
self.FirstName = capitalize(FirstName)
self.LastName = capitalize(LastName)
self.MiddleInitial = capitalize(MiddleInitial)

e4857-3 Ch08.F 3/1/02 9:40 AM Page 263

264 Part II ✦ Building Zope Products

self.Address1 = Address1
self.Address2 = Address2
self.City = City
self.State = State
self.ZipCode = ZipCode
self.Country = Country
self.Company = capitalize(Company)
self.Title = capitalize(Title)
self.Group = Group
self.Contact_1 = Contact_1
self.ContactType_1 = ContactType_1
self.Contact_2 = Contact_2
self.ContactType_2 = ContactType_2
self.Contact_3 = Contact_3
self.ContactType_3 = ContactType_3
self.Contact_4 = Contact_4
self.ContactType_4 = ContactType_4
self.Contact_5 = Contact_5
self.ContactType_5 = ContactType_5
self.Contact_6 = Contact_6
self.ContactType_6 = ContactType_6
if REQUEST is not None:

return self.editEntryForm(self, REQUEST)

Note that we are capitalizing the three name fields, as well as the Title and

Company fields. This ensures that all of the fields used for sorting are capitalized

whenever the Entry is edited. In order for this change to take effect, refresh the

Addressit product, and then edit an entry that has some field in lower-case. The

change should be immediate.

Since the editEntry method is called by the addEntry method when creating a new

Entry object, no further changes need to be made to have new Entry object

attributes capitalized upon their creation.

The code for the product at this point can be found in the /chapter_08/
Addressit_8 directory on the accompanying CD-ROM.

Summary
In this chapter you’ve enhanced what was a functional but very basic address book

application to address scalability and usability issues in the interface. By creating a

common application specific header, you made it easier to create a unified look-

and-feel for the application, as well as common navigation bar.

On the
CD-ROM

e4857-3 Ch08.F 3/1/02 9:40 AM Page 264

265Chapter 8 ✦ Enhancing the AddressBook

The AddressBook created in Chapter 7 could have comfortably held a couple of

dozen Entries that a user would have had no problem managing. But by allowing

Entries to be batched, grouped, and filtered according to their group, and sorted

according to selected columns, you’ve made it much easier to manage large num-

bers of Entries and navigate to the Entry you want.

There are further enhancements that could be made to this application, such as

adding notes or pictures to Entries, creating links for e-mail and URL ContactTypes,

and other enhancements that we won’t explore in this book, but we encourage you

to experiment with your own modifications.

The one thing that is really missing from the AddressBook at this point is important

enough that we are dedicating an entire chapter to the subject: Security. In the next

chapter, we will show you how to make your custom Zope Product secure by lever-

aging Zope’s permissions and roles infrastructure.

✦ ✦ ✦

e4857-3 Ch08.F 3/1/02 9:40 AM Page 265

e4857-3 Ch08.F 3/1/02 9:40 AM Page 266

Zope Product
Security

In chapters 6, 7, and 8 you developed a functional address

book application with a reasonably sophisticated user

interface. You may have noticed, however, that the entire

functionality of the application is exposed to the Web, so

that anyone who can access your server can view the

AddressBook, add entries, or even delete entries. In almost

every situation (except, perhaps, an intranet protected by a

firewall where all users are trusted implicitly), this open

access is not acceptable, and Web applications must

implement some sort of security policy.

Security and the Web
Before we can show you how to add security to your applica-

tion, however, some discussion is warranted as to what

security actually is.

Security 101
What is security? A security professional would probably

make a list similar to the following to define this term:

✦ Confidentiality. The data is only revealed to the appro-

priate entities.

✦ Availability. The system is accessible to the appropriate

entities.

✦ Integrity. The data is in the state the last authorized

entity left it in.

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Security and the Web

The Zope security
framework

Determining your
security requirements

Adding permissions

Associating
permissions with roles

✦ ✦ ✦ ✦

e4857-3 Ch09.F 3/1/02 9:40 AM Page 267

268 Part II ✦ Building Zope Products

Leaving aside the issue of Availability for the moment, Confidentiality and Integrity

basically imply a system of access-control. Access-control itself has two primary

aspects:

✦ Authentication. The entities involved are who they say they are.

✦ Authorization. The entity is allowed to take the action in question.

Ensuring availability can mean two different things. It can mean that unauthorized

entities cannot perform an action in the system that would deny the use of the

system to legitimate entities (putting it firmly in the realm of access-control), or it

can mean that unauthorized entities cannot isolate the system from the legitimate

entities.

The Web is fundamentally insecure
The architecture of the Internet was not designed with any security considerations

in mind, except in the sense that its decentralized packet-switched nature was

designed to continue operating even if it was chopped into smaller pieces by a

nuclear attack. As long as a path on any sort — no matter how indirect — existed

between two nodes, they would still be able to communicate as full peers. So the

Internet’s primary design consideration (security-wise) was to ensure availability.

However, the early participants in the Internet were primarily researchers and

academics, along with research assistants and students. The early social environ-

ment of the Internet can therefore be described as “collegial,” inasmuch as people

were assumed to be who they said they were, and no one worried about deliberate
damage.

Because the Internet is now a venue for commercial activity, all sorts of motivations

for formerly unthinkable actions exist that didn’t before, and various security mea-

sures can be deployed on top of the underlying infrastructure to thwart those

actions.

A full discussion about security is outside the scope of this book, but some further
reading recommendations can be found at the end of the chapter.

The Zope Security Framework
Zope has had quite a few changes made to it to make it a better platform for build-

ing securable Web applications. Some of the security vulnerabilities identified and

solved by Digital Creations and the Zope development community are general

weaknesses of the Web development model that most environments that allow end

users to create executable content still exhibit to this day.

Note

e4857-3 Ch09.F 3/1/02 9:40 AM Page 268

269Chapter 9 ✦ Zope Product Security

Zope has two categories of code when it comes to security: Restricted Code and

Unrestricted Code.

Any sort of executable code that can be edited TTW (through-the-Web) without

access to the server’s file system is considered restricted. This includes DTML

Methods, Python Script Objects, and SQL Methods, among others. Restricted code

is always subject to Zope’s security machinery when executed, and can never

access the file system of the machine it’s running on.

On the other hand, code that must be edited through the file system, such as the

application you’ve built in the preceding chapters of this book, is not subject to

Zope’s security machinery by default. The only default restriction file system-based

code is subject to is that class methods that don’t have a docstring aren’t exposed

to the object publication machinery at all. Once exposed to the publication machin-

ery, however, no further restrictions are made on what the code may do, except for

whatever limitations are imposed by the operating system. This, by the way, is why

it is important to run your Zope site on a server that is run by a security-conscious

system administrator. Potentially at least, a third-party Zope product could access

any other resources that are available to the user that Zope is running as. But any

operation that the code can perform within Zope is unrestricted as to who may

perform it.

This isn’t quite as bad as it sounds. There are situations where you simply don’t

need more security than this. For example, suppose you created a public discus-

sion board in which the only public methods were a posting form and a viewing

form. If you really don’t need all sorts of management functions because you don’t

want to moderate or delete postings, this can work just fine. It’s only when you

need to limit some actions by some people (such as limiting who may post, or

subjecting postings to a review process before they are publicly visible) that you

need a more complex security policy.

Most Web applications in fact do have more complex needs than an exposed/hidden

model. Those needs can be met with an ACL (Access-Control List).

ACLs are a security model in which actions in a system are protected by “permis-

sions.” If an entity has a particular permission with regard to an object, then the

entity is capable of taking the associated action on that object. Formally, objects

have access control lists associated with them that list all entities and the entities’

associated permissions.

Zope expands and extends the authorization side of the access-control model in a

few important ways:

✦ Roles

✦ Acquisition

e4857-3 Ch09.F 3/1/02 9:40 AM Page 269

270 Part II ✦ Building Zope Products

✦ Ownership

✦ Local roles

Zope also has good solutions for the authentication portion of access control, we’ll
cover those later in this chapter.

Roles
In a system such as Zope, which has many different object types, and many possible

actions on those objects, permission management can become unwieldy very

quickly. Zope introduced the concept of a Role that could be associated with a user

of the system. Roles are simply non-exclusive groups of permissions. Zope has four

built-in roles by default: Anonymous, Manager, Owner, and Authenticated.

As you can see by examining the Security tab in the root folder (Figure 9-1), there

are a lot of permissions. The Manager role has all permissions by default,

Anonymous has a few permissions, and Owner has a few. Authenticated is a new

role added in Zope 2.4, and doesn’t have any permissions associated with it by

default.

Figure 9-1: The Security tab

Note

e4857-3 Ch09.F 3/1/02 9:40 AM Page 270

271Chapter 9 ✦ Zope Product Security

The purpose of the Manager role is fairly straightforward. A Manager can do pretty

much anything inside of Zope. Anonymous is a role that is intended to represent a

completely un-authenticated user. If there is some permission that you want every-

body who accesses the site to have, give that permission to Anonymous. Owner is a

relatively new role, and mostly is meant to be used to indicate which user owns a

particular object. This has some interesting uses, security-wise, which we’ll go

into later in the chapter. Authenticated is an even newer role, and is basically a

convenience role in that it is the exact inverse of Anonymous. If a user has been

authenticated by any means, he or she gets this role, which enables developers to

test for the Authenticated role instead of testing whether the user is not

Anonymous.

Roles make it easier to manage permissions. By associating a permission with a role,

and associating roles with users, you can avoid having to associate permissions with

users directly, which makes security management much easier and less error prone.

Technically, roles are aggregations of Permissions. You can also use roles as aggrega-

tions of Users, though they’re not meant to be used that way. We expect that future

versions of Zope will make it possible to assign roles to aggregations of users, which

will probably be called Groups.

Acquisition
Like other attributes, assigned roles can be acquired or overridden at any point in

the object hierarchy. This means that if an entity has been given the Manager role

on the Root Folder of a Zope site, that role is acquired by all contained objects, so

the entity has the Manager role over the entire site. This means that in Zope, roles

(being groups of Permissions) do not have to be assigned explicitly to users with

regard to each object. Zope assumes that an entity that has a role with regard to an

object also has that role with regard to contained subobjects.

Note that the Permissions associated with a role can be changed in the Security

tab. For example, the Permissions that the Anonymous role has can be changed in a

subsection of the site to make it possible for un-authenticated users to add DTML

Documents.

Ownership
As of version 2.2, Zope has had an Owner role to combat what is now known as the

Server-Side Trojan Attack. This particular vulnerability, first identified and corrected

in Zope, potentially affects all application servers that allow server-side executable

content to be created by untrusted users. It works something like this:

1. An untrusted user creates executable content that will attempt to perform

some operation for which the user does not have sufficient permissions (such

as deleting the root object).

e4857-3 Ch09.F 3/1/02 9:40 AM Page 271

272 Part II ✦ Building Zope Products

2. The untrusted user then gets another user (who has more privileges) to view

(and therefore execute) the page in question by some method such as sending

an e-mail message containing a URL pointing to the page, which when clicked,

then runs the code that deletes the root object.

The Zope development community was the first to recognize this vulnerability and

create a solution to it that was then incorporated into Zope version 2.2. The solu-

tion was to create the Owner role, which is given automatically to the user who

creates an object. Zope now requires that restricted code run only if both the

owner of the code and the user viewing (executing) it have sufficient privileges.

Local roles
In addition to being able to adjust the specific permissions associated with a role,

Zope also enables you to give an entity a role on a particular object (and its subob-

jects). This is called a Local Role (as opposed to a “Global” one assigned in the user

folder). The local roles screen is accessed by clicking on the local roles link in the

Security tab, and looks like Figure 9-2.

Figure 9-2: The Local roles screen

e4857-3 Ch09.F 3/1/02 9:40 AM Page 272

273Chapter 9 ✦ Zope Product Security

For example, you can delegate the management of a section of your site by giving

someone the Local role of Manager on a subfolder. This will enable the user to take

any actions whose permission’s are associated with the Manager role, but only on

the subfolder and its subobjects, not on any objects that are “above” it in the

hierarchy, or “sibling” objects and their subobjects.

Note that roles are not exclusive. If you give the user another role lower in the site,

that user will have both roles (and all associated permissions) from that point in the

hierarchy down.

What Zope won’t do for you
ZServer (Zope’s built-in Web server) does not include support for SSL (Secure

Sockets Layer). This means that Zope’s built in authentication (which relies on

standard browser authentication) sends both your username and password “in the

clear,” or unencrypted. Thus, the username/password pair is vulnerable to inter-

ception by some third party, who would then be able to access the system as the

user whose username/password had been intercepted.

Insecure authentication may suffice for certain applications and situations, but you

probably don’t want to expose your manager level access in this way. Fortunately,

you can use Zope in conjunction with Apache and SSL in order to secure the

authentication protocol. Future versions of Zope may incorporate SSL directly into

ZServer.

Zope also has available third-party add-on products in order to authenticate from

other information sources such as a database, an LDAP (Lightweight Directory

Access Protocol) server, or an NT domain controller, as a few examples. Add-on

user folders exist for all of these options, as well as for a few others. Zope has a

well-documented interface that user-folder implementations must follow, so you

can pretty much drop in whichever option best suits your needs without having to

change your site architecture at all.

What Zope will do for you
Once you’ve figured out how you want to handle authentication for your Web site

(and whether the built-in authentication will suffice), Zope has a well-developed,

flexible, and secure Authorization model. We’ve already covered the high points of

the security system, and we’ll cover it a bit more in the next section.

The important thing to remember is that because Zope has this security infrastruc-

ture built in, you don’t have to re-implement any of it. Designing a security frame-

work is pretty difficult, and for most Web applications out there, the programmers

have devised their own from scratch because they didn’t have an existing security

framework to leverage.

e4857-3 Ch09.F 3/1/02 9:40 AM Page 273

274 Part II ✦ Building Zope Products

In general, a product developer does not need to think about which users get what

Permissions; that is up to the site administrator. The only thing a product devel-

oper needs to worry about is what permissions need to be created, and which roles

get those Permissions by default.

Chapter 13 covers security from the perspective of the site administrator.

Determining your Security Requirements
Okay. So you’ve created a cool Web application as a Zope product and now you

need to add security. How do you go about it? It’s actually pretty simple with Zope,

as the Security framework does all of the heavy lifting. First though, you need to

determine exactly what is going to be protected.

The Default policy
We want certain actions to be available to all users, and certain other actions to be

more restricted. The policy we want to implement is roughly as follows:

1. We want anonymous users to be able to read the AddressBook and Entry

detail pages.

2. We want to restrict adding, editing, and deleting Entries to certain people.

3. We want to restrict adding, renaming, and deleting Groups to certain people.

4. We don’t want certain methods such as listEntriesByGroup externally

available at all.

Listing the methods
First, you can see that we have two types of objects in the Addressit product:

AddressBook objects and Entry objects. Table 9-1 shows the methods that exist for

each.

Table 9-1
Methods in the Addressit Product

AddressBook.py Entry.py

manage_addAddressBookForm EditEntry

manage_addAddressBook editEntryForm

listContactTypes index_html

editAddressBook

Cross-
Reference

e4857-3 Ch09.F 3/1/02 9:40 AM Page 274

275Chapter 9 ✦ Zope Product Security

AddressBook.py Entry.py

addGroup

delGroups

renameGroup

listGroups

addEntry

delEntries

listEntriesByGroup

index_html

addEntryForm

standard_addressbook_header

manageGroupForm

renameGroupForm

We can categorize these methods into a few types of actions:

✦ Viewing the AddressBook and Entries

✦ Managing the AddressBook, Entries, and Groups

You may notice that there is no mention of the __init__ or __getitem__ methods

for either the AddressBook class or the Entry class. This is because Zope denies

direct access to methods beginning with “_,” even if you try to explicitly allow that

access. Remember, methods beginning with an underscore are considered private

methods of a class or module, and are not imported by default, so this part of the

Zope Security policy is merely an extension of the existing Module/Package

framework.

We can either create a Permission for each method, or we can create a Permission

for each of these types of actions and associate the necessary methods with each

Permission. Both approaches are valid. The approach you take depends on whether

you’re most concerned with giving the site builder as much control as possible, or

whether you’re more concerned with making the product easy to administer, and

not populating the Security tab with unnecessary Permissions.

In the rest of this chapter, we’ll take the second approach.

e4857-3 Ch09.F 3/1/02 9:40 AM Page 275

276 Part II ✦ Building Zope Products

Reusing existing roles
Generally, the creation of new roles should be left to the site builder, and product

developers should stick to the default roles Zope has. Adding roles is covered in

Chapter 13. Table 9-2 lists the roles found in Zope and the type of actions we’ll want

to allow each role by default.

Table 9-2
User Actions in the Addressit Product

Anonymous Manager Owner Authenticated

View the AddressBook View management screens

View an Entry Edit AddressBook

Add Entries

Edit Entries

Delete Entries

Add Group

Remove Groups

Rename Group

You can see that we aren’t suggesting any actions be associated with the Owner or

Authenticated roles. This is deliberate, as those roles will have special uses when we

continue developing the AddressBook into a multi-user application in Chapter 10.

Meanwhile, we can simplify our task considerably if we collapse the Permissions

down to “Viewing” and “Managing,” as listed in Table 9-3.

Table 9-3
User Actions in the Addressit Product (Collapsed)

Anonymous Manager

Viewing Managing

e4857-3 Ch09.F 3/1/02 9:40 AM Page 276

277Chapter 9 ✦ Zope Product Security

Reusing existing Permissions
Zope has a number of built-in Permissions as well. Two that you should be

especially aware of as a product developer are “View” and “Access Contents

Information.” “View” controls access to an object through the Web, and “Access

Contents Information” controls access to attributes of the object. Both are granted

to Anonymous by default, and are useful as default viewing Permissions on objects.

With that in mind, let’s map two Permissions (View, and Manage AddressBook) to

all of the methods for the product:

Table 9-4
Methods Mapped to Permissions

Anonymous Manager

View Manage AddressBook

index_html (from AddressBook) editAddressBook

index_html (from Entry) addGroup

delGroups

renameGroup

manageGroupForm

renameGroupForm

addEntry

delEntries

addEntryForm

editEntry

editEntryForm

It might seem as though we’re loading too many Permissions onto the Manage

AddressBook Permission, so it’s a good idea to remember this rule of thumb: If

permission for two or more actions are going to be given to the same people, then

they should be covered by the same Permission. In this case, it doesn’t make sense

to cover group management and entry management by separate Permissions. All of

these actions are actions that someone with a Manager role would be likely to have,

so splitting them up, while certainly flexible, adds unnecessary Permissions to the

Security tab.

e4857-3 Ch09.F 3/1/02 9:40 AM Page 277

278 Part II ✦ Building Zope Products

Also, notice that we aren’t associating the standard_addressbook_header,

listEntriesByGroup, listGroups, or listContactTypes methods with any

Permissions. This is because these methods do not need to be accessed from

restricted code, such as through-the-Web DTML (Document Template Markup

Language) methods, or directly traversed into by a browser. They are for internal

use by the class, and only accessed from unrestricted code on the file system, so

direct access to them will be turned off by default. This is one element of good

security: Don’t expose an interface at all unless you have to.

Adding Security
Okay, now that we’ve figured out which methods need protecting by which

Permissions, let’s show you how to actually go about it. (This is actually the easy

part.) First, the AddressBook.py and Entry.py modules must import the security

framework like this:

from Globals import HTMLFile, InitializeClass
from AccessControl import ClassSecurityInfo

Next, a ClassSecurityInfo object must be instantiated inside each class that is

expected to interact with the security framework:

security = ClassSecurityInfo()

There that wasn’t so hard, was it? Make the changes to both module files and add a

ClassSecurityInfo instance to both the AddressBook class and the Entry class just

after the __init__ definition.

Next, add a line at the end of the AddressBook.py module file (outside the class

definition) that reads as follows:

InitializeClass(AddressBook)

And add a similar one at the end of the Entry.py file:

InitializeClass(Entry)

InitializeClass is a special global method that will correctly apply any and all

security declarations to the class that is passed to it, provided that class contains

an instance of ClassSecurityInfo.

Refresh the product and try to access an instance of the AddressBook. In theory,

Zope’s default policy regarding access of methods that are not specifically associ-

ated with a Permission is to deny access, but as you can see, it doesn’t quite work

out that way for our Product.

e4857-3 Ch09.F 3/1/02 9:40 AM Page 278

279Chapter 9 ✦ Zope Product Security

The reason is a little obscure. The first culprit is the Item class that the Entry class and

AddressBook class both inherit from (AddressBook inherits from SimpleItem, which

inherits from Item). The Item class (found in the lib/python/OFS/SimpleItem.py file)

specifically changes the default policy from “deny if not allowed” to “allow if not

denied” for derivatives of that class (this is a holdover from older versions of Zope,

and has been kept for backward compatibility). Fortunately, we can change this

default back by adding the following code just after instantiating the

ClassSecurityInfo object:

security.setDefaultAccess(“deny”)

This security declaration controls the ability of unrestricted code to call the unpro-

tected methods of the Class. For example, before making this change, the following

code would have worked from a DTML method outside of the class (assuming the

existence of an AddressBook named Test):

<dtml-with Test>
<dtml-var listContactTypes>
</dtml-with>

But after changing the default access policy back to “deny of not allowed,” trying to

render the above code results in an “Unauthorized” exception being raised, and a

login dialog being displayed. Keep in mind that if your class does not have Item as

an ancestor class, this step may not be necessary (but won’t hurt either).

So far so good. We’ve restricted our code from being accessed by potentially mali-

cious DTML and other restricted code within Zope. But we’re not done quite yet.

As of Zope 2.5, the ZPublisher component of Zope does not use the security

declarations directly when traversing and publishing objects, it only considers an

object’s __roles__ attribute, and unfortunately, the __roles__ attribute is not

empty by default, but gets populated via a variety of magical processes. One of

these processes is clearly visible in its effects in the management interface. After

adding our security declarations so far, the View tab has disappeared from the man-

agement interface for the AddressBook instance. This is because the manage_tabs
method checks to see whether the roles you have permit you to view the target

URL defined in the tab. Because a Permission is not associated with the index_html
method yet, the View tab is not displayed.

However, the Edit tab is displayed, even though the manage_main method doesn’t

have a Permission associated with it either. This is because methods beginning with

manage_ are considered “magic” and are automatically assigned to the Manager role

by default. (Note that this circumvents the usual way of associating a method with

a permission, which is then associated with a role.) So the manage_tabs method now

detects this role and displays the tab.

e4857-3 Ch09.F 3/1/02 9:40 AM Page 279

280 Part II ✦ Building Zope Products

ZPublisher only considers __roles__ and doesn’t check permissions directly. This

causes traversal into methods to be allowed, even though default access should be

denied. Which means, that even though you don’t have a specific role or permis-

sion to access index_html (which causes it to not be displayed by the manage_tabs
method), you can still traverse into it and access the object as /Test/ or /Test/
index_html. This goes for all the otherwise unprotected methods, requiring the

product developer to either protect all methods explicitly, or otherwise “fix” the

behavior of ZPublisher.

Fixing ZPublisher is fairly simple: just add the following line somewhere in your

class, preferably near the ClassSecurityInfo instantiation:

__roles__ = ()

What this does is not very obvious. By default __roles__ is equal to None, which

causes ZPublisher to consider an object public, requiring no other security checks.

Setting __roles__ to an empty tuple instead solves this problem, and access to

objects is (finally) denied by default, if it is not explicitly allowed.

All this seems unnecessary and insecure, but Item’s default policy, and ZPublisher’s

behavior regarding __roles__ need to be maintained for backward compatibility

with older Zope products. In a way, it’s reassuring to know that the products you

develop for Zope today are not likely to be broken with the next release.

As long as you add the default access declaration and set __roles__ to an empty

tuple, your product will be secure by default.

Adding Permissions
Let’s re-expose the View tab by way of an example of how to add a Permission. If

you add the following line just before the index_html = HTMLFile . . . line (in the

Web methods section), you will be associating the method with a Permission:

security.declareProtected(‘View’, ‘index_html’)

This is one of three forms of declaration that you can make regarding methods in a

class. The other two forms are declarePublic(‘methodName’) and declarePrivate
(‘methodName’), both of which only need to be passed the method name.

By adding the declareProtected statement, you are explicitly associating the

method with the View permission. Because the View permission is associated by

default with the Anonymous and Manager roles, you will now be able to see the

View tab in the management interface and be able to access the index_html method

of the address book as anonymous.

e4857-3 Ch09.F 3/1/02 9:40 AM Page 280

281Chapter 9 ✦ Zope Product Security

You should also add a similar declaration to Entry.py to associate the index_html
method of the Entry class with the View permission.

declarePublic(‘methodName’) re-allows unprotected access to a method, overriding

the default policy if it is set to deny, and declarePrivate(‘methodName’) disallows

all access to a method, overriding the default policy if it is set to allow.

Next, you should add a security.declareProtected(‘Manage AddressBooks’,
‘methodName’) line for each method in the AddressBook and Entry classes that is

supposed to be exposed to the Manager role as listed in Table 9-4 (replacing

methodName with the actual name of the method, of course).

Although the manage_main method is a “magic name” and is automatically associ-

ated with the Manager role (without bothering to associate it with a Permission) in

the absence of any other declarations, it is appropriate to associate it with a

Permission anyway. It is not, however, a good fit to associate it with the Manage

AddressBooks Permission, as all of the other methods that are associated with it

are meant to be accessed outside of the Zope management interface, and might be

assigned to other roles than the Manager role (perhaps a custom role devised by a

site administrator). Wouldn’t it be nice if there were a Permission that specifically

protected the Zope management interface? Well, there is. The Permission is called

(appropriately enough) “View management screens,” and is normally associated

with the Manager role. Adding the following statement just before the manage_main
method will associate the method with this permission:

security.declareProtected(‘View management screens’,
‘manage_main’)

That’s it! You’ve created and applied all necessary Permissions to the product. The

pre-existing Permissions are already associated with the necessary roles, but you

might be wondering about the new Permission you created, “Manage

AddressBooks.” How do you associate a Permission with a role?

Associating Permissions with roles
If you refresh the product and examine the Security tab, you’ll see that the Manage

AddressBooks Permission is already associated with the Manager role. This is

because all permissions are assigned to Manager by default. After all, the Manager

role is supposed to be able to perform any operation.

However, let’s assume for the moment that you had a new Permission that you

wanted to associate with one or more of the other roles, such as a special View

AddressBooks Permission that you wanted to associate with the Anonymous and

Manager roles. In that case, you would add a statement such as the following to

your class:

Security.setPermissionDefault(‘View AddressBooks’, [‘Anonymous’, ‘Manager’])

e4857-3 Ch09.F 3/1/02 9:40 AM Page 281

282 Part II ✦ Building Zope Products

SetPermissionDefault takes two parameters: the first is the permission name, and

the second is a sequence (either a tuple or a list) of the roles that get the permis-

sion by default. For clarity’s sake we suggest adding the following line to both

classes (the Addressbook class in AddressBook.py and the Entry class in Entry.py)

at the end of the class definition, rather than rely on the “magic” behavior:

security.setPermissionDefault(‘Manage AddressBooks’,
[‘Manager’])

Note that you must declare all of the roles that have default access to a particular

permission in a single statement (hence the requirement for a sequence of role

names). Trying to associate each role with a Permission in its own statement will

not work.

If you followed along in this chapter so far, your code should look something like

Listing 9-1.

Listing 9-1: Address book code with security declarations

AddressBook.py
from OFS.SimpleItem import SimpleItem
from Globals import HTMLFile, InitializeClass
from Entry import Entry
from AccessControl import ClassSecurityInfo

Module level declarations and methods

ListType = type([])

manage_addAddressBookForm = Æ
HTMLFile(“DTML/addAddressBookForm”, globals())

def manage_addAddressBook(self, id, title, REQUEST):
“Adds an AddressBook object to a folder”

newAddressBook=AddressBook(id, title)
self._setObject(id, newAddressBook)

return self.manage_main(self, REQUEST)

The Addressbook Class

class AddressBook(SimpleItem):
“An AddressBook object”

meta_type = “AddressBook”

e4857-3 Ch09.F 3/1/02 9:40 AM Page 282

283Chapter 9 ✦ Zope Product Security

def __init__(self, id, title):
self.id = id
self.title = title
self.ContactTypeList = [‘Email’, ‘Home’, ‘Mobile’,

‘Work’, ‘Pager’, ‘ICQ/IM’,
‘URL’, ‘Extension’]

self.Entries = {}
self.LastEntryID = 0
self.GroupList = [‘Unfiled’]

create a ClassSecurityInfo object
security = ClassSecurityInfo()
security.setDefaultAccess(“deny”)
__roles__ = ()

def listContactTypes(self):
“Returns a list of Contact Types”
return self.ContactTypeList

manage_options=(
{‘label’:’Edit’, ‘action’:’manage_main’ },
{‘label’:’View’, ‘action’:’index_html’}
)

security.declareProtected(‘View management screens’, Æ
‘manage_main’)

manage_main = HTMLFile(“DTML/mainAddressBook”, globals())

security.declareProtected(‘Manage AddressBook’, Æ
‘editAddressBook’)

def editAddressBook(self, title, REQUEST):
“A method to edit Address Book Properties”

self.title = title

return self.manage_main(self, REQUEST)

Methods to manipulate groups

security.declareProtected(‘Manage AddressBook’, ‘addGroup’)
def addGroup(self, group, REQUEST = None):

“Method to add Groups”

if group not in self.GroupList:
self.GroupList.append(group)
self.__changed__(1)

if REQUEST is not None:
return self.manageGroupForm(self, REQUEST)

Continued

e4857-3 Ch09.F 3/1/02 9:40 AM Page 283

284 Part II ✦ Building Zope Products

Listing 9-1 (continued)

security.declareProtected(‘Manage AddressBook’, ‘delGroups’)
def delGroups(self, groups = [], REQUEST = None):

“method to delete groups”
if type(groups) != ListType:

groups = [groups]

for group in groups:
if group == ‘Unfiled’: continue
You are not allowed to delete Unfiled

try:
index = self.GroupList.index(group)
del self.GroupList[index]

except ValueError:
pass

self.__changed__(1)

if REQUEST is not None:
return self.manageGroupForm(self, REQUEST)

security.declareProtected(‘Manage AddressBook’, ‘renameGroup’)
def renameGroup(self, OldGroupNames, NewGroupName, Æ

REQUEST = None):
“Method to rename one or more groups”

if type(OldGroupNames) != ListType:
OldGroupNames = [OldGroupNames]

self.addGroup(NewGroupName)

for OldGroupName in OldGroupNames:

if OldGroupName != ‘Unfiled’:

self.delGroups(OldGroupName)

for entry in self.listEntriesByGroup Æ
(OldGroupName):

entry.Group = NewGroupName

if REQUEST is not None:
return self.manageGroupForm(self, REQUEST)

def listGroups(self):
“Returns a list of Groups”
return self.GroupList

e4857-3 Ch09.F 3/1/02 9:40 AM Page 284

285Chapter 9 ✦ Zope Product Security

Methods to add, edit, delete and retrieve Entries

This method intercepts requests for Entries, retrieves
them from within the list, wraps them in the acquisition
context of the AddressBook (so they appear to be
subobjects), and returns them.
def __getitem__(self, id):

return self.Entries[id].__of__(self)

security.declareProtected(‘Manage AddressBook’, ‘addEntry’)
def addEntry(self, FirstName = “”, MiddleInitial = “”,

LastName = “”, REQUEST = None
):

“Method to add an entry to an AddressBook”
id = self.LastEntryID = self.LastEntryID + 1
id = str(id)
entry = Entry(id, FirstName, MiddleInitial, LastName)
self.Entries[id] = entry
self.__changed__(1)

if REQUEST is not None:
return self.index_html(self, REQUEST)

security.declareProtected(‘Manage AddressBook’, ‘delEntries’)
def delEntries(self, EntryIDs = [], REQUEST = None):

“Method to delete Entries”

if type(EntryIDs) != ListType:
EntryIDs = [EntryIDs]

for id in EntryIDs:
try:

del self.Entries[id]
except KeyError:

pass

self.__changed__(1)

if REQUEST is not None:
return self.index_html(self, REQUEST)

def listEntriesByGroup(self, group = “All”):
ret = []
if group == “All”:

Continued

e4857-3 Ch09.F 3/1/02 9:40 AM Page 285

286 Part II ✦ Building Zope Products

Listing 9-1 (continued)

for entry in self.Entries.values():
ret.append(entry)

else:
for entry in self.Entries.values():

if entry.Group == group:
ret.append(entry)

return ret

Web Presentation Methods

security.declareProtected(‘View’, ‘index_html’)
index_html = HTMLFile(“DTML/indexAddressBook”, globals())

security.declareProtected(‘View’, ‘addEntryForm’)
addEntryForm = HTMLFile(“DTML/addEntryForm”, globals())

standard_addressbook_header = Æ
HTMLFile(“DTML/StandardAddressBookHeader”, globals())

security.declareProtected(‘Manage AddressBook’, Æ
‘manageGroupForm’)

manageGroupForm = HTMLFile(“DTML/manageGroupForm”, globals())

security.declareProtected(‘Manage AddressBook’, Æ
‘renameGroupForm’)

renameGroupForm = HTMLFile(“DTML/renameGroupForm”, globals())

#Declare permission defaults
security.setPermissionDefault(‘Manage AddressBooks’,

[‘Manager’])

initialize the AddressBook Class
InitializeClass(AddressBook)

Entry.py
from Globals import Persistent, HTMLFile, InitializeClass
from Acquisition import Implicit
from OFS.SimpleItem import Item
from string import capitalize
from AccessControl import ClassSecurityInfo

class Entry(Item, Persistent, Implicit):
“Address Book Entry”

meta_type = “AddressBook Entry”

e4857-3 Ch09.F 3/1/02 9:40 AM Page 286

287Chapter 9 ✦ Zope Product Security

def __init__ (self, id, FirstName, MiddleInitial, LastName):
self.id = id
self.editEntry(FirstName, MiddleInitial, LastName)

create a ClassSecurityInfo object
security = ClassSecurityInfo()
security.setDefaultAccess(“deny”)
__roles__ = ()

security.declareProtected(‘Manage AddressBook’, ‘editEntry’)
def editEntry (self, FirstName, MiddleInitial, LastName,

Address1 = “”,
Address2 = “”,
City = “”,
State = “”,
ZipCode = “”,
Country = “”,
Company = “”,
Title = “”,
Group = “Unfiled”,
Contact_1 = “”, ContactType_1 = “”,
Contact_2 = “”, ContactType_2 = “”,
Contact_3 = “”, ContactType_3 = “”,
Contact_4 = “”, ContactType_4 = “”,
Contact_5 = “”, ContactType_5 = “”,
Contact_6 = “”, ContactType_6 = “”,
REQUEST = None
):

“Method for updating Entries”
self.FirstName = capitalize(FirstName)
self.LastName = capitalize(LastName)
self.MiddleInitial = capitalize(MiddleInitial)
self.Address1 = Address1
self.Address2 = Address2
self.City = City
self.State = State
self.ZipCode = ZipCode
self.Country = Country
self.Company = capitalize(Company)
self.Title = capitalize(Title)
self.Group = Group
self.Contact_1 = Contact_1
self.ContactType_1 = ContactType_1
self.Contact_2 = Contact_2
self.ContactType_2 = ContactType_2
self.Contact_3 = Contact_3

Continued

e4857-3 Ch09.F 3/1/02 9:40 AM Page 287

288 Part II ✦ Building Zope Products

Listing 9-1 (continued)

self.ContactType_3 = ContactType_3
self.Contact_4 = Contact_4
self.ContactType_4 = ContactType_4
self.Contact_5 = Contact_5
self.ContactType_5 = ContactType_5
self.Contact_6 = Contact_6
self.ContactType_6 = ContactType_6
if REQUEST is not None:

return self.editEntryForm(self, REQUEST)

def title(self):
if self.MiddleInitial != “”:

return self.FirstName + “ “ + self.MiddleInitial Æ
+ “.” + “ “ + self.LastName

else:
return self.FirstName + “ “ + self.LastName

Web Methods

security.declareProtected(‘Manage AddressBook’, Æ
‘editEntryForm’)

editEntryForm = HTMLFile(“DTML/editEntryForm”, globals())

security.declareProtected(‘View’, ‘index_html’)
index_html = HTMLFile(“DTML/entryDetails”, globals())

#Declare permission defaults
security.setPermissionDefault(‘Manage AddressBooks’, Æ

[‘Manager’])

initialize the Entry Class
InitializeClass(Entry)

That’s it! You’ve added security to the Addressit product by leveraging Zope’s

security framework. After making the changes to the two modules, refresh the

product to reinitialize it and apply the security assertions. You can now access the

AddressBook anonymously (without logging in), but any attempt to add, edit, or

delete entries will result in the application asking you to authenticate yourself.

The code for the product at this point can be found in the /chapter_09/
Addressit_9 directory on this book’s CD-ROM.

On the
CD-ROM

e4857-3 Ch09.F 3/1/02 9:40 AM Page 288

289Chapter 9 ✦ Zope Product Security

Summary
In this chapter, you learned how security works on the Web, and what the Zope

security framework will — and won’t — do for you. You learned how to plan and

apply security restrictions for Python products that will get applied by the Zope

security framework, and how to associate those Permissions with default roles.

For further reading, check out Secrets and Lies: Digital Security in a Networked World
by Bruce Schneier (John Wiley & Sons, 2000).

✦ ✦ ✦

e4857-3 Ch09.F 3/1/02 9:40 AM Page 289

e4857-3 Ch09.F 3/1/02 9:40 AM Page 290

Creating a
Multi-User
AddressBook

In the first four chapters of this part of the book, we

showed you how to build a Python Zope product, make it

more sophisticated, and add security. However, the resulting

object is really suitable for only a single person’s use or, at

most, for a small group of people who share their addresses.

If many people will use this application, they will want to

manage their own addresses. You could give each person his

or her own AddressBook, but that won’t allow people to share

their contacts. You could also create a shared AddressBook
instance as well, but then everyone would have to check two

places for their contacts.

The solution is to aggregate AddressBooks and allow people

to see their contacts combined with the shared ones.

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating the
Addressit class

Adding
AddressBooks

Public and Private
AddressBooks

Finishing touches

✦ ✦ ✦ ✦

e4857-3 Ch10.F 3/1/02 9:40 AM Page 291

292 Part II ✦ Building Zope Products

Creating the Addressit Class
The first thing that needs to be done is to create a specialized container to hold

AddressBooks. Edit and save the __init__.py file to read as follows:

import Addressit,AddressBook

def initialize(context):

context.registerClass(
AddressBook.AddressBook,
permission=”Add AddressBook”,
constructors=(AddressBook.manage_addAddressBookForm,

AddressBook.manage_addAddressBook)
)

context.registerClass(
Addressit.Addressit,
permission=”Add Addressit”,
constructors=(Addressit.manage_addAddressitForm,

Addressit.manage_addAddressit)
)

You can see that we’re registering a new object that we call an Addressit, with the

attendant permissions and constructors.

Add an Addressit.py file with the code in Listing 10-1 to the Addressit product folder.

Listing 10-1: Addressit.py

from OFS.Folder import Folder
from Globals import DTMLFile, InitializeClass
from AccessControl import ClassSecurityInfo
from AddressBook import AddressBook

manage_addAddressitForm = DTMLFile(“dtml/addAddressitForm”, Æ
globals())

def manage_addAddressit(self, id, title, REQUEST):
“Adds an Addressit object to a folder”

newAddressit=Addressit(id, title)
self._setObject(id, newAddressit)

return self.manage_main(self, REQUEST)

class Addressit(Folder):

def __init__(self, id, title):
self.id = id
self.title = title

e4857-3 Ch10.F 3/1/02 9:40 AM Page 292

293Chapter 10 ✦ Creating a Multi-User AddressBook

meta_type =’Addressit’
all_meta_types = (
{‘name’:’AddressBook’,
‘action’:’manage_addProduct/Addressit/addAddressBookForm’},)

create a ClassSecurityInfo object
security = ClassSecurityInfo()
security.setDefaultAccess(“deny”)
__roles__ = ()

def listGroups(self):
“Returns a list of Groups from all AddressBooks”
AllGroups = [‘Unfiled’]
for Object in self.objectValues():

for Group in Object.listGroups():
if Group == ‘Unfiled’:

continue
AllGroups.append(Group)

return AllGroups

def listEntriesByGroup(self, group = “All”):
“Returns Entries from all AddressBooks that match the Æ

Group”
AllEntries = []
for Object in self.objectValues():

for Entry in
Object.listEntriesByGroup(group=group):

WrappedEntry = Entry.__of__(Object)
AllEntries.append(WrappedEntry)

return AllEntries

Web Presentation Methods

security.declareProtected(‘View’, ‘index_html’)
index_html = DTMLFile(“dtml/indexAddressit”, globals())

#Declare permission defaults
security.setPermissionDefault(‘Manage Addressit’, Æ

[‘Manager’])

initialize the AddressBook Class
InitializeClass(Addressit)

You may notice a few unfamiliar things about this Module. First, the Addressit class

is derived from the Folder class, which is a basic container that has a management

interface for displaying the objects it contains. This is, in fact, the same Folder
class that you have already instantiated every time you’ve chosen Folder from the

Add Object drop-down menu. We will specialize the Addressit class, but it will

basically act like a folder.

e4857-3 Ch10.F 3/1/02 9:40 AM Page 293

294 Part II ✦ Building Zope Products

The next new item appears right after the meta_type declaration. When deriving a

class from Folder, you have the opportunity to specify what objects can be instanti-

ated in it. You have two ways to do this, both of which involve specifying a tuple of

dictionaries. Each dictionary in the tuple represents a single object type. Here, we’ve

specified in the tuple the name of the object’s meta type that we want to be able to

instantiate (AddressBook) and the action to be taken when it is selected for addition

to the Addressit container. Both of these are required parameters. An additional

optional parameter of permission can be added to the dictionary, specifying the

name of the permission that protects the object from being added, but because this

has already been defined in the AddressBook class, you can dispense with this. The

tuple of this dictionary is here assigned to all_meta_types, which is a complete list

of addable types, and no other types of objects can be added to the Addressit con-

tainer. If we had assigned the tuple to meta_types instead, the object would simply

have been added to the list of objects already available for adding to a folder (this is

what registering a class does, essentially). This can be useful, for example, if you

want to make a class addable to a special container that can still contain other types

of objects without making the class addable anywhere else (which would be the

case if you registered the addable class). But, in this case, since Addressit instances

should only contain AddressBook instances, and we still want to be able to add

Addressbooks elsewhere, we assign the tuple to all_meta_types.

The Addressit class has a listGroups method that is different from the AddressBook
class’s method. It first retrieves a list of all contained objects from the Addressit
instance (remember, only AddressBooks are addable to the Addressit) and then iter-

ates through this list, calling the listGroups method on each object. It then iterates

through this list, and if the name of the group doesn’t match the string Unfiled, it

appends it to a list. At the end of all this, the method returns the list of strings.

The other method that the Addressit class has is a listEntriesByGroup method,

which likewise iterates through the objects in the Addressit instance, calling

listEntriesByGroup on each object, passing in the group parameter. Because the

entry objects are returned without their context wrapper by this method, we explic-

itly wrap the individual Entry objects in the AddressBook instance from which they

came and then append it to a list. After the method is done appending the wrapped

Entries, it returns the list. The rest of this class just defines constructor methods

and a default view (index_html), so those need to be added next.

Add an addAddressitForm.dtml file to the DTML folder in the Addressit product

folder, with the following code:

<dtml-var standard_html_header>

<form method=post action=manage_addAddressit>
<table border=0 cellspacing=0 cellpadding=5>
<tr>
<td>Addressit ID:</td>
<td><input type=text name=”id”></td>
</tr>
<tr>
<td>Title:</td>

e4857-3 Ch10.F 3/1/02 9:40 AM Page 294

295Chapter 10 ✦ Creating a Multi-User AddressBook

<td><input type=text name=”title”></td>
</tr>
<tr>
<td colspan=2><input type=submit value=”Add Addressit”></td>
</tr>
</table>
</form>

<dtml-var standard_html_footer>

This code is almost completely identical to the addAddressbookForm.dtml file,

except for different labels on the form, and a different target (manage_addAddressit)

for the form. Next add an indexAdressit.dtml file to the same folder, with the code

from Listing 10-2.

Listing 10-2: IndexAddressit.dtml

<dtml-var standard_html_header>

<dtml-unless SelectedGroup>
<dtml-call “REQUEST.set(‘SelectedGroup’, ‘All’)”>
</dtml-unless>

<dtml-unless start>
<dtml-call “REQUEST.set(‘start’, 1)”>
</dtml-unless>

<dtml-unless sort_by>
<dtml-call “REQUEST.set(‘sort_by’,
‘LastName,FirstName,MiddleInitial’)”>
</dtml-unless>

<form action=”.” method=”post”>
<table border=0 cellpadding=2 cellspacing=0 width=”100%”>
<tr>
<td colspan=5>
<table border=”0” cellpadding=”0” cellspacing=”0”

width=”100%”>
<tr>
<td align=”right”>
<input type=”submit” name=”index_html:method”

value=”View”>
<select size=1 name=”SelectedGroup”>
<option value=”All”>All Groups

<dtml-in listGroups>
<option value=”&dtml-sequence-item;”<dtml-if Æ

SelectedGroup><dtml-if “_[‘sequence- Æ
item’]==SelectedGroup”>selected</dtml-if></dtml-if>><dtml-var Æ
sequence-item>

Continued

e4857-3 Ch10.F 3/1/02 9:40 AM Page 295

296 Part II ✦ Building Zope Products

Listing 10-2 (continued)

</dtml-in>
</select>

</td>
</tr>
</table>
</td>
</tr>
<tr>
<td colspan=5>
<p align=center>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” Æ
previous size=20 start=start sort_expr=”sort_by”>
<dtml-in previous-batches mapping>
[<a href=”&dtml-absolute_url;?start=&dtml-batch-start- Æ
number;&sort_by=&dtml-sort_by;&SelectedGroup=&dtml- Æ
SelectedGroup;”><dtml-var batch-start-number> - Æ
<dtml-var batch-end-number>]
</dtml-in>
</dtml-in>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” Æ
size=20 start=start sort_expr=”sort_by”>
<dtml-if sequence-start>
[<dtml-var expr=”_[‘sequence-index’]+1”> -
</dtml-if>
<dtml-if sequence-end>
<dtml-var expr=”_[‘sequence-index’]+1”>]
</dtml-if>
</dtml-in>

<dtml-in “listEntriesByGroup(_[‘SelectedGroup’])” next size=20
start=start sort_expr=”sort_by”>
<dtml-in next-batches mapping>
[<a href=”&dtml-absolute_url;?start=&dtml-batch-start- Æ
number;&sort_by=&dtml-sort_by;&SelectedGroup=&dtml- Æ
SelectedGroup;”><dtml-var batch-start-number> - Æ
<dtml-var batch-end-number>]
</dtml-in>
</dtml-in>
</p>

</td>
</tr>

<tr>
<th><a href=”&dtml-absolute_url;?sort_by=LastName,FirstName, Æ
MiddleInitial&SelectedGroup=&dtml-SelectedGroup;”>Name</th>
<th><a href=”&dtml-absolute_url;?sort_by= Æ
Title&SelectedGroup=&dtml-
SelectedGroup;”>Title</th>
<th><a href=”&dtml-
absolute_url;?sort_by=Company&SelectedGroup=&dtml- Æ

e4857-3 Ch10.F 3/1/02 9:40 AM Page 296

297Chapter 10 ✦ Creating a Multi-User AddressBook

SelectedGroup;”>Company</th>
<td> </td>
</tr>
<dtml-in “listEntriesByGroup(_[‘SelectedGroup’]) Æ
“ size=20 start=start sort_expr=”sort_by”>
<tr <dtml-if sequence-even>bgcolor=”#CCCCCC”</dtml-if>>
<td><dtml-var title></td>
<td><dtml-var Title> </td>
<td><dtml-var Company> </td>
<td><a href=”&dtml-

absolute_url;/editEntryForm”>Edit</td>
</tr>

</dtml-in>

</form>
</table>

<dtml-var standard_html_footer>

This code is very similar (but not identical) to the equivalent method for an

AddressBook. Basically, the differences are that this screen does not have the con-

trols for adding or deleting Entries directly, and it uses a <dtml-var absolute_url>
to correctly construct the links to the Entries (and their edit screens) inside their

respective AddressBooks. (This is also why we took such care to wrap the entries

with the AddressBooks from which they came in the Addressit class’s listEntries
ByGroup method; otherwise, absolute_url wouldn’t work correctly.) And we’ve

removed the standard_addressbook_header.

Now, you can refresh the Addressit product, and try instantiating some objects!

Adding AddressBooks
Adding an Addressit object is just like adding an AddressBook. Choose Addressit
from the drop-down menu, and fill in the resulting form with the id of test. Click the

Add Addressit button.

You are returned to the folder to which you added the Addressit, so click on the

test object to see its management screen, which should look like the one shown in

Figure 10-1.

As you can see, the interface looks like an ordinary folder, except that in place of a

drop-down box to add objects, only an Add AddressBook button appears. This is

because AddressBooks are the only type of object that can be added to the

Addressit object, and the Zope management interface detects that only one kind of

object is addable, so it displays a button instead of a drop-down.

e4857-3 Ch10.F 3/1/02 9:40 AM Page 297

298 Part II ✦ Building Zope Products

Figure 10-1: The Addressit Management Interface

Add a couple of AddressBooks to the Addressit (call them 01 and 02), and you see

them listed in the interface, just like an ordinary folder, as shown in Figure 10-2.

You can see that the Addressbooks are displayed here much as they would be in an

ordinary folder. Clicking through to the individual AddressBooks reveals the usual

management interface for the Addressbooks, and clicking through the View tab

reveals the normal user interface for the AddressBook. (Hah! I could tell you

thought I was going to pull out another screenshot!). Go ahead and add some

entries and some groups to each AddressBook (give each AddressBook a Musician
group), and assign some of the Entries to groups.

Now that you’ve populated the AddressBooks with users and groups, you can check

out the Addressit’s user interface. Click on the View tab in the Addressit object to

see how the AddressBook contents are being aggregated. You should see something

similar to the view shown in Figure 10-3.

e4857-3 Ch10.F 3/1/02 9:40 AM Page 298

299Chapter 10 ✦ Creating a Multi-User AddressBook

Figure 10-2: The Addressit Management Interface, with two AddressBook instances

Figure 10-3: The Addressit index_html view

e4857-3 Ch10.F 3/1/02 9:40 AM Page 299

300 Part II ✦ Building Zope Products

As you can see from the screenshot, the Musicians group name appears twice. This

is because a Musicians group is defined in each AddressBook. Oops. The solution is

simple: Eliminate duplicates from the Group list. Edit the Addressit class’s

listGroups method (not the AddressBook class’s!) to read as follows:

def listGroups(self):
“Returns a list of Groups from all AddressBooks”
AllGroups = [‘Unfiled’]
for Object in self.objectValues():

for Group in Object.listGroups():
if Group in AllGroups:

continue
AllGroups.append(Group)

return AllGroups

What we’ve changed here is the comparison operation in the innermost loop.

Whereas before it was checking to see if the Group in question was another Unfiled
group, now it only checks to see if the group already exists in the AllGroups list,

and if so, it skips appending it.

You can see the result in Figure 10-4.

Figure 10-4: The Addressit index_html View, with redundant groups eliminated

e4857-3 Ch10.F 3/1/02 9:40 AM Page 300

301Chapter 10 ✦ Creating a Multi-User AddressBook

Public and Private AddressBooks
At this point, the Addressit folder can aggregate any AddressBooks within it into a

single navigable interface. However, it is doing so indiscriminately, which wasn’t

quite what we wanted. We wanted a user’s private AddressBook to be seamlessly

merged into a single view with any public AddressBooks.

Adding a Public attribute to the AddressBook class
The first step to getting this working is to add a Public attribute to the AddressBook
class that defaults to off.

First, edit the AddressBook.py file as follows.

Add a Public variable to the __init__:

def __init__(self, id, title):
self.id = id
self.title = title
self.ContactTypeList = [‘Email’, ‘Home’, ‘Mobile’,

‘Work’, ‘Pager’, ‘ICQ/IM’,
‘URL’, ‘Extension’]

self.Entries = {}
self.LastEntryID = 0
self.GroupList = [‘Unfiled’]
self.Public = 0

Next, change the editAddressBook method to change the value of the property

depending on when the box is checked:

def editAddressBook(self, title, REQUEST, Public = None):
“A method to edit Address Book Properties”

self.title = title
self.Public = Public

Edit the mainAddressBook.dtml as follows:

<dtml-var manage_page_header>
<dtml-var manage_tabs>

<form method=post action=editAddressBook>
<table border=0 cellspacing=0 cellpadding=5>
<tr>
<td>Title:</td>
<td><input type=text name=”title” value=”&dtml-title;”></td>
</tr>
<tr>
<td>Public:</td>

e4857-3 Ch10.F 3/1/02 9:40 AM Page 301

302 Part II ✦ Building Zope Products

<td><input type=”checkbox” name=”Public” <dtml-if Æ
Public>checked=”checked”</dtml-if>></td>
</tr>
<tr>
<td colspan=2><input type=submit value=”Edit

AddressBook”></td>
</tr>
</table>
</form>
</body>
</html>

<dtml-var manage_page_footer>

Using the Public attribute
In order to use the Public attribute to control the visibility of the AddressBooks,

you need to change the Addressit class’s listEntriesByGroup and listGroups
methods to skip non-public AddressBook instances, so edit those two Addressit.py
methods as follows:

def listGroups(self):
“””
Returns a list of Groups
from AddressBooks
“””
AllGroups = [‘Unfiled’]
for Object in self.objectValues():

if not Object.Public:
continue

for Group in Object.listGroups():
if Group in AllGroups:

continue
AllGroups.append(Group)

return AllGroups

def listEntriesByGroup(self, group = “All”):
“””
Returns Entries from AddressBooks
that match the Group
“””
AllEntries = []
for Object in self.objectValues():

if not Object.Public:
continue

for Entry in Object.listEntriesByGroup(group=group):
WrappedEntry = Entry.__of__(Object)
AllEntries.append(WrappedEntry)

return AllEntries

e4857-3 Ch10.F 3/1/02 9:40 AM Page 302

303Chapter 10 ✦ Creating a Multi-User AddressBook

Save the changes you’ve made to all three files, and refresh the product. Edit each

AddressBook management interface at least once (whether you set the Public prop-

erty on or off), in order to create and set the Public property; otherwise, you get an

error when you view the Addressit because listEntriesbyGroup and listGroups
both expect AddressBook instances to have a Public property.

You can now test your Addressit. Which AddressBooks are incorporated into the

Addressit View depends on which have their Public property set.

Incorporating the user’s private AddressBooks
Aggregating all public AddressBooks still isn’t quite what we want. We also want the

user’s personal AddressBook to be merged into the public ones when they’re view-

ing the Addressit object, even though it’s not set to be public.

The trick is to figure out how to distinguish which AddressBooks belong to the par-

ticular user viewing the page. Fortunately, Zope has a fairly well developed security

system that we can leverage. We can simply check for AddressBook objects that the

user has a certain role for. We can choose one of two roles, Owner or Manager, to

make the distinction. Either will work, but there are tradeoffs. The Manager role is

currently the role that has the Manage AddressBook permission, which enables the

user to add, edit, and delete Entries and groups. So it’s easy to detect this role in

determining whether to include a non-public AddressBook in the aggregation. On the

other hand, the Owner role is a bit of a more natural fit, because we are looking for

Addressbooks that are Owned by the current user.

The decision in this case becomes simpler when you realize that the user is unlikely

to have an Owner role on an AddressBook unless he or she instantiated it himself or

herself, whereas a Manager role is a prerequisite to being able to use the

AddressBook at all. Therefore, we’ll go with the Manager role.

So, we need to edit the listGroups and listEntriesByGroup methods in the

Addressit class as follows:

def listGroups(self):
“””
Returns a list of Groups
from all AddressBooks
“””
AllGroups = [‘Unfiled’]
for Object in self.objectValues():

if not Object.Public:
if not self.REQUEST.AUTHENTICATED_USER.has_role([‘Manager’], Æ

Object):
continue

for Group in Object.listGroups():
if Group in AllGroups:

continue
AllGroups.append(Group)

return AllGroups

e4857-3 Ch10.F 3/1/02 9:40 AM Page 303

304 Part II ✦ Building Zope Products

def listEntriesByGroup(self, group = “All”):
“””
Returns Entries from all AddressBooks
that match the Group
“””
AllEntries = []
for Object in self.objectValues():

if not Object.Public:
if not self.REQUEST.AUTHENTICATED_USER.has_role([‘Manager’], Æ

Object):
continue

for Entry in Object.listEntriesByGroup(group=group):
WrappedEntry = Entry.__of__(Object)
AllEntries.append(WrappedEntry)

return AllEntries

After making this change, a user will be presented with an aggregated view only of

public AddressBooks and ones that the user has a Manager role on.

Unfortunately, we don’t actually have a way of giving a user the manager role,

because AddressBooks don’t yet have a security tab. We can fix that too by changing

the manage_options class property (which defines what tabs are displayed in the

management view) of the AddressBook class (in AddressBook.py) from:

manage_options=(
{‘label’:’Edit’, ‘action’:’manage_main’ },
{‘label’:’View’, ‘action’:’index_html’}
)

To the following:

manage_options=(
{‘label’:’Edit’, ‘action’:’manage_main’ },
{‘label’:’View’, ‘action’:’index_html’}
)+SimpleItem.manage_options

This causes the AddressBook class to not simply override the SimpleItem’s class

attribute with its own tabs, but to extend them instead. As the SimpleItem class

adds the RoleManager class’s Security tab to the Item class’s History and Undo tabs,

the AddressBook now has all of these, in addition to the Edit and View tabs defined

in the AddressBook class itself.

In any case, after refreshing the product, you will find that the AddressBook manage-

ment interface now has all the above-mentioned tabs, and that the security tab

(which has a local-roles interface) enables you to assign a user a local role of

Manager on an AddressBook to a user. Furthermore, the Addressit object now dis-

plays in a single aggregated view all public AddressBooks and whatever non-public

AddressBooks the user has management privileges on. The user of course has to be

authenticated (logged in) in order for this to work.

e4857-3 Ch10.F 3/1/02 9:40 AM Page 304

305Chapter 10 ✦ Creating a Multi-User AddressBook

One final refinement: The edit links to the right of each listing are convenient but

misleading, because there is one next to every single listing, and only those that are

in AddressBooks that the user has management privileges on are actually editable.

So the following code (near the bottom of indexAddressit.dtml) needs to be

changed:

<td>Edit</td>

The change is simple; it just needs to be wrapped with the some conditional code

to check the role of the current user on the Entry object (which is the current

object in the sequence):

<td><dtml-if “AUTHENTICATED_USER.has_role([‘Manager’],
_[‘sequence-item’])”><a href=”&dtml-
absolute_url;/editEntryForm”>Edit</dtml-if> </td>

After saving this change to indexAddressit.dtml, the Addressit user interface to a

user that has his or her own AddressBook look like the one shown in Figure 10-5.

Figure 10-5: The Addressit index_html method

e4857-3 Ch10.F 3/1/02 9:40 AM Page 305

306 Part II ✦ Building Zope Products

Finishing Touches
The Addressit application is now functionally complete, but it is lacking a few fin-

ishing touches before it is ready to be distributed as a product for other people

to use.

Adding help
Documentation is something that everyone always wants more of, but no one wants

to add. It is always helpful when a product has at least a rudimentary help file. Zope

provides a straightforward mechanism for incorporating help directly into the man-

agement interface.

First, create a /help folder inside the products /Addressit folder. Then, add an

Addressit.stx file to it with the following text in it:

Addressit

The Addressit object is a specialized container for
AddressBooks. Addressits aggregate the Addressbooks
in them into a single view.

Only AddressBooks that have their ‘Public’ property
set to true and Addressbooks that the current user
has management privileges on will be aggregated.

This help file is formatted using structured text. Basically, structured text uses

indentation to determine structure in much the same way as Python does. The first

line, because it’s a single line paragraph that is followed by another paragraph that

is indented more, will become a headline. The second and third paragraphs in the

file will remain paragraphs.

You can find more information about structured text at this Web page:
http://www.zope.org/Documentation/Articles/STX.

Next, edit __init__.py as follows:

import Addressit,AddressBook

def initialize(context):

context.registerClass(
AddressBook.AddressBook,
permission=”Add AddressBook”,
constructors=(AddressBook.manage_addAddressBookForm,

AddressBook.manage_addAddressBook)
)

context.registerClass(
Addressit.Addressit,

Cross-
Reference

e4857-3 Ch10.F 3/1/02 9:40 AM Page 306

307Chapter 10 ✦ Creating a Multi-User AddressBook

permission=”Add Addressit”,
constructors=(Addressit.manage_addAddressitForm,

Addressit.manage_addAddressit)
)

context.registerHelp()
context.registerHelpTitle(‘Addressit’)

This registers the Addressit help topic automatically, incorporating it into Zope’s

help system. If you refresh the product at this point and click the help link on any

management screen, you’ll see that there is now an Addressit topic in the left pane

of Zope’s pop-up help.

But we’re not quite done yet. Next, edit the manage_options definition in

AddressBook.py as follows:

manage_options=(
{‘label’:’Edit’, ‘action’:’manage_main’,
‘help’: (‘Addressit’, ‘Addressit.stx’)},
{‘label’:’View’, ‘action’:’index_html’}
)+SimpleItem.manage_options

You can see that we’ve added another key/value pair to the first dictionary in the

manage_options tuple. This first dictionary defines the Edit tab for the AddressBook

object. The new member of the dictionary has a key of help and the associated value

is a two-member tuple. The first of these members (Addressit) refers to the product

directory that contains the appropriate help directory (you could point to a different

product here, if you wanted). The second member of the tuple (Addressit.stx)

refers to the appropriate filename in the help directory. If you now refresh the prod-

uct, you’ll find that any AddressBook instances now have a help link on their Edit

tabs that pops up the Zope help with the Addressit help document.

You can in this way add separate help topics for each tab you define in any of your

objects.

Adding an Icon
Zope icons are all 16×16 pixel GIFs. Adding one to a product is simple. First, add the

icon to the product folder. In this case, the icon file names are Addressit.gif and

Addressbook.gif.

Next, edit the __init__.py file as follows:

import Addressit,AddressBook

def initialize(context):

context.registerClass(
AddressBook.AddressBook,
permission=”Add AddressBook”,

e4857-3 Ch10.F 3/1/02 9:40 AM Page 307

308 Part II ✦ Building Zope Products

constructors=(AddressBook.manage_addAddressBookForm,
AddressBook.manage_addAddressBook),

icon = ‘AddressBook.gif’,
)

context.registerClass(
Addressit.Addressit,
permission=”Add Addressit”,
constructors=(Addressit.manage_addAddressitForm,

Addressit.manage_addAddressit),
icon = ‘Addressit.gif’,
)

context.registerHelp()
context.registerHelpTitle(‘Addressit’)

You can see that we added the icon declaration to the Addressit registration code

immediately after the constructors declaration.

That’s it. Refresh the product, and you should see an icon next to each Addressit
instance, and one next to each AddressBook instance.

The code for the product at this point can be found in the /chapter_09/
Addressit directory on the accompanying CD-ROM.

Summary
In this chapter, we walked you through a number of relatively simple adjustments

and enhancements that transformed your single user AddressBook application into a

multi-user Addressit application, which aggregates Addressbooks that are contained

within it into a common view, depending on the status (Public or Private) of the

AddressBook in question, and depending on what Addressbooks the user viewing the

Addressit application has manager privileges on.

We also showed you how to add help to your product, as well as icons, in order to

round out the product.

Further refinement is of course possible, though the wealth of usability improve-

ments that can be made to the application is highly dependent on the audience that

you are tailoring the application to. Moreover, for large numbers of AddressBooks
and Entries, performance can begin to suffer, as the aggregation being used here is

rather brute force. Subtler ways of building user interfaces exist, as you can see in

Chapter 17.

✦ ✦ ✦

On the
CD-ROM

e4857-3 Ch10.F 3/1/02 9:40 AM Page 308

Zope
Management

✦ ✦ ✦ ✦

In This Part

Chapter 11
Content Management
Strategies

Chapter 12
Database
Management

Chapter 13
User Management
and Security

✦ ✦ ✦ ✦

P A R T

IIIIII

f4857-3 PtO3.F 3/1/02 9:40 AM Page 309

f4857-3 PtO3.F 3/1/02 9:40 AM Page 310

Content
Management
Strategies

Unlike most of the rest of this book, which focuses on

specific techniques and features of Zope, this chapter is

intended to show how Zope can be used to support your

efforts to build sites that are easily maintained and managed.

Most of the principles discussed in this chapter are well

known and generally accepted, and yet most existing tools do

little to support the application of these principles in the sites

you build. Zope is designed around the concept of supporting

a diverse Web-production team and provides features that

make applying these principles easier than any other tool

we’re aware of. At the end of this chapter, we’ll provide a list

for further reading.

Content Management Concepts
Content management is probably one of the most difficult

parts of the job of maintaining a Web site. Not only do you

have to worry about getting all of the content up and into the

correct place in a Web site, but you must also make sure the

site is consistent in its appearance and presentation. Often,

this must be done while dealing with several different depart-

ments. Throw in the hours of repetitive coding and you are

likely going to go bald by your own hands.

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Content management
concepts

Using acquisition to
enforce consistency

Using acquisition to
share logic

Collaboration and
versions

Applied security

✦ ✦ ✦ ✦

g4857-3 Ch11.F 3/1/02 9:40 AM Page 311

312 Part III ✦ Zope Management

In this chapter we first address the basics of the content manager’s job by laying

out what goals you should strive for in your site. We then break down some Web

pages into manageable bites to illustrate what elements the content manager works

with. Finally, we show you how Zope’s powerful components are designed to solve

the many problems content managers face, turning your job into a cakewalk.

Content management basics
The traditional view of the Web site has usually been that of a series of static pages

laid out in a directory tree, with related pages nesting within folders and subfolders.

Often a site starts out with only a handful of pages. The person in charge of the site

(if there is one at all) has the relatively easy task of keeping these pages uniform in

navigation and layout, as there are only a small number of pages to update.

As people in both the private and professional worlds began to rely on the Web

more and more, some sites grew to monstrous proportions quicker than any single

person could possibly keep up with. A corporate Web site that starts off as a model

of clarity and consistency could eventually degenerate into confusing labyrinth as

people start to add their own bits and pieces here and there without knowing (and

at times not caring) what other people were doing. Even if some semblance of con-

sistency could be found (likely through mind-numbing hours of cutting and pasting

code on the part of the content manager), it would be a Sisyphean task to make

sure all of the content and links remained current.

Even if this hypothetical Web site’s growth is successfully managed and maintained,

disaster will strike when someone in sales decides that some new high-level func-

tionality needs to be implemented throughout the site, or worse yet, when the

marketing department decides that the entire look of the site needs to be over-

hauled to better match the established corporate identity.

Assuming you don’t just quit on the spot, what are you going to do? Most likely the

solution would involve going through every single page of the Web site, isolating

the content HTML (Hypertext Markup Language) from the HTML that determined

navigation and presentation, and then a lot of deleting, cutting, and pasting. On a

large enough site, even a simple change in navigation graphics could take a couple

of weeks to complete if done by hand. A somewhat better solution would be to

automate the cutting and pasting by using power tools such as grep (a UNIX

command line tool for finding strings within a file) and Perl (a scripting language

that excels at text processing), but this solution pre-supposes that the site was in a

completely self-consistent state when you try to use these tools.

As challenges like these are identified, several core concepts, or goals, of content

management are defined. There should, of course, be consistency, both for aesthet-

ics and for ease of navigation. Content should be separated from presentation so

that changing one has little impact on the other. Presentation should be separated

from functionality. Also, forethought should be put into the design of the Web site

to promote manageability while minimizing redundancy. (That may sound like a no-

brainer, but as with many things, the gap between theory and implementation is

g4857-3 Ch11.F 3/1/02 9:40 AM Page 312

313Chapter 11 ✦ Content Management Strategies

often broad.) Finally, special cases and exceptions to the rule should be recognized,

and implementing them made no more difficult than necessary, which means that it

should be possible to easily override the consistency of the site.

Consistency
Even a site with good layout and design elements can be ruined if it is inconsistent.

For this reason, consistency is an important goal for a content manager. When dif-

ferent portions of a Web site have a varying appearance, the impression visitors

will receive is, at the very best, that the owner of the site is disorganized, and at

worst visitors could be confused as to whether they actually left your site and are

now looking at another site. This alone could be disastrous for a corporation trying

to promote itself or sell its product online, as it makes it more difficult to establish

the brand of the company or Web site.

Besides first impressions, consistency also helps visitors to a site find what they

are looking for. When visitors first view a Web site, they rely heavily on visual clues

to navigate their way around. If they get deeper into the site and suddenly find that

the visual clues they came to rely on have changed, they could easily get lost.

The job of the content manager then is to enforce some set of rules on the Web site’s

appearance. Sometimes this can be as simple as merely setting up CSS (cascading

style sheets) in the proper places and making sure that all of the authors contribut-

ing to the site link to them, or it can get as complex as writing an in-depth manual

detailing all of the style rules of a Web site. Either way can put a considerable strain

on both the content manager and the authors, as they all are forced to pay attention

to not only the content they wish to provide, but also to the manner in which that

content is presented. Although not a substitute for good communication among

team members, a content management system that lets you set up templates, such

as Zope, can help eliminate the need to cut and paste repetitive code.

Separation of content from presentation
If you are familiar with the use of cascading style sheets then you are probably

aware of the benefit of separating your content from your presentation. Web pages

that don’t use CSS have HTML code that looks like this:

<table width=100 height=30>
<tr>
<td>I once had
blue bolded text in a two celled table. And a picture to the
right of it.
</td>
<td><img src=”/somefolder/with/animage.gif” width=200
height=30></td>
</tr>
</table>

g4857-3 Ch11.F 3/1/02 9:40 AM Page 313

314 Part III ✦ Zope Management

You could, however, link this document to a style sheet, which would significantly

reduce the amount of code that you would have to create while developing your

pages. Notice the difference in the amount of code that you need to write if you

properly use a cascading style sheet:

<DIV class=Figure>

<p>
I once had blue bolded text in a two celled table. And a
picture to the right of it.
</p>
</DIV>

You can see that the HTML is much simpler and easier to understand, but this

doesn’t look like it will actually render anything like the original table code. The

secret is in the style sheet. If you add the following code to the

standard_html_header for your site, the rendering becomes much nicer:

<STYLE TYPE=”text/css”>
.Figure { border:2px ridge #000;

width: 200px; }

.Figure P { font-weight: bold;
color: blue;
padding: 5px;

}

.Figure IMG { border-left:2px ridge #000;
border-bottom:2px ridge #000;
padding: 5px;
margin-left: 5px;
margin-bottom: 5px;

float: right;
}

</STYLE>

What is happening here is that all of the code that is needed to tell your browser

what type of font you want to use and what color it should be is contained in the

style sheet, as well as additional control that you can’t get using tables at all. Using

a style sheet reduces the amount of code that you have to write, but there is also a

bigger benefit if you use an external style sheet (rather than an inline style element

as we’re using here): multiple documents can link to the same style sheet, which

means you can quickly change the look of all of those pages by only updating one

document. This can be a real time saver especially if you have to update a lot of

pages. Of course, putting the style sheet inline in the standard header is a time

saver too, but if you have more than one standard header defined in your site, you

could save even more time by linking to a common style sheet from each of them.

Using a style sheet is also a good example of separating your content from your

presentation, as all of the code that controls the style is in a separate document.

g4857-3 Ch11.F 3/1/02 9:40 AM Page 314

315Chapter 11 ✦ Content Management Strategies

The problem with CSS, however, is that it is designed to control the appearance of

HTML. Thus, the control that you get lets you change attributes such as the color,

weight, and type of fonts that common elements of a document have, such as sec-

tion heading, bullets, and paragraphs, as well as control to a fine degree other

attributes such as margins, padding and borders. Unfortunately, style sheets don’t

offer any functionality for changing the structure of the document. Even if you used

CSS to format the text in this document instead of inline and tags in a

table, you would still have your work cut out for you if you needed to update the

actual HTML structure (for example, moving the image after the text) for a hundred

pages or more. Because the advantages of using CSS to control the appearance of

your site are the same whether you use Zope or not, we won’t be using style sheets

in the rest of this book, but we strongly recommend that you take a look at using

style sheets for your sites.

The problem in our example is that the content is intertwined with the code that

controls the presentation. If you could somehow decouple the two pieces, when it’s

time to give the content a make over we would only have to change the code that

controls the presentation, and presto! All 100 or so pages that we needed to update

would be done.

Zope helps you to do this by allowing you to define and manage other types of con-

tent in addition to documents and images. You can create specialized content types

such as press releases, address book entries, bug reports, or anything else you can

imagine. Once you do this you can control how these documents are displayed in

one place.

Extending Zope with new object types is covered in Chapter 16, which discusses
ZClasses, and in chapters 6 through 10, which show you how to build Python
Products.

Separation of Presentation from Logic
For a long time, the only way to add logic (behavior) to a Zope Web site was by

using DTML or External Python Methods. DTML was certainly easier to use, as it

could be created through the Web, but since DTML methods were also used to

control presentation, it was difficult to avoid mixing Presentation and Logic into the

same objects.

External Methods had the advantage of being entirely focused on Logic, but were

difficult to create and use, since they require access to the server filesystem.

More recently, Python Script Objects offered through-the-Web functionality and a

clean Logic orientation (Chapter 15). But many developers continue to use DTML for

both purposes. So a new language was designed for the specific and sole purpose of

being used for Presentation, and deliberately not powerful enough to be used to add

Logic to your site, thus completing the separation. Chapter 18 discusses Zope

Presentation Templates, and how they can be used to build user interfaces. Zope 2.5

is the first version to include Page Templates in the base distribution.

Cross-
Reference

g4857-3 Ch11.F 3/1/02 9:40 AM Page 315

316 Part III ✦ Zope Management

It is anticipated that in the future, most new development with Zope will use Page

Templates for Presentation, and Python Script Objects for adding Logic, while

Content will continue to come from object attributes or external sources such as

relational databases. However, DTML still has its uses, and many existing Zope

Products use it, so we’ve confined ourselves in this chapter to using DTML for our

examples. However, we think that you will find that if you use Presentation

Templates and Python Script Objects in preference to DTML, that your develop-

ment will naturally separate Presentation from Logic.

Minimizing redundancy
It must be emphasized that no program or content management system can be a

substitute for effective, two-way communication between you and other develop-

ers. As a content manager, the burden to create and foster such communication

among all of the members of the project is on your shoulders. Zope cannot do this

for you — no content management system can. What Zope can do is help to mini-

mize the redundancies in your application that will naturally develop over time and

are often made worse by poor communication among multiple developers working

in tandem.

Redundancies in the architecture of your site or even in its code are not often

apparent to a customer visiting your site or using your application. Why then, you

might ask, should I concern myself with making an effort to minimize something the

customer isn’t likely to appreciate? Speaking from personal experience, a little bit of

effort and planning at the beginning of a project will save a lot of time and frustra-

tion toward the end when small changes become big headaches.

Let’s say, for example, that the content of your site is divided among several

folders and the content in a few of these folders needs to access the same piece of

information in a database. Creating an identical database method in each folder (as

described in Chapter 12) would be redundant. If for some reason, you need to

change this method, finding and updating every copy of it can become quite a

chore. Your site should be constructed in a way that enables you to minimize the

duplication of work and data. This idea may appear to be common sense, but sur-

prisingly, even this simple mistake is made often. In this case, your job as a content

manager is to ensure that only one copy of the database method exists, and that it

is accessible from every folder in which in the data it returns is required.

An application that is weighed down by redundancy can achieve the same results

as a lean, efficient one, but which would you rather have to maintain? Minimizing

redundancy is really about making your job easier. There really isn’t one right or

wrong way to resolve this issue, but the solution should begin with an open and

ongoing dialog by everyone involved in your project.

g4857-3 Ch11.F 3/1/02 9:40 AM Page 316

317Chapter 11 ✦ Content Management Strategies

Using Acquisition to Enforce Consistency
Acquisition is probably the most useful tool Zope has for building Web sites. It’s

also arguably the most confusing. In fact, referring to it as a tool is misleading, as it

is really more of a paradigm, and is deeply integrated into Zope’s design.

So, what is acquisition?
Acquisition (more properly, environmental acquisition) is a flavor of object-

orientation. If inheritance is based on “is-a” relationships, then acquisition is based

on “in-a” relationships. In other words, acquisition is based on containment.

By now, you should be fairly familiar with Zope’s containment hierarchy, as

exposed in the Zope Management Interface by the file browser. However, Zope

objects are not merely contained within their parent objects, they also acquire their

attributes.

This is a little easier to show then to talk about, so we’ll walk you through a short

demonstration:

1. Make sure your Zope site has an index_html method in it.

2. Add a Folder named Demo, making sure that the “Create public interface”

checkbox is not selected.

3. View /Demo/index_html.

As you can see, even though the Demo folder does not have its own index_html
object in it, Zope fills in the blanks by searching up the containment hierarchy until

it finds one. By itself this would be an extremely productive feature, but Zope

doesn’t stop there. If you examine the index_html object itself you’ll find that it in

turn calls <dtml-var standard_html_header> and <dtml-var standard_html_footer>,

which are also located in the root folder. standard_html_header in turn calls

<dtml-var title_or_id>, which is a method that is provided by Zope itself that

returns the contents of a title property if one can be found or an id if not.

So, if we change the title property of the Demo folder via the Properties tab (say to

“Test Title”), the rendering of the /Demo/index_html page will change appropriately,

and the new rendering will have “Test Title” as the document’s title.

You can see that once a method has been acquired, it operates within the context

of the acquiring object, not within its original location in the containment hierarchy.

This is extremely useful, as it becomes possible to acquire almost all of a page’s

characteristics and only override those portions that are unique to a particular

section or page.

g4857-3 Ch11.F 3/1/02 9:40 AM Page 317

318 Part III ✦ Zope Management

This particular demonstration of Acquisition will only work if index_html is a
DTML Method, not a DTML Document. The reason for this is that Documents start
searching for attributes in themselves first, and only then continuing on to their
acquisition context and containment context. This is to allow attaching properties
to the document itself. DTML Methods, however, do not look at themselves at all
when searching for attributes, as they are considered attributes of their containers.
Thus, The index_html method is acquired by the Demo Folder, and looks for the
standard_html_header object starting from the Demo Folder as well, acquiring it
from the Root Folder. The standard header then looks for the id property, again
starting from the acquisition context, and finds it there. A standard header called
from within a document would have looked in the document first, and found the
index_html id, rather than finding it from the acquisition context.

Using acquisition to standardize layout
As we’ve already seen, index_html can be acquired from the root folder, and in turn

acquires the standard header and footer methods. This gives site designers a

convenient place to standardize the layout of the entire site, as they can insert the

elements common to all (or even most) pages in the site, and be able to manage the

look and feel from one location.

Take a look at the contents of the standard_html_header method:

<html><head><title><dtml-var title_or_id></title></head><body
bgcolor=”#FFFFFF”>

Not very easy to read, so reformat it into something a bit easier to scan:

<html>
<head>
<title><dtml-var title_or_id></title>
</head>
<body bgcolor=”#FFFFFF”>

The HTML and DTML (Document Template Markup Language) in this method is

prosaic, to say the least. Nevertheless, it provides a good starting point for a

standard layout.

Let’s start by adding a page to our site. Let’s add an “About Us” page. Create a

DTML document with an id of “about,” a title of “About Us,” and click the Add and

Edit button. Edit the body of the document so it resembles the following:

<dtml-var standard_html_header>
It is our job to proactively leverage existing
optimal information so that we may endeavor to
distinctively conceptualize orthogonal
results while striving for technical leadership.
<dtml-var standard_html_footer>

Note

g4857-3 Ch11.F 3/1/02 9:40 AM Page 318

319Chapter 11 ✦ Content Management Strategies

Viewing the page will show a screen similar to the screen shown in Figure 11-1.

Figure 11-1: The About Us page

Let’s say that we’d like to alter the layout in some way, for example, by adding a

headline to the page. We could simply add the necessary code directly to the page

in question like this:

<dtml-var standard_html_header>
<h1><dtml-var title_or_id></h1>
It is our job to proactively leverage existing
optimal information so that we may endeavor to
distinctively conceptualize orthogonal
results while striving for technical leadership.
<dtml-var standard_html_footer>

But a better approach would be to add the code in question to the

standard_html_header method instead, where it will be shared via acquisition by

the entire site:

<html>
<head>
<title><dtml-var title_or_id></title>
</head>
<body bgcolor=”#FFFFFF”>
<h1><dtml-var title_or_id></h1>

g4857-3 Ch11.F 3/1/02 9:40 AM Page 319

320 Part III ✦ Zope Management

The resulting page looks like the page shown in Figure 11-2.

Figure 11-2: The About Us page with headline added

Taking page elements that are common to many pages in the site and moving them

up the hierarchy is known as factoring your design, as it is conceptually similar to

mathematically factoring a number into its component prime numbers.

Navigation
Navigation is one of those design elements that is amenable to being factored out

and acquired by the site as a whole, as it is critical that navigation is consistent

throughout a site. We don’t get into a detailed discussion on designing navigation

systems for Web sites in this book, but we offer an example implementation.

In your root folder, create a DTML method with an id of “navbar” and the following

content:

<table width=”120” align=”left” cellpadding=5 celspacing=0
border=0>
<tr>
<td bgcolor=”#CCCCCC” nowrap>

g4857-3 Ch11.F 3/1/02 9:40 AM Page 320

321Chapter 11 ✦ Content Management Strategies

Home
About Us
Subsection 1
Subsection 2
Subsection 3

</td>
</tr>
</table>

Then modify the standard header as follows:

<html>
<head>
<title><dtml-var title_or_id></title>
</head>
<body bgcolor=”#FFFFFF”>
<dtml-var navbar>
<h1><dtml-var title_or_id></h1>

After which the About Us page should look like the page shown in Figure 11-3.

Figure 11-3: The About Us page with a standardized navigation bar

g4857-3 Ch11.F 3/1/02 9:40 AM Page 321

322 Part III ✦ Zope Management

Now, if you create a new folder or page, it should acquire the page layout that

you’ve defined at the root of the site. Create a folder with an id of products, and add

an index_html DTML document to it with a title of “Products” and the following

code:

<dtml-var standard_html_header>
Our products are second to none, because we’re the leaders in
low-quality, low-margin, high-volume merchandise!
<dtml-var standard_html_footer>

The resulting page should look like the page shown in Figure 11-4.

Figure 11-4: The Products page

As you can see, when you created this page, only those parts that were unique (the

title and page content) actually needed to be created, as everything else is acquired

from the folders above and incorporated seamlessly.

While this is wonderful from the point of view of creating Web sites, its implications

for their maintenance are truly staggering. Imagine for a moment that the /products

section of the Web site was brand new, and needed to be incorporated into the

global navigation . . . on every page . . . now.

g4857-3 Ch11.F 3/1/02 9:40 AM Page 322

323Chapter 11 ✦ Content Management Strategies

Well, if you’re maintaining the site manually, as described earlier in this chapter,

you might be sweating a bit, as it would take time to either cut-and-paste new HTML

manually among all of the pages, or time to write a script that will automate the

cutting-and-pasting process. And then still more time to review the resulting site

before it can go live.

With Zope, the solution to all of this (if you’ve factored your code correctly) is to

make the change in one place and simply let it be acquired throughout the entire site.

Using Acquisition to share Logic
Breaking your HTML into pieces that can be shared throughout the site is not the

only use for Acquisition. Any logic that you want the whole site to share (or per-

haps just a subsection) can be acquired as well.

Let’s show you how to build a standardized e-mail comment form that your whole

site can use, and have the comment routed automatically to the appropriate

maintainer.

1. Add a Mail Host object to the root of your site by choosing it from the drop-

down box in the Root Folder.

2. Leave the id as MailHost, and set the SMTP server to your mail server.

Generally if you are using an ISP the server will be smtp.yourisp.com, but yours
might be different. If you’re on an internal corporate network, ask your system
Administrator what the appropriate settings are.

3. Click the Add button.

4. Next, add a DTML method to your root folder with an id of

standard_mail_form, with the following code:

<dtml-var standard_html_header>
<H2>Comment on this page</H2>
<form action=”standard_mail_action” method=”post”>
Your Name: <input type=”text” name=”name” size=”30”>

<textarea name=”comments” rows=”8” cols=”34”>
Add your comment here.
</textarea>

<input type=”submit” value=”Send Comment”>
</form>
<dtml-var standard_html_footer>

5. This will be the form that collects feedback and submits it to the form

processing Method, standard_mail_action. Therefore, add another DTML

method to the Root Folder with an id of standard_mail_action that contains

the following code:

<dtml-var standard_html_header>

Tip

g4857-3 Ch11.F 3/1/02 9:40 AM Page 323

324 Part III ✦ Zope Management

<dtml-sendmail mailhost=”MailHost”>
To: Feedback Recipient <&dtml-maintainer_email;>
From: Comment Form <webmaven@lvcm.com>
Subject: Website Comment

Feedback from : <dtml-var name>
About: <dtml-with “PARENTS[0]”><dtml-var absolute_url>Æ
</dtml-with>

Comments: <dtml-var comments>
</dtml-sendmail>
<h1>Thank you!</h1>
<p>Your comments have been sent.</p>

<dtml-var standard_html_footer>

You can see that the standard_mail_action Method attempts to send the e-mail to

whatever e-mail address is in the maintainer_email attribute. In order for this to work,

you need to create a string property on the Root Folder called maintainer_email and

set its value to your e-mail address. Depending on your ISP’s e-mail server policies,

you might also need to change the From: address in the standard_mail_action Method

to your own as well. You can also see a rather abstruse DTML string on the About: line.

This DTML finds the parent of the current calling context and gets its absolute URL in

order to inform the recipient which page specifically is being commented on.

Now, you can place a relative link in the standard footer of your site that points to

standard_mail_form, like this:

Comment on this page.

And the form and action will automatically append the appropriate URL to the

e-mail, and send the e-mail to whomever is the site maintainer.

But there is another twist: Simply by overriding the maintainer_email property in a

folder or subfolder, the e-mails for that whole section of the site will now go to

someone else. In this way, the basic functionality (Logic) of the e-mail form and

action are acquired throughout the site, and only the destination of the e-mail

changes depending on where it gets called from.

As is, the form is fully functional, but since only users with the Manager Role have

the appropriate permissions to send e-mail, the form is useless to anyone else. The

remedy for this is also fairly simple. You need to give the standard_email_action
method a Proxy Role. Click on the standard_mail_action object, and then click on

its Proxy tab. The Proxy tab will present you with a list of available roles, including

Manager. Select the Manager Role, and click the Save Changes button. The

standard_mail_action method now has the Manager role, and can send e-mail on

behalf of whatever user happens to request it, even Anonymous users.

That’s it! You’ve added functionality throughout your entire site by using

Acquisition.

g4857-3 Ch11.F 3/1/02 9:40 AM Page 324

325Chapter 11 ✦ Content Management Strategies

More information on Proxy Roles and Security can be found in Chapter 13.

Collaboration and Versions
Versions are one of Zope’s built in objects. They are used to compartmentalize

changes to the Web site content or look and feel, so that conflicting sets of changes

can’t be made to the same object.

What is a version?
Chances are, more than one person will be working on your Web site at the same

time. This can be a problem if people begin making changes to the same objects. In

Zope, versions enable you to prevent users from overwriting each other’s work. A

version is an object that creates a separate development environment in which you

can make changes that will not affect the work of others. You can stay in a version

as long as you need to, and can even leave a version and come back to it later. The

changes associated with a version can be saved to your site or discarded at any

time.

Versions are also invaluable when updating large portions of your Web site. Often

while making changes to one area, other parts of your site will be broken until you

are finished updating. Versions enable you to complete this process without affect-

ing the performance of your Web site by hiding your changes until you are ready for

everyone to see them.

Imagine your boss has asked you to change the way the navigation on your

company’s Web site is displayed. The following sections in this chapter take you

step-by-step through the process of updating a Web site with the use a version.

Creating a version
Creating a version is just like creating any other Zope object. Go to the Content

screen of any folder in Zope. From the list of available objects, select Version. Zope

will prompt you for the id and optional Title of the new version. When finished,

click the Add button. Notice that the version you just added appears in the content

list with a red diamond icon.

To create a version called “Updates,” follow these steps:

1. While logged into Zope, select Version from the drop-down menu of addable

objects.

2. Zope displays the add version page. Name your version “Updates” and set the

title to “Navigation Updates.” Click the Add button.

Cross-
Reference

g4857-3 Ch11.F 3/1/02 9:40 AM Page 325

326 Part III ✦ Zope Management

3. Zope returns you to the Root Folder’s management screen and your new

Version labeled “Updates” appears in the Root Folder’s list of contents, as

shown in Figure 11-5.

Figure 11-5: Adding a version

Joining and leaving a version
After creating the version you’ll need to join it, as you won’t be able to see any

changes inside of version until you do. When you join a version, Zope sets a special

cookie that your browser will pass back with every request. This cookie tells Zope

that you are working in version that is different from the default version everyone

else sees. The management screens will inform you that you are working a version

by cleverly stating, “You are working in version /version name.” (See Figure 11-6.)

You can join or leave a version at any time. The project you are working on might

take several days or even weeks to complete. In the meantime visitors to the Web

site will continue to see the old site until you are ready to commit your changes.

The cookie that is assigned to you is only good until the browser is shut down, so if

you quit your browser or reboot your computer you will need to rejoin the version.

g4857-3 Ch11.F 3/1/02 9:40 AM Page 326

327Chapter 11 ✦ Content Management Strategies

Figure 11-6: Joining a version

To join the version in our sample project, follow these steps:

1. From the Root Folder click the object with the red diamond labeled “Updates.”

2. Zope displays the Join/Leave view for the Updates object.

3. Click the button labeled “Start Working in Navigation Updates.” If you are

already working in a version the button will be labeled “Quit Working in

Navigation Updates.”

4. Zope redisplays the Join/Leave page again and informs you that you are now

working in a version. Notice that the button is now labeled “Quit Working in

Navigation Updates.”

Working in a version
Once in a version you can start making changes just as you would outside of it. If

you make a change to an object in a version, a small red diamond appears to the

right of the object’s name in the management view, signifying that the object has

been changed. Those that are not working in a version will be presented with an

g4857-3 Ch11.F 3/1/02 9:40 AM Page 327

328 Part III ✦ Zope Management

icon of a diamond and a lock. This signifies that this object has been edited in a ver-

sion and is now locked. Locked objects can only be modified if you join the version.

Deleting an object inside of version will lock the object outside of the version and

also lock its containing Folder. Objects that are created inside of a version will not

be visible until the version is committed, but their containing Folder will be locked.

It’s time to get to the heart of our example and actually make the navigation

updates to our demo site.

1. Make sure you are currently working in the version by clicking on the Update

version object. If you aren’t already working in the Version, click the Start

Working in Navigation Updates button.

2. Take another look at the code in the navbar DTML Method. It should look

something like this:

<table width=”120” align=”left” cellpadding=5 celspacing=0
border=0>
<tr>
<td bgcolor=”#CCCCCC” nowrap>

Home
About Us
Subsection 1
Subsection 2
Subsection 3

</td>
</tr>
</table>

3. Change the Subsection 1 line to read:

Products

4. View the /products page and verify that your change is visible in the navbar.

5. Quit your version to get a feel for what others will see. Notice the lock symbol

by the navbar method. Try editing it. If you view your site in your browser,

you will see that your site has not yet been publicly changed.

6. Rejoin the version and view it again if you wish.

Now that you’re happy with the change you made, it is time to commit it.

Saving or discarding your changes
Once you have made changes to your site in a version you can do one of two things:

commit the changes so that the rest of the world can see how brilliant you are, or

pretend that your changes never happened by discarding them. You don’t need to

be working in a version in order to commit or discard its changes.

g4857-3 Ch11.F 3/1/02 9:40 AM Page 328

329Chapter 11 ✦ Content Management Strategies

Follow these steps to save or discard the Updates version:

1. From the Root Folder click on the version labeled “Updates.”

2. Zope displays the Join/Leave page. Click the Save/Discard tab.

3. If there are any changes to be saved Zope will give you a text widget where

you can make a comment about the changes you’ve made. If there are no

changes to be made, Zope will inform you of this.

4. Enter in a note such as, “Added link to the product section,” and click the

Save button. Alternately, you can click the Discard button and Zope will revert

all your changes back to how they were before you started working in the

version. In either case, Zope will unlock all of your objects.

Things to consider when working with versions
If you add or delete objects while in a version, you are actually modifying the

container, so the containing object will be locked from having other changes made

outside of the version, including other objects being added or deleted.

Versions are mutually exclusive, and non-nesting. You can’t create a version while

in a version. In this respect, Zope Versions are less capable then CVS (Concurrent

Versioning system) for versioning, and more resemble RCS (Revision Control

System).

Committing a version causes all the transactions (changes) within it to be commit-

ted to the ZODB (Zope Object Database). This means that to undo the changes

made by the version you can’t roll back the version commit as a whole, you must

roll back the individual transactions.

Applied Security
While security is dealt with more extensively in chapters 9 and 13 of this book, it’s

important to consider security from a content management perspective as well.

Content management poses some interesting challenges for security, and the

solutions that Zope has incorporated are elegant, allow Delegate responsibility, and

perform Damage Control when necessary.

Delegation
Zope’s model for delegation of authority is one of “customers who have cus-

tomers.” What this means is that management of any section of the object tree can

be safely delegated to a user without that user being able to apply their privileges

anywhere else.

g4857-3 Ch11.F 3/1/02 9:40 AM Page 329

330 Part III ✦ Zope Management

Let’s say that in our example you want to give Fred the sales manager control over

the Products section of the Web site so that he can add and change products and

their descriptions, but you don’t want to give him the ability to alter the site’s home

page.

In Chapter 3, you learned about User Folders and users.

In order to safely delegate manger level access to Fred, you should add him to the

User Folder at least one level above the folder he’ll be managing. In this case, that

would be the Root Folder, however don’t give Fred’s user any Roles just yet.

After you’ve added Fred’s user to the Root Folder, go into the /products folder that

you want to delegate to Fred and click the Security tab. You’ll see a link in the

description that reads “local roles.” If you click this link you’ll see a screen like the

screen shown in Figure 11-7.

Figure 11-7: The local roles screen

Click both Fred’s username and the Manager role from their respective list boxes,

and then click the Add button. You have now given Fred a local role of “Manager.”

This means that Fred has a manager role in the /products folder and can do any-

thing a manager could do. Of course, you could have simply added a user folder to

the /products folder, and added Fred as a manager within that folder directly, but

there are some subtle advantages to the use of local roles.

Cross-
Reference

g4857-3 Ch11.F 3/1/02 9:40 AM Page 330

331Chapter 11 ✦ Content Management Strategies

Now, let’s assume that Fred has a subordinate, Sheila, that Fred wants to delegate

the management of the Thingumbob product line. After creating a Thingumbob

folder, Fred can create a user folder in the products folder by choosing the Add

User Folder from the add list drop-down menu, shown in Figure 11-8.

Figure 11-8: Adding a User Folder

After adding a user for Sheila, Fred can go ahead and give her a local role of

manager within the Thingumbob folder.

Damage Control
All of this delegation is well and good, but doesn’t really constitute damage control

per se. Where damage control comes in is in the unfortunate situation where Fred

doesn’t meet the quarterly sales figures, and, because of some behind the scenes

maneuvering by Sheila, Fred is fired.

In order to limit the amount of damage that Fred would be able to do to the com-

pany by expressing his unreasonable expectations of job security, you as the site

administrator must revoke his access to the site immediately. This is fairly simple.

You actually have two options in this case, you can:

✦ Delete the fred user.

✦ Remove Fred’s local roles.

g4857-3 Ch11.F 3/1/02 9:40 AM Page 331

332 Part III ✦ Zope Management

The former option is a quick fix, but will leave local roles scattered around the site.

These are not harmful in-and-of themselves, but they do leave the possibility that

someone in the future will create a new user with the same username, who would

automatically get all of the privileges that had formerly been granted to Fred. So a

more thorough procedure would be to remove all of the local roles Fred had been

granted as well as the Fred user.

In either case, now someone needs to be assigned to manage the Products folder,

and you don’t want to do it. Fortunately, Sheila has been promoted to Fred’s old

job, and you can create a user for her in the root acl_users User Folder, and then

give her a manager local role on the Products folder. (Don’t forget to delete the

Sheila user from the /products/thingumbob folder.)

Now it might seem redundant to have to re-create the sheila username in the root

folder, and it is. Notice that this is only necessary because Sheila’s user was created

in a subfolder’s User Folder. For this reason, if you expect this sort of shuffling of

responsibility to occur often, you will probably want to centralize user management

and create all users in the root folder, relying on local roles exclusively. This does

mean that only the Root Folder manager will be able to add and delete users, so

think carefully about which approach will end up being more efficient.

Centralizing the users also avoids the security problems caused by user name

clashes. If Dave the VP has manager level access over the /marketing folder, and

Dave the copyeditor is supposed to have read-only access to a /marketing/news/
releases/in-progress/ folder, Dave the copyeditor will actually have manager level

access to that subfolder if their usernames are the same. If creating and managing

users is centralized, problems like this can be avoided.

Even in the case of centrally managed users, Fred would still have been able to
delegate management of the /products/thingumbob folder to Sheila by using the
local-roles interface.

Anyway, now that Fred is out of the picture (and the system), he can’t post any

diatribes on the site that would embarrass the company, so your job is secure.

Summary
In this chapter you learned the basics of content management using Zope’s acquisi-

tion features to increase maintainability, how to use versions to allow collaboration

on the site and hide changes-in-progress until they’re finalized, and how to use

Zope’s security infrastructure to safely delegate management of the Web site.

Note

g4857-3 Ch11.F 3/1/02 9:40 AM Page 332

333Chapter 11 ✦ Content Management Strategies

For further reading, check out the following titles:

Information Architecture for the World Wide Web by Louis Rosenfeld and Peter

Morville (O’Reilly, 1998)

Cascading Style Sheets: Designing for the Web, 2/e, by Håkon Wium Lie and Bert

Bos (Addison-Wesley, 1999)

The Art and Science of Web Design by Jeffrey Veen (New Riders, 2000)

✦ ✦ ✦

g4857-3 Ch11.F 3/1/02 9:40 AM Page 333

g4857-3 Ch11.F 3/1/02 9:40 AM Page 334

Database
Management

This chapter introduces you to permanent data storage

outside of the Zope-provided ZODB in the form of exter-

nal database access. We will discuss types of databases,

access methods from within Zope, and organize data within

external databases.

About Relational Databases
We will be discussing one particular type of database — the

relational database. To understand what a relational database

is and how it differs from other database types, we will go

through relational versus object databases, as well as some

relational theory.

Database basics
Almost all of applications you will build or use in Zope will

use some form of long-term data storage. This could be the

user’s preferences for quick-links on a Web portal, signatures

for an online petition, or phone numbers in a company’s inter-

nal phone list.

As discussed earlier in this book, Zope provides powerful data

storage capabilities through its persistent object storage

mechanism, the Zope Object Database, or ZODB. For many

small and large applications, this is a more than sufficiently

powerful tool for storing data. The ZODB has some shortcom-

ings, however, so sometimes a more powerful, or simply a

different kind of long-term data storage system is called for.

The ZODB is an object database, which means it stores whole

objects at a time, and stores related objects — such as prop-

erties of the object being stored — and any other objects that

are referenced by the object being stored.

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

About relational
databases

Connecting Zope to
a relational database

SQL methods: The
basics

Using SQL methods
from DTML

Using SQL methods
from external
methods

Using SQL methods
from Python products

Advanced techniques

Building an SQL
application

✦ ✦ ✦ ✦

g4857-3 Ch12.F 3/1/02 9:41 AM Page 335

336 Part III ✦ Zope Management

The ZODB provides a simple and effective system for storing data. Using the ZODB,

it is easy to represent hierarchical relationships, such as one object containing

another containing another. (This is typically a hard thing to do in a relational

database.) The ZODB is also easy to administer, having virtually no setup or

maintenance requirements.

The ZODB is great for small databases, and single-server Web sites. When it comes

to more advanced setups, however, another kind of database is almost always

required. This is because the ZODB has no facility for sharing, meaning that if you

have 20 Web servers, there is no straightforward, efficient way to share a single

ZODB among them.

This is changing, however, with the development of ZEO. ZEO allows sharing of a
single ZODB instance.

The ZODB also has little capability of interfacing with other systems. In developing

large systems using databases, you will find that often times the Web server needs to

share data with the accounting system, the e-commerce engine, and any number of

external systems. Using the ZODB alone, this becomes a daunting task, requiring adap-

tor code, and various other tricks. Using an external database, this often becomes a

job of simply providing database mapping layers (views or stored procedures).

The most common type of external database is a relational database. This kind of

database stores simple data only, such as numbers and strings, but also stores how

that data is structured. Relational databases are structured as groups of tables.

Tables can be thought of as lists of data structures, each containing zero or more

rows of data. Each row in a table has one or more column, each column a single

data element of a certain type. (For example; unsigned integer, variable-length

string, binary digit, and so on.)

Relational database structure
To use a relational database in an application, the structure of the database must

be designed. This structure is usually called a table schema, or just schema. For

instance, to store a single-user address book application’s data, we could use two

tables: one to hold the address book’s entries (the people in the address book), and

another to hold the myriad ways to contact each person in the address book. The

tables could look like Table 12-1 and Table 12-2.

Table 12-1
Addressbook_entries Table

First Name Last Name Company Name

Jane Doe ACME Inc.

John Q. Doe Ace Sprockets

Note

g4857-3 Ch12.F 3/1/02 9:41 AM Page 336

337Chapter 12 ✦ Database Management

First Name Last Name Company Name

Allesandro Foo Bit Monkey’s LLC

Zaphod Breeblebrox Galactic Headquarters

Table 12-2
Addressbook_contacts Table

First Last Phone Phone
Name Name Number Type Address City State Zip Comment

John Q. Doe 555-1212 Cell 123 Badwater Alaska 99999 Spooky guy;
Boardwalk try not to call.

Zaphod Breeblebrox 123-4567 Home Don’t call
during happy
hour.

In the previous example, we begin to see how data is structured in a relational

database. Each table contains records, or rows, comprised of columns. The

columns define what each row of data contains, and the rows are the data. We can

also see that these two tables are related. The Addressbook_entries table contains

people. The Addressbook_contacts table contains contact information about those

people. The relation between the two is the First_Name and Last_Name columns.

When designing a database schema, you must consider several elements of the data:

✦ What data is to be stored?

✦ How will the data be added to the database?

✦ How will the data be read from the database?

✦ How can the data be normalized?

The answers to these questions can help us design a table schema for recording

purchases from an online storefront.

What data is to be stored?
Our virtual storefront has its own product catalog and inventory control system, so

all we need to store in our database is what was purchased, when the purchase took

place, and how the purchase was paid for. So, the data elements are going to be:

✦ The date of the purchase

✦ The order number

✦ The product number of each product purchased, and how much it cost

g4857-3 Ch12.F 3/1/02 9:41 AM Page 337

338 Part III ✦ Zope Management

✦ The name, address, and phone number of the customer

✦ The credit card number, type, and expiration date

How will the data be added to the database?
Each time a purchase takes place in our storefront application, the application will

have all of the data listed in the previous section. Because we will be using multiple

tables to store our data, we will want to write the data in reverse order, writing the

items of the order, then the order itself, so that anyone reading the database will

not see the order until it is fully written to the database. The purchase in the store

is complete, so we do not have to deal with partial orders or waiting for the user to

hit a “confirm” button, so from the point the purchase is complete, we can write the

whole order to the database at one time.

How will the data be read from the database?
This database is for historical tracking of orders from the storefront, so most likely

the only way this data will be read will be from a reporting application that will sim-

ply list all of the transactions that occurred during the last month or week. It will

start by looking up all of the orders within a certain date range, it will then look up

the details of each order, and finally, format the information nicely in the report.

How can the data be normalized?
The term normalized data may be unfamiliar to you. Normalized data is a term used

often in relational database circles and means data that has been simplified and

broken down enough to be put into a table structure that closely models how the

data itself is structured and used. Think of the example of the address book. A

single table containing the name, company name, phone number, and address of

each person in the book could have been used, but this table could not account for

people with multiple phone numbers, nor people for whom you wish to store both a

company and a home address. To account for this in a single table you could add

more phone number and address columns, such as phone1, phone2, phone3,

address1, city1, state1, address2, city2, state2, and so on, but this becomes prob-

lematic very quickly. First, you are adding a hard limit to how many addresses or

phone numbers you are storing. Second, you are wasting space and resources on

the database server by not using these extra columns for people with only one

contact method. In programming parlance, adding extra columns like this would be

considered “dirty.”

A far better way to store address book data where multiple contact methods are

allowed is to use one table to store the name and other non-replicated data about

each person, and a second table to store the individual contact methods. This is a

more normalized way to store the data. It makes more sense, and uses the table-

oriented structure of the database to more closely model the data.

There is one last element of using multiple tables to normalize data. That is the use

of keys. Think about the address book example. In this example we needed to relate

the contact information entries to the individuals. Earlier in this chapter this was

g4857-3 Ch12.F 3/1/02 9:41 AM Page 338

339Chapter 12 ✦ Database Management

done by adding the “First Name” and “Last Name” columns to the Addressbook_

contacts table. This allowed the relation of the contact information to the individu-

als by means of comparing the names. To make this work in most databases, the

First Name and Last Name columns in both tables would be declared as unique keys.

Moreover, possibly in the Addressbook_contacts table, the First-Name/Last-Name

key could be declared as requiring a matching key in the Addressbook_entries table.

This table schema, to store orders from our storefront, will be using the concept of

normalization to efficiently store order information. To do this, we need to think

about the data being stored. Think about how an order invoice looks. Usually it has

customer information on the top and then a list of items. The orders from the store-

front are similar. They contain customer information and a list of products pur-

chased. We could put all of this information into one table, with multiple columns

for the products, adding a hard limit to the number of products able to be pur-

chased, as in the following table structure:

Orders Table

Order Number

Order Date

Customer Name

Credit Card Number

Credit Card Expiration Date

Credit Card Type

Product #1 ID

Product #2 ID

Product #3 ID

Product #4 ID

Product #5 ID

This table structure would work just fine for our application, so long as nobody

ever wants to buy more than five products at a time. For a small, private store, this

might work, but a far better way to store the orders would be to use a second table

to store the ordered items so that as many products as the customer likes can be

purchased at one time.

The only problem with using a second table for ordered items is that it needs to

relate some how to the order table. In most stores, each order is given a unique

number — an order id — that will serve as the relation key in this example per-

fectly. All that needs to be done to the previous example is to remove the product

columns and create a second table containing product ids and an order id for

relation. The new table schema looks like this:

g4857-3 Ch12.F 3/1/02 9:41 AM Page 339

340 Part III ✦ Zope Management

Orders Table

Order ID

Order Date

Customer Name

Credit Card Number

Credit Card Expiration

Credit Card Type

Order_Items Table

Order ID

Product ID

The new table schema stores our data well and even allows for growth later on. For

instance, price and quantity columns could be easily added to the Order_Items

table, whereas if all of the data were in one table, adding more columns for each

product could prove to be quite an undertaking if 5, 10, or 100 product id columns

were already present.

Most commercial relational database vendors have complete examples of the
process of data normalization in their product documentation. For an additional
resource, Oracle8: The Complete Reference (Osborne, 1997) contains a particu-
larly good one.

Accessing relational databases: SQL
Nearly all modern relational databases are accessed by a computer language named

SQL. SQL stands for Structured Query Language, and by some is pronounced sequel.
Compared with Python or even DTML (Document Template Markup Language), it is

a simple language, designed to be easy to learn, yet powerful to use.

The Query part of SQL is indicative of the client/server nature of relational databases.

The client, be it a command-line tool or a Zope database adaptor, sends queries to

the database server, be it MySQL, Oracle, or the Gadfly library within Zope.

There are several good books on the entire SQL specification, some devoted only to
this topic, while some database books such as Oracle8: The Complete Reference
(referenced in the previous note) contain a good SQL section.

SQL is submitted as sentences to the database server from the client. These sen-

tences are composed of a SQL statement, followed by arguments and qualifiers to

that statement. In some cases, statements can be nested, such as in subqueries

allowed on Oracle, Postgres, and soon MySQL, but in most cases, there is only one

query at a time.

Note

Note

g4857-3 Ch12.F 3/1/02 9:41 AM Page 340

341Chapter 12 ✦ Database Management

The most commonly used SQL statements are SELECT, INSERT, UPDATE, and

DELETE. In addition to describing these statements, we discuss the CREATE TABLE

and DROP TABLE statements that enable you to actually add and delete tables to

and from a database.

The SELECT statement
The SELECT statement is by far the most used statement in SQL. It is the only way

to read data from a SQL-speaking database. All other statements are for manipulat-

ing data. Let’s dive right in.

For the following examples we will use an example table with the structure shown

in Table 12-3.

Table 12-3
Employees

Name SSID Citizen StartDate

Alice 172-23-2821 Y 04/03/00

Asok 372-29-2892 N 11/02/98

Wally 212-39-2811 Y 01/10/01

Let’s look at our first SQL query:

SELECT * FROM my_table

This is the most simple form of the SELECT statement. The previous sentence sim-

ply returns all columns of all rows of the employees table. The * in the previous

sentence instructs SELECT to return all columns of the table. Because no logic was

used to limit the number of rows returned from employees, all rows are returned.

To select only some columns, individual column names may be specified (separated

by commas) instead of using the *, as in:

SELECT Name, StartDate FROM employees

This will return the name and start date of all the employees in the table.

To limit the number of rows returned, the SELECT statement uses a WHERE clause

of the sentence. For instance, to select only non-citizen employees from the

employee table, the following query will work:

SELECT * FROM employees WHERE Citizen = ‘N’

g4857-3 Ch12.F 3/1/02 9:41 AM Page 341

342 Part III ✦ Zope Management

This is about the simplest form of the WHERE clause. Depending on the database

used, and the type of data being operated on, the logic that can be used in WHERE

clauses can be quite complicated. In all SQL speaking databases, arbitrarily com-

plex Boolean expressions can be used. For example:

SELECT Name FROM employees WHERE (Citizen = ‘Y’ AND StartDate > Æ
DATE(‘01/01/2001’)) OR SSID =’372-29-2892’

The INSERT statement
New data is entered into a SQL speaking database using the INSERT statement.

INSERT simply adds a single new row to the end of a table. For example, to add a

new person to our employee table, we can use:

INSERT INTO employees VALUES (‘Pointy Haired Boss’, Æ
‘214-28-1982’, ‘Y’, ‘01/01/1968’)

The UPDATE statement
The UPDATE statement changes the value of one or more columns of one or more

rows of a table. For instance, if we wanted to change the start date of all employees

in our table to January 1, 2001, we could use:

UPDATE employees SET StartDate = ‘01/01/2001’

Or, if Asok gained citizenship, we could use the following UPDATE statement:

UPDATE employees SET Citizen = ‘Y’ WHERE Name = ‘Asok’

The DELETE statement
The DELETE statement deletes some or all of the rows from a table. To delete all of

the rows of the employees table, the query is simple:

DELETE FROM employees

To just delete Wally, we can use a WHERE clause:

DELETE FROM employees WHERE Name = ‘Wally’

The CREATE TABLE statement
To create a table, the CREATE TABLE statement is used. To create our employees

table, we could use:

CREATE TABLE employees (Name VARCHAR(100), SSID CHAR(11), Æ
Citizen CHAR(1), StartDate DATE)

g4857-3 Ch12.F 3/1/02 9:41 AM Page 342

343Chapter 12 ✦ Database Management

This is the basic syntax for CREATE TABLE. The datatypes allowed are database

specific, but almost all support a simple set:

INTEGER

CHAR

VARCHAR

DATE

Most databases will also allow the specification of a default value, whether or not

the column may allow null values, and whether or not the value in the column must

be unique.

The DROP TABLE statement
The DROP TABLE statement simply removes an entire table from the database

being used. Its syntax is very simple. To drop the employees table:

DROP TABLE employees

Be careful, however, as dropping tables are generally irreversible.

Real world: Specific RDBMS products
There are countless relational database options, and the number grows every day.

For use with Zope, any database you choose must be supported by Python at least,

and there must be a Zope adaptor for that database as well. Below are a few of the

most popular database options for Zope.

MySQL
MySQL is one of the most popular databases in use today for small to medium Web

sites. It is very fast, easy to manage, and has a huge, supportive user base. MySQL

is an open-source product, but several companies offer commercial support.

MySQL has a few limitations. By default it is non-transactional, so enabling transac-

tions and using them takes a little extra work. MySQL also does not support some

of the more complicated SQL constructs, such as subqueries, triggers, and stored

procedures. Most of these limitations are being overcome, however, as MySQL is

improved on an almost weekly basis, and has been for years.

Oracle
Oracle is one of the biggest, oldest, most stable, feature rich, flexible, respected,

and expensive relational databases in existence. Almost every other database prod-

uct has only a sub-set of the features of Oracle. If money is no object, you can’t go

wrong with Oracle. Expense is Oracle’s downfall, however. The software itself is

g4857-3 Ch12.F 3/1/02 9:41 AM Page 343

344 Part III ✦ Zope Management

often prohibitively expensive for small or medium size projects, and the hardware

requirements of the database alone are also quite substantial.

Sybase
Sybase is a commercial database product comparable to Oracle. It is full-featured

and stable, and has a loyal following. While Sybase may not be attracting many new

customers in recent years, it is already deployed in many large systems around the

world. For this reason, Zope could be used as a new front-end to existing systems.

PostgreSQL
PostgreSQL is another mature database. The core of PostgreSQL was developed over

the last couple of decades at the University of California at Berkeley. The project

eventually spun off as a separate and open-sourced product. PostgreSQL is incredi-

bly feature-rich, and in comparison to Oracle or Sybase, consumes very little system

resources. PostgreSQL is a reliable, cost-effective database, but does not come with

the corporate support that Oracle does, or the blazing raw speed of MySQL.

ODBC
ODBC is a standardized database communication protocol, allowing any ODBC

client to communicate with any ODBC server. This is in contrast to the database-

specific protocols most database products use, which require their own Zope

adaptor. Zope’s ODBC database adaptor allows Zope to use any database product

with ODBC support. In addition to the databases mentioned here, many more

database products support ODBC, and so can be used with Zope.

Gadfly
Gadfly is a simple relational database product bundled with Zope. Every Zope

installation out-of-the-box has the ability to create a new Gadfly database immedi-

ately. Gadfly supports only a subset of the full SQL language, and its performance

and reliability are not quite on par with Oracle or MySQL, but it is a great learning

tool. We will be using Gadfly as the relational database to use in the examples of the

rest of this chapter.

Connecting Zope to a Relational Database
To be able to use an external relational database from within Zope, you must create

a Zope database connection object, which allows SQL queries to be sent to the

database and responses to be read. In order to create a connection object, a number

of steps must be followed. We discuss each of these steps in the following sections.

Getting an adaptor
Zope accesses databases using a Zope Database Adaptor. This is a Zope product

that implements the right application programming interface (API) to allow SQL

g4857-3 Ch12.F 3/1/02 9:41 AM Page 344

345Chapter 12 ✦ Database Management

Methods to make use of the adaptor to communicate via SQL to a database in a

common way. Essentially, the adaptor is the Zope abstraction of the specifics of

using a database. One of the most interesting things an adaptor does is to check for

and make use of the transactional ability of some databases. (This topic is dis-

cussed in more detail in the “Advanced Techniques” section of this chapter.)

The only database adaptor that comes bundled with Zope is the Gadfly adaptor,

which is fully self-contained so that all Zope instances can make use of a relational

database out-of-the-box. To use any other database, you must download the

adaptor from the Internet. A good place to look is at http://www.zope.org/
Products/external_access.

In addition to needing a Zope adaptor to obtain access to an external database, you

will almost certainly need to get the Python module that allows Python, which Zope

is written in, to communicate with the database. To make things even more

involved, the Python module will almost certainly need to have libraries installed

from the database itself to work. If Zope and the database are running on the same

machine, this is taken care of for you, but if they are not on the same machine, you

will need to install the database client libraries on the machine Zope is running on.

Each Python module and Zope Database Adaptor is different, and will have slightly

different installation methods, but they will all be somewhat similar. For example,

we will go through the steps of getting Zope access to a local (meaning installed on

the same machine) MySQL database. We will assume MySQL and Zope are already

installed.

The first step is to install the MySQL Python module. (Because MySQL is so com-

mon, this may actually be already done for you.) Both MySQL and Python come

with the Python-MySQL module, and will install it for you if you choose to do so

when you install either product. If you did not choose to do this, you will need to

download the MySQL-Python module from www.python.org. Go to the download

section of the Web site, and from there click the link to The Vaults of Paranassus.

From the main page, enter MySQLdb into the search box. Download the MySQLdb

package, and follow the installation instructions that follow.

Next, you will download the MySQL Zope adaptor from www.zope.org. Enter

zmysqlda into the search box on the main page. Several items will come back; click

one with the simple title of “ZmySQLDA.” There may be several; download the one

with the latest date. Follow the installation instructions in this package, and you are

done! From within a Zope folder you may use the product drop-down list to create a

new connection to your MySQL database.

Connecting and disconnecting
To create a connection to a database from within Zope, you will need to go to a

folder within Zope, one either at or below the level from which the connection will

be used, and create a database connection object. The root (/) folder is a good

choice for database connection objects, but could get cluttered if too many exist.

g4857-3 Ch12.F 3/1/02 9:41 AM Page 345

346 Part III ✦ Zope Management

To create a new connection object, go to the folder in which you want to put the

new object, and from the product drop-down list, select to add the adaptor instance

of your choice. If you are using MySQL, this will be called “Z MySQL Database

Connection.” See the database connection add screen in Figure 12-1.

Figure 12-1: MySQL Database Connection Add screen

From the add screen, give your new connection object an id and a connection

string.

The connection string is a somewhat tricky thing. Often it is hard to get right, and

when you get it wrong, the error messages are not very helpful. The most verbose

form of the connection string syntax is:

DB_Name@Server_Name User_Name Password

The @Server portion can be left off if the database server is on the same machine as

the Zope process, and the Password can be left off if the database user account has

no password.

Testing SQL statements
All Zope database adaptors enable you to run SQL queries from within the Test tab

of their management screens, which you can get to by simply clicking the connec-

tion object.

g4857-3 Ch12.F 3/1/02 9:41 AM Page 346

347Chapter 12 ✦ Database Management

Using the test screen, you can run simple queries to look around in your database

or to do one-time tasks, such as renaming a table or altering a column.

Browsing tables
Some database adaptors have a Browse Tables tab in their management screens. This

function enables you to visually browse the existing table schema. Tables and their

columns can be seen. Often, this is useful for visualizing the database structure.

SQL Methods: The Basics
Zope may use database adaptors to communicate with databases, but everything

else within Zope, be it Python-written products, DTML, or scripts (Python or Perl)

uses SQL Method objects. The SQL Method is a Zope product written in Python, but

it forms the glue between the adaptor API and DTML or anything else.

Any time a database is to be accessed, you should create an instance of the SQL

Method product (simply called a SQL Method) to do the work. A SQL Method acts

just like a method of any programming language. It has a name, it takes arguments,

it has a body, and it returns a result.

The name of a SQL Method is its Zope ID.

The arguments of a SQL Method are defined as named variables.

The body of a SQL Method is one or more SQL queries.

SQL Methods return Result Objects.

SQL Methods are created and used in different ways, depending on the environ-

ment. To be called from DTML, they are created through the Zope management

screens, just like any other product. From Python in External Methods, or in

Python-written products, they are imported and instantiated just like any other

class. What they do have in common, however, is the body. No matter how SQL

Methods are used, the rules on their SQL written bodies are the same, and the same

Zope added functionality exists.

Static SQL methods
Any SQL Method may have a simple, unchanging SQL body. A query such as:

SELECT * FROM employees

will always work. These can get frustrating to use in a hurry, however, as they do

not allow you to vary the statement in any way. This is necessary in WHERE clauses

of statements, and especially when specifying new data for the INSERT statement.

g4857-3 Ch12.F 3/1/02 9:41 AM Page 347

348 Part III ✦ Zope Management

Dynamic SQL methods
Dynamic SQL simply means the ability to add a simple subset of DTML to your SQL

Method bodies. These tags are then evaluated at run time, so that dynamic data can

be inserted into the SQL queries.

The dtml-sqlvar tag
The dtml-sqlvar tag is the equivalent of DTML’s dtml-var tag. At run time, the tag is

simply replaced with the value it references. The dtml-sqlvar tag, in contrast to the

dtml-var tag, properly escapes and quotes the value according to the rules of the

specific database. The dtml-sqlvar tag does not have as many options as the

dtml-var tag, however.

See the DTML reference section in Chapter 4 for all tag options.

dtml-sqlvar is probably most often used for INSERT and UPDATE statements. For

example, to add a new employee to our employees table:

INSERT INTO employees VALUES (<dtml-sqlvar name type=string>,
<dtml-sqlvar ssid type=string>, <dtml-sqlvar citizen
type=string>, <dtml-sqlvar startDate type=date>)

As you can see, the most often used option to dtml-sqlvar is the type option. The

most often argument of it, is string. See the DTML reference for more options.

The dtml-sqltest tag
You can use the dtml-sqlvar tag to represent the variable components of WHERE

clauses in SQL, such as in:

SELECT * FROM employees WHERE Name = <dtml-sqlvar Name
type=string>

However, this can become cumbersome with more complex data types, such as

dates. Zope provides a mechanism to construct WHERE clause elements that do

proper quoting and type conversion. This mechanism is the dtml-sqltest tag. This

tag allows the previous statement to be represented as:

SELECT * FROM employees WHERE <dtml-sqltest Name type=string>

This statement evaluates to exactly the same SQL as the first example, but is a little

bit easier to understand. It simply compares the named variable to a column of the

same name. The operator, in this case equality can be changed, as can the datatype.

Check the reference section of this book for a complete list of options.

Cross-
Reference

g4857-3 Ch12.F 3/1/02 9:41 AM Page 348

349Chapter 12 ✦ Database Management

The dtml-sqlgroup tag
The dtml-sqlgroup tag is one of a family of tags including:

✦ dtml-sqlgroup

✦ dtml-and

✦ dtml-or

This family of tags enables you to represent complex Boolean logic in an easy to

understand way. Essentially, <dtml-sqlgroup>, and its end-tag, </dtml-sqlgroup>,

evaluate to left and right parenthesis, respectively. dtml-and evaluates to the AND

SQL operator, and dtml-or evaluates to the SQL OR operator. These tags are usually

used in conjunction with the dtml-sqltest tag. For example:

SELECT * FROM employees
<dtml-sqlgroup where>

<dtml-sqltest Name type=string>
<dtml-and>

<dtml-sqlgroup>
<dtml-sqltest SSID type=string>

<dtml-or>
<dtml-sqltest StartDate type=string>

</dtml-sqlgroup>
</dtml-sqlgroup>

This is a pretty simple example of the use of dtml-sqlgroup. The interesting thing

going on here behind the scenes is that dtml-sqlgroup is smart enough to know

that if the Name argument is not passed in to the SQL Method when it is called, that

part of the WHERE clause will be left out. Optionally, the word required can be

added as an option to dtml-sqltest tags, requiring that clause to be used. This kind

of adaptive logic can be useful in applications such as searches where some or all

of the fields of the search are optional. It can also lead to some confusing bugs, so

be careful.

Using SQL Methods from DTML
The easiest way to use SQL Methods is from DTML methods of documents. The SQL

Method object can be created from the product drop-down list within a Zope folder,

using easy-to-use graphical interfaces. You can easily see what arguments are being

used, and edit the SQL body of the method online. You can see the SQL Method

add/edit screen in Figure 12-2.

Be careful to note that the arguments to SQL Methods must be single words on

individual lines of the arguments text area.

To illustrate the use of SQL Methods for the rest of this section, we will use two SQL

Methods, which are shown in Figures 12-3 and 12-4.

g4857-3 Ch12.F 3/1/02 9:41 AM Page 349

350 Part III ✦ Zope Management

Figure 12-2: SQL Method add screen

Figure 12-3: sqlAddEmployee SQL Method edit screen

g4857-3 Ch12.F 3/1/02 9:41 AM Page 350

351Chapter 12 ✦ Database Management

Figure 12-4: sqlListEmployees SQL Method edit screen

As with all things in DTML, SQL Methods are accessed via tags: dtml-var, dtml-call,

and dtml-in.

Using the dtml-call tag
The dtml-call tag is the simplest way to call SQL Methods, but it is also the least

powerful. dtml-call enables you to call SQL Methods and pass them arguments,

but it does not enable you access to any return value. This is best used for calling

SQL Methods that perform INSERTs, UPDATEs, or DELETEs, not SELECTs. We can

call our example insert SQL Method in this way:

<dtml-call “sqlAddEmployee(Name=’Phil’, SSID=’55-666-777’,
Citizen=’N’, StartDate=’01/01/0001’”>

Adding this line to any DTML method with access to the sqlAddEmployee method

will cause an insert of Phil’s data into the Employees table.

Using the dtml-in tag
To retrieve data from a database we use the dtml-in and dtml-var tags. The most

powerful way to do this is with the dtml-in tag. As we learned previously, this tag is

for iterating through lists or tuples of objects. SQL Methods return a tuple of Result

g4857-3 Ch12.F 3/1/02 9:41 AM Page 351

352 Part III ✦ Zope Management

objects, so this is perfect. If we want to iterate over all the people in our employee

table, the following DTML would work perfectly:

<dtml-var standard_HTML_header>
<table>
<!-- A table header -->
<tr><td>Name</td><td>SSID</td><td>Citizen?</td><td>Start Æ
Date</td></tr>
<!-- Iterate through the employees -->
<dtml-in sqlListEmployees>

<!-- For each employee, print out the column data -->
<tr>
<td><dtml-var Name></td>
<td><dtml-var SSID></td>
<td><dtml-var Citizen></td>
<td><dtml-var StartDate></td>

</tr>
</dtml-in>
</dtml-var standard_html_header>

Using SQL Methods from External Methods
External methods are methods written in Python that reside in files inside of the

Extensions directory of Zope. These methods can access the Zope folder hierarchy,

and through this, SQL Methods. (To fully understand this section, you will need to

skip ahead to Chapter 15 to find out about External Methods, then turn back to find

out how to use SQL Methods from them.) All external methods are passed a self

object reference. This object is a reference to the folder that contains the external

method proxy object. This object reference then can be used to get references to

other objects from within the Zope folder hierarchy using the hasattr and getattr
methods. Here is an example of a Python External Method that calls the

sqlListEmployees SQL Method from the previous section, and returns a list of

maps of the rows.

Def employeeMapList(self):
Call the sqlListEmployees method, which is a property
on our folder, which is self.
results = self.getattr(‘sqlListEmployees’)()

Turn the result object into a list of maps
mapList = []
for result in results:

resultMap = {}
for column in results._names

resultMap[column] = result[column]

mapList.append(resultMap)
return mapList

g4857-3 Ch12.F 3/1/02 9:41 AM Page 352

353Chapter 12 ✦ Database Management

Using SQL Methods from Python Products
Python-written Zope products, as with External Methods, are beyond the scope of

this chapter, so read chapters 6 through 10 to learn about Python Products and

then turn back to learn how to use SQL Methods from them.

The basic steps to using SQL Methods from Python Products are:

1. Import the SQL class.

2. Create a new SQL Method object.

3. Set the new SQL Method as a property on the product.

4. Call the SQL Method.

It’s important to note that what database connection is to be used with any SQL

Method is determined at SQL Method instantiating time, not run time. Further, this

connection is specified by id, not by reference. This is why the SQL Method must be

a property on the Product to work, as the SQL Method, when called, makes calls on

the connection object through traversal, and for it to be able to access the

Product’s traversal tree, it must be a property of the Product.

Importing the SQL method class
As always with Python, any external classes must be imported into the current

namespace by means of the import statement. The simplest way to import the SQL

Method class is with:

from Products.ZSQLMethods.SQL import SQL

Instantiating new SQL method objects
Now that the SQL class is imported, a new SQL Method object may be instantiated

by using the class name SQL. The constructor of SQL is:

SQL(id, title, connectionID, arguments, sqlBody)

Because SQL Methods may be added to Zope folders, the SQL class extends

OFS.SimpleItem, and so must have an id and Title. The id should be something

meaningful, whether you will be adding the SQL Method to a folder or not. The title

is optional.

ConnectionID is the id of the database connection to be used. As stated earlier, this

name is resolved to an object reference at run time through acquisition.

g4857-3 Ch12.F 3/1/02 9:41 AM Page 353

354 Part III ✦ Zope Management

Arguments is a list of string names for arguments that can then be used in dtml-sql*

tags within the SQL body.

The sqlBody option is just that: the SQL queries to be executed.

Calling SQL methods
The most common way to use SQL Methods from Python Products as stated earlier

in this chapter, is when the SQL Method is a property of the Product. In this way the

SQL Method may be called as a method of the product. This is demonstrated as:

Declare the ID to use for the SQL Method
methodId = ‘sqlListEmployees’

Instantiate the new SQL method object, and make it a
property on this product.
setattr(self, methodId, SQL(methodId, ‘’, ‘employeesDB’,

‘SELECT * FROM employees’))

Call the SQL Method just like any other method
result = self.sqlListEmployees()

This is by far the most common way to use SQL Methods from Python Products.

However, SQL Methods that are already in existence and in a Zope folder may be

called from Python Products, just as External Methods do, through the self object.

If you write a new product in Python that uses SQL Methods from Zope folders, all

that must be done is to place the SQL Method objects at or above the Folder where

your product is to be instantiated. Once that is done, the SQL Method can be called,

just as in the last line of the pervious example.

SQL Methods used from within products need not be set as a property of the
product more than once. If the product inherits from Persistent, the SQL Method
needs only be instantiated and set as a property on the product once. The best
time to do this is from within the Product constructor.

Advanced Techniques
Now that you know the basics of using external databases with Zope, we can

investigate some of the advanced techniques available to you.

Acquiring parameters
Up to this point, all parameters to SQL Methods in our examples have been explic-

itly passed to the method when it is called. This is often the most desirable way to

pass data to SQL Methods, and certainly offers the greatest degree of control, but

Note

g4857-3 Ch12.F 3/1/02 9:41 AM Page 354

355Chapter 12 ✦ Database Management

this is not the only way. If no arguments are passed to a SQL Method that specifies

needed arguments, the SQL Method will collect its arguments from the environ-

ment. This is especially useful in calling SQL Methods from DTML. In this case, the

SQL Method will get its arguments from the REQUEST object, which is often where

the arguments come from anyway. This saves you some typing at least, and at most

it saves you from some possible typos.

Traversing to SQL method results
Because of the near magical ability of Zope to access all objects via their URLs, it is

possible to get the result of a SQL Method simply by going to its URL and passing

arguments on the query string.

For example, if you had a SQL Method named employee_lookup in your Zope Root

Folder that took an argument named SSID, and had a body of:

SELECT * FROM employees where <dtml-sqltest SSID type=string>

then you could access the result of this query by going to the URL:

/employee_lookup?SSID=212-39-2811

If the SQL Method was connected to our example Gadfly database, you would get

Wally’s employee record. This would be very undramatic to look at in your browser,

however.

To add some display logic to the result, you could append the id of a DTML method

to the URL. If you had a DTML method named employee_display with the following

body in the same folder as your previous SQL Method:

<dtml-var standard_html_header>
<table>
<tr><td>Name</td><td>SSID</td><td>Citizen?</td><td>Start
Date</td></tr>
<tr>
<td><dtml-var Name></td>
<td><dtml-var SSID></td>
<td><dtml-var Citizen></td>
<td><dtml-var StartDate></td>
</tr>
</table>
<dtml-var standard_html_footer>

this DTML Method could add display logic to our SQL Method simply by going to

the following URL:

/employee_lookup?SSID=212-39-2811/employee_display

The result of this URL would be a nice HTML page displaying Wally’s employee data

in a clean table.

g4857-3 Ch12.F 3/1/02 9:41 AM Page 355

356 Part III ✦ Zope Management

Pluggable Brains
Often working with SQL Methods you will find yourself frustrated with the Result

Objects they return. These objects work, but are really only good for iterating

through linearly, and are not very helpful beyond that.

To address this problem, Zope added the concept and mechanism of Pluggable
Brains. This mechanism essentially enables you to add methods to result objects by

mixing result objects with an externally defined class. This is done in the advanced

tab of SQL Method management screens. There you will find two text fields, one

labeled Class Name, and one labeled Class File. If, in the Extensions directory of

your Zope installation, you put a file containing a Python class with some methods

for using SQL Result objects, you can specify this file and class name in these fields.

This done, all result objects returned from this SQL Method will also have the meth-

ods defined in the class you specified. This must be done for each SQL Method you

wish to use in this way, and you must access the directory structure of your Zope

installation, but this is an effective way of making result objects more useful.

Caching
Just as Zope can use caches to speed up DTML pages, Zope has caches for SQL

Methods. Caching of SQL Method results can dramatically speed up your applica-

tion, but can also lead to over consumption of memory and misrepresentation of

data if you are not careful.

SQL Method caching is applicable only in cases where the result of the query does

not change often or at all. If, for instance, you build an inventory control applica-

tion, and set up caching on the SQL Method that checks for the availability of prod-

ucts, you could over-sell products, because when the first time the SQL Method

was run, you had 100 products, and so it stored that value in the cache. Later, you

could sell 1,000 units of the product, and the product availability method would still

be handing out 100 as the number of available. SQL Method result caching is power-

ful, but must be used with care.

Often, SQL Method result caching can be helpful. For instance, if you built an appli-

cation that takes signatures for an online petition, you could supply a very large

cache to the SQL Method that looks up signatures for display on your main page.

Because it’s not important that viewers see the absolute most up-to-date number of

signatures, and because it could slow down the application quite a bit to pull all of

that information from the database every time, caching is very applicable. In this

case, page load times could be reduced from ten seconds to sub-second easily.

All caching control for SQL Methods is accessible from within the SQL Method

objects in Zope under the Advanced tab (see Figure 12-5) of their management

screens. There are only three controls:

g4857-3 Ch12.F 3/1/02 9:41 AM Page 356

357Chapter 12 ✦ Database Management

✦ Maximum rows to retrieve

✦ Maximum results to cache

✦ Maximum time to cache

Figure 12-5: The advanced tab

These three controls allow a surprisingly large amount of control over the perfor-

mance of SQL Methods. We will go over each individually here.

Maximum rows to retrieve
Some people find the existence of this field to be curious. There are some applica-

tions in which limiting the number of results from a SQL Method may be desirable,

and this can be done here; however, a better way to do it is within the SQL state-

ment itself using a LIMIT clause in your SELECT statements, as this reduces load on

the database server.

You may choose to make use of this limiting function, but if you do not wish to limit

the result size of your queries, this value may be set to zero (0) and the result size

will be unlimited by Zope.

g4857-3 Ch12.F 3/1/02 9:41 AM Page 357

358 Part III ✦ Zope Management

Maximum results to cache
This is the first real caching control. Combined with the third field, Maximum Time

to Cache, it controls whether caching takes place at all, and how much. If Maximum

Time to Cache is set greater than zero, then this field determines how much of the

result of this query to keep in memory, and return in subsequent calls. This value

should always be higher than the number of rows expected to be returned, other-

wise if caching is used, data could be lost.

Maximum time to cache
While Maximum Results to Cache controls how much memory is used during

caching, Maximum Time to Cache controls whether to cache or not, and if so, for

how long.

If this field is set to Zero (0), no caching takes place for this SQL Method. If it is

greater than zero (for example, if it is set to 60), Zope will cache results of this

query for one minute. That means that if Maximum Results to Cache is set to 1,000

and the query returns 800 rows, the first time this SQL Query is cached, 800 rows

of data will be stored in memory, and those same 800 rows will be returned to all

subsequent calls for the next 60 seconds. After 60 seconds, the cache is flushed, or

emptied, and the process repeats itself.

All Zope caching works on a per-thread basis. Zope uses a thread pool to handle
requests, so that multiple requests can be handled at one time. If your Zope
thread pool contains 10 threads, then Zope can handle 10 requests at one time.
However, because caching is on a thread basis, to see a caching speedup, all 10
threads must take their initial cache miss to initialize. The larger the thread pool,
the more simultaneous requests Zope can handle, but the longer it takes caching
to work.

Transactions
Transactions, along with the stability of most mature database products, are what

make relational databases so popular in large, high budget applications. They are

the saviors of data integrity. Transactions make certain that the data in a relational

database’s tables are correct, with no references to rows that don’t exist, and no

otherwise partially completed operations.

Transactions work all of this magic by simply grouping SQL queries together and

making sure that if any query of the group fails, that any changes made to the

database are undone. Also, in most cases, no changes to a database from a

transaction are visible to other users of the database until the entire transaction is

completed.

This action of protecting data is utilized on most relational databases that support

it via the BEGIN, COMMIT, and ROLLBACK statements. The BEGIN statement begins

a transaction. The COMMIT statement completes a transaction. The ROLLBACK

Caution

g4857-3 Ch12.F 3/1/02 9:41 AM Page 358

359Chapter 12 ✦ Database Management

statement tells the database to undo any changes made since the beginning of this

transaction.

To use transactions manually, as done from a command-line tool, the general

sequence of events is:

1. Begin a transaction using the BEGIN statement.

2. Enter a series of queries: SELECTs, INSERTs, UPDATEs, DELETEs, and so on.

3. If anything goes wrong, send the ROLLBACK statement to undo the damage.

4. If everything went well, send a COMMIT to make the changes permanent and

visible.

Zope uses transactions internally in servicing all queries, as discussed in Chapter

14. If you write an application in Zope that uses a database and that database sup-

ports transactions, Zope automatically extends the scope of the Zope transaction

to include the database use.

What this essentially means is that a Zope application using a transaction-capable

database generates an error in the form of an exception, and that exception is not

caught within the application, Zope will catch it, display it to the user, and rollback

any changes made to persistent Zope objects, as well as send a ROLLBACK com-

mand to the database. This provides a very simple-to-use mechanism for making

use of transactions within Zope. Basically, you don’t have to think about it.

Building a SQL Application
Now that you are familiar with the integration of Zope and relational databases,

let’s use these powerful tools to build a SQL-based application to solve one of life’s

most troubling problems. Where should we go for lunch?

You know the problem. You’re at the office, you’re hungry, and you don’t want to

eat alone so you invite a few people to eat with you, and then no one can agree

where to go! Enter the “Wheel of Food” — an application designed to not only settle

disputes in the office but also to keep track of what places there are to eat.

The application lets you and your co-workers keep track of all the restaurants in

your area. Each co-worker can cast or retract a vote for up to three restaurants

where he or she wishes to eat. After the voting is done, the tables can be reset for

the next day so that the whole process can start over.

This example uses the Gadfly database. (If you are feeling adventurous you can cre-

ate an application using a different database, but you may need to translate the SQL

methods.)

g4857-3 Ch12.F 3/1/02 9:41 AM Page 359

360 Part III ✦ Zope Management

Setup a workspace
Rather than having to build a full re-instantiable Zope product, we will simply build

the whole Wheel of Food application in a folder under the Zope Root Folder. This

folder will be called “WOF,” and so the URL to the new application will be <your
zope instance URL>/WOF.

The first step in building the Wheel Of Food application is to create the /WOF folder.

Open a Web browser, go to Zope’s management screen, and in the Root Folder,

create a new folder with the id of WOF.

Create a new Gadfly connection
The next step in building the Wheel Of Food application is to create a connection to

the database that will be used. As stated earlier in this section, the application will

use the Gadfly database, which comes bundled with Zope.

From within the /WOF folder, select to create a new “Z Gadfly Database Connection”

from the product drop-down list. This will bring up the Gadfly database connection

add form, as shown in Figure 12-6.

Figure 12-6: Gadfly database connection Add screen

g4857-3 Ch12.F 3/1/02 9:41 AM Page 360

361Chapter 12 ✦ Database Management

In the id field, enter wof_db. This is the id of the connection object we will use for

the application.

Select the “demo” data source. This is where the data in our database will be stored

on the server filesystem. If you wish, you can create other data sources as directed

in the Add screen, or you can just use “demo.” (This is really only a problem if

other people are using this Zope instance, in which case there could be tables

already created that could conflict with your program.)

Last, click the Add button. This will create the wof_db Gadfly database connection

object in our /WOF folder so that you can begin using our database.

Create the table schema
The Wheel Of Food will be tracking two types of information. These are:

✦ Restaurants

✦ Votes for restaurants from users

Restaurants will be simply added and deleted from a list. That can be stored in a

simple table, containing only the names of the restaurants.

Votes for restaurants need to contain a reference to what restaurant is being voted

for and who voted for it. This can be stored in a separate table with two columns:

restaurant name and user name.

To create the table schema the WOF will access, we will create a SQL Method with

the CREATE TABLE statements and run it.

From inside the /WOF folder, create a new SQL method with an id of

“sqlCreateTables,” and a body of:

CREATE TABLE restaurants (name VARCHAR)

CREATE TABLE votes (restaurant_name VARCHAR, user_name VARCHAR)

Make sure the connection_id field is set to wof_db and click the Add and Test but-

ton. This will create the create_tables SQL Method and run it, to create the tables

that the Wheel of Food will use. You can click the Browse tab from within the

database connection object to look at the tables you just created.

The column type VARCHAR was used to hold the string values in the restaurants
and votes tables so that simple strings of any length can be used without the need
to add or remove padding characters or worry about the maximum length of
restaurant names.

Note

g4857-3 Ch12.F 3/1/02 9:41 AM Page 361

362 Part III ✦ Zope Management

Create the SQL methods to access the database
The next step in creating the Wheel of Food application is to create all the SQL

Methods that the application will use to access the database. Let’s think about all of

the various ways the application will read from or write to the database:

✦ Adding a restaurant

✦ Deleting a restaurant

✦ Adding a vote for a restaurant

✦ Listing restaurants

✦ Listing all voters

✦ Listing all the people who voted for a restaurant

✦ Resetting the votes

Each of these types of database access will get its own SQL method to perform

exactly that function. Let’s create them now.

Adding a restaurant
This SQL method will need to take one argument, the restaurant name. Create a new

SQL method inside the /WOF folder with an id of “sqlAddRestaurant.”

In the arguments box, enter “name” on one line.

For a body, enter the SQL:

INSERT INTO restaurants VALUES (<dtml-sqlvar name type=string>)

Make sure the connection_id field is set to wof_db, and click the Add button.

Deleting a restaurant
Create another SQL Method object, this time with an id of “sqlRemoveRestaurant,”

that takes an argument of name, and has a body of:

DELETE FROM restaurants WHERE <dtml-sqltest name type=string>;
DELETE FROM votes WHERE restaurant_name = <dtml-sqlvar name
type=string>

Adding a vote for a restaurant
Create a SQL Method with an id of “sqlAddVote” that has two arguments on sepa-

rate lines, one of restaurant_name, another of user_name. The body should contain:

INSERT INTO votes VALUES (<dtml-sqlvar restaurant_name
type=string>, <dtml-sqlvar user_name type=string>)

g4857-3 Ch12.F 3/1/02 9:41 AM Page 362

363Chapter 12 ✦ Database Management

Listing restaurants
This is the first SQL Method of this application that returns anything useful. This

method will be called form the application to iterate through the list of restaurants

in the database. It will do this in order to display the votes for each restaurant.

Create a new SQL Method with an id of “sqlListRestaurants,” and a body of:

SELECT name FROM restaurants

Listing all voters
So that the application can build a nice looking grid of votes with restaurants on

one side and voter names on the other, we need a method to get the names of all

the voters. To do this, create a SQL Method with an id of “sqlListVoters,” and a

body of:

SELECT DISTINCT user_name FROM votes

Listing votes for a restaurant
This SQL Method will return a list of user names who voted for an individual

restaurant.

Create a new SQL Method with an id of “sqlListRestaurantVotes,” that takes a

restaurant_name argument, and has a body of:

SELECT user_name FROM votes WHERE <dtml-sqltest Æ
restaurant_name type=string>

Resetting the votes
This last SQL Method will delete all of the votes in the votes table so that the appli-

cation can be re-used. Create a SQL Method with an id of “sqlResetVotes” that has a

body of:

DELETE FROM votes

Write the DTML for the user interface
The interface of the Wheel of Food is one screen. At the top will be a listing of all of

the restaurants and who voted for each. At the bottom will be a small interface for

adding and deleting restaurants, and a button for erasing all the existing votes.

Users will vote by clicking the name of the restaurant in the list.

The main page
So that the application can be accessed by simply going to the /WOF directory of the

Zope server, the main page of the application will be a DTML Method in the /WOF
folder with an id of “index_html.” Create this DTML Method with a body of:

g4857-3 Ch12.F 3/1/02 9:41 AM Page 363

364 Part III ✦ Zope Management

<dtml-var standard_html_header>
<dtml-var vote_table>

Reset the Vote Table

Refresh the Table

<form name=add_restaurant method=post action=add_restaurant>
Add a restaurant: <input type=text name=restaurant_name>Æ
<input type=submit>

</form>
<form name=remove_restraunt method=post
action=delete_restaurant>
<select name=restaurant_name>
<option value=””>Select a Restaurant to Delete</option>

<dtml-in sqlListRestaurants>
<option><dtml-var name></option>

</dtml-in>
</select>
<input type=submit value=’Delete Restaurant’>

</form>
<dtml-var standard_html_footer>

Adding restaurants
When a user enters a new restaurant from the main page, the name of the new

restaurant is submitted to add_restaurant. Create a new DTML document with an id

of “add_restaurant” in /WOF with a body of:

<dtml-call
“sqlAddRestaurant(name=REQUEST.get(‘restaurant_name’))”>
<dtml-var index_html>

This DTML document simply calls the sqlAddRestaurant SQL Method and then

includes the index_html document, so that the user can keep going.

Removing restaurants
The remove_restaurant document will work just like add_restaurant. Create a new

DTML Document with an id of “remove_restaurant” with a body of:

<dtml-if restaurant_name>
<dtml-call

“sqlRemoveRestaurant(name=REQUEST.get(‘restaurant_name’))”>
</dtml-if>
<dtml-var index_html>

g4857-3 Ch12.F 3/1/02 9:41 AM Page 364

365Chapter 12 ✦ Database Management

Listing restaurants and restaurant votes
The index_html document includes a document named vote_table. This document

will create a table showing the whole list of restaurants, and which users voted for

which restaurant. Create a new DTML document with an id of “vote_table” and with

the following body:

<table border=1>
<tr>
<td>Restaurant Name</td>
<dtml-in sqlListVoters>

<td><dtml-var user_name></td>
</dtml-in>

<dtml-in sqlListRestaurants>
<tr>
<td><a href=”vote?restaurant_name=<dtml-var name

html_quote>”><dtml-var name></td>
<dtml-call “REQUEST.set(‘users’, [])”>
<dtml-in “sqlListRestaurantVotes(restaurant_name=name)”>

<dtml-call “users.append(user_name)”>
</dtml-in>

<dtml-in sqlListVoters>
<dtml-if “user_name in users”>

<td>X</td>
<dtml-else>

<td> </td>
</dtml-if>

</dtml-in>
</tr>

</dtml-in>
</table>

Voting
To record votes, users click the name of the restaurant on the main screen. This is

simply a link to “vote” with the name of the restaurant in the URL. Create another

DTML method with an id of “vote” and a body of:

<dtml-call “sqlAddVote(restaurant_name=restaurant_name,
user_name=AUTHENTICATED_USER.getUserName())”>
<dtml-var index_html>

Resetting votes
Create one last DTML document with an id of “reset_votes” with the body of:

<dtml-call sqlResetVotes>
<dtml-var index_html>

g4857-3 Ch12.F 3/1/02 9:41 AM Page 365

366 Part III ✦ Zope Management

Summary
In this chapter, we introduced the basics of relational databases and demonstrated

how Zope provides a robust architecture for storing, manipulating, and accessing

information in relational databases. We demonstrated creating SQL methods,

accessing them from DTML, External Methods, and Python Products. We demon-

strated advanced techniques such as acquiring the query parameters, and we built

an application based on a relational database.

✦ ✦ ✦

g4857-3 Ch12.F 3/1/02 9:41 AM Page 366

User
Management
and Security

One of the most difficult things about deploying a Web

site, Web application, or intranet, is making sure that

what you’ve deployed is secure. In Chapter 9, we introduced

the basic concepts underlying network security in general and

Web application security in particular. We also covered adding

application-specific permissions to your Zope products and

associating permissions with default roles.

In this chapter, we cover security from the point of view of the

site administrator, a topic that was briefly touched on in

Chapter 11 by way of damage control and delegation.

The Zope Security Framework
Zope provides several tools for securely giving people the

appropriate access to your server:

✦ User Folders

✦ Permissions

✦ Roles and Local Roles

User Folders enable you to create and manage users within

Zope, or to use external user information within Zope.

Permissions govern whether a particular entity can take a

specific action. Roles group permissions together in a way

that makes them easy to assign to users.

Together, User Folders, Permissions, and Roles form Zope’s

security framework. This framework is one that all Zope

products use and extend, making it easy for site administra-

tors to specify which permissions need to be granted to

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The Zope security
framework

Creating and
managing users

Understanding roles

Setting permissions

Gaining access
when accidentally
locked out

Proxy roles

Local roles

Authentication
adaptors

✦ ✦ ✦ ✦

g4857-3 Ch13.F 3/1/02 9:41 AM Page 367

368 Part III ✦ Zope Management

which users, and in what context, even though those permissions control access to

applications and products written and provided by many developers. Zope creates

a highest common denominator for Web application security that all product devel-

opers can leverage, simplifying the task for the site administrator.

Creating and Managing Users
A secure site that no one can use is something that is fairly easy to accomplish. Just

don’t connect the server to a network, and never grant anyone permission to even

see the server.

A Web site that no one can access isn’t very useful, however, so some way of giving

access to some people, but not to others, is a good thing. A way of giving different

users different levels of access in different locations is even better. In Zope, users

are represented by User objects that are stored in special User Folders. User

Folders are always named acl_users.

Adding a user
Adding a user to a User Folder is pretty simple. Follow these steps:

1. Click an existing User Folder. All user folders are named acl_users. We

suggest clicking on the acl_users folder in your root folder.

2. Click the Add button.

3. Fill in the form for the new user (see Figure 13-1) with the username and pass-

word for that user. For this example, use bob and uncle as the username and

password, respectively. The password must be typed once each in the

Password and Confirm fields.

4. For the moment, don’t click any roles for the user and leave the Domains

blank.

5. Click the Add button.

Congratulations! You’ve added a user!

Editing a User
Users can have user passwords and allowed domains reset by clicking the user and

editing the user’s password field, as shown in Figure 13-2.

g4857-3 Ch13.F 3/1/02 9:41 AM Page 368

369Chapter 13 ✦ User Management and Security

Figure 13-1: Adding a user

Figure 13-2: Editing a user

g4857-3 Ch13.F 3/1/02 9:41 AM Page 369

370 Part III ✦ Zope Management

After you’ve edited the password in the Password and Confirm fields, click the

Change button and the user’s password will be changed.

You can also edit the users to give them roles. Let’s give Bob a manager role. Click

on the Bob user again, and select Manager from the Roles list, then click the Change
button. Bob now has a Manager role.

Setting the allowed domains
The user object also has a Domains property. This is used to limit the Internet loca-

tions from which the user can authenticate themselves. If the field is left blank (as

it usually is), all locations are equally valid. You can specify a location such as

“corporation.com” in order to only allow logins from within an internal network, or

you can specify an IP address such as “192.168.0.1” and only allow logins from that

particular internal IP address. You can also add asterisks as wildcards to the IP

address in order to specify a range such as “192.168.0.*,” and finally, you can spec-

ify multiple allowed Internet locations by separating them with spaces: 192.168.*.*

joe.homenetwork.com.

You can also define a user without a password that has a role (for example, a

custom role of “Employee”) provided that a domain has been specified. Anyone

who accesses Zope from within the specified domain automatically gets the role,

even without logging in. This is not generally recommended, because it can weaken

security, but the flexibility is available.

The Emergency User
The emergency user has two uses. The first is a way to login if you accidentally lock

yourself out of Zope. Don’t laugh because this actually happens all the time. For

example, you can become locked out if you forget your password, set the permis-

sions wrong on a object, delete the user you logged in as, or delete the acl_users
folder. The second use is for when you need to delete the acl_users folder in the

Root Folder on purpose because you want to install one of the custom user folders

we discuss later on in this chapter.

A couple of restrictions are placed on the emergency user. You can’t create or own

objects. The exception to this rule is that you can create acl_user folders. The only

thing you can do is edit existing objects and users. This is useful for restoring the

system back to a state where you can login with a normal account.

Creating the emergency user by hand
The quickest way to create an emergency user is to create a file named access in

the top-level directory of your Zope installation with your favorite text editor.

Assuming you installed Zope in the default location as described in Chapter 2, the

location of this file would be C:\Progam Files\WebSite in Windows and

g4857-3 Ch13.F 3/1/02 9:41 AM Page 370

371Chapter 13 ✦ User Management and Security

/usr/local/Zope-2.x.x in Linux. The file only needs to contain two items: the name

of the emergency user and the password. These two values must be separated by a

colon on a single line. For example, to create an emergency user named superman
whose password is lois, you would put this line in your access file:

superman:lois

After you’ve created this file you must restart Zope. Then go to the Zope manage-

ment screen and you should be able to login as superman.

The previous example shows how easy it would be for someone to get into your
Zope site if he or she has write access to the directory where Zope is installed.
Make sure that this directory is properly protected!

You should remove the access file as soon as you’re done with the emergency

account.

Creating the emergency user with zpasswd.py
In the previous example, the emergency users password is left clear as day for

anybody to see if he or she has the ability to read the access file. This is very

insecure. Alternatively, the password can be stored as a one-way hash using either

the SHA or CRYPT algorithm. One-way hashes are secure because they can’t be

unencrypted. In other words, you can’t take a hash and turn it back to the original

password. Of the two methods, the SHA algorithm is the most modern and is the

preferred algorithm to use because it supports longer passwords. CRYPT is the

historical format used by most UNIX systems and passwords must be limited to

eight characters in length.

Because you can’t create a hash by hand (maybe you could if you’re a mathematical

genius, but we can’t), a utility script is provided in the top-level directory of your

Zope installation. You run this script like you would any other Python script. (See

Chapter 5 for more details.) The script expects one argument, which is the name of

the file where the user name and password should be stored. The script prompts

you for everything else.

Here’s an example of running the script on a Windows machine:

C:\> cd “\Program Files\WebSite”
C:\PROGRA~1\WebSite> bin\python zpasswd.py access
Username: superman
Password:
Verify password:

Please choose a format from:

SHA - SHA-1 hashed password
CRYPT - UNIX-style crypt password
CLEARTEXT - no protection.

Caution

g4857-3 Ch13.F 3/1/02 9:41 AM Page 371

372 Part III ✦ Zope Management

Encoding: SHA
Domain restrictions:

C:\PROGRA~1\WebSite>

After you run the script the contents of the access file will look something like this:

superman:{SHA}5ICcNROns7lfa7Z8xMGoXILdP1M=

Understanding Roles
Zope generally assumes that a connection to it is anonymous, that is, the connection

is not associated with a particular user unless the browser sends authentication

information that Zope can verify. The authentication consists of the username and

password.

After Zope has associated the user (or, more precisely, the browser with which the

user is accessing Zope) with a User object, Zope checks to see if that user is permit-

ted to perform the action that was requested. Zope does this by checking to see if

the user has access to the appropriate Permission that is protecting the action in

question. Because Zope has dozens of Permissions in a default installation, and

more can be added by installed Products, assigning Permissions directly to User

objects would be needlessly tedious and time-consuming. For this reason, Zope has

implemented the concept of roles.

Roles are basically aggregations of permissions that come in an easily labeled

chunk. Zope has several default roles as described in the following sections.

The Anonymous role
The Anonymous role is associated with all users. Associating permissions with this

role enables both authenticated and un-authenticated users to perform actions

protected by those permissions. As a result, Anonymous has Permissions associ-

ated with it that are strictly associated with viewing information, at least by default.

The Authenticated role
Authenticated is a role that can be considered the inverse of Anonymous, all users

who are logged in have the Authenticated role. The Authenticated role does not

have any Permissions associated with it by default.

The Manager role
The Manager role pretty much has all Permissions granted to it, which will give any

user who has the Manager role granted to him or her the ability to fully configure

and use the server (at least within Zope).

g4857-3 Ch13.F 3/1/02 9:41 AM Page 372

373Chapter 13 ✦ User Management and Security

The Owner role
Owner is a very special role. When a user accesses an object that attempts to

perform some action within Zope, Zope will only permit the action if both the

accessing user and the object’s owner (typically the user who created it) have the

requisite Permissions.

This protects against the “server-side Trojan” attack, which is possible when you

allow untrusted users to create executable content on a server. Basically the

scenario goes like this:

1. An untrusted user creates some server-side code that would attempt to do

some operation for which he or she does not have sufficient Permissions

(such as delete a folder in the root of the Zope server).

2. The untrusted user then tricks someone who does have sufficient Permissions

(such as the owner of the site) to view the page with the malicious code.

3. If the code is only restricted by the Permissions of the viewing (executing)

user, then this code would run, deleting the folder in question.

For this reason, the Owner role is used to associate an object with the user that

created it. Specifically, the creating user gets a local role of Owner on the object.

Zope’s security infrastructure only allows executable code to perform operations

that both the owner and the viewing user have sufficient Permissions for. In the

previous example, if the untrusted user does not have sufficient Permissions to

delete the folder, the malicious code will not execute and will raise an error.

Creating roles
Creating a new role within Zope is fairly straightforward. It is done from the

Security tab and is outlined here:

1. Click the Security tab.

2. Scroll to the bottom of the screen where you will find a text box with the head-

ing “User Defined Roles,” and an Add role button.

3. Type Employee into the text box.

4. Click the Add Role button.

You should now see a screen that looks like the screen shown in Figure 13-3, with a

new Employee column.

g4857-3 Ch13.F 3/1/02 9:41 AM Page 373

374 Part III ✦ Zope Management

Figure 13-3: Adding a custom role

Custom roles that are added by you are not automatically available throughout
your entire Zope site, unless you define them in the Root Folder’s Security tab. If
you define a role in a subfolder’s Security tab, only that subfolder and its con-
tained objects will have the role available.

Setting Permissions for Roles
Once you’ve created a custom role, you need to associate Permissions with it for

the role to be able to grant those Permissions to users that have it. This can be

done from the Security tab as well. Each role has its own column in the Security

tab’s main table, with one Permission in each row. Checking the checkboxes where

the roles and Permissions intersect grants the Permission to the role.

Check the Access contents information Permission’s for the Employee role, and

then scroll down to the end of the table and click the Save Changes button. You can

see that the checkbox is still checked after the page refreshes.

Note

g4857-3 Ch13.F 3/1/02 9:41 AM Page 374

375Chapter 13 ✦ User Management and Security

There are two other ways of associating Permissions with roles: The first is to click

the Role name, which brings up a form that lists all of the Permissions that a partic-

ular role has, as can be seen in Figure 13-4.

Figure 13-4: The Employee role Permission form

Holding down the control key and clicking another Permission selects it, and

clicking the Save Changes button applies the changes.

The second way to associate Permissions with roles is to click the Permission

name, which gives you a form that lists all of the roles that have that Permission

associated with them, as shown in Figure 13-5.

As before, you can Ctrl-click the roles in order to select or deselect them, and

clicking the Save Changes button applies the changes.

g4857-3 Ch13.F 3/1/02 9:41 AM Page 375

376 Part III ✦ Zope Management

Figure 13-5: The Access Contents Information Permission roles form

Proxy Roles
Suppose you have a special method you want to make available to anonymous

users, but for security purposes you want to make sure that they can’t call it

directly, and possibly pass on their own parameters to it. Zope makes this easy by

enabling you to assign a proxy role to another method to allow it to call your

special method.

Giving a proxy role to a method
Following is an example. Create a DTML (Document Template Markup Language)

method in your root folder called Special, and edit it so that it has the following

code:

<h3>This will only render securely</h3>

After you have saved the changes to the code, click the Security tab. You can see

that the security settings on the DTML method are a bit different than the settings

you’ve seen before. Firstly, many Zope objects will have different permissions

associated with them. Secondly, many of them don’t have any security settings

set explicitly, but instead expect to acquire their security settings from their

containers. That’s what the “Acquire permission settings?” column is for.

g4857-3 Ch13.F 3/1/02 9:41 AM Page 376

377Chapter 13 ✦ User Management and Security

Uncheck the Acquire permission settings? column for the “Access contents infor-

mation” and “View” Permissions, and check the Manager role’s column for both as

well. Then click Save Changes.

Because you unchecked the Acquire permission settings? column for these two

Permissions, the method no longer acquires the permission’s assignment to

Anonymous, and only the Manager role can view and/or access the method.

Now, create another DTML method named proxytest and edit it as follows:

<dtml-var standard_html_header>
<dtml-var Special>
link to Special
<dtml-var standard_html_footer>

Click the methods Proxy tab. You’ll see a screen that looks like the screen shown in

Figure 13-6. Click the Manager role in the form to select it, and click the Save

Changes button. You have now given the proxytest DTML method the Manager

proxy role.

Figure 13-6: The Proxy tab

g4857-3 Ch13.F 3/1/02 9:41 AM Page 377

378 Part III ✦ Zope Management

Testing the proxy role
To test the proxy role, log out of Zope and try to access proxytest. You should see a

screen like the screen shown in Figure 13-7.

Figure 13-7: Viewing the proxytest method

After verifying that the proxytest method can render the Special method, try click-

ing the “link to Special” link in order to access /Special directly. Zope should detect

that Anonymous does not have sufficient permissions in order to view the method

directly, so you should be prompted for a username and password, as shown in

Figure 13-8.

Figure 13-8: Zope prompt for
a username and password

g4857-3 Ch13.F 3/1/02 9:41 AM Page 378

379Chapter 13 ✦ User Management and Security

As you can see, Proxy roles enable you to give methods or other Zope objects roles

in order to access other objects or perform operations on behalf of users to whom

you don’t want to give those roles. In this way, you can expose Zope’s functionality

to your users in an indirect but safe way, without having to grant them undue

privileges.

Local Roles
In Chapter 11, we showed you how to create a user and give that user a local role

that would only apply to a subsection of your site. Local roles are used in a number

of ways by Zope. One of those ways is to assign users a local role of “Owner” for the

objects that they create, as mentioned earlier in this chapter in the section, “The

Owner role.”

As we mentioned earlier in this chapter, roles are collections of Permissions that

you can assign to a user. In the previous section we had you grant the Manager role

to the Bob user. This gave Bob the ability to do just about anything anywhere in the

site. Although this was a convenient way to give Bob the ability to make changes to

the site, there might be a time when you would like to be a little bit more restrictive

or selective with which areas of the site Bob could or should edit. So, go back to the

root folder’s user folder, and remove Bob’s manager role.

Now, you could create an acl_user folder in each subfolder you want Bob to access

and give him the appropriate role. This would become quite tedious to maintain.

You would have to maintain redundant sets of information. Every time Bob needed

to change his password you would be forced to go to each acl_user folder in your

entire site and make those changes.

Zope’s solution to this problem is Local roles. A Local role is a way of saying, “Give

this user this role while the user is accessing this object or its subobjects.” With

this ability you can grant Bob manager access to the Sales folder on your site but

only give him limited or no access to the Accounting folder.

We’re going to take you through an example so that you can get a feel for how this

is done. First, make sure that you have a user named “Bob” that does not have any

roles. Then, create two folders at the root level of your site. Name one folder “sales”

and the other “accounting.” (Refer to Chapter 3 if you are not sure how this is

done.)

Now you need to set the Permissions of the folders. For our imaginary site let’s

pretend that the /Sales folder is going to contain some literature about your

company’s products. The information in this folder is something that you want

everybody to read but only a few people to edit. Assuming that you haven’t

changed Zope’s default Permission settings, you shouldn’t need to change for the

sales folder. By default, Zope grants the Anonymous user the View permission for

documents and folders.

g4857-3 Ch13.F 3/1/02 9:41 AM Page 379

380 Part III ✦ Zope Management

The /accounting folder on the other hand, might contain more sensitive informa-

tion. So we want to make sure that only people who we have explicitly granted

access to can view its contents. This can be easily accomplished by selecting the

Security tab in the /accounting folder. Click the “Acquire permission settings?”

heading (see Figure 13-9) and then any highlighted items in the multiple selection

box, so that they are no longer highlighted. Depending on your operating system

and/or browser, you might need to hold the Control key down while doing this.

Once this is done, click the Save Changes” button. You will be returned back to the

screen with the permission/role matrix. Verify that all of the Permissions under

“Acquire permission settings?” have been removed by scrolling down the page and

verifying that all of the checkboxes are unchecked in the “Acquire permission

settings?” column.

Figure 13-9: The Permissions granted to the Anonymous role

Since we’ve turned off acquisition for all permissions, we would now need to

explicitly grant those permissions back to the Manager role for the /accounting
folder, except that Zope automatically takes care of that for us (otherwise we would

be locked out of managing the /accounting folder right now too).

The last thing we need to do is to grant Bob the Manager role for the Sales folder.

Go back to the Root Folder and click the Sales folder or select it from the navigation

view in the left hand side of the management interface. Click the Sales folder’s

Security tab. This screen is almost identical to the Security tab in the Accounting

folder.

g4857-3 Ch13.F 3/1/02 9:41 AM Page 380

381Chapter 13 ✦ User Management and Security

The local roles interface is sometimes overlooked because the link to the manage-

ment screen is buried in the first paragraph of text at the top of the security page.

Go ahead and click the link labeled “Local Roles” and you will be taken to a page

like the one shown in Figure 13-10.

Figure 13-10: The Local Roles screen

On this page there are two multi-select boxes. The first box contains a list of every

user that has been defined in all acl_users folders in the tree to this point. This

means that if you had created a user in the root’s acl_users folder and also had a

user in an acl_user folder in a subfolder, both users would be available from this

list. The second list contains all the roles that have been created and can be given

to a user. You might notice that you can’t assign the Anonymous or Authenticated

roles through this interface.

Click bob in the user list and in the second list click the Manager role. Finally, click

the Add button. The page will update and you will notice two immediate changes.

The first is that the message, “Your changes have been saved” will be displayed at

the top of the page. In addition, Bob should appear in the list preceded by a check

box. To the right of the user in parentheses are the roles that the user has been

granted locally. If Bob’s name now appears in the list with the word “Manager” in

parentheses, you have done everything right.

g4857-3 Ch13.F 3/1/02 9:41 AM Page 381

382 Part III ✦ Zope Management

You can now test that this local role worked by first logging out or closing all of

your browser windows. Then go directly to http://localhost:8080/sales/manage
and login as Bob. The management screen for the sales folder will be displayed.

Now test that Bob can’t manage the /accounting folder by going to http://
localhost:8080/accounting/manage. You should be prompted to log in again

because Bob doesn’t have permission to manage the Accounting folder.

Finally, try to simply view the /accounting folder by going to http://localhost:
8080/accounting/ and you will be prompted to login. Since only users with

the Manager role have permission to view the /accounting folder (we turned off

acquisition of the Anonymous viewing permissions), and Bob doesn’t have a local

Manager role for the /accounting folder, he is prevented from accessing the infor-

mation there.

Using multiple user folders
Given that redefining the same user again and again throughout the Zope object

hierarchy is a waste of time and a maintenance nightmare, you might legitimately

wonder why Zope even lets you create multiple acl_user folders at all.

The reason is that Zope is built to accommodate a “customers who have customers”

approach. In other words, if Bob has subordinates (or clients) to whom he wishes to

give special access within a folder that he manages, but nowhere else in the site, it

makes sense to allow him to create an acl_user folder in the folder he manages,

which lets him create users that don’t exist elsewhere in the site hierarchy.

Care must be taken not to overuse this approach, however, as the situation can

arise (as described in Chapter 11) where a user must be “promoted” to a role in a

higher folder, or where the same person has multiple user objects scattered

throughout the site.

In general, a user object should be defined at the highest point to which the user

could conceivably need special access, and local roles should be used in subfolders

down from that point. Making this determination is a little easier when the user in

question is actually a customer (as customers rarely need to be promoted) rather

than an employee.

Removing a Local role
Later on you decide that Bob should no longer have the ability to manage the sales

folder. To remove Bob from this folder, follow these steps:

1. Return to the Sales folder’s Local roles page.

2. Click the check box next to Bob’s name.

3. Click the Remove button.

Bob’s name and roles should be removed from the list of Local roles.

g4857-3 Ch13.F 3/1/02 9:41 AM Page 382

383Chapter 13 ✦ User Management and Security

Local roles gotchas
If you’ve assigned a user a Local role and later delete that user, the Local role will

remain. This might cause a problem later on if you create a user with the same

name. This user will automatically get these local roles which might not be what

you intended.

Authentication Adapters
While Zope’s built-in User Folders are very flexible, some Web sites (particularly

intranets) must obtain user information and passwords from other sources.

Fortunately, Specialized User folders are available from various developers, and can

be found on the Zope Web site. One word of caution: because these adapters are not

part of the official Zope release they may not work with the latest version of Zope. If

you find an adapter that you really want to use and it doesn’t work (make sure you

test on a copy of your site), try e-mailing the author or the Zope mailing list.

A description of selected User Folder products rounds out the rest of this chapter.

Installing a custom acl_user folder in the Root Folder
If you want to install a custom acl_users folder (see on the next sections in this

chapter for more details about some available adapters). You’ll need to be logged in

as the emergency user. This is because the first step you’ll need to do is to delete

the existing acl_users folder as no more than one user folder may exist at a loca-

tion at any time. Deleting the acl_users folder will temporarily lock everybody but

the emergency user out of the site.

MySQL User Folder
URL: http://www.zope.org/Members/vladap/mysqlUserFolder

Provides the ability to authenticate users from a MySQL database, track sessions,

associate custom information with a user (such as e-mail address, first name, last

name, and so on) and provides sample registration methods so that an anonymous

user can register on your site and get an account.

SSL Certificate Authenticator
URL: http://www.zope.org/Members/zhivago/SSLCertAuth

Uses SSL v3 client certificates to authenticate users.

g4857-3 Ch13.F 3/1/02 9:41 AM Page 383

384 Part III ✦ Zope Management

Cookie User Folder
URL: http://www.dataflake.org/software/cookieuserfolder

Extends Zope to use cookies instead of basic HTTP (Hypertext Transfer Protocol)

authentication. An additional benefit from this product is that you can setup

custom login/logout pages is html instead of relying on the browser’s standard

login window.

NT User Folder
URL: http://www.zope.org/Members/htrd/NTUserFolder

Authenticates a user against an NT Domain. Only works with the Windows version

of Zope.

SMB User Folder
URL: http://www.zope.org/Members/mcdonc/smbUserFolder

This User Folder also authenticates users from an NT Domain. Unlike the NT User

Folder this one runs on other platforms in addition to Windows.

etc User Folder
URL: http://www.zope.org/Products/etcUserFolder

Authenticates users from a UNIX standard password file. The file it uses is config-

urable and it doesn’t have to be the one used by the system. The User Folder only

looks for the first two colon-delimited fields. The first field should be the user name

and the second should be the encrypted password.

Generic User Folder
URL: http://www.zope.org/Members/Zen/GenericUserFolder

This User Folder lets site administers roll their own authentication using Zope

through the Web management system. You can edit seven DTML methods that let

you control just about every aspect of the authentication process. This includes

what the login page looks like, what page the user sees after logging in, the logout

page, how the user is authenticated, what domains the user can login from, what

users are in the system, and which roles the user has.

The default install demonstrates how to set up the system for two users. This isn’t

very practical but it should be fairly straightforward for someone who’s read this

g4857-3 Ch13.F 3/1/02 9:41 AM Page 384

385Chapter 13 ✦ User Management and Security

book to extend his or her system to use SQL or External methods from a database

or other such system.

Login Manager
URL: http://www.zope.org/Members/tsarna/LoginManager

This is a User Folder that can authenticate users from more than one source. For

instance, when a user logs in you can configure the Login Manager to first check the

ZODB and then a SQL server. This can be done for the credential search. In other

words, you can configure the Login Manager to first look for a cookie, and if that

fails, try basic HTTP authentication.

UserDB
URL: http://www.zope.org/Members/otto/userdb

This simplistic User Folder authenticates users from almost any SQL database for

which Zope has an adapter. The default install makes you pick a preexisting

Database connection (see Chapter 12). This connection should have a table named

“users” in it that contains fields for username, password, domains, and roles.

If you want to modify the queries that are used by UserDB, click the Properties tab.

UserDB doesn’t care if a table named users exists or not. All it cares about is that

when it runs the queries on the page these queries return a Result set that contains

the appropriate fields.

LDAPLoginAdapter
URL: http://www.zope.org/Members/jens/LDAPLoginAdapter

The LDAPLoginAdapter is a replacement User Folder that authenticates against an

LDAP server. The nature of the LDAPLoginAdapter is “read-only,” meaning at pre-

sent it does not allow you to create, edit, or delete users in LDAP. You will need to

populate the LDAP directory by other means.

LDAPUserManager
URL: http://www.zope.org/Members/jens/LDAPUserManager

The LDAPUserManager allows you to add, edit, or delete users and roles on the

LDAP server. It’s designed to be run in conjunction with the LDAPLoginAdapter. The

LDAPLoginAdapter is a replacement for a Zope User Folder. It does not store its

own user objects but builds them on the fly after authenticating a user against the

LDAP database.

g4857-3 Ch13.F 3/1/02 9:41 AM Page 385

386 Part III ✦ Zope Management

Summary
Zope’s sophisticated security and user management schema eases the burden on a

Web application developer. Adapting Zope to match your organization’s security

environment is especially convenient with the variety of third-party authentication

adapters available.

In this chapter you:

✦ Managed users and roles.

✦ Created the emergency user.

✦ Learned about products could extend Zope’s security framework.

✦ ✦ ✦

g4857-3 Ch13.F 3/1/02 9:41 AM Page 386

Advanced Zope
Concepts

✦ ✦ ✦ ✦

In This Part

Chapter 14
Core Zope
Components

Chapter 15
Scripting Zope

Chapter 16
ZClasses

Chapter 17
Searching Content

Chapter 18
Zope Page Templates

Chapter 19
Debugging

Chapter 20
Alternative Methods
of Running Zope

✦ ✦ ✦ ✦

P A R T

IVIV

h4857-3 PtO4.F 3/1/02 9:41 AM Page 387

h4857-3 PtO4.F 3/1/02 9:41 AM Page 388

Core Zope
Components

This chapter is for the hard-core Python developer who

either wants to take his or her custom product beyond

what’s here today, or who wants to use some of the core com-

ponents of Zope in other applications.

Acquisition
Acquisition is a concept similar to Inheritance. The difference

is, instead of receiving a predetermined set of additional data

and functionality based on what classes an object inherits

from, objects pick up additional attributes depending on

where they’re contained.

The Acquisition package isn’t distributed without Zope. If
you want to use it in an application outside of Zope you
will need to do some detective work based on what
operating system you use. On Windows you’ll need to
grab two files from the lib/python directory named
Acquisition.pyd and ExtensionClass.pyd and put
them either in your application’s directory or in your
Python’s path. On Linux you’ll need to grab
Acquisition.so and ExtensionClass.so.

Chances are, you’re reading this section in order to have a
better understanding of Zope. If this is the case the only
thing that you need to do in order to run the Acquisition
examples in the following sections is to make sure that
you’re in the lib/python library.

In the following example, which assumes that the Acquisition

module is in your Python path, you will create a user object

whose e-mail address will change, depending on whether the

user is at work or at home.

Note

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using Acquisition

Persistence and the
ZODB

ZPublisher

Using
DocumentTemplates

✦ ✦ ✦ ✦

i4857-3 Ch14.F 3/1/02 9:41 AM Page 389

390 Part IV ✦ Advanced Zope Concepts

from Acquisition import Implicit
class Location(Implicit):

def __init__(self, domain):
self.domain = domain

class User(Implicit):

def __init__(self, user):
self.user = user

def getEmail(self):
return self.user + ‘@’ + self.domain

bob = User(‘bob’)
office = Location(“boringjob.com”)
office.user = bob
home = Location(“yahoo.com”)
home.user = bob

If you call office.user.getEmail(), the method would return “bob@boringjob.

com,” whereas calling home.user.getEmail() would return “bob@hotmail.com.” If

you look at the getEmail() method, which is defined in the User class, you may

notice that it uses self.domain to build the e-mail address, yet the User class

doesn’t assign the value anywhere. The user object obtains the domain attribute

from its parent, which is either the office or home location.

Understanding wrappers
This magic is accomplished with a special object called an Acquisition wrapper. You

don’t see it happen, but when you access the attribute of an object that inherits

from Acquisition.Implicit, the attribute isn’t returned: a wrapper is. This wrapper

has a reference to both the attribute and the attribute’s parent.

Wrappers appear to your program to be exactly like the objects they wrap. For exam-

ple, if you access color, you’d be accessing the wrapped object’s color attribute.

Wrappers accomplish this using the special Python method __getattr__ (). If an

object has this method, Python will call it every time an attribute is accessed. The

return value of the method will be used as the value of the attribute. In the case of

wrappers, if the object doesn’t have the attribute color, the wrapper will check to see

if the object’s parent does. If the parent is a wrapped object, then the same checks

will be preformed. This happens until either an attribute of the appropriate name is

found or the top of the hierarchy is hit.

One consequence of this wrapping of attributes is that comparison with the is
operator will fail. For example, note the difference between an ordinary object and

one that inherits from acquisition:

i4857-3 Ch14.F 3/1/02 9:41 AM Page 390

391Chapter 14 ✦ Core Zope Components

>>> from Acquisition import Implicit
>>> class Ordinary: pass
...
>>> o = Ordinary()
>>> class ACQClass(Implicit): pass
...
>>> parent = ACQClass()
>>> a = ACQClass()
>>> parent.o = o
>>> parent.o is o
1
>>> parent.a = a
>>> parent.a is a
0

The reason why the is check returns false is because parent.a is a wrapper object

where as a is an ACQClass object.

Manipulating wrappers
Acquisition wrappers provide several convenient attributes for manipulating the

underlying object and its parent. Table 14-1 lists each of these attributes. They are

only available if the object is wrapped.

Table 14-1
Acquisition Wrapper Attributes

Attribute Description

aq_self The unwrapped object. Note that an object can be wrapped several
times. Like peeling an onion, you can use aq_self to get at each
subsequent layer.

aq_base Returns the underlying object completely striped of all wrappers.

aq_parent Returns the wrapped object’s parent.

aq_inner Returns the object wrapped only by containment.

aq_chain Returns the acquisition chain, which is a list of each of the object’s
ancestors.

__of__(parent) Method used to arbitrarily create wrappers.

Unwrapping a wrapped object
The attribute, aq_self, is the object that is being wrapped by the wrapper. The

underlying object, however, could be wrapped multiple times (you’ll see how this is

possible when we introduce you to the __of__ method later in this chapter). On the

other hand, aq_base is the fully unwrapped object.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 391

392 Part IV ✦ Advanced Zope Concepts

>>> from Acquisition import Implicit
>>> class ACQClass(Implicit): pass
...
>>> a = ACQClass()
>>> a.b = ACQClass()
>>> id(a.b)
8202360
>>> id(a.b.aq_base)
8200488
>>>

Notice in the previous example, that the id method produces different results,

which proves that a.b is a wrapped object. There are several reasons why you

would want to unwrap an object. The most obvious is when you want to test

whether two objects are the same. Another reason is if you want to make sure you

do not acquire something accidentally.

Testing whether an object is wrapped
The aq attributes only exist for wrapped objects. You may often see code like the

following that tests to see whether an object is wrapped:

if hasattr(object, ‘aq_base’):
object = object.aq_base

Accessing an object’s parents
You can get a reference to an object’s parent using the aq_parent attribute. This

leads to all sorts of interesting possibilities, but probably the most convenient

aspect is that using acquisition wrappers to get an object’s parent avoids Python’s

problem with circular references (see the sidebar titled “The Problem with Circular

References” for more information).

Where aq_parent gives your object’s immediate parent, the aq_chain attribute

returns a list of each of the ancestors of the wrapped object.

>>> from Acquisition import Implicit
>>> class ACQClass(Implicit):
... def __init__(self, id):
... self.id = id
...
>>> a = ACQClass(“a”)
>>> a.b = ACQClass(“b”)
>>> a.b.c = ACQClass(“c”)
>>> a.b.c.d = ACQClass(“d”)
>>> for object in a.b.c.d.aq_chain:
... print object.id
...
d
c
b
a

i4857-3 Ch14.F 3/1/02 9:41 AM Page 392

393Chapter 14 ✦ Core Zope Components

Wrapping objects manually with __of__
There may be times when you want to make an object participate in acquisition

even though you are not accessing the object as an attribute of another object that

inherits from acquisition. This is where the __of__ method comes in. Unlike the

attributes that start with aq, the __of__ method is available to all objects that

inherit from acquisition. The __of__ method takes one argument: the object’s par-

ent, and returns a wrapped object.

One use for this is when you have an object that stores a series of sub-objects in a

list or a dictionary. If you manually wrap each sub-object as you access them, you

will be able to acquire the parent’s sub-objects.

from Acquisition import Implicit

class Category(Implicit):

def __init__(self):
self._categories = {}
self.id = id

def addCategory(self, id):
self._categories[id] = Category(id)

def getCategory(self, id):
return self._categories[id].__of__(self)

You might be thinking that it would be easier to just store the wrapped object in
the dictionary instead of wrapping the object every time it is retrieved. This would
work if you were using acquisition by itself. However, you should not do this if you
use acquisition in conjunction with the ZODB (Zope Object Database). For techni-
cal reasons the ZODB unwraps every object when it is stored.

Caution

The Problem with Circular References

Something that sometimes trips up new users of Python is circular references. A circular ref-
erence is when you have two objects that have references to each other as in this case:

parent.mychild = child
child.myparent = parent

The problem is that Python uses a technique called reference counting to manage objects
in memory. Basically Python keeps count of how many references to an object there are.
When you create an object with code like:

object = SomeClass()

Continued

i4857-3 Ch14.F 3/1/02 9:41 AM Page 393

394 Part IV ✦ Advanced Zope Concepts

Continued

Python sets the reference count for this newly created object to one. If later in your code
you create another reference to this same object, Python increases the count to two.

anotherRef = object

Likewise when you delete a reference with the del statement, Python decrease the refer-
ence count by one. As in:

del anotherRef

Periodically, Python checks to see if there are any objects that have a reference count of
zero and if so removes them from memory. The problem with circular references is that
when you have two objects that point to each other, you need to be careful when deleting
your objects. If you are not careful, they will continue to live and occupy memory long after
you think that they’ve been deleted.

To understand how this works we can use a function called getrefcount() which (sur-
prise, surprise) returns the count of how many references there are to a given object. The
use of getrefcount() might be slightly misleading the first time you use it because the
method returns a count that is usually one higher than you would expect. For example, if
you have only one reference to an object, the method will return two. This is because the
method itself has a reference to your object while it’s getting you the count. Now having
said that, we’re going to use the method to show you what happens if you’re not careful
when deleting objects that have a circular reference to each other.

Start by importing the getrefcount() method from the sys package and then define a
class named klass as follows:

>>> from sys import getrefcount
>>> class klass: pass
...

Next use getrefcount() to determine how many references there are to this class.

>>> getrefcount(klass)
2
>>>

Notice there are two. There’s one reference in your current namespaces that you created
when you created the class. The second reference is held temporarily by the getref-
count() function. If you were to create an instance of klass and used getrefcount()
again on klass, the results would be three.

>>> parent = klass()
>>> getrefcount(klass)
3

This is because each object instance has a reference to its class (which by the way can be
accessed as parent.__class__). Now create a couple of instances of klass and store a
reference to each other. If you like you can use getrefcount() to determine how many
references there are to each of the instances.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 394

395Chapter 14 ✦ Core Zope Components

>>> child = klass()
>>> getrefcount(klass)
4
>>> getrefcount(parent)
2
>>> getrefcount(child)
2
>>> parent.mychild = child
>>> child.myparent = parent
>>> getrefcount(klass)
4
>>> getrefcount(parent)
3
>>> getrefcount(child)
3
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘child’, ‘getrefcount’,
‘klass’, ‘parent’]
>>> del parent
>>> del child
>>> getrefcount(klass)
4
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘getrefcount’, ‘klass’]

Notice how even after you deleted child and parent, the reference count of klass is still
four. How can this be? The output of dir() (which lists the names in the current name-
space) shows that child and parent have been deleted. Why then is the reference count
of klass still 4? The reason is because of that pesky circular reference you created. When
you tried to delete parent, Python noticed that the reference count for the object was still
greater than 0 (because child’s myparent attribute contains a reference to parent) and so
it didn’t delete the object from memory. Likewise when you tried to delete child, neither
did its reference count did not drop below 1 because the now phantom parent object still
has a reference to the child object.

The only thing that the del statement accomplished was to remove the names from the
current namespace and make it impossible for you to work with those objects. You have
what programmers call “a memory leak” because there are objects taking up memory and
there’s no way to recover them.

The only way to avoid this problem is to break the circular reference before deleting your
objects. Assuming that we hadn’t yet deleted the parent and child instances, the proper
way to delete the objects with a circular reference would be something like this:

>>> del child.myparent
>>> del child
>>> del parent
>>> getrefcount(klass)
2

i4857-3 Ch14.F 3/1/02 9:41 AM Page 395

396 Part IV ✦ Advanced Zope Concepts

Context versus containment
Two words that are tossed around a lot while talking about acquisition are context
and containment. Containment is the concept that one object is contained by

another.

>>> from Acquisition import Implicit
>>> class ACQClass(Implicit):
... def __init__(self, id):
... self.id = id
...
>>> a = ACQClass(“a”)
>>> a.b = ACQClass(“b”)

In the previous example it can be said that a contains b. Now consider this example:

>>> from Acquisition import Implicit
>>> class ACQClass(Implicit):
... def __init__(self, id):
... self.id = id
...
>>> a = ACQClass(“a”)
>>> a.b = ACQClass(“b”)
>>> a.x = ACQClass(“x”)
>>> print a.b.x.id
x
>>>

In the previous example, x is accessed through b. The b attribute acquires the x
attribute through acquisition from the a object. In this case it can be said that the x
object is in the context of b. This is because b does not contain the x object. Note

that b could have an effect on x’s behavior, as shown in the following example:

>>> from Acquisition import Implicit
>>> class ACQClass(Implicit):
... def __init__(self, id):
... self.id = id
...
>>> a = ACQClass(“a”)
>>> a.b = ACQClass(“b”)
>>> a.x = ACQClass(“x”)
>>> print a.x.aq_parent.id
a
>>> print a.b.x.aq_parent.id
b

This is where the use of the aq_inner attribute comes into play. It will return an

object only wrapped in its container versus its context. Continuing from the same

example used previously, you can see how aq_inner returns x wrapped only in its

container, which is a, even though it was acquired through b.

>>> print a.b.x.aq_inner.aq_parent.id
a

i4857-3 Ch14.F 3/1/02 9:41 AM Page 396

397Chapter 14 ✦ Core Zope Components

ZODB and Persistence
If you’ve done a bit of programming in Python or another object-oriented language

and you’re like us, you’re probably addicted to creating object hierarchies to model

your problems.

This is natural — humans think in outlines. We categorize information this way. For

instance, think of how scientists categorize living creatures into kingdom, phylum,

class, order, suborder, family, genus, and species. The top-level categories (known

as kingdoms) include Animalia, Plantae, Fungi, Protista, and Prokaryotae. Within a

given kingdom you have subcategories (called phylum or divisions). For example,

some of the living creatures in the Animalia kingdom can be further categorized

depending on whether they have spines.

Objects are great for modeling this kind of information. But if you’ve programmed

with objects for a while, you are probably familiar with the pains that are associ-

ated with trying to make this kind of information permanent. You have a couple of

choices. You could create your own file format and write all of this information out

to disk, or you could try mapping this information to a SQL (Structured Query

Language) database. Both options could quickly become the brunt of your pro-

gramming chore while writing and marinating your application.

Luckily, Python provides a simple module called Pickle that takes care of converting

objects to a format that can easily be stored on disk or moved around on a network

and then converted back to objects again. This process is known as marshaling. The

creators of Zope couldn’t leave well enough alone and combined the Pickle module

into a package called ZODB (Zope Object Database), which provides a rich set of

features such as Transactions, Undo support, and caching. If you’ve read through

Part II and created the application we outlined, you’re already familiar with how lit-

tle effort is needed on your part to use the ZODB. Most of the work is completely

transparent to the developer, which is good because it frees you to worry more

about the problem you are trying to solve instead of worrying about manipulating

bits on a hard disk.

The ZODB can’t be compared directly to a SQL database because it’s missing one
important piece of functionality. It does not include any searching capabilities. The
ZODB was designed specifically to store and retrieve objects and to make this pro-
cess as transparent as possible for the developer. Searching the ZODB, however, is
left entirely up to your application.

One method that can be used to accomplish this is to start at the top of the hier-
archy and search each object and its attributes. Besides being tedious, this process
can be time and resource intensive when searching a large database. Luckily
there’s an alternative called ZCatalog that provides indexing and searching capa-
bilities. To find out more about the ZCatalog see Chapter 17.

In the next couple of sections in this chapter we give you some in depth examples

showing you the intricacies of the ZODB and how you can use it in applications that

you create outside of Zope.

Cross-
Reference

i4857-3 Ch14.F 3/1/02 9:41 AM Page 397

398 Part IV ✦ Advanced Zope Concepts

You are going to need a copy of the ZODB. We assume that you have Zope already

installed on your computer and that it will be the version you are working with.

Alternatively, you can download and install a copy of the ZODB by itself without

Zope from A.M. Kuchling’s Web site at http://amk.ca/zodb. The installation instruc-

tions for installing ZODB won’t be described here because they involve compiling

(which Linux users might be familiar with but will probably be a bit cumbersome to

Window’s users). Regardless, if you’re interested in using the ZODB in your own

application without Zope, http://amk.ca/zodb is the best place to start.

Unlike traditional relational databases, the ZODB imposes no structure on the data

that’s stored in it. This is left to the programmer to decide.

Using the ZODB in other applications
For a quick introduction to the ZODB, drop to the command line, change to the

lib/python directory under your Zope directory, and fire up the Python interpreter.

Now you are ready to run the following commands:

>>> from ZODB import FileStorage, DB
>>> storage = FileStorage.FileStorage(“c:\\temp\\test.fs”)
>>> db = DB(storage)
>>> connection = db.open()
>>> root = connection.root()

The use of two backslashes ‘’\\” is necessary in the previous example. Python uses
the backslash to identify an escape sequence. See the section entitled “Escape
Sequences” in Chapter 5 for more information.

The root object that you’ve just obtained behaves like a dictionary, with one

notable difference. Any object you put in this dictionary that conforms to the rules

of persistence (which is explained in the next section of this chapter) will be saved

to the filename, test.fs, whenever you commit a transaction. To see how this is

done add a tuple to the root object and commit the batch.

>>> mytuple = (“Lions”, “Tigers”, “Bears”, “Oh My!”)
>>> root[‘mytuple’] = mytuple
>>> print root[‘mytuple’]
(‘Lions’, ‘Tigers’, ‘Bears’, ‘Oh My!’)

If you were to quit now the changes you made would not be stored in the database.

This is because the ZODB is transactional. In a transactional system many changes

can be made at once but aren’t saved until they are committed. This is a powerful

feature that lets your program discard changes and rollback to a known good state

for any reason. To make the changes to the database permanent, you need you need

to commit the current transaction. This is done by calling the get_transaction()
method, which the ZODB installs into the __built-ins__ namespace the first time it

Note

i4857-3 Ch14.F 3/1/02 9:41 AM Page 398

399Chapter 14 ✦ Core Zope Components

is imported. (This makes this method global and available anywhere in your pro-

gram without needing to import it every time.) Once you get the current transac-

tion, call its commit() method, which saves all of your changes out to your storage.

This can be done in one step as shown here:

>>> get_transaction().commit()

Finally, it’s a good idea to close your storage before exiting your program so that

the file is written out to the disk properly. Although this isn’t technically necessary

since the ZODB (or the FileStorage at least) was designed to guarantee that the data

will be saved to the disk when you call commit().

>>> storage.close()

That’s it! You can quit your application at any time and when you come back your

data will still be there. In fact, for demonstration purposes, why don’t you quit out

of the interpreter now and restart it. Then rerun the following code to see that your

object is permanently stored in the database:

>>> from ZODB import FileStorage, DB
>>> storage = FileStorage.FileStorage(“c:\\temp\\test.fs”)
>>> db = DB(storage)
>>> connection = db.open()
>>> root = connection.root()
>>> print root[‘mytuple’]
(‘Lions’, ‘Tigers’, ‘Bears’, ‘Oh My!’)

Storing objects and subobjects
In the previous example we stored a simple list of strings into the root object of the

ZODB. You can store objects of your own design but they need to inherit from a

mix-in class named Persistent.

Consider this set of classes used for tracking bookmarks:

fromZODB import Persistentclass BookMark(Persistent):
def __init__(self, title, url):

self.editBookMark(self, url)

def editBookMark(self, title, url):
self.title = title
self.url = url

Now you can store instances of this class in the ZODB like this:

mybookmark = BookMark(‘Codeit’,’http://www.codeit.com’)
root[‘mybookmark’] = mybookmark
get_transaction().commit()

i4857-3 Ch14.F 3/1/02 9:41 AM Page 399

400 Part IV ✦ Advanced Zope Concepts

If you make changes to the object later on (perhaps by using the object’s

editBookMark() method) the only thing you need to do to make your changes per-

manent is to commit the transaction.

mybookmark.editBookMark(‘Codeit (Spanish Version)’, Æ
‘http://www.codeit.com/sp/’)get_transaction().commit()

The Persistent mix-in class provides the special __getattr__ and __setattr__ meth-

ods that are aware of the transaction. They detect whenever the attributes of your

object are accessed or changed. This lets the ZODB know when it should save your

object and its children automatically. For this reason you should never define

__getattr__ or __setattr__ methods in classes that inherit from Persistent.

You don’t have to store every object directly in the root object. Any of the object’s

attributes that inherit from Persistent will be saved as well. The same is also true

for any of the sub-object’s objects. In fact, Zope only stores one object in the root

object, called application. You can retrieve the sub-objects via traversal or with

methods that return the objects references directly.

Notifying the ZODB when an object has changed
As you can see you don’t have to do much to save objects that have changed.

There are a few notable exceptions. Persistent overrides __setattr__ to detect

changes, which works whenever you make changes directly to an object’s

attributes. But if you modify a mutable object such as a dictionary or list, the ZODB

has no way of knowing that a change has occurred. If this happens you must notify

the ZODB that your object has changed by setting your object’s _p_changed
attribute equal to 1. For example, let’s create a class that lets you organize multiple

bookmarks into sub-folders:

Attributes that start with _p_ are for the ZODB’s own devious purposes. You
should never create any attributes that start like this.

class BookMarkFolder(Persistent):
def __init__(self):

self._bookmarks = {}
self._sub_folders = {}

def addBookMark(self, bookmark):
self._bookmarks[bookmark.title] = bookmark
self._p_changed = 1

def delBookMark(self, title):
if self._bookmarks.has_key(title):

del self._bookmarks[title]
self._p_changed = 1

Note

i4857-3 Ch14.F 3/1/02 9:41 AM Page 400

401Chapter 14 ✦ Core Zope Components

def addSubFolder(self, name):
self._sub_folders[name] = BookMarkFolder()
self._p_changed = 1

def delSubFolder(self, name):
if self._sub_folders.has_key(name):

del self._sub_folders[name]
self._p_changed = 1

def getSubFolder(self, name):
return self._sub_folders[name]

Here’s an example of this program in action:

Code to open ZODB & import BookMark class goes here
bookmarks = root[‘bookmarks’] = BookMarkFolder()
get_transaction().commit()

bookmarks.addSubFolder(‘Favorites’)
Favorites = bookmarks.getSubFolder(‘Favorites’)
Favorites.addBookMark(BookMark(‘Geek News’,

‘http://slashdot.org’))
Favorites.addBookMark(BookMark(‘Python Reference’,

‘http://python.org’))

get_transaction().commit()

Meet the rules of persistence
For the ZODB to do its magic, you must follow a few rules:

1. Only “Pickable” items (see the documentation for the Pickle module that

comes with the standard Python installation or read it online at http://
www.python.org/doc/current/lib/module-pickle.html) can be stored in the

database. (“Pickable” items include all of the standard types such as strings,

numbers, lists, tuples, dictionaries, and object instances.) Certain things like

files, sockets, classes, and Python code objects cannot be stored in the

database.

2. Objects that inherit from Persistent will be saved automatically whenever

their immutable attributes change or when you specify that an object has

changed by setting _p_changed = 1.

3. Objects should not create attributes that start with _p_. These attributes are

reserved for the ZODB.

4. Attributes that start with _v_ are volatile and will not be saved to the

database when the transaction is committed. Objects that our retrieved from

the ZODB will not have these attributes. You can use __setstate__ (which is

called whenever an object is retrieved from the database) to restore these

variables.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 401

402 Part IV ✦ Advanced Zope Concepts

Creating attributes that won’t be saved in the ZODB
Attributes that start with _v_ are considered volatile. They won’t be saved when a

transaction is committed. You use this when you have attributes, such as file

objects, that shouldn’t or can’t be saved in the database. You can define a method

called __setstate__ that the ZODB will call whenever it loads the object from the

database. The ZODB will pass your object the state of your object, which is a dictio-

nary of your object’s attributes. You can add your volatile attributes back at this

time.

For instance, imagine you have code that keeps a file handle open for logging pur-

poses. Because file objects aren’t pickable, the easiest way to do this is to store the

name of the file that you want to open in a regular attribute. When ZODB brings the

object out of the database it calls the __setstate__ method where the object

reopens the file.

from ZODB import Persistent
from time import ctime
class Logger(Persistent):

def __init__(self, logname):
self.logname = logname
self._v_file = open(logname, ‘a’)

def __setstate__(self, state):
Persistent.__setstate__(self, state)
self._v_file = open(self.logname, ‘a’)

def log(self, msg):
self._v_file.write(ctime() + msg + “\n”)

Another useful aspect of volatile variables is that if you modify one, your object is

not automatically saved in the database. You’ll see this feature in action later in

this chapter in the section titled “Using subtransactions and other tricks to save

memory.”

Aborting transactions
Using the transactions abort() method, changes you make can be reverted back to

the state they were in at the time of the last commit.

>>> from ZODB import FileStorage, DB, Persistent
>>> class Counter(Persistent):
... def __init__(self):
... self.count = 0
... def __repr__(self):
... return str(self.count)
... def increase(self):
... self.count += 1

i4857-3 Ch14.F 3/1/02 9:41 AM Page 402

403Chapter 14 ✦ Core Zope Components

>>> storage = FileStorage.FileStorage(“c:\\temp\\test.fs”)
>>> db = DB(storage)
>>> connection = db.open()
>>> root = connection.root()
>>> counter = Counter()
>>> root[‘counter’] = counter
>>> get_transaction().commit()
>>> print counter
0
>>> counter.increase()
>>> print counter
1
>>> get_transaction().abort()
>>> print counter
0

This is similar to what Zope does when it catches an error that wasn’t handled by

your Product.

Caching and memory management
The ZODB is capable of storing hundreds of thousands of objects. You can actually

store more objects in the database than you can fit into memory. As objects are

pulled from the database, the ZODB tracks how often they are used and automati-

cally reclaims the space of objects that haven’t been accessed for a certain period

of time.

For the most part this is completely transparent and there isn’t much that you need

to worry about. But if you feel the urge to tinker, the database object (the one you

get when you execute db = DB(storage) in Python) exposes a couple of functions

that can be used to control how many objects are in the cache, how long an inac-

tive object can sit in the cache before being used, and a couple of methods to man-

ually flush the cache.

Changing the number of objects kept in the cache
You can control the number of objects that are allowed to be in the cache before

ZODB attempts to reclaim their space using the db.setCacheDeactivateAfter()
method. You use this method by calling it with an integer argument. For example, to

set the cache to hold a 1,000 objects, you would use:

db.setCacheSize(1000)

To get the current cache size you can use getCacheSize on the database object like

this:

size = db.getCacheSize()

i4857-3 Ch14.F 3/1/02 9:41 AM Page 403

404 Part IV ✦ Advanced Zope Concepts

Here’s a quick way to get a reference of the database object, in case it’s not cur-
rently in scope. Every persistent object that has been saved in the ZODB has an
attribute named _p_jar, which is a reference back to the current connection
object. Connection objects have a method named db() that will return the
database instance.

db=self._p_jar.db()

Changing amount of time an inactive objects remained in the cache
It’s also possible to change how long an object can sit around unused in the cache

before it is removed with a call to setCacheDeactivateAfter(). It takes one argu-

ment, which is the number of seconds that the object can be unused before it

becomes a candidate for removal. You can set it so that objects are removed from

the cache after two minutes of inactivity like this:

db.getCacheDeactivateAfter(120)

Just like setting the cache size, you can use the getCacheDactivateAfter() method

to determine what the existing time out value is.

time_out = db.getCacheDeactivateAfter()

Emptying the cache manually
You can clean the cache manually (remove objects that aren’t being used) by

sweeping it — no pun intended. Normally you do not need to worry about this task

since the ZODB handles it for you as part of its normal operations. However, if and

when you perform a sweep, the ZODB will go through each of the caches (usually

there’s one cache per thread) and remove objects that haven’t been accessed in a

certain amount of time. The database object provides two methods for sweeping

the caches. Both methods take a single argument, which is the number of seconds

that an object has been unused in the cache.

The first method, called a full sweep, performs a single pass through each of the

caches and removes all the dereference objects and inactive objects. Here’s how to

remove all objects that haven’t been used in sixty seconds:

db.cacheFullSweep(60)

The second method, known as a minimize sweep, is more aggressive and would

make multiple sweeps through the cache to empty. Here’s how to perform a mini-

mize sweep:

db.cacheMinimize(60)

Tip

i4857-3 Ch14.F 3/1/02 9:41 AM Page 404

405Chapter 14 ✦ Core Zope Components

Using subtransactions and other tricks to save memory
Unused objects are normally removed from memory based on the target cache size.

This is true unless the object has been modified. Zope won’t remove an object from

the cache until its contents have been saved. One problem this presents is that you

can quickly run out of memory if your application has made changes to a large

amount of objects or your objects are rather large.

Luckily ZODB enables you to commit changes in the middle of a transaction to get

these changed objects out of memory. This process is called subtransactions. To

commit a subtransaction you call commit() with a value of true. When this happens

the ZODB will immediately dump the objects out of memory to the disk. It’s up to

you to decide when this is necessary and how often. The more subtransactions you

commit, the less memory that’s used, but the trade-off is that processes go slower.

If the transaction is aborted, the subtransactions will be rolled back as well.

Suppose we want to load large files into the ZODB — files that might be several hun-

dreds of megabytes large. We could just create an object that stores all of the binary

data into a Python string. A class that would do this would look something like this:

class PersistentFile(Persistent):

def __init__(self, name, file):
self.Name = Name
self.loadFile(file)
self.CurrentPos = 0

def loadFile(self, file):
Note: This method assumes that the argument named file is
an opened file handle
self.Data = file.read()
self.Size = len(self.Data)
self.CurrentPos = 0

def read(self, size=None):
if self.CurrentPos >= self.Size:
We’ve reached the end of the file so...
return None

if size == None:
No size was entered so return everything.
read_to_pos = self.Size - self.CurrentPos

else:
read_to_pos = self.CurrentPos + size

data = self.Data[self.CurrentPos:read_to_pos]
self.CurrentPos = read_to_pos

return data

Implement the other file operations like seek,
readline, etc... here

i4857-3 Ch14.F 3/1/02 9:41 AM Page 405

406 Part IV ✦ Advanced Zope Concepts

This would work fine for small files as long as you didn’t load a lot of them in a sin-

gle transaction. Imagine what would happen if you tried to load a 100-MB file into

the ZODB. Even if you tried to commit a subtransaction it wouldn’t do you much

good because the whole object would be over 100 MB in memory. On top of that,

each thread in your application has its own copy of this object in its cache. It’s not

hard to imagine how quickly you could run out of memory with this approach.

The solution to this problem is to break your file up into several smaller chunks

and spread it over multiple persistent objects that are linked together. This rather

large example shows you how to put most of the existing features of the ZODB to

use. You should pay close attention to a couple of things. First notice that we use a

volatile attribute named _v_CurrentPos. Two reasons for this one are that modifying

a volatile variable doesn’t cause the ZODB to think to need to save the object,

which would be annoying for a large file if it needed to be rewritten to the ZODB

every time we read it. And, secondly it allows each thread that uses the ZODB to

read independently of the other threads because each time an object is pulled from

the disk into the cache _v_CurrentPos is reset to zero thanks to the use of the

__setstate__ call import sys.

This technique is used with Zope’s file objects that enable users to store large file
objects into the ZODB. These should not be confused with Python’s file object that
enables you to manipulate files on the file system. Zope’s file object can be larger
than the available memory of the machine. When uploading the file if there wasn’t
away to get the object out of memory quickly your server might crash. This is
accomplished by breaking the file up into a linked list of smaller persistent objects.
Each object contains about a 65k bites of data with a pointer to the next object. As
each object is created a subtransaction is committed. The beauty of this system is
when the object is being loaded into memory pervious chunks will be removed as
the number of objects hit the Target Cache size.

sys.path.append(“c:\\program files\\website\\lib\\python”)
from ZODB import FileStorage, DB, Persistent

CHUNKSIZE=1024
class Chunk(Persistent):

def __init__(self, data):
self.Data = data
self.NextChunk = None

def setNextChunk(self, chunk):
self.NextChunk = chunk

class PersistentFile(Persistent):

def __init__(self, Name, file):
self.Name = Name
self.FirstChunk = None
self._v_CurrentPos = 0
self.NumberOfChunks = 0
self.Size = 0

Note

i4857-3 Ch14.F 3/1/02 9:41 AM Page 406

407Chapter 14 ✦ Core Zope Components

self.loadFile(file)

def __setstate__(self, state):
Persistent.__setstate__(self, state)

self._v_CurrentPos = 0

def getChunk(self, chunk_number):
if (chunk_number > (self.NumberOfChunks-1)) or Æ

(chunk_number < 0):
raise IndexError

current_chunk = self.FirstChunk

while(chunk_number > 0):
chunk_number -= 1
current_chunk = current_chunk.NextChunk

return current_chunk

def loadFile(self, file):
Note: This method assumes that the argument named
file is an opened file handle

previous_chunk = None
while(1):

data = file.read(CHUNKSIZE)

Check to see if we’ve hit the end of the file
if data == ‘’: break

self.Size += len(data)
self.NumberOfChunks += 1
chunk = Chunk(data)

if previous_chunk is None:
self.FirstChunk = chunk

else:
previous_chunk.setNextChunk(chunk)

previous_chunk = chunk

Free up some memory by commiting a subtransaction
get_transaction().commit(1)

self._v_CurrentPos = 0

def read(self, bytes_to_read=0):
if self._v_CurrentPos >= self.Size:

We’ve reached the end of the file so...
return ‘’

i4857-3 Ch14.F 3/1/02 9:41 AM Page 407

408 Part IV ✦ Advanced Zope Concepts

read_to_offset = self._v_CurrentPos + bytes_to_read
if (bytes_to_read == 0) or (read_to_offset > Æ

self.Size):
No size was entered so return everything.
bytes_to_read = self.Size - self._v_CurrentPos

data = ‘’
chunk_number, chunk_offset = Æ

divmod(self._v_CurrentPos, CHUNKSIZE)
self._v_CurrentPos += bytes_to_read

current_chunk = self.getChunk(chunk_number)
while(bytes_to_read > 0):

bytes_to_read -= (CHUNKSIZE-chunk_offset)
data += current_chunk.Data[chunk_offset:CHUNKSIZE]
current_chunk = current_chunk.NextChunk
chunk_offset = 0

return data

Implement the other file operations like seek,
readline, etc... here

storage = FileStorage.FileStorage(“c:\\temp\\test.fs”)
db = DB(storage)
connection = db.open()
root = connection.root()

f = open(“setup.bmp”,”rb”)
pfile = PersistentFile(f.name, f)
root[pfile.Name] = pfile
get_transaction().commit()

Thread safety
If you’re writing a multi-threaded application, you might be wondering about issues

such as concurrency. As long as each thread opens its own connection to the ZODB

your application will be mostly thread safe with a few exceptions. This is because

each thread keeps its own cache of objects and only one connection can commit its

changes to the database at a time. If two or more different connections try to com-

mit changes made to the same object(s), one connection will succeed and the oth-

ers will raise a ConflictErorr. It’s up to you to work the process out. For example,

Zope treats every request as a transaction if a ConflictError is detected. Zope auto-

matically tries to reprocess the request three times before giving up and displaying

an error to the user.

The best way to avoid ConflictErrors in your application is to spread the load of

writes around your object hierarchy.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 408

409Chapter 14 ✦ Core Zope Components

Alternatively your object can handle the conflict. If your object defines a method

named _p_resolveConflict(), it will be called and passed three values:

✦ The original state

✦ The state of the object that was saved before your save

✦ The state as of the object as it is in the current thread

Using these values you can determine how your object was changed by the previ-

ous commit, update your current object and have it written back to the database.

A good example of a system where it would be difficult to spread changes to other

objects would be an inventory control system that keeps track of the quantity of a

particular product that you have on hand. Two things can happen to this quantity:

it can be increased or decreased. If two threads do either of these things at the

same time it is possible that you’re numbers will get out of sync.

Imagine that you started off with a copy of your product object that had a quantity

on hand set at 10. In one thread there’s an attempt to increase the quantity on hand

by 5 because a new shipment was received in the warehouse. In another thread at

the exact same time, somebody ordered one of the products, so this thread will

attempt to decrease the quantity on hand by 1. One transaction will be saved first,

and the other thread will receive a ConflictError. If this protection wasn’t in place

and the thread that was trying to increase the inventory by 5 is saved first, then the

value would be temporarily set to 15. Right after that the thread that was decreas-

ing the value would save and set the quantity on hand to 9. What should have hap-

pened — regardless of what order it happened in — is that the quantity on hand

should have be equal to 14.

To resolve the conflict so that an error isn’t raised, define a method named

_p_resolveConflict in your object. This hook will be called with three arguments

that will let you examine all the different states and then update your object accord-

ingly. For example, if you compared the value of quantity on hand that was in the

thread that just committed versus the original value, you can determine that the

value was increased by 5. Taking that into account, you can then subtract 1 from

the current value to get 14. Here’s the code you would use:

class Product(Persistent)

def __init__(self)
self.OnHand = 0

def increaseInventory(self, count):
self.OnHand = self.OnHand + count

def decreaseInventory(self, count):
self.OnHand

i4857-3 Ch14.F 3/1/02 9:41 AM Page 409

410 Part IV ✦ Advanced Zope Concepts

def _p_resolveConflict(self, oldState, savedState, newState):
Figure out how each state is different:
savedDiff = savedState[‘OnHand’] - oldState[‘OnHand’]
newDiff= newState[‘OnHand’] - oldState[‘OnHand’]

Apply both sets of changes to old state:
oldState[‘OnHand’] = oldState[‘OnHand’] + savedDiff + newDiff

return oldState

Undoing transaction
After a transaction has been committed it’s possible to undo it. In order to do this

you’ll need a storage that supports it. The default File Storage that we’ve been using

in the examples throughout this chapter is one such storage.

To determine whether your database supports undo capabilities, you can call the
supportsUndo() method on your db object, which returns true if the database has
undo support.

To undo a transaction, you need to get its id using the undoLog() method. This

method returns a list of dictionaries that contains information about each transac-

tion. Once you have the id you can pass it as an argument to the undo function.

Note that you won’t notice any changes until you commit the transaction and open

a new connection to the database.

>>> root[‘blah’] = 1
>>> get_transaction().commit()
>>> del root[‘blah’]
>>> get_transaction().commit()
>>> db.undoInfo()
[{‘time’: 1010037367.1700001, ‘id’: ‘A0HHpB6XjUwAAAAAAAMsrg’,
‘user_name’: ‘’, ‘
description’: ‘’}]
>>> db.undo(‘A0HHpB6XjUwAAAAAAAMsrg’)
>>> get_transaction().commit()
>>> root = db.open().root()
>>> root.keys()
[‘blah’, ‘setup.bmp’]
>>>

Removing old transactions to save space
You can pack the ZODB to remove the unwanted undo information. This will

reclaim some disk space. Simply call the pack() method on the database. All the

undo transactions will be removed by default if you call the pack method with no

Tip

i4857-3 Ch14.F 3/1/02 9:41 AM Page 410

411Chapter 14 ✦ Core Zope Components

arguments. Optionally, you can call the pack option with an integer, which will

remove all the transactions that are that many days older than the number. For

instance, to remove all the undo transactions older than a day you would call the

pack function like this:

db.pack(1)

Working with, saving, and aborting versions
Versions are a group of transactions that can be committed and undone together.

Changes made to a version are not visible outside of the version, except that

objects edited in a version are locked. No other connections will be able to edit

those objects unless they themselves are working in the same version.

To work in a connection you specify an arbitrary string to be the name of the ver-

sion as part of the open argument, as follows:

connection = db.open(‘New Changes’)
Then get the root object as normal
root = connection.root()

All calls to get_transaction().commit() will only affect connections that are using

the same version.

The changes that are committed in a version are saved to the disk, which means

that you can quit your program any time and when you open a connection to the

same version they’ll still be there. If you want to make the changes visible to the all

connections, you can commit the version like this:

db.commitVersino(‘New Changes’)

Discard all the changes made in a version call like this:

db.abortVersion(‘New Changes’)

ZPublisher
The component responsible for object publishing is called ZPublisher. It’s a

lightweight ORB (Object Request Broker), which is another name for object pub-

lishing. Object publishing is the process of taking an HTTP request (or similar proto-

col), finding the object that the request refers to, and returning the results after

handing the objects the details of the request.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 411

412 Part IV ✦ Advanced Zope Concepts

Traversing objects
The process of finding the object that is referred to by a network request is called

traversal. The ZPublisher takes a URL, breaks it up into names, and then attempts to

move from one object to the next until it finds the last object in the URL. For

instance, a URL such as http://codeit.com/object1/object2/object3 could be

expressed in Python as root.object1.object2.object3.

The ZPublisher doesn’t simply convert all of the slashes in a URL to periods. For

each step in the URL the ZPublisher looks at the previously found object (or the

root object if it’s the start of the traversal process) to see whether it has an

attribute with the name of the next step. If this doesn’t work, the ZPublisher checks

to see whether the previously found object is a dictionary and if the next object is

in it.

In other words, ZPublisher tries to get the next object by doing the equivalent of a

object.nextobject or object[“nextobject”] in Python. This is assuming that the

URL was http://yoursite.com/object/nextobject.

Controlling the traversal process with __bobo_traverse__
For the ultimate in control, you can define a method named __bobo_traverse__(). If

this method is defined, ZPublisher won’t even attempt to find the next object as an

attribute or as a dictionary item.

Bobo was ZPublisher’s old name before Zope was open sourced. The name
__bobo_traverse__ is a left-over legacy from before this time.

__bobo_traverse__() takes two arguments (besides self): request and name. The

request argument, as the name implies, is a reference to the request object. The

name argument is a string containing the name of the next object. Using these two

pieces of information you can determine what the next object should be. The

method can return a single object, a sequence of objects (in case you want to add

more parents to the chain), or None if the object isn’t found.

Practical uses for this hook include building objects dynamically during the traver-

sal function or inserting additional objects into the parents’ chain (to change the

behavior of acquisition).

For example, you could write a method that builds an object by querying a SQL

database. This example assumes that you have created the sqlGetEmployee SQL

method somewhere in the hierarchy where it can be acquired.

def __bobo_traverse__(self, request, name):
res = self.sqlGetEmployee(name=name)
if len(res) > 0:

return Employee(res[0])
else:

return None

Note

i4857-3 Ch14.F 3/1/02 9:41 AM Page 412

413Chapter 14 ✦ Core Zope Components

Security and traversing
As you can imagine, you don’t want people from the outside world to call every

method that exists in your application. This is why ZPublisher imposes the follow-

ing security rules:

1. All object’s classes and methods that are to be public must define a doc

string.

2. The name of a sub-object that you wish to access through the Web cannot

start with an underscore.

3. If the object has an attribute named __roles__ and it’s a list of strings, a user

must have one of the corresponding roles. If __roles__ is None, the object is

considered public and can be accessed by anyone. If __roles__ is an empty

list, the object is private and cannot be accessed through the Web.

4. Methods of an object can be protected in a similar fashion, by defining a list

named method__roles__.

Publishing the object
Once the object is found via traversal, ZPublisher attempts to “publish” the object

by either calling it if possible, calling the index_html() method if it exists, or return-

ing a string representation of the object.

It would be pretty uneventful if all that the publishing process did was find an

object and return the static content. Zope would be no different than a vanilla http

server serving up static content. What Zope does is let you create your own func-

tions that cannot only create dynamic content but also manipulate the various

objects in the application.

So, one thing that methods need then are arguments that it can get out of the

request. Traditional CGI scripts were forced to write routines to get the information

out of the request themselves. With ZPublisher, there’s no need to do this. Instead,

you can define the methods and arguments that your objects have and ZPublisher

will try to figure out the names of these methods for you. This process is called

marshaling arguments.

Marshaling arguments
By default an HTTP request is searched for arguments that are passed in either via

an HTTP GET or an HTTP POST operation. After traversing the object, ZPublisher

determines how to call the object and will automatically map the corresponding

values in the request to the arguments of the method. For instance, imagine that

you have an object that defines the following method:

def himom(self, momsname):
“Takes the name of your mother and says hi to her.”
return “Hi, %s!” % momsname

i4857-3 Ch14.F 3/1/02 9:41 AM Page 413

414 Part IV ✦ Advanced Zope Concepts

If this method was accessed via the URL http://site/myobject/himom?momsname=
Sylvia, the value of momsname would be “Sylvia.” Similarly, you could use a form that

posted its information to this method:

<html>
<body>
<form action=”http://site/myobject/himom” method=”post”>
Enter your mom’s name here: <input type=”text” name=”momsname”>
</form>
</body>
</html>

and you’d get the same result.

The beauty of this is that you had to write hardly any code at all to accomplish this!

With a CGI script you might have had to look at the QUERY_STRING environment

variable and “unescape” it yourself. ZPublisher automatically converts all of the

escape sequences to the character equivalents for you.

If you define a method that takes an argument and it’s not in the request,

ZPublisher will raise an exception. You can get around this by assigning your argu-

ment a default argument like this:

def himom(self, momsname=”Mom”):
“Takes the name of your mother and says hi to her.”
return “Hi, %s!” % momsname

This way if no argument exists, the default greeting will be “Hi, Mom!”

Your methods can also define two special arguments REQUEST and RESPONSE. If

either of these arguments is defined, ZPublisher will hand your argument the object

corresponding to its name.

A typical idiom used while publishing objects via the Web is to default the

REQUEST object to None in the method definition. Then you test the REQUEST

before returning a value from your method to determine whether you were called

via the Web or internally.

def editMomsName(self, momsname, REQUEST=None):
self.momsname = momsname
if REQUEST is not None:

We were called via the web return an html document
return “””<html>

<body>
<blink>Hi, %s!</blink>
</body>
</html>””” % self.momsname

i4857-3 Ch14.F 3/1/02 9:41 AM Page 414

415Chapter 14 ✦ Core Zope Components

Type casting arguments
By default all arguments are marshaled as strings. Some Python methods that you

write will need the arguments to be a specific type. You can have the ZPublisher

attempt to convert an argument to a specific type by naming the argument with a

special suffix. For example, if you name an argument status:int, ZPublisher will

attempt to convert the status argument to an integer. ZPublisher will raise an

exception if it can’t convert the argument to the type you specified. Table 14-2 con-

tains all the formatting codes.

Table 14-2
Type Conversion Codes

Code Description

boolean Converts the argument to true or false.

int Converts the argument to a Python integer.

long Converts the argument to a Python long.

float Converts the argument to a Python float.

string Converts the argument to a Python string.

required Causes ZPublisher to raise an exception if the argument is blank.

ignore_empty Removes the variable from the request if it evaluates to an empty
string.

date Converts the argument to a DateTime object.

list Converts the argument to a list, even if there is only one value.

lines Creates a list of values from a string containing line breaks.

tokens Creates a list of values from a string by splitting words that are
separated by spaces.

tuple Creates a Python tuple from one or more values.

text Converts the line breaks regardless of the browsers OS to be that
of the OS the server is running.

record Combines multiple variables into one variable.

records Combines multiple variables into a list of records.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 415

416 Part IV ✦ Advanced Zope Concepts

Converting an argument to a number
Imagine you have a method that calculates how much to tip a waiter in a restau-

rant. You’ll need to make sure that the price you paid is converted to a float before

performing the calculation.

class TipCalculator(SimpleItem):
“This class defines methods useful for eating out.”

tip_percentage = .15

def calculateTip(self, price):
“This method expects a float.”

return “You should tip %s.” % price * self.tip_percentage

If you attempted to call this method via the Web by going to a URL such as

http://yoursite.com/calc/calculateTip?price=28.00, you would receive a type

error because price is converted to a string and Python doesn’t know how to multi-

ply strings. What you want to do is make sure that price is converted to a float first.

The proper URL should be

http://yoursite.com/calc/calculateTip?price=28.00:float.

Alternatively, and probably more realistically, you would have the user fill out a

form such as the following, where the user would enter in the price of dinner first:

<html>
<body>
<form action=”calculateTip”>
Enter in the price of your dinner:
<input type=”text” name=”price:float” size=”6”>
<input type=”submit”>
</form>
</body>
</html>

Another interesting aspect of this approach is that if the user enters something into

the text box that can’t be converted to a float, such as the phrase, “I’m a dummy,”

ZPublisher will raise a TypeError, which let’s you know that your user entered in

the wrong kind of value.

It’s not possible to catch this type of error in one of your methods with the normal
try:...except:... clause because the ZPublisher will try to convert the variable
to the appropriate Python type before your method is ever called.

Converting arguments to a list
If more than one argument with the same name is in a request (somemethod?
arg=1&arg=2, for example) ZPublisher will automatically convert the argument into

a list. You would use the :list or :tuple conversion code to make sure that the

argument is always converted to a list even if there is only one item.

Note

i4857-3 Ch14.F 3/1/02 9:41 AM Page 416

417Chapter 14 ✦ Core Zope Components

Here’s an HTML example of a typical form for which you can pick more than one

option. By naming the select box ids:list we make sure that ZPublisher converts

the ids argument to a list even if there is only one item selected.

<html>
<body>
<form action=”removeIDs”>
Select the IDs that you want deleted.

<select name=”ids:list”>
<option value=”item1”>Item 1</option>
<option value=”item2”>Item 2</option>
<option value=”item3”>Item 3</option>

</select>

<input type=”submit”>
</form>
</body>
</html>

Here’s the Python method that would handle that request:

def removeIDs(self, ids):
“””Removes one or more ids from the dictionary and returns
count of items deleted.”””

count = 0
for id in ids:
del self.dictionary[id]
count += 1

return “%s items were removed from the dictionary!”

Requiring arguments
You can have the ZPublisher check to make sure that an argument was entered by a

user with the :required conversion code. (All right, we know what you are thinking.

This really isn’t a conversion, but don’t blame us (we didn’t name them.)

<html>
<body>
<form>
You’d better enter something or I’m going to cry!
<input type=”text” name=”something:required”>
<input type=”submit”>
</form>
</body>
</html>

If your user clicks the submit button without filling anything into the text box, the

ZPublisher will raise an exception complaining that the required field was blank.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 417

418 Part IV ✦ Advanced Zope Concepts

Combining conversion codes
ZPublisher lets you combine multiple codes together. For example, you can specify

that an argument should be converted to a list of integers or that its a required

float. To achieve this effect, simply add additional conversion codes separated by

colons as shown in the following examples:

<select name=”ids:int:list:required”>
<option value=”1”>First Option</option>
<option value=”2”>Second Option</option>
<option value=”3”>Third Option</option>
</select>

Combining variables with the record conversion code
The record conversion code can take multiple form variables and combine them

into a single object. Try this out. Create a two DTML Method, one named

personForm and the other named showPerson. Add the following DTML/HTML to the

personForm:

<dtml-var standard_html_header>

<form action=”showPerson”>
Enter your
First Name:<input type=”text”
name=”person.first_name:record”>

Last Name:<input type=”text”
name=”person.last_name:record”>

E-mail:<input type=”text” name=”person.email:record”>

<input type=”submit”>
</form>

<dtml-var standard_html_footer>

When the user fills out this form and presses submit, all the html variables whose

names start with person. and end with :record will be added to the person object

and then posted to your showPerson method. Change the showPerson method to

have the following DTML and HTML:

<dtml-var standard_html_header>
Name: <dtml-var “person.first_name”> Æ
<dtml-var “person.last_name”>

E-mail: <dtml-var “person.email”>
<dtml-var standard_html_footer>

Now go back and view the personForm method, enter data in the form, press submit,

and see what happens.

Creating a list of records
The records conversion code can be used to create a list of records. It uses the

same format that the record code does except that it can be used multiple times.

For example, you could use it thus:

i4857-3 Ch14.F 3/1/02 9:41 AM Page 418

419Chapter 14 ✦ Core Zope Components

<dtml-var standard_html_header>

<form action=”showPerson”>
<input type=”text” name=”employees.first_name:records”>

<input type=”text” name=”employees.last_name:records”>

<input type=”text” name=”employees.email:records”>

<input type=”text” name=”employees.first_name:records”>

<input type=”text” name=”employees.last_name:records”>

<input type=”text” name=”employees.email:records”>

<input type=”submit”>
</form>

<dtml-var standard_html_footer>

This will create a list named “employees” where each element in the list is a record

object that has first_name, last_name and email properties. You could then mod-

ify the showPerson method to use this list as follows:

<dtml-var standard_html_header>

<dtml-in emlpoyees>
Name: <dtml-var “person.first_name”> <dtml-var Æ
“person.last_name”>
E-mail: <dtml-var “person.email”>

</dtml-in>

<dtml-var standard_html_footer>

Using the REQUEST object
The REQUEST object is a huge data dictionary that contains every piece of informa-

tion regarding the current request. It contains everything from the current user, the

server’s public environment variables, what cookies the site has set on the user’s

browser, to what form variables were posted in the request. In addition, the

REQUEST contains several convenient functions for manipulating URLs.

The information and functionality can be broken down into five groups:

✦ Environment. These are all of the environment variables that are required or

are a standard part of the CGI specification. Table 14-3 lists the variables

you’d most likely need to read while working with the ZPublisher.

✦ Special. Variables (listed in Table 14-4) and methods (listed in Table 14-5) pro-

vided for your convenience.

✦ Cookies. Methods and variables used for manipulating cookies in the user’s

browser.

✦ Forms. A list of all form values and the methods to manipulate them. See

Table 14-4.

✦ Other. Variables that you have set (using REQUEST.set()) in your application.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 419

420 Part IV ✦ Advanced Zope Concepts

Table 14-3
CGI Environment Variables

Variables Description

SERVER_SOFTWARE The name and version of the software answering the request.

SERVER_NAME The server’s hostname or IP address.

GATEWAY_INTERFACE The CGI version.

SERVER_PROTOCOL The name and version of the protocol of the request.

SERVER_PORT The port from which the server took the request.

REQUEST_METHOD The method the request was made. Either “GET,” “HEAD,”
“POST,” and so on.

PATH_INFO Extra path information after the script.

QUERY_STRING The raw (undecoded) information that followed the “?” in a
URL.

REMOTE_HOST The name of the host, if known, making the request.

REMOTE_ADDR The IP address of the host making the request.

CONTENT_TYPE The content type of the request. This variable is only present if
the method was a POST or PUT.

CONTENT_LENGTH The length of the data that was sent to the server during a
POST method.

HTTP_USER_AGENT The name of the browser and version that made the request.

HTTP_ACCEPT_LANGUAGE The user’s default or preferred language.

You can access the variables from Table 14-3 or Table 14-4 in a couple of ways. First,

you can get a reference to the REQUEST object by defining it as an argument to

your method. Once you have a reference to the REQUEST object, you can access

the REQUEST variables as either attributes of the REQUEST object or as if the vari-

able was an item in the REQUEST dictionary.

def showBrowserAndIP(self, REQUEST):
browser = REQUEST[‘HTTP_USER_AGENT’]
ip = REQUEST.REMOTE_ADDR
return “Browser: %s
IP: %s” % (browser, ip)

Second, you can define the variable as an argument in your function and ZPublisher

will pass it to your function like it would pass any other HTTP argument:

def showBrowserAndIP(self, HTTP_USER_AGENT, REMOTE_ADDR):
return “Browser: %s
IP: %s” % (HTTP_USER_AGENT,REMOTE_ADDR)

i4857-3 Ch14.F 3/1/02 9:41 AM Page 420

421Chapter 14 ✦ Core Zope Components

The REQUEST object is usually passed to DTML methods as well. This means you

can access any of these variables directly with the <dtml-var ...> tag. For

instance, inside a DTML method you can print the IP address of the person access-

ing your pages like this:

<dtml-var REMOTE_ADDR>

Table 14-4
Convenience Variables

Variable Description

PARENTS A list of objects traversed in order to get to the
object that was published. For example, in
Zope, PARENTS[0] would be the root object.

RESPONSE The response object. Useful for setting
headers and cookies.

PUBLISHED Reference to the object that was published.

URL The URL of the request without the query string.

URL0, URL1, ..., URLn URL0 is the URL string that was used to make
the request. URL1 is the URL with the last
item removed. URL2 is the last two items
removed, and so on.

URLPATH0, URLPATH1, ..., URLPATHn Identical to URLn variables without the host
and port in the URL.

BASE0, BASE1, ..., BASEn Similar to the URL0 and kin but instead starts
with the full URL and removes the last item
with each step. BASE0 starts with first item in
the URL (the server and port) and then adds
an item. BASE1 is the server portion of the
URL plus the next directory. URL2 is the server
portion of the URL plus the next two items.
Note, when using ZServer by itself, BASE0 and
BASE1 are identical.

BASEPATH0, BASEPATH1, ..., BASEPATHn Identical to BASEn variables without the host
and port in the URL.

AUTHENTICATED_USER Reference to the user currently logged in. If no
user is logged in, this variable references the
Anonymous User.

The variables from Table 14-4 are not part of the CGI standard but are provided by

the ZPublisher for your convenience.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 421

422 Part IV ✦ Advanced Zope Concepts

Using the PARENTS variable to build navigation elements
The PARENTS variable can be thought of as the path used to access your objects.

Using this list you can achieve all sorts of interesting effects in your applications.

Consider the “breadcrumbs” idiom often used in Web sites. The breadcrumbs are

the list of links that appear at the top of a Web page that show where you are in a

Web site’s hierarchy. The list of links that appear just under the tabs in the Zope

management screen is an example of breadcrumbs.

Breadcrumbs derives its name from the story of Hansel and Gretel, two children

who went exploring in the woods. To make sure they didn’t get lost, they left a trail

of breadcrumbs that they could follow to get back home. The only flaw in their plan

was that birds ate their trail. This probably won’t happen to your Web site, but if it

does, we’d like to hear about it!

You can build your own breadcrumbs with a simple bit of code similar to the follow-

ing code block that loops through PARENTS list and builds a string of HTML that

contains the names and links of the published objects parents:

def buildBreadCrumbs(self, PARENTS)
link = ‘%s’
breadcrumbs = link % (PARENTS[0].absolute_url(), _

PARENTS[0].title_or_id())

for parent in PARENTS:
breadcrumbs += “ : “
breadcrumbs += link % (parent.absolute_url(), _

parent.title_or_id()

return breadcrumbs

Using URLn and BASEn
The URLn and the BASEn are handy variables but their purposes and differences

are hard to understand without a few examples. Imagine that you went to a method

whose URL is http://localhost:8080/offices/ny/department/accounting/
index.html. The variable URL0 in this case would be http://localhost:
8080/offices/ny/department/accounting/index.html where as BASE0 would be

http://localhost:8080/. URL1 would be http://localhost:8080/offices/
ny/department/accounting and BASE1 would be http://localhost:8080/offices.

URL2 would be http://localhost:8080/offices/ny/department/ and BASE2 would

be http://localhost:8080/offices/ny. (See Table 14-5.)

The previous example is not entirely true. If you are running ZPublisher with
ZServer BASE1 and BASE0 would both be http://localhost:8080/. This is a
throwback from before ZServer was used. Usually ZPublisher expects BASE0 to be
the host portion of the site and BASE1 to be the script name used to access Zope.

Caution

i4857-3 Ch14.F 3/1/02 9:41 AM Page 422

423Chapter 14 ✦ Core Zope Components

Table 14-5
Convenience Methods

Method Description

get_header(name, default=None) Returns a specific HTTP header or None if
the header does not exist. Optionally, you
can specify a different value to be returned
if the header is not found instead of None.

items() Returns a list of all keys and values in the
REQUEST object.

keys() Returns a list of all keys in the REQUEST
object.

setVirtualRoot(path, hard=0) Alters the path in URL, URLn,
URLPATHn, BASEn, BASEPATHn, and
absolute_url() so that the current
object has path. If hard is true, PARENTS
is emptied.

values() Returns a list of values in the REQUEST
object.

set(name, value) Adds a new variable to the REQUEST
object.

has_key(key) Returns true if the REQUEST has the key.

setServerURL(protocol=None, Modifies the protocol, hostname, and port.
hostname=None, port=None) Using this method will change the values

returned by SERVER_URL, URL, URLn,
BASEn, and absolute_url().

Using the RESPONSE object
The RESPONSE object enables you to manipulate, well... the response to the user.

Using the RESPONSE object you can set cookies in the user’s browser, redirect the

user to a different page, manipulate various HTTP headers, and stream data back to

the user’s browser in smaller chunks instead of all at once (as is the default for

returning pages). Table 14-6 summarizes the various methods and properties of the

RESPONSE object.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 423

424 Part IV ✦ Advanced Zope Concepts

Table 14-6
RESPONSE Object Methods and Properties

Method Description

setHeader(name, value, literal) Sets an HTTP return header “name” with value
(“value”), clearing the previous value set for
the header, if one exists. If the literal flag is
true, the case of the header name is
preserved; otherwise, word capitalization will
be performed on the header name on output.

setCookie(name, value, **kw) Sets an HTTP cookie on the browser.

The response will include an HTTP header that
sets a cookie on cookie-enabled browsers
with a key “name” and value (“value”). This
overwrites any previously set value for the
cookie in the Response object.

addHeader(name, value) Sets a new HTTP return header with the given
value, while retaining any previously set
headers with the same name.

appendHeader(name, value, Appends a value to a cookie.
delimiter=”,”)

Sets an HTTP return header “name” with value
(“value”), appending it following a comma if
there was a previous value set for the header.

write(data) Returns data as a stream.

HTML data may be returned using a stream-
oriented interface. This allows the browser to
display partial results while computing a
response to proceed. The published object
should first set any output headers or cookies
on the response object.

Note that published objects must not generate
any errors after beginning stream-oriented
output.

setStatus(status, reason=None) Sets the HTTP status code of the response.

The argument may either be an integer or one
of the following strings: OK, Created,
Accepted, NoContent, MovedPermanently,
MovedTemporarily, NotModified, BadRequest,
Unauthorized, Forbidden, NotFound,
InternalError, NotImplemented, BadGateway,
ServiceUnavailable, which will be converted to
the correct integer value.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 424

425Chapter 14 ✦ Core Zope Components

Method Description

setBase(base) Sets the base URL for the returned document.

expireCookie(name, **kw) Causes an HTTP cookie to be removed from
the browser.

The response will include an HTTP header that
will remove the cookie corresponding to
“name” on the client if one exists. This is
accomplished by sending a new cookie with
an expiration date that has already passed.
Note that some clients require a path to be
specified. This path must exactly match the
path given when creating the cookie. The path
can be specified as a keyword argument.

appendCookie(name, value) Returns an HTTP header that sets a cookie on
cookie-enabled browsers with a key “name”
and value (“value”). If a value for the cookie
has previously been set in the response
object, the new value is appended to the old
one, separated by a colon.

redirect(location, lock=0) Causes a redirection without raising an error. If
the “lock” keyword argument is passed with a
true value, the HTTP redirect response code
will not be changed even if an error occurs
later in request processing (after redirect()
has been called).

Create Dynamic Text with
DocumentTemplates

In Chapter 4 we showed you how to create dynamic Web pages using DTML meth-

ods and documents. In this section we will show you how to use and extend the

underlying class library that generates dynamic text documents based on tem-

plates. The examples in this section will be used to generate HTML. Although DTML

isn’t limited to the use of HTML, it’s just such a natural fit that it’s almost difficult to

imagine better examples. So we’re going to take the path of least resistance for this

section. We’ll leave it up to you, if desired, to find other uses for DTML.

The name of the library is DocumentTemplate. It can be found under

lib/python/DocumentTemplate of your Zope installation. With this library you can

create callable template objects.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 425

426 Part IV ✦ Advanced Zope Concepts

A callable object is a Python object that implements the __call__ hook. Objects
that implement this hook can be treated as functions within Python code.

Let’s jump right in and create one of these template objects and we’ll show you how

to use it.

from DocumentTemplate import HTML

template_source = “””
<html>
<head>
<title><dtml-var title></title>

</head>

<body>
<dtml-var content>
</body>

</html>
“””

template_method = HTML(template_source)

Once you have created an a template instance you can now call it.

results = template_method(title=”This Document!”,
content=”Oh lookey, I’ve been “ + \

“dynamically generated by” +\
“ this template!”)

And it produces the following results:

<html>
<head>
<title>This Document</title>

</head>

<body>
Oh lookey, I’ve been dynamically generated by this template!
</body>

</html>

A template takes a string as an argument when it is initialized. This string is the

template source and it consists of text and tags. The tags are replaced with

dynamic content when the template is rendered (called). The dynamic content is

produced from the namespace that is constructed with the values that you passed

in while calling the template.

See Chapter 4 for a reference of all the tags and what they can do.Cross-
Reference

Note

i4857-3 Ch14.F 3/1/02 9:41 AM Page 426

427Chapter 14 ✦ Core Zope Components

Initializing templates with default arguments
You have already seen how a basic template is instantiated and used from the previ-

ous example. Optionally a template can be instantiated with a mapping object,

named arguments, or both to create a default namespace that is searched if a value

can’t be found from the arguments that are passed in when the template is called.

Using the same example as previously (one you should be quite familiar with by

now!) we can change it to use some default values via named arguments.

template_method = HTML(template_source, Æ
{title:”Missing Title”}, content=”Missing Content”)

Now you can call the template without any arguments.

results = template_method()

And it produces the following results:

<html>
<head>
<title>Missing Title</title>

</head>

<body>
Missing Content
</body>

</html>

Calling templates
Templates can be called with multiple object instances, mapping objects, and named

arguments. These objects are searched based on the order they are passed to the

template when it’s called. This is true except for named arguments that, if present,

will be used first. Continuing from our previous example, imagine you had an object

with a title property of “The latest and greatest news story!” If you passed it to the

template_method as the first argument, the results would look like this:

>>> class k: pass
...
>>> o = k()
>>> o.title = “The latest and greatest news story!”
>>> print template_method(o)

<html>
<head>
<title>The latest and greatest news story!</title>

</head>

<body>
Missing Content
</body>

</html>

i4857-3 Ch14.F 3/1/02 9:41 AM Page 427

428 Part IV ✦ Advanced Zope Concepts

Working with templates stored in files
Instead of cluttering your source code with long format strings you can put your

templates into individual files. In fact, this is such a convenient way of working with

templates that the DocumentTemplate library provides a class that can be instanti-

ated with a filename instead of the source of the template.

If you put the template code from the beginning of this section into a file named

template.dtml and save it to the same place as where your code is then you can use

the script like this:

import sys
sys.path.append(“c:\\program files\\website\\lib\\python”)

from DocumentTemplate import HTMLFile

template_method = HTMLFile(“template.dtml”,
title=”No Title”,
content=”No Content”
)

Document template security
DocumentTemplates have basic security checks that prevent attributes that start

with the underscore from being used in templates. If desired you can extend your

templates to perform other security checks while rendering.

In the following script we subclass the HTML object and provide the guarded_
getattr() hook. The hook takes two arguments (besides “self”) the object, and the

name of the attribute that is being accessed in the DTML. So back to the script. In it

we’ve implemented the hook and check to see whether “bob” is the one attempting

to render the attribute. If it is “bob,” we return the value of the attribute, if it’s any-

body else, we raise a RunTime exception.

import sys
sys.path.append(“c:\\program files\\website\\lib\\python”)

from DocumentTemplate import HTML

class SHTML(HTML):
This HTML object only let’s bob access object attributes
def guarded_getattr(self, object, attribute):

if user == “bob”:
return getattr(object, attribute)

else:
err_msg = “You are not authorized to use “+\

“%s’s ‘%s’ attribute in DTML!”
raise RuntimeError, err_msg % (object, attribute)

i4857-3 Ch14.F 3/1/02 9:41 AM Page 428

429Chapter 14 ✦ Core Zope Components

class k:
#Dummy class used
def __init__(self, title):

self.title = title

template_source = “””
<dtml-var title>
“””

template_method = SHTML(template_source)
o = k(“This is a test”)

user = raw_input(“Enter your user name: “)
print template_method(o)

There’s one other hook that you can define named gaurded_getitem() that will be

called when using mapping objects within DTML expressions. Using a modified ver-

sion of the preceding script we’ve defined the hook and changed the DTML used in

the template to show you how it works.

import sys
sys.path.append(“c:\\program files\\website\\lib\\python”)

from DocumentTemplate import HTML

class SHTML(HTML):
This HTML object only let’s bob access object attributes
def guarded_getitem(self, mapping, item):

if user == “bob”:
return mapping[item]

else:
err_msg = “You are not authorized to use “+\

“%s’s ‘%s’ entry in DTML!”
raise RuntimeError, err_msg % (object, attribute)

template_source = “””
<dtml-var expr=”dict[‘title’]”>
“””

dict = {‘title’:’Title inside a key’}
user = raw_input(“Enter your user name: “)
print template_method(dict=dict)

The key thing that we should point out in the previous example is that you had to

explicitly pass your mapping object in as a named argument. This is because DTML

does not search mapping objects if you pass them in like an object. So to get

around this, we call the function as follows, template_method(dict=dict).

i4857-3 Ch14.F 3/1/02 9:41 AM Page 429

430 Part IV ✦ Advanced Zope Concepts

Creating your own tags
To finish this section on DTML, we’ll show you how to create your own tags.

Creating tags can lead to some exciting possibilities. For instance there’s the

Calendar tag (originally created by Ty Sarna, now maintained by the Zope commu-

nity, and available at http://www.zope.org/Members/jdavid/Calendar) that renders

an HTML representation of a calendar. This is great way to generate a dynamic cal-

endar with little HTML coding effort.

We’re not going to create anything so complex in this chapter, but we will show you

the basics of creating tags so that, if you like, you can impress the world with the

next innovative tag.

There are two types of tags that can be created: block and singleton tags. Block tags

are two-part tags that consist of an opening and a closing tag. Examples of these

tags are the in and if tags. The other type of tag is the singleton tag, such as the var
and the call tags that don’t have a closing counterpart.

Creating a tag is a simple matter of implementing all of the required interfaces and

registering it as an available command. We’ll start with the singleton tag.

Creating a simple singleton tag
We’ll start with the equivalent of a hello world example, and then show how to

make more complicated aspects of tags like using arguments and expressions, and

working with values from a templates namespace.

Here’s the most basic of tags that simply inserts the phrase “Hi Mom!” when ren-

dered. It can be used in a template by inserting <dtml-himom> into a templates

source. Singleton tags need to implement three things in their class:

✦ A name attribute, which is used to match your class to the tag when it is used

in a template. For instance in the example that follows, we set name equal to

“himom”.

✦ A constructor (__init__) method that takes one attribute called “args.” For

now we’ll pass on this method since we don’t need it for our first example.

✦ A render() method, which is hook that is called by the template when the tag

is rendered. This hook needs to take one argument, usually called “md,” which

is a TemplateDictionary (your guess is as good as ours as to why it’s called

md). The Method Dictionary is the namespace passed to the template. We’ll

ignore the TemplateDictionary for now since we’re only going to insert the “Hi

Mom!” phrase.

Without further ado here’s a Python script that creates our “himom” tag, registers

it, and then builds a sample template to test it:

import sys
sys.path.append(“c:\\program files\\website\\lib\\python”)
from DocumentTemplate.DT_String import String

i4857-3 Ch14.F 3/1/02 9:41 AM Page 430

431Chapter 14 ✦ Core Zope Components

Create a class for our tag
class HiMomTag:

name = ‘himom’

def __init__(self, args):
pass

def render(self, md):
return “Hi Mom!”

__call__ = render

Register our new tag so we can use it in a template
String.commands[‘himom’] = HiMomTag

Test it out by creating a template.
from DocumentTemplate import HTML
template_src = “<dtml-himom>”
template_method = HTML(template_src)
print template_method()

If you save all this code into file and run it with Python, it will produce the following

results:

Hi Mom!

Using arguments in tags
Let’s put the “Dynamic” in DTML by using arguments in your tag so that you can

insert a message to your mother.

It’s now time to talk about a tag’s constructor. It’s important to note that your tag’s

__init__ method is only called when the template is instantiated. In other words

when you run the following code:

template_method =HTML(template_source)

When this happens the tag class is passed its args as a string. You need to parse

the string and set the appropriate attributes on your tag instance so that you can

use the values when the tag is rendered later. The value of args is everything

between the beginning and end of the tag (<dtml-name and >). For example if your

template’s source contained:

<dtml-himom msg=”the dogs dead.” btw=”Oh, and I won’t be home for dinner!”>

then the value of args will be equal to msg=”the dogs dead.” btw=”Oh, and I won’t
be home for dinner!”.

You could attempt to parse this string yourself (if you’re a masochist) or you could

use a handy method provided as part of the DocumentTemplate library called

i4857-3 Ch14.F 3/1/02 9:41 AM Page 431

432 Part IV ✦ Advanced Zope Concepts

parsed_params(). This method takes a string as its first argument, and then a series

of named arguments that specify what values should be present in the args string

and what they should default to if not present. Knowing this, we can update are tag

to parse the args when the object is instantiated and modify our tag’s render

method to use the attributes if they’re present.

import sys
sys.path.append(“c:\\program files\\website\\lib\\python”)
from DocumentTemplate.DT_String import String
from DocumentTemplate.DT_Util import parse_params

Create a class for our tag
class HiMomTag:

name = ‘himom’

def __init__(self, args):
args = parse_params(args,msg=””,

btw=””)
self.msg = args[‘msg’]
self.btw = args[‘btw’]

def render(self, md):
if self.msg == “”:
return “Hi Mom!”

else:
return “Hi Mom, %s %s” % (self.msg, self.btw)

__call__ = render

Register our new tag so we can use it in a template
String.commands[‘himom’] = HiMomTag

Test it out by creating a template
from DocumentTemplate import HTML
template_src = “””<dtml-himom msg=”the dog’s dead.” btw=”Oh, Æ
and I won’t be home for dinner!”>”””
template_method = HTML(template_src)
print template_method()

Running this script we get:

Hi Mom, the dog’s dead. Oh, and I won’t be home for dinner!

Getting values and rendering Python expressions
All right you got us. The last example wasn’t very dynamic because it was based on

the values directly inserted into the templates source. To make it truly dynamic we

want to interact with those values that you pass to the template when you render it

(or use the defaults).

i4857-3 Ch14.F 3/1/02 9:41 AM Page 432

433Chapter 14 ✦ Core Zope Components

This is done using the md parameter of your tag’s render method. This dictionary is

an aggregated representation of all the namespaces passed to the template when it

is rendered. Imagine calling a Template Method and passing it an object that

expects to insert the value for “title” into a document it’s creating. To get this value

from within the render method of your tag you would simply write:

title = md[“title”]

and the md will return the value, regardless of whether you called the template

method like:

This assumes that o has a title attribute
results = template_method(o)

or

results = template_method(title=”The title”)

One other thing that you’d likely want to do is evaluate a Python expression (the

same way the var tag does) using values that are part of the template_method. You

can accomplish this with the help of the Eval class, which provides a method for

safely evaluating Python expressions while working with the md. The Eval class will

follow all the security precautions that DTML follows, even the custom ones you

provide.

To use the Eval class import it from the DT_Util module that’s inside the

DocumentTemplate library. Then instantiate an Eval instance with your python

expression. This instance has a method named “eval” that returns the results of

your Python expression using a TemplateDictionary.

We’ve taken the himom example as far as we can so to demonstrate using values

and expressions in a template. Let’s build a tag that can print out a pretty version of

Python’s types.

import sys
sys.path.append(“c:\\program files\\website\\lib\\python”)
from DocumentTemplate.DT_String import String
from DocumentTemplate.DT_Util import parse_params, Eval,
html_quote

#from pprint import PrettyPrent

import pprint

Create a class for our tag
class PPrintTag:

name = ‘pprint’

i4857-3 Ch14.F 3/1/02 9:41 AM Page 433

434 Part IV ✦ Advanced Zope Concepts

def __init__(self, args):
get = parse_params(args,name=None,

expr=None).get
self.name = get(‘name’)
self.expr = get(‘expr’)
if self.expr is not None:

self.expr = Eval(self.expr).eval

def render(self, md):print template_method(o)

if self.name is not None:
ret = md[self.name]

else:
ret = self.expr(md)

ret = pprint.pformat(ret)
return html_quote(ret)

__call__ = render

Register our new tag so we can use it in a template
String.commands[PPrintTag.name] = PPrintTag

An example that inserts a title attribut into
a document
from DocumentTemplate import HTML
template_src=”””<dtml-pprint name=”title”>”””

template_method = HTML(template_src)
class k: pass
o = k()
o.title = “I’m a title”
print template_method(o)

Here’s an exampl using an expresion
template_src = “””<dtml-pprint expr=”x+ 20”>”””
o.x = 10
template_method = HTML(template_src)
print template_method(o)

Block tags
Block tags have an opening and closing tag that usually surround data and other

tags. In the previous example we showed you how to create a tag whose attributes

use Python expressions. What expressions can’t do is evaluate tags, whereas block

tags can.

i4857-3 Ch14.F 3/1/02 9:41 AM Page 434

435Chapter 14 ✦ Core Zope Components

To create a block tag, define an attribute at the class level named

“blockContinuations” and set it to an empty tuple. This tells the DocumentTemplate

library that this is a block tag. This attribute is also used to let the

DocumentTemplate library know what other special tags there are that can exist

only within the opening and closing of this block tag. We’ll explain more about this

in a moment.

So for now, here’s an example of a note tag that produces the HTML equivalent of a

yellow sticky note.

import sys
sys.path.append(“c:\\program files\\website\\lib\\python”)
from DocumentTemplate.DT_String import String

note_format = “””
<table border=1 bgcolor=”#FFFE7B” width=”250” height=”250”>
<tr height=10><td valign=”top”>Note:</td></tr>
<tr><td valign=”top”>%s</td></tr>
</table>”””

class NoteTag:

name = ‘note’
blockContinuations = ()

def __init__(self, blocks):
self.note = blocks[0][2]

def render(self, md):
note = self.note(md)

return note_format % note

__call__ = render

Register the tag
String.commands[NoteTag.name] = NoteTag

from DocumentTemplate import HTML
template_src=”””<dtml-note>My first note!</dtml-note>”””
template_method = HTML(template_src)
print template_method()

Running this script produces the following HTML:

<table border=1 bgcolor=”#FFFE7B” width=”250” height=”250”>
<tr height=10><td valign=”top”>Note:</td></tr>
<tr><td valign=”top”>My first note!</td></tr>
</table>

i4857-3 Ch14.F 3/1/02 9:41 AM Page 435

436 Part IV ✦ Advanced Zope Concepts

The biggest difference between a block tag and a singleton tag is in the constructor.

Instead of taking a single string argument, it takes a two-dimensional list, named

“blocks.” Each item in the list represents a block in the tag. Each block has three

elements:

✦ The first element is the name of the tag.

✦ The second element is the argument string for the block. It’s in the same for-

mat as the argument string that is passed to the singleton constructor.

✦ The third element is a template method, the same type that you create when

you make a method with the HTML class. This method was built using the

source of all the text that was in between the <dtml-note> and </dtml-note>
tags.

Block tags can have speacil tags that are only allowed inside of the block tag. A

good example of this is the <dtml-else> tag that is only allowed between a <dtml-
if> and </dtml-if> tag. To tell the DocumentTemplate library that your block tag

has one of these special tags you add its name to the blockContinuation tuple of

your tag’s class.

The following code has been modified so that your note tag can have a subject and

a body block. The subject will be all the text between the <dtml-note> and <dtml-
body> tag. The body will be everything between the <dtml-body> and </dtml-note>
tags. If the <dtml-body> tag doesn’t exist then there will be no subject.

import sys
sys.path.append(“c:\\program files\\website\\lib\\python”)
from DocumentTemplate.DT_String import String

Create a class for our tag

note_format = “””
<table border=1 bgcolor=”#FFFE7B” width=”250” height=”250”>
<tr height=10><td valign=”top”>Note: %s</td></tr>
<tr><td valign=”top”>%s</td></tr>
</table>”””

class NoteTag:

name = ‘note’
blockContinuations = (“body”,)

def __init__(self, blocks):
#get = parse_params(args,name=None,
expr=None).get
if len(blocks) > 2:

raise RuntimeError, “Note tags can only have one Æ
inner body tag!”

elif len(blocks) == 2:

i4857-3 Ch14.F 3/1/02 9:41 AM Page 436

437Chapter 14 ✦ Core Zope Components

self.header = blocks[0][2]
del blocks[0]

else:
self.header = None

self.note = blocks[0][2]

def render(self, md):
if self.header is not None:

header = self.header(md)
else:

header = “”

note = self.note(md)

return note_format % (header, note)

__call__ = render

Register the tag
String.commands[NoteTag.name] = NoteTag

from DocumentTemplate import HTML
template_src=”””<dtml-note>Read This<dtml-body>I have written a
second note!</dtml-note>”””
template_method = HTML(template_src)
print template_method()

Summary
After reading this chapter you should have a picture of how the core components

combine to form Zope and how to use them in applications outside of Zope.

Specifically, you learned how to make objects acquire properties from their parents,

keep objects persistent, how to use the lightweight object request broker

(ZPublisher) to make your objects available over a network, and to create your own

DTML tags.

✦ ✦ ✦

i4857-3 Ch14.F 3/1/02 9:41 AM Page 437

i4857-3 Ch14.F 3/1/02 9:41 AM Page 438

Scripting Zope

In previous chapters, you learned about DTML, a simple but

powerful method of creating dynamic content, and

Products, a more complex and thorough way of writing appli-

cations in Zope to handle business logic. Sometimes, however,

a problem is too large to be handled elegantly in a DTML doc-

ument, yet not quite large enough to warrant building an

entire application around it. Sometimes, all you really want is

the ability to write a small chunk of code to do something that

would otherwise be cumbersome in DTML. This is where

scripts come in.

Consider the following problem. Suppose you have an area of

your Web site that needs to display the directory hierarchy up

until the point of the page you are on, with each level being a

link to that level. This would give you an effect similar to the

object listing at the top of the management interfaces editing

screens, a sort of “breadcrumbs” trail leading you from the

top of your structure to where you currently are. You start by

getting the folder that the document being viewed is in; then

you get each parent of that object until you reach the Zope

application or some arbitrary stopping point. After you have

all of the objects, you take each one in turn and build a URL

for it and join them all together for displaying. If you

attempted to do this in DTML, you’d have a host of unwieldy

pieces of code. What you really want is to be able to hand this

task off to a small program written in Python. Simply pass it

an object and it returns a series of URLs. To do that, you use a

script.

Zope comes bundled with two powerful scripting solutions:

Python Scripts and External Methods. A third option, Perl

Scripts, is available as an add-on product.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Overview of scripting

Jumping in with
Python scripts

Under the hood of a
Python script

Calling Python-based
scripts

External methods

Perl-based scripts

✦ ✦ ✦ ✦

i4857-3 Ch15.F 3/1/02 9:42 AM Page 439

440 Part IV ✦ Advanced Zope Concepts

Jumping in with Python Scripts
The following sections assume at least a rudimentary knowledge of the Python lan-

guage. Please see Chapter 5 for a primer.

Creating a Python-based script
To create a Python-based script, select Script (Python) from the Add menu in the

management interface. Enter an id and click Add and Edit. You’re presented with an

editing screen like the one shown in Figure 15-1.

Figure 15-1: Editing a Python script

The Parameter List is just like the parameter list in a normal Python method. It is a

comma-separated list of variables to be passed into the function. Default values are

specified with the syntax <parameter>=<value>. Ways of passing arguments to these

scripts will be described in more detail later.

The large text area is the body of the script and is where the actual Python code is

placed. Almost anything you can do in a normal Python method can be done here.

A few restrictions are explained later in this chapter.

When you first create a Python Script, it contains some example code that demon-

strates several useful functions. Let’s take a moment to examine these before you

move on to one of your own.

i4857-3 Ch15.F 3/1/02 9:42 AM Page 440

441Chapter 15 ✦ Scripting Zope

Example code:

Import a standard function, and get the HTML request and response objects.
from Products.PythonScripts.standard import html_quote
request = container.REQUEST
RESPONSE = request.RESPONSE

Return a string identifying this script.
print “This is the”, script.meta_type, ‘“%s”’ % script.getId(),
if script.title:

print “(%s)” % html_quote(script.title),
print “in”, container.absolute_url()
return printed

The first thing the script does is to import a function from a module in

Products.PythonScripts.standard. This module provides access to several useful

functions for use in Python Scripts and can be examined in closer detail by opening

up the standard.py file located in your Products/PythonScripts directory. This par-

ticular function, html_quote, converts characters that have special meaning in

HTML to special syntax that can be displayed without being interpreted. The next

thing we do is get the REQUEST object from the scripts container. This is a useful

shortcut that can be used in place of passing the REQUEST to the script as an

argument.

See “Calling scripts” later in this chapter for more information on passing parame-
ters to scripts.

Notice that the script is actually printing values. Unlike a Python module run from

the command line, or code run through Python’s interactive shell, the values

printed here don’t go to the terminal where you started Zope. Instead, they are put

into a special variable called printed that this script eventually returns. This can be

a useful tool for returning complicated, formatted output to a calling object, or even

to print out an entire HTML page, although we don’t recommend doing that.

As a final note, you’ll see that the code uses a variable called script and accesses

several properties. This is a special bound variable and is explained in greater

detail later on in this chapter under the section “Binding variables.”

Now let’s create a small script, the classic “Hello world!” Create a Script (Python)

object with an id of hello and edit it. If the script has code in it already, go ahead

and erase it. Fill out the fields as shown in Figure 15-2 and save.

To test your script, simply click the Test tab at the top of the form. You should get a

screen with the text “Hello World!” on it. Easy as that!

But the script doesn’t do much good if you can’t pass it a parameter. Edit the script

again to be like the one shown in Figure 15-3. Notice that we added a parameter to

the script and supplied a default value of World. This means you can pass in the

name that you would like the script to greet, but you may optionally leave it out

Cross-
Reference

i4857-3 Ch15.F 3/1/02 9:42 AM Page 441

442 Part IV ✦ Advanced Zope Concepts

and the default value of World will be used. Click the Test tab again. This time, you

notice that it brings up a screen with an input box for the name parameter we speci-

fied. Go ahead and enter your name and click the Run Script button. It should say

hello to you now! Try it again without the parameter and verify that the default

works.

Figure 15-2: A simple script

Figure 15-3: Passing parameters

i4857-3 Ch15.F 3/1/02 9:42 AM Page 442

443Chapter 15 ✦ Scripting Zope

Script security
Like most objects in Zope, certain security methods are enforced on scripts to limit

their ability to damage both the Zope instance and the machine that is hosting it.

Because Python scripts could potentially be extremely harmful, several restrictions

are placed on them, altering how you might expect them to run.

Python normally supplies a set of functions available to all programs. These built-

ins enable you to perform many useful, and potentially harmful, operations.

Because of the danger posed by these functions, Python-based scripts give you

access to only a limited subset. The following is a complete list of the standard

built-ins available to Python-based scripts:

ArithmeticError

AssertionError

AttributeError

EOFError

EnvironmentError

FloatingPointError

IOError

ImportError

IndexError

KeyError

LookupError

NameError

None

OSError

OverflowError

RuntimeError

StandardError

SyntaxError

TypeError

ValueError

ZeroDivisionError

abs

apply

callable

chr

cmp

complex

delattr

divmod

filter

float

getattr

hasattr

hash

hex

int

isinstance

issubclass

len

list

long

map

max

min

oct

ord

pow

range

repr

round

setattr

str

tuple

Most of these functions behave as you would expect them to in normal Python.

However, range and pow are limited from producing overly large numbers and

sequences. Of the missing functions, most deal with the filesystem (open, for exam-

ple) or have the capability to affect the Zope process (such as exit).

In addition to the standard built-ins, Zope also provides a few bonus built-ins.

DateTime, test, namespace and render are DTML utility functions. And to make up

i4857-3 Ch15.F 3/1/02 9:42 AM Page 443

444 Part IV ✦ Advanced Zope Concepts

for removing the type function from the built-ins, Zope provides an alternative,

same_type, which enables you to compare the type of two objects in much the same

way as type.

Besides restrictions to standard built-ins, Zope also restricts what you may import

into your scripts. Python-based scripts have access to only the following modules:

Products.PythonScripts.standard, AccessControl, string, random, and math. Zope

also monitors scripts for excessive looping and raises an error if it detects a potential

infinite loop. This is to prevent a Python-based script from monopolizing CPU time

and possibly reducing performance of the rest of the server or even locking it up.

And, finally, like all objects in Zope, Python-based scripts adhere to the standard

security policies. The scripts themselves cannot access objects that the user call-

ing the script does not have access to unless a Proxy Role has been placed on the

script. Also, as in DTML, Python-based scripts cannot access variables whose

names begin with an underscore. Zope considers these private and raises an error

if you attempt it.

Binding variables
You notice an area between the Parameter List and the body of the script labeled

Bound Names with a list of variables. These are hooks back into Zope’s framework,

giving you access to traversal and other useful information. Click the Bindings

tab of the management interface. You should get a screen like the one shown in

Figure 15-4.

Figure 15-4: The Bindings screen

i4857-3 Ch15.F 3/1/02 9:42 AM Page 444

445Chapter 15 ✦ Scripting Zope

When you create a Python-based script, Zope automatically creates default values

for four of the five available bound variables. Here is a list of the variables and what

they are used for:

✦ Context. This is the object on which the script is called. Usually, this is the

same as the Container, but as we learned in the section about Acquisition in

Chapter 14, through the trickeries of Traversal, we can essentially make any

script, anywhere, be called on any other object in the Zope Hierarchy. The

default value for this variable is context.

✦ Container. This is the actual container (usually a Zope folder) where the

script resides. This is useful for calling other methods stored in the same

folder. The default value is container.

✦ Script. This refers to the script object itself and defaults to script.

✦ Namespace. By default, this variable is left blank, but its recommended value

is an underscore character. If this script is called from DTML, this variable is

set to be the namespace of the caller. Normally, a script searches for its

parameters in the REQUEST object if no parameters are passed in (see “Calling

scripts from DTML,” later in this chapter.) If this variable is set, it instead

searches through the namespace (eventually getting to the request object).

✦ Subpath. If this script was traversed to in a URL, Subpath contains all the ele-

ments of the URL that occur after the script. If a script named some-script was

called in the URL /foo/some-script/bar/spam, Subpath would be a list contain-

ing the strings bar and spam. This variable defaults to traverse_subpath.

A simple script probably won’t use any of these variables, but they can come in

very handy for more complex problems. They’re also quite helpful for debugging

your scripts.

Under the Hood of a Python Script
A Zope Python script is, in essence, a Python method defined through Zope. Zope

takes the parameters and body you supply and converts it into a callable python

method, which runs just like you would expect it to. A lot of trickery is involved

behind the scenes in order to get your function to be called on the right object and

obey Zope’s security restrictions, but if you think of it as a normal python method

with limited access, you’ll do fine.

Calling Python-Based Scripts
You can call a Python-based script just like you would any other object in Zope. The

two primary methods are, of course, calling it from inside of another Zope object

(including other scripts and DTML methods), and calling it directly via a URL. For

most Zope Web applications, the former will probably be the most used way.

i4857-3 Ch15.F 3/1/02 9:42 AM Page 445

446 Part IV ✦ Advanced Zope Concepts

However, for advanced functions, usually where another client that understands

HTTP wants to talk to your server, calling a script from the URL can be a powerful

tool. We’ll look at both of these methods in the following sections.

Calling scripts from DTML
Calling your scripts from inside DTML is done in much the same way as you would

call a DTML method. If you just need to run the code but aren’t interested in dis-

playing any returned results, simply use the dtml-call syntax. To display the

returned results, use the dtml-var syntax. It becomes interesting when you must

decide how to pass parameters to your scripts.

Parameters can be passed two ways, explicitly or implicitly. Explicitly passing one

or more parameters to a script requires you to treat it exactly as you would a nor-

mal python function call. Suppose you had a Python-based script called retrieve
CustomerInfo that took the parameter customerId, processed some information, did

some formatting, and returned some information about that customer. Now sup-

pose you had a DTML document that looped through a list of customerId and dis-

played their information. It would probably look something like this:

<dtml-in customerIds>
<dtml-var expr=”retrieveCustomerInfo(customerId=_[‘sequence-

item’])”>

</dtml-in>

Simple enough, right? But there are shortcuts — ways to get your parameters to be

passed without explicitly specifying them. If you don’t pass any parameters to a

script that requires one or more, Zope examines the REQUEST object to see if it can

find the required parameters there. This behavior also works if you have a form

that submits directly to a Python-based script. Any form variables that match

parameters of the script will be matched up. Any form variables that don’t have a

counterpart in the Parameter List will be ignored and unavailable in the script.

As mentioned earlier, if the Namespace variable is bound, the script also attempts to

find the needed variables in calling objects Namespace. These are usually other

objects, such as a folder.

See Chapter 4 for details about Zope’s Namespace and what might be found
there.

Let’s test this out using our Hello World script created earlier in the chapter. Create

a DTML Document called helloDoc in the same folder as your script with the follow-

ing bit of code in its body:

<dtml-var expr=”hello(name=’John’)”>

Now view the page. You should see the value returned by the script displayed. You

notice that the name ‘John’ was passed explicitly to the script. Now let’s alter it a

little bit. Change your page to look like the following:

Cross-
Reference

i4857-3 Ch15.F 3/1/02 9:42 AM Page 446

447Chapter 15 ✦ Scripting Zope

<dtml-call “REQUEST.set(‘name’, ‘John’)”>
<dtml-var hello>

View the page again. You now see that even though we didn’t explicitly pass the

parameter name in, Zope searched the request and matched the value up anyway.

Now, let’s do one final example to make it all a bit more interactive. Here we create

a form that enables a user to input the name to be passed to the script. We also use

a common programming technique of having the form post back to itself and deal

with the displaying of the results. Edit helloDoc to contain the following code:

<form action=”./” method=”POST”>
Name: <input type=”text” name=”name” value=””>
<input type=”submit” value=”Submit”>

</form>
<p>
<dtml-if “REQUEST.get(‘REQUEST_METHOD’)==’POST’”>
<dtml-var hello>

</dtml-if>

Try the page and enter your own name. When you submit, it says hello to you! And

again, we’ve taken advantage of implicit argument passing. Since form variables are

placed on the REQUEST, the script will automatically retrieve them.

Note that we could have changed the action of the form to submit directly to the
hello script, but the results would not have been formatted with your header and
footer. There are times when this may not be such a bad thing — for example, if
you call a RESPONSE.redirect() at the end of the script. But in general, you’ll still
be calling it from another object.

Calling scripts from a URL
Navigating to a script via URL is fairly simple. The interesting thing is that you can

change the Context that a script is called in, and thus the object that it is called on,

via the intricacies of Zope’s acquisition framework. Suppose you have a directory

structure similar to the one in the following list:

✦ (Folder) plants

• (Object) ficus

• (Object) figs

✦ (Folder) animals

• (Object) dogs

✦ (Folder) tasks

• (Script) feed

• (Script) water

Note

i4857-3 Ch15.F 3/1/02 9:42 AM Page 447

448 Part IV ✦ Advanced Zope Concepts

To call the Water script on the ficus object, you would call /plants/tasks/
ficus/water. Because of the way Zope does Acquisition, it is able to properly find

all the objects in the URL, and because of the way we’ve called our script, the con-

text that water operates in is the ficus object. To call feed on the dogs would be

handled the same way by calling /animals/tasks/feed/dogs.

For more information on acquisition, see Chapter 14.

A practical example
Let’s take our breadcrumbs example from the beginning of the chapter and actually

implement it. Create a Python script called breadcrumbs with the following code in

the body:

Take the object that this script is called on (the context)
and traverse up to the root, getting the ID of each object.

object = context
path = [] # A list of id’s, one for each object.

while 1:
The root application doesn’t have an ID attribute, instead it
has a method that returns the id. So we check to see if the
objects id is a method or a string. If it is a method we’ve
reached the top of our trail.

if same_type(object.id, ‘’):
path.append(object.id)
object = object.aq_parent # Get the parent of this object

and loop
else:
break

Because we started at the bottom and went up, we’ll
want to reverse the order of the trail so that the
first item is at the top most object.

path.reverse()

Since we didn’t include the root object in our list of
breadcrumbs we’ll want to prepopulate it.
breadcrumbs = “/”

for i in range(0, len(path)):
id = path[i]
url = “/%s” % (string.join(path[:i+1], ‘/’)) # URL is all Æ

id’s up to this one
href = “%s” % (url, id)
breadcrumbs = “%s%s/” % (breadcrumbs, href)

return breadcrumbs

Cross-
Reference

i4857-3 Ch15.F 3/1/02 9:42 AM Page 448

449Chapter 15 ✦ Scripting Zope

Now, edit your standard_html_header to include the following code somewhere

below the body:

<dtml-var breadcrumbs>

Create a directory structure a few layers deep with an index_html that includes the

standard_html_header in each one. View the page at the bottom of the tree. You

should see a page similar to the one shown in Figure 15-5. Each link at the top

should take you back to the particular directory as named.

Figure 15-5: Breadcrumbs

External Methods
Zope provides another method of scripting with Python, that of External Methods.

They’re called External Methods because the code that you write lies outside of the

ZODB and instead resides in the filesystem. An external method is simply a method,

written in Python, whose module is in the /Extensions folder of the Zope installa-

tion. To create one, you need access to the filesystem directly, or at least enough to

FTP/SCP your file to the appropriate location.

Open up an editor and create a file called Hello.py with the following contents:

def helloMethod(name=”World”):
return “Hello %s!” % name

Save the file to the /Extensions directory under your Zope installation. If you don’t

have access to the filesystem where your Zope installation is running, you need to

talk to your system administrator.

i4857-3 Ch15.F 3/1/02 9:42 AM Page 449

450 Part IV ✦ Advanced Zope Concepts

After the module is on the filesystem, you need to create a Zope External Method

object. From the Zope Add menu, select External Method. Enter externalHello for

the Id, Hello for the Module Name, and helloMethod for the Function Name. Click

add. You should now have a Zope object called externalHello. You can call this

from DTML or traverse it from the Web just like you would a normal Python-based

script. It behaves in much the same way.

Why external methods?
So, the big question is, why would you want to go through all the trouble of an

External Method when you could just create a Python-based script? As we saw in

the previous section, Python-based scripts are powerful, but they are also limited. If

you have a particular module you want to import, chances are it won’t be available

in a simple Python-based script. External methods have far fewer restrictions. With

them, you can access arbitrary packages, the filesystem, or the network. This less-

ening of security in the script itself is offset by the fact that you must have access

to the filesystem.

A practical example
In order to perform the following example, you need access to an FTP server. If you

don’t have access to one, you can use Zope’s built-in FTP server to upload the file

to the root of your Zope instance.

Suppose that each day you need to upload some data via FTP to a remote server.

The file is a simple comma-delimited text file created from some data pulled from a

SQL database and formatted in a python script. The exact contents are unimpor-

tant, as long as it’s a simple text file.

Open up a text editor and create a file called dailyUpload.py that looks like the fol-

lowing, replacing the values for HOST, PORT, USER, and PASSWORD with your FTP

information:

from ftplib import FTP
from StringIO import StringIO
from string import join
from DateTime import DateTime

Replace the contents of the following
variables with your own FTP values.

HOST = ‘##Your FTP Server##’
PORT = ‘##The Port it connects to. Blank for default##’
USER = ‘##User name##’
PASSWORD = ‘##Password##’

i4857-3 Ch15.F 3/1/02 9:42 AM Page 450

451Chapter 15 ✦ Scripting Zope

def ftpData(self, data):
Create the file object from the string data supplied
file = StringIO(data)

Next, login to the FTP server.
ftp = FTP()
ftp.connect(HOST, PORT)
ftp.login(USER, PASSWORD)

DateStamp the data then upload it.
date = DateTime()
dateStamp = join([str(date.year()),

str(date.month()),
str(date.day())], ‘-’)

filename = ‘file_%s’ % dateStamp
command = “STOR %s” % filename
ftp.storlines(command, file)

Logout
ftp.close()

Place the file in the /Extensions directory of your Zope installation. Now create an

External Method object with an id of dailyUpload, a module name of dailyUpload,

and a Function name of ftpData. Create a simple text file in your editor and upload

it to a File object called data in the same directory as your External Method. The

contents don’t matter. Now create a Python script like the one shown in Figure 15-6.

Figure 15-6: uploadData script

i4857-3 Ch15.F 3/1/02 9:42 AM Page 451

452 Part IV ✦ Advanced Zope Concepts

Test the script and then log in to your FTP server to verify that the data was suc-

cessfully transferred.

Changes to External Methods are not immediately available to Zope. If you edit the
code of an External Method, you need to edit Zopes External Method object.
Restarting the server will also refresh the code.

Perl-Based Scripts
Because Zope is itself written in Python, it’s relatively easy to provide Python-based

Scripts and External Methods. But for all its power, Python just doesn’t do some

things as well as other languages. Perl is a powerful language, similar to Python,

that many Web developers are already familiar with. As such, there are Perl ver-

sions of both the Zope embedded scripts and External methods.

This section assumes you are installing in a Linux environment.

Unlike Python scripts, Perl scripts don’t yet have the restrictions that limit the
amount of Memory or CPU time taken up by them. As such, it’s possible for some-
one to write a Perl script that will monopolize server time and could bring your
Zope installation to a halt.

Before installing Script (Perl)
Before you can install Perl-based scripts, you need to make sure that Perl is

installed. Installing Perl is beyond the scope of this book, but the rest of the setup

requires that you have at least Perl 5.6.0 installed. You can get Perl from the

Comprehensive Perl Archive Network at www.cpan.org.

Perl needs to be compiled with Multi Threading support. Most binary distributions
are compiled without threads. This means you will probably have to install and
compile it from source. For the CPAN source version, make sure you run Configure
with the -Dusethreads flag.

After Perl is installed, you need to install the pyperl module. In a nutshell, this

enables you to embed Perl inside of Python. None of it is Zope specific, but it is

needed by the Zoperl product later on. Pyperl and Zoperl can both be downloaded

from http://downloads.activestate.com//Zope-Perl/.

Note

Caution

Note

Note

i4857-3 Ch15.F 3/1/02 9:42 AM Page 452

453Chapter 15 ✦ Scripting Zope

Installing Zoperl
Now that we have both Perl and Pyperl installed, we need to install Zoperl. This can

be downloaded from the same location as Pyperl at www.activestate.com. Extract

the archive to a directory and open the README file. You should follow the instruc-

tions available for the version of Zoperl that you’re installing. The easiest way to

install it is to simply run the install.pl script. It prompts you for a list of products

to install. You want to install the PerlExternalMethod and PerlMethod products. It

may also prompt you to install Hack::Names. This is normal and is required by

some versions of Zoperl. After the installer has run, restart your Zope instance and

you should be ready to go.

The README of Zoperl goes into detailed instructions for installing the entire pro-
cess on Windows. If you are running Zope on a Windows machine and would like
to get Zoperl working, please refer to the instructions therein.

Using Perl-based scripts
Perl-based scripts in general work exactly like their Python counterparts as far as

passing parameters to them and returning results is concerned. They also have the

same access to Zope objects.

Here’s an example that returns the id of the object in the current context:

my $context = shift;

$data = “Hello. You are viewing: $context->title_or_id”;

return $data

Summary
In this chapter, you discovered how to program Zope via several scripting methods,

including External Scripts, Python Script Objects, and Perl Script Objects. Scripts

are useful for automating a series of operations and/or adding business logic to a

Web site.

✦ ✦ ✦

Note

i4857-3 Ch15.F 3/1/02 9:42 AM Page 453

i4857-3 Ch15.F 3/1/02 9:42 AM Page 454

ZClasses

While Zope comes with a rich variety of built-in object

types such as Images, Files, Documents, Folders, and

Methods, occasionally you may need to define a new object

type that will work within Zope.

New object types are defined within Products. There are two

ways to define new object types within Zope:

✦ File system–based Python Products

✦ Through-the-Web Products using ZClasses

Python product development is covered extensively in Part II

of this book. In this chapter, we explain when and how to use

ZClasses to define new object types.

What are ZClasses? OOP and
Classes

In standard OOP (object-oriented programming) parlance, a

class is a blueprint or prototype that defines the variables and

the methods common to all objects of a certain kind, which

are also known as instances of the class.

So, all Folder objects within Zope are really instances of the

Folder class. Everything about how Folders behave is defined

within that class. For example, the functionality that enables

Folders to contain other objects and list the objects within

them.

However, not all folders are identical. Folders can contain dif-

ferent objects and they can have different properties. These

attributes are not defined in the class, which is only con-

cerned with those things that instances have in common.

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What are ZClasses?

Creating a simple
ZClass

ZClasses and
property sheets

Automatically
generating ZClass
views

Creating simple
applications using
ZClasses

ZClasses and security

Creating
CatalogAware
ZClasses

Subclassing ZClasses
from Python base
classes

Distributing ZClass
products

✦ ✦ ✦ ✦

i4857-3 Ch16.F 3/1/02 9:42 AM Page 455

456 Part IV ✦ Advanced Zope Concepts

Through-the-Web ZClasses
You may be wondering, if all of Zope’s standard objects are defined in Python

Products, then why not use those instead of ZClasses?

Well, creating Python Products requires knowledge of the Python programming lan-

guage. Beginning Zope users may not have the required programming skill to create

a Python Product for Zope. Therefore, Zope has a way for users to define new

object types through the Web by creating what are called ZClasses.

ZClasses enable you to create Products and new object types (classes) entirely

through the Web, without resorting to creating files on the file system.

ZClass-based products can be redistributed to other Zope users, and can generally

be modified after they’ve been installed if the user has management privileges on

the Root Folder, unless the developer has chosen to disallow such modification.

ZClass disadvantages
So if ZClasses are so great, why not use them for everything? Why are the standard

object types developed as Python Products, instead of ZClasses?

ZClasses do have some disadvantages. Many programmers like using powerful

filesystem-based development tools such as editors, versioning systems, debug-

gers, and so on. Because ZClasses are stored entirely within the ZODB (Zope Object

Database), they aren’t accessible to filesystem-based tools. This imposes a practi-

cal upper limit to the complexity of ZClass-based products, and the browser text-

area editing that Zope provides isn’t very productive compared to a powerful text

editor.

It’s expected that in future versions of Zope, the distinction between file system-

based products and through-the-Web products will diminish, or even disappear, but

for the moment, ZClasses and Python Products are still distinct.

Creating a Simple ZClass
In this section, we show you step-by-step how to create a simple ZClass. All of the

interesting parts will happen inside the special Products folder, which is in the

Control_Panel, as you can see in Figure 16-1.

As you can see, the Products folder contains a number of listings. If you haven’t

added or created any through-the-Web products to your Zope installation yet, then

all of the products are indicated by “closed box” icons. As we shall soon see,

through-the-Web products have “open box” icons.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 456

457Chapter 16 ✦ ZClasses

Figure 16-1: The Products folder

Creating the product
In the /Control-Panel/Products folder, click the Add Product button. You’ll be pre-

sented with a form similar to the form shown in Figure 16-2.

Type SimpleProduct for the id for the Product, and click the Generate button. You’ll

be returned to the /Control_Panel/Products/ folder, and you should see

“SimpleProduct” in the list, as shown in Figure 16-3.

Click SimpleProduct and take a look at the screen that appears, which should look

like the screen shown in Figure 16-4.

You can see a few new things in your product that distinguish it from other

container-type objects:

✦ A Folder object with a question mark in its icon called “Help

(SimpleProduct).” The Help folder can be used to contain product-specific

help topics.

✦ Two new tabs, Define Permissions and Distribution.

Another difference that is only apparent if you examine the Add list drop-down

menu is that there are several new objects available to add in your Product,

including ZClass, Zope Permission, and Zope Factory.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 457

458 Part IV ✦ Advanced Zope Concepts

Figure 16-2: The Add Product form

Figure 16-3: The SimpleProduct in the Products folder

i4857-3 Ch16.F 3/1/02 9:42 AM Page 458

459Chapter 16 ✦ ZClasses

Figure 16-4: The Empty SimpleProduct

Creating the ZClass
So let’s create a new object type. We won’t have you create anything particularly

complex to begin with, just an object that displays a single property.

Using the Add list drop-down menu in the SimpleProduct Contents tab, choose

ZClass, which will display the Add ZClass form, as shown in Figure 16-5.

This form has several elements, but we’re not concerned with most of them just

yet. For now, set the id of the ZClass to SimpleZClass and the meta-type to Simple.

Leave the two checkboxes (“Create constructor objects?” and “Include standard

Zope persistent object base classes?”) checked, and click the Add button. You

should be returned to the SimpleProduct Contents view, where you should see sev-

eral new objects as shown in Figure 16-6.

The second object listed, with the white box icon, is the actual SimpleZClass

ZClass.

There are also two DTML methods: SimpleZClass_add, which is the method that

actually creates an instance of your ZClass where it gets called, and sets its id and

title, and SimpleZClass_addForm, which is the form that is displayed when you

choose to add a Simple object from the Add list drop-down menu. This form let’s

you choose the id of the instance, and pass it along with the other given variables

on to the SimpleZClass_add method for the actual construction.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 459

460 Part IV ✦ Advanced Zope Concepts

Figure 16-5: The Add ZClass form

Figure 16-6: The SimpleProduct with SimpleZClass

i4857-3 Ch16.F 3/1/02 9:42 AM Page 460

461Chapter 16 ✦ ZClasses

SimpleZClass_add_permission is represented by a stick figure carrying a box, and

defines a permission that you can associate with the ability to create “Simple”

objects. You can use this to control who can and cannot create objects within your

site, just as with any other object. You can also control the name of the permission

using this object.

SimpleZClass_factory is a special object that tells Zope about the name of the

object in the Add list, as well as what method must be called when it is selected in

the list (in this case it is SimpleZClass_addForm), and what permission a user needs

to have to be able to add this object (in this case SimpleZClass_add_permission).

At this point, you can go ahead and actually add “Simple” objects to normal folders.

So, navigate to your root folder and choose “Simple” from the “Add” list drop-down

menu. You’ll be presented with a form to set the id of the object. Use and id

“simpletest” and click “Add”. This will actually create the object in the folder.

Unfortunately, the Simple object, which is an instance of the SimpleZClass ZClass,

doesn’t actually do anything yet, so let’s show you how to enhance it a bit.

Adding a default view
When Zope publishes an object, the first thing it looks for is an index_html method.

If it can’t find one for the object, it tries to acquire one. In this case, your

SimpleZCLass object does not have an index_html method, so it acquires one from

containing Root Folder.

Go back to the /Control_Panel/Products/ folder, and click the SimpleProduct item.

Then click the SimpleZClass item. You should be on the Methods tab by default, so

choose “DTML Method” from the Add list drop-down menu, and name the method

index_html. Click the Add and Edit button to change the default code for a method

to the following:

<dtml-var standard_html_header>
<h3>This is a Simple object.</h3>
Not much to see here yet.
<dtml-var standard_html_footer>

After you click Save Changes, you can click the text. SimpleZClass, in the path at the

top of the frame to return to the Methods tab of the ZClass. Next, click the Views

tab of the ZClass, which should look like Figure 16-7.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 461

462 Part IV ✦ Advanced Zope Concepts

Figure 16-7: The SimpleZCLass Views tab

You can see here that three views are currently defined for the ZClass: Undo,

Ownership, and Security, which not coincidentally are the three tabs available

when you click on the simpletest Simple object we added to the root folder earlier.

What you’re going to do next is add a View tab to the ZClass. Type in the name

View into the Name field of the form at the bottom of the Views tab. Make sure that

the method selected in the Method drop-down menu is index_html, and click the

Add button. (See Figure 16-8.)

Now that you’ve added a “View” view to the ZClass, take a look at the instance that

you already added to the Root Folder at /simpletest by clicking on it in the Root

Folder. You should see that the ZClass now has a new tab named “View.” Click it to

see the ZClass index_html method, as shown in Figure 16-9.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 462

463Chapter 16 ✦ ZClasses

Figure 16-8: After adding the “View” view

Figure 16-9: The ZClass rendered index_html method

i4857-3 Ch16.F 3/1/02 9:42 AM Page 463

464 Part IV ✦ Advanced Zope Concepts

ZClasses and PropertySheets
Adding new object types is all very well, but if those objects can’t have

custom attributes, then they won’t be much use. Zope objects have attributes

called Properties that can be generically created and assigned values through the

Properties tab. In this way, you can edit a Folder object’s title, or add a custom

property such as a list of colors to populate a drop-down box.

The title property of a Folder, and most other Zope objects, is a built-in property.

However, specialized objects need specialized property types, and occasionally

default values. To support this, you can define and add your own custom properties

to your ZClasses, build interfaces to manage them, and access those properties

from DTML.

Zope has several property types you can use:

✦ Boolean

✦ Date

✦ Float

✦ Int

✦ Lines

✦ Long

✦ String

✦ Text

✦ Token

✦ Selection

✦ Multiple Selection

Most of these represent ordinary attribute types, and correspond directly to their

namesakes from Python. A few deserve a bit more explanation.

Lines properties are basically a list of strings. The typical representation of a lines

property is a form text element containing rows separated by carriage returns. This

property can be iterated over from within DTML to access its individual strings.

Like the list type in Python, the order of the elements is preserved.

Text properties are essentially string properties, except that Zope takes care of con-

verting the line ending character supplied by the browser to a standard internal

representation. It’s meant to store values from a text form element.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 464

465Chapter 16 ✦ ZClasses

Tokens, like lines properties, are sequences of strings. Unlike lines, which separate

their elements with carriage returns (enabling multiple words in each string),

Tokens separate the strings with spaces, so that what is stored is a sequence of

single word strings, rather than arbitrary strings.

Selection and Multiple Selection properties are used to store the values of selection

and multiple selection form elements.

Using simple property types
In order to use properties, they must first be added into the ZClass. ZClasses have

special objects for containing property definitions called property sheets.

You can add a Property Sheet by navigating to the Simple product by clicking the

Control Panel in the Root Folder, and then clicking on Products, and finally clicking

on SimpleProduct. Next, click the SimpleZClass.

ZClasses have a tab for managing property sheets, called, of course, “Property

Sheets.” Click the Property Sheets tab as shown in Figure 16-10.

Figure 16-10: The Property Sheets tab

i4857-3 Ch16.F 3/1/02 9:42 AM Page 465

466 Part IV ✦ Advanced Zope Concepts

As you can see in Figure 16-10, the SimpleZClass doesn’t have any property sheets

defined, so you don’t have anywhere to place your property definitions yet. You

can remedy this quite easily by clicking the Add Common Instance Property Sheet

button, which brings up a simple form requesting an id and a title, as shown in

Figure 16-11.

Figure 16-11: The Property Sheet Add form

Fill in an id of Basic, and click the Add button. You have now added a property

sheet whose property definitions will be shared among all of the instances of your

ZClass (hence, a “common instance” property sheet).

The Property Sheets tab (which you were returned to after adding a property

sheet) now shows the existence of the “Basic” property sheet we just created, as

Figure 16-12 demonstrates.

Clicking the Basic property sheet reveals the interface for managing properties,

which you can also see in Figure 16-13.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 466

467Chapter 16 ✦ ZClasses

Figure 16-12: The Property Sheets tab, with the Basic property sheet

Figure 16-13: The “Basic” property sheet

i4857-3 Ch16.F 3/1/02 9:42 AM Page 467

468 Part IV ✦ Advanced Zope Concepts

Figure 16-13 also illustrates the types of properties that can be added, as described

earlier in this chapter. For now, add a string property to the property sheet with a

name of “title.” Fill in the name field with title and make sure that the drop-down is

set to “string.” Leave the Value field blank. Click the Add button, and your property

sheet should now look like Figure 16-14.

Figure 16-14: Adding the “title” string property

You can see in Figure 16-14 that each property that is defined on a property sheet

has three columns: a name column, a value column, and a type column.

Unfortunately, there is no way to rename a property or change its type. If you find

that you need to rename a property or change its type, you should delete the prop-

erty in question and add a new one with the appropriate name and type.

One of the nice things about ZClass property sheets is that Zope can automatically

construct a management tab for them. Navigate back to the SimpleZClass and click

the Views tab. Scroll to the bottom of the screen and type Properties into the Name

field. Select propertysheets/Basic/manage from the method drop-down menu, as

shown in Figure 16-15. Click Add, and you’ll see a new View defined for the property

sheet. It would be nice for this to be the default view of the Simple object, so check

the checkbox to the left of the Properties view, and click the First button. The View

tab of the SimpleZClass should now look like Figure 16-16.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 468

469Chapter 16 ✦ ZClasses

Figure 16-15: Adding the “Properties” view

Figure 16-16: The Views tab, after adding the “Properties” view

i4857-3 Ch16.F 3/1/02 9:42 AM Page 469

470 Part IV ✦ Advanced Zope Concepts

If you now click on the simpletest instance of your ZClass, you’ll see that the

Properties view is now displayed by default, and that Zope constructs a form to

manage the properties for the Basic property sheet automatically.

Using this form is the same as using the Properties tab for any other Zope object:

make the changes you want and click the Save Changes button. As an example, type

A Title for simpletest into the title field, and click Save Changes. Zope presents a

screen telling you that the changes have been made with a single OK button.

Clicking the button will returns you to the Properties tab, which will reflect the

change that you made.

Clicking the View tab reveals that the title property is being acquired and rendered

in the objects index_html method, as you can see in Figure 16-17.

Figure 16-17: The title property rendered in the Simple object’s index_html

Recall that the index_html method calls standard_html_header, which contains the

following code:

<html>
<head>
<title><dtml-var title_or_id></title>
</head>
<body bgcolor=”#FFFFFF”>

<h1><dtml-var title_or_id></h1>

i4857-3 Ch16.F 3/1/02 9:42 AM Page 470

471Chapter 16 ✦ ZClasses

The title_or_id method tries to render an object’s title if it can find one, or the

object’s id if it cannot. Until now, the simpletest instance has only had an id, but

because we added a title property, the simpletest instance is rendered as the

object’s title, and as a header in the page.

It’s important to realize that while property sheets define the properties of all

instance of a ZClass, the values of the properties in those instances are indepen-

dent of one another, so setting a second Simple instance’s title does not influence

the value of the other instances’ title property.

Using select and multiple-select properties
Sometimes, instead of letting the owner of an object set a property to any value,

you may want them to choose from among a limited number of choices. This is

what the select and multiple-select properties are for.

However, for these property types to work, they must get the allowed values from

somewhere. Typically, these properties get the allowed values from another prop-

erty, either in another property sheet, or acquired from above the object instance.

For example, add a Values property sheet to the SimpleZClass and add a color_list
lines property to it. Fill out the lines property so that it matches Figure 16-18, and

save the changes.

Figure 16-18: The Values property sheet

i4857-3 Ch16.F 3/1/02 9:42 AM Page 471

472 Part IV ✦ Advanced Zope Concepts

After you’ve created the property holding the list of values, go to the “Basic” prop-

erty sheet and add a select property by entering the name color, choosing selection

from the Type drop-down menu, and setting its value to color_list. This is how you

inform Zope of the source of the allowed values.

After creating the “color” property, the property sheet should look like Figure 16-19.

Figure 16-19: The Basic property sheet with the Color select property

You may notice that Zope can’t find the color_list attribute for populating the

color selection property, but this is normal. The color_list property definition is not

an actual property, and so isn’t subject to acquisition. In the ZClass instance, the

color_list property is available, and so the color selection property is populated

correctly.

There are a couple of ways to correct this, but none of them ideal. You could put

the color_list property in a location where both the ZClass instances and the ZClass

itself can acquire it, such as in the Root Folder, but that moves the list of permitted

values outside of the product and can cause a problem when you distribute the

product.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 472

473Chapter 16 ✦ ZClasses

If you create a color_list property on the Simple product’s Properties tab instead,

the ZClass will acquire it just fine, but the instances won’t. You could duplicate the

color_list property definition in the Values property sheet as well as an actual prop-

erty on the product, but that will probably be confusing if and when the two get out

of synch.

All in all, we recommend you leave the color_list property definition in a property

sheet dedicated for this purpose (in this case, the Values property sheet), and sim-

ply ignore that the color selection property in the Basic property sheet reports an

error.

Automatically Generating ZClass Views
In this chapter, you’ve already seen how to create a management tab dynamically

from a property sheet, but they are hardly what you want to present to the end

users of your site.

Fortunately, Zope has a facility for generating end-user interfaces fairly easily.

This facility for creating end-user interfaces has a few drawbacks. Unlike the method

used to create management tabs, these automatically generated methods are not

self-updating, so if you change the ZClass, you will either have to re-generate the

methods in question, or you’ll have to hand edit them.

Hand edit? Yes, the methods generated in this way are actual DTML (Document

Template Markup Language) method objects, and can be customized to your

heart’s content. Keep in mind that any changes you make will be lost if the methods

are re-generated again.

Generating a View interface
In the SimpleZClass, delete the index_html method that is currently used to view

the ZClass instances. Then, use the Add drop-down menu to select Property Sheet

Interface. The form, which looks like Figure 16-20, has an id field in which you

should type index_html, a title field that you may leave blank, a select field for

choosing the property sheet in which you should choose “Basic,” and another

select field for determining the type of interface to generate (“view” or “edit”) in

which you should choose “view.”

i4857-3 Ch16.F 3/1/02 9:42 AM Page 473

474 Part IV ✦ Advanced Zope Concepts

Figure 16-20: The Add Property Sheet Interface form

After filling out the form, click the Add button. This generates the interface method

and returns you to the ZClass Methods tab. Because this facility creates a “normal”

DTML method, you can click it in order to examine the code that was generated.

The code of the new index_html method should look like this:

<dtml-var standard_html_header>
<table>
<tr><th align=left valign=top>Title</th>

<td align=left valign=top><dtml-var title></td>
</tr>
<tr><th align=left valign=top>Colors</th>

<td align=left valign=top><dtml-var colors></td>
</tr>

</table>
<dtml-var standard_html_footer>

If we take a look at the View tab of the simpletest instance in the Root Folder, we’ll

see this code rendered, as is shown in Figure 16-21.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 474

475Chapter 16 ✦ ZClasses

Figure 16-21: The rendered View interface

Generating an Edit interface
Creating an “Edit” interface for your ZClass is substantially similar to creating a

View interface, but the end result is a little different.

In the SimpleZClass Methods tab, choose Property Sheet Interface from the Add

drop-down menu, and fill out the form as follows: set the id to “edit_form,” leave the

title field blank, set the Property Sheet drop-down menu to “Basic” and set the Type

drop-down menu to “Edit.” Once you’ve set the form fields appropriately, click Add.

Examining the contents of your new edit_form method reveals the following code:

<html><head><title><dtml-var title_or_id></title></head>
<body bgcolor=”#FFFFFF” link=”#000099” vlink=”#555555”>
<dtml-var manage_tabs>
<form
action=”propertysheets/Basic/manage_editProperties”><table>
<tr><th align=left valign=top>title</th>

<td align=left valign=top>
<input name=”title:string” size=”35”

value=”<dtml-var title html_quote>”></td>

i4857-3 Ch16.F 3/1/02 9:42 AM Page 475

476 Part IV ✦ Advanced Zope Concepts

</tr>
<tr><th align=left valign=top>colors</th>

<td align=left valign=top>
<dtml-if “_.has_key(‘colors’)”>
<select name=”colors”>
<dtml-in “_.string.split(‘color_list’)”>
<option
<dtml-if “_[‘sequence-item’]==’colors’”>
SELECTED</dtml-if>
><dtml-var sequence-item></option>

</dtml-in>
</select>
<dtml-else>
No value for colors

</dtml-if></td>
</tr>
<tr><td colspan=2>
<input type=submit value=” Change “>
<input type=reset value=” Reset “>

</td></tr>
</table></form>
</body></html>

You can see that more code is generated here than for the View method, most of it

to iterate over the color_list property and create the select form element.

In order to see how this method renders, you’ll have to type in the URL directly (in

this case, http://yourserver/simpletest/edit). You should see something similar

to what is shown in Figure 16-22.

You may notice that the color drop-down menu is not functioning properly and is

not displaying the list of colors we’ve defined in color_list. Unlike the automatically

generated view of the property sheet that we defined for the Properties tab, the

generated DTML method assumes that the options for colors, namely color_list, is a

tokens property, instead of a lines property. The assumption is buried in the follow-

ing DTML line:

<dtml-in “_.string.split(‘color_list’)”>

split is a method of the string module, and generally expects two parameters: a

string and a separator. In the absence of an explicit separator, split uses the default

separator, which is a space. You may recall that tokens properties are sequences of

strings separated by spaces.

Resolving this problem is fairly simple. Just replace the previous line with the one

that follows :

<dtml-in color_list>

And that’s it! The edit method will now work as advertised.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 476

477Chapter 16 ✦ ZClasses

Figure 16-22: The SimpleZClass edit_form method

There are a few other minor tweaks to get this to work well as an end user-accessible

edit screen. First, the code must be modified to use the standard headers and foot-

ers, and the management tabs must be removed. In addition, a reference to the edit

screen should be added to the index_html method.

After making the changes to the edit_form method, your code should look like the

following listing:

<dtml-var standard_html_header>
<form
action=”propertysheets/Basic/manage_editProperties”><table>
<tr><th align=left valign=top>title</th>

<td align=left valign=top>
<input name=”title:string” size=”35”

value=”<dtml-var title html_quote>”></td>
</tr>
<tr><th align=left valign=top>colors</th>

<td align=left valign=top>
<dtml-if “_.has_key(‘colors’)”>
<select name=”colors”>
<dtml-in color_list>
<option
<dtml-if “_[‘sequence-item’]==’colors’”>
SELECTED</dtml-if>

i4857-3 Ch16.F 3/1/02 9:42 AM Page 477

478 Part IV ✦ Advanced Zope Concepts

><dtml-var sequence-item></option>
</dtml-in>

</select>
<dtml-else>
No value for colors

</dtml-if></td>
</tr>
<tr><td colspan=2>
<input type=submit value=” Change “>
<input type=reset value=” Reset “>

</td></tr>
</table></form>
<dtml-var standard_html_footer>

Creating Simple Applications Using ZClasses
Until now, you’ve built a fairly useless ZClass as a demonstration. In order to illus-

trate some of the more complex aspects of building custom object types in this

way, a more concrete example is helpful.

In this section, we show you how to build an application for creating and managing

frequently asked questions. The application will consist of a folder-like FAQ man-

ager object, and Q & A objects that can be placed in it.

First, of course, you’ll need to create a product for the various object-types to “live”

in. Add a ZFAQ product to the Products folder.

FAQManager ZClass
The first object that you’ll need to create is the container. We’ll call this class the

FAQManager. Add a ZClass to the ZFAQ product. Set both the id and the meta-type

to FAQManager and leave the Include standard Zope persistent object base classes?

and Create constructor objects? boxes checked. Select ZClasses: ObjectManager

from the list of unselected base classes, and click the button with the two greater

than symbols (>>). You will see that the ZClasses: ObjectManager class now

appears in the “selected” list instead of the unselected list. Next, repeat the proce-

dure with the OFS: Folder class. The form should now look like the form shown in

Figure 16-23.

When you have the Add form set as in Figure 16-23, click the Add button.

The ObjectManager and Folder classes overlap significantly. The main reason for
Subclassing both is that an ObjectManger enables you to restrict the object-types
that may be added to it, whereas Folders have a management interface that sup-
ports copy-and-paste, renaming, and other niceties. By subclassing both, we get
both sets of functionality. The order in which the ZClass inherits from these two
classes is important.

Note

i4857-3 Ch16.F 3/1/02 9:42 AM Page 478

479Chapter 16 ✦ ZClasses

Figure 16-23: The Add form for the FAQManager ZClass

Click the FAQManager ZClass. You’ll see that it has a tab that the SimpleZClass

didn’t: a Subobjects tab. This is used to control what objects may be contained

within the FAQManager. Right now, we don’t yet have an object type to place within

the FAQManager, so we’ll leave it alone.

Let’s add a FAQManager and see what it looks like so far. In your Root Folder,

choose FAQManager from the drop-down list of addable objects. In the Add

FAQManager form that appears, give the FAQManager an id of faqtest, and click the

Add button.

Clicking faqtest shows a single Contents tab that informs you that there are no

items in faqtest. It also does not have any provision for adding any objects. If you

try accessing faqtest through a browser (http://yourserver/faqtest), you’ll see

that it simply acquires the index_html method of the Root Folder, and obviously

doesn’t have one of its own. All in all, not very useful . . . yet.

QandA ZClass
So our FAQManager doesn’t have any objects to add. Fortunately this is easily reme-

died. The QandA ZClass is actually very simple, consisting of two text properties

(“question” and “answer”) and a Boolean property (“display”). The trickiest part of

creating the QandA ZClass is its location, which must be inside the FAQManager

ZClass. By placing it there, QandA ZClass instances will only be addable within the

i4857-3 Ch16.F 3/1/02 9:42 AM Page 479

480 Part IV ✦ Advanced Zope Concepts

FAQManager, and nowhere else. If you wanted to be able to add QandA instances

elsewhere, you could either create its own product, or you could place them

directly within the ZFAQ product, depending on whether you later wanted to dis-

tribute the FAQManager and QandA separately or as a single product. In this case,

though, you don’t want the QandA distributed separately or the instances to be

addable anywhere else, so the ZClass should be created inside the FAQManager

ZClass.

Click the ZFAQ product in the /Control_Panel/Products/ folder, and then click the

FAQManager ZClass. Here, choose “ZClass” from the drop-down list of objects, and

fill in the Add ZClass form with an id and meta-type of “QandA.” The QandA ZClass

doesn’t need any base classes, but make sure that the two checkboxes are selected.

Finally, click Generate.

At this point, if you go back to the FAQManager instance faqtest, and take a look at

it in the management interface, you’ll see that there is now an Add QandA button as

you can see in Figure 16-24.

Figure 16-24: The FAQManager Contents tab after the QandA ZClass has been
added to the FAQManager ZClass

i4857-3 Ch16.F 3/1/02 9:42 AM Page 480

481Chapter 16 ✦ ZClasses

Clicking the Add QandA button presents a simple Add QandA form consisting only

of an id text field and an Add button. Add an id of “001,” and click the button. After

Zope adds the 001 QandA instance to the FAQManager, you’ll see that the interface

now has the usual folder interface, including Cut, Copy, Paste, and Rename buttons.

Our QandA instances need properties, so let’s add them. To make the QandA

objects easier to manage, it would be useful to have the folder interface list the

question as well as the id. However, the only property that folder-like objects list in

the interface in this way is the title property. While it is possible to get the title

property to return the value of another property (or a computed property) through

some sleight-of-hand, it’s actually completely unnecessary. All you have to do is use

the title property to store the question in the first place and relabel the field on the

form.

In the QandA ZClass, click the Property Sheets tab and then click the Add Common

Instance Property Sheet button. Give the property sheet an id of “basic,” and click

Add. In the Property Sheets tab, click the Basic property sheet, which should now

be visible. Add a Boolean property named “display,” and two text properties named

“title” and “answer.”

Now that you’ve added the necessary property definitions to the QandA Basic prop-

erty sheet, you need to create a form to edit the values and add it as a view.

Navigate back to the main Methods tab of the QandA ZClass and select Property

Sheet Interface from the Add drop-down menu. In the Add Property Sheet Interface

form, fill in the id field as “edit_form,” leave the property sheet drop-down field on

“basic,” and change the type drop-down menu to “Edit.” Click the Add button.

Next, you need to add an Edit tab. Go to the QandA ZClass’s Views tab and add a

view named “Edit” using the edit_form method. Because we want this to be the

default tab for the QandA object, select the checkbox to the left of the Edit view and

click the First button.

At this point you should go back to the faqtest FAQManager instance in your Root

Folder and take a look at the changes there. The 001 instance of the QandA ZClass

that you already added should still be there, but if you hadn’t already added one, or

you removed it, add it now.

Click the 001 instance and you should now see the Edit tab we just created, as can

be seen in Figure 16-25. Type Why? in the title field, and Because. in the answer

field, and click the Change button.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 481

482 Part IV ✦ Advanced Zope Concepts

Figure 16-25: The QandA Edit tab, as generated

If you now take another look at the FAQManager management interface, you can

now see that the value of the title property is in fact being displayed by the id, just

as we intended.

However, you didn’t really want to have the name of the field be “title;” you wanted

it to be “question,” so we need to go in and alter the edit method. Navigate to the

QandA ZClass, and click the edit_form method. Find the line that contains the fol-

lowing code:

<tr><th align=left valign=top>title</th>

and change it to match the following:

<tr><th align=left valign=top>question</th>

Then click the Save Changes button. If you now go back to the QandA instance in

faqtest, you’ll see that the Edit tab now labels the first text field as “question.” So

far, so good.

Next, you may have noticed that after editing the QandA instance and pressing the

Change button, the confirmation screen you are presented to then returns you to

i4857-3 Ch16.F 3/1/02 9:42 AM Page 482

483Chapter 16 ✦ ZClasses

the QandA’s property sheet screen, rather than to the FAQManager interface, as

would be more convenient. This can be fixed by creating a method that intermedi-

ates between the edit_form method and the manage_editProperties method that

the edit_form targets as its action currently.

Create an edit DTML method in the ZClass Methods tab alongside the edit_form
method. Place the following code into it:

<dtml-call
“propertysheets.basic.manage_changeProperties(REQUEST)”>
<dtml-call “RESPONSE.redirect(URL2+’/manage_workspace’)”>

and click Save Changes. Next, change the target of the edit_form method form

action to the edit method. Find the line in edit_form that reads:

<form
action=”propertysheets/basic/manage_editProperties”><table>

and change it to read:

<form action=”edit”><table>

and click Save Changes. If you now go back to the faqtest instance and edit the 001

QandA object, you’ll find that after clicking the Change button you are immediately

redirected to the FAQManager Contents tab.

Finishing the FAQManager interface
You’re almost done creating a functional FAQ tool. The only thing missing now is a

display interface for the FAQManager object.

This method (index_html) must do two things:

✦ Iterate through the contained QandA objects to render a list of questions that

are linked to question-and-answer pairs lower in the document.

✦ Iterate through the same objects again to render the question-and-answer

pairs.

Create an index_html DTML method in the FAQManager ZClass with the following

code:

<dtml-var standard_html_header>

<dtml-in “objectValues(‘QandA’)” sort=id>
&dtml-title;

</dtml-in>

i4857-3 Ch16.F 3/1/02 9:42 AM Page 483

484 Part IV ✦ Advanced Zope Concepts

<dtml-in “objectValues(‘QandA’)” sort=id>
<hr>
Q: <dtml-var title>

A: <dtml-var answer>

Return to top
</dtml-in>

<dtml-var standard_html_footer>

You can see that this code is a very simple display method, but it has the disadvan-

tage of displaying all QandAs even if they don’t have an answer yet. This is why we

added the display property, in order to control the display. Change the index_html
method to the following:

<dtml-var standard_html_header>

<dtml-in “objectValues(‘QandA’)” sort=id>
<dtml-if “display”>
&dtml-title;

</dtml-if>
</dtml-in>

<dtml-in “objectValues(‘QandA’)” sort=id>
<dtml-if “display”>
<hr>
Q: <dtml-var title>

A: <dtml-var answer>

Return to top
</dtml-if>
</dtml-in>

<dtml-var standard_html_footer>

Now, only those QandA objects that have the display property checked will be

listed in the FAQManager’s index_html method.

You’ve now created a ZClass based extension of Zope. You (and other users with

the Manager role) can add instances of the FAQManager in various places in your

site and create and manage the contained QandA objects in order to easily maintain

an FAQ list.

Creating CatalogAware ZClasses
Here we describe the necessary alterations to a ZClass-based product to make the

instances automatically cataloged and indexed.

See Chapter 17 for more information about ZCatalog and searching.Cross-
Reference

i4857-3 Ch16.F 3/1/02 9:42 AM Page 484

485Chapter 16 ✦ ZClasses

Making a ZClass catalog aware
Catalog awareness in class instances means that the following conditions are met:

✦ Objects are indexed in the catalog automatically when they are added to the

site.

✦ Objects are unindexed when they are removed from the site.

✦ Objects are re-indexed when they are changed.

All of this is accomplished by subclassing the ZClass from CatalogAware, and mak-

ing a few changes to its add and edit methods.

First, a point that perhaps does not get stressed enough: when creating a

CatalogAware ZClass, it’s important that the ZClasses: CatalogAware class is added

first to the list of classes that the ZClass subclasses.

Create a CatalogThing product in your Control_Panel/Products folder and add a

ThingClass ZClass to it. Type ThingClass in the id field in the ZClass add form and

set the meta type to Thing. Leave the two checkboxes on the form checked, then

select ZCatalog: CatalogAware in the base class list and click the >> button.

After you have set up the ZClass add form correctly, click the Add button.

Now that you’ve successfully generated a CatalogAware ZClass, you just need to

edit the methods to correctly call the special CatalogAwareness methods of your

class.

Editing the constructor
In the CatalogThing product, click the ThingClass_add method. The method should

contain the following code:

<HTML>
<HEAD><TITLE>Add ThingClass</TITLE></HEAD>
<BODY BGCOLOR=”#FFFFFF” LINK=”#000099” VLINK=”#555555”>

<dtml-comment> We add the new object by calling the class in
a with tag. Not only does this get the thing
added, it adds the new thing’s attributes to
the DTML name space, so we can call methods
to initialize the object.

</dtml-comment>

<dtml-with “ThingClass.createInObjectManager(REQUEST[‘id’], Æ
REQUEST)”>

<dtml-comment>

i4857-3 Ch16.F 3/1/02 9:42 AM Page 485

486 Part IV ✦ Advanced Zope Concepts

You can add code that modifies the new instance here.

For example, if you have a property sheet that you want Æ
to update from form values, you can call it here:

<dtml-call “propertysheets.Basic.manage_editProperties(
REQUEST)”>

</dtml-comment>

</dtml-with>

<dtml-comment> Now we need to return something. We do this via
a redirect so that the URL is correct.

Unfortunately, the way we do this depends on
whether we live in a product or in a class.
If we live in a product, we need to use
DestinationURL
to decide where to go. If we live in a class,
DestinationURL won’t be available, so we use
URL2.

</dtml-comment>
<dtml-if DestinationURL>

<dtml-call “RESPONSE.redirect(
DestinationURL+’/manage_workspace’)”>

<dtml-else>

<dtml-call “RESPONSE.redirect(
URL2+’/manage_workspace’)”>

</dtml-if>
</body></html>

Following the line that reads:

<dtml-call “propertysheets.Basic.manage_editProperties(REQUEST)”>

add the following line:

<dtml-call index_object>

Remove the <dtml-comment> and </dtml-comment> tags that surround that section,

then click Save Changes.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 486

487Chapter 16 ✦ ZClasses

Cataloging changes to the object
As with the Simple ZClass you created at the beginning of this chapter, you can cre-

ate property sheets to store attributes of your ZClass instances. However, because

you want to be able to search for these properties in the catalog, they must be re-

indexed whenever the object changes as well.

Add a Basic property sheet to the ThingClass ZClass, and create a title string prop-

erty in it. Next, generate an edit property sheet interface with an id of “edit_form.”

Change the target of the form in edit_form from propertysheets/Basic/manage_
editProperties to edit, and add an edit DTML method object with the following

code:

<dtml-call “propertysheets.Basic.manage_changeProperties Æ
(REQUEST)”>
<dtml-call reindex_object>
<dtml-call “RESPONSE.redirect(URL2+’/manage_workspace’)”>

After these changes have been made, the Zclass instances will be reindexed when-

ever their properties are edited, as well.

Finally, add a view for the edit_form method and make it the first view by default.

After all of these changes have been made, you can test whether the ZClass

instances are indexed correctly. Add a ZCatalog named “Catalog” to the Root Folder

by selecting ZCatalog from the drop-down menu and filling in the Add ZCatalog

form with an id of Catalog. Then add an instance of your ThingClass to the Root

Folder as well by selecting “Thing” from the drop-down menu. The Add Thing form

will only have a single id field, which you can fill out with an id of stuff. Click Add.

At this point, you should go back to the ZCatalog in your Root Folder, and click the

Catalog tab. You should see the /stuff object listed as being cataloged.

Furthermore, if you edit the /stuff object’s title property (for example, by setting it

to “A Lot of Stuff” and saving the changes), you can examine the ZCatalog’s

Vocabulary object to see that the three words, “lot,” “of,” and “stuff” were indexed

when the Thing object’s properties were changed.

More information on the use of ZCatalog for indexing and searching objects can
be found in Chapter 17.

Subclassing ZClasses from Python
Base Classes

Until now, we’ve showed you how to create ZClasses and subclass from Zope’s

built-in Python classes. In Part II of this book, we discussed creating your own

Python products. You can also subclass your own Python classes in your ZClasses.

Cross-
Reference

i4857-3 Ch16.F 3/1/02 9:42 AM Page 487

488 Part IV ✦ Advanced Zope Concepts

Why Subclass Python classes?
As ZClass-based products are in many ways less capable than full Python products,

it would seem as though combining them in this way would be a step backwards,

but it does offer some distinct advantages:

✦ Presentation and logic can be more clearly separated.

✦ Multiple ZClass-based products can subclass the same Python product.

✦ The Python product can be upgraded without losing the ZClass product

customizations.

Creating the Python base class
In your Zope installation’s /lib/python/Products directory on your computer’s file

system, create a directory called “SimpleBase.” In the /lib/python/Products/
SimpleBase directory, create a file called “Simple.py” with the following contents:

class Simple:
“””
A Simple Base Class
“””

Name = “”

def hello(self):
“””
Say Hello
“””
return “Hello, “ + self.Name

def edit(self, NewName):
self.Name = NewName

Then, create an __init__.py file that contains the following:

from Simple import Simple

def initialize(context):
context.registerBaseClass(Simple)

and an empty refresh.txt file.

Restart Zope, and verify that the product has been properly registered by going to

the Control_Panel/Products folder and checking for the SimpleBase product, which

should have a closed box icon.

Subclassing the ZClass from the base class
Now, create a new ZClass (you can create this in the SimpleBase product, or create

a separate product if you like) called “SimpleTTW,” and subclass “SimpleBase:

Simple,” which should appear in the list of available base classes.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 488

489Chapter 16 ✦ ZClasses

After you’ve created the SimpleTTW ZClass, add an index_html DTML method to it

with the following code:

<dtml-var standard_html_header>
<dtml-var hello>
<dtml-var standard_html_footer>

Then, add an edit_form DTML method with the following code:

<html><head><title><dtml-var title_or_id></title></head>
<body bgcolor=”#FFFFFF” link=”#000099” vlink=”#555555”>
<dtml-var manage_tabs>
<dtml-if save>
<dtml-call “edit(REQUEST.Name)”>
</dtml-if>
<H2>Edit SimpleTTW</H2>
<form action=”edit_form”><table>
<tr><th>Name</th>

<td><input type=text name=Name></td>
</tr>
<tr><td></td><td><input type=submit value=”Save Changes”
name=”save”></td></tr>
</table></form>
</body></html>

At this point, you should add Views to the ZClass, one for edit_form named “Edit,”

and one for index_html named “View.” Make the Edit view first.

Create an instance of SimpleTTW in the Root Folder, and click on it. You’ll be pre-

sented with the Edit view, where you can change the value of the Name property.

Filling in the form and clicking the Save Changes button will submit the form to

itself, but the conditional code at the beginning of the edit_form method will detect

that this was a form submission and will call the edit method on the object. This

method, which the SimpleTTW ZClass inherits from the Simple Python class,

applies the change to the Name attribute.

After making the change, click the View tab to see that the greeting returned by the

“hello” method called from the index_html method is incorporating the changed

value.

You can see that the methods defined by you in the SimpleBase product are in fact

made available to the DTML methods that you defined for the SimpleTTW ZClass.

Distributing ZClass Products
Now that you have created your own ZClass-based Products, you may want to

install them on other Zope servers, or even share them with other site administra-

tors. To do this, you need to create a distribution of your product.

i4857-3 Ch16.F 3/1/02 9:42 AM Page 489

490 Part IV ✦ Advanced Zope Concepts

To distribute your Product, select the Distribution tab from within the product. For

example, click the Distribution tab within the ZFAQ product.

The form on the Distribution tab gives you fine control over the distribution you

create. The Version field specifies the version that will be visible in the products list

for whoever installs the product. Every time you make a distribution, the number

will be incremented, but you can change it to whatever number you want. We sug-

gest leaving it at 1.0 unless you have some reason to do otherwise.

Next on the form, there are two radio-buttons that let you select the kind of

Distribution you want to create. If you want others to be able to customize and/or

redistribute your Product, select the “Allow Redistribution” option. If you want to

disallow redistribution, select the “Disallow redistribution and allow the user to

configure only the selected objects:” option, and you can choose which objects

your users can customize in your Product. The list defaults to having no objects

selected, which won’t allow any changes to the distributed product. If you want

them to be able to change the FAQManager ZClass, select that ZClass. If you want

the whole product to be customizable but still disallow redistribution, select all of

the objects in the list. Notice that the QandA Zclass, which is contained within the

FAQManager Zclass, is not listed within this object list. This means that there is no

way to allow or disallow customization of the QandA ZClass independently from the

FAQManager ZClass. Whether the QandA Zclass is customizable is dependent on

the whether the FAQManager ZClass is customizable. To get around this limitation,

the QandA object would have to have been created in a separate product.

After you made your decisions regarding the redistribution and customization of the

ZFAQ product distribution, click the Create a distribution archive button. Zope will

now create a file called ZFAQ-1.0.tar.gz, and attempt to download it to your com-

puter. Save the file on your desktop or in a “Downloads” directory on your computer.

The ZFAQ-1.0.tar.gz file can be installed in a Zope installation just like any other

downloaded product. If you think that your product would be useful to other Zope

users, we suggest that you add your product to your zope.org member folder to

make it generally available.

Summary
In this chapter, you learned about creating through-the-Web products using

ZClasses, defining property sheets and views, and building a simple Web applica-

tion using them. You also learned to add permissions to ZClasses, make your

ZClasses CatalogAware, subclass Python classes in your ZClass products, and

distribute your through-the-Web products.

✦ ✦ ✦

i4857-3 Ch16.F 3/1/02 9:42 AM Page 490

Searching
Content

Most of this book describes using Zope to accomplish

fairly ordinary Web site building and maintenance

tasks. Even Part II of the book, which shows you how to build

custom object types using Zope’s object oriented framework,

isn’t that different from building a similar application using

JavaBeans, for example.

In this chapter, we are going to introduce one of Zope’s fea-

tures that sets Zope apart from other Web development envi-

ronments — its integrated framework for indexing and

searching objects and their attributes.

Adding and Populating ZCatalogs
Zope has built-in searching and indexing capabilities that

enable you to easily find objects in your site that conform to

various criteria (such as containing some text) via ad-hoc

queries.

What is a ZCatalog?
ZCatalogs are Zope’s general-purpose search engines and

indexers. A ZCatalog examines objects, indexes whatever

properties you’ve marked as significant, and enables you to

query the ZCatalog for objects whose properties match your

criteria. Additionally, ZCatalogs don’t return the actual

objects in their results, but instead return a special

lightweight object with whatever metadata you’ve told the

ZCatalog to retain for the object and a pointer to the actual

object if you need it.

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Adding and
populating ZCatalogs

Configuring and
querying the
ZCatalog

Accessing ZCatalogs
from Python

More about ZCatalog

✦ ✦ ✦ ✦

i4857-3 Ch17.F 3/1/02 9:42 AM Page 491

492 Part IV ✦ Advanced Zope Concepts

Adding a ZCatalog to your site
In your root folder, click on the drop-down to select ZCatalog from the list of

addable products. Fill the Add ZCatalog form that comes up with an id of Catalog,

leave the title field blank, and leave the vocabulary drop-down set on the default of

Create one for me (we’ll go into more detail about Vocabularies in the “About

Vocabularies” sidebar in the “More about ZCatalog” section). Click the Add button.

You should now have a ZCatalog instance named Catalog in your root folder. The

icon for a ZCatalog is a folder with a magnifying glass, and the ZCatalog user inter-

face does resemble that of a folder somewhat. But there are a few differences, as

shown in Figure 17-1.

Figure 17-1: The ZCatalog Contents tab

ZCatalogs have several tabs that folders do not have, including the following:

Catalog

Indexes

Metadata

Advanced

The Find tab that folders have is replaced with a Find Objects tab in a ZCatalog.

i4857-3 Ch17.F 3/1/02 9:42 AM Page 492

493Chapter 17 ✦ Searching Content

Populating a ZCatalog
ZCatalogs can be populated in two ways: manually and automatically. Populating a

ZCatalog manually is fairly simple; just go to the Find Objects tab in a ZCatalog

(shown in Figure 17-2), and select the criteria for the objects that you want to cata-

log and index.

Figure 17-2: The ZCatalog Find Objects tab

For the time being, leave the default settings in the form, and click the Find and

Catalog button at the bottom of the form. The operation may take a few moments,

so be patient while Zope works.

After Zope is done finding and cataloging the objects that meet the criteria you

specified (in this case, all objects stored in the ZODB), the browser is redirected to

the Catalog tab of the ZCatalog, and it shows you how long it took to complete the

operation, as shown in Figure 17-3.

As you can see, the find objects operation found all objects in the ZODB, all of

which are now recorded in the ZCatalog.

i4857-3 Ch17.F 3/1/02 9:42 AM Page 493

494 Part IV ✦ Advanced Zope Concepts

Figure 17-3: The Catalog tab, after finding objects

Configuring and Querying the ZCatalog
ZCatalogs store two types of information about the objects that they catalog:

indexes and metadata. Indexes are the lookup tables that the ZCatalog consults in

order to determine which objects match a particular query, and metadata is the

information about an object that a ZCatalog stores in order to make its result sets

more meaningful.

ZCatalog indexes
The ZCatalog uses indexes to determine which objects that it knows about match a

particular query. In order for you to query a ZCatalog about a particular object

attribute, that attribute must be indexed by the ZCatalog in an Index. As you can

see in Figure 17-4, the ZCatalog’s index tab has several indexes by default.

i4857-3 Ch17.F 3/1/02 9:42 AM Page 494

495Chapter 17 ✦ Searching Content

Figure 17-4: The ZCatalog Indexes tab

The following are the four built-in types of indexes:

✦ Text indexes. These indexes break up text contained in an attribute into indi-

vidual words. The more times a particular word appears in an attribute

indexed by a text index, the higher its score. Results are sorted by score, high-

est to lowest from the most relevant to the lest relevant. Text indexes are

often referred to as full-text indexes. PrincipiaSearchSource and title are

text indexes included in a ZCatalog by default.

✦ Field indexes. These indexes treat the object’s attribute as a single unit, and

they are used to keep track of object attributes that conform to a particular

value. Field indexes included in a ZCatalog by default are bobobase_
modification_time, id, and meta_type.

✦ Keyword indexes. These indexes take a sequence of objects and break them

up into keywords, which are then indexed individually. A Keyword index

returns any objects that have one or more indexed keywords that match any

keywords from the query. They are particularly useful for building categories.

✦ Path indexes. These indexes break up the physical path to an indexed object

into all its subpaths. A Path index returns all objects that match a partial path

specified in a search query. By default, a ZCatalog includes a path index

named path.

i4857-3 Ch17.F 3/1/02 9:42 AM Page 495

496 Part IV ✦ Advanced Zope Concepts

You may be wondering what the heck bobobase_modification_time and
PrincipiaSearchSource are. These attribute names date back to the dim prehis-
tory of Zope, before the source had been released, and even before it was named
Zope. In those days, the ZODB had been called Bobo, apparently chosen as “a
name so stupid, it would have to be replaced,” and the ZPublisher was called
Principia. bobobase_modification_time is an attribute that stores the last time
that an object was modified, and PrincipiaSearchSource is an attribute or
method that an object can use to expose whatever text is most appropriate to be
indexed with a Text index. A book object for example might have a
PrincipiaSearchSource method that returns a concatenation of the book’s title,
author name, description, and keyword attributes. This would ensure that a single
text index would index all of the book objects’ textual attributes, making them eas-
ily searchable. There is further detail in the “More about text indexes” section
towards the end of the chapter.

Adding a new index is easy, just choose the type of index you want to add from the

drop-down box on the Indexes tab, fill in the Add Index form that comes up, and

click the Add button.

When a ZCatalog indexes an object, it uses the defined indexes to determine what

attributes get examined. The index id is also the name of the attribute that it will

examine for each cataloged object. It’s easy to see, then, that the title index will

operate on the title attribute of cataloged objects. As you know, not all objects

within Zope have a title attribute. In those cases, the index ignores the object.

Removing an index is similarly easy. Just select the checkbox next to the indexes

you wish to delete, and click the Remove Index button.

Clearing an index does just what it sounds like. It wipes an index clean of the values

that it has stored, and of the associations from those values to the objects they

came from. You can clear an index by selecting the checkbox to the left of the

index, and clicking the Clear Index button.

Reindexing examines the objects the Catalog knows about, and updates the values

stored by the indexes that you’ve selected. You can use this to repopulate an index

after it has been cleared, but this will not find any new objects that are not in the

ZCatalog already. You can reindex the ZCatalog’s indexes by selecting the checkbox

next to an index, and clicking the Reindex button.

ZCatalog indexes don’t have to target attributes, they can also be directed to index

object methods. This means that you can index on the result of some calculation.

Suppose that your object has a method for returning a list of related_items, and

that the method calculated which objects were related according to some criteria

you selected. By indexing this method, you can search the ZCatalog for all objects

that consider themselves related to the currently displayed object (not just the

objects that the current object’s related_items method returns).

Note

i4857-3 Ch17.F 3/1/02 9:42 AM Page 496

497Chapter 17 ✦ Searching Content

ZCatalog Metadata
Metadata, or “data about data,” are the attributes that the ZCatalog stores for each

object, not for the purposes of querying, but for the purpose of returning results. In

Figure 17-5, you can see the metadata that a ZCatalog is set to store by default:

✦ bobobase_modification_time

✦ id

✦ meta_type

✦ title

✦ summary

Notice that this list of stored attributes does not necessarily match the list of

indexed attributes, but can overlap with them. Generally speaking, only those

attributes that you want to see returned in a result list should be stored as meta-

data. You might be asking yourself why the indexed attributes aren’t returned with

the result objects as well, and why the information in them must be stored again as

metadata in order for it to be returned with the results. The answer is that storing

the indexed attributes and the metadata separately is a tradeoff between storage

space and speed. The indexes are all optimized for lookup speed, in order to return

the result objects as quickly as possible. Passing the indexed information to the

result objects would slow this functionality down. Also, the result objects them-

selves are optimized to be as lightweight as possible (because a great many of them

might be returned at once, and therefore have to be loaded in memory), and con-

tain no more information (metadata) than is required, along with a reference to the

actual cataloged object. Forcing the result objects to contain all indexed attributes

would make them much larger, and cause the ZCatalog’s performance to decrease.

Adding a new metadata field is simple. Just type the name of the attribute that you

want to track into the Add Metadata field at the bottom of the Metadata tab, and

click the Add button. Deleting a metadata field is as simple as selecting the check-

box next to the field name and clicking Delete.

It’s worth noting that as with Indexes, metadata fields can reference methods, not

just attributes. So, for example, if your object has a method that returns the result

of a calculation (say, popularity), you can store that as metadata as well, and return

this in your query results list.

i4857-3 Ch17.F 3/1/02 9:42 AM Page 497

498 Part IV ✦ Advanced Zope Concepts

Figure 17-5: The ZCatalog’s Metadata tab

Building search interfaces
Zope includes the capability to automatically generate search interfaces for

ZCatalogs based on the indexes and metadata stored in the ZCatalog.

In the root folder, choose Z Search Interface from the drop-down box. An Add

Search Interface form comes up (see Figure 17-6), with several fields. The first is a

list of the searchable objects (ZCatalogs) that you can set the search interface to

target. Select Catalog. Next is the report id, which is the id of the DTML Method that

will display the results list. Type search_results. You may leave the report title and

search input title blank, but type search_form into the search input id field. All that

remains is to choose the form of the report that will be generated.

You can choose a tabular format or a records format for the report. They both con-

tain and present the same information; the only difference is in the HTML code that

is generated. In the tabular format, each result in the result list gets a row in a table,

i4857-3 Ch17.F 3/1/02 9:42 AM Page 498

499Chapter 17 ✦ Searching Content

with each metadata field in its own cell and the metadata columns labeled at the

top of the table. In the records format, each result in the result list is in its own

paragraph, with the metadata fields separated by commas. I generally use the tabu-

lar format.

Figure 17-6: The Add Search Interface form

At the bottom of the form, you also have the option of selecting whether DTML

Methods or Page Templates will be generated. Page Templates are a relatively new

addition to Zope, so while we encourage you to explore their use (and read Chapter

18), the rest of this chapter will only discuss using DTML Methods. So select the

DTML Methods radio button.

After you’ve filled in the form, click the Add button, and after a brief pause, you are

returned to the Contents view of the root folder. Two new DTML methods are there:

search_form and search_results.

i4857-3 Ch17.F 3/1/02 9:42 AM Page 499

500 Part IV ✦ Advanced Zope Concepts

Listing 17-1: The search_form method

<dtml-var standard_html_header>

<form action=”search_results” method=”get”>
<h2><dtml-var document_title></h2>
Enter query parameters:
<table>

<tr><th>Id</th>
<td><input name=”id”

width=30 value=””></td></tr>
<tr><th>Path</th>

<td><input name=”path”
width=30 value=””></td></tr>

<tr><th>Title</th>
<td><input name=”title”

width=30 value=””></td></tr>
<tr><th>PrincipiaSearchSource</th>

<td><input name=”PrincipiaSearchSource”
width=30 value=””></td></tr>

<tr><th>Meta type</th>
<td><input name=”meta_type”

width=30 value=””></td></tr>
<tr><th>Bobobase modification time</th>

<td><input name=”bobobase_modification_time”
width=30 value=””></td></tr>

<tr><td colspan=2 align=center>
<input type=”SUBMIT” name=”SUBMIT” value=”Submit Query”>
</td></tr>
</table>
</form>
<dtml-var standard_html_footer>

You can see in Listing 17-1 that the input names match the various indexes that

they search.

It’s easy to compare the code from Listings 17-2 and 17-3 to see the differences and

similarities between the tabular and records formats for results lists. The most sig-

nificant thing about both of these code listings is the line <dtml-in Catalog
size=50 start=query_start>, which seems to indicate that no parameters are being

passed into the ZCatalog. In fact, the ZCatalog is picking up the form fields and their

values from the HTTP request (accessible in Zope through the REQUEST object), so

no values need to be passed in explicitly. This is why the attribute, the index, and

the form field all share the same id — to make this transparency possible.

i4857-3 Ch17.F 3/1/02 9:42 AM Page 500

501Chapter 17 ✦ Searching Content

Listing 17-2: The search_results method (tabular)

<dtml-var standard_html_header>
<dtml-in Catalog size=50 start=query_start>

<dtml-if sequence-start>

<dtml-if previous-sequence>

<a href=”<dtml-var URL><dtml-var sequence-query
>query_start=<dtml-var
previous-sequence-start-number>”>

(Previous <dtml-var previous-sequence-size> results)

</dtml-if previous-sequence>

<table border>
<tr>
<th>Title</th>
<th>Meta type</th>
<th>Id</th>
<th>Summary</th>
<th>Bobobase modification time</th>
<th>Data record id </th>

</tr>

</dtml-if sequence-start>

<tr>
<td><dtml-var title></td>
<td><dtml-var meta_type></td>
<td><dtml-var id></td>
<td><dtml-var summary></td>
<td><dtml-var bobobase_modification_time></td>
<td><dtml-var data_record_id_></td>

</tr>

<dtml-if sequence-end>

</table>
<dtml-if next-sequence>

<a href=”<dtml-var URL><dtml-var sequence-query
>query_start=<dtml-var
next-sequence-start-number>”>

(Next <dtml-var next-sequence-size> results)

Continued

i4857-3 Ch17.F 3/1/02 9:42 AM Page 501

502 Part IV ✦ Advanced Zope Concepts

Listing 17-2 (continued)

</dtml-if next-sequence>
</dtml-if sequence-end>

<dtml-else>

There was no data matching this <dtml-var title_or_id> query.

</dtml-in>

<dtml-var standard_html_footer>

Listing 17-3: The search_results method (records)

<dtml-var standard_html_header>
<dtml-in Catalog size=20 start=query_start>

<dtml-if sequence-start>

<dtml-if previous-sequence>

<a href=”<dtml-var URL><dtml-var sequence-query
>query_start=<dtml-var
previous-sequence-start-number>”>

(Previous <dtml-var previous-sequence-size> results)

</dtml-if previous-sequence>

</dtml-if sequence-start>

<p>
<dtml-var title>,
<dtml-var meta_type>,
<dtml-var id>,
<dtml-var summary>,
<dtml-var bobobase_modification_time>,
<dtml-var data_record_id_>

</p>

<dtml-if sequence-end>

<dtml-if next-sequence>

i4857-3 Ch17.F 3/1/02 9:42 AM Page 502

503Chapter 17 ✦ Searching Content

<a href=”<dtml-var URL><dtml-var sequence-query
>query_start=<dtml-var
next-sequence-start-number>”>

(Next <dtml-var next-sequence-size> results)

</dtml-if next-sequence>
</dtml-if sequence-end>

<dtml-else>

There was no data matching this <dtml-var title_or_id> query.

</dtml-in>

<dtml-var standard_html_footer>

You can see the rendered search_form in Figure 17-7, and you should see something

similar if you view the search_form DTML method.

Figure 17-7: The search_form generated interface

i4857-3 Ch17.F 3/1/02 9:42 AM Page 503

504 Part IV ✦ Advanced Zope Concepts

You can see that the search form has a field for each index. When you click on the

Submit Query button without entering any search parameters, the Catalog returns

all objects that it has cataloged. Depending on whether you selected a tabular for-

mat or a records format when you generated the search interface, you see a results

page like the one shown in either Figure 17-8 or Figure 17-9.

Figure 17-8: The search_results method (tabular format)

You can link from the search results list to the actual objects by changing the
occurrence of <dtml-var id> in either the Tabular or Records results format to the
following code:

<dtml-var id>

This takes advantage of the getURL attribute that the result object (colloquially
known as a brain) has, which refers to the actual object that was cataloged.

Tip

i4857-3 Ch17.F 3/1/02 9:42 AM Page 504

505Chapter 17 ✦ Searching Content

Figure 17-9: The search_results method (records format)

Accessing ZCatalogs from Python
You can access ZCatalogs from Python script objects and from within Python-based

product code, not just using DTML search interfaces. This lets you use your sites

logic and behavior to query the ZCatalog programmatically.

Accessing ZCatalogs from Python script objects
Consider the following Python script object, named about_objects:

x = context.Catalog({‘PrincipiaSearchSource’: ‘about’})
z = []
for y in x:

z.append(y.getObject())
return z

You can call the script from a DTML method, like this:

<dtml-var standard_html_header>
<dtml-in about_objects>
<dtml-var id>

</dtml-in>
<dtml-var standard_html_footer>

i4857-3 Ch17.F 3/1/02 9:42 AM Page 505

506 Part IV ✦ Advanced Zope Concepts

Calling from a DTML method, as in the preceding code, produces a list of links to all

cataloged documents containing the word about. The catalog is being passed a dic-

tionary, where the key is the index id, and the value is the indexed value that we’re

looking for.

Notice that the Python Script takes the result object list x, and by calling the result

objects’ getObject method, builds a list of the actual cataloged objects (z), which it

returns instead of the list of result objects. This allows the DTML to call the individ-

ual objects’ absolute_url method, instead of the result objects’ getURL method.

Both approaches are valid, but there is a tradeoff. The absolute_url method is com-

mon to all objects, making it easier to pass almost any object list to this DTML,

which can make code reuse a little easier. However, result objects are typically

much lighter weight that the actual objects they represent, which makes them (and

their associated getURL method) a better choice if the list is either very long, or the

objects very large, either of which will increase the amount of memory Zope

requires to retrieve the object list.

A hybrid approach can sometimes work, by having the Python Script simply return

the result object list like this:

x = context.Catalog({‘PrincipiaSearchSource’: ‘about’})
return x

In order for this to work and allow the DTML to just call absolute_url, the Catalog

must store absolute_url as metadata for the cataloged objects. This approach

gives you the advantages of both DTML portability, and reducing the system load,

at the cost of increasing the amount of metadata that the ZCatalog stores.

The catalog query can easily be made dynamic by using a variable name instead of

a literal (not surrounded by single quotes), in order to pass in a dynamic value, as

in the following example:

x = context.Catalog({‘PrincipiaSearchSource’: searchtext})
z = []
for y in x:

z.append(y.getObject())
return z

Make sure that the Python script object has a searchtext parameter defined, and

call the Python script object from DTML, like this:

<dtml-in expr=”about_objects(searchtext=’here’)”>
<dtml-var id>

</dtml-in>

You can find more information about creating and using Python Script Objects in
Chapter 15.

Cross-
Reference

i4857-3 Ch17.F 3/1/02 9:42 AM Page 506

507Chapter 17 ✦ Searching Content

Accessing ZCatalogs from Python products
Accessing a ZCatalog from within a Python product is just as easy as from within a

script object, assuming that the class in question inherits from Acquisition.
Implicit:

def catalog_results(self, REQUEST):
“””
Returns results from the catalog
“””
x = self.Catalog({‘PrincipiaSearchSource’: ‘about’})
z = []
for y in x:

z.append(y.getObject())
return z

As you can see, the only real difference between a Python product and a Python

script object is how the ZCatalog is accessed initially. After you access the Catalog,

the Python syntax is identical.

More information on writing Zope Python products is in chapters 6 through 10.

Complex queries from Python
It’s possible to do more complex queries from Python than the examples we’ve

given you so far.

One interesting thing you can do is pass more than one key/value pair to the

ZCatalog:

x = context.Catalog({‘PrincipiaSearchSource’: ‘an’, ‘id’:
‘dtContent’})

When you pass two query parameters in this way, the Catalog only returns the

items that satisfy both conditions. This is equivalent to a Boolean AND operation.

In order to get a Boolean OR you need to add together the results of two separate

queries, like this:

x = context.Catalog({‘PrincipiaSearchSource’: ‘an’})
y = context.Catalog({‘id’: ‘dtContent’})
z = x + y
return z

Cross-
Reference

i4857-3 Ch17.F 3/1/02 9:42 AM Page 507

508 Part IV ✦ Advanced Zope Concepts

Unfortunately, this does not produce a true Boolean OR, as the result is merely a

concatenation of the two lists, and the results that meet both requirements appear

twice. We can rewrite the code to eliminate duplicates as follows:

x = context.Catalog({‘PrincipiaSearchSource’: ‘an’})
y = context.Catalog({‘id’: ‘dtContent’})
z = []
for w in x:

for q in y:
if q.getObject() == w.getObject():

break
else:

z.append(w)

for q in y:
z.append(q)

return z

This is a bit cumbersome, but it gets the job done. This code loops through each

result in the first sequence x, checking it against each item in the second sequence

y (in a second loop). The code here has to check the actual cataloged objects (not

the results themselves) by retrieving them using getObject(). Only if there is no

match does the result from the first sequence get appended to the returned

sequence z. Then the second sequence y is appended to the returned sequence z in

it’s entirety (since it contains no duplicates with the list), which is then returned.

Now the script returns a true Boolean OR of the two sets.

Making Zope Product Classes auto catalogable
(CatalogAwareness)
Making a Python Zope Product that automatically catalogs itself when it’s created,

and reindexes itself whenever it’s changed is fairly easy and straightforward. The

class needs to subclass from CatalogAware, and it needs to call self.reindex_
object() whenever the object is changed. Here is the Hello Product from Chapter 6

after it has been made CatalogAware:

from OFS.SimpleItem import Item
from Globals import Persistent, HTMLFile
from Acquisition import Implicit
from Products.ZCatalog.CatalogPathAwareness import CatalogAware

manage_addHelloForm = HTMLFile(‘DTML/manage_addHelloForm’, Æ
globals())

def manage_addHello(self, id, REQUEST):
“Method for adding a Hello object”
newHello = helloClass(id)
self._setObject(id, newHello)

i4857-3 Ch17.F 3/1/02 9:42 AM Page 508

509Chapter 17 ✦ Searching Content

return self.manage_main(self, REQUEST)

class helloClass(Item, Persistent, Implicit, CatalogAware):
def __init__(self, id, Name = ‘World’):

self.id = id
self.Name = Name

meta_type = “Hello Object”

manage_options = ({‘label’:’Edit’, Æ
‘action’:’manage_editHelloForm’},)

def hello(self):
return “Hello, “ + self.Name

def edit(self, Name, REQUEST):
“method to edit Hello instances”
self.Name = Name
self.reindex_object()
return self.index_html(self, REQUEST)

Web Methods

index_html = HTMLFile(‘DTML/index_html’, globals())

manage_editHelloForm = Æ
HTMLFile(‘DTML/manage_editHelloForm’, globals())

As you can see, only one line needed to be added, and one other line changed, in

order to make this Class automatically Catalog itself (CatalogAware). The Class will

now automatically catalog itself with the ZCatalog (named Catalog) whenever an

instance is added (or copy-and-pasted), and automatically remove itself from the

ZCatalog whenever it is deleted. The only thing the class needs to do itself is re-

index itself when it is changed. It’s worth noting that CatalogAwareness does not

hook into the persistence machinery, so reindexing will not happen by itself even

if the attribute that changed was immutable. You always have to trigger

reindex_object() on the class instance yourself.

In the preceding example, the Module is importing the CatalogAware class from
Products.ZCatalog.CatalogPathAwareness, rather than from Products.ZCatalog.
CatalogAwareness. This is to take advantage of improvements made to that ver-
sion of CatalogAware that use the objects’ physical path within the ZODB to
uniquely identify an object, rather than use the Objects’ URL, as the previous ver-
sion of CatalogAware did. This avoids several problems related to virtual hosting
several domain names on the same Zope server, and also avoids problems associ-
ated with accessing the same server using different IP addresses or network
names. You should always use Products.ZCatalog.CatalogPathAwareness.
CatalogAware to make your Zope Products CatalogAware.

Note

i4857-3 Ch17.F 3/1/02 9:42 AM Page 509

510 Part IV ✦ Advanced Zope Concepts

More about ZCatalog
There is more to the ZCatalog than automatically generating search interfaces. Here

is some more in-depth information.

More about text indexes
As described earlier in the chapter, a text index is used to index human-readable

text. You can search the index for objects that contain certain words. Text indexes

also enable you to make more advanced searches than just looking for a word.

ZCatalog’s Text Index can do the following:

✦ Use Boolean query expressions such as word1 AND word2. This returns all

objects that contain both words. Supported Boolean expressions include AND,

OR, and AND NOT.

✦ Control search order by grouping queries using parentheses: (word1 AND
word2) AND NOT word3). This returns objects that contain both of the first two

words, but does not return any that contain the third word.

✦ If your catalog contains a Globbing Vocabulary object (the default Vocabulary

has Globbing enabled), you may also use wildcards in your search queries,

such as searching for Zo* to return objects that contain Zoroaster, Zope,

and ZODB.

More about field indexes
Unlike text indexes, which break up attributes into words that are indexed sepa-

rately, a field index treats the value of an attribute as an indivisible whole, and it

indexes the entire value of the attribute. This makes field indexes very useful for

indexing attributes whose value must be one of a limited set of choices (for exam-

ple, selection properties) and for attributes whose value must be treated as a

whole, such as Ids, even if they do have spaces in them.

About Vocabularies

A simplistic approach to searching for a word in various objects would be to use a regular
expression to determine whether the word existed as a substring of the relevant attributes,
but this would be a very resource-intensive operation and would not scale particularly well.
All ZCatalog indexes are intended to minimize search times by creating lookup tables to
make the determination faster. Because human-readable text passages conform to certain
rules of grammar, a text index can use rules to determine in advance what substrings are
likely to be relevant, and store only those in the lookup table. However, because these rules
are different for every language (and sometimes for each subject), ZCatalogs break out this
functionality to a separate object called a Vocabulary. When you create a Text index, you
must choose which Vocabulary it uses.

i4857-3 Ch17.F 3/1/02 9:42 AM Page 510

511Chapter 17 ✦ Searching Content

Here are some of the rules that Vocabulary objects use to determine what substrings are
worth indexing:

✦ Breaking up the text into words. In western languages, words are delimited by
whitespace or punctuation on either end of the substring. In many Asian languages, sin-
gle characters are considered words, or else the determination is made from context.

✦ Choosing which words to ignore. In English, there is no point in indexing words
such as “a,” “of,” “and,” “it,” and so on. In other languages, the list of ignorable
words (called stop-words’) will be different.

✦ Indicating synonyms. In English, the words “present” and “gift” can be considered
synonyms, and you would want a search for “gift” to also bring up objects that con-
tain the word “present,” but this does not make sense in any other language.
However, note that in some situations, this does not necessarily make sense in
English either, and “present/now” or “present/display” may make a more suitable
pair for your context.

✦ Indexing the stem words only. Someone searching for the word “park” would also
be interested in occurrences of the words “parking” and “parks.” A Vocabulary uses
rules to trim suffixes from words in order to make sure that the stem words only get
indexed, and also trimming these suffixes from the query strings. This makes sure
that variants based on different tenses show up in a search. However, these rules
are different from one language to another, with some languages having prefixes, or
even compound words that need to be split up further and indexed separately.

When you create a Vocabulary object, you must choose which splitter to use, and whether
to make the Vocabulary object Globbing. Three splitters are available: the standard
ZopeSplitter, an ISO-8859-1 Splitter, and a Unicode aware Splitter. Globbing vocabularies
are more complex vocabularies that allow wild card searches on English text to be per-
formed because they also index word fragments. However, they use a lot more memory
and space in the ZODB than non-globbing vocabularies.

The different splitters are intended to be used depending on the character set of the con-
tent being indexed. The standard ZopeSplitter is basically for use on objects containing
ASCII encoded English text, and is primarily useful for that purpose. The ISO-8859-1 splitter
is able to recognize and index characters that lie outside the ASCII character-set, and takes
its name from the standard that defines the characters in the Latin-1 character-set used by
many Western European languages such as German, French, Danish, and so forth. The
Unicode splitter is intended to be used with texts encoded using the Unicode standard,
which encompasses practically all known human languages.

Creating a Vocabulary object is fairly simple. Within a ZCatalog instance, delete the existing
Vocabulary object by selecting the checkbox next to it, and clicking the Delete button. Next,
choose Vocabulary from the drop-down list. In the form that comes up, you can set the id
of the Vocabulary object (you should type in Vocabulary), the Title (which you can omit),
the type of Splitter (choose ZopeSplitter), and whether the Vocabulary object is Globbing
(non-Globbing is the default, select the checkbox to make the Vocabulary Globbing).

Once you’ve made your selections, click Add, and a Vocabulary with the settings you’ve
selected will be added to the ZCatalog.

i4857-3 Ch17.F 3/1/02 9:42 AM Page 511

512 Part IV ✦ Advanced Zope Concepts

By default, ZCatalogs are instantiated with three field indexes: bobobase_
modification_time, id, and meta_type. The search_form DTML method that you

generated earlier uses a text field to query the meta_type of the objects that were

cataloged, but this isn’t very useful. An object’s meta_type can only be equal to one

of a limited number of choices, so it doesn’t make sense to potentially give a wrong

result because of a mistyped query. So, we are going to show you how to modify

the search interface to take advantage of the field index.

Find the section in the search_form DTML method that reads as follows:

<tr><th>Meta type</th>
<td><input name=”meta_type”

width=30 value=””></td></tr>

And replace it with the following code:

<tr><th>Meta type</th>
<td>
<select name=”meta_type”>
<option value=””>
<dtml-in expr=”Catalog.uniqueValuesFor(‘meta_type’)”>
<option value=”&dtml-sequence-item;”><dtml-var sequence-

item>
</dtml-in>
</select>
</td>

</tr>

Click Save Changes, and take a look at the search_form. You see a drop-down box

that contains a listing of every meta_type that the ZCatalog has indexed. If you

leave the drop-down with no field selected or the first blank option selected, the

meta_type is not considered in the query, but if you select a meta_type, only objects

that have that meta_type will be returned.

More about keyword indexes
Keyword indexes take a sequence of strings and break them up into their individual

strings and index them individually. In this way, they are a little like text indexes (in

that they break up an attribute into its components) and like Field indexes (in that

the individual strings are then treated as indivisible). As their name suggests, they

are very useful for indexing attributes that serve as sequences of keywords, which

can then be used to place objects into categories.

Typically, a keyword index would index either a line or multiple select property (in

a ZClass) or a list of strings (in a Python class). As an example, let’s say that you are

trying to categorize a collection of books in a departmental library that are listed

i4857-3 Ch17.F 3/1/02 9:42 AM Page 512

513Chapter 17 ✦ Searching Content

on your company Intranet. You create a ZClass with author, title, and description
properties, and a multiple-selection property called categories that is populated

from another property, category_list.

In the catalog that the books will be indexed in, you create a categories keyword

index. Now let’s suppose that you have the following categories to choose from for

your books (partial list):

✦ Programming

✦ Marketing

✦ Java

✦ HTML

✦ Sales

✦ Python

✦ Branding

✦ Microsoft

✦ Design

✦ Typography

✦ Zope

You can see that a book about designing Web sites would probably be categorized

under both Design and HTML, while this book (the Zope Bible) would be catego-

rized under Programming, Python, and Zope.

In your search interface, you would provide a multiple selection form element, like

the following:

<select name=”categories:list” multiple>
<dtml-in expr=”Catalog.uniqueValuesFor(‘categories’)”>
<option value=”&dtml-sequence-item;”><dtml-var sequence-item>
</dtml-in>
</select>

This lets users select as many categories as they are interested in, and the ZCatalog

returns any objects that match one or more of the categories, with those that

match to most listed first.

Notice how the form uses the uniqueValuesFor() method rather than the category_
list property. This ensures that only those categories that actually have books

associated with them are listed as valid choices.

i4857-3 Ch17.F 3/1/02 9:42 AM Page 513

514 Part IV ✦ Advanced Zope Concepts

More about path indexes
Path indexes take a path attribute and break it up into a sequence of successive

shorter paths by removing the object on the end of the path. Thus, a DTML docu-

ment located at /marketing/branding/style_guide/logos.html is indexed under the

following subpaths:

✦ /marketing/branding/style_guide

✦ /marketing/branding

✦ /marketing

Searching for any of these subpaths returns the document and any other objects

stored under the subpath. The following code lists all documents stored in or under

the /marketing folder and links to them:

<dtml-in expr=”Catalog(meta_type=’DTML Document’, path=’/marketing’)”>
<dtml-var title_or_id>
</dtml-in>

Path indexes are particularly useful if you are using your site’s containment hierar-

chy to categorize and structure the content of your site.

The Advanced tab
The Advanced tab in a ZCatalog lets you perform some maintenance operations,

and controls some finer details that determine how the ZCatalog operates.

The Advanced tab has two sections, Catalog Maintenance and Subtransactions. The

Catalog Maintenance section of the tab has two buttons on it, Update Catalog and

Clear Catalog. The Update Catalog button is similar in its operation to selecting all

the indexes on the Indexes tab and clicking the Reindex button. This clears all the

indexes, and recatalogs all cataloged objects, repopulating the indexes and updat-

ing the object’s metadata.

Clicking the Clear Catalog button does just as its name suggests, clearing the cata-

log of all cataloged objects and metadata. For all intents and purposes, the Zcatalog

forgets about all the objects it has cataloged and their stored metadata. It doesn’t

remove the indexes you’ve set up in the ZCatalog, though it does wipe them clean.

The Subtransactions section is a bit more involved. It controls whether Zope com-

mits cataloging transactions a little at a time, or tries to do so all at once.

i4857-3 Ch17.F 3/1/02 9:42 AM Page 514

515Chapter 17 ✦ Searching Content

Using subtransactions reduces the amount of memory ZCatalog needs when cata-

loging large numbers of objects, but also slows the cataloging operations down. So

you’re trading memory for speed. Subtransactions are enabled by default. When

subtransactions are enabled, you can disable disable them by clicking the Disable

button. When subtransactions are disabled, you can enable them by clicking the

Enable button.

ZCatalog subtransactions are not compatible with ZSQL methods. If you are cata-
loging objects and using ZSQL methods in the same transaction, you must disable
subtransactions in the ZCatalog.

When Subtransactions are enabled, you can also determine the threshold above

which a subtransaction will be committed. The default is 10,000 objects. Lowering

the number causes subtransactions to be committed more frequently, lowering the

number of objects that need to be kept in memory at any one time during a cata-

loging (or recataloging) operation, and further slows the cataloging operation

down, and increasing the number effects the reverse tradeoff, keeping more objects

in memory to speed the cataloging operation. How much memory is saved or used,

and how much the cataloging operations are sped up or slowed down, depends

very much on the specifics of the objects that you’re cataloging. If your objects are

large, and you find that cataloging operations are causing your server to run out of

memory, you can try lowering the subtransaction threshold.

Summary
In this chapter, you learned how to catalog content in your Zope site in order to

search and retrieve it quickly, based on the indexed attributes of the objects. You

also learned about storing metadata about the objects in the ZCatalog, in order to

make the search results more informative.

All of the different index types were discussed, including text indexes, keyword

indexes, field indexes, and path indexes, along with their uses in various contexts.

We also introduced using ZCatalog queries from DTML and from within Python

Script Objects and Python Products.

The ZCatalog is a very powerful tool for developing Web sites, especially when com-

bined with CatalogAware ZClasses and Python products to automatically catalog

and index a site’s content as it is added to and changed.

✦ ✦ ✦

Note

i4857-3 Ch17.F 3/1/02 9:42 AM Page 515

i4857-3 Ch17.F 3/1/02 9:42 AM Page 516

Zope Page
Templates

In this chapter, we’ll discuss the drawbacks of DTML and

you’ll meet Zope Page Templates, a new presentation script-

ing technology introduced in Zope 2.5. As always, we provide

some references for further reading at the end of the chapter.

The Problem with DTML
Throughout the rest of this book, we used DTML (Document

Template Markup Language) for all code that is specific to the

presentation layer of our examples, and in some cases we’ve

shown you how to code logic in DTML as well. However,

DTML has some serious shortcomings:

✦ DTML tags are not friendly to HTML editors.

✦ DTML source is not renderable by a WYSIWYG (What

You See Is What You Get) editor.

✦ DTML encourages mixing of presentation and logic.

To be sure, the present form of the DTML syntax was a great

improvement over the original syntax. Witness the following

equivalent pieces of code:

<!--#in objectValues(‘DTML Document’)-->
<!--#var title-->
<!--#/in-->

<dtml-in objectValues (‘DTML Document’)>
<dtml-var title>
</dtml-in>

The former code was the old original DTML syntax, which was

eventually improved to be cleaner and easier to both read and

type. Both syntaxes are still supported within Zope, but you

won’t find too much code written in the old style anymore.

Nevertheless, despite these improvements, DTML still has

problems.

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The problem with
DTML

Template Attribute
Language

TAL Expression
Syntax

Macro Expansion TAL

✦ ✦ ✦ ✦

i4857-3 Ch18.F 3/1/02 9:42 AM Page 517

518 Part IV ✦ Advanced Zope Concepts

DTML tags are not friendly to HTML editors
No generally available HTML (Hypertext Markup Language) editor understands

DTML tags or knows what to do with them. A few, such as Macromedia’s

Dreamweaver, can be set to ignore tags that they are unfamiliar with, but this does

not necessarily let you edit the page.

Suppose your code is doing something simple, such as determining which of sev-

eral background colors to use for a table cell, as in this code fragment:

<td <dtml-if sequence-even>bgcolor=”#CCCCCC”<dtml-else>
bgcolor=”#FFFFCC”</dtml-if> >

Leave aside for the moment the fact that most editors will simply choke at what

they see as a completely malformed <td> tag — an HTML editor that lets you set

attributes on a tag will likely balk at what it sees as a duplicated bgcolor attribute.

Some editors might even attempt to fix the code and remove the redundant bgcolor
attribute.

You could instead duplicate the HTML completely, like this:

<dtml-if sequence-even><td bgcolor=”#CCCCCC”>
<dtml-else><td bgcolor=”#FFFFCC”>
</dtml-if>

But now the editor will complain about opening a new table cell without closing the

previous one. So you go ahead and completely duplicate the entire tag, including

whatever DTML code was supposed to populate the cell with content. Duplicating

code is of course a recipe for a site that is difficult to maintain, and weren’t we

using Zope to avoid that in the first place?

Now you break apart your HTML into reusable pieces, and put them into their own

methods. Hmm. Weren’t we already doing that with standard_html_header and

standard_html_footer? Which brings us to the next point. . . .

DTML Methods and Documents are not
renderable by WYSIWYG editors
This is an issue only partly related to the previous one. Because DTML Documents

and Methods are not complete HTML documents, a WYSIWYG editor can’t render

them in order to give an HTML designer any idea as to what it will look like.

Consider the following DTML Document:

<dtml-var standard_html_header>
<h2><dtml-var title_or_id></h2>
<p>
This is the <dtml-var id> Document.
</p>
<dtml-var standard_html_footer>

i4857-3 Ch18.F 3/1/02 9:42 AM Page 518

519Chapter 18 ✦ Zope Page Templates

There is just no way that an HTML editor can interpret this as a valid HTML docu-

ment, even if it ignores the DTML tags. The capability to inline and render modular

code sections is a powerful capability for application servers such as Zope, but its

implementation in DTML (and similar server-side scripting technologies) leads to

pages whose HTML is scattered among various DTML Documents and Methods,

with no way to edit the page as a whole.

As a result, HTML designers are limited to creating HTML templates in their favorite

tools, and then handing them off to developers who proceed to chop them up into

headers, footers, navigation bars, and so on, and inserting the necessary DTML

code to pull in data from the ZODB (Zope Object Database) to both reassemble the

pieces into pages and populate the page with content.

Sadly, this process is entirely one way, and the designer cannot edit the DTML-ified

version with his or her favorite tools, as the template is no longer in any one place.

Furthermore, if the designer wants to tweak his or her design, he or she has to cre-

ate a new template and hand it off to the developers again for the whole process to

be repeated. This creates a lot more work for the developers that they could have

been spending creating new functionality for the site.

DTML encourages the mixing
of presentation and logic
DTML enables you to do some powerful things. Unfortunately, not all of these

things are directly related to rendering the presentation layer. These include such

capabilities as instantiating objects, deleting objects, setting cookies, redirecting

the browser, and so on.

To be fair, at the time that the DTML syntax was originally created, Python code for

Zope was limited to filesystem-based external methods, and Python Script objects

didn’t yet exist. For any logic you wanted to add to your site through the Web, you

pretty much had to use DTML. Once ZODB-based Python Script objects were added

to Zope, there was less need for these capabilities within DTML, but they remain in

Zope for backward compatibility. Unfortunately, it can be difficult to discipline

yourself and enforce the separation between presentation and logic when to a large

extent you’re using the same syntax for both.

When presentation and logic are mixed together in this way, the code is much more

difficult to understand, debug, and modify. Maintainability of both presentation and

logic suffer. Separating the logic out into Python products, and restricting the use of

DTML to presentation only is a good practice, but product code, being on the

filesystem is more difficult to work with than through-the-Web code. Python Script

objects (added to Zope in version 2.3) finally enabled developers to cleanly sepa-

rate presentation and logic from each other and still write code through the Web,

but the temptation to cross the line from presentation logic to application logic

when working in DTML is always there.

i4857-3 Ch18.F 3/1/02 9:42 AM Page 519

520 Part IV ✦ Advanced Zope Concepts

Clearly, an alternative to DTML that did not have these problems was called for.

Enter TAL (Template Attribute Language).

While DTML has its drawbacks as a templating language for HTML pages, it is still
quite useful when you need to dynamically create other file formats such as
comma-delimited text files. For this reason, and for reasons of backward compati-
bility, Zope will continue to support DTML in the foreseeable future.

TAL (Template Attribute Language)
In Zope 2.5, Zope is integrating a new syntax and paradigm for developing Page

Templates that avoids the problems of DTML, and introduces some interesting new

capabilities. The new syntax is based on XHTML (Extensible Hypertext Markup

Language) attributes, which can be attached to ordinary HTML tags. Following is an

example of a dynamic greeting:

Hello, User
Name!

In this sample, an ordinary tag has been augmented with an additional

attribute. This is an XML namespace attribute, as indicated by the colon (:) in the

attribute name. The tal:replace attribute indicates that the result of the path

expression that it is assigned as a value should replace the entire tag that the

attribute is on, giving the following rendering:

Hello, Bill!

Assuming, of course, that the user viewing the rendered page has a username of

“Bill.” We’ll get back to path expressions later in the chapter, as these are one of the

expression types defined by the TALES (TAL Expression Syntax).

What’s interesting here is that unlike with DTML, or practically any other templat-

ing solution, both the rendered and unrendered code are valid HTML (or XHTML),

so the editor you use to create the template won’t have any more problems with

the unrendered page than the browser does with the rendered one. All the editor

needs to be able to do is ignore any unfamiliar attributes and most good editors do

this very well.

Page template basics
In your Root Folder, choose Page Template from the drop-down list of objects, and

you’ll see an Add Page Template form like the form shown in Figure 18-1.

Type Test for the id and click Add and Edit. You should now see a form like the form

shown in Figure 18-2.

Note

i4857-3 Ch18.F 3/1/02 9:42 AM Page 520

521Chapter 18 ✦ Zope Page Templates

Figure 18-1: The Add Page Template form

Figure 18-2: The Edit Page Template form

i4857-3 Ch18.F 3/1/02 9:42 AM Page 521

522 Part IV ✦ Advanced Zope Concepts

Rather a lot is going on in the default template content, so before you go any fur-

ther, change the title property to The Test Document, and edit the content of the

template as follows:

<html>
<head>
<title tal:content=”template/title”>The title</title>

</head>
<body>

The Title

</body>
</html>

Then click Save Changes.

Although TAL uses XHTML attributes to add processing instructions to templates,
the examples in this chapter are not actually valid XHTML, for clarity’s sake.
Doctypes are not declared for any of the examples in this chapter, nor do we
include an XML declaration at the beginning of the code. This means that while
the examples will be processed correctly by Zope, and the rendered template will
display correctly in a browser, the examples will not validate correctly by the W3C
XHTML validator at http://validator.w3.org/. We would like to encourage you
to explore the transition to XHTML, and ensuring that your pages validate. More
resources about XHTML are listed at the end of this chapter.

At this point, you can check out the rendered version of the template by clicking

the Test tab, which displays a page like the page shown in Figure 18-3.

It’s easy to see what has happened here. The tag, with the

tal:replace=”template/title” attribute set on it, has been replaced with the text,

“The Test Document,” by the template rendering process.

Because the TAL syntax is designed to be valid XHTML, browsers, as well as edi-

tors, can parse the unrendered templates. You can view the unrendered source in a

browser by clicking the Browse HTML Source link at the top of the Page Template

editing form, which displays something like Figure 18-4.

You can see that in this case, the words, “The Title,” which are enclosed in the

 tag are plainly visible, as the unrendered template has not replaced the tag.

However, the <title> tag in the template’s head section is plainly not being

replaced, or it wouldn’t show up in the browser window’s title bar. The reason the

behavior is different is in the two TAL attributes. The TAL attribute on the <title>
tag is tal:content=”template/title”, whereas the attribute on the tag in the

body of the page is tal:replace=”template/title”. Plainly, tal:replace is intended

to replace the entire tag with the result of the expression, and tal:content is

intended to replace the content of the tag only, leaving the tag itself intact.

Note

i4857-3 Ch18.F 3/1/02 9:42 AM Page 522

523Chapter 18 ✦ Zope Page Templates

Figure 18-3: The rendered Test Page Template

Figure 18-4: Browsing the unrendered template source

i4857-3 Ch18.F 3/1/02 9:42 AM Page 523

524 Part IV ✦ Advanced Zope Concepts

TAL statements
TAL defines several statements for adding presentation logic (as opposed to appli-

cation logic) to Page Templates. They are: replace, content, repeat, condition,

attributes, define, omit-tag, and on-error. As these are XHTML attributes, they

must be lowercase only.

TAL statements follow the general form tal:statement=”expression”, with the

expression being one of several possible types, and optionally containing one or

more flags. These will be explained later in the chapter.

replace
The replace statement, which we have already encountered, is one of the

workhorses of Page Templates. It replaces the XHTML element that it is set on with

the result of its expression, which is set as the value of the attribute. The expres-

sion can be prefixed with one of two flags: text or structure. text, which is the

default behavior, causes the result of the expression to be escaped to HTML enti-

ties, such that & becomes &, > becomes >, and < becomes <.

For example, both of the following TAL statements replace the tag with the

templates escaped title attribute:

The Title
The Title

This replaces the tag with the unescaped title attribute:

The Title

Note that “template/title” is a path expression. Path expressions are one of the

expression types that a TAL statement can use. More information about the types of

expressions that TAL statements can use is found later in this chapter in the TALES

(TAL Expression Syntax) section. For now, you just need to know that “template/
title” evaluates similarly to <dtml-var title>, except that it uses the title
attribute of the template, instead of an acquired title attribute.

This element is simply removed (along with the content enclosed by the tag) from

the rendered HTML:

A TAL Comment

This example also demonstrates the use of one of the names built-in to TAL.

nothing is a special expression name that is equivalent to Python’s None, or an

SQL NULL. More details about the built in names in TAL can be found in the TALES

section later in this chapter.

i4857-3 Ch18.F 3/1/02 9:42 AM Page 524

525Chapter 18 ✦ Zope Page Templates

content
The content statement is almost identical to the replace statement, except that it

only causes Zope to replace the contents of the tag, not the whole tag. Like replace,

the content statement also has the optional flags text and structure, and the

default behavior is also text.

For example, these statements populate an <h1> tag with the escaped title
attribute of the template:

<h1 tal:content=”template/title”>The Title</h1>
<h1 tal:content=”text template/title”>The Title</h1>

This statement replaces the contents of the <h1> tag with the unescaped title
attribute:

<h1 tal:content=”structure template/title”>The Title</h1>

This statement leaves the <h1> tag empty:

<h1 tal:content=”nothing”>An Empty H1 tag</h1>

repeat
DTML has the <dtml-in> tag for repeating a block of code once for every item in a

sequence, and TAL has the repeat statement that is used for the same purpose. The

repeat statement takes a variable name and an expression. The expression should

evaluate to a sequence. An empty sequence causes the entire repeat statement to

be removed from the rendered template.

The variable name is used to access both the individual item in the sequence, as

well as information about the current iteration via an iteration object, which is only

accessible through the use of a built-in attribute named repeat.

For example, this statement iterates over the list of objects returned by

objectValues from the current context, and renders the id of each object as a list

item in an unordered list:

<li tal:repeat=”list here/objectValues” tal:content=”list/id”>An ID

In the previous code we are combining two TAL statements in the same tag,

one to iterate over the sequence, and one to render the content of the tag. Also,

here/objectValues is another path expression. here refers to the current rendering

context, so this repeat statement is roughly equivalent to <dtml-in objectValues>
<dtml-var id></dtml-in>. Also, notice how the content statement’s path

expression starts with the variable name (list) defined in the repeat statement.

i4857-3 Ch18.F 3/1/02 9:42 AM Page 525

526 Part IV ✦ Advanced Zope Concepts

This demonstrates one of TALs strengths relative to DTML, namely that you must

explicitly specify the namespace that a variable lookup should occur in. DTML by

contrast only has a single namespace stack, which can make it difficult and confus-

ing to get at the value you actually want, if it isn’t at the top of the stack

The following code iterates over the same list of objects, but renders them as num-

bered rows in a table, using the index (starting from zero) to number the rows:

<table>
<tr tal:repeat=”list here/objectValues”>
<td tal:content=”repeat/list/index”>0</td>
<td tal:content=”list/id”>An ID</td>
</tr>
</table>

Notice how in this case, the repeat statement is on the <tr> tag, while the content

statement is on the <td> tags. Also demonstrated is the special iteration object

accessed through the repeat name in the first content statement’s path expression.

repeat has several special variable names associated with it, as listed in Table 18-1.

Table 18-1
repeat Variables

Variable name Description

index The iteration number, starting from 0

number The iteration number, starting from 1

even This variable is true (1) when the iteration index is an even
number, otherwise it’s false (0)

odd This variable is true (1) when the iteration index is an odd
number, otherwise it’s false (0)

end This variable is true (1) if the iteration is the last in the sequence

length The total number of iterations in the repeat sequence

letter Designates the iterations with lowercase letters, “a” through “z”,
then “aa” - “az”, then “ba” - “bz”, eventually progressing to “za”
through “zz” and then “aaa” through “aaz”, and so on

Letter Same as letter, using uppercase

i4857-3 Ch18.F 3/1/02 9:42 AM Page 526

527Chapter 18 ✦ Zope Page Templates

condition
The condition statement takes an expression as an argument. If the expression

evaluates as true, then evaluation of other statements on the element will proceed,

and if it evaluates to false, the element is removed from the rendered page.

For instance, this example only renders if a Boolean showme attribute (which can be

acquired) in the current context is true, though you should note that non-existence

of a showme attribute raises an error, rather than evaluating to false:

showme is true

The error for a non-existent attribute can be avoided by modifying the code as

follows:

showme exists Æ
and is true

As a path expression that can’t be resolved to an object or attribute raises an error

rather than evaluating as false, the pipe (|) character provides a way of specifying

alternatives. Specifying alternative paths can be used in other TAL statements that

take path expressions as well. Here, the alternative path consists of the built in vari-

able nothing, which always evaluates to false.

The following example creates a list of objects from the current context’s

objectValues method whose visible property evaluates to true:

<table>
<tr tal:repeat=”object here/objectValues”>
<td tal:content=”object/id”>An object id</td>
</tr>
<tr tal:condition=”not:here/objectValues”>
<td>There are no objects here</td>
</tr>
</table>

Here we are using the not: prefix, which inverts the truth of the evaluated expres-

sion. If there are no objects in here/objectvalues (that is, the expression is false),

then the first table row will not render, but not: causes the condition statement on

the second row to evaluate as true, and the second row is rendered. (See Table 18-2.)

The practical upshot is that either we get a series of rows that list contained object

ids, or we get a single row that informs us that there are no objects to list. More

information about the not: flag can be found at the end of the Path Expressions sec-

tion later in this chapter.

i4857-3 Ch18.F 3/1/02 9:42 AM Page 527

528 Part IV ✦ Advanced Zope Concepts

Table 18-2
True and False Values in TAL

True False

Numbers besides zero The nothing variable name

Non-blank strings (including those The number zero (0)
containing a single space)

Anything else that isn’t false A blank string

An empty list

An empty tuple

An empty dictionary

Python None

attributes
Besides being able to replace an entire element with the result of an expression,

and being able to replace just the contents of an element, TAL also enables you to

set other element attributes by using the attributes statement. attributes takes

pairs of attribute names and expressions. Because there can only be a single

attributes statement on an element, multiple attribute/expression pairs are sepa-

rated with semicolons (;).

For instance, this example takes a list of objects from objectValues, and renders

them in a table, making alternate rows different background colors:

<table>

<tr tal:condition=”repeat/list/even”
tal:attributes=”bgcolor string:#FFFFCC”>

<td tal:content=”list/id”>An ID</td>
</tr>

<tr tal:condition=”repeat/list/odd”
tal:attributes=”bgcolor string:#CCFFFF”>

<td tal:content=”list/id”>An ID</td>
</tr>

</table>

Notice how we’re using the condition statement to determine which version of the

table row will be rendered based on whether the row is odd or even, and then using

the attributes statement to set the appropriate bgcolor attribute on the row.

i4857-3 Ch18.F 3/1/02 9:42 AM Page 528

529Chapter 18 ✦ Zope Page Templates

define
The define statement enables you to assign the value of an expression to a label,

which is available to other TAL statements in the template.

There are two kinds of variables in TAL: local variables and global variables. Local
variables are only valid within the scope of the element in which they are defined

and its child elements. If a child element redefines the variable, the change is only

in effect for the child element and its children.

Global variables are available to any element after the element on which they are

defined, even those not contained within that element. Redefining the variable only

affects those elements that follow the element on which the variable was redefined.

For example, the following code defines a local variable (local variables are the

default), redefines it in a child element, renders it in the child element’s scope, exits

the child element, and renders the variable again, this time within the parent scope.

This renders the string, “The number is two, the number is one.”

The number is A number,

the number is A number

In the next example, the variables are global. As a result, the variable redefinition

on the child element does not revert when the child element’s scope is exited, and

in fact, the variable is available outside the defining element as well. So, this ren-

ders the string, “The number is two, the number is two. The number is still two.”

The number is A number,

the number is A number.

The number is still A number.

omit-tag
Unlike the contents statement, which replaces the contents (and any child ele-

ments) of the element on which it is defined, the omit-tag statement does the

reverse: it removes the element on which it is defined while leaving the contents

and child elements intact.

omit-tag takes an expression as an optional argument. If the expression evaluates

to true, the element is stripped away, leaving the contents of the element and its

children intact. If the expression evaluates to false the element is left in place.

i4857-3 Ch18.F 3/1/02 9:42 AM Page 529

530 Part IV ✦ Advanced Zope Concepts

For example, this code strips the element if visible evaluates to true:

The tag will be omitted

This code replaces the content of the tag and then removes the surrounding tag,

which is functionally equivalent to the replace statement:

<span tal:omit-tag=””
tal:content=”string:Hello, World.”>

A Greeting

This code doesn’t do anything:

Still spanned.

omit-tag is always the last statement to execute on a tag, because it removes all

other statements along with the tag itself. Also notice that in the second example

the content statement is taking a string expression (rather than the path expres-

sions we’ve seen so far). More information on the order in which TAL statements

execute as well as string expressions can be found later in this chapter.

on-error
Besides manipulating the rendering of the Page Template in various ways, it’s also

important to respond appropriately to errors in that manipulation. The on-error
statement provides that facility.

The on-error statement takes an expression and an optional prefix of either text or

structure. When the processing of the Page Template raises an error, an on-error
statement is searched for starting with the current element being processed. Failing

to find an on-error statement on the current element causes the search to expand

to the parent element (the element surrounding the current element), continuing up

the template’s element hierarchy.

When the first on-error statement is found, it is evaluated as a content statement

and the result is evaluated and replaces the contents and child elements of the ele-

ment that the on-error statement is on.

For example, the following code triggers the on-error statement if there is no “visi-

ble” attribute or property defined where the template can acquire it, and a suitable

error message is substituted:

<table>
<tr tal:repeat=”object here/objectValues”>
<span tal:condition=”object/visible”

tal:on-error=”string:no property named visible!”>
<td tal:content=”repeat/object/index”>0</td>

i4857-3 Ch18.F 3/1/02 9:42 AM Page 530

531Chapter 18 ✦ Zope Page Templates

<td tal:content=”object/id”>An ID</td>

</tr>
</table>

Order of TAL statement execution
As we’ve seen in several of the examples given for the different statements, TAL

statements can be combined within a single element. When statements are com-

bined in this way, you cannot rely on the parent/child relationships between ele-

ments to control execution order, so a hierarchy of execution priorities is defined.

TAL statements on a single element are executed in the following order:

1. define

2. condition

3. repeat

4. content or replace

5. attributes

6. omit-tag

The content and replace statements are mutually exclusive, and you can’t have

them both defined on the same element. Similarly, the replace and omit-tag state-

ment combination, while not actually forbidden, is nonsensical, and doesn’t have

any more effect then a plain replace statement.

If you find that you need to override this execution order, simply place the state-

ment you want to execute first on an enclosing tag, along with a tal:omit-
tag=”” statement.

TALES (TAL Expression Syntax)
TAL is meant to be a general-purpose solution to the problem of creating dynamic

templates that are nevertheless viewable in a browser and editable in their unpro-

cessed state. While Zope currently has the only implementation of TAL, care has

been taken not to incorporate any Zope-specific functionality into TAL, per se.

Nevertheless, there is a need for implementation-specific functionality in order to

integrate with Zope and leverage Zope’s strengths.

The expressions TAL statements take as arguments and which, when evaluated,

supply the TAL statements with data to operate on and to incorporate into the ren-

dered Page Template, are where implementation specific functionality can be

exposed. Appropriately then, TALES (TAL Expression Syntax) allows comprehensive

access to Zope’s objects and methods through several different types of expres-

sions. TALES, however, is specific to Zope, and would probably be replaced with

i4857-3 Ch18.F 3/1/02 9:42 AM Page 531

532 Part IV ✦ Advanced Zope Concepts

some other expression syntax in a different TAL implementation (for example one

that depended on a more traditional three-tier application server or middleware).

TALES has three different types of expressions: path expressions, Python expres-

sions, and string expressions, and one expression modifier, “not.”

Path expressions
Path expressions are the default type of expression in TAL, and are indicated by the

use of an optional path: flag.

Path expressions are interpreted as the path to some object in the ZODB. The

object is returned as the result of the expression, unless it is callable, in which case

the result of calling the object is returned.

Every path must begin with a variable name, and TAL requires certain built-in

names to be available as starting points for traversal in order to expose TAL func-

tionality. The built-in names are:

✦ nothing. This is a special value intended signify a non-value. It is equivalent to

Python None, or SQL Null. In the Java language this would be called void.

✦ default. This is another special value, indicating that the existing text should

be left alone as it is in the Page Template, and not replaced. This is most use-

ful as the last path expression in a sequence of alternatives separated by the

pipe (vertical bar) character.

✦ options. This is a dictionary of the keyword arguments (name/value pairs)

passed directly to the template. In Zope, these keyword arguments are passed

from Python code.

✦ repeat. This is the various repeat variables, explained in the section on the

TAL repeat statement.

✦ attrs. A dictionary that contains the initial values (unaltered by the attributes

statement) of the attributes of the element to which the current statement is

attached.

✦ CONTEXTS. This is a list of built-in variable names. If you overload a built-in

name with a local or global variable definition, the actual built-in name can

still be accessed as a subobject of CONTEXTS.

Besides accessing the built-in variables that a TAL implementation requires, you

also need to be able to traverse to objects in the ZODB. To make the task of travers-

ing to the correct object easier, seven different starting points are defined in the

ZOPE implementation of TALES:

✦ root. This is the ZODB root object, also known as the Zope application object.

Using this is equivalent to using PARENTS[-1] from DTML.

✦ here. This is the current rendering context, or the object on which the tem-

plate is being called.

i4857-3 Ch18.F 3/1/02 9:42 AM Page 532

533Chapter 18 ✦ Zope Page Templates

✦ container. This is the object that contains the Page Template object. It is simi-

lar to a Python Script object’s container.

✦ template. This is the Page Template object being rendered.

✦ request. This is the ZPublisher request object. It contains information regard-

ing the HTTP request, as well as object publication-specific information. URL

parameters are accessed directly through request (request/variablename),

and form values are accessed through a special form variable (request/form/
fieldname).

✦ user. This is the object that corresponds to the user viewing the object being

rendered.

✦ modules. This is an object that grants access to all available Python modules

and packages, many of which will not be available to restricted code such as

Page Templates.

Using path expressions
Constructing the appropriate path for your path expression is fairly straightforward

if you know what you are trying to do. For example, if you want to include the title

of the object on which you are rendering the template in the template’s rendered

output, start with the variable name here and add the title attribute object, which

will result in the path expression, here/title. What might be more useful would be

to call the method title_or_id instead, like this: here/title_or_id. Or, if you

wanted to get all of the sibling objects from the current context, you would use

here/objectValues.

However, if you don’t want to use the title of the object in the current rendering

context, but instead want to use the Page Template object’s title property, you

would use a path expression of template/title.

Similarly, if you want to get the username of the current user, you would use the

path expression user/getUserName, or if you wanted to get the referrer from the cur-

rent HTTP request, you would use a path expression of request/referer.

Any or all of the path expressions can be used in various TAL statements, for

example:

The Title

Specifying alternate paths in an expression
Path expressions can take more than one path. Multiple paths must be separated

using the vertical bar character (|), and are tried from left to right. The evaluation

of the path expression stops as soon as a path has been successfully evaluated.

i4857-3 Ch18.F 3/1/02 9:42 AM Page 533

534 Part IV ✦ Advanced Zope Concepts

In this way, you can specify more than one path to try for a particular expression,

as well as the order in which they will be tried. For example, here we are trying to

test for the trueness of an attribute in a condition statement:

showme is true

It’s important to note that as the Page Template tries to resolve each path, starting

from the variable, the first object it fails to traverse in the path expression will

cause it to switch to evaluating the next path, but if no more paths are available, an

error is raised. To avoid an error, the last path could either be nothing (a false

value), or default.

Getting an object without rendering it
Sometimes, you want to call and render several of an object’s attributes:

<div>
Book Title,
written by Author
Name,
rated Rating.
</div>

This actually causes Zope to access the book1 object several times, slowing the ren-

dering of the page. However, assigning the book1 object directly to a variable using

a define statement will render the object, and make it impossible to access its

attributes. The solution is to use a nocall: flag on the assignment, as is demon-

strated in the following code:

<div tal:define=”book nocall:root/book1”>
Book Title,
written by Author Name,
rated Rating.
</div>

Depending on how expensive accessing the object is, this can result in a significant

speedup. Using nocall: in this way is roughly equivalent to using <dtml-with>.

Python expressions
Python expressions are prefixed with the mandatory flag python: and must be a

valid Python expression. They are useful for passing arguments to methods and

objects that would otherwise be awkward or impossible to pass using path expres-

sions, but you should not use them to try and embed application logic in your tem-

plates. Instead, use Python Script objects for your application logic.

i4857-3 Ch18.F 3/1/02 9:42 AM Page 534

535Chapter 18 ✦ Zope Page Templates

Here is an example that retrieves a list of folder objects only from the current ren-

dering context:

<li tal:repeat=”list python: here.objectValues(‘Folder’)”

tal:content=”list/id”>An ID

A space is not required between the python: flag and the expression itself, but is

recommended for clarity and legibility.

You can also use Python expressions to do comparison tests. The following exam-

ple iterates over the root folder’s objectValues, and tests whether the object is a

Folder, and if so, calls objectValues on it again, rendering all object’s id attributes:

<li tal:repeat=”object root/objectValues”>

<span tal:condition=”python: object.meta_type == ‘Folder’”
tal:omit-tag=””>

<b tal:content=”object/getId”>The folder id

<li tal:repeat=”object root/objectValues”>
<i tal:content=”object/getId”>The object id</i>

<span tal:condition=”python: object.meta_type != ‘Folder’”
tal:omit-tag=””>

<i tal:content=”object/getId”>The object id</i>

String expressions
String expressions are useful for simple substitutions as well as for composing path

expressions together as an alternative to using multiple elements within a

text block.

String expressions require a prefix of string: and may contain multiple substitu-

tions in the form of $name or ${name}, where name takes the form of a path expres-

sion. The evaluated path expressions are always escaped (text), so this is

inappropriate for inserting structure path expressions.

i4857-3 Ch18.F 3/1/02 9:42 AM Page 535

536 Part IV ✦ Advanced Zope Concepts

Here is an example of using string expressions:

<p tal:content=”string: Hello, ${user/getUserName}. You Æ
are viewing the ‘${here/title_or_id}’ page.”>Generic
greeting</p>

A literal dollar sign ($) must be escaped by doubling the symbol ($$) to prevent it

from being interpreted as the variable prefix, like so:

<p tal:content=”string: You have paid $$15.00”>Price</p>

The not: expression flag
The not: expression flag is a flag that can be prefixed to any of the other expression

types (including their flags) in order to interpret the evaluated expression as a

Boolean, and to return the inverse Boolean value. If the expression cannot be evalu-

ated as a Boolean directly, the not: flag will cause it to be coerced to a Boolean

according to the following rules:

✦ Integer 0 is false.

✦ Positive integers are true.

✦ Empty strings, lists, or other sequences are false.

✦ Non-values (such as NULL, None, the TAL variable nothing, and so forth) are

all evaluated as false.

Here’s a small example which when the user is Anonymous, simply removes the

entire element, but otherwise renders the username:

<p tal:condition=”not: python: user.getUserName()Æ
== ‘Anonymous’” tal:content=”user/getUserName”>The user
name</p>

Of course, in this case it might have been easier to replace the == operator with a !=
operator and forego the not: flag, but in many other circumstances (such as evalu-

ating path expressions), you do not have that option.

METAL (Macro Expansion TAL)
One of DTML’s most useful features is the ability to include DTML methods inside

other DTML Documents and Methods. As noted at the beginning of this chapter,

this leads to presentation code being scattered over several methods with no way

to view or edit the page as a whole. METAL is a language for macro pre-proccessing

that provides the benefit of this feature of DTML without the accompanying

drawbacks.

i4857-3 Ch18.F 3/1/02 9:42 AM Page 536

537Chapter 18 ✦ Zope Page Templates

Macros enable you to define a section of presentation code in one template and

include it in other templates, so that any changes you make to the macro are visible

in all the templates that share it.

Unless you specifically disable the feature (by unchecking the “Expand macros

while editing” checkbox), macros are always fully expanded in the source of the

templates that include them, making it easy to view all of the code that will be inter-

preted to render the page, and to view this code in a browser in its uninterpreted

form.

Simple code reuse
So, how do you create the equivalent of <dtml-var navbar> using METAL?

Start by creating a Page Template in the root of your site with an id of “navigation,”

and edit the template body as follows:

<html>
<head>
<title tal:content=”template/title”>The title</title>

</head>
<body>
<table metal:define-macro=”navbar” border=”1” align=”left”>
<tr>
<td>

<li tal:repeat=”object python: root.objectValues(‘Folder’)”>
<a tal:attributes=”href object/absolute_url”

tal:content=”object/title_or_id”>The object title

</td>
</tr>
</table>

<h2>content title or id
<span tal:condition=”template/title”

tal:replace=”template/title”>optional template id</h2>

This is Page Template <em tal:content=”template/id”>template id.
</body>

</html>

So far, so good. You’ve defined your first macro Notice that the macro definition is

only part of the Page Template. It’s important that the Page template as a whole is

an actual HTML file, which makes it easily editable in a WYSIWYG editor. Next you

need to call the macro from within another Page Template. In the Test Page

Template (or another if you wish), place the following code within the body of the

HTML page, right after the beginning <body> tag:

<table metal:use-macro=”here/navigation/macros/navbar”>
</table>

i4857-3 Ch18.F 3/1/02 9:42 AM Page 537

538 Part IV ✦ Advanced Zope Concepts

Notice that macros are accessed from the macros variable on the Page Templates

that contain them. Click the Save Changes button. You’ll notice immediately that

the code that you added to the second template was immediately upon saving

replaced with the code that you defined as the macro in the navigation Page

Template, resulting in code that looks something like this:

<html>
<head>
<title tal:content=”template/title”>The title</title>

</head>
<body>
<table metal:use-macro=”here/navigation/macros/navbar”

border=”1” align=”left”>
<tr>
<td>

<li tal:repeat=”object python:

root.objectValues(‘Folder’)”>
<a tal:attributes=”href object/absolute_url”

tal:content=”object/title_or_id”>The object title

</td>
</tr>
</table>
</body>
</html>

Note that editing any content or child elements on the template contained in the

element with the metal:use-macro statement will not have any effect on the tem-

plate or the original macro. Macros can only be edited within their original Page

Templates.

When the “Test” Page Template is rendered, the macro is expanded in place, and

then rendered. If the macro body contains any macros in turn they are expanded

first, before the macro is included in the template.

Macro slots
Macros are clearly useful in the context of editable Page Templates, but they

require their definition to be on a whole XHTML element. This prevents the use of

ordinary macros for creating a standardized look and feel because of the way you

would need to break the start and end tags of the page body between two macros.

METAL provides an answer, in the form of an inside-out macro. Create a

standard_page Page Template in your Root Folder with the following content:

<html metal:define-macro=”standard_look”>
<head>
<title tal:content=”here/title”>The title</title>

i4857-3 Ch18.F 3/1/02 9:42 AM Page 538

539Chapter 18 ✦ Zope Page Templates

</head>
<body bgcolor=”#FFFFFF”>
<table metal:use-macro=”here/navigation/macros/navbar”>
</table>

Insert content here.

</body>
</html>

Clicking Save Changes expands the navbar macro. We can preview the look and feel

by clicking the Test tab.

Applying this standardized look and feel to our test page is rather simple. Just edit

the Test Page Template as follows:

<html metal:use-
macro=”root/standard_page/macros/standard_look”>
<head>
<title >The title</title>

</head>
<body>

This is the content from the test page template

</body>
</html>

Click the Save Changes button. After saving the changes, you can see that the

expanded macro did not simply replace the entire contents of the Page Template,

but took the element with the metal:fill-slot attribute and matched it to the

appropriate metal:define-slot element in the macro, and did a reverse substitution

so that the expanded template retained the fill-slot element:

<html metal:use-
macro=”here/standard_page/macros/standard_look”>
<head>
<title tal:content=”here/title”>The title</title>
</head>
<body bgcolor=”#FFFFFF”>
<table border=”1” align=”left”>
<tr>
<td>

<li tal:repeat=”object python:

root.objectValues(‘Folder’)”>
<a tal:attributes=”href object/absolute_url”

tal:content=”object/title_or_id”>The object title

</td>
</tr>

i4857-3 Ch18.F 3/1/02 9:42 AM Page 539

540 Part IV ✦ Advanced Zope Concepts

</table>

This is the content from the test page template

</body>
</html>

In this way, a standardized look and feel can be created and maintained, with the

expanded macros making every page on the site viewable and editable. In our

example here, no edits to the Test Page Template will be retained unless they are

within the span element that has the fill-slot attribute. Several designers can eas-

ily edit the standard_page, the Test page, and the navigation page with its navbar

macro without overwriting each others changes, as long as they do not disturb the

METAL attributes. Furthermore, the Page Templates can easily access business

logic encapsulated in PythonScripts, external methods, SQL Methods, and even

DTML without putting that logic into the page, and confusing the designers and

their editing tools with the mixed-in code.

Some examples of combining Page templates with Python Script objects are

included in Zope 2.5. They are located in the /Examples/ folder object.

Summary
In this chapter, you learned about an exciting new technology incorporated into

Zope version 2.5: Zope Page Templates.

You learned the problems with DTML that Page Templates were designed to avoid,

and the basics of creating and editing a Page Template through the ZMI (Zope

Management Interface). You also learned the TAL, TALES, and METAL languages,

along with how to use these syntaxes to create dynamic data-driven templates that

are viewable in a browser, editable in WYSIWYG editors, and can incorporate

macros to create standardized page components and overall look and feel.

For further reading, check out the following books:

XHTML by Chelsea Valentine and Chris Minnick (New Riders, 2001)

HTML and XHTML: The Definitive Guide by Chuck Musciano and Bill Kennedy

(O’Reilly, 2000)

XHTML For Dummies by Ed Tittel, Chelsea Valentine, and Natanya Pitts

(Hungry Minds, 2000)

✦ ✦ ✦

i4857-3 Ch18.F 3/1/02 9:42 AM Page 540

Debugging

Let’s face it, nobody’s perfect, not even you. Occasionally

products you’ve written will crash, hang, produce incon-

sistent or flat-out wrong results. When this happens — and it

will happen — you want to make sure that you have at your

disposal a variety of ways with which to track down and elimi-

nate bugs. Zope provides many different options when it

comes to debugging, some of which should be familiar to long-

time Python users.

This chapter discusses each of the available debugging

options. The following is sample code that we will refer back

to for the different examples we present in this chapter. The

code is for an instantiable product, such as the ones we

learned how to make in Chapter 6, with some very basic func-

tionality. If you notice any errors in the code, those are inten-

tional. We are learning how to debug, after all.

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
Zope’s error
messages

Using Zope’s debug
mode

The Python debugger

Logging

✦ ✦ ✦ ✦

i4857-3 Ch19.F 3/1/02 9:43 AM Page 541

542 Part IV ✦ Advanced Zope Concepts

__init__.py:
import TestModule

def initialize(context):
context.registerClass(

TestModule.TestProduct,
permission=”Add Test Object”,
constructors=(TestModule.manage_addTestForm,

TestModule.manage_addTest)
)

TestModule.py:
from OFS import SimpleItem

def manage_addTestForm(self, REQUEST):
“This is the form that allows you to add a Test object”
return “””<html>
<body>
<form method=”post” action=”addTest”>
ID: <input type=”text”>
<input type=”submit” value=”Add Test”>
</form>
</body>
</html>”””

def manage_addTest(self, id):
“Add a Test object.”
newTest = TestProduct(id)
self._setObject(id, newTest)

return self.manage_main(self, REQUEST)

class TestProduct(SimpleItem.Item):

meta_type = ‘Test Product’

def __init__(self, id):
self.id = id
self.status = ‘Initialized’

def setStatus(self, new_status):
“Set a new status”
if self.status == new_status:
return “I already had it that way!”

else:
self.status = new_status
return “Status changed to %s” % new_status

def Status(self):
“Return the object’s current status”
return self.state

i4857-3 Ch19.F 3/1/02 9:43 AM Page 542

543Chapter 19 ✦ Debugging

For the examples we use in this chapter we created an instance of TestProduct in

the root of our Zope instance, called “Test.”

Error Messages
The first step in understanding how to debug a problem in your Zope application is

to understand Zope’s error messages. A typical error message will look something

like Figure 19-1. You can reproduce this error yourself by going to http://localhost:
8080/Test/Status. As you can see, there isn’t much helpful information there. If you

were running Zope in debug mode, you would see a much more informative, albeit

confusing, error message, as shown in Figure 19-2.

Figure 19-1: A typical Zope error message

That extra information that you see is called a traceback. A traceback tells you what

function calls Zope used to get to this point. Now, how do we find that information

if we’re not running in debug mode? As you can see in Figure 19-3, when Zope is not

running in debug mode, the traceback information can be found as a comment in

the HTML (Hypertext Markup Language) source code of the error message page.

i4857-3 Ch19.F 3/1/02 9:43 AM Page 543

544 Part IV ✦ Advanced Zope Concepts

Figure 19-2: A Zope error message, when running in debug mode

Figure 19-3: Traceback information in the HTML source of the error page

i4857-3 Ch19.F 3/1/02 9:43 AM Page 544

545Chapter 19 ✦ Debugging

Let’s examine what kind of information is provided for us in the traceback. The first

thing you’ll notice is that the traceback gives you some function names, some mod-

ule file names, and some line numbers. The data, from top to bottom, delineates the

path of function calls that were made to get to the point of the error. Each line gives

you the name of the file that the function call is in and the line number of the func-

tion call. The first few lines are of the publishing process. Using the filenames you

can easily find the point at which we begin to enter our product.

After all of the lines detailing the function calls, it tells you what error was raised,

which in this case is an AttributeError. If we go and take a look at our code, we will

see what the error is. The attribute that we are trying to return, self.state, doesn’t

exist. The correct attribute would be self.status.

Debug Mode
Zope’s debug mode is helpful for tracking down bugs. When in debug mode, trace-

backs will be displayed on the error page rather than in a comment in the source

code. External methods, if modified, are reloaded every time they are accessed, so

you don’t have to manually reload them. All of this comes at the cost of perfor-

mance, so you don’t want to leave your production servers running in debug mode.

There are two ways to make Zope start up in debug mode. The first way is to pass

the –D switch to the start script. In Windows, from your Zope directory, type start

–D. In Linux you need to use ./start –D.

Alternately, you can set the environment variable Z_DEBUG_MODE=1. In Windows you

can type set Z_DEBUG_MODE=1. In Linux, if you’re using bash, you can type export

Z_DEBUG_MODE=1. For other shells, refer to the documentation for your particu-

lar shell.

Calling Zope from Python
One of Zope’s most useful features is the ability to simulate HTTP (Hypertext

Transfer Protocol) requests from within Python, including the interactive shell.

Let’s examine how we would make such a request.

First, make sure that Zope is not running. Only one application can have the ZODB

(Zope Object Database) open at one time, so if your Zope instance is running, you

will not be able to load it in Python. Once you’ve shut down Zope we need to

import the appropriate modules, Zope and ZPublisher. Once we have the module

imported, we can use the provided functions to imitate an HTTP GET. If we hit an

error, we’ll get a standard Python error. Let’s look at an example.

First, we call up the Python interpreter from within the lib\python directory of our

Zope installation. If you are using a binary installation of Zope you can start the

i4857-3 Ch19.F 3/1/02 9:43 AM Page 545

546 Part IV ✦ Advanced Zope Concepts

interpreter with the command ..\..\bin\python, otherwise you can probably just

type python. Remember that this command will only work from the lib\python
directory. Under Linux the command is exactly the same, except that instead of a

backslash, you would use a forward slash: ../../bin/python.

You’ll be greeted with the interpreter’s startup message:

Python 2.1 (#15, Apr 16 2001, 18:25:49) [MSC 32 bit (Intel)] on
win32
Type “copyright”, “credits” or “license” for more information.
>>>

The >>> is the interpreter’s prompt and lets you know that it is ready for input. Now

we need to import the Zope and Zpublisher modules:

>>> import Zope, ZPublisher
>>>

These modules could take a few minutes to load. When it’s done loading you should

be returned to the interpreter’s command prompt. If Zope is still running you’ll get

the following message before being returned to the command prompt:

ZODB.POSException.StorageSystemError: Could not lock the
database file. There must be
another process that has opened the file.
<p>
>>>

What this means is that you still have Zope running. You need to exit the inter-

preter, shut down Zope, and then try again. To exit the interpreter in Windows,

press Ctrl+Z. To exit the interpreter in Linux, press Ctrl+D.

Assuming that we have successfully imported Zope, we should now be able to simu-

late an HTTP request using the ZPublisher module:

>>> ZPublisher.Zope(‘/’)
Status: 200 OK
X-Powered-By: Zope (www.zope.org), Python (www.python.org)
Content-Type: text/html
Content-Length: 308

<html><head>
<base href=”http://127.0.0.1/Zope/” />
<title>Zope</title></head><body bgcolor=”#FFFFFF”>

...Page Content...

<p><img
src=”http://127.0.0.

i4857-3 Ch19.F 3/1/02 9:43 AM Page 546

547Chapter 19 ✦ Debugging

1/Zope/p_/ZopeButton” width=”115” height=”50” border=”0”
alt=”Powered by Zope” /
></p></body></html>

>>>

ZPublisher will return exactly what it would return to a browser, including the

HTTP headers.

If you need to access a protected function, you can pass a username and password

using the u parameter:

>>> ZPublisher.Zope(‘/’, u=”joe:123”)
>>>

The Python debugger (pdb)
Some of you may already be familiar with the Python debugger (pdb); some of you

may even be familiar with the GNU debugger (gdb) whose interface was the basis

for the Python debugger. This section explains some of the basics uses for the

debugger, as well as how to debug our Zope programs with it.

In the previous section we learned how to make calls to Zope from within Python.

Now we are going to learn how to call Zope and be automatically entered into the

debugger so we can step through the various function calls that Zope goes through

to publish an object. All we need to do is pass in a new argument to our function

call that we learned earlier in this chapter.

Let’s try calling the setStatus function of our Test object, having Zope run it in the

debugger so we can step through it:

>>> ZPublisher.Zope(‘Test/setStatus?new_status=Ready’, d=1)
* Type “s<cr>c<cr>” to jump to beginning of real publishing
process.
* Then type c<cr> to jump to the beginning of the URL traversal
algorithm.

* Then type c<cr> to jump to published object call.
> C:\Program Files\WebSite\lib\python\<string>(0)?()
pdb>

You may notice a couple of different things here. First, we’re passing a variable to

setStatus. Because we’re simulating an HTTP request, you can pass variables the

same way you would in a URL (uniform resource locator). Second, we’re passing a

second argument to the call. This argument is the one that tells Zope to run this

request in the debugger.

You may also notice that Zope has returned three statements, and then a different

prompt. This new prompt is the Python debugger’s prompt. It tells us that we’ve

entered the debugger and it is now waiting for input.

i4857-3 Ch19.F 3/1/02 9:43 AM Page 547

548 Part IV ✦ Advanced Zope Concepts

The three statements that Zope returns detail three different breakpoints that have

been pre-selected. The first breakpoint is set at the beginning of the publishing pro-

cess. The second breakpoint is set where Zope begins the traversal function to find

the object you’re requesting. The third breakpoint is set at the point where Zope

begins the actual process of publishing your object. The three statements also give

you instructions on how to use the debugger’s commands to get to these points.

Let’s examine those. The two different commands are s and c. The s is the “step”

command. It enables you to step into a function. The c is the “continue” command.

It tells the debugger to continue executing statements until it encounters the next

breakpoint, or there are no more commands to execute. A few more commands that

will come in handy when in the debugger are: p, the “print” command, which can be

used to display variables, and n, the “next” command, which executes the current

line of code and moves the pointer to the next one.

While the s command and the n command may seem similar at first glance,
there’s a big difference between the two. If the line of code that you are about to
execute is a function, the s command will take you to the first line of code in that
function. The n command on the other hand will execute the function in its
entirety and take you to the next line of code after the function has been executed.

Sometimes the pre-defined breakpoints aren’t really convenient, and you’ll want to

set a breakpoint yourself in a specific function. Fortunately the debugger provides

for just that situation. In order to set a breakpoint we need to import our product

from the pdb prompt (after entering the debugger the way we outlined earlier in

this chapter):

pdb> from Products.TestProduct.TestModule import TestProduct
pdb>

In addition to using these commands you can also execute other standard Python

commands. Other commands specific to the debugger are beyond the scope of this

chapter but can be found online at http://www.python.org/doc/current/lib/
module-pdb.html.

Once our product is imported, we can set a breakpoint using the b command:

pdb> b TestProduct.setStatus
Breakpoint 3 at C:\Program Files\ZopeSite\lib\python\Products\Æ
TestProduct\TestModule.py:25
pdb>

This command tells the debugger to set a breakpoint in the setStatus function of

the TestProduct object. We can now, using the commands we learned previously,

step through the debugger to our breakpoint. As instructed, we use s and then c to

step to the first breakpoint:

pdb> s
> C:\Program Files\BibleSite\lib\python\<string>(1)?()
pdb> c

Note

i4857-3 Ch19.F 3/1/02 9:43 AM Page 548

549Chapter 19 ✦ Debugging

> C:\Program
Files\BibleSite\lib\python\ZPublisher\Publish.py(122)publish()
-> def publish(request, module_name, after_list, debug=0,
pdb>

This is the beginning of the publishing process. As you can see, we’ve stepped to

the very beginning of the publish function in the Publish module of the ZPublisher

package.

Now, we hit c again to continue on to the second breakpoint:

pdb> c
> C:\Program Files\BibleSite\lib\python\ZPublisher\Publish.pyÆ
(111)call_object()
-> def call_object(object, args, request):
pdb>

Here we begin to traverse through to the object that we’re calling. In this case the

variable “object” is our function, setStatus.

A third c will take us to the breakpoint we just set:

pdb> c
> C:\Program Files\BibleSite\lib\python\Products\TestProduct\Æ
TestModule.py(26)setStatus()
-> import pdb; pdb.set_trace()
pdb>

You can use the l (list) command to display a short snippet of the source code sur-

rounding our breakpoint:

pdb> l
21 self.id = id
22 self.status = ‘Initialized’
23
24 def setStatus(self, new_status):
25 “Set a new status”
26 B-> if self.status == new_status:
27 return “I already had it that way!”
28 else:
29 self.status = new_status
30 return “Status changed to %s” % new_status
31
pdb>

You can see that the debugger is showing us where our breakpoint is set with the

B-> identifier. From here, you can use the other commands we’ve learned to con-

tinue examining the function to solve any problems. Once you’re done with your

debugging, keep hitting c until you’re returned to the Python interpreter’s prompt.

i4857-3 Ch19.F 3/1/02 9:43 AM Page 549

550 Part IV ✦ Advanced Zope Concepts

Post-mortem debugging
The debugging method we outlined in the previous section is really more useful for

tracking down complicated problems that aren’t immediately identifiable. When

you have a problem that is raising an error, “post-mortem” debugging becomes

more useful than the above method.

Our TestProduct has a function that contains a mistake. If we try to call this

method, Zope will raise an AttributeError. The Zope function that we’ve been

using in the previous sections to make HTTP requests from within Python has

another parameter that it can take that will, when it encounters an error, allow us to

enter into the debugger at the point where the error occurs.

>>> ZPublisher.Zope(‘Test/Status’, pm=1)
>>>

Our Status function is trying to return the state attribute, which does not exist, and

will raise an AttributeError. Passing pm=1 to the Zope call raises the AttributeError
instead of the default behavior of returning the HTML code of the error page. Once

the error has been raised, we can import the Python debugger and use its pm func-

tion to step straight to the line that raised the error:

>>> import pdb
>>> pdb.pm()
> C:\Program Files\WebSite\lib\python\Products\TestProduct\Æ
TestProduct.py(35)Status()
-> return self.state
pdb>

Once again, from here we can use the debugger’s commands and Python code to

figure out what our problem is.

Triggering the Python Debugger via the Web
Sometimes it may not be fast or easy enough, or even possible, for you to debug

your problem simulating HTTP requests through the interactive shell. In these

cases you need to have a way to call up the debugger from your code.

First (and this is very important), make sure your Zope instance is running in debug

mode. If you’re not running in debug mode and you trigger the debugger, your Zope

instance will be paused waiting for input from the debugger — input you won’t be

able to give it because the process has detached itself from the terminal. The other

thing you’ll have to watch out for is that the debugger only pauses one thread this

way, while your site continues to work. If someone else were to try and load the

page that has the debug trigger in it, you will be switched out of whatever debug-

ging you were doing into the thread that they just triggered. This can make it

i4857-3 Ch19.F 3/1/02 9:43 AM Page 550

551Chapter 19 ✦ Debugging

difficult to do effective debugging, so you will want to make sure that you have a

controlled environment, or that Zope is not running multi-threaded while you’re

debugging.

In order to trigger the debugger, you must add one simple line to your code. At the

appropriate section of your source code, preferable before the error occurs, insert

the following line:

import pdb; pdb.set_trace()

For the purposes of our example, we’re inserting the code into TestModule.py as

follows:

def setStatus(self, new_status):
“Set a new status”
import pdb; pdb.set_trace()
if self.status == new_status:
return “I already had it that way!”

else:
self.status = new_status
return “Status changed to %s” % new_status

When Zope hits this line of code, it will trigger the debugger in the controlling ter-

minal. In your Web browser it will appear as though the server is not replying. This

is because it is waiting for your input:

--Return--
> C:\Program Files\WebSite\bin\lib\pdb.py(895)set_trace()–>None
-> Pdb().set_trace()
(Pdb)

From here, hitting “n” will step you from the set_trace() function, into the function

where we set out breakpoint:

(Pdb) n
> C:\Program Files\WebSite\lib\python\Products\TestProductÆ
\TestModule.py(27)setStatus()
-> if self.status == new_status:
(Pdb)

In this case, I set the breakpoint directly after the doc string in the setStatus()
function. You can use the l command to display the surrounding source code:

(Pdb) l
22 self.status = ‘Initialized’
23
24 def setStatus(self, new_status):
25 “Set a new status”
26 import pdb; pdb.set_trace()

i4857-3 Ch19.F 3/1/02 9:43 AM Page 551

552 Part IV ✦ Advanced Zope Concepts

27 -> if self.status == new_status:
28 return “I already had it that way!”
29 else:
30 self.status = new_status
31 return “Status changed to %s” % new_status
32
(Pdb)

Notice that the debugger tells you what line it is set to execute with a ->.

From here, you can use any of the previously discussed debugger commands to

locate the problem.

This kind of debugging can be used from External Methods as well as from

Products.

Logging
Another way to determine whether your product is working correctly or not is to

use the provided mechanisms for logging information. You can use Zope’s logging

functions to insert short informative statements about what your product is doing.

The way we do this is by using the zLOG module.

zLOG module
The zLOG module provides an interface to Zope’s logging engine. Let’s take a look

at how we can use it in our product. The function that we are most interested in is

the LOG function, so we will begin by importing that:

from zLOG import LOG

Now that we have the LOG function available to us, we can use it to write messages

to Zope’s log file. LOG takes a few arguments that enable you to organize your mes-

sages. The first three arguments are required: “subsystem” is simply a string

describing the product or module that generated the error; “severity” is a number,

floating point, or integer, that quantifies the degree of seriousness of your error;

“summary” is a string that you use as your informative statement. There are three

arguments that are optional: “detail,” a string that you can use as a longer descrip-

tion; “error,” which is a standard three-element tuple consisting of an error type,

value, and traceback; “reraise,” which will cause the error provided in the “error”

argument to be re-raised. If you provide the “error” argument, a summary of this

information will be added to the error detail.

The zLOG module provides some standard severity variables that you can import

and use for your logging calls. In order of severity, from lowest to highest, the sever-

ity variables are: TRACE, DEBUG, BLATHER, INFO, PROBLEM, WARNING (has the

i4857-3 Ch19.F 3/1/02 9:43 AM Page 552

553Chapter 19 ✦ Debugging

same severity as PROBLEM), ERROR, PANIC. You should import the ones you plan

to use for your messages when you import the LOG function, like this:

from zLOG import LOG, INFO

You can then make the call to write to the log file like so:

LOG(‘TestProduct’, INFO, ‘Well, you got this far at least!’)

When running in debug mode, the following message will appear on the console:

2001-10-18T22:55:10 INFO(0) TestProduct Well, you made it this
far at least!

Note that when using TRACE, DEBUG, and BLATHER, most logging engines will

ignore them because their integer value is less than 0.

Remember, at this point we’re running our tests in Zope, so any changes that we

make to our product will have to be refreshed. You can refresh the Product by using

its Refresh tab, if the product has a refresh.txt file. Otherwise, the only way to

refresh a product is to stop and restart Zope.

Profile logging
When your product is hanging the server, or spinning out of control in an infinite

loop, sometimes it can be useful to turn on logging of profile information. Turning

on profile logging incurs a significant performance hit on the server so it should be

used pretty sparingly, after you’ve determined that you can’t debug your problem

any other way. A profiler reports the performance of a running program and returns

statistics that could be useful in finding bottlenecks.

Turning on profile logging is done with the –M <filename> switch. The specified file-

name is the name of the file that will contain the profile information. Alternately,

you can set an environment variable, PROFILE_PUBLISHER, the contents of which

should contain the path to the file you want to contain the profile information. You

should find a program called requestprofiler.py in the utilities directory of your

Zope installation, which will read and interpret the profile log file.

Control panel
The Control Panel also holds a couple of utilities that are useful for debugging.

There is a link in the Control Panel to Debug Information. Here you will find two

tabs, one for Debugging Info, and one for Profiling. The Profiling tab will normally

have information on how to enable profiling, unless you have the environment vari-

able discussed above set. Note that the Profiling tab will not be active if you use the

–M switch. It will only be active if you set the environment variable.

i4857-3 Ch19.F 3/1/02 9:43 AM Page 553

554 Part IV ✦ Advanced Zope Concepts

Debug information
The Debug Info screen is by far one of the most useful tools in Zope’s debugging

arsenal. Refer to Figure 19-4 for an example of the contents of the Debugging Info

tab. More often than not, this is the first place I will go to see if any threads are

hung, and if they are, what they were trying to execute and what parameters were

passed to it. All this info is available from this one screen, making it invaluable to

the beginning stages of debugging certain problems. Of course, if all four of your

threads are hung, you’re not going to be able to get to this screen, so it’s not always

a foolproof solution.

The first information you will find in this page is exactly the same information that

is present on the main Control Panel page:

✦ Version of currently running Zope instance

✦ Version of Python running Zope

✦ Platform Zope is running on

✦ Process id Zope is running under

✦ Current running time

Now starts the interesting and useful information. The first piece of useful informa-

tion is a multi-select list labeled “Top Refcounts.” It lists some classes, and a num-

ber next to that class. The number is the number of times the object has been

referenced by the objects loaded in memory. Objects with a higher refcount are

being used more than the objects with a lower refcount. The importance of these

numbers lays in the fact that the more refcounts there are, the more memory your

Zope instance is using. If you notice an extremely high refcount for an object and

your Zope instance is using a lot of memory, you may be able to perform some opti-

mizations and save some memory.

Next comes a table that we can use to give us an idea of how memory is being uti-

lized. It reports the same types of objects that we see in the “Top Refcounts,” and it

also has a column for the refcounts at a particular time, and the refcounts at a time

a few minutes later. The final column gives you the difference in the refcounts from

one time to the next. This is helpful because it gives us an idea of whether memory

usage is increasing, and how fast. If the difference between refcounts (the delta) is

significant, and continues to increase, then you may have a memory leak, some

kind of circular reference, or a recursion problem that just continues to load new

references to objects in memory. Problems like these can crash a server pretty

quickly, so this table is crucial in determining if you have a problem like this or not.

The final table on this page (Figure 19-4) has a list of the currently active threads.

There will never be more rows than the number of threads that you specified,

although there may sometimes be less, as threads aren’t all initialized at startup. If

a thread has been initialized, but isn’t processing any requests, it will say “None” in

the “opened” column. If a thread is in the middle of processing, you will see the

i4857-3 Ch19.F 3/1/02 9:43 AM Page 554

555Chapter 19 ✦ Debugging

date and time that the processing began, and the time in the seconds that it has

been processing the page. The next column, “info,” contains all of the variables in

the REQUEST object for that page. There is a lot of useful information in there, such

as what page is being requested (PATH_INFO), what page they came from

(HTTP_REFERER), any form variables that may have been posted to the page, the

username of the requester, and so on. This information is useful for duplicating a

request to a page that may be hung or processing too slowly.

Figure 19-4: The Zope Debugging Info screen

Profiling
The Profiling tab in the Control Panel provides some information gathered using the

Python profiler. As you can see in Figure 19-5, it details a list of different functions,

plus some statistical data on the calling of each function. There are five different

columns that provide statistical information. “ncalls” is the number of calls to that

particular function. “tottime” is the total time spent executing that function, not

including time spent calling other functions. “percall” is “tottime” divided by

“ncalls.” “cumtime” is the total time spent executing that function, including time

spent calling other functions. “percall” is “cumtime” divided by “ncalls.”

What is this data useful for? Primarily, this data is intended to be used to single out

the functions in your product that are running slowly and are affecting perfor-

mance. Any bottlenecks in your system will show high “tottime” and “percall” and

should be revised.

i4857-3 Ch19.F 3/1/02 9:43 AM Page 555

556 Part IV ✦ Advanced Zope Concepts

Figure 19-5: The Zope Profiling screen

Summary
As we’ve seen, when it comes to debugging, Zope has a wealth of options available

to us. Whether our problems are simple, such as typos or syntax errors, or more

complicated, such as locked threads or memory leaks, there is always an option for

figuring out where things are going wrong. Simple problems can be debugged using

the logging facilities; more complicated problems require the use of the debugger.

Because Zope is written in Python many of its debugging options are rooted in

Python’s debugging utilities. Python’s maturity gives us well-developed tools that fit

nicely within the Zope framework and enable us to examine our work quickly and

efficiently.

✦ ✦ ✦

i4857-3 Ch19.F 3/1/02 9:43 AM Page 556

Alternative
Methods of
Running Zope

Although Zope is quite self-contained and includes every-

thing that you need to create and deploy Web applica-

tions within a single application, there are times when you

want Zope to run a little differently to accommodate your

needs. For example, you might want Zope to run behind

another Web server, or you may want to deploy Zope as a

cluster of servers, rather than a single process. In this chap-

ter, we’ll discuss and demonstrate some of those alternatives.

Interfacing Zope with Other
Web Servers

Several of the reasons that you would want to run Zope in

conjunction with other Web servers are as follows:

✦ You are already running a Web server and don’t want to

put all of your existing pages into Zope just to take

advantage of its capabilities.

✦ Many of the files you deliver are large (for example high-

resolution graphics or streaming media files), and it

doesn’t make sense to serve them up dynamically from

Zope when a static file server will work more efficiently.

✦ You have a virtual hosting environment and only want

some of the sites served by Zope.

✦ Your boss insists that you use a “standard” Web server.

Luckily for you, Zope can easily integrate with other Web

servers.

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Interfacing Zope with
other Web servers

Zope and scalability

✦ ✦ ✦ ✦

i4857-3 Ch20.F 3/1/02 9:43 AM Page 557

558 Part IV ✦ Advanced Zope Concepts

Zope and Apache
Zope and Apache fit together so well and so easily that it’s hard to believe. We’ll

assume that you want Apache to run on port 80 (the standard Web server port),

that the Web site you’re serving up is www.smallco.com, and that you have Zope run-

ning on an IP address of 127.0.0.1, and the default port of 8080.

In your Zope Web site’s root folder, add a Virtual Host Monster object by selecting

Virtual Host Monster from the Add object drop-down. The form that appears at the

bottom of the subsequent page has only an id field. Type in Apache and click the

Add button.

In Apache’s httpd.conf file, add the following code to the end of the file:

<VirtualHost *>
RewriteEngine On
RewriteRule ^/(.*) _
http://127.0.0.1:8080/VirtualHostBase/http/www.smallco.com:80/$
1 [P]
</VirtualHost>

Locate the mod_proxy configuration section of the same httpd.conf file, and make

sure that the ProxyRequests and ProxyVia options are enabled, as in the following

code:

<IfModule mod_proxy.c>
ProxyRequests On
ProxyVia On
</IfModule>

If you now restart Apache, you should be serving all of your content out of Zope’s

root folder. Of course, perhaps this wasn’t what you need. If you want to serve dif-

ferent sites out of different Zope folders, you’ll need to change the rewrite rule.

For example, if you want to serve the smallco.com site out of the /hosted_sites/
smallco folder, change the rewrite rule as follows:

RewriteRule ^/(.*)
http://127.0.0.1:8080/VirtualHostBase/http/www.smallco.com:80/
hosted_sites/smallco/$1 [P]

These are two simple examples. Apache rewrite rules are extremely flexible, and

can handle practically any requirement that you have, but a full description of their

use would take up an entire chapter of this book.

Searching for apache or rewriterule on Zope.org will present you with many exam-
ples and configurations.

Tip

i4857-3 Ch20.F 3/1/02 9:43 AM Page 558

559Chapter 20 ✦ Alternative Methods of Running Zope

Zope and Microsoft IIS
Microsoft IIS (Microsoft Internet Information Server) is a popular Web server for

Microsoft NT and is included with the Windows NT 4.0 Option Pack 3. If you happen

to be running IIS, there will be a couple of hoops to jump through regarding IIS’s

authentication process and coupling IIS and ZServer via PCGI (Persistent Common

Gateway Interface).

As such, we first discuss how to get PCGI configured properly, and then talk about a

couple of different options you have when configuring the authentication situation.

We assume you have NT 4.0 and IIS running with their default settings and have

Zope’s root directory as C:\Program Files\Zope\.

Introducing ZServer to IIS through PCGI
In Zope’s root directory, you should find a file called Zope.cgi. Copy this file into

IIS’s cgi-bin directory at C:\Inetpub\wwwroot\cgi-bin\ and rename it to Zope.pcgi.

Persistent CGI is a good solution for Web applications like Zope that have a rela-

tively high start-up costs and are meant to be long-running in process. Unlike regu-

lar CGI scripts that are run when the Web server is asked for the appropriate URL,

return their results, and then shut down. Persistent CGI programs remain running

between HTTP requests in order to avoid the startup and shutdown costs. Since

Zope is relatively large as Web applications go, it is a good idea to run Zope in

this way.

We now want to add a new extension mapping to IIS for PCGI. What we must do is

tell IIS to run Zope’s pcgi-wrapper.exe whenever it sees the .pcgi extension. (The

pcgi-wrapper.exe application is what passes requests and results back and forth

between IIS and Zope.) Go to Start ➪ Windows NT 4.0 Option Pack ➪ Microsoft

Internet Information Server ➪ Internet Service Manager. This opens the Microsoft

Management Console.

Locate your Web site beneath Internet Information Server and right-click it to open

its properties. Click the Home Directory tab and then the Configuration button.

Click Add under the App Mappings tab. For Executable, insert “C:\Program Files\

Zope\pcgi\Win32\pcgi-wrapper.exe” %s. For Extension, insert .pcgi.

Finally, we must make Zope look for that Zope.pcgi when it starts up. To do this,

add the path to the file in Zope’s startup script using the -p switch by either editing

the start.bat file in the Zope root directory or by editing the registry key if you

have Zope installed as a Windows NT Service. (The syntax will look similar to -p
C:\Inetpub\wwwroot\cgi-bin\Zope.pcgi.)

To edit the registry key, run regedit. The path is HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\Zope\Parameters\Start. Add -p C:\Inetpub\

wwwroot\cgi-bin\Zope.pcgi and click OK.

i4857-3 Ch20.F 3/1/02 9:43 AM Page 559

560 Part IV ✦ Advanced Zope Concepts

Editing Windows’ registry makes it really easy to truly mess up your system. Be
sure to edit only the key we instruct you to.

Start both IIS and Zope. Try accessing your Web site by pointing your browser at

http://localhost/cgi-bin/zope.pcgi. If it yields the same page as http://
localhost:8080/, you know that you have everything set up correctly. Now to

make sure authentication is passed properly.

The public Web site: having Zope verify authentication
If you try to access Zope’s management interface through http://localhost/
cgi-bin/zope.pcgi/manage, you will receive the typical request for a username and

password. Unless you enter the username and password you set up while installing

Zope, you will get an authentication error. What is happening here is that Zope

sends out a request for authentication, but when IIS receives the response, it looks

at it and figures that it doesn’t match anything in its system, so tosses it out with-

out passing it along back to Zope.

The solution for this is to make IIS pass along all of the information without getting

itself involved by giving anonymous access to the Zope.pcgi file. So, go back into

the Microsoft Management Console and right-click the Zope.pcgi file in the cgi-bin

folder and then click the File Security tab. Click the Edit button under Anonymous

Access and Authentication Control. Three options appear: Allow Anonymous

Access, Basic Authentication, and Windows NT Challenge/Response. Make sure

Anonymous Access is the only box checked. This will pass all authentication infor-

mation directly to Zope.pcgi, and therefore, to Zope.

Click OK and try to access http://localhost/cgi-bin/zope.pcgi/manage again.

When you enter the username and password you should gain access to Zope’s man-

agement interface. Congratulations! You set up Zope to run behind IIS.

Zope and Scalability
A persistent question posed by people considering Zope is “Does Zope scale?”

What is scalability?
Scalability, in computer systems as well as in business models, is the quality a sys-

tem possesses when its percentage of overhead stays the same or even decreases

as the number of transactions grows.

Ideally, your Web server’s performance (in terms of how quickly it was serving

requests for documents) bears a direct linear relationship to how many requests

were being served, and the ability of the server to serve those requests bears a

direct linear relationship to the cost of its hardware. In practice, neither of those is

Caution

i4857-3 Ch20.F 3/1/02 9:43 AM Page 560

561Chapter 20 ✦ Alternative Methods of Running Zope

true for any system, but it’s much less true for dynamic publishing environments

than it is for Web servers serving static files.

Here’s how the non-linear relationship works: Suppose you’re serving up static files

on a Web server. As your site becomes more popular, more people hit your site. As

the load on your site increases, you notice performance starts to degrade and the

server’s response time starts to increase. Then you notice that as even more people

hit your site, the rate at which the server slows down actually increases. Each addi-

tional visitor to your site is imposing a proportionately greater performance

penalty — a 10 percent increase in hits causes a 15 percent increase in response

time, and another 10 percent increase in hits causes another 20 percent increase in

response time. Eventually, your site crawls to a halt.

Now, you decide to buy a new server to replace your old one. You decide to spend

twice as much on the hardware this time, figuring that that should give you a com-

fortable margin for error. However, after the new server is in place, you notice that

although it certainly performs better than the old server, it also starts to slow down

with an increase in hits, and it didn’t take a 100% increase to do it either!

You call various vendors and find out that as you spend more money on hardware,

the price/performance ratio actually decreases. In effect, you pay more and more

for ever-diminishing returns. You discover that there is a “sweet-spot” where you

can get the most bang for your buck, but unfortunately, that machine isn’t powerful

enough to handle your current load, much less future increases. If only there were a

way to divide the work between several computers.

Clustering and load balancing
Not surprisingly, there is a solution for divvying up the work between several com-

puters. In fact, there are several solutions, with variations.

If, like with our hypothetical Web site owner’s site, your server is serving up static

content, you can use round-robin DNS to distribute the load among several servers.

This basically directs each request for www.yoursite.com to one of several IP

addresses on your internal network. As each request comes in, the next IP address

on the list is chosen to fulfill it. As long as all of the servers have identical content,

the user will never notice with which machine his or her browser is actually

communicating.

This approach, which has the advantage of simplicity, has one drawback: not all

HTTP (Hypertext Transfer Protocol) requests are created equal. Larger files place

more of a load on the server that is fulfilling the request. Because requests are simply

passed to each server in turn, it is a statistical certainty that some servers will be hit

harder than others, increasing the load on them. In addition, there are other factors

that will conspire to distribute the load unevenly across your servers, such as the

fact that the DNS server that the user’s browser consults to resolve the domain name

into an IP address caches (remembers) the IP address, sometimes for a couple of

days. If that DNS server is used by many users, then those users will all be hitting the

i4857-3 Ch20.F 3/1/02 9:43 AM Page 561

562 Part IV ✦ Advanced Zope Concepts

same server until the cache expires and a new IP address is retrieved. Now, over time,

on average, the load will tend to be even across the servers, but in the short term,

some servers will be hit harder than others due to these and other factors.

Because servers that are being hit harder decrease in their response time, and your

goal is to maximize the efficiency of your cluster of servers (as that’s what we’re

describing), you need to find a way to distribute the load more evenly in the short

term, not just in the long term. Otherwise, some servers will be overworked and

decrease in efficiency, and others will be under-utilized. This is where dynamic load
balancing comes in.

Dynamic load balancing is done by a device often referred to as a Layer 4 switch.

Layer 4 switches hand requests off to a cluster of computers. To the rest of the

Internet, www.yourdomain.com resolves to a single IP address, which actually belongs

to the switch. Meanwhile, behind the scenes, the switch transparently hands off the

request to servers in the cluster. The servers, meanwhile, are able to inform the

switch as to how hard they’re working, so the switch can always choose the server

with the lightest load for the current request.

Explaining these and other load balancing techniques further is really beyond the

scope of this book, but it’s important to understand what, in general, is going on here.

So far, we’ve only been discussing static Web sites. The situation changes in several

particulars when the Web site in question is producing all or part of its page views

dynamically.

A setup that is producing pages dynamically is generally called an application
server. An application server typically has three parts: a Web server, a database,

and some form of middleware tying the two together. Note that in some usages,

“application server” can refer to the middleware part alone.

All three parts of the application server can reside on the same server, and for

some simple setups (Apache, Perl, and MySQL, for example), this is perfectly ade-

quate if the system is not expected to serve a lot of requests. However, under

higher load situations, the differing requirements of each component suggest sepa-

rating them so that a hardware configuration tuned to its needs can be provided.

At the very least, you should separate the database sever from the other two com-

ponents. This is because replicating a database is far more work than replicating

static files on a Web server. In a dynamic Web site, you want to present the same

data to many users. If the Web site also collects information that is added to the

database (such as book or music recommendations), that information must be

reflected in the site no matter which server is replying to the request.

The easiest way to do this is to cluster the Web servers and have each one use the

same database server as its information store.

By now, you may be wondering what all this has to do with Zope. Zope is an inte-

grated solution, with the Web server (ZServer), middleware (ZPublisher), and data

i4857-3 Ch20.F 3/1/02 9:43 AM Page 562

563Chapter 20 ✦ Alternative Methods of Running Zope

storage (ZODB) components in a single package. Load balancing or clustering Zope

servers seems rather more difficult than with a traditional setup.

Zope Enterprise Objects
In order to cluster and load-balance Zope servers, Zope needs to emulate the sepa-

ration of data storage from Web serving that a more traditional application server

setup does. Fortunately, such a system exists called ZEO (Zope Enterprise Objects).

What is ZEO?
ZEO enables Zope to run on multiple computers and ensures that all of the Zope

servers share their databases both for incorporating data into the pages served up

by the server, as well as incorporating and storing information supplied by the

browser. ZEO uses a client/server architecture. The Zope installations on multiple

servers are the ZEO clients. All of the clients connect to a single storage server.

ZEO clients and servers communicate using Internet protocols so they can be in the

same rack or across the city. You can use ZEO to distribute a Zope site all over the

world, if you want.

ZEO isn’t for everyone
Zope is generally capable of serving millions of hits per day on fairly prosaic com-

modity hardware. If you find that your performance is suffering, and deploying on

multiple servers is going to make sense from a price and performance perspective,

then you should use ZEO. But keep in mind the additional complexity of deploying

any clustering solution, and balance that against the simplicity and elegance of run-

ning Zope as a single application.

Throughout the rest of this chapter we assume you are installing ZEO to coordi-
nate multiple physical servers, but it is also possible to use ZEO to increase perfor-
mance on multi-processor systems. This is because Zope runs in a single process,
even though it is a multi-threaded application. By running a ZEO client and a ZEO
Storage Server as separate processes, Zope can better take advantage of multiple
CPUs in a multi-processor system.

Installing ZEO
It’s important to make sure that all of the Zope installations you’ll be tying together

into a single cluster use the same version of Zope, and that the ZEO client installa-

tions all have the same add-on products installed.

Any additional systems or resources that one of the ZEO clients needs to access to

should be available to all of them. This can include HTTP access to other sites or

servers that you wish to access via XML-RPC; mail servers that you need to access

via SMTP or POP3; any relational databases that are accessed from the site; and

other external resources on which your server may depend.

Note

i4857-3 Ch20.F 3/1/02 9:43 AM Page 563

564 Part IV ✦ Advanced Zope Concepts

It’s also important that the network connection between the ZEO clients and the

server is reliable, whether it is a local network, across the Internet, or around the

world. Unreliable or poor connections will slow down the interaction between the

ZEO storage server and the ZEO clients.

Because ZEO is not distributed as part of Zope, you’ll need to download it from the

Zope.org site at http://www.zope.org/Products/ZEO. As of this writing, the most

recent version of ZEO is 1.0 beta 5. Choose a more recent version if one exists and if

it is more appropriate for your situation.

Running ZEO
We are first going to show you how to configure and run both the ZEO client and

the ZEO storage server on the same machine.

Download and unpack the ZEO package (ZEO-1.0b5.tgz) in your Zope installation

directory. This will create a ZEO-1.0b5 directory in your Zope installation directory.

Next, copy the ZEO directory and all of its contents out of the ZEO-1.0b5 directory

into the /lib/python/ subdirectory of your installation.

Finally, you need a custom_zodb.py file in your Zope install directory with the fol-

lowing contents:

import ZEO.ClientStorage
Storage=ZEO.ClientStorage.ClientStorage((‘localhost’,8800))

The custom_zodb.py file is used to tell Zope to run as a ZEO client. This code passes

a tuple that must have two elements: a string that contains the address to the

server, and the port number on which the server is listening. On Linux and other

UNIX systems, ‘localhost’ refers to the machine on which the code is running.

Another alternative is ‘128.0.0.1’, which has the same effect. If you are testing this

on one of Microsoft’s consumer operating systems (Windows 95, 98, ME), you may

find that neither of these work, in which case you should provide your system’s

actual IP address.

Your next step is to start up the ZEO server by launching the start.py located in

the lib/python/ZEO directory:

python lib/python/ZEO/start.py -p 8800

If you’re running Windows, place the previous code into a start_server.bat file, and

save it into the Zope installation directory where the start.bat file is located. Run

the start_server.bat file.

This starts the ZEO server. Instruct it to listen on port 8800. Notice that the port on

which you start the server should match the port that you pass to the ClientStorage

in custom_zodb.py. Next, in another terminal window, start up Zope as you usually

would, using z2.py:

$ python z2.py –D

i4857-3 Ch20.F 3/1/02 9:43 AM Page 564

565Chapter 20 ✦ Alternative Methods of Running Zope

On Windows, just run the start.bat file as you normally would.

2001-10-23T08:40:18 INFO(0) client Trying to connect to server:
(‘localhost’, 8800)

2001-10-23T08:40:18 INFO(0) ClientStorage Connected to storage

2001-10-23T08:40:20 INFO(0) ZServer HTTP server started at Tue
Oct 23 01:40:20 2001

Hostname: WEBMAVEN
Port: 8080

2001-10-23T08:40:20 INFO(0) ZServer FTP server started at Tue
Oct 23 01:40:20 2001

Hostname: webmaven
Port: 8021

2001-10-23T08:40:20 INFO(0) ZServer PCGI Server started at Tue
Oct 23 01:40:20 2001

Inet socket port: 8090

Notice how you’re informed that the “client Trying to connect to server” and then

that the “ClientStorage Connected to storage.” This shows that the ZEO client has

managed to connect to the ZEO server.

Direct a browser to http://yoursite.com:8080/manage (or whatever URL on which

your ZEO client is listening) and log into Zope.

If you go to your server’s Control Panel, you’ll see that the database section now

reports both the size and the location of the ZODB (Zope Object Database) that the

ZEO Client has mounted, as shown in Figure 20-1.

Running ZEO on one computer in this way does not, unfortunately, improve the

speed of your site, and in fact, may slow it down by increasing the load a little. (The

exception to this is when you have a multiprocessor system, but those aren’t very

common yet.) To take full advantage of the scalability ZEO provides, you need to

run the ZEO client on several servers, connecting to a single storage server.

Running ZEO Clusters
Setting up a ZEO cluster is pretty much the same as running ZEO on a single

machine. First, start the ZEO storage server, and then start one or more ZEO clients.

The point of this is that as with the more traditional application server technolo-

gies, the ZEO clients can be “round-robined,” load-balanced, and otherwise clus-

tered to provide scalability. By using ZEO, there is no practical upper limit to the

performance of your site, or the number of machines that it runs on.

i4857-3 Ch20.F 3/1/02 9:43 AM Page 565

566 Part IV ✦ Advanced Zope Concepts

Figure 20-1: The Database screen of a ZEO client

Summary
In this chapter, you learned about interfacing Zope with other Web servers, and

learned how to configure Zope to run in a clustered configuration.

For further reading, check out the following books:

Apache: The Definitive Guide by Ben Laurie, Peter Laurie, and Robert Denn

(O’Reilly, 1999)

Apache Server 2 Bible by Mohammed J. Kabir (Hungry Minds, 2001)

Capacity Planning for Web Services: Metrics Models and Methods by Daniel A.

Menascé and Virgilio A.F. Almeida (Prentice Hall PTR, 2001)

Web Performance Tuning: Speeding Up the Web by Patrick Killelea and Linda

Mui (O’Reilly, 1998)

✦ ✦ ✦

i4857-3 Ch20.F 3/1/02 9:43 AM Page 566

What’s on
the CD-ROM

This appendix provides you with information on the con-

tents of the CD-ROM that accompanies this book. For the

latest information, please refer to the ReadMe file located at

the root of the CD-ROM.

There are several programs included on this CD-ROM:

✦ Zope 2.5

✦ Codeit Addressit

✦ Macromedia Dreamweaver

✦ Adobe GoLive 5.0

✦ Adobe Acrobat Reader

Also included are source code examples from the book and an

electronic, searchable version of the book that can be viewed

with Adobe Acrobat Reader.

System Requirements
Make sure that your computer meets the minimum system

requirements listed in this section. If your computer doesn’t

match up to most of these requirements, you may have a

problem using the contents of the CD-ROM.

For Windows 9x, Windows 2000, Windows NT4 (with SP 4

or later), Windows ME, or Windows XP:

✦ PC with a Pentium processor running at 120 MHz or

faster

✦ At least 64 MB of RAM

✦ Ethernet network interface card (NIC) or modem with a

speed of at least 28,800 bps

✦ A CD-ROM drive — double-speed (2x) or faster

AAA P P E N D I X

✦ ✦ ✦ ✦

j4857-3 AppA.F 3/1/02 9:43 AM Page 567

568 Appendixes

For Linux:

✦ PC with a Pentium processor running at 90 MHz or faster

✦ At least 64 MB of RAM

✦ Ethernet network interface card (NIC) or modem with a speed of at least

28,800 bps

✦ A CD-ROM drive — double-speed (2x) or faster

You will need at least 200 MB of hard drive space to install all the software from

this CD-ROM.

Using the CD-ROM with Microsoft Windows
To install the items from the CD-ROM to your hard drive, follow these steps:

1. Insert the CD-ROM into your computer’s CD-ROM drive.

2. Double-click My Computer.

3. Double-click on “Zope Bible” CD-ROM icon.

4. Browse the directory structure.

Using the CD with Linux
To install the items from the CD to your hard drive, follow these steps:

1. Log in as root.

2. Insert the CD-ROM into your computer’s CD-ROM drive.

3. Mount the CD-ROM.

4. Launch a graphical file manager.

What’s on the CD
The CD-ROM contains source code examples, applications, and an electronic ver-

sion of the book. Following is a summary of the contents of the CD-ROM arranged

by category.

j4857-3 AppA.F 3/1/02 9:43 AM Page 568

569Appendix A ✦ What’s on the CD-ROM

Source code
The Addressit application that is developed in chapters 6 through 10 is available in

all the intermediate versions in the folders /chapter_06/, /chapter_07/,

/chapter_08/, /chapter_09/, and /chapter_10/.

Applications
The applications described in the following sections are on the CD-ROM.

Zope
Zope is the leading open source application server. Ready to install versions of

Zope 2.5 for Windows, Linux, and Solaris, as well as the Zope 2.5 source code are all

included on the CD-ROM. Zope is Open Sourced under the Zope Public License 2.0.

Codeit Addressit
The Addressit Application that was developed in chapters 6 through 10 is available

as a finished product as well. Licensed under the GPL.

WYSIWYG HTML Editors
A WYSIWYG (What You See Is What You Get) HTML editor lets you design and build

Web pages visually. The two that we’ve included also allow control and direct edit-

ing of the HTML code itself, which is important if you are designing dynamic Web

site templates.

✦ Macromedia Dreamweaver: an HTML editor for Windows and Macintosh

computers. 30-day trial. For more information: www.macromedia.com

✦ Adobe GoLive: an HTML editor for Windows and Macintosh computers.

30-day trial. For more information: www.adobe.com

Electronic version of Zope Bible
The complete (and searchable) text of this book is on the CD-ROM in Adobe’s

Portable Document Format (PDF), readable with the Adobe Acrobat Reader (also

included). For more information on Adobe Acrobat Reader, go to www.adobe.com.

Electronic version of Python 2.1 Bible
The complete (and searchable) text of Python 2.1 Bible by Dave Brueck and Stephen

Tanner (Hungry Minds, 2001) is on the CD-ROM in Adobe’s Portable Document

Format (PDF), readable with the Adobe Acrobat Reader (also included). For more

information on Adobe Acrobat Reader, go to www.adobe.com.

j4857-3 AppA.F 3/1/02 9:43 AM Page 569

570 Appendixes

Troubleshooting
If you have difficulty installing or using the CD-ROM programs, try the following

solutions:

✦ Turn off any anti-virus software that you may have running. Installers

sometimes mimic virus activity and can make your computer incorrectly

believe that it is being infected by a virus. (Be sure to turn the anti-virus

software back on later.)

✦ Close all running programs. The more programs you’re running, the less

memory is available to other programs. Installers also typically update files

and programs; if you keep other programs running, installation may not work

properly.

If you still have trouble with the CD-ROM, please call the Hungry Minds Customer

Care phone number: (800) 762-2974. Outside the United States, call 1 (317) 572-3994.

You can also contact Hungry Minds Customer Service by e-mail at techsupdum@
hungryminds.com. Hungry Minds will provide technical support only for installation

and other general quality control items; for technical support on the applications

themselves, consult the program’s vendor or author.

✦ ✦ ✦

j4857-3 AppA.F 3/1/02 9:43 AM Page 570

Installing Zope
from the
Red Hat RPMs
or Source Code

This appendix provides instructions for installing Zope

from both RPM files and source code.

Installing on Linux from RPM
RPM is a package format for Linux-based operating systems.

RPM stands for Red Hat Package Management, but it is used in

many other Linux distributions in addition to Red Hat Linux.

Downloading the RPMs
First, the RPM files must be downloaded to your computer.

RPM files for Zope are maintained by Jeffrey Rush, and can be

found at http://starship.python.net/crew/jrush/Zope/.

Follow the link for the most recent version of Zope and select

the Group A package, which contains the entire Zope environ-

ment in a single package. Then select one of the two options

from Group C; either the ZServer (Python-based HTTP sever)

or the Persistent CGI (PCGI) option. Choose PCGI only if you

wish to set up Zope to work “behind” Apache. In this chapter,

we assume you chose the ZServer option.

Save both files to your user’s home directory.

BBA P P E N D I X

✦ ✦ ✦ ✦

j4857-3 AppB.F 3/1/02 9:43 AM Page 571

572 Appendixes

Option 1: Installing with GnoRPM
You can use the GnoRPM GUI utility to install both packages. From a command-line

interface as the root user, type gnorpm. This should launch the GnoRPM utility on

your Linux desktop, as shown in Figure B-1.

Figure B-1: GnoRPM initial screen

Click the Install button, which pops up an Install dialog box, as shown in Figure B-2.

Then click the Add button in the install dialog box. This pops up an Add packages

file browser, as shown in Figure B-3.

Figure B-2: GnoRPM Install dialog box

j4857-3 AppB.F 3/1/02 9:43 AM Page 572

573Appendix B ✦ Installing Zope from the Red Hat RPMs or Source Code

Figure B-3: GnoRPM Add Packages browser

Change the directory to your home directory (where you saved the downloaded

files), and click the first of the two RPM files you downloaded. Then click the Add

button. This adds the package to the previous dialog box. Repeat the last two steps

with the second package and click Close.

You will see, as in Figure B-4, that the install dialog box now has two packages listed

under Packages/Development/Web Applications, and that each package has a

checked box next to its name. Click the Install button at the bottom of the install

dialog box, and GnoRPM will proceed to install the Zope packages for you.

Figure B-4: GnoRPM Add Packages browser with
Zope packages

After installing the two packages, click the Close button in the install dialog box and

exit GnoRPM by using the Quit menu option under the Packages menu.

j4857-3 AppB.F 3/1/02 9:43 AM Page 573

574 Appendixes

Option 2: Installing with the command line
RPM utility
As an alternative to using GnoRPM, you can use the command line RPM utility from

the directory in which you saved the two RPM files:

rpm \install Z*.rpm

This assumes, of course, that the only RPM files in that directory that begin with

“Z” are the two Zope RPM files.

Starting and stopping Zope when installed
from RPMs
Once you have successfully installed Zope using RPM, your system is now config-

ured to start Zope when the system is booted up. If you wish to start Zope without

rebooting, enter the following from a command line while you have root privileges:

/etc/rc.d/init.d/zope start

Similarly, the following will shut Zope down without having to shut your system down:

/etc/rc.d/init.d/zope stop

Installing from Source Code on Linux
Installing Zope from source code is not particularly difficult, but is a little more

involved than installing the binary distribution. In this section we first examine the

reasons for installing from source code, and then we will step through the process.

If you are examining an existing Zope installation and you would like to know if it
was a binary or source install, a quick way to find out is to check the /lib subdirec-
tory of the Zope installation. If it contains a python2.1 directory, then it’s a binary
install. Otherwise, it should contain only python and Components subdirectories.

Why install from source code?
First, you may be asking yourself, “Why would I even want to install Zope from

source code?” There are a few basic reasons why you would want to do so:

✦ For security

✦ If you are using your own Python

✦ For installing the latest development code from CVS (Concurrent Versioning

System)

Tip

j4857-3 AppB.F 3/1/02 9:43 AM Page 574

575Appendix B ✦ Installing Zope from the Red Hat RPMs or Source Code

Security
Whenever you install a binary, there is a possibility that it was compiled with addi-

tional or modified code that may be malicious. This would be called a trojan (think

wooden horse, not safe sex). Even getting the binary from a known source may not

guarantee its integrity, as the Internet is an insecure network, and someone could

conceivably “spoof” your machine into thinking that the download it was receiving

was coming from somewhere it wasn’t. Then again, it’s possible that the site from

where you downloaded the binary was itself compromised, and the legitimate

download was replaced with a modified one. The binary you receive could be digi-

tally signed to ensure its integrity, but even then you are relying on the skill and

truthfulness of the packager.

While giving credence to these possibilities may seem paranoid to some, others

take them very seriously. A thorough discussion of the security risks inherent in

relying on binary software distributions is outside the scope of this book, but many

professionals in the field consider the availability of source code to the software

you install a major security advantage.

The extent of the measures that you go to in verifying the provenance and function-

ality of the software you install is, of course, up to you. For most users, installing all

software only from source code is likely to be overkill.

Using your own Python
The binary distribution of Zope does not assume that Python is installed on your

system. Consequently, a binary version of Python is included in the binary Zope

distribution. This can present problems if the version of Python installed on your

system has modules or Packages installed that you would like to access from within

Zope. Under these circumstances, you would want to compile Zope from source

code to have it use your existing Python installation.

Installing the latest development code from CVS
If you wish to participate in the ongoing development of Zope, you will probably

want to get the very latest (possibly unstable) code for Zope from CVS (Concurrent

Versioning System), in order to examine recent modifications, make your own modi-

fications, and test the modified code. In order to use the source code retrieved from

CVS, it must still be compiled in exactly the same fashion as any other source code

installation. While we will not cover downloading the latest code from CVS in this

book, you can find instructions at http://www.zope.org/Resources/CVS_info.

Getting the source code
In order to compile the source code for Zope, it is necessary to first download it.

This can be done in exactly the same fashion as downloading any other distribution

of Zope. Go to the Zope Web site and click Download. You should see a link labeled

“Current stable release” (as of this writing, this was 2.5.0). Follow the link, and click

the link Zope-2.5.0-src.tgz (or the equivalent if there is a more recent version)

and download the file to your system.

j4857-3 AppB.F 3/1/02 9:43 AM Page 575

576 Appendixes

Installing from source code
Okay, so you’ve got the source code. Now what? You need to do the following five

tasks:

✦ Move the tarball into /usr/local.

✦ Check the existing Python installation for version and threads.

✦ Unpack the Zope source-code tarball and rename the resulting directory.

✦ Change to permissions on the directory.

✦ Complete and test the install.

Move the tarball to the /usr/local directory
First, as the root user, move the gzipped tarball to the /usr/local/ directory with

mv Zope-2.5.0-src.tgz /usr/local/.

Checking the existing Python
Version 2.5 of Zope requires Python 2.1 or higher. This version of Zope is compati-

ble with Python 2.2, but only 2.1 is officially supported at this time. Accordingly,

you should determine which version of Python is installed on your system:

python

>>>Python 1.5.2 (#1 Aug 25 2000, 09:33:37) [GCC 2.96 20000731
(experimental)] on Linux-i386

Hmm. Looks like you’ll have to upgrade Python on your system. Go to

www.python.org/2.1.1/rpms.html and download the python RPMs for your system.

Installing the Python RPMs is substantially similar to installing the Zope RPMs

described earlier in this chapter.

Next, check to see whether the Python on your system was compiled with the

thread module:

>>>import thread
>>>

If the import thread command does not return an error, you are good to go. If

import thread does return an error, you may need to recompile Python on your sys-

tem. This isn’t very likely though, as Python 2.1.x has threading compiled in by

default.

One last note about Python: You must have the development libraries installed for a

source installation of Zope to succeed. The Python development libraries can be

obtained in RPM format from the Python Web site along with the base RPM file.

j4857-3 AppB.F 3/1/02 9:43 AM Page 576

577Appendix B ✦ Installing Zope from the Red Hat RPMs or Source Code

Unzipping the archive
Now you need to unpack the gzipped tarball into the /zope directory with the

following command:

tar -xzvf Zope-2.5.0-src.tgz .

Now, rename the resulting directory to something a little easier to type with

mv Zope-2.5.0-src Zope.

Change permissions
When Zope is started as root, it switches to the “nobody” user by default, to make

sure that the Zope process is not running with excess privileges.

It’s necessary, therefore, to make certain that the “nobody” user has the appropri-

ate permissions to run and access the subdirectories. This can be done with the

following commands:

chown -R nobody Zope
chmod 770 Zope

Completing the installation
Now change directories into the newly created Zope directory:

cd Zope

Then run the wo_pcgi.py script:

python wo_pcgi

This installs Zope with only ZServer as the HTTP server. If PCGI support is required,

then run the w_pcgi.py script instead.

This begins a rather lengthy installation process, which first compiles various C

extensions, and eventually concludes just like a normal binary installation. As with

a binary installation, you should make note of the emergency user user name and

password at the end of this process.

After the installation is complete, and you’ve made note of the emergency user

name and password, test your Zope install by starting it from the command line

with ./start and using a browser to access Zope by typing in the following into the

location bar: http://localhost:8080.

j4857-3 AppB.F 3/1/02 9:43 AM Page 577

578 Appendixes

A quick review
Here is a quick review of the commands you will be entering:

1. Move the tarball into the /usr/local/ directory with mv Zope-2.5.0-src.tgz

/usr/local/.

2. Unzip and untar the compressed file with with gunzip Zope-2.5.0-src.tgz and

then tar -xvf Zope-2.5.0-src.tar.

3. Rename the resulting directory to something a little easier to type with mv

Zope-2.5.0-src Zope.

4. Make sure the files have the proper permissions with chown -R nobody Zope

and then chmod 770 Zope.

5. Change into the directory with cd Zope.

6. Install Zope with python wo_pcgi.

7. Run the start script with ./start and then point your Web browser at

http://localhost:8080/.

For further details on setting up and administering your Zope installation, see

Chapter 2.

Summary
In this appendix you learned how to

✦ Install Zope from RPM files

✦ Install Zope from source code

RPM files can be a convenient way of installing Zope binaries when you want a sim-

ple standard installation and little to no customization.

Installing Zope from source code may be a little more involved than installing the

binary version, but it is no more difficult. It also has certain advantages regarding

security, using your installed version of Python, or compiling the current develop-

ment code obtained from CVS.

✦ ✦ ✦

j4857-3 AppB.F 3/1/02 9:43 AM Page 578

SYMBOLS & NUMERICS
& (ampersand)

converting, 83

entity syntax, 79

\ (backslash)

double, 398

escape code, 136

string, 134

: (colon), multi-line statement, 123

$ (dollar sign), preceding amounts with, 83

“ (double quote)

escape code, 136

string, 133–134

- (minus sign)

document revision, 50

folder display, 110

. (period), current directory alias, 225

+ (plus sign)

complex number notation, 129

document revision, 50

folder display, 35, 110

replacing empty spaces with, 83

; (semicolon), entity syntax, 79

‘ (single quote)

escape code, 136

string, 133–134

/ (slash), preceding close tag with, 68

_ (underscore)

expr attribute, 74

private name, beginning with, 165

| (vertical bar), 533

0 prefix, Python octal format, 129

0x prefix, Python hex format, 129

8080, port number, 20

A
-a, ZServer command line switch, 25

abort database change, 10

abort() method, transactions, 402–403

abs() function, 132, 443

abs() method, Python math module, 75

absolute_url() method, 423

access, 27

Access-Control List (ACL), 269

AccessControl.Role.RoleManager class,

198–199

acl_users folder

creating folder, 35

creating user, 368

custom, 383

deleting, 370

importance of, 35

Root Folder, relationship to, 35

User Folder id, 56

aCommon() method, dtml-var tag, 84

aCommonZ() method, dtml-var tag, 84

Acquire permission setting? column, Security

tab, 377

acquisition

containment, 396

context, 396

definition, 317

example, 317–318

importance of, 52

inheritance, compared to, 389

sharing logic, 323–324

standardizing layout, 318–320

wrapper, importance of, 390

wrapper attributes, 391

ZODB, using with, 393

Acquisition.Implicit, 187, 390

activestate.com, 453

aDay() method, dtml-var tag, 85

Add button, Contents view, 43

Add DTML Document form, 48

Add Folder form, 41

Add List, 52

Add Page Template form, Template Attribute

Language, 520

Add Presentation Template form, Template

Attribute Language, 521

Add Property form, 38

Add User form, 56–57

Index

k4857-3 Index.F 3/1/02 9:43 AM Page 579

580 Index ✦ A

addAddressitForm.dtml, 294–295

addEntry() method, 216–217, 275

addEntryForm.dtml
code example, 219–220

testing, 220–222

addGroup() method, 245–246, 275

addHeader() method, 424

adding

image object, 54

User Folder, 56

adding catalog to site, ZCatalog, 492

adding data to relational database, 338

adding entries to Address Book, 215–217

adding index, ZCatalog, 492

adding restaurant, restaurant application

example, 362, 364

adding vote for restaurant, restaurant

application example, 362

Add/Remove Programs, Microsoft Windows

9x/NT/2000, 15

Address1 attribute, Entry class, 205

Address2 attribute, Entry class, 205

AddressBook class

AccessControl.Role.RoleManager class,

198–199

addEntry() method, 216–217, 275

addEntryForm.dtml, 219–220, 275

addGroup() method, 245–246, 275

adding entries, 216

Addressbook.gif, 307–308

AddressBook.py, 198–199, 218–219, 231–232,

282–286

creating, 198

delEntries() method, 223–224, 275

delGroup() method, 246–247, 275

DTMLFile instance, 199

editAddressBook() method, 274, 301–302

editEntry() method, 263–264

editEntryForm() method, 275

Entry instance, 197

entryDetails.dtml, 214–215, 232

getitem() method, 226

GroupList attribute, 241

id, 202

indexAddressbook.dtml, 222–224, 232–234,

236–239, 252–253, 257–259

index_html() method, 232, 275

init() method, 213, 241

init.py, 198

LastEntryID integer attribute, 216

listContactTypes() method, 274

listEntries() method, 221, 233

listEntriesByGroup() method, 250–251,

255, 275

listGroups() method, 275

mainAddressbook.dtml, 201–202

manage_addAddressBook.dtml, 274

manage_addAddressBookForm.dtml,

199–200, 274

manageGroupForm() method, 275

manageGroupForm.dtml, 244–246, 256–257

manage_options property, 201

OFS.SimpleItem.SimpleItem class, 198–199

Public attribute, 301–302

refresh.txt file, 202

renameGroup() method, 216, 275

renameGroupForm() method, 275

sort_by variable, 261–263

standard_addressbook_header()
method, 275

StandardAddressBookHeader.dtml,

231–232

title, 202

UML diagram, 199, 206

user actions, 276

AddressBook main view

index_html() method, 203–204

View tab, 203

Addressbook.gif, 307–308

AddressBook.py, 198–199, 218–219, 231–232,

282–286

Addressit class

addAddressitForm.dtml, 294–295

adding objects, 297

Addressit index_html view, 299

Addressit Management Interface, 298

Addressit.gif, 307

Addressit.py, 292–293

Addressit.stx file, 306

all_meta_types, 294

creating, 291–292

Folder class, 293

indexAddressit.dtml, 295–297

init.py, 306–307

k4857-3 Index.F 3/1/02 9:43 AM Page 580

581Index ✦ A

listEntriesByGroup() method, 294,

302–304

listGroups() method, 294, 299–300, 302–304

manage_options definition, 307

tuple of dictionaries, 293

Addressit index_html view, 299

Addressit Management Interface, 298

Addressit.gif, 307

Addressit.py, 292–293

Addressit.stx file, 306

adjusting cache parameters, 62

Adobe Acrobat, 53

Adobe GoLive, 569

Advanced tab, ZCatalog, 492, 514–515

all attribute, 165

all_meta_types, 294

allowed domains

setting for user, 370

zpasswd.py, 18

aMonth() method, dtml-var tag, 85

ampersand (&)

converting, 83

entity syntax, 79

AMPM() method, dtml-var tag, 84

ampm() method, dtml-var tag, 85

AMPMMinutes() method, dtml-var tag, 84

and, Python numeric operation, 131

Anonymous role, 270–271, 372

anonymous user permissions, 58

Apache

component relationship diagram, 8

ease of use, 9

Web server compatibility, 7, 558

API. See application program interface

append() method, 139, 141

appendCookie() method, 425

appendHeader() method, 424

Apple MacOS platform, availability of Zope, 3

application program interface (API), 67, 344

application server, 562

apply, Python built-in function, 443

aq_base attribute, wrapper, 391

aq_chain attribute, wrappers, 391

aq_inner attribute, wrappers, 391

aq_parent attribute, wrappers, 391

aq_self attribute, wrappers, 391

Aquisition.pyd, 389

Aquisition.so, 389

argument

converting to a list, ZPublisher, 416–417

converting to a number, ZPublisher, 416

document template, 427

marshaling, 413–414

requiring, ZPublisher, 417

arithmetic progressions, 77

ArithmeticError, Python built-in function, 443

array, 139

AssertionError, Python built-in function, 443

assume_children attribute, dtml-tree tag,

112, 114

atomic transaction, definition, 10

attribute

callable, 9

missing, 82

tag syntax, 68

volatile, 401

AttributeError, Python built-in function,

77, 443

attributes statement, Template Attribute

Language, 528

Authenticated role, 270–271, 372

AUTHENTICATED_USER, ZPublisher

convenience variable, 421

AUTHENTICATED_USER object, 78

authentication

information cache, 21

security, 268

authentication adapter

Cookie User Folder, 384

custom acl_users folder, 383

etc User Folder, 384

Generic User Folder, 384–385

LDAPLoginAdapter, 385

LDAPUserManager, 385

Login Manager User Folder, 385

MySQL User Folder, 383

NT User Folder, 384

SMB User Folder, 384

SSL certificate authenticator, 383

UserDB User Folder, 385

k4857-3 Index.F 3/1/02 9:43 AM Page 581

582 Index ✦ A–B

authorization, security, 268, 273

auto install, 15

autoexec.bat file, adding path to Python

executable, 124

B
backslash (\)

double, 398

escape code, 136

string, 134

backspace, escape code, 136

bare object, 226

base class, 108

base64, 119

BASEn, ZPublisher convenience variable, 421–422

BASEPATHn, ZPublisher convenience

variable, 421

batch navigation

general interface, building, 236–239

previous/next links, 236

starting value, changing, 235–236

batch-size, 238

BEGIN statement, relational database, 358

bell, escape code, 136

Bell Atlantic Mobile, 5

BeOS, successful execution of Zope, 5

Bindings tab, management interface, 444–445

bitmap (BMP) file format, 54

BLATHER severity variable, zLOG module, 552

block tag, DTML, 68, 434–437

blockContinuation tuple, 436

Bobo, 5

bobobase_modification_time field index,

495–496

BoboPOS, 5

_bobo__traverse_() method, 412

boolean property type, 464

boolean type conversion code, ZPublisher, 415

Bound Names, 444–445

brackets, square, 134

branches attribute, dtml-tree tag, 112–113

branches_expr attribute, dtml-tree tag,

112–113

break statement, Python, 153–154

broken Products, 63

browser input, REQUEST variable, 67

Browser Preferences page, 35

built-in functions, Python

apply, 443

ArithmeticError, 443

AssertionError, 443

AttributeError, 77, 443

callable, 443

chr, 443

cmp, 443

complex, 132, 443

delattr, 443

divmod, 132, 443

EnvironmentError, 443

EOFError, 443

filter, 443

float, 132, 443

FloatingPointError, 443

getattr, 443

hasattr, 443

hash, 443

hex, 443

ImportError, 126, 443

IndexError, 443

int, 443

IOError, 443

isinstance, 443

issubclass, 443

KeyError, 82, 108, 443

len(), 133, 443

list, 443

long, 132, 443

LookupError, 108, 443

map, 443

max, 132–133, 443

min, 132–133, 443

NameError, 82, 443

None, 443

oct, 132, 443

ord, 443

OSError, 443

OverflowError, 443

pow, 132, 443

range, 155, 443

repr, 443

round, 132, 443

k4857-3 Index.F 3/1/02 9:43 AM Page 582

583Index ✦ B–C

RuntimeError, 443

setattr, 443

StandardError, 443

str, 443

SyntaxError, 443

tuple, 443

TypeError, 76, 138, 443

ValueError, 76, 443

ZeroDivisionError, 443

built-in help system, 33

built-ins namespace, 398

bytecodes, 166

C
cache, value associated with name attribute, 70

cache, Z Object Database

changing size of, 403–404

emptying, 404

inactive objects, changing amount of time in

cache, 404

memory, saving, 405–408

Cache Parameters view, 61–62

callable, Python built-in function, 443

callable attribute, 9

calling document template, 426

calling Python-based script from DTML, 446–447

capitalize attribute, dtml-var tag, 80

carriage return

escape code, 136

newline, compared to, 137

cascading style sheets (CSS), 314

case-sensitivity, 263

catalog awareness, ZClasses, 485

Catalog tab, ZCatalog, 492

CatalogAware class, 508

CatalogAwareness, ZCatalog, 508–509

category_list property, 513

CBS, use of Zope, 5

cd command, 17–18

CD-ROM

Adobe GoLive, 569

Codeit Addressit, 569

extracting tar files from, 16

hardware requirement, 13

Linux, 568

Macromedia Dreamweaver, 569

Microsoft Windows, 568

Python 2.1 Bible, electronic version, 569

source code, 569

system requirements, 567–568

troubleshooting, 569

Zope 2.5 files, 569

Zope Bible, electronic version, 569

Zope installation files, 14

CGI. See Common Gateway Interface

CHAR, CREATE TABLE statement, 343

character

converting integer into, 133

immutable ordered collections of, 133

child object, 393–395

chmod command, 125

chown command

changing ownership to nobody, 18

extracting installation files, 16

chr, Python built-in function, 443

chr() method, Python string module, 76

chunk, 406–408

circular reference, 393–395

City attribute, Entry class, 205

class

class statement, 167

creating, 167

definition, 166–167

inheritance, 169–170

initializing, 169

pickable item, 401

scope, 167–168

user-defined, 166–167

ClassSecurityInfo object, 278

clear() method, removing all items from

dictionary, 145

client-side utilities, independence from, 6

clipboard, copying objects, 44

close tag, 68

clustering, 561–563

cmp, Python built-in function, 443

code, reusing across projects, 162

code reuse, Template Attribute Language,

537–538

Codeit Addressit, 569

collaboration, importance of, 3

k4857-3 Index.F 3/1/02 9:43 AM Page 583

584 Index ✦ C

collapse_all variable, dtml-tree tag, 155

Collection-length format, dtml-var tag, 83

Colon (:), multi-line statement, 123

column, relational database, 337

column headers, Contents view, 44

combining conversion codes, 418

command line, initial batch file execution, 15

Command Prompt window, shutdown, 21

commit, 10

commit() method

subtransactions, 405–408

Z Object Database (ZODB), 399

COMMIT statement, relational database, 358

Common Gateway Interface (CGI)

DTML Request Object, 73

origin of, 4

community Web sites, creating, 3

Company attribute, Entry class, 205

comparing revisions, DTML Document, 50

comparison operator, 149

compiling Zope, open source availability, 3

complex, Python built-in function, 132, 443

complex, Python numeric type, 128–129

complex queries, ZCatalog, 507–508

component relationships, 8

composition relationship, UML diagram, 206

Comprehensive Perl Archive Network

(CPAN), 452

compression

gzip, 29

tar, 29

Concurrent Versioning system (CVS), 329

condition statement, Template Attribute

Language, 527

conditional insertion, 87–88

ConflictError, 408

ConnectID, database, 353–354

connecting to relational database, 345–346

connection object, database, 345–346

constructor, ZClasses, 485–487

constructor method, 169

ContactType attribute, 213

container, TALES starting point, 532

container variable, 445

containment, 396

content indexing and searching, 8

content management features

built into Zope, 4

consistency, 313

document structure, 315

importance of, 311

redundancy, minimizing, 316

separating content from presentation,

313–315

separating presentation from logic, 315–316

static pages, 312

content statement, Template Attribute

Language, 525

CONTENT_LENGTH, CGI environment

variable, 420

Contents view

add form, 43

adding object, 43

copying object, 44

exporting object, 45–46

folder content list, 43

importing object, 46

moving object, 44

removing object, 43–44

renaming object, 44

sorting object, 44

Content-Transfer-Encoding, 119

Content-Type, 119

CONTENT_TYPE, CGI environment variable, 420

context, 396

context variable, 445

CONTEXTS, TAL built-in variable name, 532

continue statement, Python, 153–154

control statements, Python

compared to C, Perl, and Java, 146–147

indentation, 147–148

Control_Panel
accessing, 58

Navigator frame, 35

convenience variable, ZPublisher, 421

cookie user folder, 384

cookies

DTML Request Object, 73

REQUEST object, 419

Copy button, Contents view, 44

copying Web site to a different machine, 23

copy_of_ prefix, 44

k4857-3 Index.F 3/1/02 9:43 AM Page 584

585Index ✦ C–D

count-nnn variable, dtml-in tag, 97

Country attribute, Entry class, 205

CPAN. See Comprehensive Perl Archive Network

CREATE TABLE statement, Structured Query

Language, 342–343

creating Address Book, 198

creating object, document template, 426

creating Python-based script, 440–442

creating ZClasses, 459–461

CRYPT algorithm, 371

CSS. See cascading style sheets

current directory, alias for, 225

current process id, displaying, 58

custom acl_users folder, 383

custom properties, ZClasses, 464

Cut button, Contents view, 44

CVS. See Concurrent Versioning system

D
-D, ZServer command line switch, 25

-d, ZServer command line switch, 25

data elements, relational database, 337–338

database, relational

adding data, 338

column, 337

connecting to, 345–346

data elements, 337–338

normalized data, 338–340

object database, compared to, 335–336

reading data, 338

record, 336

row, 337

schema, 336

Structured Query Language, accessing data,

340–341

table, 337

database adapter

Browse Table tab, 347

built into Zope, 4

type, 6

database change, committing, 10

Database Management

Control Panel link, 58

packing the database, 60–61

Database view

Data.fs, 60

object cache, managing, 61–62

Pack button, 61

removing revisions, 60

Data.fs
automatic creation, 20

copying, 23

Database view, 60

location, 19, 23

packing the database, 61

Data.fs.old, deleting, 23

date

searching for with Find view, 46–47

sorting objects by, 44

DATE, CREATE TABLE statement, 343

date format, Properties view, 38

Date() method, dtml-var tag, 85

date property type, 464

date_empty type conversion code,

ZPublisher, 415

DateTime, DTML utility function, 443

DateTime(), Python function, 77

DateTime object, 77

date-time strings, 84

Day() method, dtml-var tag, 85

day() method, dtml-var tag, 85

DayOfWeek() method, dtml-var tag, 85

dayOfYear() method, dtml-var tag, 85

db() method, 404

db.cacheFullSweep() method, 404

db.getCacheSize() method, 403

db.pack(1), 411

db.setCacheDeactivateAfter() method,

403–404

dd() method, dtml-var tag, 85

Debian format, 14

DEBUG severity variable, zLOG module, 552

debugging

AttributeError, 550

Control Panel link, 58, 64, 553

Debug Info screen, 554–555

debug mode, 25, 541–542, 545

profile logging, 553

Profiling tab, 555–556

Python debugger, 547–549

triggering via Web, 550–552

zLOG module, 552–553

decimal integer, 138

k4857-3 Index.F 3/1/02 9:43 AM Page 585

586 Index ✦ D

declareProtected statement, 280

declarePublic statement, 281

decoding string, 78

def statement, Python, 154

default, TAL built-in variable name, 532

default rendering, object, 37

default view, ZClasses, 461–463

define statement, Template Attribute

Language, 529

del statement

dictionary, 145

list, 142

reference count, impact on, 394

delattr, Python built-in function, 443

delEntries() method, 223–224, 275

delete

object, 43–44

properties, 37

Delete, Properties view, 38

Delete button, Contents view, 43

DELETE statement, Structured Query

Language, 342

deleting a restaurant, restaurant application

example, 362

delGroup() method, 246–247, 275

deployment time, 11

development time, 11

dictionary

creating, 144

definition, 144

has_key() method, 145

items() method, 146

key, 144–145

keys() method, 146

len() method, 145

pickable item, 401

removing items from, 145

values() method, 146

diff format, 50

difference, Python numeric operation, 130

Digital Creations, 3, 4

dir() function, 166, 395

directory hierarchy, displaying, 439

directory tree, Zope

bin, 19

Extensions, 19

import, 19

lib, 19

var, 19, 23

disable

monitor server, 27

servers, 27

disadvantages, ZClasses, 456

diskspace required for packing operation, 61

Disposition attribute, dtml-boundary tag, 119

Disposition attribute, dtml-mime tag, 119

distribution, ZClasses, 489–490

divmod, Python built-in function, 132, 443

divmod() method, Python math module, 75

DNS service, IP address of, 25

docstring, 182, 192

document compared to method, 50

document template

arguments, 427

calling, 426

creating object, 426

guarded_getattr() method, 428

security, 428–429

storing code in file, 428

template.dtml, 428

Document Template Markup Language (DTML)

Document

adding, 47–48

default variables, 66

Default view, 37

drawbacks, 517–520

DTML Method, compared to, 50

HTML editors, 518

importance of, 47

presentation and logic, mixing, 519–520

source text, converting tags into, 66

tag syntax, 67–68

tracking changes to documents, 49

viewing documents, 49

WYSIWYG editors, 518–519

Document Template Markup Language (DTML)

Method

acquisition, 52

DTML Document, compared to, 50

properties, 51

standard header, 51

k4857-3 Index.F 3/1/02 9:43 AM Page 586

587Index ✦ D

DocumentTemplate library, 425

does not equal, Python numeric operation, 131

dollar sign ($), preceding amounts with, 83

Dollars-and-cents format, dtml-var tag, 83

DOM protocol support, 7

domain, User object, 56

Domains property, user object, 370

double quote (“)

escape code, 136

string, 133–134

downloading new products, 29

DROP TABLE statement, Structured Query

Language, 343

DTML. See Document Template Markup

Language Document

DTML Client Object, 72–73

DTML Request Object, 72–74

dtml-boundary tag, dtml-sendmail tag,

118–119

dtml-call tag

Python-based scripts, 446–447

run method without inserting results in

document, 104

dtml-comment tag, 105–106

dtml-elif tag

caching value associated with name

attribute, 70

evaluating, 88–89

dtml-else tag

conditional insertion, 88–89

dtml-try tag, 108–109

empty sequences, 91

dtml-except tag, 108

DTMLFile instance, 199

dtml-if tag

caching value associated with name

attribute, 70

conditional insertion, 87–88

dtml-in tag

attribute list, 92–93

batch processing, 93, 99–102

caching value associated with name

attribute, 70

current item variable list, 94–95

grouping variable list, 98–99

indexAddressBook.dtml, 234

iterative insertion, 90–91

orphan attribute, 235

prefix attribute, 96

reverse attribute, 93

sequence, changing size of, 94

sequence-even variable, 95

sequence-item variable, 95

sort attribute, 93, 261

summary statistic variable list, 97–98

dtml-let tag, 103

dtml-mime tag, 118–119

dtml-raise tag, 106–107

dtml-return tag, 104–105

dtml-sendmail tag

attribute list, 118

body of message, 111

creating e-mail messages, 117–118

dtml-boundary tag, 118–119

dtml-mime tag, 118–119

dynamic e-mail messages, 117

mail header, 111

MailHost object, 117

sending attachments, 118–119

standard mail header tags, 111

dtml-tree tag

assume_children attribute, 114

attribute list, 112–113

basic tree, displaying, 111

branches attribute, 113

branches_expr attribute, 113

current item variable list, 115–116

footer attribute, 114

header attribute, 114

leaves attribute, 114

Navigator Frame, 110

object hierarchy, 110

objectValues() method, 113

reverse attribute, 114

sort attribute, 114

tpValues() method, 113

tree-item-url attribute, 116

tree-root-url attribute, 116

url param attribute, 114–115

k4857-3 Index.F 3/1/02 9:43 AM Page 587

588 Index ✦ D–E

dtml-try tag

detecting exception, 107

dtml-else tag, 108–109

dtml-except tag, 108

dtml-finally tag, 108–109

error, checking for, 107–108

exception variable list, 109–110

multiple exceptions, 108

standard_error_message() method, 110

dtml-unless tag

caching value associated with name

attribute, 70

conditional insertion, 89–90

dtml_var tag

attribute list, 80–81

C-style format strings, 86–87

custom format method list, 84–86

dynamic hyperlinks, generating, 79

entity syntax, 79–80

etc attribute, 82

fmt attribute, 82–83

html_quote attribute, 82–83

null attribute, 81–82

object properties, dynamically displaying, 79

Python-based scripts, 446–447

referencing cached value, 70

size attribute, 82

special format attribute list, 83–84

url_quote attribute, 82–83

url_quote_plus attribute, 83

variable substitution, 79

dtml-with tag

caching value associated with name

attribute, 70

namespace, pushing items to top, 102–103

dynamic content

displaying, 50

displaying with templates, 66

dynamic load balancing, 562–563

E
E, exponent indicator, 129

Edit DTML Document view, 48–49

Edit File view

content type, 53

opening, 52

precondition, 53

Edit interface, ZClasses, 475–478

edit() method

manage_editHelloForm() method, 193

non-Web uses, 193

Web-enabling, 191–192

Edit Page Template form, Template Attribute

Language, 521

edit properties, 37

Edit view, image object, 54–55

editAddressBook() method, 202, 274, 301–302

editBookMark() method, 400

editEntry() method, 208, 263–264

editEntryForm() method, 275

editing, User Folder, 56

editing, User object, 57

element, list, 140

elif: statement, Python, 149–150

else clause, exceptions, 172

else: statement, Python, 149

e-mail example, 389–390

emergency user

creating by hand, 370–371

creating with zpasswd.py, 371–372

importance of, 370

restrictions of, 370

Encode attribute, dtml-boundary tag, 119

Encode attribute, dtml-mime tag, 119

end variable, repeat statement, 526

entity syntax, 79–80

Entries dictionary, 217

Entry class, Addressit Product

attribute list, 205

editEntry() method, 208, 228, 241–242

editEntryForm.dtml, 209–213, 227–228,

242–243

entryDetails.dtml, 228–229

Entry.py, 205–208, 232, 286–288

index_html() method, 232

title() method, 232

UML diagram, 205

Entry instance, 197

entryDetails.dtml, 214–215, 232

environment variable

LANG, 27

REQUEST object, 419

Z_DEBUG_MODE, 25

k4857-3 Index.F 3/1/02 9:43 AM Page 588

589Index ✦ E–F

EnvironmentError, Python built-in function, 443

EOFError, Python built-in function, 443

equals, Python numeric operation, 131

error, checking for, 107–108

error messages, 543–545

ERROR severity variable, zLOG module, 553

error_tb variable, dtml-try tag, 109

error_type variable, dtml-try tag, 109

error_value variable, dtml-try tag, 109

escape codes, string, 136–137

escape sequence, converting to character

equivalent, 414

etc attribute, dtml-var tag, 81

etc User Folder, 384

even variable, repeat statement, 526

Examples folder, Navigator frame, 36

exception

else clause, 172

except clause, 172

finally clause, 172–173

objects, 171

raise clause, 172–173

raising, 106–107

traditional error handling, compared to, 170

try statement, 171

expand_all variable, dtml-tree tag, 155

expireCookie() method, 425

exponents, 129

Export Object id field, Contents view, 45

expr attribute

determining if condition is true, 87–88

dtml-in tag, 92

dtml-tree tag, 112

dtml-var tag, 80

evaluating Python expressions, 70

passing arguments, 70

rules of acquisition, 70

shorthand notation, 71

side-stepping to another folder, 71

special namespace variable, 70

extendibility, 6

Extensible Hypertext Markup Language

(XHTML), 520

Extensible Markup Language (XML), 46

ExtensionClass.pyd, 389

ExtensionClass.so, 389

Extensions folder, 449

external *.dtml file, 189

External Methods

definition, 449–450

example, 450–452

location of, 19

external sources of data, 67

externalHello object, 450

ExternalMethod, Product list, 62

extracting tar files from CD, 16

extranet, streamlining your business with, 3

F
-F, ZServer command line switch, 26

-f, ZServer command line switch, 26

factoring your design, 320

FAQManager object, ZClasses, 478–479, 483–484

FastCGI Server, specifying path and port, 26

fCommon() method, dtml-var tag, 85

fCommonZ() method, dtml-var tag, 85

field indexes, ZCatalog, 495, 510, 512

file extension, 53

File Manager, similarity to Zope management

interface screen, 32

File object

adding, 52

content, 52

editing, 52–53

pickable item, 401

uploading, 52

viewing, 54

file transfer protocol (FTP), 6

built-in support for, 6

component relationship diagram, 8

protocol support, 7

server, 450–452

FileLibrary folder, 36

filter, Python built-in function, 443

finally clause, exceptions, 172–173

Find Objects tab, ZCatalog, 492

Find view

Advanced link, 47

limiting scope of, 47

search functions, 46

FirstName attribute, Entry class, 205

First-nnn variable, dtml-in tag, 98

k4857-3 Index.F 3/1/02 9:43 AM Page 589

590 Index ✦ F–G

float, Python built-in function, 132, 443

float, Python numeric type, 128–129

float() method, Python math module, 75

float property type, 464

float type conversion code, ZPublisher, 415

floating point number, string formatting

code, 138

FloatingPointError, Python built-in

function, 443

fmt attribute, dtml-var tag, 80

Folder class, 293

Folder object

Add Folder form, 41–42

exporting entire Zope site, 45

importance of, 41

footer attribute, dtml-tree tag, 112, 114

for statement, Python, 152–153

form data, DTML Request Object, 73

form feed, escape code, 136

formatting codes, ZPublisher, 415

forms

collecting user input with, 4

REQUEST object, 419

FreeBSD, 5

from module import syntax, 163

from package import syntax, 165

FTP. See file transfer protocol

FTP client, downloading, 32

FTP server

running multiple, 26

specifying port number, 26

ZServer, 24

full sweep, cache, 404

full-text indexes, 496

Fulton, Jim, 4–5

function, Python

arbitrary arguments, 159

assigning to name, 158

built-in, 132–133, 154

default values, assigning to arguments,

156–157

defining, 154

keyword arguments, 155–156

variables, passing to, 155

G
Gadfly

adaptor, 345

definition, 344

restaurant application example, 360–361

GATEWAY_INTERFACE, CGI environment

variable, 420

gdb. See GNU debugger

generic file, 53

getattr() method, 390, 400

getattr() method, Python string module, 77

getattr, Python built-in function, 443

getEmail() method, 390

get_header() method, 423

getId() method, 67

getitem() method, 226

getitem() method, Python string module, 77

getrefcount() function, 394

getting locked out of Zope, 370

get_transaction() method, 398

getURL attribute, 504

GIF. See Graphics Interchange Format file format

global method, _built-ins_ namespace, 398

global namespace, 160

global statement, 161

global variable, 161

Globals.Persistent, 187

GnoRPM, 572–574

GNU debugger (gdb), 548

Graphics Interchange Format (GIF) file format, 54

greater than, Python numeric operation, 131

greater than or equal to, Python numeric

operation, 131

greenstriping, 245

group permission, specifying for initial user, 17

GroupList attribute, 241

Groups

adding, 241–243

deleting, 244–249

importance of, 240

renaming, 254–257

retrieving entries by, 250–253

guarded_getattr() method, 428–429

gzip compression scheme, 29

k4857-3 Index.F 3/1/02 9:43 AM Page 590

591Index ✦ H–I

H
-h, ZServer command line switch, 25

H_12() method, dtml-var tag, 85

h_24() method, dtml-var tag, 85

hard drive space, amount required for Zope

installation, 13

hardware requirement

CD, 13

installation, 13

hasattr, Python built-in function, 443

hasattr() method, Python string module, 77

hash, Python built-in function, 443

hash() method, 145

hash() method, Python math module, 75

has_key() method, dictionaries, 145, 423

has_key() method, Python string module, 77

header attribute, dtml-tree tag, 112, 114

height, image object, 54

hello() function, 154–156

“Hello, world!” program, 124, 126

helloClass, 187

helloProduct Product, 181–183

help

adding to AddressBook, 306–307

creating for AddressBook, 306–307

Zope Quick Start, 33

Help! link, 36

here, TALES starting point, 532

hex, Python built-in function, 443

hex, Python numeric type, 128–129

hex() function, 132

hex() method, Python math module, 75

hex value, escape code, 136

hexadecimal integer, 138

hexadecimal string, converting number into, 75

hierarchies, object, 397

History view, tracking changes to DTML

Document, 49–50

home.user.getEmail() method, 390

horizontal tab, escape code, 136

hour() method, dtml-var tag, 85

HP-UX, 5

HTML. See Hypertext Markup Language

HTML entity syntax, 79–80

html_quote attribute, dtml-var tag, 81

html_quote() function, 441

HTTP. See Hypertext Transfer Protocol

HTTP GET operation, 413

HTTP POST operation, 413

HTTP server

running multiple, 26

specifying port number, 26

ZServer, 24

HTTP_ACCEPT_LANGUAGE, CGI environment

variable, 420

HTTP_USER_AGENT, CGI environment

variable, 420

Hypertext Markup Language (HTML), 11

Hypertext Transfer Protocol (HTTP)

component relationship diagram, 8

embedding code in Module file, 188–189

protocol support, 7

hyphen, using in Python expression, 74

I
-i, ZServer command line switch, 25

icon

adding to AddressBook, 307–308

creating for AddressBook, 308

id

AddressBook, 202

DTML Document, 47

File object, 52

image object, 54

searching for with Find view, 46

sorting objects by, 44

Id attribute, dtml-tree tag, 112

id field index, 495

if statement, Python, 148–151

ignore_empty type conversion code,

ZPublisher, 415

illegal characters, converting, 82

image object

adding, 54

editing, 54

precondition, 54

Properties view, 54

recognized types, 54

viewing, 55

IMAP

database adaptor, 6

server, 67

k4857-3 Index.F 3/1/02 9:43 AM Page 591

592 Index ✦ I

 tag, 55

immutable object, 145

import statement, Python, 162–163

import sys, 406

ImportError, Python built-in function, 126, 443

Import/Export button, Contents view, 45–46

importing files from another Zope installation, 19

importing security framework, 278

indentation, Python control statements, 147–148

index

accessing sequence element, 133

brackets, 134

negative, 140

index variable, repeat statement, 526

indexAddressbook.dtml, 222–224, 232–234,

236–239, 252–253, 257–259

indexAddressit.dtml, 295–297

IndexError, Python built-in function, 443

IndexError exception, 108

Indexes tab, ZCatalog, 492

index.html
adding a new property to, 38

callable attribute, 9

index_html() method, 41–42, 232, 275

index_html.dtml file, 190

inet socket port number, 26

INFO severity variable, zLOG module, 552

inheritance

acquisition, compared to, 389

class, 169–170

init() method, 169, 213, 241

initial user

Linux, 17

Microsoft Windows 9x/NT/2000, 15

Python, 17–18

InitializeClass() method, 278

init.py
adding help, 306–307

AddressBook class, 198

Addressit product, 198

Hello class, 164

insert() method, 141

INSERT statement, Structured Query

Language, 342

./install, output from installer script, 17

INSTALL file, 29

installation

auto install, 15

command line utility, 574

determining location, 25

GnoRPM, 572–574

new products, 29

source code on Linux, 574–578

int, Python built-in function, 443

int() method, Python math module, 75

int property type, 464

int type conversion code, ZPublisher, 415

integer

converting into character, 133

converting to octal string, 76

Python numeric type, 128–130

INTEGER, CREATE TABLE statement, 343

Intel x86 machine, 13

interactive interpreter, Python

command prompt, 122

continuation prompt, 123

evaluating results with, 122

exiting, 123

run time, saving, 124–145

starting, 122

interface, exposing, 278

internationalization, ZServer, 27

Internet request, supporting, 8

interpreted scripting language, 121

interpreter, Python

command prompt, 122

continuation prompt, 123

evaluating results with, 122

exiting, 123

run time, saving, 124–145

starting, 122

interpreter check interval, setting, 25

intranet, streamlining your business with, 3

IOError, Python built-in function, 443

IP address

DNS service, 25

specifying which to listen on, 20, 26

using instead of localhost:8080, 20

is operator, 390–391

isCurrentHour() method, dtml-var tag, 85

k4857-3 Index.F 3/1/02 9:43 AM Page 592

593Index ✦ I–L

isCurrentMonth() method, dtml-var tag, 85

isFuture() method, dtml-var tag, 85

isinstance, Python built-in function, 443

isLeapYear() method, dtml-var tag, 85

isPast() method, dtml-var tag, 85

issubclass, Python built-in function, 443

items() method

dictionaries, 146

ZPublisher, 423

iterative insertion, 90–91

J
J, complex number indicator, 129

Java, prevalence of, 4

JavaScript add form, automatically loading, 43

Joint Photographic Experts Group (JPEG) file

format, 54

journaling schema, Z Object DataBase, 10

JPEG. See Joint Photographic Experts Group

file format

K
key

converting to string, 217

dictionary, 144–145

KeyError, Python built-in function, 82, 108, 443

keys() method, 146, 423

key:value pair, dictionary, 144

keyword indexes, ZCatalog, 495, 512–513

L
L, long integer indicator, 129

-L, ZServer command line switch, 27

-l, ZServer command line switch, 27

LANG environment variable, 27

laptop, installing Zope on, 13

LastEntryID integer attribute, 216

LastEntryID property, 227

LastName attribute, Entry class, 205

Last-nnn variable, dtml-in tag, 98

Layer 4 switch, 562

LDAP. See Lightweight Directory Access Protocol

LDAPLoginAdapter, 385

LDAPUserManager, 385

leaves attribute, dtml-tree tag, 112, 114

left bracket, converting, 83

len(), Python built-in function, 133, 443

len() method

accessing last element in list, 140

dictionaries, 145

Python sequence module, 76

length variable, repeat statement, 526

less than, Python numeric operation, 130

less than or equal to, Python numeric

operation, 131

Letter variable, repeat statement, 526

letter variable, repeat statement, 526

Lightweight Directory Access Protocol (LDAP)

database adaptor, 6

security, 273

server, 67

lines property type, 464

lines type, Python equivalent for, 39

lines type conversion code, ZPublisher, 415

link, Zope Quick Start, 33

Linux

acquisition, 189

CD, 568

official Zope support, 5

summary, installation steps, 18

UNIX binaries, 16

Zope installation file, 14

list

appending elements, 139

array, compared to, 139

creating, 139

definition, 133

dynamic nature of, 139

index notation, 140

inserting elements, 141

pickable item, 401

removing items from, 142–143

slicing, 141–142

two-dimensional, 141

list, Python built-in function, 443

list of records, creating, 418–419

list type conversion code, ZPublisher, 415

listContactTypes() method, 213, 274

listEntries() method, 221, 233

listEntriesByGroup() method, 250–251, 255,

275, 294, 302–304

k4857-3 Index.F 3/1/02 9:43 AM Page 593

594 Index ✦ L–M

listGroups() method, 275, 294, 299–300,

302–304

listing restaurants, restaurant application

example, 363

listing restaurants and votes, restaurant

application example, 365

listing voters, restaurant application

example, 363

listing votes for restaurant, restaurant

application example, 363

load balancing

dynamic, 561–563

Zope Enterprise Options, using with, 7

local namespace, 160

local role

assigning, 379–382

importance of, 379

problems with, 383

removing, 382

locale support, ZServer, 27

localhost:8080, pointing Web browser at,

18, 20

log, type of information saved, 27

log file, ZServer, 27

login, authentication information, 21

Logout, management interface, 33, 35

long, Python built-in function, 132, 443

long division, 75

long integer, Python numeric type, 128–129

long property type, 464

long type conversion code, ZPublisher, 415

LookupError, Python built-in function, 108, 443

looping

breaking, 153

continuing, 154

dtml-in tag, 90–91

for statement, Python, 152–153

infinite, 151

nesting, 153

while statement, Python, 151–152

Lotus spreadsheet, 52

low cost, 11

lower attribute, dtml-var tag, 80

lower() method, Python, 74

M
-M, ZServer command line switch, 27

-m, ZServer command line switch, 27

MacOS X, 5

Macro Expansion TAL (METAL)

code reuse, 537–538

importance of, 536–537

macro slots, 538–540

Macromedia Dreamweaver, 569

Mailfrom attribute, dtml-sendmail tag, 118

MailHost, Product list, 62

Mailhost attribute, dtml-sendmail tag, 118

MailHost object, dtml-sendmail tag, 117

mailing list support, 30

mailing lists, Zope, 33

Mailto attribute, dtml-sendmail tag, 118

mainAddressbook.dtml, 201–202

Manage Product view

product initialization, 63

product list, 62–63

traceback, 63

manage_add methods, 184–186

manage_addAddressBook.dtml, 274

manage_addAddressBookForm.dtml,

199–200, 274

manageGroupForm() method, 275

manageGroupForm view, 255

manageGroupForm.dtml, 244–246, 256–257

manage_main() method, 279

management interface

accessing, 32

Bindings tab, 444–445

importance of, 21

screen, 33

Set Preferences, 34–35

Zope Quick Start, 33

management tabs, defining, 194–196

manage_options definition, 307

manage_options property, 201

Manager role, 372

importance of, 270–271

initial user, Microsoft Windows 9x/NT/2000, 15

manage methods, 279

private AddressBook, 303–304

user object, 56

k4857-3 Index.F 3/1/02 9:43 AM Page 594

595Index ✦ M

manage_tabs() method, 193, 279

managing versions, 62

manually starting and stopping Zope,

Windows NT, 22–23

map, Python built-in function, 443

Mapping attribute, dtml-in tag, 92

mapping keyword, 238

marshaling, 397

marshaling arguments, 413–414

math module, Python

abs() method, 75

divmod() method, 75

float() method, 75

hash() method, 75

hex() method, 75

int() method, 75

oct() method, 76

pow() method, 76

round() method, 76

special namespace variable, 74

max, Python built-in function, 132–133, 443

max() method, Python sequence module, 76

maximum positive size, determining for

integers, 130

max-nnn variable, dtml-in tag, 97

mean-nnn variable, dtml-in tag, 97

median-nnn variable, dtml-in tag, 97

Medusa server, 9

memory, saving, 405–408

metadata, 497

Metadata tab, ZCatalog, 492

METAL. See Macro Expansion TAL

meta-type declaration, 182, 185

meta_type field index, 495

method

definition, 168

document, compared to, 50

method_roles_ list, 413

methods, dtml-var tag

aCommon(), 84

aCommonZ(), 84

aDay(), 85

aMonth(), 85

AMPM(), 84

ampm(), 85

AMPMMinutes(), 84

Date(), 85

Day(), 85

day(), 85

DayOfWeek(), 85

dayOfYear(), 85

dd(), 85

fCommon(), 85

fCommonZ(), 85

H_12(), 85

h_24(), 85

hour(), 85

isCurrentHour(), 85

isCurrentMonth(), 85

isFuture(), 85

isLeapYear(), 85

isPast(), 85

minute(), 85

mm(), 85

Month(), 85

month(), 85

pCommon(), 85

pCommonZ(), 86

pDay(), 86

pMonth(), 86

PreciseAMPM(), 85

PreciseTime(), 85

Rfc822(), 86

second(), 86

timezone(), 86

year(), 86

yy(), 86

Microsoft Access database adaptor, 6

Microsoft IIS Web server

compatibility, 7

Persistent CGI, 559–560

public Web site, 560

Microsoft Internet Explorer, logging into Zope, 20

Microsoft Windows 9x/NT/2000

availability of Zope, 3

default installation directory name, 14–15

initial user, setting username and password

for, 15

installation wizard, 14

operating system stability, 14

summary, installation steps, 15–16

Zope installation file on CD-ROM, 14

Microsoft Windows Explorer, similarity to Zope

management interface screen, 32

k4857-3 Index.F 3/1/02 9:43 AM Page 595

596 Index ✦ M–N

Microsoft Word document, 52

MiddleInitial attribute, Entry class, 205

MIME header, 119

MIMETools, Product list, 62

min, Python built-in function, 132–133, 443

min() method, Python sequence module, 76

minimize sweep, cache, 404

min-nnn variable, dtml-in tag, 97

minus sign (-)

document revision, 50

folder display, 110

minute() method, dtml-var tag, 85

missing attribute, dtml-var tag, 81–82

mix-in class, 399

mm() method, dtml-var tag, 85

modules

Python, 161–163

TALES starting point, 532

modulo, Python numeric operation, 130

monitor server

password, 27

port number, specifying, 26–27

running multiple servers, 27

Month() method, dtml-var tag, 85

month() method, dtml-var tag, 85

movie, storing as File object, 52

Mozilla, logging into Zope, 20

MSSQL

database adaptor, 6

external data source, 67

multiple selection type, 39, 464–465

multiple servers, 26

multiple user folders, accommodating, 382

multiple-select property, ZClasses, 471–473

multi-threading support, 452

myparent attribute, 395

MySQL

component relationship diagram, 8

database adaptor, 4, 6

external data source, 67

non-transactional, 343

Python module, 345

user folder, authentication adaptors, 383

N
naked object, 226

name

definition, 72

property, 37

sorting objects by, 44

tag syntax, 68

name argument, _bobo__traverse_()
method, 412

name attribute, DTML

determining if condition is true, 87–88

method request, 69

object property, 69

Python document template, 69

REQUEST variable, 69

shorthand notation, 68

special shorthand notation, 68–69

Zope Document request, 69

name attribute, dtml-in tag, 92

name attribute, dtml-tree tag, 112

name attribute, dtml-var tag, 68, 80

Name field, Properties view, 38

NameError, Python built-in function, 82, 443

namespace

creating new layer at top of, 103

DTML Client Object, 72–73

DTML Request Object, 72–74

examining content of, 166

within functions, 160

importance of, 72, 159

isolating names within, 162

local compared to global, 161

Name Lookup process, 72

pushing items to top, 102–103

stack, changing with dtml-in, 91

namespace, DTML utility function, 443

namespace() method, Python string
module, 77

namespace variable, 445

Narrower button, Edit view, 48

NASA, 5

navigation, 320–323

Navigator frame

dtml-tree tag, 110

exploring folders, 35

management interface, 33

k4857-3 Index.F 3/1/02 9:43 AM Page 596

597Index ✦ N–O

negation, Python numeric operation, 130

nesting conditional statements, Python, 150–151

NetBSD, 5

Netscape Enterprise Server, compatibility, 7

Netscape Navigator, logging into Zope, 20

newline

carriage return, compared to, 137

escape code, 136

newline_to_br attribute, dtml-var tag, 81

Next attribute, dtml-in tag, 93

next-batches variable, dtml-in tag, 100

next-sequence variable, dtml-in tag, 100

next-sequence-end-index variable, dtml-in
tag, 100

next-sequence-end-number variable, dtml-in
tag, 100

next-sequence-size variable, dtml-in tag, 100

next-sequence-start-index variable, dtml-in
tag, 100

next-sequence-start-number variable, dtml-in
tag, 100

nightmare.com, 9

nobody user, changing ownership of /var to, 18

None, Python built-in function, 443

non-empty sequence, 76

normal property type, 39

normalized data, relational database, 338–340

not: expression flag, Template Attribute

Language, 536

nothing, TAL built-in variable name, 532

nowrap attribute, dtml-tree tag, 112

NT user folder, authentication adaptors, 384

null attribute, dtml-var tag, 80

null escape code, 136

number

converting into dollar amount, 83

converting to floating point, 75

converting to hexadecimal string, 75

converting to plain integer, 75

pickable item, 401

returning absolute value of, 75

number variable, repeat statement, 526

numeric operations, Python

and, 131

difference, 130

does not equal, 131

equals, 131

greater than, 131

greater than or equal to, 131

less than, 130

less than or equal to, 131

modulo, 130

negation, 130

or, 131

product, 130

quotient, 130

sum, 130

numeric types, Python, 128

complex, 129

float, 129

hex, 129

integer, 129–130

long integer, 129

octal notation, 129

O
object

accessing, 32

adding new properties to, 38

adding to folder, 43

bare, 226

callable, 9

containers, 32

control variable list, 116

converting, 138–139

copying, 44

default rendering, 37

definition, 32

deleting, 43–44

displaying in browser, 42

hierarchies, 397

list, 133

moving, 44

persistence, 32

pickable item, 401

reference count equals zero, 394

renaming, 44

returning hash value for, 75

returning length of, 76

sorting, 44

switching between views of, 36

tuple, 133

turning into hyperlink, 116

viewing ownership information, 40

object cache, managing, 61–62

object changes, ZClasses, 487

k4857-3 Index.F 3/1/02 9:43 AM Page 597

598 Index ✦ O–P

object database compared to relational

database, 335–336

object database content, 7

Object Oriented Programming (OOP)

classes, 455

definition, 5

DTML Method, original design of, 51

ZClasses, 455

object persistence, supporting, 8

object publishing, 411

Object Request Broker (ORB), 9, 411

ObjectManager-derived classes, 215

object.nextobject, 412

objectValues() method, dtml-tree tag, 113

oct, Python built-in function, 132, 443

oct() method, Python math module, 76

octal integer, 138

octal notation, Python numeric type, 128

octal string, converting integer number into, 76

octal value escape code, 136

ODBC. See Open Database Connectivity

odd variable, repeat statement, 526

of() method, wrappers, 391

office.user.getEmail() method, 390

OFSP, Product list, 62

OFS.SimpleItem.Item, 187

OFS.SimpleItem.SimpleItem class, 198–199

omit-tag statement, Template Attribute

Language, 529–530

on-error statement, Template Attribute

Language, 530–531

one-way hash, 371

online documentation, links to, 33

OOP. See Object Oriented Programming

Open Database Connectivity (ODBC)

compliance with, 4

component relationship diagram, 8

database adaptor, 344

protocol support, 7

open source, benefit of, 6

open tag, 68

OpenBSD, 5

operating system stability, 14

options, TAL built-in variable name, 532

or, Python numeric operation, 131

Oracle

component relationship diagram, 8

cost, 343–344

database adaptor, 4, 6

external data source, 67

ORB. See Object Request Broker

ord, Python built-in function, 443

ord() method, Python string module, 77

order of execution, Template Attribute

Language, 531

order of precedence, Python, 131

orphan attribute, dtml-in tag, 92, 234–235

OSError, Python built-in function, 443

OverflowError, Python built-in function, 443

OverflowError exception, 76, 129

Overlap attribute, dtml-in tag, 92

Owner role, 270–271

Ownership management tab, 193

Ownership view, 40

P
-P, ZServer command line switch, 26

-p, ZServer command line switch, 26

Pack button, Database view, 61

pack() method, 410–411

Package, Python, 161–163

Package, Zope, 181–184

packing the database, 60–61

Page Templates, Product list, 62

PANIC severity variable, zLOG module, 553

Parameter List, Python-based script, 440

parent._class_, 394

parentheses, Python order of evaluation, 131

PARENTS, ZPublisher convenience variable,

421–422

parsed_params() method, 432

parsing DTML syntax, 48

password

setting for initial user, Linux, 17

setting for initial user, Microsoft Windows, 15

user object, 57

Paste button, Contents view, 44

path attribute, sys module, 163

path expressions, Template Attribute Language,

532–534

k4857-3 Index.F 3/1/02 9:43 AM Page 598

599Index ✦ P

path indexes, ZCatalog, 495, 514

PATH_INFO, CGI environment variable, 420

PATHTEXT environment variable, 124–125

PCGI. See Persistent CGI

_p_changed attribute, 400

pCommon() method, dtml-var tag, 85

pCommonZ() method, dtml-var tag, 86

pDay() method, dtml-var tag, 86

pdb. See Python debugger

PDF. See portable document format file

.pdf extension, 53

Pedahazur, Hadar, 5

percent operator, string, 137–139

period (.), current directory alias, 225

Perl-based scripts

example, 453

installing, 452–453

limitations, 452

Zoperl, 453

PerlExternalMethod product, 453

PerlMethod product, 453

permission list, setting, 7

Permissions

accessing method, 275

adding, 280–281

associating with roles, 281–282

built-in, 277–278

changing in Security view, 39

managing, 271

searching for, 47

security, 269

setting, 374–375

verifying, 58

persistence, rules of, 401

Persistence machinery, 217

Persistent CGI (PCGI)

Microsoft IIS Web server, 559–560

path, 26

read-only mode, 27

Persistent mix-in class, 399

persistent object, 10

Pickle module

marshaling, 397

pickable items, 401

pid file, 25

_p_jar attribute, 404

platform, displaying, 58

plug-in support, 8

PluginIndexes, Product list, 62

plus sign (+)

complex number notation, 129

document revision, 50

folder display, 35, 110

replacing empty spaces with, 83

pMonth() method, dtml-var tag, 86

PNG. See Portable Network Graphics file format

populating ZCatalog, 493

Port attribute, dtml-sendmail tag, 118

port number

8080, 20

changing, 20

inet socket, 26

specifying offset, 26

portability, Python, 121

portable document format (PDF) file, 52

Portable Network Graphics (PNG) file format, 54

PostgreSQL

database adaptor, 4, 6

development of, 344

external data source, 67

pow, Python built-in function, 132, 443

pow() method, Python math module, 76

PreciseAMPM() method, dtml-var tag, 85

PreciseTime() method, dtml-var tag, 85

precision, floats, 129

precondition, specifying for file, 53

prefix attribute, dtml-in tag, 96

_p_resolveconflict() method, 409

Previous attribute, dtml-in tag, 93

previous-batches variable, dtml-in tag, 100

previous-sequence variable, dtml-in tag, 99

previous-sequence-end-index variable, dtml-in
tag, 100

previous-sequence-end-number variable,

dtml-in tag, 100

previous-sequence-size variable, dtml-in
tag, 100

previous-sequence-start-index variable, dtml-
in tag, 99

k4857-3 Index.F 3/1/02 9:43 AM Page 599

600 Index ✦ P

previous-sequence-start-number variable,

dtml-in tag, 100

Principia, 5

PrincipiaSearchSource text index, 495–496

printed variable, 441

private AddressBook, 303–305

PROBLEM severity variable, zLOG module, 552

product

creating, 179–180

definition, 178

downloading, 29

installing, 29

Photo, 178

Python numeric operation, 130

Refresh, 178

troubleshooting, 30

updating, 59

ZClasses, 457–459

product initialization, Manage Product view, 63

Product list, ZCatalog, 63

Product Management, Control Panel link, 58

Product Management folder, Traceback link, 30

Product registration, 181

Products directory, creating products in, 198

Products Refresh tab, 185

Products.PythonScripts.standard, 441

Products.ZCatalog.CatalogAwareness, 509

PROFILE_PUBLISHER environment variable, 553

Properties view, 37, 469–470

property, object

adding, 38–39

adding to property sheet, 468

deleting, 39

DTML Document, 51

dynamically displaying, 79

Property Sheets tab, ZClasses, 465–467

property type, relationship to Python type, 39

protocol translation, 9

proxy role

assigning to a method, 376–377

importance of, 376

proxytest method, 377–378

standard_email_action method, 324

testing, 378

Proxy tab, 377

Proxy view, 40

Public attribute, 301–302

public interface, creating for folder, 41

public license, 11

PUBLISHED, ZPublisher convenience

variable, 421

publishing objects

marshaling arguments, 413–414

overview, 180

REQUEST object, 419–423

RESPONSE object, 423–425

type casting arguments, 415–419

.py file extension, 125–126, 162, 166

.pyc file extension, 162, 166

pyperl module, 452

Python

application, location of, 5

arbitrary arguments, passing, 159

built-in functions, 132–133

bytecode files, 166

calling Zope from, 545–547

commands, running from a file, 124, 126

creating initial user, 17–18

creating lists, 139–140

default values, assigning, 156–157

defining functions, 154–155

dictionaries, 144–146

elements, inserting into list, 141

elements, working with, 140–141

escape sequences, 136

functions, assigning to names, 158

hyphen, using in expression, 74

if statement, 148–151

important characteristics of, 121

indentation, 123

installing, 122

interactive interpreter, 122–123, 398–399

keyword arguments, 155–156

looping, 151–154

math module, 75–76

modules, 161–163

modules, location of, 5

numeric operations, 130–133

numeric types, 128–130

overriding object format, 71

packages, 161–163

platform, 5

k4857-3 Index.F 3/1/02 9:43 AM Page 600

601Index ✦ P

removing item from list, 142–143

returning values, 157

Script object, triggering, 53

sequence module, 76

slicing lists, 141–142

statement sequence, 123

string formatting, 137–139

string module, 76–78

string sequences, 133–135

tuples, 143–144

unicode module, 76–78

variables, passing to functions, 155

Python 2.1 Bible, electronic version, 569

Python built-in functions

apply, 443

ArithmeticError, 443

AssertionError, 443

AttributeError, 77, 443

callable, 443

chr, 443

cmp, 443

complex, 132, 443

delattr, 443

divmod, 132, 443

EnvironmentError, 443

EOFError, 443

filter, 443

float, 132, 443

FloatingPointError, 443

getattr, 443

hasattr, 443

hash, 443

hex, 443

ImportError, 126, 443

IndexError, 443

int, 443

IOError, 443

isinstance, 443

issubclass, 443

KeyError, 82, 108, 443

len(), 133, 443

list, 443

long, 132, 443

LookupError, 108, 443

map, 443

max, 132–133, 443

min, 132–133, 443

NameError, 82, 443

None, 443

oct, 132, 443

ord, 443

OSError, 443

OverflowError, 443

pow, 132, 443

range, 155, 443

repr, 443

round, 132, 443

RuntimeError, 443

setattr, 443

StandardError, 443

str, 443

SyntaxError, 443

tuple, 443

TypeError, 76, 138, 443

ValueError, 76, 443

ZeroDivisionError, 443

Python code object, pickable item, 401

python command, 125

Python DateTime Library, 84–86

Python debugger (pdb), 547–549

Python expressions, Template Attribute

Language, 534–535

Python interactive interpreter

command prompt, 122

continuation prompt, 123

evaluating results with, 122

exiting, 123

run time, saving, 124–145

starting, 122

Python Library reference, 74

Python math module

abs() method, 75

divmod() method, 75

float() method, 75

hash() method, 75

hex() method, 75

int() method, 75

oct() method, 76

pow() method, 76

round() method, 76

special namespace variable, 74

k4857-3 Index.F 3/1/02 9:43 AM Page 601

602 Index ✦ P–R

Python numeric operations

and, 131

difference, 130

does not equal, 131

equals, 131

greater than, 131

greater than or equal to, 131

less than, 130

less than or equal to, 131

modulo, 130

negation, 130

or, 131

product, 130

quotient, 130

sum, 130

Python numeric types

complex, 128–129

float, 128–129

hex, 128–129

integer, 128–130

long integer, 128–129

octal notation, 128

Python product, accessing from ZCatalog, 507

Python script object, accessing from ZCatalog,

505–506

Python sequence module

len() method, 76

max() method, 76

min() method, 76

reorder() method, 76

Python string module

chr() method, 76

getattr() method, 77

getitem() method, 77

hasattr() method, 77

has_key() method, 77

namespace() method, 77

ord() method, 77

range() method, 77

render() method, 77

SecurityCalledByExecutable()
method, 77

SecurityCheckPermission() method, 78

SecurityGetUser() method, 78

SecurityValidate() method, 78

SecurityValidateValue() method, 78

special namespace variable, 74

str() method, 78

test() method, 78

Python unicode module

unichr() method, 78

unicode() method, 78

Python version, displaying, 58

Python-based script

built-in functions, 443

calling from DTML, 446–447

creating, 440–442

example, 448–449

importance of, 439

Parameter List, 440

Products.PythonScripts.standard, 441

security, 443–444

PYTHONPATH environment variable, 164

PythonScripts, Product list, 62

Q
QandA ZClass, ZClasses, 479–483

QUERY_STRING environment variable, 414, 420

quotation marks, 133–134

quoted-printable, 119

quotient, Python numeric operation, 130

R
-r, ZServer command line switch, 27

raise clause, exceptions, 172–173

RAM, amount required for Zope installation, 13

range, Python built-in function, 155, 443

range() method, Python string module, 77

raw_input() function, 127

RCS. See Revision Control System

RDBMS. See Relational Database Management

System

README file, 29

read-only mode, ZServer, 27

record, relational database, 336

record type conversion code, ZPublisher, 415

records type conversion code, ZPublisher, 415

Red Hat

compatibility, 5

installing with command line utility, 574

installing with GnoRPM, 572–574

RPM files, downloading, 571

k4857-3 Index.F 3/1/02 9:43 AM Page 602

603Index ✦ R

Red Hat Package Management (RPM), 14, 571

redirect() method, 425

reference counting, 393–395

Refresh, Navigator frame, 35

Refresh link, management interface, 33

Refresh This Product button, 185

refreshing Products, 59, 182

refresh.txt file, 202

regedit32, 28

Registry Editor, 28

registry key, 28

re-initializing product code from filesystem, 185

relational database

adding data, 338

column, 337

connecting to, 345–346

data elements, 337–338

normalized data, 338–340

object database, compared to, 335–336

reading data, 338

record, 336

row, 337

schema, 336

Structured Query Language, accessing data,

340–341

table, 337

Relational Database Management System

(RDBMS), 8, 67

reliability, importance of, 12

remainders, Python, 132

REMOTE_ADDR, CGI environment variable, 420

REMOTE_HOST, CGI environment variable, 420

removing restaurant, restaurant application

example, 364

Rename button, Contents view, 44

renameGroup() method, 216, 275

renameGroupForm() method, 275

render, DTML utility function, 443

render() function, 77

render() method, Python string module, 77

reorder() method, Python sequence
module, 76

repeat, TAL built-in variable name, 532

repeat statement, Template Attribute

Language, 525–526

replace statement, Template Attribute

Language, 524

repr, Python built-in function, 443

request, TALES starting point, 532

request argument, _bobo__traverse_()
method, 412

REQUEST object

convenience variables, 421

cookies, 419

definition, 419

environment variables, 419–420

forms, 419

special variables, 419

REQUEST variable

browser input, 67

presentation methods, 192

REQUEST.AUTHENTICATED_USER object, 78

REQUEST_METHOD, CGI environment

variable, 420

required type conversion code, ZPublisher, 415

reserved characters, converting, 82

resetting votes, restaurant application example,

363, 365

RESPONSE, ZPublisher convenience variable, 421

RESPONSE object, 423–425

Restart button, Control Panel, 58–59

restaurant application, SQL example

adding restaurant, 362, 364

adding vote for restaurant, 362

deleting a restaurant, 362

Gadfly connection, 360–361

listing restaurants, 363

listing restaurants and votes, 365

listing voters, 363

listing votes for restaurant, 363

purpose, 359

removing restaurant, 364

resetting votes, 363, 365

table schema, 361

user interface, 363–364

voting, 365

workspace, 360

restore, Data.fs, 19

restricted code, security, 269

reusable library, origin of, 4

k4857-3 Index.F 3/1/02 9:43 AM Page 603

604 Index ✦ R–S

reverse attribute

dtml-in tag, 92–93

dtml-tree tag, 112, 114

revision, tracking for DTML Document, 50

Revision Control System (RCS), 329

Rfc822() method, dtml-var tag, 86

right bracket, converting, 83

role

Anonymous, 372

Authenticated, 372

creating, 373

custom, 374

local, 379–383

Manager, 372

Owner, 373

Permissions, assigning to, 374–375

proxy, 376–379

purpose, 56, 372

replacing in Proxy view, 40

searching for, 47

security, 270–271

roles attribute, 279–280, 413

ROLLBACK statement, relational database, 358

root, TALES starting point, 532

Root Folder

management interface, 33

Navigator frame, 35

viewing transaction from, 40

root user, installing Zope, 16

round, Python built-in function, 132, 443

round() method, Python math module, 76

rounding, Python, 132

row, relational database, 337

RPM. See Red Hat Package Management

rules of acquisition, DTML, 70

RunTime exception, 428

RuntimeError, Python built-in function, 443

Rushing, Sam, 9

S
same_type, 444

Save Changes

Edit view, 48

Properties view, 38–39

scalability, 12, 560–561

schema, relational database, 336

script, Python-based

built-in functions, 443

calling from DTML, 446–447

creating, 440–442

example, 448–449

importance of, 439

Parameter List, 440

Products.PythonScripts.standard, 441

security, 443–444

script variable, 445

scripting language, 121

search engine scope, 7

search engines, ZCatalog

adding catalog to site, 492

Advanced tab, 492, 514–515

Catalog tab, 492

CatalogAwareness, 508–509

complex queries, 507–508

definition, 491

field indexes, 495, 510, 512

Find Objects tab, 492

index, adding, 492

Indexes tab, 492

keyword indexes, 495, 512–513

metadata, 497

Metadata tab, 492

path indexes, 495, 514

populating, 493

Product list, 63

Python product, accessing from, 507

Python script object, accessing from, 505–506

search interface, building, 498–499

search_form method, 500

search_results method, 501–504

subtransactions, 514–515

text indexes, 495, 510

vocabularies, 510–511

search functions, Find view, 46–47

search interface, building in ZCatalog, 498–499

search_form method, ZCatalog, 500

search_results method, ZCatalog, 501–504

second() method, dtml-var tag, 86

secure monitor service, ZServer, 24

Secure Socket Layer (SSL), 273

k4857-3 Index.F 3/1/02 9:43 AM Page 604

605Index ✦ S

security

Access-Control List, 269

acquisition, 271

AddressBook.py, 282–286

authentication, 268

authorization, 268

built into Zope, 4, 273–274

changing default policy, 279

ClassSecurityInfo object, 278

default policy, 274

definition, 267–268

delegation, 329–331

document template, 428–429

Entry.py, 286–288

importing framework, 278

InitializeClass() method, 278

Internet, design of, 268

local role, 272–273

model, built-in, 7

ownership, 271–272

permission, 269–270, 367

Python-based script, 443–444

restricted code, 269

role, 270–271, 367

Secure Socket Layer, 273

Server-Side Trojan Attack, 271–272

template, 428–429

traversal, ZPublisher, 413

unrestricted code, 269

user folders, 367

Security tab

Acquire permission setting? column, 377

Permissions, 374

Security view

changing permissions, 39

limiting access, 55

SecurityCalledByExecutable() method,

Python string module, 77

SecurityCheckPermission() method, Python

string module, 78

SecurityGetUser() method, Python string
module, 78

SecurityValidate() method, Python string
module, 78

SecurityValidateValue() method, Python

string module, 78

select property, ZClasses, 471–473

SELECT statement, Structured Query Language,

341–342

selection property type, 464–465

selection type, Python equivalent for, 39

self argument, _bobo__traverse_()
method, 412

self._changed_(1), 217

self.reindex_object(), 508–509

selling products online, 3

semicolon (;), entity syntax, 79

sequence module, Python

len() method, 76

max() method, 76

min() method, 76

reorder() method, 76

sequence-end variable, dtml-in tag, 94

sequence-even variable, dtml-in tag, 95

sequence-index variable, dtml-in tag, 94

sequence-index-variable variable, dtml-in
tag, 95

sequence-item variable, dtml-in tag, 94

sequence-key variable, dtml-in tag, 94

sequence-Letter variable, dtml-in tag, 94

sequence-letter variable, dtml-in tag, 94

sequence-number variable, dtml-in tag, 94

sequence-odd variable, dtml-in tag, 95

sequence-query variable, dtml-in tag, 99

sequence-Roman variable, dtml-in tag, 94

sequence-roman variable, dtml-in tag, 94

sequence-start variable, dtml-in tag, 94

sequence-step-size variable, dtml-in tag, 99

sequence-var-variable variable, dtml-in tag, 95

SERVER_NAME, CGI environment variable, 420

SERVER_PORT, CGI environment variable, 420

SERVER_PROTOCOL, CGI environment

variable, 420

server-side Trojan attack, 271–272, 373

SERVER_SOFTWARE, CGI environment

variable, 420

Services Manager, manually starting and

stopping Zope, 22–23

Sessions, Product list, 63

set() method, 104, 423

k4857-3 Index.F 3/1/02 9:43 AM Page 605

606 Index ✦ S

Set Preferences

default settings, management interface, 34

Show Top Frame, 34

Text Area Height, 35, 48

Text Area Width, 35, 48

Use Style Sheets, 34

setattr, Python built-in function, 443

setattr method, 400

setBase() method, 425

setCookie() method, 424

setHeader() method, 424

setServerURL() method, 423

setstate() method, 401–402, 406

setStatus() method, 424

setVirtualRoot() method, 423

severity variables, zLOG module, 552–553

SHA algorithm, 3671

Shorter button, Edit view, 48

Show Top Frame, Set Preferences, 34

shutdown

Ctrl-C in Command Prompt window, 21

Shutdown button in Control Panel folder, 21

stop batch file, Linux, 22

Shutdown button, Control Panel, 59

SimpleZClass_add() method, 459

SimpleZClass_addForm() method, 459

SimpleZClass_add_permission, 461

SimpleZClass_factory, 461

single attribute, dtml-tree tag, 112

single character, handling, 133

single quote (‘)

escape code, 136

string, 133–134

singleton tag, DTML, 68, 430–431

SiteAccess, Product list, 63

size, sorting objects by, 44

size attribute, dtml-in tag, 92

size attribute, dtml-var tag, 81

skip_unauthorized attribute, dtml-in tag, 92

skip_unauthorized attribute, dtml-tree
tag, 112

slash (/), preceding close tag with, 68

slice notation

list, 141–142

returning subset of elements, 133

SMB User Folder, 384

Smtphost attribute, dtml-sendmail tag, 118

SOAP, protocol support, 7

socket, pickable item, 401

Solaris, 5

sort attribute

dtml-in tag, 92, 93

dtml-tree tag, 112, 114

sort objects, 44

sort_by variable, 261–263

sound file, storing as File object, 52

source code on CD, 14, 569

source text, conversion of DTML tags into, 66

space, replacing with plus sign, 83

spacify attribute, dtml-var tag, 80

special namespace variable (_), 74

special variables, REQUEST object, 419

Specialized User folders, 383

split() method, 162

SQL. See Structured Query Language

SQL application example

adding restaurant, 362, 364

adding vote for restaurant, 362

deleting a restaurant, 362

Gadfly connection, 360–361

listing restaurants, 363

listing restaurants and votes, 365

listing voters, 363

listing votes for restaurant, 363

purpose, 359

removing restaurant, 364

resetting votes, 363, 365

table schema, 361

user interface, 363–364

voting, 365

workspace, 360

SQL Method

acquiring parameters, 354–355

add screen, 350

caching, 356–358

dtml-and tag, 349

dtml-call tag, 351

dtml-in tag, 351–352

dtml-or tag, 349

dtml-sqlgroup tag, 349

k4857-3 Index.F 3/1/02 9:43 AM Page 606

607Index ✦ S

dtml-sqltest tag, 348

dtml-sqlvar tag, 348

dynamic, 348–349

external method, 352

importance of, 347

Pluggable Brains, 356

Python Products, 353–354

REQUEST object, 355

sqlListEmployee SQL Method edit screen, 351

static, 347

transactions, 358–359

URL, accessing objects via, 355

sqlBody option, 354

sql_quote attribute, dtml-var tag, 81

square brackets, 134

SSL. See Secure Socket Layer

SSL certificate authenticator, 383

stack, namespace

DTML Client Object, 73

DTML Request Object, 73–74

standard_addressbook_header() method, 275

StandardAddressBookHeader.dtml, 231–232

StandardCacheManagers, Product list, 63

standard-deviation-nnn variable, dtml-in tag, 97

standard-deviation-n-nnn variable, dtml-in
tag, 97

StandardError, Python built-in function, 443

standard_error_message, 44

standard_error_message() method, dtml-
try tag, 110

standard_html_footer() method, 69

standard_html_header() method

example, 69

Root Folder, 51

ZClasses, 470

standard_mail_action object, 324

standard.py, 441

./start, 18

Start attribute, dtml-in tag, 92

start.bat, 15

start-batch-number, 238

State attribute, Entry class, 205

STDERR, zLOG, 27

STDOUT, ZServer, 27

./stop, 22

stop batch file, Linux, 22

stored procedure, database, 343

storing document template code in file, 428

str, Python built-in function, 443

str() method, Python string module,

77–78, 137

string

backslash character, 134

converting, 138–139

converting to floating point, 75

converting to plain integra, 75

creating, 134

decoding, 78

definition, 133

escape codes, 136–137

formatting, 137–138

index, 134

percent operator, 137–138

pickable item, 401

quotation marks, 133–134

returning ASCII value of one character, 77

spanning multiple lines, 135

triple quoting, 135

string expressions, Template Attribute

Language, 535–536

string module, Python

chr() method, 76

getattr() method, 77

getitem() method, 77

hasattr() method, 77

has_key() method, 77

namespace() method, 77

ord() method, 77

range() method, 77

render() method, 77

SecurityCalledByExecutable()
method, 77

SecurityCheckPermission() method, 78

SecurityGetUser() method, 78

SecurityValidate() method, 78

SecurityValidateValue() method, 78

special namespace variable, 74

str() method, 78

test() method, 78

string property type, 464

k4857-3 Index.F 3/1/02 9:43 AM Page 607

608 Index ✦ S–T

string type conversion code, ZPublisher, 415

Structured Query Language (SQL)

accessing data, 340–341

CREATE TABLE statement, 342–343

datatypes, 343

DELETE statement, 342

DROP TABLE statement, 343

INSERT statement, 342

protocol support, 7

SELECT statement, 341–342

testing queries, 346–347

UPDATE statement, 342

WHERE clause, 341–342

Structured-text format, dtml-var tag, 83

subclassing, ZClasses, 488–489

subfolder

granting access to, 55

searching, 47

Subject attribute, dtml-sendmail tag, 118

sub-object, 393

subpath variable, 445

subquery, database, 343

subtransactions, 405–408, 514–515

sum, Python numeric operation, 130

Sun SPARC, 13–14

support, mailing list, 30

supportUndo() method, 410

switching authentication, 35

Sybase

database adaptor, 6

Oracle, compared to, 344

syntax, DTML tag, 67

syntax, tag, 67

syntax errors, DTML, 48

SyntaxError, Python built-in function, 443

sys package, importing, 394

sys.maxint command, 130

system requirements, 567–568

T
-t, ZServer command line switch, 25

table, relational database, 337

table schema, restaurant application

example, 361

tag, DTML

block, 434–437

creating, 430

getting values, 432–433

rendering Python expressions, 433–434

singleton, 430–431

syntax, 67–68

using arguments in, 431–432

TAL. See Template Attribute Language

TAL Expression Syntax (TALES)

importance of, 531–532

not: expression flag, 536

path expressions, 532–534

Python expressions, 534–535

string expressions, 535–536

Taller button, Edit view, 48

tar

compression scheme, 29

extracting Linux installation files, 16, 18

extracting new product files, 29

tarball, installation files, 16

temp_folder, 35

template

arguments, 427

calling, 427

creating object, 426

guarded_getattr() method, 428

security, 428–429

storing code in file, 428

TALES starting point, 532

template.dtml, 428

Template Attribute Language (TAL)

Add Page Template form, 520

Add Presentation Template form, 521

attributes statement, 528

code reuse, 537–538

condition statement, 527

content statement, 525

define statement, 529

development of, 520

Edit Page Template form, 521

Expression Syntax, 531–532

Macro Expansion, 536–537

macro slots, 538–540

not: expression flag, 536

omit-tag statement, 529–530

on-eror statement, 530–531

order of execution, 531

path expressions, 532–534

Python expressions, 534–535

k4857-3 Index.F 3/1/02 9:43 AM Page 608

609Index ✦ T

repeat statement, 525–526

replace statement, 524

string expressions, 535–536

XHTML attributes, 522

template language, tag-based, 66

template source, 426

template.dtml, 428

template_method() function, 429

TemporaryFolder, Product list, 63

test, DTML utility function, 443

test() method, Python string module, 78

testing SQL statements, 346–347

text

Edit view, 48

searching for with Find view, 46

text indexes, ZCatalog, 495, 510

text property type, 464

text type, Python equivalent for, 39

text type conversion code, ZPublisher, 415

third-party Web server, 6

this() method, 78

thousands_commas attribute, dtml-var tag, 81

thread

concurrency, 408

conflict, 408–409

through-the-Web, ZClasses, 456

time, searching for with Find view, 46–47

timezone() method, dtml-var tag, 86

title

Address Book, 202

DTML Document, 47–48

File object, 52

image object, 54

Title attribute, Entry class, 205

title property, default installation, 67

title text index, 495

title_or_id() method, 471

token property type, 464–465

tokens type, Python equivalent for, 39

tokens type conversion code, ZPublisher, 415

top frame, management interface, 33

total-nnn variable, dtml-in tag, 97

tpValues() method, dtml-tree tag, 113

TRACE severity variable, zLOG module, 552

traceback, Manage Product view, 63

Traceback link, Product Management folder, 30

transaction

abort() method, 402–403

atomic, 10

committing, 398–399

removing to save space, 410–411

rolling back, 7

supportUndo() method, 410

Undo view, 40

undoLog() method, 410

Transaction Manager

atomic transaction, 10

component relationship diagram, 8

transactional management, supporting, 8

Transience, Product list, 63

traversal, ZPublisher

_bobo__traverse_() method, 412

security, 413

URL, 412

tree-colspan variable, dtml-tree tag, 155

tree-item-expanded variable, dtml-tree tag, 155

tree-item-url variable, dtml-tree tag, 116, 155

tree-level variable, dtml-tree tag, 155

tree-root-url variable, dtml-tree tag, 116, 155

tree-state variable, dtml-tree tag, 155

trigger

database, 343

Python Script object, 53

triple quoting, 135

Trojan attack, server-side, 373

troubleshooting, 569

try statement, exceptions, 171

tuple, Python built-in function, 443

tuple of dictionaries, 293

tuple type conversion code, ZPublisher, 415

tuples

compared to lists and strings, 143

definition, 133

manage_options, 195–196

pickable item, 401

syntax, 143–144

type

property, 37

searching for with Find view, 46

sorting objects by, 44

k4857-3 Index.F 3/1/02 9:43 AM Page 609

610 Index ✦ T–U

Type, Properties view, 38

Type attribute, dtml-boundary tag, 119

Type attribute, dtml-mime tag, 119

type conversion codes, ZPublisher, 415

TypeError, Python built-in function, 76, 138, 443

U
-u, ZServer command line switch, 26

uid number

specifying for ZServer, 26

UML. See Unified Modeling Language

UML diagram, Address Book, 199, 206

unauthenticated user, 56

uncompressing new products, 29

underscore (_)

expr attribute, 74

private name, beginning with, 165

Undo management tab, 193

undo support

pack operation, 60

supportUndo() method, 410

transaction, 7

undoLog() method, 410

Undo view, 30

unichr() method, 78

unicode() method, 78

unicode module, Python, 78

Unified Modeling Language (UML), 200

universal header and footer, 11

UNIX binaries, 16

UNIX domain socket, path name, 26

UNIX platform, 3

unrestricted code, security, 269

unwrapping wrapped object, 391–392

UPDATE statement, Structured Query

Language, 342

upload file, 52

Upload File, Edit view, 48

upper attribute, dtml-var tag, 68, 80

URL

calling scripts from, 447–448

objects, 37

traversal, 412–413

ZPublisher convenience variable, 421

url attribute, dtml-tree tag, 112

url param attribute, dtml-tree tag, 114–115

URLn, ZPublisher convenience variable, 421

urlparam attribute, dtml-tree tag, 112

URLPATHn, ZPublisher convenience variable,

421–422

url_quote attribute, dtml-var tag, 81

url_quote_plus attribute, dtml-var tag, 81

U.S. Navy, 5

Use Style Sheets, Set Preferences, 34

user

allowed domains, setting, 370

creating, 368

editing, 368–370

emergency, 370–372

role, assigning, 370

TALES starting point, 532

user actions, Address Book, 276

user base, 5

User Folder

accommodating multiple, 382

acl_users, 56

adding, 56

creating, 41

database, 55

editing, 56

user input, REQUEST variable, 67

user interface

restaurant application example, 363–364

Web-based, 6

User object

Add User form, 56

domain, 56

editing, 57

importance of, 55

managing, 57–58

role, 56

UserDB User Folder, authentication adaptor, 385

username

setting for initial user, Linux, 17

setting for initial user, Microsoft Windows

9x/NT/200, 15

/usr/local, installing Zope directory, 16

/usr/local/Zope-2.5.0, changing name of, 16

uue, 119

uuencode, 119

k4857-3 Index.F 3/1/02 9:43 AM Page 610

611Index ✦ V–W

V
v, volatile attribute, 401–402

value, property, 37

Value field, Properties view, 38

ValueError, Python built-in function, 76, 443

values() method, 146, 423

ValuesFor() method, 513

/var
changing ownership of, 18

location, 23

ZServer log file, 27

VARCHAR, CREATE TABLE statement, 343

variable

binding, 444–445

importance of, 126

legal names of, 127–128

record conversion code, combining with, 418

user input, 127

variable substitution, 79

variance-nnn variable, dtml-in tag, 97

variance-n-nnn variable, dtml-in tag, 97

_v_CurrentPos attribute, 406

version

committing, 8

creating, 325–326

definition, 325

discarding changes, 328–329

joining, 326–327

leaving, 326–327

saving changes, 328–329

working in, 327–328

version, ZODB

aborting, 411

saving, 411

Version Management, Control Panel link, 58, 62

vertical bar (|), 533

vertical tab, escape code, 136

view, accessing, 37

View interface, ZClasses, 473–474

View tab

files, 54

image object, 55

index_html object, 46

Properties view, displaying, 37

vocabularies, ZCatalog, 510–511

volatile attribute

definition, 401

example, 406

voting, restaurant application example, 365

W
-w, ZServer command line switch, 20, 26

WARNING severity variable, zLOG module, 552

Web browser

cookie-enabled, 425

logging into Zope with, 18

user interface, 6

Web server

built-in, 6

third-party, 6

Web site

copying to a different machine, 23

exporting, 45

WebDAV

built-in support for, 6

component relationship diagram, 8

protocol support, 7

Web-development toolkit, 5

what you see is what you get (WYSIWYG) HTML

editor, 11

WHERE clause, Structured Query Language,

341–342

while statement, Python, 151–152

Whole-dollars format, dtml-var tag, 83

Wider button, Edit view, 48

width, image object, 54

Windows 95/98/NT/2000, 5

Windows registry, 28

wo.pcgi.py, 577

WORA. See write-once-run-anywhere

workspace, restaurant application example, 360

Workspace frame

importance of, 35

management interface, 33

switching between object views, 36

World Wide Web (WWW)

component relationship diagram, 8

origin of, 4

k4857-3 Index.F 3/1/02 9:43 AM Page 611

612 Index ✦ W–Z

wrapper

aq_base attribute, 391

aq_chain attribute, 391

aq_inner attribute, 391, 396

aq_parent attribute, 391

aq_self attribute, 391

getattr() method, 390

importance of, 390

is operator, 390–391

of() method, 391, 393

parent, accessing, 392

testing whether object is, 392

unwrapping, 391–392

ZODB, 392

write() method, 424

write-once-run-anywhere (WORA), 121

WWW. See World Wide Web

WYSIWYG. See what you see is what you get

HTML editor

X
-X, ZServer command line switch, 27

XEMacs, 147

XHTML. See Extensible Hypertext Markup

Language

XHTML attributes, Template Attribute

Language, 522

XML. See Extensible Markup Language

XML-RPC

component relationship diagram, 8

protocol support, 7

x-uue, 119

x-uuencode, 119

Y
year() method, dtml-var tag, 86

yy() method, dtml-var tag, 86

Z
-Z, ZServer command line switch, 25

-z, ZServer command line switch, 25

Z Object Database (ZODB), 25

built-ins namespace, 398

changing size of cache, 403–404

command line, 398

commit() method, 399

component relationship diagram, 8

copying, 23

Data.fs, 19–20

emptying cache, 404

get_transaction() method, 398

inactive objects, changing amount of time in

cache, 404

journaling schema, 10

number of threads to use, 25

object, storing, 399–400

Persistent, objects that inherit from, 401

Pickle module, 397, 401

relational database, compared to, 335–336

searching with ZPublisher, 9

transactions, committing, 398

transparent persistent object support, 10

volatile attribute, 401

ZCatalog, 397

Z2.log, 27

z2.py, 24

ZCatalog

adding catalog to site, 492

Advanced tab, 492, 514–515

Catalog tab, 492

CatalogAwareness, 508–509

complex queries, 507–508

definition, 491

field indexes, 495, 510, 512

Find Objects tab, 492

index, adding, 492

Indexes tab, 492

keyword indexes, 495, 512–513

metadata, 497

Metadata tab, 492

path indexes, 495, 514

populating, 493

Product list, 63

Python product, accessing from, 507

Python script object, accessing from, 505–506

search interface, building, 498–499

search_form method, 500

search_results method, 501–504

subtransactions, 514–515

text indexes, 495, 510

vocabularies, 510–511

ZClasses

catalog awareness, 485

constructor, editing, 485–487

creating, 459–461

custom properties, 464

default view, 461–463

k4857-3 Index.F 3/1/02 9:43 AM Page 612

613Index ✦ Z

disadvantages, 456

distribution, 489–490

Edit interface, 475–478

FAQManager object, 483–484

FAQManager ZClass, 478–479

multiple-select property, 471–473

object changes, cataloging, 487

object-oriented programming, 455

product, creating, 457–459

Properties view, 469–470

property, adding to property sheet, 468

Property Sheets tab, 465–467

QandA ZClass, 479–483

select property, 471–473

subclassing, 487–489

through-the-Web, 456

View interface, 473–474

zdaemon, read-only mode, 27

Z_DEBUG_MODE, 25

ZEO. See Zope Enterprise Objects

0 prefix, Python octal format, 129

ZeroDivisionError, Python built-in

function, 443

0x prefix, Python hex format, 129

.zexp extension, 45–46

ZGadflyDA, Product list, 63

ZipCode attribute, Entry class, 205

zLOG, STDERR, 27

ZMI. See Zope Management Interface

ZODB. See Z Object DataBase

/Zope, 14

Zope 2.5 files on CD, 569

Zope API, Zope Management page, 67

Zope Bible, electronic version, 569

Zope Corporation, 3, 4

Zope Database Adaptor, 344–345

Zope Enterprise Objects (ZEO)

clusters, 565–566

component relationship diagram, 8

importance of, 7, 11

installing, 563–564

running, 564–565

Zope External Method object, 450

Zope Factory option, 457

Zope installation files, 14

Zope LDAP Connection Product, 29

Zope Management Interface (ZMI), 215

Zope Page Templates

combining with client side tool, 6

separating presentation from logic, 6

Zope Permission option, 457

Zope Quick Start, link to management

interface, 21, 33

Zope Relational Database management (ZRDBM)

abstract interface layer, 11

component relationship diagram, 8

Zope version, displaying, 58

Zope-2.5.0-linux2-x86.tgz, 14

Zope-2.5.0-solaris-2.6-sparc.tgz, 14

Zope-2.5.0-src.tgz, 14

Zope-2.5.0-win32-x86.exe, 14

zope.org, 14

Zoperl, 453

ZopeTutorial, Product list, 63

zpasswd.py, 17–18, 371–372

ZPublisher

component relationship diagram, 8

convenience variable, 421

escape sequence, converting to character

equivalent, 414

house keeping functions, 9

marshaling arguments, 413–414

Object Request Broker, 9

object-publishig environment, 9

overview, publishing objects, 180–181

REQUEST object, 419–423

RESPONSE object, 423–425

traversal, 412–413

type casting arguments, 415–419

ZServer

changing port number, 20

command line switches, 25–27

component relationship diagram, 8

console output, startup, 24

FTP server, 24

HTTP server, 24

log file, 27

protocol translation, 9, 23

read-only mode, 27

secure monitor service, 24

STDOUT, 27

ZSQL methods, ZCatalog subtransactions, 515

ZSQLMethods

external data source, 67

Product list, 63

k4857-3 Index.F 3/1/02 9:43 AM Page 613

k4857-3 Index.F 3/1/02 9:43 AM Page 614

k4857-3 Index.F 3/1/02 9:43 AM Page 615

Hungry Minds, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software

packet(s) included with this book (“Book”). This is a license agreement (“Agreement”)

between you and Hungry Minds, Inc. (“HMI”). By opening the accompanying software

packet(s), you acknowledge that you have read and accept the following terms and conditions.

If you do not agree and do not want to be bound by such terms and conditions, promptly

return the Book and the unopened software packet(s) to the place you obtained them for a

full refund.

1. License Grant. HMI grants to you (either an individual or entity) a nonexclusive license

to use one copy of the enclosed software program(s) (collectively, the “Software”)

solely for your own personal or business purposes on a single computer (whether a

standard computer or a workstation component of a multi-user network). The Software

is in use on a computer when it is loaded into temporary memory (RAM) or installed

into permanent memory (hard disk, CD-ROM, or other storage device). HMI reserves all

rights not expressly granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including copyright, in and

to the compilation of the Software recorded on the disk(s) or CD-ROM (“Software

Media”). Copyright to the individual programs recorded on the Software Media is

owned by the author or other authorized copyright owner of each program. Ownership

of the Software and all proprietary rights relating thereto remain with HMI and its

licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes,

or (ii) transfer the Software to a single hard disk, provided that you keep the

original for backup or archival purposes. You may not (i) rent or lease the

Software, (ii) copy or reproduce the Software through a LAN or other network

system or through any computer subscriber system or bulletin-board system,

or (iii) modify, adapt, or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may

transfer the Software and user documentation on a permanent basis, provided

that the transferee agrees to accept the terms and conditions of this Agreement

and you retain no copies. If the Software is an update or has been updated, any

transfer must include the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual

requirements and restrictions detailed for each individual program in Appendix A of

this Book. These limitations are also contained in the individual license agreements

recorded on the Software Media. These limitations may include a requirement that after

using the program for a specified period of time, the user must pay a registration fee

or discontinue use. By opening the Software packet(s), you will be agreeing to abide

by the licenses and restrictions for these individual programs that are detailed in

Appendix A and on the Software Media. None of the material on this Software Media

or listed in this Book may ever be redistributed, in original or modified form, for

commercial purposes.

l4857-3 EULA.F 3/1/02 9:43 AM Page 616

5. Limited Warranty.

(a) HMI warrants that the Software and Software Media are free from defects in

materials and workmanship under normal use for a period of sixty (60) days from

the date of purchase of this Book. If HMI receives notification within the warranty

period of defects in materials or workmanship, HMI will replace the defective

Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,

EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE, WITH RESPECT TO THE SOFTWARE, THE PROGRAMS, THE

SOURCE CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES DESCRIBED

IN THIS BOOK. HMI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED

IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE

OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other

rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) HMI’s entire liability and your exclusive remedy for defects in materials and

workmanship shall be limited to replacement of the Software Media, which may

be returned to HMI with a copy of your receipt at the following address: Software

Media Fulfillment Department, Attn.: Zope Bible, Hungry Minds, Inc., 10475

Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four

to six weeks for delivery. This Limited Warranty is void if failure of the Software

Media has resulted from accident, abuse, or misapplication. Any replacement

Software Media will be warranted for the remainder of the original warranty

period or thirty (30) days, whichever is longer.

(b) In no event shall HMI or the author be liable for any damages whatsoever

(including without limitation damages for loss of business profits, business

interruption, loss of business information, or any other pecuniary loss) arising

from the use of or inability to use the Book or the Software, even if HMI has been

advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for

consequential or incidental damages, the above limitation or exclusion may not

apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software

for or on behalf of the United States of America, its agencies and/or instrumentalities

(the “U.S. Government”) is subject to restrictions as stated in paragraph (c)(1)(ii) of

the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013, or

subparagraphs (c) (1) and (2) of the Commercial Computer Software - Restricted

Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR supplement,

as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and

revokes and supersedes all prior agreements, oral or written, between them and may

not be modified or amended except in a writing signed by both parties hereto that

specifically refers to this Agreement. This Agreement shall take precedence over any

other documents that may be in conflict herewith. If any one or more provisions

contained in this Agreement are held by any court or tribunal to be invalid, illegal,

or otherwise unenforceable, each and every other provision shall remain in full force

and effect.

l4857-3 EULA.F 3/1/02 9:43 AM Page 617

Zope Public License (ZPL) Version 2.0
This software is Copyright © Zope Corporation™ and Contributors. All rights reserved.

This license has been certified as open source. It has also been designated as GPL compatible

by the Free Software Foundation (FSF).

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

1. Redistributions in source code must retain the above copyright notice, this list of

conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions, and the following disclaimer in the documentation and/or other materials

provided with the distribution.

3. The name Zope Corporation™ must not be used to endorse or promote products

derived from this software without prior written permission from Zope Corporation.

4. The right to distribute this software or to use it for any purpose does not give you the

right to use Servicemarks (sm) or Trademarks™ of Zope Corporation. Use of them is

covered in a separate agreement (see http://www.zope.com/Marks).

5. If any files are modified, you must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

Disclaimer
THIS SOFTWARE IS PROVIDED BY ZOPE CORPORATION “AS IS’’ AND ANY EXPRESSED OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENT SHALL ZOPE CORPORATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of contributions made by Zope Corporation and many individuals on

behalf of Zope Corporation. Specific attributions are listed in the accompanying credits file.

l4857-3 EULA.F 3/1/02 9:43 AM Page 618

	Zope™ Bible
	Front Matter
	Preface
	Why We Wrote This Book
	What You Need
	DTML, Python, and ZPT Code Conventions
	What the Icons Mean
	How This Book Is Organized
	Part I: Getting Started with Zope
	Part II: Building Zope Products
	Part III: Zope Management
	Part IV: Advanced Zope Concepts
	Appendixes

	Web Site

	Acknowledgments
	Contents at a Glance
	Contents

	Getting Started with Zope
	Overview of Zope
	What Is Zope?
	History of Zope
	Features of Zope
	Platforms
	Database adapters
	Web- based user interface
	Integration with existing tools
	Open source
	Extendibility
	Built- in Web server
	Plays nice with third- party Web servers
	Multiple protocol support
	Indexing and searching
	Built- in object database
	Built- in security model
	Clustering and load balancing
	Transactions
	Versions
	Undo support

	Zope Architecture
	ZServer
	ZPublisher
	Transaction Manager
	ZODB
	ZEO
	ZRDBM

	Zope Advantages
	Low cost of ownership
	Fast development/ deployment time
	Reliability
	Scalability

	Summary

	Installation
	What You Need to Run Zope
	Where to Find Zope
	Installing Zope Under Windows
	Installing Zope Under Linux
	Finding Your Way around Zope™s Directory Tree
	Starting up Zope for the First Time
	Logging in
	Shutting down
	Copying your Web site to a different machine

	Running Zope with ZServer
	Modifying ZServer™s behavior with switches
	ZServer Command Line Switches

	Using the command line switches when running Zope as a service

	Expanding Zope with Products
	Installing new products
	Product troubleshooting

	Getting Support
	Summary

	Zope Objects and the Management Interface
	Object Basics
	The Zope Management Interface
	Using the top frame
	Customizing the interface
	Logging out

	Exploring folders with the Navigator frame
	Manipulating objects in the Workspace frame

	Common Views
	Viewing objects through the Default view
	Examining an object and its Properties
	Adding a new property
	Editing or deleting an existing property

	Changing permissions in the Security view
	Simulating roles with the Proxy view
	Viewing ownership information
	Fixing mistakes in the Undo view

	Folder Objects
	Adding folders
	The contents View
	Adding objects
	Removing objects
	Renaming objects
	Sorting objects
	Cutting and pasting objects
	Importing and exporting objects

	Viewing a folder
	The Find view

	DTML Documents
	Adding a DTML document
	Editing a DTML document
	Viewing a DTML Document
	Reviewing changes with the History view

	DTML Methods
	Introducing the standard header
	Overriding the standard header

	File Objects
	Adding a file
	Editing a file
	Content type
	Precondition

	Viewing a file

	Image Objects
	Adding an image
	Editing an image
	Viewing an image

	User Folders and User Objects
	Adding a User Folder
	Editing a User Folder
	Adding a user
	Editing a user
	Managing users

	Control Panel
	Stopping and restarting Zope
	Managing the database
	Packing the database
	Managing the Object Cache

	Managing versions
	Managing products
	Debug information

	Summary

	Document Template Markup Language
	DTML Concepts
	Where data comes from
	Understanding variables, properties, and methods
	DTML tag syntax
	The name attribute
	The expr attribute
	Namespaces
	Name Lookup
	The DTML Client Object
	The DTML REQUEST Object
	The _ variable
	Modules and Methods Available from DTML

	The dtml- var Tag
	Entity syntax
	Attributes of the dtml- var tag
	The dtml- var Tag Attributes
	Null and missing values
	Variable truncation
	URL and HTML quotes
	Formatting your data with the fmt attribute
	Special Formats for the dtml- var Tag fmt Attribute
	Custom date- time Formats for the dtml- var Tag fmt Attribute

	The dtml- if Tag
	The basics of conditional insertion
	The dtml- else and dtml- elif tags

	The dtml- unless Tag
	The dtml- in Tag
	The basics of iterative insertion
	The dtml- else tag and empty sequences
	Attributes of the dtml- in tag
	The dtml- in Tag Attributes
	Sorting the contents of your sequence
	Changing the size of your sequence

	Current item variables
	The dtml- in Tag Current Item Variables

	Summary statistic variables
	The dtml- in Tag Summary Statistic Variables

	Grouping variables
	The dtml- in Tag Grouping Variables

	Batch processing
	The dtml- in Tag Batch Processing Variables

	The dtml- with Tag
	The dtml- let Tag
	The dtml- call Tag
	The dtml- return Tag
	The dtml- comment Tag
	The dtml- raise Tag
	The dtml- try Tag
	Checking for errors
	Handling multiple exceptions
	Optional dtml- else and dtml- finally tags
	Writing your own error messages
	The dtml- try tag Exception Variables

	The dtml- tree Tag
	Displaying objects in a tree
	Attributes of the dtml- tree tag
	The dtml- tree Tag Attributes
	Changing the type of objects in your tree
	Inserting leaves, headers, and footers
	Changing how your tree is displayed
	Passing variables within your tree

	Current item variables
	The dtml- tree Tag Current Item Variables

	Control variables
	The dtml- tree Tag Control Variables

	The dtml- sendmail and dtml- mime Tags
	Creating dynamic e- mail messages
	The dtml- sendmail Tag Attributes

	Sending attachments
	The dtml- mime and dtml- boundary Tag Attributes

	Summary

	Object- Oriented Programming and Python
	Using the Interactive Interpreter
	Running Python Commands from a File
	Variables
	Types and Operators
	Numbers
	Numeric Types
	Understanding the number syntax
	Evaluating numbers
	Numeric Operations
	Manipulating numbers using Python™s built- in functions

	Sequences
	Strings
	Character Escape Codes
	String Formatting Codes
	Lists
	Tuples

	Dictionaries
	Creating dictionaries
	Adding and changing items
	Removing items from a dictionary
	Useful operations

	Control Statements
	Conditional testing with the If statement
	The else: statement
	The elif: statement
	Nesting conditional statements

	Looping
	Looping with the While statement
	Looping with the For statement
	Nesting loops
	Breaking and continuing in a loop

	Functions
	Defining functions
	Passing variables to functions
	Naming arguments
	Assigning arguments default values
	Returning values from a function
	Assigning functions to names
	Arbitrary arguments

	Understanding Namespaces
	Namespaces within functions
	Creating and manipulating global variables

	Modules and Packages
	Using modules
	Playing with the module path
	Importing specific names from modules
	Creating and using packages
	Examining the contents of a namespace with dir()
	Understanding . pyc files

	Classes and Objects
	Defining a new class
	Class scope versus object scope
	Methods
	Controlling how classes are initialized with __ init__
	Inheritance

	Exception Handling
	Using the try statement
	The except object
	Catching exceptions
	Using else: with try
	The finally clause
	Raising exceptions

	Where Do I Go From Here?
	Summary

	Building Zope Products
	From Packages to Products
	What™s a Product?
	Creating a Hello World Package
	Publishing Objects
	Changing a Package into a Product
	Instantiating Your Object
	Filling out the manage_ add methods
	Subclassing from Zope base classes

	Adding DTML Methods
	Processing Form Submissions and Returning
	Web- enabling the edit method
	Dealing with non- Web situations
	Adding manage_ editHelloForm
	Defining your own management tabs

	Summary

	Creating an AddressBook Application
	The Addressit Product and the AddressBook Class
	Creating the Addressit Product
	AddressBook. py
	manage_ addAddressBook. dtml

	Creating edit and index_ html Methods
	Creating an Entry Module in the Addressit Product
	Adding, Listing, and Deleting Entries from the AddressBook
	Adding entries to the AddressBook
	AddressBook. py
	addEntryForm. dtml

	Testing the addEntryForm
	Listing the entries in the AddressBook
	Deleting entries from the AddressBook
	IndexAddressBook. dtml

	Traversing the AddressBook into the Entries
	You can™t get there from here
	Improving access to the entries
	IndexAddressBook. dtml

	Editing an Entry
	Summary

	Enhancing the AddressBook
	Adding a Standard Header
	Batching the Entries Display
	Scaling to many results
	About orphans
	Navigating among the batches

	Grouping Entries
	Adding a GroupList attribute to the AddressBook class
	Adding a Group attribute to the Entry class

	Adding and Deleting Groups
	Retrieving Entries by Group
	Renaming Groups
	Sorting Entries by Column
	Dealing with case- sensitivity

	Summary

	Zope Product Security
	Security and the Web
	Security 101
	The Web is fundamentally insecure

	The Zope Security Framework
	Roles
	Acquisition
	Ownership
	Local roles
	What Zope won™t do for you
	What Zope will do for you

	Determining your Security Requirements
	The Default policy
	Listing the methods
	Methods in the Addressit Product

	Reusing existing roles
	User Actions in the Addressit Product
	User Actions in the Addressit Product (Collapsed)

	Reusing existing Permissions
	Methods Mapped to Permissions

	Adding Security
	Adding Permissions
	Associating Permissions with roles
	Address book code with security declarations

	Summary

	Creating a Multi- User AddressBook
	Creating the Addressit Class
	Adding AddressBooks
	Public and Private AddressBooks
	Adding a Public attribute to the AddressBook class
	Using the Public attribute
	Incorporating the user™s private AddressBooks

	Finishing Touches
	Adding help
	Adding an Icon

	Summary

	Zope Management
	Content Management Strategies
	Content Management Concepts
	Content management basics
	Consistency
	Separation of content from presentation
	Separation of Presentation from Logic
	Minimizing redundancy

	Using Acquisition to Enforce Consistency
	So, what is acquisition?
	Using acquisition to standardize layout
	Navigation
	Using Acquisition to share Logic

	Collaboration and Versions
	What is a version?
	Creating a version
	Joining and leaving a version
	Working in a version
	Saving or discarding your changes
	Things to consider when working with versions

	Applied Security
	Delegation
	Damage Control

	Summary

	Database Management
	About Relational Databases
	Database basics
	Relational database structure
	Addressbook_ entries Table
	Addressbook_ contacts Table
	What data is to be stored?
	How will the data be added to the database?
	How will the data be read from the database?
	How can the data be normalized?

	Accessing relational databases: SQL
	The SELECT statement
	Employees
	The INSERT statement
	The UPDATE statement
	The DELETE statement
	The CREATE TABLE statement
	The DROP TABLE statement

	Real world: Specific RDBMS products
	MySQL
	Oracle
	Sybase
	PostgreSQL
	ODBC
	Gadfly

	Connecting Zope to a Relational Database
	Getting an adaptor
	Connecting and disconnecting
	Testing SQL statements
	Browsing tables

	SQL Methods: The Basics
	Static SQL methods
	Dynamic SQL methods
	The dtml- sqlvar tag
	The dtml- sqltest tag
	The dtml- sqlgroup tag

	Using SQL Methods from DTML
	Using the dtml- call tag
	Using the dtml- in tag

	Using SQL Methods from External Methods
	Using SQL Methods from Python Products
	Importing the SQL method class
	Instantiating new SQL method objects
	Calling SQL methods

	Advanced Techniques
	Acquiring parameters
	Traversing to SQL method results
	Pluggable Brains
	Caching
	Maximum rows to retrieve
	Maximum results to cache
	Maximum time to cache

	Transactions

	Building a SQL Application
	Setup a workspace
	Create a new Gadfly connection
	Create the table schema
	Create the SQL methods to access the database
	Adding a restaurant
	Deleting a restaurant
	Adding a vote for a restaurant
	Listing restaurants
	Listing all voters
	Listing votes for a restaurant
	Resetting the votes

	Write the DTML for the user interface
	The main page
	Adding restaurants
	Removing restaurants
	Listing restaurants and restaurant votes
	Voting
	Resetting votes

	Summary

	User Management and Security
	The Zope Security Framework
	Creating and Managing Users
	Adding a user
	Editing a User
	Setting the allowed domains

	The Emergency User
	Creating the emergency user by hand
	Creating the emergency user with zpasswd. py

	Understanding Roles
	The Anonymous role
	The Authenticated role
	The Manager role
	The Owner role
	Creating roles

	Setting Permissions for Roles
	Proxy Roles
	Giving a proxy role to a method
	Testing the proxy role

	Local Roles
	Using multiple user folders
	Removing a Local role
	Local roles gotchas

	Authentication Adapters
	Installing a custom acl_ user folder in the Root Folder
	MySQL User Folder
	SSL Certificate Authenticator
	Cookie User Folder
	NT User Folder
	SMB User Folder
	etc User Folder
	Generic User Folder
	Login Manager
	UserDB
	LDAPLoginAdapter
	LDAPUserManager

	Summary

	Advanced Zope Concepts
	Core Zope Components
	Acquisition
	Understanding wrappers
	Manipulating wrappers
	Acquisition Wrapper Attributes
	Unwrapping a wrapped object
	Testing whether an object is wrapped
	Accessing an object™s parents
	Wrapping objects manually with __ of__

	Context versus containment

	ZODB and Persistence
	Using the ZODB in other applications
	Storing objects and subobjects
	Notifying the ZODB when an object has changed
	Meet the rules of persistence
	Creating attributes that won™t be saved in the ZODB
	Aborting transactions
	Caching and memory management
	Changing the number of objects kept in the cache
	Changing amount of time an inactive objects remained in the cache
	Emptying the cache manually
	Using subtransactions and other tricks to save memory

	Thread safety
	Undoing transaction
	Removing old transactions to save space
	Working with, saving, and aborting versions

	ZPublisher
	Traversing objects
	Controlling the traversal process with __ bobo_ traverse__
	Security and traversing

	Publishing the object
	Marshaling arguments
	Type casting arguments
	Type Conversion Codes
	Using the REQUEST object
	CGI Environment Variables
	Convenience Variables
	Convenience Methods
	Using the RESPONSE object
	RESPONSE Object Methods and Properties

	Create Dynamic Text with DocumentTemplates
	Initializing templates with default arguments
	Calling templates
	Working with templates stored in files
	Document template security
	Creating your own tags
	Creating a simple singleton tag
	Using arguments in tags
	Getting values and rendering Python expressions
	Block tags

	Summary

	Scripting Zope
	Jumping in with Python Scripts
	Creating a Python- based script
	Script security
	Binding variables

	Under the Hood of a Python Script
	Calling Python- Based Scripts
	Calling scripts from DTML
	Calling scripts from a URL
	A practical example

	External Methods
	Why external methods?
	A practical example

	Perl- Based Scripts
	Before installing Script (Perl)
	Installing Zoperl
	Using Perl- based scripts

	Summary

	ZClasses
	What are ZClasses? OOP and Classes
	Through- the- Web ZClasses
	ZClass disadvantages

	Creating a Simple ZClass
	Creating the product
	Creating the ZClass
	Adding a default view

	ZClasses and PropertySheets
	Using simple property types
	Using select and multiple- select properties

	Automatically Generating ZClass Views
	Generating a View interface
	Generating an Edit interface

	Creating Simple Applications Using ZClasses
	FAQManager ZClass
	QandA ZClass
	Finishing the FAQManager interface

	Creating CatalogAware ZClasses
	Making a ZClass catalog aware
	Editing the constructor
	Cataloging changes to the object

	Subclassing ZClasses from Python Base Classes
	Why Subclass Python classes?
	Creating the Python base class
	Subclassing the ZClass from the base class

	Distributing ZClass Products
	Summary

	Searching Content
	Adding and Populating ZCatalogs
	What is a ZCatalog?
	Adding a ZCatalog to your site
	Populating a ZCatalog

	Configuring and Querying the ZCatalog
	ZCatalog indexes
	ZCatalog Metadata
	Building search interfaces
	The search_ form method
	The search_ results method (tabular)
	The search_ results method (records)

	Accessing ZCatalogs from Python
	Accessing ZCatalogs from Python script objects
	Accessing ZCatalogs from Python products
	Complex queries from Python
	Making Zope Product Classes auto catalogable (CatalogAwareness)

	More about ZCatalog
	More about text indexes
	More about field indexes
	More about keyword indexes
	More about path indexes
	The Advanced tab

	Summary

	Zope Page Templates
	The Problem with DTML
	DTML tags are not friendly to HTML editors
	DTML Methods and Documents are not renderable by WYSIWYG editors
	DTML encourages the mixing of presentation and logic

	TAL (Template Attribute Language)
	Page template basics
	TAL statements
	replace
	content
	repeat
	repeat Variables
	condition
	True and False Values in TAL
	attributes
	define
	omit- tag
	on- error

	Order of TAL statement execution

	TALES (TAL Expression Syntax)
	Path expressions
	Using path expressions
	Specifying alternate paths in an expression
	Getting an object without rendering it

	Python expressions
	String expressions
	The not: expression flag

	METAL (Macro Expansion TAL)
	Simple code reuse
	Macro slots

	Summary

	Debugging
	Error Messages
	Debug Mode
	Calling Zope from Python
	The Python debugger (pdb)
	Post- mortem debugging

	Triggering the Python Debugger via the Web
	Logging
	zLOG module
	Profile logging
	Control panel
	Debug information
	Profiling

	Summary

	Alternative Methods of Running Zope
	Interfacing Zope with Other Web Servers
	Zope and Apache
	Zope and Microsoft IIS
	Introducing ZServer to IIS through PCGI
	The public Web site: having Zope verify authentication

	Zope and Scalability
	What is scalability?
	Clustering and load balancing
	Zope Enterprise Objects
	What is ZEO?
	ZEO isn™t for everyone
	Installing ZEO
	Running ZEO
	Running ZEO Clusters

	Summary

	Appendixes
	What's on the CD- ROM
	System Requirements
	Using the CD- ROM with Microsoft Windows
	Using the CD with Linux
	What's on the CD
	Source code
	Applications
	Zope
	Codeit Addressit
	WYSIWYG HTML Editors

	Electronic version of
	Electronic version of

	Troubleshooting

	Installing Zope from the Red Hat RPMs or Source Code
	Installing on Linux from RPM
	Downloading the RPMs
	Option 1: Installing with GnoRPM
	Option 2: Installing with the command line RPM utility
	Starting and stopping Zope when installed from RPMs

	Installing from Source Code on Linux
	Why install from source code?
	Security
	Using your own Python
	Installing the latest development code from CVS

	Getting the source code
	Installing from source code
	Move the tarball to the / usr/ local directory
	Checking the existing Python
	Unzipping the archive
	Change permissions
	Completing the installation
	A quick review

	Summary

	Index
	Hungry Minds, Inc. End-User License Agreement
	Zope Public License (ZPL) Version 2.0

